Science.gov

Sample records for soil mercury levels

  1. Assessment of polychlorinated biphenyls and mercury levels in soil and biological samples from San Felipe, Nuevo Mercurio, Zacatecas, Mexico.

    PubMed

    Costilla-Salazar, Rogelio; Trejo-Acevedo, Antonio; Rocha-Amador, Diana; Gaspar-Ramírez, Octavio; Díaz-Barriga, Fernando; Pérez-Maldonado, Iván Nelinho

    2011-02-01

    The aim of this work was to evaluate contamination by polychlorinated biphenyls and mercury in soil, and to assess exposure level to both contaminants in children living in San Felipe, Nuevo Mercurio, Zacatecas, Mexico. We found soil levels of total polychlorinated biphenyls ranging from non detectable (nd) to 190 ?g/kg. Mercury soil levels ranged from 8.9 to 10215.0 mg/kg. Exposure levels of total polychlorinated biphenyls assessed in blood and urinary mercury in children living in the studied community were 1,600 ± 8,800 ng/g lipid and 4.2 ± 7.1 ?g/g creatinine, respectively. PMID:21152889

  2. Pilot Survey of Levels of Polychlorinated Dibenzo-P-Dioxins (PCDDS), Polychlorinated Dibenzofurans (PCDFS), Polychlorinated Biphenyls (PCB) and Mercury in Rural Soils of the U.S.

    EPA Science Inventory

    EPA has released a final report entitled, Pilot Survey of Levels of Polychlorinated Dibenzo-p-dioxins, Polychlorinated Dibenzofurans, Polychlorinated Biphenyls and Mercury in Rural Soils of the United States. The survey measured levels of dioxins, PCBs and mercury in soil ...

  3. Removal of mercury from soil with earthworms

    SciTech Connect

    Dorfman, D.

    1994-12-31

    Earthworms can live in soils containing high quantities of mercury, lead, and zinc. The worms (Lumbricus terrestris) concentrate these heavy metals in their tissues. The use of these worms to reduce the quantities of mercury and other heavy metals in soils may be practical. In July, 1993, a preliminary study was made using earthworms and soils with differing amounts of mercury, The quantities were 0.0 grams, 0.5 grams, and 1.0 grams of mercury as mercuric chloride. Earthworms were placed into these soils for two or more weeks, then harvested. The worms were rinsed with deionized water, then dissolved in nitric acid. Each sample was prepared for analysis with the addition of HNO{sub 3}, H{sub 2}SO{sub 4}, potassium permanganate, and hydrozylamine hydrochloride. A Jerome Instrument gold foil analyzer was used to determine levels of mercury after volatilizing the sample with stannous chloride. Worms exposed to contaminated soils remove 50 to 1,400 times as much mercury as do worms in control soils. In a hypothetical case, a site contaminated with one pound of mercury, 1,000 to 45,000 worms would be required to reduce mercury levels to background levels in the soil (about 250 ppb). After harvesting worms in contaminated soil they could be dried (90% of their weight is water), and the mercury regained by chemical processes. Soil conducive to earthworm survival is required. This includes a well aerated loamy soil, proper pH (7.0), and periodic watering and feeding. There are several methods of harvesting worms, including flooding and electricity. Large numbers of worms can be obtained from commercial growers.

  4. METHYLATION OF MERCURY IN AGRICULTURAL SOILS

    EPA Science Inventory

    Methylation of applied divalent mercury ion was found to occur in agricultural soils. The production of methylmercury was affected by soil texture, soil moisture content, soil temperature, concentration of the ionic mercury amendment, and time. Methylation was directly proportion...

  5. Effects of mercury release from amalgam dental restorations during cremation on soil mercury levels of three New Zealand crematoria

    SciTech Connect

    Nieschmidt, A.K.; Kim, N.D.

    1997-05-01

    A vast amount of research has been undertaken in the last 15-20 years on the corrosion reactions occurring in dental amalgam, release of mercury from amalgam restorations, and the toxic effects of this released mercury on the human body. However, one environmental aspect of amalgam dental restorations that has not received a great deal of attention is the release of mercury during cremation. Mercury is liberated during cremation both because dental amalgams are unstable at cremation temperatures (650-700{degrees}C) and because the free mercury metal is highly volatile. In New Zealand, 58% of deaths are followed by cremation and this figure is likely to rise in the future. This increasing use of cremation as the method of corpse disposal, coupled with the fact that each amalgam restoration is approximately 50% mercury, implies that a significant amount of mercury may be emitted into the environment every year. This study examines mercury released from crematoria in New Zealand. 20 refs., 2 figs., 5 tabs.

  6. Bioavailability and stability of mercury sulfide in Armuchee (USA) soil

    SciTech Connect

    Han, Fengxiang; Shiyab, Safwan; Su, Yi; Monts, David L.; Waggoner, Charles A.; Matta, Frank B.

    2007-07-01

    Because of the adverse effects of elemental mercury and mercury compounds upon human health, the U.S. Department of Energy (DOE) is engaged in an on-going effort to monitor and remediate mercury-contaminated DOE sites. In order to more cost effectively implement those extensive remediation efforts, it is necessary to obtain an improved understanding of the role that mercury and mercury compounds play in the ecosystem. We have conducted pilot scale experiments to study the bioavailability of mercury sulfide in an Armuchee (eastern US ) soil. The effects of plants and incubation time on chemical stability and bioavailability of HgS under simulated conditions of the ecosystem have been examined, as has the dynamics of the dissolution of mercury sulfide by various extractants. The results show that mercury sulfide in contaminated Armuchee soil was still to some extent bioavailable to plants. After planting, soil mercury sulfide is more easily dissolved by both 4 M and 12 M nitric acid than pure mercury sulfide reagent. Dissolution kinetics of soil mercury sulfide and pure chemical reagent by nitric acid are different. Mercury release by EDTA from HgS-contaminated soil increased with time of reaction and soil mercury level. Chelating chemicals increase the solubility and bioavailability of mercury in HgS-contaminated soil. (authors)

  7. Mercury content of Illinois soils

    USGS Publications Warehouse

    Dreher, G.B.; Follmer, L.R.

    2004-01-01

    For a survey of Illinois soils, 101 cores had been collected and analyzed to determine the current and background elemental compositions of Illinois soils. Mercury and other elements were determined in six samples per core, including a surface sample from each core. The mean mercury content in the surface samples was 33 ?? 20 ??g/kg soil, and the background content was 20 ?? 9 ??g/kg. The most probable sources of mercury in these soils were the parent material, and wet and dry deposition of Hg0 and Hg2+ derived from coal-burning power plants, other industrial plants, and medical and municipal waste incinerators. Mercury-bearing sewage sludge or other fertilizers applied to agricultural fields could have been the local sources of mercury. Although the mercury content correlated with organic carbon content or clay content in individual cores, when all the data were considered, there was no strong correlation between mercury and either the organic carbon or the clay-size content.

  8. Mercury speciation during in situ thermal desorption in soil.

    PubMed

    Park, Chang Min; Katz, Lynn E; Liljestrand, Howard M

    2015-12-30

    Metallic mercury (Hg(0)) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury. PMID:26275352

  9. VOLATILITY OF MERCURY FROM SOILS AMENDED WITH VARIOUS MERCURY COMPOUNDS

    EPA Science Inventory

    A study was conducted to determine the rate of mercury volatilization from soils freshly amended with mercury compounds. Mercuric nitrate, mercuric chloride, mercuric acetate, mercuric oxide, and mercuric sulfide were used in conjunction with three soils: a loamy sand, a sand loa...

  10. Blood Mercury Level

    EPA Science Inventory

    This indicator describes the presence of mercury in the blood of segments of the U.S. population from 1999 to 2008. Mercury can cause developmental and neurological problems, especially in children. This indicator shows how exposure to this environmental contaminant has change...

  11. OCCURRENCE OF MERCURY-RESISTANT MICROORGANISMS IN MERCURY-CONTAMINATED SOILS AND SEDIMENTS IN PAVLODAR, KAZAKHSTAN

    EPA Science Inventory

    There is extensive mercury contamination of soil surrounding a chloralkali plant in Pavlodar, Kazakhstan that operated from 1970 to 1990. High-level mercury contamination exists within the confines of the plant, at nearby off-site waste storage and evaporation ponds, and in Balky...

  12. The effect of industrial pollution on mercury levels in water, soil, and sludge in the coastal area of Motril, southeast Spain.

    PubMed

    Navarro, M; López, H; Sánchez, M; López, M C

    1993-01-01

    The total concentration of mercury was determined in samples of water, soil and sludge from the Mediterranean coastal area of Southeast Spain (Motril), where Hg contamination is produced primarily by a local paper mill. Samples were taken at surface level in a 5 Km radius from the factory. The total Hg concentrations varied from 0.117 to 0.760 microgram/g in soil and sludge, and from ND to 2.088 micrograms/L in water. A negative correlation was observed between the distance of the sampling station from the mill and the concentration of Hg in the soil and sludge samples. Similarly, an increase in Hg concentration was observed in the freshwater and wastewater after passing close to the factory. PMID:8466289

  13. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    SciTech Connect

    Ernest F. Stine Jr; Steven T. Downey

    2002-08-14

    U.S. Department of Energy (DOE) used large quantities of mercury in the uranium separating process from the 1950s until the late 1980s in support of national defense. Some of this mercury, as well as other hazardous metals and radionuclides, found its way into, and under, several buildings, soil and subsurface soils and into some of the surface waters. Several of these areas may pose potential health or environmental risks and must be dealt with under current environmental regulations. DOE's National Energy Technology Laboratory (NETL) awarded a contract ''Alternative Field Methods to Treat Mercury in Soil'' to IT Group, Knoxville TN (IT) and its subcontractor NFS, Erwin, TN to identify remedial methods to clean up mercury-contaminated high-clay content soils using proven treatment chemistries. The sites of interest were the Y-12 National Security Complex located in Oak Ridge, Tennessee, the David Witherspoon properties located in Knoxville, Tennessee, and at other similarly contaminated sites. The primary laboratory-scale contract objectives were (1) to safely retrieve and test samples of contaminated soil in an approved laboratory and (2) to determine an acceptable treatment method to ensure that the mercury does not leach from the soil above regulatory levels. The leaching requirements were to meet the TC (0.2 mg/l) and UTS (0.025 mg/l) TCLP criteria. In-situ treatments were preferred to control potential mercury vapors emissions and liquid mercury spills associated with ex-situ treatments. All laboratory work was conducted in IT's and NFS laboratories. Mercury contaminated nonradioactive soil from under the Alpha 2 building in the Y-12 complex was used. This soils contained insufficient levels of leachable mercury and resulted in TCLP mercury concentrations that were similar to the applicable LDR limits. The soil was spiked at multiple levels with metallic (up to 6000 mg/l) and soluble mercury compounds (up to 500 mg/kg) to simulate expected ranges of mercury contamination and to increase the TCLP mercury values. IT/NFS investigated ambient temperature amalgamation/stabilization/fixation of mercury-contaminated soils to meet these objectives. Treatment ranged in size from a few ounces to 10 pounds. The treatability study philosophy was to develop working envelops of formulations where reasonable minimum and maximum amounts of each reagent that would successfully treat the contaminated soil were determined. The dosages investigated were based on ratios of stoichiometric reactions and applications of standard sets of formulations. The approach purposely identified formulations that failed short or longer cure-time performance criteria to define the limits of the envelope. Reagent envelops successfully met the project requirements one day after treatment and after greater than 30-day cures. The use of multiple levels of spikes allowed the establishment of reagent dosages that were successful across a broad range of mercury values, e.g., 50 to 6000 mg/kg mercury. The treatment products were damp to slightly wet material. Enough drying reagent, e.g., Portland cement or lime by-product, were added to some formulations to control the leachability of uranium and other hazardous metals and to ensure the product passed the paint filter test. Cost analyzes and conceptual designs for four alternatives for full-scale treatments were prepared. The alternatives included two in-situ treatments and two ex-situ treatments. The cost estimates were based on the results from the bench-scale study. All four alternatives treatment costs were well below the baseline costs.

  14. Modelling of mercury emissions from background soils.

    PubMed

    Scholtz, M T; Van Heyst, B J; Schroeder, W H

    2003-03-20

    Emissions of volatile mercury species from natural soils are believed to be a significant contributor to the atmospheric burden of mercury, but only order-of-magnitude estimates of emissions from these sources are available. The scaling-up of mercury flux measurements to regional or global scales is confounded by a limited understanding of the physical, chemical and biochemical processes that occur in the soil, a complex environmental matrix. This study is a first step toward the development of an air-surface exchange model for mercury (known as the mercury emission model (MEM)). The objective of the study is to model the partitioning and movement of inorganic Hg(II) and Hg(0) in open field soils, and to use MEM to interpret published data on mercury emissions to the atmosphere. MEM is a multi-layered, dynamic finite-element soil and atmospheric surface-layer model that simulates the exchange of heat, moisture and mercury between soils and the atmosphere. The model includes a simple formulation of the reduction of inorganic Hg(II) to Hg(0). Good agreement was found between the meteorological dependence of observed mercury emission fluxes, and hourly modelled fluxes, and it is concluded that MEM is able to simulate well the soil and atmospheric processes influencing the emission of Hg(0) to the atmosphere. The heretofore unexplained close correlation between soil temperature and mercury emission flux is fully modelled by MEM and is attributed to the temperature dependence of the Hg(0) Henry's Law coefficient and the control of the volumetric soil-air fraction on the diffusion of Hg(0) near the surface. The observed correlation between solar radiation intensity and mercury flux, appears in part to be due to the surface-energy balance between radiation, and sensible and latent heat fluxes which determines the soil temperature. The modelled results imply that empirical correlations that are based only on flux chamber data, may not extend to the open atmosphere for all weather scenarios. PMID:12663183

  15. [Mercury speciation transformation in soil of the water-level-fluctuating zone in the Three Gorges area under alternative dry-wet condition].

    PubMed

    Zhang, Cheng; Song, Li; Wang, Ding-Yong; Zhang, Jin-Yang; Sun, Rong-Guo

    2013-12-01

    The speciation transformation, influencing factors, as well as bioavailability of mercury (Hg) in soil of the water-level-fluctuating zone in the Three Gorges Reservoir Area were simulated. The results showed that Hg in soil under alternative dry-wet condition could be transformed and released. The total Hg content in the soil was decreased by 28.9% after two "wet-dry" cycles. The percentages of the six Hg species (water-soluble, exchangeable, carbonate-bound, humics-bound, organic-sulf and residual Hg) were 6.1%-16.8%, 5.8% -12.9%, 4.5%-17.7%, 12.5%-29.9%, 5.3%-12.8%, and 34.5%-51.6%, respectively. It was found that Hg in soils was dominantly residue Hg, whose percentage tended to decrease under alternative dry-wet condition. The percentage of humics-bound Hg increased gradually and an increase of the percentage of bioavailable Hg (including water-soluble, exchangeable, carbonate-bound, and humics-bound Hg) after two wet-dry cycles were observed. Bioavailable Hg could be easily absorbed by aquatic organisms to enter the food chain, which might increase the ecological risk of Hg in the reservoir. PMID:24697075

  16. ABIOLOGICAL METHYLATION OF MERCURY IN SOIL

    EPA Science Inventory

    This work defines several factors influencing the methylation of mercuric ion in soil. Two of the most important findings were that it is possible to extract the mercury methylating factor from soil with a solution of 0.5N sodium hydroxide and that this factor is responsible for ...

  17. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    SciTech Connect

    Ernie F. Stine

    2002-08-14

    The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw E&I. The company will be denoted as ''IT'' for the rest of the document since the original contract was awarded to IT. This report details IT, Knoxville, TN and its subcontractor Nuclear Fuels Services (NFS) study to investigate alternative mercury treatment technology. The IT/NFS team demonstrated two processes for the amalgamation/stabilization/fixation of mercury and potentially Resource Conservation Recovery Act (RCRA) and radionuclide-contaminated soils. This project was to identify and demonstrate remedial methods to clean up mercury-contaminated soil using established treatment chemistries on soil from the Oak Ridge Reservation, Y-12 National Security Complex, the off-site David Witherspoon properties, and/or other similarly contaminated sites. Soil from the basement of Y-12 Plant Alpha 2 Building at the Oak Ridge Reservation was received at IT and NFS on December 20, 2001. Soils from the other locations were not investigated. The soil had background levels of radioactivity and had all eight RCRA metals well below the Toxicity Characteristic (TC) criteria. This project addresses the new DOE Environmental Management Thrust 2 ''Alternative Approaches to Current High Risk/High Cost Baselines''. Successful completion of this project will provide a step-change in DOE's treatment ability.

  18. Spatial distribution of mercury and arsenic levels in water, soil and cassava plants in a community with long history of gold mining in Tanzania.

    PubMed

    Nyanza, Elias C; Dewey, Deborah; Thomas, Deborah S K; Davey, Mark; Ngallaba, Sospatro E

    2014-12-01

    This study examined the spatial distribution of total mercury (THg) and total arsenic (TAs) in water, soil and cassava (Manihot esculenta) (leaves and roots) samples taken from areas in Rwamagasa village in northwestern Tanzania where daily living activities occur in close proximity to extensive artisanal and small scale gold mining. Results indicated that 33.3 % of the water sources had THg levels above the WHO guideline of 1.0 µg/L for safe drinking water, and 12.5 % had TAs levels above 10 µg/L. Cassava leaves were found to have higher THg (ranging from 8.3 to 167 µg/kg) and TAs (ranging from 60 to 1,120 µg/kg) levels than cassava roots, which ranged between 1.2-8.3 µg/kg for THg and 25-310 µg/kg for TAs. Concentrations of THg and TAs in soil samples ranged between 5.8-1,759 and 183-20,298 µg/kg, respectively. Both THg and TAs were found to be distributed throughout Rwamagasa village. PMID:24923470

  19. Mercury and plants in contaminated soils. 2: Environmental and physiological factors governing mercury flux to the atmosphere

    SciTech Connect

    Leonard, T.L.; Gustin, M.S.; Fernandez, G.C.J.; Taylor, G.E. Jr.

    1998-10-01

    The objective of this study was to evaluate the role of physiological and environmental factors in governing the flux of elemental mercury from plants to the atmosphere. Five species (Lepidium latifolium, Artemisia douglasiana, Caulanthus sp., Fragaria vesca, and Eucalyptus globulus) with different ecological and physiological attributes and growing in soils with high levels of mercury contamination were examined. Studies were conducted in a whole-plant, gas-exchange chamber providing precise control of environmental conditions, and mercury flux was estimated using the mass balance approach. Mercury flux increased linearly as a function of temperature within the range of 20 to 40 C, and the mean temperature coefficient (Q{sub 10}) was 2.04. The temperature dependence of mercury flux was attributed to changes in the contaminant`s vapor pressure in the leaf interior. Mercury flux from foliage increased linearly as a function of irradiance within the range of 500 to 1,500 {micro}mol m/s, and the light enhancement of mercury flux was within a factor of 2.0 to 2.5 for all species. Even though the leaf-to-atmosphere diffusive path for mercury vapor from foliage is similar to that of water vapor, stomatal conductance played a secondary role in governing mercury flux. In a quantitative comparison with other studies in both laboratory and field settings, a strong linear relationship is evident between mercury vapor flux and the natural logarithm of soil mercury concentration, and this relationship may have predictive value in developing regional- and continental-scale mercury budgets. The most critical factors governing mercury flux from plants are mercury concentration in the soil, leaf area index, temperature, and irradiance.

  20. Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation.

    PubMed

    Hlodák, Michal; Urík, Martin; Matúš, Peter; Ko?enková, Lucia

    2016-02-01

    Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments. PMID:26247328

  1. Mercury

    MedlinePLUS

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  2. Mercury in soil gas and air--A potential tool in mineral exploration

    USGS Publications Warehouse

    McCarthy, Joseph Howard; Vaughn, W.W.; Learned, R.E.; Meuschke, J.L.

    1969-01-01

    The mercury content in soil gas and in the atmosphere was measured in several mining districts to test the possibility that the mercury content in the atmosphere is higher over ore deposits than over barren ground. At Cortez, Nev., the distribution of anorhalous amounts of mercury in the air collected at ground level (soil gas) correlates well with the distribution of gold-bearing rocks that are covered by as much as 100 feet of gravel. The mercury content in the atmosphere collected at an altitude of 200 feet by an aircraft was 20 times background over a mercury posit and 10 times background over two porphyry copper deposits. Measurement of mercury in soil gas and air may prove to be a valuable exploration tool.

  3. Thermal-treated soil for mercury removal: Soil and phytotoxicity tests

    SciTech Connect

    Roh, Y.; Edwards, N.T.; Lee, S.Y.; Stiles, C.A.; Armes, S.; Foss, J.E.

    2000-04-01

    Mercury (Hg) contamination of soils and sediments is one of many environmental problems at the Oak Ridge Reservation, Oak Ridge, TN. Mercury-contaminated soil from the Lower East Fork Poplar Creek (LEFPC) at the Oak Ridge Reservation was treated thermally to reduce Hg concentration to a below target level (20 mg kg{sup {minus}1}) as a pilot scale thermal treatment demonstration. As a part of performance evaluation, the soil characteristics and plant growth response of the untreated and treated soil were examined. The soil treated at 350 C retained most of its original soil properties, but the soil treated at 600 C exhibited considerable changes in mineralogical composition and physicochemical characteristics. Growth and physiological response of the three plant species radish (Raphanus sativus L.), fescue (Festuca arundinacea Schreb.), and oat (Avena sativa L.) indicated adverse effects of the thermal treatment. The addition of N fertilizer had beneficial effects in the 350 C treated soil, but had little beneficial effect in the 600 C treated soil. Some changes of soil characteristics induced by thermal treatment cannot be avoided. Soil characteristics and phytotoxicity test results strongly suggest that changes occurring following the 350 C treatment do not limit the use of the treated soil to refill the excavated site for full-scale remediation. The only problem with the 350 C treatment is that small amounts of Hg compounds (<15 mg kg{sup {minus}1}) remain in the soil and a processing cost of $45/Mg.

  4. Mercury transportation in soil via using gypsum from flue gas desulfurization unit in coal-fired power plant.

    PubMed

    Wang, Kelin; Orndorff, William; Cao, Yan; Pan, Weiping

    2013-09-01

    The mercury flux in soils was investigated, which were amended by gypsums from flue gas desulphurization (FGD) units of coal-fired power plants. Studies have been carried out in confined greenhouses using FGD gypsum treated soils. Major research focus is uptakes of mercury by plants, and emission of mercury into the atmosphere under varying application rates of FGD gypsum, simulating rainfall irrigations, soils, and plants types. Higher FGD gypsum application rates generally led to higher mercury concentrations in the soils, the increased mercury emissions into the atmosphere, and the increased mercury contents in plants (especially in roots and leaves). Soil properties and plant species can play important roles in mercury transports. Some plants, such as tall fescue, were able to prevent mercury from atmospheric emission and infiltration in the soil. Mercury concentration in the stem of plants was found to be increased and then leveled off upon increasing FGD gypsum application. However, mercury in roots and leaves was generally increased upon increasing FGD gypsum application rates. Some mercury was likely absorbed by leaves of plants from emitted mercury in the atmosphere. PMID:24520729

  5. Bench-scale studies with mercury contaminated SRS soil

    SciTech Connect

    Cicero, C.A.

    1995-12-31

    Bench-scale studies with mercury contaminated soil were performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability, leach resistance, and processability. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury. Four soil glasses with slight variations in composition were produced, which were capable of passing the Product Consistency Test (PCT) and the Toxicity Characteristic Leaching Procedure (TCLP). The optimum glass feed composition contained 60 weight percent soil and produced a soda-lime-silica glass when melted at 1,350 C. The glass additives used to produce this glass were 24 weight percent Na{sub 2}CO{sub 3} and 16 weight percent CaCO{sub 3}. Volatilized mercury released during the vitrification process was released to the proposed mercury collection system. The proposed mercury collection system consisted of quartz and silica tubing with a Na{sub 2}S wash bottle followed by a NaOH wash bottle. Once in the system, the volatile mercury would pass through the wash bottle containing Na{sub 2}S, where it would be converted to Hg{sub 2}S, which is a stable form of mercury. However, attempts to capture the volatilized mercury in a Na{sub 2}S solution wash bottle were not as successful as anticipated. Maximum mercury captured was only about 3.24% of the mercury contained in the feed. Mercury capture efforts then shifted to condensing and capturing the volatilized mercury. These attempts were much more successful at capturing the volatile mercury, with a capture efficiency of 34.24% when dry ice was used to pack the condenser. This captured mercury was treated on a mercury specific resin after digestion of the volatilized mercury.

  6. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand.

    PubMed

    Craw, D

    2005-02-01

    Eroded roots of hot spring systems in Northland, New Zealand consist of mineralised rocks containing sulfide minerals. Marcasite and cinnabar are the dominant sulfides with subordinate pyrite. Deep weathering and leached soil formation has occurred in a warm temperate to subtropical climate with up to 3 m/year rainfall. Decomposition of the iron sulfides in natural and anthropogenic rock exposures yields acid rock drainage with pH typically between 2 and 4, and locally down to pH 1. Soils and weathered rocks developed on basement greywacke have negligible acid neutralisation capacity. Natural rainforest soils have pH between 4 and 5 on unmineralised greywacke, and pH is as low as 3.5 in soils on mineralised rocks. Roads with aggregate made from mineralised rocks have pH near 3, and quarries from which the rock was extracted can have pH down to 1. Mineralised rocks are enriched in arsenic and mercury, both of which are environmentally available as solid solution impurities in iron sulfides and phosphate minerals. Base metals (Cu, Pb, Zn) are present at low levels in soils, at or below typical basement rock background. Decomposition of the iron sulfides releases the solid solution arsenic and mercury into the acid rock drainage solutions. Phosphate minerals release their impurities only under strongly acid conditions (pH<1). Arsenic and mercury are adsorbed on to iron oxyhydroxides in soils, concentrated in the C horizon, with up to 4000 ppm arsenic and 100 ppm mercury. Waters emanating from acid rock drainage areas have arsenic and mercury below drinking water limits. Leaching experiments and theoretical predictions indicate that both arsenic and mercury are least mobile in acid soils, at pH of c. 3-4. This optimum pH range for fixation of arsenic and mercury on iron oxyhydroxides in soils is similar to natural pH at the field site of this study. However, neutralisation of acid soils developed on mineralised rocks is likely to decrease adsorption and enhance mobility of arsenic and mercury. Hence, development of farmland by clearing forest and adding agricultural lime may mobilise arsenic and mercury from underlying soils on mineralised rocks. In addition, arsenic and mercury release into runoff water will be enhanced where sediment is washed off mineralised road aggregate (pH 3) on to farm land (pH>6). The naturally acid forest soils, or even lower pH of natural acid rock drainage, are the most desirable environmental conditions to restrict dissolution of arsenic and mercury from soils. This approach is only valid where mineralised soils have low base metal concentrations. PMID:15644268

  7. Accumulation of mercury in selected plant species grown in soils contaminated with different mercury compounds

    SciTech Connect

    Su, Yi; Han, Fengxiang; Shiyab, Safwan; Chen, Jian; Monts, David L.

    2007-07-01

    The objective of our research is to screen and search for suitable plant species for phyto-remediation of mercury-contaminated soil. Currently our effort is specifically focused on mercury removal from the U.S. Department of Energy (DOE) sites, where mercury contamination is a major concern. In order to cost effectively implement mercury remediation efforts, it is necessary now to obtain an improved understanding of biological means of removing mercury and mercury compounds.. Phyto-remediation is a technology that uses various plants to degrade, extract, contain, or immobilize contaminants from soil and water. In particular, phyto-extraction is the uptake of contaminants by plant roots and translocation within the plants to shoots or leaves. Contaminants are generally removed by harvesting the plants. We have investigated phyto-extraction of mercury from contaminated soil by using some of the known metal-accumulating plants since no natural plant species with mercury hyper-accumulating properties has yet been identified. Different natural plant species have been studied for mercury uptake, accumulation, toxicity and overall mercury removal efficiency. Various mercury compounds, such as HgS, HgCl{sub 2}, and Hg(NO{sub 3}){sub 2}, were used as contaminant sources. Different types of soil were examined and chosen for phyto-remediation experiments. We have applied microscopy and diffuse reflectance spectrometry as well as conventional analytical chemistry to monitor the phyto-remediation processes of mercury uptake, translocation and accumulation, and the physiological impact of mercury contaminants on selected plant species. Our results indicate that certain plant species, such as beard grass (Polypogon monospeliensis), accumulated a very limited amount of mercury in the shoots (<65 mg/kg), even though root mercury accumulation is significant (maximum 2298 mg/kg). Consequently, this plant species may not be suitable for mercury phyto-remediation. Other plant species, such as Indian mustard (Brassica juncea), a well-studied metal accumulator, exhibited severe chlorosis symptoms during some experiments. Among all the plant species studied, Chinese brake fern (Pteris vittata) accumulated significant amount of mercury in both roots and shoots and hence may be considered as a potential candidate for mercury phyto-extraction. During one experiment, Chinese brake ferns accumulated 540 mg/kg and 1469 mg/kg in shoots after 18 days of growing in soils treated with 500 parts-per-million (ppm) and 1000 ppm HgCl{sub 2} powder, respectively; no visual stress symptoms were observed. We also studied mercury phyto-remediation using aged soils that contained HgS, HgCl{sub 2}, or Hg(NO{sub 3}){sub 2}. We have found that up to hundreds of ppm mercury can be accumulated in the roots of Indian mustard plants grown with soil contaminated by mercury sulfide; HgS is assumed to be the most stable and also the predominant mercury form in flood plain soils. We have also started to investigate different mercury uptake mechanisms, such as root uptake of soil contaminant and foliar mercury accumulation from ambient air. We have observed mercury translocation from roots to shoot for Chinese fern and two Indian mustard varieties. (authors)

  8. Mercury in humus horizons of soils in the Transbaikal region

    NASA Astrophysics Data System (ADS)

    Ivanov, G. M.; Kashin, V. K.

    2010-01-01

    The total mercury content has been determined in gray forest soils, chernozems, chestnut soils, and in different parent materials in the Transbaikal region. The mercury content is below the clarke value in the intrusive, effusive, and alluvial soil-forming rocks (0.004-0.024 mg/kg). In the humus horizons of the soils, it reaches 0.011-0.026 mg/kg, which is higher than the clarke value for the pedosphere. The mean background content of mercury in the soils of the Transbaikal region is 0.018 mg/kg. No significant positive correlation between the mercury content and the humus content of the soils has been revealed.

  9. Engineering tobacco to remove mercury from polluted soil.

    PubMed

    Chang, S; Wei, F; Yang, Y; Wang, A; Jin, Z; Li, J; He, Y; Shu, H

    2015-04-01

    Tobacco is an ideal plant for modification to remove mercury from soil. Although several transgenic tobacco strains have been developed, they either release elemental mercury directly into the air or are only capable of accumulating small quantities of mercury. In this study, we constructed two transgenic tobacco lines: Ntk-7 (a tobacco plant transformed with merT-merP-merB1-merB2-ppk) and Ntp-36 (tobacco transformed with merT-merP-merB1-merB2-pcs1). The genes merT, merP, merB1, and merB2 were obtained from the well-known mercury-resistant bacterium Pseudomonas K-62. Ppk is a gene that encodes polyphosphate kinase, a key enzyme for synthesizing polyphosphate in Enterobacter aerogenes. Pcs1 is a tobacco gene that encodes phytochelatin synthase, which is the key enzyme for phytochelatin synthesis. The genes were linked with LP4/2A, a sequence that encodes a well-known linker peptide. The results demonstrate that all foreign genes can be abundantly expressed. The mercury resistance of Ntk-7 and Ntp-36 was much higher than that of the wild type whether tested with organic mercury or with mercuric ions. The transformed plants can accumulate significantly more mercury than the wild type, and Ntp-36 can accumulate more mercury from soil than Ntk-7. In mercury-polluted soil, the mercury content in Ntp-36's root can reach up to 251 ?g/g. This is the first report to indicate that engineered tobacco can not only accumulate mercury from soil but also retain this mercury within the plant. Ntp-36 has good prospects for application in bioremediation for mercury pollution. PMID:25690353

  10. Biological monitoring for mercury within a community with soil and fish contamination.

    PubMed Central

    Harnly, M; Seidel, S; Rojas, P; Fornes, R; Flessel, P; Smith, D; Kreutzer, R; Goldman, L

    1997-01-01

    To assess the impact of elevated levels of inorganic mercury in soil and dust and organic mercury in fish, biological monitoring was conducted among Native Americans living next to an inactive mercury mine in Clear Lake, California. Of resident tribal members, 46% (n = 56) participated in biomonitoring. Urine mercury levels are equivalent to background, indicating that soil and dust exposures among study participants are not substantial. The average blood organic mercury level among study participants is 15.6 +/- 8.8 micrograms/l (n = 44), which is higher than levels reported by others among those who do not consume fish (2 micrograms/l). Consistent with results from other studies, a correlation between fish consumption and blood organic mercury is observed (p = 0.03). The margin between observed and established adverse effect levels for adults is examined for blood organic mercury and found to be less than 10-fold for 20% of the study population. Protective public health efforts for the study population and other similarly exposed populations, notably those who consume commercial fish products, are considered. Images Figure 1. PMID:9189708

  11. Umbilical cord blood mercury levels in China.

    PubMed

    Wu, Meiqin; Yan, Chonghuai; Xu, Jian; Wu, Wei; Li, Hui; Zhou, Xin

    2013-02-01

    Mercury (Hg) is a well-known neurotoxicant. Hg exposure at high levels can harm individuals of all ages. Even low level exposure to Hg can damage the brain of fetuses and young children, and affect their central nervous system and cognitive development. The aims of our study were to measure total Hg levels in infant umbilical cord blood and to investigate the risk factors associated with total Hg cord blood levels in various cities in China. Our goal was to provide clues for the prevention of Hg exposure in utero. The results indicated that the average cord blood mercury levels (CBMLs) were (1.81 +/- 1.93) microg/L, which were lower than those found in most previous studies. The concentrations also differed according to geographic region. The CBMLs were not only associated with family economic and living conditions, but also with diet in pregnant women, especially the intake of marine fish, shellfish, poultry, formula milk and fruits. PMID:23596960

  12. Mercury release from deforested soils triggered by base cation enrichment.

    PubMed

    Farella, N; Lucotte, M; Davidson, R; Daigle, S

    2006-09-01

    The Brazilian Amazon has experienced considerable colonization in the last few decades. Family agriculture based on slash-and-burn enables millions of people to live in that region. However, the poor nutrient content of most Amazonian soils requires cation-rich ashes from the burning of the vegetation biomass for cultivation to be successful, which leads to forest ecosystem degradation, soil erosion and mercury contamination. While recent studies have suggested that mercury present in soils was transferred towards rivers upon deforestation, little is known about the dynamics between agricultural land-use and mercury leaching. In this context, the present study proposes an explanation that illustrates how agricultural land-use triggers mercury loss from soils. This explanation lies in the competition between base cations and mercury in soils which are characterized by a low adsorption capacity. Since these soils are naturally very poor in base cations, the burning of the forest biomass suddenly brings high quantities of base cations to soils, destabilizing the previous equilibrium amongst cations. Base cation enrichment triggers mobility in soil cations, rapidly dislocating mercury atoms. This conclusion comes from principal component analyses illustrating that agricultural land-use was associated with base cation enrichment and mercury depletion. The overall conclusions highlight a pernicious cycle: while soil nutrient enrichment actually occurs through biomass burning, although on a temporary basis, there is a loss in Hg content, which is leached to rivers, entering the aquatic chain, and posing a potential health threat to local populations. Data presented here reflects three decades of deforestation activities, but little is known about the long-term impact of such a disequilibrium. These findings may have repercussions on our understanding of the complex dynamics of deforestation and agriculture worldwide. PMID:16781764

  13. Total mercury in fish, sediments and soil from the River Pra Basin, southwestern Ghana.

    PubMed

    Oppong, S O B; Voegborlo, R B; Agorku, S E; Adimado, A A

    2010-09-01

    Total Mercury (Hg) concentrations were determined in soil, river sediments and six (6) species of fish from the River Pra Basin in southwestern Ghana by Cold Vapour Atomic Absorption Spectrometry. Mercury concentration (microg g(-1)) ranged from 0.042 to 0.145 for soil: from 0.390 to 0.707 for sediments and from <0.001 to 0.370 for fish. All the fish samples had Hg concentration below the World Health Organisation (WHO) permissible limit of 0.5 microg g(-1) whereas all the sediment samples had levels higher than the US-EPA value of 0.2 microg g(-1). The results obtained from this study showed that fish from River Pra Basin are unlikely to constitute any significant mercury exposure to the public through consumption. No apparent trend of increasing mercury concentration along the main river as it flows downward toward the sea was observed. PMID:20585751

  14. Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya.

    PubMed

    Odumo, Benjamin Okang'; Carbonell, Gregoria; Angeyo, Hudson Kalambuka; Patel, Jayanti Purshottam; Torrijos, Manuel; Rodríguez Martín, José Antonio

    2014-11-01

    This work considered the environmental impact of artisanal mining gold activity in the Migori-Transmara area (Kenya). From artisanal gold mining, mercury is released to the environment, thus contributing to degradation of soil and water bodies. High mercury contents have been quantified in soil (140 ?g kg(-1)), sediment (430 ?g kg(-1)) and tailings (8,900 ?g kg(-1)), as expected. The results reveal that the mechanism for transporting mercury to the terrestrial ecosystem is associated with wet and dry depositions. Lichens and mosses, used as bioindicators of pollution, are related to the proximity to mining areas. The further the distance from mining areas, the lower the mercury levels. This study also provides risk maps to evaluate potential negative repercussions. We conclude that the Migori-Transmara region can be considered a strongly polluted area with high mercury contents. The technology used to extract gold throughout amalgamation processes causes a high degree of mercury pollution around this gold mining area. Thus, alternative gold extraction methods should be considered to reduce mercury levels that can be released to the environment. PMID:24943890

  15. Gaseous mercury in background forest soil in the northeastern United States

    E-print Network

    Lee, Xuhui

    Gaseous mercury in background forest soil in the northeastern United States Jeffrey M. Sigler1 June 2006. [1] Although the soil gaseous mercury (Hg) reservoir is an important component of the soil mercury in background forest soil in the northeastern United States, J. Geophys. Res., 111, G02007, doi:10

  16. Organ mercury levels in infants with omphaloceles treated with organic mercurial antiseptic.

    PubMed Central

    Fagan, D G; Pritchard, J S; Clarkson, T W; Greenwood, M R

    1977-01-01

    Samples of fresh and fixed tissues from infants with exomphalos treated by thiomersal application were analysed for mercury content. The results showed that thiomersal can induce blood and organ levels of organic mercury which are well in excess of the minimum toxic level in adults and fetuses. The analysis of fresh and fixed tissues must be carefully controlled against normal tissues in order to interpret mercury levels accurately. PMID:606172

  17. Total mercury, organic mercury and mercury fractionation in soil profiles from the Almadén mercury mine area.

    PubMed

    Fernández-Martínez, Rodolfo; Rucandio, Isabel

    2014-02-01

    Soil profiles located in the mining district of Almadén were investigated for total Hg, organic Hg fraction and Hg distribution by selective sequential extraction. A four-step sequential extraction method (labile Hg species, humic and fulvic complexes, elemental Hg and bound to crystalline oxides and Hg sulfide and refractory species) was performed. Total Hg concentrations ranged from 13 to 64 mg per kg dry mass. A clear relationship between the depth and Hg content was found since Hg concentration decreases downwards, which is indicative of anthropogenic contamination via deposition processes from nearby mine waste. Significant organic Hg concentrations were found in all the tested soil profiles ranging from 79 to 287 ?g kg(-1) (dry weight). It seems that organic Hg was strongly influenced by elemental Hg (r = 0.79) and to a lesser extent by the organic carbon content (r = 0.57). The fractionation revealed that Hg exists mainly as cinnabar in the studied soils, which is one of the least available and mobile Hg species, and as elemental Hg as well. The most mobile Hg fractions only accounted for 3.2 to 7.7% of the total Hg content, with the main contribution being the humic and fulvic complexes fraction. The elemental Hg fraction increased with depth indicating a migration to deeper soil layers. In contrast, the surface layers showed an enrichment in the fraction bound to sulfide, which means that Hg is mostly deposited as cinnabar particles from non-processed ore in this area. PMID:24441501

  18. Kinetics of Mercury(II) Adsorption and Desorption on Soil

    E-print Network

    Sparks, Donald L.

    Kinetics of Mercury(II) Adsorption and Desorption on Soil Y U J U N Y I N , H E R B E R T E . A L L of Delaware, Newark, Delaware 19716 D O N A L D L . S P A R K S Department of Plant and Soil Sciences kinetics of Hg(II) on four soils at pH 6 were investigated to discern the mechanisms controlling

  19. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    SciTech Connect

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  20. Wildfires threaten mercury stocks in northern soils Merritt R. Turetsky,1,2

    E-print Network

    Turetsky, Merritt

    Wildfires threaten mercury stocks in northern soils Merritt R. Turetsky,1,2 Jennifer W. Harden,1 for mercury stored in peat soils. Ongoing and projected increases in boreal wildfire activity due to climate), Wildfires threaten mercury stocks in northern soils, Geophys. Res. Lett., 33, L16403, doi:10.1029/2005GL

  1. Natural mercury isotope variation in coal deposits and organic soils

    SciTech Connect

    Abir, Biswas; Joel D. Blum; Bridget A. Bergquist; Gerald J. Keeler; Zhouqing Xie

    2008-11-15

    There is a need to distinguish among sources of Hg to the atmosphere in order to more fully understand global Hg pollution. In this study we investigate whether coal deposits within the United States, China, and Russia-Kazakhstan, which are three of the five greatest coal-producing regions, have diagnostic Hg isotopic fingerprints that can be used to discriminate among Hg sources. We also investigate the Hg isotopic composition of modern organic soil horizons developed in areas distant from point sources of Hg in North America. Mercury stored in coal deposits displays a wide range of both mass dependent fractionation and mass independent fractionation. {delta}{sup 202}Hg varies in coals by 3{per_thousand} and {Delta}{sup 201}Hg varies by 0.9{per_thousand}. Combining these two Hg isotope signals results in what may be a unique isotopic 'fingerprint' for many coal deposits. Mass independent fractionation of mercury has been demonstrated to occur during photochemical reactions of mercury. This suggests that Hg found in most coal deposits was subjected to photochemical reduction near the Earth's surface prior to deposition. The similarity in MDF and MIF of modern organic soils and coals from North America suggests that Hg deposition from coal may have imprinted an isotopic signature on soils. This research offers a new tool for characterizing mercury inputs from natural and anthropogenic sources to the atmosphere and provides new insights into the geochemistry of mercury in coal and soils. 35 refs., 2 figs., 1 tab.

  2. Effects of metal-soil contact time on the extraction of mercury from soils.

    PubMed

    Ma, Lan; Zhong, Huan; Wu, Yong-Gui

    2015-03-01

    To investigate the mercury aging process in soils, soil samples were spiked with inorganic mercury (Hg(II)) or methylated mercury (MeHg) and incubated for 2, 7, 14 or 28 days in the laboratory. Potential availability of mercury, assessed by bovine serum albumin (BSA) or calcium chloride (CaCl2) extraction, decreased by 2-19 times for Hg(II) or 2-6 times for MeHg, when the contact time increased from 2 to 28 days. Decreased Hg(II) extraction could be explained by Hg(II) geochemical fractionation, i.e., Hg(II) migrated from more mobile fractions (water soluble and stomach acid soluble fractions) to refractory ones (organo-complexed, strongly complexed and residual fractions) over time, resulting in more stable association of Hg(II) with soils. In addition, decrease of mercury extraction was more evident in soils with lower organic content in most treatments, suggesting that organic matter may potentially play an important role in mercury aging process. In view of the significant decreased Hg(II) or MeHg extraction with prolonged contact time, mercury aging process should be taken into account when assessing risk of mercury in contaminated soils. PMID:25613855

  3. Atmospheric deposition of mercury in Atlantic Forest and ecological risk to soil fauna

    NASA Astrophysics Data System (ADS)

    Cristhy Buch, Andressa; Cabral Teixeira, Daniel; Fernandes Correia, Maria Elizabeth; Vieira Silva-Filho, Emmanoel

    2014-05-01

    The increasing levels of mercury (Hg) found in the atmosphere nowadays has a great contribution from anthropogenic sources and has been a great concern in the past two decades in industrialized countries. Brazil is the seventh country with the highest rate of mercury in the atmosphere. Certainly, the petroleum refineries have significant contribution, seen that 100 million m3 of crude oil are annually processed. These refineries contribute with low generation of solid waste; however, a large fraction of Hg can be emitted to the atmosphere. There are sixteen refineries in Brazil, three of them located in the state of Rio de Janeiro. The Hg is a toxic and hazardous trace element, naturally found in the earth crust. The major input of Hg to ecosystems is through atmospheric deposition (wet and dry), being transported in the atmosphere over large distances. The forest biomes are of great importance in the atmosphere/soil cycling of elemental Hg through foliar uptake and subsequent transfer to the soil through litterfall, which play an important role as Hg sink. The Atlantic Forest of Brazil is the greater contributor of fauna and flora biodiversity in the world and, according to recent studies, this biome has the highest concentrations of mercury in litter in the world, as well as in China, at Subtropical Forest. Ecotoxicological assessments can predict the potential ecological risk of Hg toxicity in the soil can lead to impact the soil fauna and indirectly other trophic levels of the food chain within one or more ecosystems. This study aims to determine mercury levels that represent risks to diversity and functioning of soil fauna in tropical forest soils. The study is conducted in two forest areas inserted into conservation units of Rio de Janeiro state. One area is located next to an important petroleum refinery in activity since fifty-two years ago, whereas the other one is located next to other refinery under construction (beginning activities in 2015), which will be the largest refinery of Brazil and, consequently, with less anthropogenic influences for the moment. Ecological risk assessments are conducted together with ecotoxicological tests in natural and artificial tropical soils, using exotic and native species of the soil fauna, naturally present in the area of study, in order to determine the risk of mercury in soil and litter in tropical forest. Previous results confirm higher concentrations of mercury in litter and soil of the forest area closest to the operating refinery. The presence of Hg seems to select the size of the organisms as well as the abundance and diversity of the soil fauna that remain in tropical forest.

  4. Bioavailability of mercury in East Fork Poplar Creek soils

    SciTech Connect

    Barnett, M.O.; Turner, R.R.

    1995-05-01

    The initial risk assessment for the East Fork Poplar Creek (EFPC) floodplain in Oak Ridge, Tennessee, a superfund site heavily contaminated with mercury, was based upon a reference dose for mercuric chloride, a soluble mercury compound not expected to be present in the floodplain, which is frequently saturated with water. Previous investigations had suggested mercury in the EFPC floodplain was less soluble and therefore less bioavailable than mercuric chloride, possibly making the results of the risk assessment unduly conservative. A bioavailability study, designed to measure the amount of mercury available for absorption in a child`s digestive tract, the most critical risk endpoint and pathway, was performed on twenty soils from the EFPC floodplain. The average percentage of mercury released during the study for the twenty soils was 5.3%, compared to 100% of the compound mercuric chloride subjected to the same conditions. Alteration of the procedure to test additional conditions possible during soil digestion did not appreciably alter the results. Therefore, use of a reference dose for mercuric chloride in the EFPC risk assessment without inclusion of a corresponding bioavailability factor may be unduly conservative.

  5. Mercury exposure in French Guiana: Levels and determinants

    SciTech Connect

    Cordier, S.; Mandereau, L.; Grasmick, C.; Paquier-Passelaigue, M.; Weber, J.P.; Jouan, M.

    1998-07-01

    Mercury is used widely for gold extraction in French Guiana and throughout the entire Amazon basin. To evaluate contamination among the general population, the authors chose individuals who attended 13 health centers and maternity hospitals dispersed geographically across the territory and served Guiana`s different populations. Five hundred individuals (109 pregnant women, 255 other adults, and 136 children) who received care at one of the centers were selected randomly for this study. Each individual answered a questionnaire and provided a hair sample. The authors determined mercury in hair with atomic absorption spectrometry. The following mean levels of mercury were observed: 1.6 {micro}g/g among pregnant women; 3.4 {micro}g/g among other adults; and 2.5 {micro}g/g among children. Diet factors contributed the most to mercury levels, especially consumption of freshwater fish and livers from game. Other factors, including age, dental amalgams, use of skin-lightening cosmetics, and residence near a gold-mining community, did not contribute significantly to mercury levels. Overall, 12% of the samples contained mercury levels in excess of 10 {micro}g/g, but in some Amerindian communities up to 79% of the children had hair mercury levels that exceeded 10 {micro}g/g. The results of this study indicated that (a) diet played a predominant role in total mercury burden, and (b) in some communities, mercury contamination exceeded safe levels.

  6. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    A mercury resistant bacterial strain, SA2, was isolated from soil contaminated with mercury. The 16S rRNA gene sequence of this isolate showed 99% sequence similarity to the genera Sphingobium and Sphingomonas of ?-proteobacteria group. However, the isolate formed a distinct phyletic line with the genus Sphingobium suggesting the strain belongs to Sphingobium sp. Toxicity studies indicated resistance to high levels of mercury with estimated EC50 values 4.5 mg L(-1) and 44.15 mg L(-1) and MIC values 5.1 mg L(-1) and 48.48 mg L(-1) in minimal and rich media, respectively. The strain SA2 was able to volatilize mercury by producing mercuric reductase enzyme which makes it potential candidate for remediating mercury. ICP-QQQ-MS analysis of Hg supplemented culture solutions confirmed that almost 79% mercury in the culture suspension was volatilized in 6 h. A very small amount of mercury was observed to accumulate in cell pellets which was also evident according to ESEM-EDX analysis. The mercuric reductase gene merA was amplified and sequenced. The deduced amino acid sequence demonstrated sequence homology with ?-proteobacteria and Ascomycota group. PMID:26378869

  7. Incorporation of Decomposed Crop Straw Affects Potential Phytoavailability of Mercury in a Mining-Contaminated Farming Soil.

    PubMed

    Zhu, Huike; Zhong, Huan; Fu, Fangjing; Zeng, Zhen

    2015-08-01

    Recently, incorporation of crop straw into soils is being largely encouraged worldwide. To explore the possible influence of incorporation of decomposed crop straw on the speciation (i.e., inorganic mercury/IHg, and methylmercury/MMHg) and phytoavailability of mercury, mercury-contaminated farming soil was amended with different amounts (i.e., low, medium or high) of straw organic fertilizer (SF, mainly consisting of decomposed rice straw) or humus (HU) and incubated for a month. Potential phytoavailability of IHg, assessed by CaCl2 extraction, was significantly lower in soils amended with low/medium SF, possibly due to the immobilization effect of SF-organic matter on IHg. In contrast, phytoavailability of IHg was significantly higher in soils incorporated with high HU, possibly explained by the leaching effect of dissolved HU on soil-bound IHg. For MMHg, incorporation of medium/high HU significantly increased MMHg phytoavailability, while SF addition had little effect. Interestingly, MMHg levels in SF/HU amended soils were generally lower than that in soil receiving no amendment, probably because complexation of IHg with SF/HU organics decreased IHg availability to methylation microorganisms. Overall, current results suggested that incorporation of decomposed crop straw may have multiple effects on mercury biogeochemistry in soils, which should be considered when applying SF into mercury-contaminated farming soils. PMID:25855528

  8. Evaluation of mercury in urine as an indicator of exposure to low levels of mercury vapor.

    PubMed Central

    Tsuji, Joyce S; Williams, Pamela R D; Edwards, Melanie R; Allamneni, Krishna P; Kelsh, Michael A; Paustenbach, Dennis J; Sheehan, Patrick J

    2003-01-01

    We conducted a pooled analysis to investigate the relationship between exposure to elemental mercury in air and resulting urinary mercury levels, specifically at lower air levels relevant for environmental exposures and public health goals (i.e., < 50 microg/m3 down to 1.0 microg/m3). Ten studies reporting paired air and urine mercury data (149 samples total) met criteria for data quality and sufficiency. The log-transformed data set showed a strong correlation between mercury in air and in urine (r = 0.774), although the relationship was best fit by a series of parallel lines with different intercepts for each study R2 = 0.807). Predicted ratios of air to urine mercury levels at 50 microg/m3 air concentration ranged from 1:1 to 1:3, based on the regression line for the studies. Toward the lower end of the data set (i.e., 10 microg/m3), predicted urinary mercury levels encompassed two distinct ranges: values on the order of 20 microg/L and 30-60 microg/L. Extrapolation to 1 microg/m3 resulted in predicted urinary levels of 4-5 and 6-13 microg/L. Higher predicted levels were associated with use of static area air samplers by some studies rather than more accurate personal air samplers. Urinary mercury predictions based primarily on personal air samplers at 1 and 10 microg/m3 are consistent with reported mean (4 microg/L) and upper-bound (20 microg/L) background levels, respectively. Thus, although mercury levels in air and urine are correlated below 50 microg/m3, the impact of airborne mercury levels below 10 microg/m3 is likely to be indistinguishable from background urinary mercury levels. PMID:12676626

  9. Characterization of frost susceptibility of soils by mercury porosimetry

    SciTech Connect

    Haiying Fu; Dash, J.G. . Dept. of Physics)

    1993-09-01

    Mercury porosimetry is described as a method for rapid and detailed prediction of the water-ice phase fraction in porous media. The mercury volume-intrusion pressure approximates the functional dependence of the ice volume-temperature curve in the range most important for frost heave, i.e., within a few degrees of the transition. The method was tested by comparing porosimetry-based predicted freezing curves against direct measurements of the ice-water ratio by time domain reflectometry, for several types of artificial powders and natural soils. The technique includes a simple method of correction for tile effects of solutes in the dilute range. Except for compression effects produced in powders of very fine particles, the soil freezing curve (SFC) predicted on the basis of mercury porosimetry is found to be in very good agreement with the directly measured freezing curves.

  10. Remediation of Mercury Contaminated Soils at the Miramas Site - 12243

    SciTech Connect

    Potier, G.; Chambon, F.

    2012-07-01

    Beneficial 'new' use of the Miramas Site is the remediation objective for a former light isotope manufacturing facility. Remediation operations will remove contaminated soils and materials and deconstruct facilities. The remediation objective is faced with project challenges and regulatory requirements that dictate/influence the outcome. The operation consists of the remediation of approximately 100,000 cubic meters of soil and the decommissioning of facilities. The types and ranges of waste are the result of historical processing activities (chemical facilities, pyrotechnic components storage, mining component treatment and light isotope manufacturing activities). Mercury is the primary component of the waste, but metals and organic compounds are also possible waste components. A thermal desorption process is used to remove Mercury from the polluted soil while a biological treatment is considered to the organic nitrate compound removal. A focus is done on the technologies used to remediate the Mercury contaminated soil. After few months of operation, the first results confirm that the technology choices were relevant and the soil remediation project is a success. The first successful month of operation at an industrial scale demonstrate that the Thermal Desorption is an efficient and relevant process to remediate large quantity of mercury contaminated soils. The project is on cost and the mercury removal should be end by 2014. The scrubbing is a good way to limit the volume of material to be treated with the Thermal Desorption Unit. The biological treatment is a promising process for the organic nitrate compound removal and testing at a pilot scale will be done in 2012. (authors)

  11. Impact of Wildfire on Levels of Mercury in Forested Watershed Systems - Voyageurs National Park, Minnesota

    USGS Publications Warehouse

    Woodruff, Laurel G.; Sandheinrich, Mark B.; Brigham, Mark E.; Cannon, William F.

    2009-01-01

    Atmospheric deposition of mercury to remote lakes in mid-continental and eastern North America has increased approximately threefold since the mid-1800s (Swain and others, 1992; Fitzgerald and others, 1998; Engstrom and others, 2007). As a result, concerns for human and wildlife health related to mercury contamination have become widespread. Despite an apparent recent decline in atmospheric deposition of mercury in many areas of the Upper Midwest (Engstrom and Swain, 1997; Engstrom and others, 2007), lakes in which fish contain levels of mercury deemed unacceptable for human consumption and possibly unacceptable for fish-consuming wildlife are being detected with increasing frequency. In northern Minnesota, Voyageurs National Park (VNP) (fig. 1) protects a series of southern boreal lakes and wetlands situated on bedrock of the Precambrian Canadian Shield. Mercury contamination has become a significant resource issue within VNP as high concentrations of mercury in loons, bald eagle eaglets, grebes, northern pike, and other species of wildlife and fish have been found. The two most mercury-contaminated lakes in Minnesota, measured as methylmercury in northern pike (Esox lucius), are in VNP. Recent multidisciplinary U.S. Geological Survey (USGS) research demonstrated that the bulk of the mercury in lake waters, soils, and fish in VNP results from atmospheric deposition (Wiener and others, 2006). The study by Wiener and others (2006) showed that the spatial distribution of mercury in watershed soils, lake waters, and age-1 yellow perch (Perca flavescens) within the Park was highly variable. The majority of factors correlated for this earlier study suggested that mercury concentrations in lake waters and age-1 yellow perch reflected the influence of ecosystem processes that affected within-lake microbial production and abundance of methylmercury (Wiener and others, 2006), while the distribution of mercury in watershed soils seemed to be partially dependent on forest disturbance, especially the historic forest fire pattern (Woodruff and Cannon, 2002). Forest fire has an essential role in the forest ecosystems of VNP (Heinselman, 1996). Because resource and land managers need to integrate both natural wildfire and prescribed fire in management plans, the potential influence of fire on an element as sensitive to the environment as mercury becomes a critical part of their decisionmaking. A number of recent studies have shown that while fire does have a significant impact on mercury at the landscape level, the observed effects of fire on aquatic environments are highly variable and unpredictable (Caldwell and others, 2000; Garcia and Carrigan, 2000; Kelly and others, 2006; Nelson and others, 2007). Caldwell and others (2000) described an increase in methylmercury in reservoir sediments resulting from mobilization and transport of charred vegetative matter following a fire in New Mexico. Krabbenhoft and Fink (2000) attributed increases in total mercury concentrations in young-of-the-year fish in the Florida Everglades to release of mercury resulting from peat oxidation following fires. A fivefold increase in whole-body mercury accumulation by rainbow trout (Oncorhynchus mykiss) following a fire in Alberta, Canada, apparently resulted from increased nutrient concentrations that enhanced productivity and restructured the food web of a lake within the fire's burn footprint (Kelly and others, 2006). For this study, we determined the short-term effects of forest fire on mercury concentrations in terrestrial and aquatic environments in VNP by comparing and contrasting mercury concentrations in forest soils, lake waters, and age-1 yellow perch for a burned watershed and an adjacent lake, with similar samples from watersheds and lakes with no fire activity (control watersheds and lakes). The concentration of total mercury in whole, 1-year-old yellow perch serves as a good biological indicator for monitoring trends in methylmercury conce

  12. Chronic atrophic gastritis in association with hair mercury level.

    PubMed

    Xue, Zeyun; Xue, Huiping; Jiang, Jianlan; Lin, Bing; Zeng, Si; Huang, Xiaoyun; An, Jianfu

    2014-11-01

    The objective of this study was to explore hair mercury level in association with chronic atrophic gastritis, a precancerous stage of gastric cancer (GC), and thus provide a brand new angle of view on the timely intervention of precancerous stage of GC. We recruited 149 healthy volunteers as controls and 152 patients suffering from chronic gastritis as cases. The controls denied upper gastrointestinal discomforts, and the cases were diagnosed as chronic superficial gastritis (n=68) or chronic atrophic gastritis (n=84). We utilized Mercury Automated Analyzer (NIC MA-3000) to detect hair mercury level of both healthy controls and cases of chronic gastritis. The statistic of measurement data was expressed as mean ± standard deviation, which was analyzed using Levene variance equality test and t test. Pearson correlation analysis was employed to determine associated factors affecting hair mercury levels, and multiple stepwise regression analysis was performed to deduce regression equations. Statistical significance is considered if p value is less than 0.05. The overall hair mercury level was 0.908949 ± 0.8844490 ng/g [mean ± standard deviation (SD)] in gastritis cases and 0.460198 ± 0.2712187 ng/g (mean±SD) in healthy controls; the former level was significantly higher than the latter one (p=0.000<0.01). The hair mercury level in chronic atrophic gastritis subgroup was 1.155220 ± 0.9470246 ng/g (mean ± SD) and that in chronic superficial gastritis subgroup was 0.604732 ± 0.6942509 ng/g (mean ± SD); the former level was significantly higher than the latter level (p<0.01). The hair mercury level in chronic superficial gastritis cases was significantly higher than that in healthy controls (p<0.05). The hair mercury level in chronic atrophic gastritis cases was significantly higher than that in healthy controls (p<0.01). Stratified analysis indicated that the hair mercury level in healthy controls with eating seafood was significantly higher than that in healthy controls without eating seafood (p<0.01) and that the hair mercury level in chronic atrophic gastritis cases was significantly higher than that in chronic superficial gastritis cases (p<0.01). Pearson correlation analysis indicated that eating seafood was most correlated with hair mercury level and positively correlated in the healthy controls and that the severity of gastritis was most correlated with hair mercury level and positively correlated in the gastritis cases. Multiple stepwise regression analysis indicated that the regression equation of hair mercury level in controls could be expressed as 0.262 multiplied the value of eating seafood plus 0.434, the model that was statistically significant (p<0.01). Multiple stepwise regression analysis also indicated that the regression equation of hair mercury level in gastritis cases could be expressed as 0.305 multiplied the severity of gastritis, the model that was also statistically significant (p<0.01). The graphs of regression standardized residual for both controls and cases conformed to normal distribution. The main positively correlated factor affecting the hair mercury level is eating seafood in healthy people whereas the predominant positively correlated factor affecting the hair mercury level is the severity of gastritis in chronic gastritis patients. That is to say, the severity of chronic gastritis is positively correlated with the level of hair mercury. The incessantly increased level of hair mercury possibly reflects the development of gastritis from normal stomach to superficial gastritis and to atrophic gastritis. The detection of hair mercury is potentially a means to predict the severity of chronic gastritis and possibly to insinuate the environmental mercury threat to human health in terms of gastritis or even carcinogenesis. PMID:25119602

  13. Mercury

    MedlinePLUS

    ... term exposure to high levels of metallic mercury vapors may cause effects including lung damage, nausea, vomiting, diarrhea, increases in blood pressure or heart rate, skin rashes, and eye irritation. ...

  14. Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas.

    PubMed

    Reis, Ana Teresa; Rodrigues, Sónia Morais; Davidson, Christine M; Pereira, Eduarda; Duarte, Armando C

    2010-12-01

    This study focussed on a comparison of the extractability of mercury in soils with two different contamination sources (a chlor-alkali plant and mining activities) and on the evaluation of the influence of specific soil properties on the behaviour of the contaminant. The method applied here did not target the identification of individual species, but instead provided information concerning the mobility of mercury species in soil. Mercury fractions were classified as mobile, semi-mobile and non-mobile. The fractionation study revealed that in all samples mercury was mainly present in the semi-mobile phase (between 63% and 97%). The highest mercury mobility (2.7 mg kg(-1)) was found in soils from the industrial area. Mining soils exhibited higher percentage of non-mobile mercury, up to 35%, due to their elevated sulfur content. Results of factor analysis indicate that the presence of mercury in the mobile phase could be related to manganese and aluminium soil contents. A positive relation between mercury in the semi-mobile fraction and the aluminium content was also observed. By contrary, organic matter and sulfur contents contributed to mercury retention in the soil matrix reducing the mobility of the metal. Despite known limitations of sequential extraction procedures, the methodology applied in this study for the fractionation of mercury in contaminated soil samples provided relevant information on mercury's relative mobility. PMID:20932549

  15. Mercury contamination in agricultural soils from abandoned metal mines classified by geology and mineralization.

    PubMed

    Kim, Han Sik; Jung, Myung Chae

    2012-01-01

    This survey aimed to compare mercury concentrations in soils related to geology and mineralization types of mines. A total of 16,386 surface soils (0~15 cm in depth) were taken from agricultural lands near 343 abandoned mines (within 2 km from each mine) and analyzed for Hg by AAS with a hydride-generation device. To meaningfully compare mercury levels in soils with geology and mineralization types, three subclassification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of Hg in all soils was 0.204 mg kg(-1) with a range of 0.002-24.07 mg kg(-1). Based on the mineralization types, average Hg concentrations (mg kg(-1)) in the soils decreased in the order of pegmatite (0.250) > hydrothermal vein (0.208) > hydrothermal replacement (0.166) > skarn (0.121) > sedimentary deposits (0.045). In terms of the valuable ore mineral types, the concentrations decreased in the order of Au-Ag-base metal mines ? base metal mines > Au-Ag mines > Sn-W-Mo-Fe-Mn mines. For parent rock types, similar concentrations were found in the soils derived from sedimentary rocks and metamorphic rocks followed by heterogeneous rocks with igneous and metamorphic processes. Furthermore, farmland soils contained relatively higher Hg levels than paddy soils. Therefore, it can be concluded that soils in Au, Ag, and base metal mines derived from a hydrothermal vein type of metamorphic rocks and pegmatite deposits contained relatively higher concentrations of mercury in the surface environment. PMID:21814815

  16. Distribution and fractionation of mercury in the soils of a unique tropical agricultural wetland ecosystem, southwest coast of India.

    PubMed

    Navya, C; Gopikrishna, V G; Arunbabu, V; Mohan, Mahesh

    2015-12-01

    Mercury biogeochemistry is highly complex in the aquatic ecosystems and it is very difficult to predict. The speciation of mercury is the primary factor controlling its behavior, movement, and fate in these systems. The fluctuating water levels in wetlands could play a major role in the mercury transformations and transport. Hence, the agricultural wetlands may have a significant influence on the global mercury cycling. Kuttanad agricultural wetland ecosystem is a unique one as it is lying below the sea level and most of the time it is inundated with water. To understand the mobility and bioavailability of Hg in the soils of this agricultural wetland ecosystem, the present study analyzed the total mercury content as well as the different fractions of mercury. Mercury was detected using cold vapor atomic fluorescence spectrophotometer. The total mercury content varied from 0.002 to 0.683 mg/kg, and most of the samples are having concentrations below the background value. The percentage of mercury found in the initial three fractions F1, F2, and F3 are more available and it may enhance the methylation potential of the Kuttanad agroecosystem. PMID:26566642

  17. Phyto extraction and accumulation of mercury in selected plant species grown in soil contaminated with different mercury compounds

    SciTech Connect

    Su, Y.; Han, F.; Shiyab, S.; Monts, D.L.

    2007-07-01

    The objective of our research is to screen and search for suitable plant species for phyto-remediation of mercury-contaminated soil. Currently our effort is specifically focused on mercury removal from the U.S. Department of Energy's (DOE) Oak Ridge Site, where mercury contamination is a major concern in the Y-12 Watershed area. In order to cost effectively implement those remediation efforts currently planned for FY09, it is necessary now to obtain an improved understanding of biological means of removing mercury and mercury compounds from the Oak Ridge ecosystem. Phyto-remediation is a technology that uses various plants to degrade, extract, contain, or immobilize contaminants from soil and water. In particular, phyto-extraction is the uptake of contaminants by plant roots and translocation within the plants to shoots or leaves. Contaminants are generally removed by harvesting the plants. We have investigated phyto-extraction of mercury from contaminated soil by using some of the known metal accumulating wild plants since no natural plant species with mercury hyper-accumulating properties has yet been identified. Different natural plant species have been studied for mercury uptake, accumulation, toxicity and overall mercury removal efficiency. Various mercury compounds, such as HgS, HgCl{sub 2} and Hg(NO{sub 3}){sub 2}, were used as contaminant sources. Different types of soil were examined and chosen for phyto-remediation experiments. We have applied microscopy and diffuse reflectance spectrometry as well as conventional analytical chemistry to monitor the phyto-remediation processes of mercury uptake, translocation and accumulation; and the physiological impact of mercury contaminants on selected plant species. Our results indicate that certain plant species, such as beard grass (Polypogon monospeliensis), accumulated a very limited amount of mercury in the shoots (<65 mg/kg), even though root mercury accumulation is significant (maximum 2298 mg/kg). Consequently, this plant species may not be suitable for mercury phyto-remediation. Other plant species, such as Indian mustard (Brassica juncea), a well-studied metal accumulator, exhibited severe chlorosis symptoms during some experiments. Among all the plant species studied, Chinese brake fern (Pteris vittata) accumulated significant amount of mercury in both roots and shoots and hence may be considered as a potential candidate for mercury phyto-extraction. During one experiment, brake ferns accumulated 540 mg/kg and 1469 mg/kg in shoots after 18 days of growing in soils treated with 500 ppm and 1000 ppm HgCl{sub 2} powder, respectively; no visual stress symptoms were observed. We also studied mercury phyto-remediation using aged soils that contaminated HgS, HgCl{sub 2}, and Hg(NO{sub 3}){sub 2}. We have found that up to hundreds of ppm mercury can be accumulated in the roots of Indian mustard plants grown with soil contaminated by mercury sulfide; HgS is assumed to be the most stable and also the predominant mercury form in Oak Ridge flood plain soils. We have also started to investigate different mercury uptake mechanisms, such as root uptake of soil contaminant and foliar mercury accumulation from ambient air. (authors)

  18. Sources and remediation techniques for mercury contaminated soil.

    PubMed

    Xu, Jingying; Bravo, Andrea Garcia; Lagerkvist, Anders; Bertilsson, Stefan; Sjöblom, Rolf; Kumpiene, Jurate

    2015-01-01

    Mercury (Hg) in soils has increased by a factor of 3 to 10 in recent times mainly due to combustion of fossil fuels combined with long-range atmospheric transport processes. Other sources as chlor-alkali plants, gold mining and cement production can also be significant, at least locally. This paper summarizes the natural and anthropogenic sources that have contributed to the increase of Hg concentration in soil and reviews major remediation techniques and their applications to control soil Hg contamination. The focus is on soil washing, stabilisation/solidification, thermal treatment and biological techniques; but also the factors that influence Hg mobilisation in soil and therefore are crucial for evaluating and optimizing remediation techniques are discussed. Further research on bioremediation is encouraged and future study should focus on the implementation of different remediation techniques under field conditions. PMID:25454219

  19. Mercury levels in high-end consumers of fish.

    PubMed Central

    Hightower, Jane M; Moore, Dan

    2003-01-01

    Consumption of food containing mercury has been identified as a health risk. The U.S. Environmental Protection Agency (U.S. EPA) and the National Academy of Sciences recommend keeping the whole blood mercury level < 5.0 microg/L or the hair level < 1.0 microg/g. This corresponds to a reference dose (RfD) of 0.1 microg/kg body weight per day. All patients in a 1-year period (n = 720) who came for an office visit in a private internal medicine practice in San Francisco, California, were evaluated for mercury excess using the current RfD. One hundred twenty-three patients were tested (93 females, 30 males). Of these, data were statistically analyzed for 89 subjects. Mercury levels ranged from 2.0 to 89.5 microg/L for the 89 subjects. The mean for 66 women was 15 microg/L [standard deviation (SD) = 15], and for 23 men was 13 microg/L (SD = 5); 89% had levels exceeding the RfD. Subjects consumed 30 different forms or types of fish. Swordfish had the highest correlation with mercury level. Sixty-seven patients with serial blood levels over time after stopping fish showed a decline in mercury levels; reduction was significant (p < 0.0001). A substantial fraction of patients had diets high in fish consumption; of these, a high proportion had blood mercury levels exceeding the maximum level recommended by the U.S. EPA and National Academy of Sciences. The mean level for women in this survey was 10 times that of mercury levels found in a recent population survey by the U.S. Centers for Disease Control and Prevention. Some children were > 40 times the national mean. PMID:12676623

  20. Mercury Reduction and Methyl Mercury Degradation by the Soil Bacterium Xanthobacter autotrophicus Py2.

    PubMed

    Petrus, Amanda K; Rutner, Colin; Liu, Songnian; Wang, Yingjiao; Wiatrowski, Heather A

    2015-11-15

    Two previously uncharacterized potential broad-spectrum mercury (Hg) resistance operons (mer) are present on the chromosome of the soil Alphaproteobacteria Xanthobacter autotrophicus Py2. These operons, mer1 and mer2, contain two features which are commonly found in mer operons in the genomes of soil and marine Alphaproteobacteria, but are not present in previously characterized mer operons: a gene for the mercuric reductase (MerA) that encodes an alkylmercury lyase domain typical of those found on the MerB protein, and the presence of an additional gene, which we are calling merK, with homology to glutathione reductase. Here, we demonstrate that Py2 is resistant to 0.2 ?M inorganic mercury [Hg(II)] and 0.05 ?M methylmercury (MeHg). Py2 is capable of converting MeHg and Hg(II) to elemental mercury [Hg(0)], and reduction of Hg(II) is induced by incubation in sub toxic concentrations of Hg(II). Transcription of the merA genes increased with Hg(II) treatment, and in both operons merK resides on the same polycistronic mRNA as merA. We propose the use of Py2 as a model system for studying the contribution of mer to Hg mobility in soil and marine ecosystems. PMID:26341208

  1. Trace-level mercury removal from surface water

    SciTech Connect

    Klasson, K.T.; Bostick, D.T.

    1998-06-01

    Many sorbents have been developed for the removal of mercury and heavy metals from waters; however, most of the data published thus far do not address the removal of mercury to the target levels represented in this project. The application to which these sorbents are targeted for use is the removal of mercury from microgram-per-liter levels to low nanogram-per-liter levels. Sorbents with thiouronium, thiol, amine, sulfur, and proprietary functional groups were selected for these studies. Mercury was successfully removed from surface water via adsorption onto Ionac SR-4 and Mersorb resins to levels below the target goal of 12 ng/L in batch studies. A thiol-based resin performed the best, indicating that over 200,000 volumes of water could be treated with one volume of resin. The cost of the resin is approximately $0.24 per 1,000 gal of water.

  2. The mercury levels in crustaceans and cephalopods from Peninsular Malaysia.

    PubMed

    Ahmad, Nurul Izzah; Noh, Mohd Fairulnizal Mohd; Mahiyuddin, Wan Rozita Wan; Jaafar, Hamdan; Ishak, Ismail; Azmi, Wan Nurul Farah Wan; Veloo, Yuvaneswary; Mokhtar, Fazlin Anis

    2015-09-01

    This study is to determine total mercury in edible tissues of eight species of cephalopods and 12 species of crustaceans purchased from 11 identified major fish landing ports and wet markets throughout Peninsular Malaysia. The concentration of mercury was measured by cold vapor atomic absorption spectrometry (AAS) technique using the Perkin Elmer Flow Injection Mercury System (FIMS-400). In general, the mercury levels were low with concentrations in cephalopods ranging from 0.099 to 2.715 mg/kg dry weight (or 0.0184-0.505 mg/kg wet weight) and in crustaceans ranging from 0.057 to 1.359 mg/kg dry weight (or 0.0111-0.265 mg/kg wet weight). The mercury levels showed no significant differences (P?>?0.05) between species for both cephalopods and crustaceans. There was no significant correlation between mercury concentrations and the body size of individual for both groups as well. Comparisons with mercury levels obtained found from other previous studies and/or species noted that they were of the same magnitude or relatively low compared to various locations reported worldwide. PMID:25916470

  3. [Determination of trace mercury species in water and soil samples with atomic fluorescence spectrometry].

    PubMed

    Huang, Zhi-Yong; Huang, Zhi-Tao; Zhang, Qiang; Zhuang, Zhi-Xia

    2007-11-01

    With hydride generation-cold atomic fluorescence spectrometry (HG-AFS), the method of determining trace mercury species in water and soil samples in Jimei, Xiamen city, China was established. The content of inorganic mercury in water was measured by sample direct injection, while the total mercury was measured after digestion with the reagents of KBrO3-KBr. The soil samples were digested with microwave for total mercury measurement. Sequential extraction procedure was carried out for determining different mercuric species in soil samples. The results indicated that the mercury concentration of wastewater from chemical laboratory exceeded the limit of the integrated wastewater discharge standard of China (GB 8978-1996). It is one of the serious pollution sources of mercury in environment. The mercury contents from soil samples including the sideward soil of highway, the sea sediment and the garden soil were under the limits of relative national standards of China. However, attention should be paid to the accumulation of mercury in garden soil due to the artificial pollution. Meanwhile, the average recoveries for water and soil samples tested with adding standards were 93.7% and 93.8%, respectively. Meanwhile, the detection limits estimated with 3-fold standard deviation were 0.000 8 microg x L(-1) for water and 0.072 3 microg x kg(-1) for soil, respectively. The results indicated that the established method, with the merits of high sensitivity and precision, was suitable for the measurement of trace mercury species in environmental samples. PMID:18260432

  4. Mercury Exposure Levels in Children with Dental Amalgam Fillings

    PubMed Central

    Miriam Varkey, Indu; Shetty, Rajmohan; Hegde, Amitha

    2014-01-01

    ABSTRACT% Objectives: Mercury combined with other metals to form solid amalgams has long been used in reconstructive dentistry but its use has been controversial since at least the middle of the 19th century. The exposure and body burden of mercury reviews have consistently stated that there is a deficiency of adequate epidemiological studies addressing this issue. Fish and dental amalgam are two major sources of human exposure to organic (MeHg) and inorganic Hg respectively. Materials and methods: A total of 150 subjects aged between 9 and 14 years were divided into two groups of 75 subjects each depending on their diet, i.e. seafood or nonseafood consuming. Each category was subdivided into three groups based on number of restorations. Scalp hair and urine samples were collected at baseline and 3 months later to assess the organic and inorganic levels of mercury respectively by atomic absorption spectrophotometer (AAS). Results: The mean values of urinary mercury (inorganic mercury) in the group of children with restorations were 1.5915 ?g/l as compared to 0.0130 ?g/l in the groups with no amalgam restorations (p < 0.001) (Wilcoxon sign rank test and paired t-test). The hair mercury levels (organic mercury) varied signi-ficantly between the fsh-eating group and nonfsh-eating group, the average values being 1.03 ?g/l and 0.84 ?g/l respectively (p < 0.001) (Mann-Whitney U-test and paired t-test). Conclusion and significance: The notion about the mercury being released from the amalgam restorations as a sole exposure source needs to be put to a rest, as environmental factors collectively overpower the exposure levels from restorations alone. How to cite this article: Varkey IM, Shetty R, Hegde A. Mercury Exposure Levels in Children with Dental Amalgam Fillings. Int J Clin Pediatr Dent 2014;7(3):180-185. PMID:25709298

  5. Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives.

    PubMed

    Rodriguez, Luis; Rincón, Jesusa; Asencio, Isaac; Rodríguez-Castellanos, Laura

    2007-01-01

    High-biomass crops can be considered as an alternative to hyperaccumulator plants to phytoremediate soils contaminated by heavy metals. In order to assess their practical capability for the absorption and accumulation of Hg in shoots, barley, white lupine, lentil, and chickpea were tested in pot experiments using several growth substrates. In the first experimental series, plants were grown in a mixture of vermiculite and perlite spiked with 8.35 microg g(-1) d.w. of soluble Hg. The mercury concentration of the plants' aerial tissues ranged from 1.51 to 5.13 microg g(-1) d.w. with lentil and lupine showing the highest values. In a second experiment carried out using a Hg-polluted soil (32.16 microg g(-1) d.w.) collected from a historical mining area (Almadén, Spain), the crop plants tested only reached shoot Hg concentration up to 1.13 microg g(-1) d.w. In the third experimental series, the Almadén soil was spiked with 1 microg g(-1) d.w. of soluble Hg; as a result, mercury concentrations in the plant shoots increased approximately 6 times for lupine, 5 times for chickpea, and 3.5 times for barley and lentil, with respect to those obtained with the original soil without Hg added. This marked difference was attributed to the low availability of Hg in the original Almadin soil and its subsequent increase in the Hg-spiked soil. The low mercury accumulation yields obtained for all plants do not make a successful decontamination of the Almadén soils possible byphytoremediation using crop plants. However, since the crops tested can effectively decrease the plant-available Hg level in this soil, their use could, to some extent, reduce the environmental risk of Hg pollution in the area. PMID:18246711

  6. Mercury

    SciTech Connect

    Vilas, F.; Chapman, C.R.; Matthews, M.S.

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury.

  7. Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil.

    PubMed

    Sas-Nowosielska, Aleksandra; Galimska-Stypa, Regina; Kucharski, Rafa?; Zielonka, Urszula; Ma?kowski, Eugeniusz; Gray, Laymon

    2008-02-01

    Phytoremediation, an approach that uses plants to remediate contaminated soil through degradation, stabilization or accumulation, may provide an efficient solution to some mercury contamination problems. This paper presents growth chamber experiments that tested the ability of plant species to stabilize mercury in soil. Several indigenous herbaceous species and Salix viminalis were grown in soil collected from a mercury-contaminated site in southern Poland. The uptake and distribution of mercury by these plants were investigated, and the growth and vitality of the plants through a part of one vegetative cycle were assessed. The highest concentrations of mercury were found at the roots, but translocation to the aerial part also occurred. Most of the plant species tested displayed good growth on mercury contaminated soil and sustained a rich microbial population in the rhizosphere. The microbial populations of root-free soil and rhizosphere soil from all species were also examined. An inverse correlation between the number of sulfur amino acid decomposing bacteria and root mercury content was observed. These results indicate the potential for using some species of plants to treat mercury contaminated soil through stabilization rather than extraction. The present investigation proposes a practical cost-effective temporary solution for phytostabilization of soil with moderate mercury contamination as well as the basis for plant selection. PMID:17492484

  8. MERCURY IN THE ENVIRONMENT

    EPA Science Inventory

    Mercury is released from a variety of sources and exhibits a complicated chemistry. According to the Mercury Study Report to Congress, mercury fluxes and budgets in water, soil, and other media have increased by a factor of two to five over pre-industrial levels. The primary expo...

  9. Comparison of Adsorbed Mercury Screening Method With Cold-Vapor Atomic Absorption Spectrophotometry for Determination of Mercury in Soil

    NASA Technical Reports Server (NTRS)

    Easterling, Donald F.; Hovanitz, Edward S.; Street, Kenneth W.

    2000-01-01

    A field screening method for the determination of elemental mercury in environmental soil samples involves the thermal desorption of the mercury from the sample onto gold and then the thermal desorption from the gold to a gold-film mercury vapor analyzer. This field screening method contains a large number of conditions that could be optimized for the various types of soils encountered. In this study, the conditions were optimized for the determination of mercury in silty clay materials, and the results were comparable to the cold-vapor atomic absorption spectrophotometric method of determination. This paper discusses the benefits and disadvantages of employing the field screening method and provides the sequence of conditions that must be optimized to employ this method of determination on other soil types.

  10. MERCURY DISTRIBUTION IN SOIL AROUND A LARGE COAL-FIRED POWER PLANT

    EPA Science Inventory

    Seventy soil samples were collected on a radial grid employing sixteen evenly spaced radii and five logarithmically spaced circles, concentric around the Four Corners power plant. The soil samples were analyzed for total mercury using a Zeeman Atomic Absorption spectrophotometer....

  11. MERCURY RESIDUES IN SOIL AROUND A LARGE COAL-FIRED POWER PLANT

    EPA Science Inventory

    Seventy soil samples were collected on a radial grid around the Four Corners power plant. The soil samples were analyzed for total mercury using a Zeeman atomic absorption spectrophotometer. Even though the plant emits 1-2% of all the mercury released by U.S. coal-fired utilities...

  12. Mercury removal from contaminated soil by thermal treatment with FeCl? at reduced temperature.

    PubMed

    Ma, Fujun; Zhang, Qian; Xu, Duanping; Hou, Deyi; Li, Fasheng; Gu, Qingbao

    2014-12-01

    Thermal treatment has been used to remediate mercury-contaminated soils; however, existing thermal technologies use high temperatures (e.g., 600-800°C) and require high energy costs. Moreover, the treated soil is unfavorable for agricultural reuse. To address these issues, the present study developed a method for the thermal treatment of mercury-contaminated soils at a reduced temperature (400°C) by adding FeCl3. A FeCl3/Hg molar ratio of 100:1 in the soil was adopted as the optimum dosage of FeCl3 required to achieve maximum reduction of mercury. The mercury concentration in soils was successfully reduced to 0.8 mg kg(-)(1) when treated at 400°C for 60 min and the treated soil retained most of its original soil properties. FeCl3 addition during thermal treatment not only accelerated the volatilization of mercury in the easily removed fraction but also reduced the volatilization temperature of mercury in the hardly removed fraction. The adsorbable organic halogens and PCDD/Fs formed during thermal treatment with FeCl3 would not affect the soil reuse in agriculture. The thermal decontamination method reduces energy costs and leads to agricultural soil reuse, thus providing a greener and more sustainable remediation method for treating mercury-contaminated soil in future engineering applications. PMID:25180482

  13. Mercury

    MedlinePLUS

    ... the lungs Medication to remove mercury and heavy metals from the body INORGANIC MERCURY For inorganic mercury ... Hill; 2008:chap 365. Baum CR. Mercury: Heavy metals and inorganic agents. In: Shannon MW, Borron SW, ...

  14. Mercury

    MedlinePLUS

    ... Twitter Google+ Pinterest Contact Us Mercury in Your Environment Learn about Mercury Basic information How people are ... you can take to: Reduce mercury in the environment Minimize your exposures to mercury If you have ...

  15. Egg mercury levels decline with the laying sequence in charadriiformes

    SciTech Connect

    Becker, P.H. )

    1992-05-01

    Whereas pollutants do not differ in concentration among eggs of one clutch in some bird species, in gulls, terns and grebes several organochlorines show intraclutch variation: Concentrations increase with the laying sequence. Heavy metals, however, are not so intensively studied with respect to intraclutch variation. In contrast to lead and cadmium, mercury is accumulated in great quantities in eggs. Variation in mercury levels between the eggs of one clutch were low compared to interclutch variability in the White-tailed Sea Eagle (Haliaeetus albicilla) and the Peregrine (Falco peregrinus). In gulls, however, intraclutch variation was significant and characterized by higher mercury levels in the first than in subsequently laid eggs, which is the opposite to the trend in organochlorine levels. In this paper, the author reports on investigations of intraclutch variation in mercury levels in three Charadriiform-species, Herring Gull, Common Tern and Oystercatcher (Haematopus ostralegus). The results confirm those previously reported in gulls and point to the importance of the egg in reducing the females' mercury burden. 23 refs, 2 tabs.

  16. Sulfur Polymer Stabilization/Solidification Treatability Study of Mercury Contaminated Soil from the Y-12 Site

    SciTech Connect

    Kalb P.; Milian, L.; Yim, S. P.

    2012-11-30

    As a result of past operations, the Department of Energy’s (DOE) Oak Ridge Y-12 National Security Complex (Y-12 Plant) has extensive mercury-contamination in building structures, soils, storm sewer sediments, and stream sediments, which are a source of pollution to the local ecosystem. Because of mercury’s toxicity and potential impacts on human health and the environment, DOE continues to investigate and implement projects to support the remediation of the Y-12 site.URS and #9122;CH2M Oak Ridge LLC (UCOR) under its prime contract with DOE has cleanup responsibilities on the DOE Oak Ridge Reservation and is investigating potential mercury-contaminated soil treatment technologies through an agreement with Babcock and Wilcox (B and W) Y-12, the Y-12 operating contractor to DOE. As part of its investigations, UCOR has subcontracted with Brookhaven National Laboratory (BNL) to conduct laboratory-scale studies evaluating the applicability of the Sulfur Polymer Stabilization/Solidification (SPSS) process using surrogate and actual mixed waste Y-12 soils containing mercury (Hg) at 135, 2,000, and 10,000 ppm.SPSS uses a thermoplastic sulfur binder to convert Hg to stable mercury sulfide (HgS) and solidifies the chemically stable product in a monolithic solid final waste form to reduce dispersion and permeability. Formulations containing 40 – 60 dry wt% Y-12 soil were fabricated and samples were prepared in triplicate for Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP) testing by an independent laboratory. Those containing 50 and 60 wt% soil easily met the study criteria for maximum allowable Hg concentrations (47 and 1 ppb, respectively compared with the TCLP limit of 200 ppb Hg). The lowest waste loading of 40 wt% yielded TCLP Hg concentrations slightly higher (240 ppb) than the allowable limit. Since the Y-12 soil tended to form clumps, the improved leaching at higher waste loadings was probably due to reduction in particle size from friction of the soil mixing, which creates more surface area for chemical conversion. This was corroborated by the fact that the same waste loading pre-treated by ball milling to reduce particle size prior to SPSS processing yielded TCLP concentrations almost 30 times lower, and at 8.5 ppb Hg was well below EPA limits. Pre-treatment by ball milling also allowed a reduction in the time required for stabilization, thus potentially reducing total process times by 30%.Additional performance testing was conducted including measurement of compressive strength to confirm mechanical integrity and immersion testing to determine the potential impacts of storage or disposal under saturated conditions. For both surrogate and actual Y-12 treated soils, waste form compressive strengths ranged between 2,300 and 6,500 psi, indicating very strong mechanical integrity (a minimum of greater than 40 times greater than the NRC guidance for low-level radioactive waste). In general, compressive strength increases with waste loading as the soil acts as an aggregate in the sulfur concrete waste forms. No statistically significant loss in strength was recorded for the 30 and 40 wt% surrogate waste samples and only a minor reduction in strength was measured for the 43 wt% waste forms. The 30 wt% Y-12 soil did not show a significant loss in strength but the 50 wt% samples were severely degraded in immersion due to swelling of the clay soil. The impact on Hg leaching, if any, was not determined.

  17. Mercury distribution and bioaccumulation up the soil-plant-grasshopper-spider food chain in Huludao City, China.

    PubMed

    Zhang, Zhongsheng; Wang, Qichao; Zheng, Dongmei; Zheng, Na; Lu, Xianguo

    2010-01-01

    The purpose of this study is to investigate total mercury (THg) distribution and its bioaccumulation up the soil-plant-grasshopper-spider in the Huludao City, which is polluted seriously by chlor-alkali and zinc smelting industry in Northeast of China. Results indicated that average THg concentrations in soil, plant leaves, grasshopper Locusta migratoria manilensis and Acrida chinensis, and spider were 0.151, 0.119, 0.167 and 0.134 mg/kg, respectively. THg spatial distribution suggested that most of mercury came from the chlor-alkali plant and the two zinc smelteries. The highest mercury concentration was found in the wings among different grasshoppers' organs. Although spiders are the predatory, THg concentrations in their bodies were not high, and only on the same level as in grasshoppers, which might be due to spiders' special living habits. In the light of the mercury transportation at every stage of the soil-plant-grasshopper-spider food chain, the bioaccumulation factors were 0.03, 0.79-1.11 and 0.80-1.13 respectively. It suggested that mercury biomagnification up terrestrial food chains was not so large and obvious as it was in the aquatic food chain. PMID:21179955

  18. Soil geochemistry and digestive solubilization control mercury bioaccumulation in the earthworm Pheretima guillemi.

    PubMed

    Dang, Fei; Zhao, Jie; Greenfield, Ben K; Zhong, Huan; Wang, Yujun; Yang, Zhousheng; Zhou, Dongmei

    2015-07-15

    Mercury presents a potential risk to soil organisms, yet our understanding of mercury bioaccumulation in soil dwelling organisms is limited. The influence of soil geochemistry and digestive processes on both methylmercury (MeHg) and total mercury (THg) bioavailability to earthworms (Pheretima guillemi) was evaluated in this study. Earthworms were exposed to six mercury-contaminated soils with geochemically contrasting properties for 36 days, and digestive fluid was concurrently collected to solubilize soil-associated mercury. Bioaccumulation factors were 7.5-31.0 and 0.2-0.6 for MeHg and THg, respectively, and MeHg accounted for 17-58% of THg in earthworm. THg and MeHg measured in soils and earthworms were negatively associated with soil total organic carbon (TOC). Earthworm THg and MeHg also increased with increasing soil pH. The proportion of MeHg and THg released into the digestive fluid (digestive solubilizable mercury, DSM) was 8.3-18.1% and 0.4-1.3%, respectively. The greater solubilization of MeHg by digestive fluid than CaCl2, together with a biokinetic model-based estimate of dietary MeHg uptake, indicated the importance of soil ingestion for MeHg bioaccumulation in earthworms. PMID:25781374

  19. [Occupational estimation of the levels of mercury in workers engaged in electrochemical manufacture of caustic soda].

    PubMed

    Antipanova, N S; Gromova, T I; Domracheva, V A; Zhulanov, O V; Smolianets, R I

    2002-01-01

    Plasmaless atomic absorption was used to study biosubstrates from the workers engaged in the production of caustic soda for the levels of mercury. In 63% of the examinees, the urinary concentrations of mercury exceeded the critical value and substantially increased after administration of a detoxifying agent. The content of mercury in the hair was also higher than the physiologically allowable normal value. The cause of chronic mercury intoxication was the intensive contamination of the industrial environment with mercury vapours. PMID:12380498

  20. Mercury and plants in contaminated soils. 1: Uptake, partitioning, and emission to the atmosphere

    SciTech Connect

    Leonard, T.L.; Gustin, M.S.; Fernandez, G.C.J.; Taylor, G.E. Jr.

    1998-10-01

    The uptake, distribution, and subsequent emission of mercury to the atmosphere were investigated in five plant species (Lepidium latifolium [L.], Artemisia douglasiana [Bess in Hook], Caulanthus sp. [S. Watson], Fragaria vesca [L.], and Eucalyptus globulus [Labill]) with different ecological and physiological attributes. Transfer coefficients for mercury in the soil-plant system were calculated. Plant-to-atmosphere emissions of mercury were determined using a controlled environment gas-exchange system and ranged from 10 to 93 mg/m{sup 2}/h in the light; emissions in the dark were an order of magnitude less. Transfer coefficients for mercury within the soil-plant system increased acropetally (root-to-leaf axis) by orders of magnitude. Estimated mercury emissions from plants in the Carson River Drainage Basin of Nevada over the growing season (0.5 mg/m{sup 2}) add to the previously reported soil mercury emissions (8.5 mg/m{sup 2}), resulting in total landscape emissions of 9 mg/m{sup 2}. For L. latifolium, 70% of the mercury taken up by the roots during the growing season was emitted to the atmosphere. For every one molecule of mercury retained in foliage of L. latifolium, 12 molecules of mercury were emitted. Within this arid ecosystem, mercury emissions are a dominant pathway of the mercury cycle. Plants function as conduits for the interfacial transport of mercury from the geosphere to the atmosphere, and this role is undervalued in models of the behavior of mercury in terrestrial exosystems and in the atmosphere on a global scale.

  1. High residue levels and the chemical form of mercury in tissues and organs of seabirds

    SciTech Connect

    Kim, E.Y.; Murakami, Toru; Saeki, Kazutoshi; Tatsukawa, Ryo

    1995-12-31

    Total and organic (methyl) mercury in liver, muscle, kidney and feather of 9 species of seabirds were analyzed to determine the levels and their distribution and to clarify the occurrences of high mercury levels and their detoxification process in seabirds. Total mercury levels in liver showed great variations in intra and interspecies, while organic mercury levels were less variable. As compared with species in relatively low mercury levels, the species which accumulated the high concentration of mercury like black-footed albatross exhibited the different distribution of mercury in the body: in total mercury burden, albatross species contained less than 10% in feather and over 50% in liver, while other species contained over 40% in feather and less than 20% in liver. The order of organic mercury concentrations in tissues were as follows: liver > kidney > muscle in seabirds examined, except oldsquaw. The mean percentage of organic mercury in total was 35%, 66%, and 36% in liver, muscle and kidney, respectively, for all the species. The significant negative correlations were found between organic mercury percentage to total mercury and total mercury concentrations in the liver and muscle of black-footed albatross and in the liver of laysan albatross. Furthermore, in liver, muscle, and kidney of all the species, the percentages of organic mercury had a negative trend with an increase of total mercury concentrations. The results suggest that albatross species may be capable for demethylating organic mercury in the tissues (mainly in liver), and for storing the mercury as immobilizable inorganic form in the liver as substitution for delivering organic mercury to other organs. It is noteworthy that the species with high degree of demethylation showed the lower mercury burdens in feather and slow moulting pattern.

  2. Mercury Source Zone Identification using Soil Vapor Sampling and Analysis

    SciTech Connect

    Watson, David B; Miller, Carrie L; Lester, Brian P; Lowe, Kenneth Alan; Southworth, George R; Bogle, Mary Anna; Liang, Liyuan; Pierce, Eric M

    2014-01-01

    Development and demonstration of reliable measurement techniqes that can detect and help quantify the nature and extent of elemental mercury (Hg(0)) in the subsurface are needed to reduce certainties in the decision making process and increase the effectiveness of remedial actions. We conducted field tests at the Y-12 National Security Complex (NSC) in Oak Ridge, TN, to determine if sampling and analysis of Hg(0) vapors in the shallow subsurface (<0.3 m depth) can be used to as an indicator of the location and extent of Hg(0) releases in the subsurface. We constructed a rigid PVC pushprobe assembly, which was driven into the ground. Soil gas samples were collected through a sealed inner tube of the assembly and analyzed immediately in the field with a Lumex and/or Jerome Hg(0) analyzer. Time-series sampling showed that Hg vapor concentrations were fairly stable over time suggesting that the vapor phase Hg(0) was not being depleted and that sampling results were not dependent on the soil gas purge volume. Hg(0) vapor data collected at over 200 pushprobe locations at 3 different release sites correlated well to areas of known Hg(0) contamination. Vertical profiling of Hg(0) vapor concentrations conducted at 2 locations provided information on the vertical distribution of Hg(0) contamination in the subsurface. We concluded from our studies that soil gas sampling and analysis can be conducted rapidly and inexpensively at a large scale to help identify areas contaminated with Hg(0).

  3. Determination of total mercury in nuts at ultratrace level.

    PubMed

    da Silva, Maria José; Paim, Ana Paula S; Pimentel, Maria Fernanda; Cervera, M Luisa; de la Guardia, Miguel

    2014-08-01

    Total mercury, at ?g kg(-1) level, was determined in different types of nuts (cashew nut, Brazil nuts, almond, pistachio, peanut, walnut) using a direct mercury analyser after previous sample defatting and by cold vapour atomic fluorescence spectrometry. There is not enough sensitivity in the second approach to determine Hg in previously digested samples due to the strong matrix effect. Mercury levels in 25 edible nut samples from Brazil and Spain were found in the range from 0.6 to 2.7?g kg(-1) by using the pyrolysis of sample after the extraction of the nut fat. The accuracy of the proposed method was confirmed by analysing certified reference materials of Coal Fly Ash-NIST SRM 1633b, Fucus-IAEA 140 and three unpolished Rice Flour NIES-10. The observed results were in good agreement with the certified values. The recoveries of different amounts of mercury added to nut samples ranged from 94 to 101%. RSD values corresponding to three measurements varied between 2.0 and 14% and the limit of detection and quantification of the method were 0.08 and 0.3?g kg(-1), respectively. PMID:25064238

  4. Accumulation of mercury in rice grain and cabbage grown on representative Chinese soils*

    PubMed Central

    Liu, Chun-fa; Wu, Cheng-xian; Rafiq, Muhammad T.; Aziz, Rukhsanda; Hou, Dan-di; Ding, Zhe-li; Lin, Zi-wen; Lou, Lin-jun; Feng, Yuan-yuan; Li, Ting-qiang; Yang, Xiao-e

    2013-01-01

    A pot culture experiment was carried out to investigate the accumulation properties of mercury (Hg) in rice grain and cabbage grown in seven soil types (Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols) spiked with different concentrations of Hg (CK, 0.25, 0.50, 1.00, 2.00, and 4.00 mg/kg). The results of this study showed that Hg accumulation of plants was significantly affected by soil types. Hg concentration in both rice grain and cabbage increased with soil Hg concentrations, but this increase differed among the seven soils. The stepwise multiple regression analysis showed that pH, Mn(II), particle size distribution, and cation exchange capacity have a close relationship with Hg accumulation in plants, which suggested that physicochemical characteristics of soils can affect the Hg accumulation in rice grain and cabbage. Critical Hg concentrations in seven soils were identified for rice grain and cabbage based on the maximum safe level for daily intake of Hg, dietary habits of the population, and Hg accumulation in plants grown in different soil types. Soil Hg limits for rice grain in Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols were 1.10, 2.00, 2.60, 2.78, 1.53, 0.63, and 2.17 mg/kg, respectively, and critical soil Hg levels for cabbage are 0.27, 1.35, 1.80, 1.70, 0.69, 1.68, and 2.60 mg/kg, respectively. PMID:24302714

  5. Simultaneous determination of mercury and organic carbon in sediment and soils using a direct mercury analyzer based on thermal decomposition-atomic absorption spectrophotometry.

    PubMed

    Chen, Jingjing; Chakravarty, Pragya; Davidson, Gregg R; Wren, Daniel G; Locke, Martin A; Zhou, Ying; Brown, Garry; Cizdziel, James V

    2015-04-29

    The purpose of this work was to study the feasibility of using a direct mercury analyzer (DMA) to simultaneously determine mercury (Hg) and organic matter content in sediment and soils. Organic carbon was estimated by re-weighing the sample boats post analysis to obtain loss-on-ignition (LOI) data. The DMA-LOI results were statistically similar (p<0.05) to the conventional muffle furnace approach. A regression equation was developed to convert DMA-LOI data to total organic carbon (TOC), which varied between 0.2% and 13.0%. Thus, mercury analyzers based on combustion can provide accurate estimates of organic carbon content in non-calcareous sediment and soils; however, weight gain from moisture (post-analysis), measurement uncertainty, and sample representativeness should all be taken into account. Sediment cores from seasonal wetland and open water areas from six oxbow lakes in the Mississippi River alluvial flood plain were analyzed. Wetland sediments generally had higher levels of Hg than open water areas owing to a greater fraction of fine particles and higher levels of organic matter. Annual loading of Hg in open water areas was estimated at 4.3, 13.4, 19.2, 20.7, 129, and 135 ng cm(-2) yr(-1) for Beasley, Roundaway, Hampton, Washington, Wolf and Sky Lakes, respectively. Generally, the interval with the highest Hg flux was dated to the 1960s and 1970s. PMID:25847156

  6. Strong positive associations between seafood, vegetables, and alcohol with blood mercury and urinary arsenic levels in the Korean adult population.

    PubMed

    Park, Sunmin; Lee, Byung-Kook

    2013-01-01

    Blood mercury and urinary arsenic levels are more than fivefold greater in the Korean population compared with those of the United States. This may be related to the foods people consumed. Therefore, we examined the associations between food categories and mercury and arsenic exposure in the Korean adult population. Data regarding nutritional, biochemical, and health-related parameters were obtained from a cross-sectional study, the 2008-2009 Korean National Health and Nutrition Examination Survey (3,404 men and women age ? 20 years). The log-transformed blood mercury and urinary arsenic levels were regressed against the frequency tertiles of each food group after covariate adjustment for sex, age, residence area, education level, smoking status, and drinking status using food-frequency data. Blood mercury levels in the high consumption groups compared to the low consumption groups were elevated by about 20 percents with salted fish, shellfish, whitefish, bluefish, and alcohol, and by about 9-14 percents with seaweeds, green vegetables, fruits and tea, whereas rice did not affect blood mercury levels. Urinary arsenic levels were markedly increased with consumption of rice, bluefish, salted fish, shellfish, whitefish, and seaweed, whereas they were moderately increased with consumption of grains, green and white vegetables, fruits, coffee, and alcohol. The remaining food categories tended to lower these levels only minimally. In conclusion, the typical Asian diet, which is high in rice, salted fish, shellfish, vegetables, alcoholic beverages, and tea, may be associated with greater blood mercury and urinary arsenic levels. This study suggests that mercury and arsenic contents should be monitored and controlled in soil and water used for agriculture to decrease health risks from heavy-metal contamination. PMID:23011092

  7. Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil.

    PubMed

    Ma, Fujun; Peng, Changsheng; Hou, Deyi; Wu, Bin; Zhang, Qian; Li, Fasheng; Gu, Qingbao

    2015-12-30

    Thermal treatment is a promising technology for the remediation of mercury contaminated soils, but it often requires high energy input at heating temperatures above 600°C, and the treated soil is not suitable for agricultural reuse. The present study developed a novel method for the thermal treatment of mercury contaminated soils with the facilitation of citric acid (CA). A CA/Hg molar ratio of 15 was adopted as the optimum dosage. The mercury concentration in soils was successfully reduced from 134mg/kg to 1.1mg/kg when treated at 400°C for 60min and the treated soil retained most of its original soil physiochemical properties. During the treatment process, CA was found to provide an acidic environment which enhanced the volatilization of mercury. This method is expected to reduce energy input by 35% comparing to the traditional thermal treatment method, and lead to agricultural soil reuse, thus providing a greener and more sustainable remediation method for treating mercury contaminated soil in future engineering applications. PMID:26253234

  8. Antioxidants and metallothionein levels in mercury-treated mice.

    PubMed

    Brandăo, R; Santos, F W; Farina, M; Zeni, G; Bohrer, D; Rocha, J B T; Nogueira, C W

    2006-11-01

    Acute effects of mercury on mouse blood, kidneys, and liver were evaluated. Mice received a single dose of mercuric chloride (HgCl2, 4.6 mg/kg, subcutaneously) for three consecutive days. We investigated the possible beneficial effects of antioxidant therapy (N-acetylcysteine (NAC) and diphenyl diselenide (PhSe)2) compared with the sodium salt of 2,3-dimercapto-1-propanesulfonic acid (DMPS), an effective chelating agent in HgCl2 exposure in mice. We also verified whether metallothionein (MT) induction might be involved in a possible mechanism of protection against HgCl2 poisoning and whether different treatments would modify MT levels and other toxicological parameters. The results demonstrated that HgCl2 exposure significantly inhibited delta-aminolevulinate dehydratase (delta-ALA-D) activity in liver and only DMPS treatment prevented the inhibitory effect. Mercuric chloride caused an increase in renal non-protein thiol groups (NPSH) and none of the treatments modified renal NPSH levels. Urea concentration was increased after HgCl2 exposure. NAC plus (PhSe)2 was partially effective in protecting against the effects of mercury. DMPS and (PhSe)2 were effective in restoring the increment in urea concentration caused by mercury. Thiobarbituric acid-reactive substances (TBARS), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) activities and ascorbic acid levels were not modified after mercury exposure. Mercuric chloride poisoning caused an increase in hepatic and renal MT levels and antioxidant treatments did not modify this parameter. Our data indicated a lack of therapeutic effect of the antioxidants tested. PMID:16964587

  9. Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils.

    PubMed

    Pannu, Ravinder; Siciliano, Steven D; O'Driscoll, Nelson J

    2014-10-01

    Soils are a source of elemental mercury (Hg(0)) to the atmosphere, however the effects of soil temperature and moisture on Hg(0) formation is not well defined. This research quantifies the effect of varying soil temperature (278-303 K), moisture (15-80% water filled pore space (WFPS)) and sterilization on the kinetics of Hg(0) formation in forested soils of Nova Scotia, Canada. Both, the logarithm of cumulative mass of Hg(0) formed in soils and the reduction rate constants (k values) increased with temperature and moisture respectively. Sterilizing soils significantly (p < 0.05, n = 10) decreased the percent of total Hg reduced to Hg(0). We describe the fundamentals of Hg(0) formation in soils and our results highlight two key processes: (i) a fast abiotic process that peaks at 45% WFPS and depletes a small pool of Hg(0) and; (ii) a slower, rate limiting biotic process that generates a large pool of reducible Hg(II). PMID:25016467

  10. Effect of root metabolism on the post-depositional mobilization of mercury in salt marsh soils

    SciTech Connect

    Marins, R.V. |; Lacerda, L.D.; Goncalves, G.O.; Paiva, E.C. de

    1997-05-01

    Salt marsh soils are an efficient sink for trace metals associated with particulate material in tidal waters and have been proposed as monitors for trace metal contamination in coastal areas, on the basis that vertical profiles provide a record of loading rates. However, the complex nature of the biogeochemical processes occurring in these soils, may prevent this use, since post-depositional mobilization of some trace metals may occur, resulting in their release to pore water, vertical movement through the soil column and exchange with overlying waters. This paper presents and compares the vertical profiles of mercury in soil cores taken under a Spartina altermilflora marsh and in adjacent mod flats without plant cover to characterize the role played by this plant on the post-depositional movement of mercury through the soil and on the possibility of using such profiles as indicators of mercury loading rates in coastal areas. 19 refs., 1 fig., 1 tab.

  11. Mercury in soils and plants in an abandoned cinnabar mining area (SW Spain).

    PubMed

    García-Sánchez, A; Murciego, A; Alvarez-Ayuso, E; Regina, I Santa; Rodríguez-González, M A

    2009-09-15

    An abandoned cinnabar mining area located in the South-West of Spain has been studied with the aim of assessing its mercury pollution level and enhancing the knowledge about the Hg soil/plant relationship. To do so, soils and plants were sampled near an inactive smelter and around two mining sites present in this area. Critical total Hg concentrations were found in the close environs of pollutant sources. These also show high levels of elemental Hg (up to 8 mg kg(-1)), but quite low exchangeable Hg contents (0.008-0.038 mg kg(-1)). Most plant specimens display in their aboveground tissues Hg concentrations comprised in the range 0.1-10 mg kg(-1), with a great proportion (50%) showing critical levels. Greater Hg contents were found in plant specimens growing in soils with higher elemental Hg concentrations. The plant species displaying the greatest Hg levels are either perennial species of small-medium size and/or showing medium-highly corrugated leaves, or annual plants of small size. Marrubium vulgare L., Bromus madritensis L. and Trifolium angustifolium L. are the plant species with the highest Hg contents (37.6, 12.7 and 9.0 mg kg(-1), respectively). Leaf specific surface seems an important feature in the atmospheric Hg uptake by plants. PMID:19345007

  12. Monitoring of arsenic, boron and mercury by lichen and soil analysis in the Mt. Amiata geothermal area (central Italy)

    SciTech Connect

    Loppi, S.

    1997-12-31

    Epiphytic lichens and top-soils from the Mt. Amiata geothermal field (central Italy) were analyzed for their As, B and Hg content. Three areas were selected: (1) Abbadia S. Salvatore, where a large Hg mine with smelting and roasting plant was located; (2) Piancastagnaio, where there are geothermal power plants; (3) a remote site far from mines and geothermal power plants. The results showed that the geothermal power plants do not represent a macroscopic source of arsenic and boron contamination in the area. As far as mercury is concerned, at the Hg mining area of Abbadia S. Salvatore concentrations were extremely high both in soil and epiphytic lichens, and the anomalous content in these organisms was due to the uptake of elemental mercury originating from soil degassing. At the geothermal area of Piancastagnaio, soil mercury was not different from that in the control area, but Hg in lichens was almost twice the control levels, suggesting that the gaseous emissions from the geothermal power plants are an important source of air contamination.

  13. Comparison of Indoor Mercury Vapor in Common Areas of Residential Buildings with Outdoor Levels in a Community Where Mercury Is Used for Cultural Purposes

    PubMed Central

    Garetano, Gary; Gochfeld, Michael; Stern, Alan H.

    2006-01-01

    Elemental mercury has been imbued with magical properties for millennia, and various cultures use elemental mercury in a variety of superstitious and cultural practices, raising health concerns for users and residents in buildings where it is used. As a first step in assessing this phenomenon, we compared mercury vapor concentration in common areas of residential buildings versus outdoor air, in two New Jersey cities where mercury is available and is used in cultural practices. We measured mercury using a portable atomic absorption spectrometer capable of quantitative measurement from 2 ng/m3 mercury vapor. We evaluated the interior hallways in 34 multifamily buildings and the vestibule in an additional 33 buildings. Outdoor mercury vapor averaged 5 ng/m3; indoor mercury was significantly higher (mean 25 ng/m3; p < 0.001); 21% of buildings had mean mercury vapor concentration in hallways that exceeded the 95th percentile of outdoor mercury vapor concentration (17 ng/m3), whereas 35% of buildings had a maximum mercury vapor concentration that exceeded the 95th percentile of outdoor mercury concentration. The highest indoor average mercury vapor concentration was 299 ng/m3, and the maximum point concentration was 2,022 ng/m3. In some instances, we were able to locate the source, but we could not specifically attribute the elevated levels of mercury vapor to cultural use or other specific mercury releases. However, these findings provide sufficient evidence of indoor mercury source(s) to warrant further investigation. PMID:16393659

  14. Hg contents in soils and olive-tree (Olea Europea, L.) leaves from an area affected by elemental mercury pollution (Jódar, SE Spain).

    NASA Astrophysics Data System (ADS)

    López-Berdonces, Miguel Angel; María Esbrí, José; Amorós, José Angel; Lorenzo, Saturnino; Fernández-Calderón, Sergio; Higueras, Pablo; Perez-de-los-Reyes, Caridad

    2014-05-01

    Data from soil and olive tree leaves around a decommissioned chlor-alkali plant are presented in this communication. The factory was active in the period 1977-1991, producing during these years a heavily pollution of Guadalquivir River and hydrargyrism in more than local 45 workers. It is located at 7 km South of Jódar, a locality with some 12,120 inhabitants. Mercury usage was general in this type of plants, but at present it is being replaced by other types of technologies, due to the risks of mercury usage in personal and environment. A soil geochemistry survey was carried out in the area, along with the analysis of olive-tree leaves (in the plots with this culture) from the same area. 73 soil samples were taken at two different depths (0-15 cm and 15-30 cm), together with 41 olive tree samples. Mercury content of geologic and biologic samples was determined by means of Atomic Absorption Spectrometry with Zeeman Effect, using a Lumex RA-915+ device with the RP-91C pyrolysis attachment. Air surveys were carried our using a RA-915M Lumex portable analytical device. Soil mercury contents were higher in topsoil than in the deeper soil samples, indicating that incorporation of mercury was due to dry and wet deposition of mercury vapors emitted from the plant. Average content in topsoil is 564.5 ng g-1. Hg contents in olive-tree leaves were in the range 46 - 453 ng g-1, with an average of 160.6 ng g-1. This level is slightly lower than tolerable level for agronomic crops established by Kabata-Pendias (2001) in 200 ng g-1. We have also compared soil and leaf contents for each sampling site, finding a positive and significant correlation (R=0.49), indicating that Hg contents in the leaves are linked to Hg contents in the soils. BAC (Bioaccumulation Absorption Coefficient, calculated as ratio between soil and leaf concentration) is 0.28 (consistent with world references, BAC = 0.7), considered "medium" in comparison with other mineral elements. Main conclusions of this research work are the following: i) The Jódar decommissioned chlor-alkali plant is still a mercury source 20 years after its cease of activities without any reclamation measures; ii) The activity of the plant has produced an important dissemination of mercury in the surrounding environment; and iii) The corresponding pollution levels, in particular in soils, may suppose a risk to the main crops of the area (olive trees present significant accumulation of Hg in leaf).

  15. Total and methyl mercury levels in wild mammals from the PreCambrian Shield area of south central Ontario, Canada

    SciTech Connect

    Wren, C.; MacCrimmon, H.; Frank, R.; Suda, P.

    1980-07-01

    It has been established that elevated mercury levels in fish occur in areas remote from recognized point sources of mercury contamination. It may be expected, therefore, that mercury levels may also be accumulated through natural processes in wild mammals inhabiting those areas. A process for demethylating organic mercury to less toxic inorganic mercury has been suggested in some marine mammals exposed to high mercury levls. It is possible that similar demethylating process exists in terrestial mammals which are exposed to elevated levels of mercury in their diet. Natural mercury levels in fish have been reported in the PreCambrian Shield of the Muskoka District. The present paper compares total and methyl mercury levels occurring in various organs of wilder beaver, raccoon and otter representing herbivorous, omnivorous and carnivorous life styles, collected from the same general area where substantial mercury levels are known to occur in fish.

  16. USEPA'S RESEARCH PROGRAM ON REMEDIATION AND CONTAINMENT OF ARSENIC AND MERCURY IN SOILS, INDUSTRIAL WASTES, AND GROUNDWATER

    EPA Science Inventory

    In the U.S. and around the world, mercury and arsenic contaminated soils, industrial wastes, and groundwater are difficult to effectively and cheaply remediate and contain. Mercury is a serious health concern and has been identified as a contaminant in the air, soil, sediment, su...

  17. A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment

    NASA Astrophysics Data System (ADS)

    Kocman, D.; Horvat, M.

    2010-02-01

    Results obtained by a laboratory flux measurement system (LFMS) focused on investigating the kinetics of the mercury emission flux (MEF) from contaminated soils of the Idrija Hg-mine region, Slovenia are presented. Representative soil samples with respect to total Hg concentrations (4-417 ?g g-1) and land cover (forest, meadow and alluvial soil) alongside the River Idrijca were analysed to determine the variation in MEF versus distance from the source, regulating three major environmental parameters comprising soil temperature, soil moisture and solar radiation. MEFs ranged from less than 2 to 530 ng m-2 h-1, with the highest emissions from contaminated alluvial soils and soils near the mining district in the town of Idrija. A significant decrease of MEF was then observed with increasing distance from these sites. The results revealed a strong positive effect of all three parameters investigated on momentum MEF. The light-induced flux was shown to be independent of the soil temperature, while the soil aqueous phase seems to be responsible for recharging the pool of mercury in the soil available for both the light- and thermally-induced flux. The overall flux response to simulated environmental conditions depends greatly on the form of Hg in the soil. Higher activation energies are required for the overall process to occur in soils where insoluble cinnabar prevails compared to soils where more mobile Hg forms and forms available for transformation processes are dominant.

  18. A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment

    NASA Astrophysics Data System (ADS)

    Kocman, D.; Horvat, M.

    2009-11-01

    Results obtained by a laboratory flux measurement system (LFMS) focused on investigating the kinetics of the mercury emission flux (MEF) from contaminated soils of the Idrija Hg-mine region, Slovenia are presented. Representative soil samples with respect to total Hg concentrations (4-417 ?g g-1) and land cover (forest, meadow and alluvial soil) alongside the River Idrijca were analysed to determine the variation in MEF versus distance from the source, regulating three major environmental parameters comprising soil temperature, soil moisture and solar radiation. MEFs ranged from less than 2 to 530 ng m-2 h-1, with the highest emissions from contaminated alluvial soils and soils near the mining district in the town of Idrija. A significant decrease of MEF was then observed with increasing distance from these sites. The results revealed a strong positive effect of all three parameters investigated on momentum MEF. The light-induced flux was shown to be independent of the soil temperature, while the soil aqueous phase seems to be responsible for recharging the pool of mercury in the soil available for both the light- and thermally-induced flux. The overall flux response to simulated environmental conditions depends greatly on the form of Hg in the soil. Higher activation energies are required for the overall process to occur in soils where insoluble cinnabar prevails compared to soils where more mobile Hg forms and forms available for transformation processes are dominant.

  19. Relationship between dietary mercury intake and blood mercury level in Korea.

    PubMed

    You, Chang-Hun; Kim, Byoung-Gwon; Kim, Yu-Mi; Lee, Sang-Ah; Kim, Rock-Bum; Seo, Jeong-Wook; Hong, Young-Seoub

    2014-02-01

    This study was performed to evaluate the effect of dietary factors for mercury exposure by comparing with blood mercury concentration. Study population consisted of 1,866 adults (839 men and 1,027 women) in randomly-selected 30 districts in southeast Korea. Dietary mercury intake was calculated from food frequency questionnaire (FFQ) on seafood items and 24 hr recall record. Blood mercury concentration was measured with atomic absorption spectrometry. Mean age of the subjects was 43.5 ± 14.6 yr. The FFQ showed that mercury-laden fish (tuna, shark) and frequently-eating fish (squid, belt fish, mackerel) were important in mercury intake from fish species. The recall record suggested that fish and shellfish was a highest group (63.1%) of mercury intake and had a wide distribution in the food groups. In comparison with the blood mercury concentration, age group, sex, household income, education, drinking status and coastal area were statistically significant (P < 0.001). In multiple regression analysis, coefficient from the FFQ (? = 0.003) had greater effect on the blood mercury than the recall record (? = 0.002), but the effect was restricted (adjusted R(2) = 0.234). Further studies with more precise estimation of dietary mercury intake were required to evaluate the risk for mercury exposure by foods and assure risk communication with heavily-exposed group. PMID:24550642

  20. Effects of rice residue incorporation on the speciation, potential bioavailability and risk of mercury in a contaminated paddy soil.

    PubMed

    Zhu, Huike; Zhong, Huan; Evans, Douglas; Hintelmann, Holger

    2015-08-15

    To reduce air pollution, straw return instead of burning is being strongly encouraged in China, including some mercury polluted areas. Nevertheless, the possible influences of straw return on methylation, bioavailability and exposure risk of mercury were relatively unknown. In this study, different amounts of rice straw or root were added into a mercury contaminated soil. Potential bioavailability of soil-bound mercury to crops/deposit-feeders was assessed by quantifying extraction rates of mercury (%) by calcium chloride (CaCl2)/bovine serum albumin (BSA). Extraction rates of inorganic mercury (IHg) or methylmercury (MMHg) decreased significantly in rice residue amended soils, possibly due to the strong binding of mercury with organic matter in root/straw. Meanwhile, MMHg concentrations increased by 2-8 times in amended soils. Such increases were attributed to enhanced microbial activities and/or formation of Hg-S-DOM complexes after rice residue incorporation and decomposition. Consequently, potential exposure risk of IHg (quantified as concentration of potentially bioavailable mercury in soil) decreased significantly while that of MMHg increased up to 4 times. To our knowledge, this is the first study demonstrating that rice residue incorporation could significantly affect biogeochemistry of both IHg and MMHg in soils, which should be considered in straw incorporation activities in mercury polluted areas. PMID:25827269

  1. The sorption characteristics of mercury as affected by organic matter content and/or soil properties

    NASA Astrophysics Data System (ADS)

    Šípková, Adéla; Šillerová, Hana; Száková, Ji?ina

    2014-05-01

    The determination and description of the mercury sorption extend on soil is significant for potential environmental toxic effects. The aim of this study was to assess the effectiveness of mercury sorption at different soil samples and vermicomposts. Mercury interactions with soil organic matter were studied using three soils with different physical-chemical properties - fluvisol, cambisol, and chernozem. Moreover, three different vermicomposts based on various bio-waste materials with high organic matter content were prepared in special fermentors. First was a digestate, second was represented by a mixture of bio-waste from housing estate and woodchips, and third was a garden bio-waste. In the case of vermicompost, the fractionation of organic matter was executed primarily using the resin SuperliteTM DAX-8. Therefore, the representation of individual fractions (humic acid, fulvic acid, hydrophilic compounds, and hydrophobic neutral organic matter) was known. The kinetics of mercury sorption onto materials of interest was studied by static sorption experiments. Samples were exposed to the solution with known Hg concentration of 12 mg kg-1 for the time from 10 minutes to 24 hours. Mercury content in the solutions was measured by the inductively coupled plasma mass spectrometry (ICP-MS). Based on this data, the optimum conditions for following sorption experiments were chosen. Subsequently, the batch sorption tests for all soil types and vermicomposts were performed in solution containing variable mercury concentrations between 1 and 12 mg kg-1. Equilibrium concentration values measured in the solution after sorption and calculated mercury content per kilogram of the soil or the vermi-compost were plotted. Two basic models of sorption isotherm - Langmuir and Freundlich, were used for the evaluation of the mercury sorption properties. The results showed that the best sorption properties from studied soil were identified in chernozem with highest cation exchange capacity. The highest amount of mercury was adsorbed by the vermicompost from garden bio-waste. This vermicompost contained the most humic acids and the least amount of other fractions of organic matter. Acknowledgements: Financial support for these investigations was provided by the Grant Agency of the Czech Republic; Project No. 503/12/0682 and Czech University of Life Science Prague; Project No. 21140/1313/3130.

  2. Volcanism and soil mercury on Mars - Consequences for terrestrial microorganisms

    NASA Technical Reports Server (NTRS)

    Siegel, B. Z.; Siegel, S. M.

    1978-01-01

    An earth-Mars depletion formula proposed by Anders and Owen for volatiles is used to calculate a range of putative Hg levels for Martian volcanic soils based upon analyzed samples from Hawaii. The range is about 50-150 microgram per kg. When applied either in conventional or special media (e.g., basalt powder), these levels of Hg are effective inhibitors of the growth of earth microorganisms. Taken together with other hostile chemical and physical factors, volcanic toxicants would appear to provide a further deterrent to the accidental establishment of terrestrial microbiota on Mars.

  3. A simple approach for measuring emission patterns of vapor phase mercury under temperature-controlled conditions from soil.

    PubMed

    Kim, Ki-Hyun; Yoon, Hye-On; Jung, Myung-Chae; Oh, Jong-Min; Brown, Richard J C

    2012-01-01

    In an effort to study the possible effects of climate change on the behavior of atmospheric mercury (Hg), we built a temperature-controlled microchamber system to measure its emission from top soils. To this end, mercury vapour emission rates were investigated in the laboratory using top soil samples collected from an urban area. The emissions of Hg, when measured as a function of soil temperature (from ambient levels up to 70°C at increments of 10°C), showed a positive correlation with rising temperature. According to the continuous analyses of the Hg vapor given off by the identical soil samples, evasion rate diminished noticeably with increasing number of repetitions. The experimental results, if examined in terms of activation energy (Ea), showed highly contrasting patterns between the single and repetitive runs. Although the results of the former exhibited Ea values smaller than the vaporization energy of Hg (i.e., <14?Kcal?mol(-1)), those of the latter increased systematically with increasing number of repetitions. As such, it is proposed that changes in the magnitude of Ea values can be used as a highly sensitive criterion to discriminate the important role of vaporization from other diverse (biotic/abiotic) processes occurring in the soil layer. PMID:22927791

  4. An Assessment of health risk associated with mercury in soil and sediment from East Fork Poplar Creek, Oak Ridge, Tennessee. Final report

    SciTech Connect

    Revis, N.; Holdsworth, G.; Bingham, G.; King, A.; Elmore, J.

    1989-04-01

    This report presents results from a study conducted to determine the toxicity of Mercury in soils sediments samples. Mice were fed via diet, soils and sediment, from various locations along the East Fork Poplar creek. Tissue distribution of pollutants was determined at various intervals. The tissue level relative to toxicity was used to determine the effect of a complex matrix on the gastrointestinal absorption and tissue distribution of the pollutants (other pollutants included cadmium and selenium).

  5. Lead, cadmium and mercury levels in the 2010 Korean diet.

    PubMed

    Kim, Jae Hoon; Lee, Ji Yeon; Seo, Joo Ee; Jeong, Ji Yoon; Jung, Ki Kyung; Yoon, Hae Jung; Park, Kyung Su

    2012-01-01

    This study analysed the level of contamination of harmful heavy metals in 3820 food samples available in Korea in 2010. A total of 119 types of samples were collected, including corns, vegetables, fruits, fishes, mollusks, shellfish, crustaceans, seaweed, bean products, meats and eggs from seven major cities. These samples were analysed using ICP-MS after pre-treatment with a microwave-digestion system. Results of lead, cadmium and mercury analyses were compared with the standard specifications of Korea Food Standards Codex. As a result, high levels of Pb, Cd and Hg were detected in "cockle," "dried-squid" and "shark-meat." Acceptable intake for consumers was checked using provisional tolerable weekly intake values. Such results will be utilised as data on the exposure of human body through foods. In addition, satisfactory results were obtained through purchase and analysis of National Institute of Science and Technology-certified reference materials to obtain reliability on analysis results. PMID:24786406

  6. Effects of low dietary levels of methyl mercury on mallard reproduction

    USGS Publications Warehouse

    Heinz, G.

    1974-01-01

    Mallard ducks were fed a control diet or a diet containing 0.5 ppm or 3 ppm mercury (as methylmercury dicyandiamide). Health of adults and reproductive success were studied. The dietary level of 3 ppm mercury had harmful effects on reproduction, although it did not appear to affect the health of the adults during the 12 months of dosage. Ducks that were fed the diet containing 0.5 ppm mercury reproduced as well as controls, and ducklings from parents fed 0.5 ppm mercury grew faster in the first week of life than did controls....The greatest harm to reproduction associated with the diet containing 3 ppm mercury was an increase in duckling mortality, but reduced egg laying and increased embryonic mortality also occurred....During the peak of egg laying, eggs laid by controls tended to be heavier than eggs laid by ducks fed either level of mercury; however, there seemed to be no eggshell thinning associated with mercury treatment. Levels of mercury reached about 1 ppm in eggs from ducks fed a dietary dosage of 0.5 ppm mercury and between 6 and 9 ppm in the eggs from ducks fed 3 ppm mercury.

  7. Lead in soil: Recommended maximum permissible levels

    SciTech Connect

    Madhavan, S.; Rosenman, K.D.; Shehata, T.

    1989-06-01

    Lead in soil has been recognized as a public health problem, particularly among children. In recent years, attention has been directed to cumulative adverse effects of lead at low levels of intake. Lead-contaminated soil and dust have been identified as important contributors to blood lead levels. Based on available data on blood lead and lead in soil, an approach has been developed to suggest a permissible level of lead in soil, below which there will be reasonable certainty that adverse health effects will not occur. An acceptable level of 600 ppm of lead in soil suggested as a ''safe'' level would contribute no more than 5 micrograms/dl to total blood lead of children under 12 years of age. Maximum permissible levels of lead in soil have been recommended based on the dose-response relationship of lead in soil and blood lead in children.

  8. The influence of depth on mercury levels in pelagic fishes and their prey

    PubMed Central

    Choy, C. Anela; Popp, Brian N.; Kaneko, J. John; Drazen, Jeffrey C.

    2009-01-01

    Mercury distribution in the oceans is controlled by complex biogeochemical cycles, resulting in retention of trace amounts of this metal in plants and animals. Inter- and intra-specific variations in mercury levels of predatory pelagic fish have been previously linked to size, age, trophic position, physical and chemical environmental parameters, and location of capture; however, considerable variation remains unexplained. In this paper, we focus on differences in ecology, depth of occurrence, and total mercury levels in 9 species of commercially important pelagic fish (Thunnus obesus, T. albacares, Katsuwonus pelamis, Xiphias gladius, Lampris guttatus, Coryphaena hippurus, Taractichthys steindachneri, Tetrapturus audax, and Lepidocybium flavobrunneum) and in numerous representatives (fishes, squids, and crustaceans) of their lower trophic level prey sampled from the central North Pacific Ocean. Results indicate that total mercury levels of predatory pelagic fishes and their prey increase with median depth of occurrence in the water column and mimic concentrations of dissolved organic mercury in seawater. Stomach content analysis results from this study and others indicate a greater occurrence of higher-mercury containing deeper-water prey organisms in the diets of the deeper-ranging predators, X. gladius, T. obesus, and L. guttatus. While present in trace amounts, dissolved organic mercury increases with depth in the water column suggesting that the mesopelagic habitat is a major entry point for mercury into marine food webs. These data suggest that a major determinant of mercury levels in oceanic predators is their depth of forage. PMID:19666614

  9. Unified Science Information Model for SoilSCAPE using the Mercury Metadata Search System

    NASA Astrophysics Data System (ADS)

    Devarakonda, Ranjeet; Lu, Kefa; Palanisamy, Giri; Cook, Robert; Santhana Vannan, Suresh; Moghaddam, Mahta Clewley, Dan; Silva, Agnelo; Akbar, Ruzbeh

    2013-12-01

    SoilSCAPE (Soil moisture Sensing Controller And oPtimal Estimator) introduces a new concept for a smart wireless sensor web technology for optimal measurements of surface-to-depth profiles of soil moisture using in-situ sensors. The objective is to enable a guided and adaptive sampling strategy for the in-situ sensor network to meet the measurement validation objectives of spaceborne soil moisture sensors such as the Soil Moisture Active Passive (SMAP) mission. This work is being carried out at the University of Michigan, the Massachusetts Institute of Technology, University of Southern California, and Oak Ridge National Laboratory. At Oak Ridge National Laboratory we are using Mercury metadata search system [1] for building a Unified Information System for the SoilSCAPE project. This unified portal primarily comprises three key pieces: Distributed Search/Discovery; Data Collections and Integration; and Data Dissemination. Mercury, a Federally funded software for metadata harvesting, indexing, and searching would be used for this module. Soil moisture data sources identified as part of this activity such as SoilSCAPE and FLUXNET (in-situ sensors), AirMOSS (airborne retrieval), SMAP (spaceborne retrieval), and are being indexed and maintained by Mercury. Mercury would be the central repository of data sources for cal/val for soil moisture studies and would provide a mechanism to identify additional data sources. Relevant metadata from existing inventories such as ORNL DAAC, USGS Clearinghouse, ARM, NASA ECHO, GCMD etc. would be brought in to this soil-moisture data search/discovery module. The SoilSCAPE [2] metadata records will also be published in broader metadata repositories such as GCMD, data.gov. Mercury can be configured to provide a single portal to soil moisture information contained in disparate data management systems located anywhere on the Internet. Mercury is able to extract, metadata systematically from HTML pages or XML files using a variety of methods including OAI-PMH [3]. The Mercury search interface then allows users to perform simple, fielded, spatial and temporal searches across a central harmonized index of metadata. Mercury supports various metadata standards including FGDC, ISO-19115, DIF, Dublin-Core, Darwin-Core, and EML. This poster describes in detail how Mercury implements the Unified Science Information Model for Soil moisture data. References: [1]Devarakonda R., et al. Mercury: reusable metadata management, data discovery and access system. Earth Science Informatics (2010), 3(1): 87-94. [2]Devarakonda R., et al. Daymet: Single Pixel Data Extraction Tool. http://daymet.ornl.gov/singlepixel.html (2012). Last Accesses 10-01-2013 [3]Devarakonda R., et al. Data sharing and retrieval using OAI-PMH. Earth Science Informatics (2011), 4(1): 1-5.

  10. Impact of forested fallows on fertility and mercury content in soils of the Tapajós River region, Brazilian Amazon.

    PubMed

    Patry, Cynthia; Davidson, Robert; Lucotte, Marc; Béliveau, Annie

    2013-08-01

    Recent research on slash-and-burn agriculture conducted in the Amazonian basin has suggested that soils must be left under forested fallows for at least 10 to 15 years to regain fertility levels comparable to non-disturbed forests in order to allow for short cycle crop cultivation. However, small scale farmers tend nowadays to re-burn secondary forests as soon as after 3 to 5 years, thus could contribute to further reduce soil fertility and could enhance the transfer of mercury (Hg) naturally present in soils of the region towards water courses. The present research project sets out to characterize the impact of forested fallows of differing age and land-use history on soils properties (fertility and Hg contents) in the region of the Tapajós River, an active pioneer front of the Brazilian Amazon. To do this, soil samples in forested fallows of variable age and in control primary forests were retrieved. In general, soil fertility of grouped forested fallows of different ages was similar to that of the primary forests. But when discriminating soils according to their texture, forested fallows on coarse grained soils still had much higher NH4/NO3 ratios, NH4 and Ca contents than primary forests, this even 15 years after burning. The impact of repeated burnings was also assessed. Fallows on coarse grained soils showed an impoverishment for all variables related to fertility when the number of burnings was 5 or more. For fallows on fine grained soils that underwent 5 or more burnings, NO3 contents were low although a cation enrichment was observed. Total soil Hg content was also sensitive to repeated burnings, showing similar losses for forested fallows established on both types of soil. However, Hg linked to coarse particles appeared to migrate back towards fine particles at the surface of coarse grained soils in fallows older than 7 years. PMID:23651778

  11. Arsenic, cadmium, lead, and mercury in surface soils, Pueblo, Colorado: Implications for population health risk

    USGS Publications Warehouse

    Diawara, D.M.; Litt, J.S.; Unis, D.; Alfonso, N.; Martinez, L.A.; Crock, J.G.; Smith, D.B.; Carsella, J.

    2006-01-01

    Decades of intensive industrial and agricultural practices as well as rapid urbanization have left communities like Pueblo, Colorado facing potential health threats from pollution of its soils, air, water and food supply. To address such concerns about environmental contamination, we conducted an urban geochemical study of the city of Pueblo to offer insights into the potential chemical hazards in soil and inform priorities for future health studies and population interventions aimed at reducing exposures to inorganic substances. The current study characterizes the environmental landscape of Pueblo in terms of heavy metals, and relates this to population distributions. Soil was sampled within the city along transects and analyzed for arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb). We also profiled Pueblo's communities in terms of their socioeconomic status and demographics. ArcGIS 9.0 was used to perform exploratory spatial data analysis and generate community profiles and prediction maps. The topsoil in Pueblo contains more As, Cd, Hg and Pb than national soil averages, although average Hg content in Pueblo was within reported baseline ranges. The highest levels of As concentrations ranged between 56.6 and 66.5 ppm. Lead concentrations exceeded 300 ppm in several of Pueblo's residential communities. Elevated levels of lead are concentrated in low-income Hispanic and African-American communities. Areas of excessively high Cd concentration exist around Pueblo, including low income and minority communities, raising additional health and environmental justice concerns. Although the distribution patterns vary by element and may reflect both industrial and non-industrial sources, the study confirms that there is environmental contamination around Pueblo and underscores the need for a comprehensive public health approach to address environmental threats in urban communities. ?? Springer 2006.

  12. The Quality of Our Nation's Waters Mercury in the Nation's Streams--Levels, Trends, and Implications

    E-print Network

    and protect the overall quality of life and that facilitates effective management of water, biological, energyThe Quality of Our Nation's Waters Mercury in the Nation's Streams--Levels, Trends. Wentz). #12;The Quality of Our Nation's Waters Mercury in the Nation's Streams--Levels, Trends

  13. Mercury level in fish caught in Indian River Lagoon higher than it should be?

    E-print Network

    Fernandez, Eduardo

    Mercury level in fish caught in Indian River Lagoon higher than it should be? Harbor Branch the degree to which eating fish from the Indian River Lagoon and other regional waters can boost people's mercury levels. The toxin can damage various parts of the human body. The lagoon's dolphins have tested

  14. Burdens of mercury in residents of Temirtau, Kazakhstan I: hair mercury concentrations and factors of elevated hair mercury levels.

    PubMed

    Hsiao, Hui-Wen; Ullrich, Susanne M; Tanton, Trevor W

    2011-05-01

    Mercury (Hg) is released either naturally in the environment or by anthropogenic activities. During its global circulation, Hg presents in a diversity of chemical forms and transforms between each other. Among Hg species, methylmercury (MeHg) is readily absorbed by humans via the aquatic food chain and thus it is very neurotoxic to exposed populations including fetuses due to perinatal exposure. In 2005, a survey was carried out in Temirtau, an Hg-contaminated site in North Central Kazakhstan, to investigate Hg concentrations in the hair samples of the residents and the relationship between Hg exposure levels and the related factors. Among the 289 hair samples, Hg concentrations ranged from 0.009 to 5.184µg/g with a mean of 0.577µg/g. Nearly 17% of the population exceeded 1µg/g for hair Hg, which corresponds to the reference of dose (RfD) 0.1µg/kg body weight/day developed by the United States Environmental Protection Agency (USEPA). Subgroups of males, people aged over 45 and fishermen or anglers were found to have elevated Hg exposure levels in their hair. A positive correlation was found between Hg concentrations in hair and frequencies of river fish consumption. As a result, the finding that people were exposed to high levels of Hg was expected due to the frequent consumption of fish caught from the polluted River Nura or the neighbouring lakes. A regression model showed that approximately 41% of variance of Hg concentrations in the study population's hair was attributed to the variables of gender, residential location, age and fishery occupation. The model implied that demographic characteristics together with dietary behaviour should be taken into account in studies associated with Hg exposure risk, in order to clearly define the group potentially sensitive to Hg exposure. PMID:20092877

  15. Soil and Sediment Properties Affecting the Transport and Accumulations of Mercury in a Flood Control Reservoir

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mercury accumulations in some fish species from Grenada Lake in north Mississippi exceed the Food and Drug Administration standards for human consumption. This large flood control reservoir serves as a sink for the Skuna and Yalobusha River watersheds whose highly erodible soils contribute to exces...

  16. Latent Effect of Soil Organic Matter Oxidation on Mercury Cycling within a Southern Boreal Ecosystem

    EPA Science Inventory

    The focus of this study is to investigate processes causing the observed spatial variation of total mercury (THg) in the soil O horizon of watersheds within the Superior National Forest (Minnesota) and to determine if results have implications toward understanding long-term chang...

  17. Chapter A5. Section 6.4.B. Low-Level Mercury

    USGS Publications Warehouse

    Lewis, Michael Edward; Brigham, Mark E.

    2004-01-01

    Collecting and processing water samples for analysis of mercury at a low (subnanogram per liter) level requires use of ultratrace-level techniques for equipment cleaning, sample collection, and sample processing. Established techniques and associated quality-assurance (QA) procedures for the collection and processing of water samples for trace-element analysis at the part-per-billion level (NFM 3-5) are not adequate for low-level mercury samples. Modifications to the part-per-billion procedures are necessary to minimize contamination of samples at a typical ambient mercury concentration, which commonly is at the subnanogram-per-liter level.

  18. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals

    SciTech Connect

    Goodrich, Jaclyn M.; Wang, Yi; Gillespie, Brenda; Werner, Robert; Department of Physical Medicine and Rehabilitation, University of Michigan, 325 E. Eisenhower Parkway Suite 100, Ann Arbor, MI 48108 ; Franzblau, Alfred; Basu, Niladri

    2011-12-15

    Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione s-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n = 515), and total mercury content was measured. Average urine (1.06 {+-} 1.24 ug/L) and hair mercury levels (0.49 {+-} 0.63 ug/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5 Prime ), or both (SEPP1 3 Prime UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). -- Highlights: Black-Right-Pointing-Pointer We explore the influence of 15 polymorphisms on urine and hair Hg levels. Black-Right-Pointing-Pointer Urine and hair Hg levels in dental professionals were similar to the US population. Black-Right-Pointing-Pointer GSTT1 and SEPP1 polymorphisms associated with urine Hg levels. Black-Right-Pointing-Pointer Accumulation of Hg in hair following exposure from fish was modified by genotype. Black-Right-Pointing-Pointer GSTP1, GSS, and SEPP1 polymorphisms influenced Hg accumulation in hair.

  19. Sequential analysis of hair mercury levels in relation to fish diet of an Amazonian population, Brazil.

    PubMed

    Dolbec, J; Mergler, D; Larribe, F; Roulet, M; Lebel, J; Lucotte, M

    2001-04-23

    Several studies in the Amazonian Basin have shown that riverine populations are exposed to methylmercury through fish consumption. It has been suggested that seasonal variations in hair mercury observed through sequential analyses may be related to the changes in fish species ingested by the local communities. The aim of the present study was to investigate the relationship between fish-eating practices and seasonal variation in mercury exposure. A group of 36 women from a village located on the banks of the Tapajós River, a major tributary of the Amazon, comprised the present study population. An interview-administered questionnaire was used to gather information on socio-demographic characteristics, fish-eating practices and other relevant information. The women also provided hair samples of at least 24 cm in length for mercury analysis. Hair total and inorganic mercury concentration was measured using a cold vapor atomic absorption analytical method. Trigonometric regression analysis was done to assess the seasonal variation of total mercury levels. Variations in inorganic mercury were examined by repeated measures analysis of variance, and analysis of contrast variable with a polynomial transformation. The results showed that hair mercury levels varied with the season. Higher levels were observed in months corresponding to the dry season, with lower levels in the rainy season. Herbivorous fish predominated the diet for 47.2% of the women during the dry season, but this rose to 72.2% during the rainy season. Those who reported eating fish daily had higher mercury levels in hair compared to those who only ate fish a few times per week. Retrospective mercury analyses, evaluated by the quantity of mercury present in each centimeter of hair, indicate that mean mercury level of the population decreased over the 2 years prior to the study. The percentage of inorganic mercury over the total mercury in hair increased towards the extremities of the hair strand. Higher percentages of inorganic mercury were found for the group who ate more fish (on a daily consumption basis). These results support the assumption that there are seasonal variations in methylmercury exposure and also a relationship between type of fish species consumed and the resulting hair mercury levels. PMID:11346043

  20. Mercury Levels in Pregnant Women, Children, and Seafood from Mexico City

    PubMed Central

    Basu, Niladri; Tutino, Rebecca; Zhang, Zhenzhen; Cantonwine, David E.; Goodrich, Jaclyn M.; Somers, Emily C.; Rodriguez, Lauren; Schnaas, Lourdes; Solano, Maritsa; Mercado, Adriana; Peterson, Karen; Sánchez, Brisa N.; Hernández-Avila, Mauricio; Hu, Howard; Téllez-Rojo, Martha Maria

    2014-01-01

    Background Mercury is a global contaminant of concern though little is known about exposures in México. Objectives To characterize mercury levels in pregnant women, children, and commonly consumed seafood samples. Methods Use resources of the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) birth cohorts to measure total mercury levels in archived samples from 348 pregnant women (blood from three trimesters and cord blood), 825 offspring (blood, hair, urine) and their mothers (hair), and 91 seafood and canned tuna samples from Mexico City. Results Maternal blood mercury levels correlated across three trimesters and averaged 3.4?g/L. Cord blood mercury averaged 4.7?g/L and correlated with maternal blood from trimester 3 (but not trimesters 1 and 2). In children, blood, hair and urine mercury levels correlated and averaged 1.8?g/L, 0.6?g/g, and 0.9?g/L, respectively. Hair mercury was 0.5?g/g in mothers and correlated with child's hair. Mean consumption of canned tuna, fresh fish, canned sardine, and shellfish was 3.1, 2.2, 0.5, and 1.0 times per month respectively in pregnant women. Mean mercury content in 7 of 23 seafood species and 5 of 9 canned tuna brands purchased exceeded the U.S. EPA guidance value of 0.3 ?g/g. Conclusions Mercury exposures in pregnant women and children from Mexico City, via biomarker studies, are generally 3-5 times greater than values reported in population surveys from the U.S., Canada, and elsewhere. In particular, mercury levels in 29-39% of the maternal participants exceeded the biomonitoring guideline associated with the U.S. EPA reference dose for mercury. PMID:25262076

  1. Spatial and vertical distribution of mercury in upland forest soils across the northeastern United States

    PubMed Central

    Richardson, Justin B.; Friedland, Andrew J; Engerbretson, Teresa R.; Kaste, James M.; Jackson, Brian P.

    2013-01-01

    Assessing current Hg pools in forest soils of the northeastern U.S. is important for monitoring changes in Hg cycling. The forest floor, upper and lower mineral horizons were sampled at 17 long-term upland forest sites across the northeastern U.S. in 2011. Forest floor Hg concentration was similar across the study region (274 ± 13 ?g kg?1) while Hg amount at northern sites (39 ± 6 g ha?1) was significantly greater than at western sites (11 ± 4 g ha?1). Forest floor Hg was correlated with soil organic matter, soil pH, latitude and mean annual precipitation and these variables explained approximately 70% of the variability when multiple regressed. Mercury concentration and amount in the lower mineral soil was correlated with Fe, soil organic matter and latitude, corresponding with Bs horizons of Spodosols (Podzols). Our analysis shows the importance of regional and soil properties on Hg accumulation in forest soils. PMID:23911621

  2. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    SciTech Connect

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolution of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)

  3. Complexation of mercury(II) ions with humic acids in tundra soils

    NASA Astrophysics Data System (ADS)

    Vasilevich, R. S.; Beznosikov, V. A.; Lodygin, E. D.; Kondratenok, B. M.

    2014-03-01

    The interaction mechanisms of mercury(II) ions with preparations of humic acids (HAs) isolated from organic horizons of surface-gleyed soils (Haplic Stagnosol (Gelic, Siltic)) of shrub tundra and hydromorphic peat gley soils (Histic Cryosol (Reductaquic, Siltic)) of moss-lichen tundra have been studied. The particular features of the interactions between the mercury(II) ions and the HAs are related to the molecular structure of the HAs, the mercury concentration range, and the environmental parameters. The fixation of mercury(II) ions into stable coordination compounds is most efficient in the pH range of 2.5-3.5. At the element concentrations below 0.50 ?mol/dm3, the main complexing sites of HAs are their peripheral aminoacid functional groups. Pyrocatechol, salicylate, and phenolic groups from the nuclear moiety of molecules interact in the concentration range of 0.0005-0.50 mmol/dm3; the physical sorption of mercury hydroxo complexes by the surface of HAs is the main process occurring in the system.

  4. Mercury Release from Soils and Sediments in the Sacramento River Watershed

    NASA Astrophysics Data System (ADS)

    Suess, E.; Aiken, G. R.; Ryan, J. N.; Gasper, J. D.

    2007-12-01

    Mercury released into water from soils and sediments contaminated by cinnabar (HgS) and gold mining is a major environmental concern in the Sacramento-San Joaquin Delta, California. To better understand the conditions resulting in Hg solubilization from these contaminated materials, six soil and sediment samples from the Coastal Range and the Sierra Nevada were subject to batch leaching experiments under varying conditions. Sequential extraction analyses of the soils and sediments indicated that most of the mercury was present as (1) Hg as HgS in samples affected by HgS mining, which occurred in the Coastal Range, (2) Hg bound to metal oxides in a background serpentine soil from the Coastal Range, (3) Hg bound to sediment organic matter in lake sediments from Camp Far West Reservoir, and (4) elemental Hg in a sluice sediment from Starr Tunnel. The effects of pH, ionic strength, inorganic ions (chloride, calcium), simple organic ligands (mercaptoacetic acid, salicylic acid, EDTA), and dissolved organic matter (DOM) on the release of Hg were investigated. Leaching experiments confirmed that the water-soluble fraction was small (9 to 350 ng/L) compared to the amounts of Hg associated with the solid samples (1 to 36 ?g/g total mercury); however, these concentrations would be sufficient to result in increased methylation by sulfate-reducing bacteria in wetland systems. An increase in mercury release was observed with (1) increasing pH due to solubilization of soil organic matter, (2) decreasing ionic strength due to colloid stabilization, and (3) increasing chloride concentration due to the formation of complexes with mercury. The presence of calcium strongly inhibited mercury release. Among the organic ligands, mercaptoacetic acid, which binds Hg very strongly, was the most effective at solubilizing Hg. DOM, in the form of organic matter isolates, was also very effective at solubilizing Hg for all samples except the lake sediment sample, with the most aromatic organic matter isolates being the most reactive. The results of this study indicate that DOM is very important in the mobilization of Hg from soils and sediments and will influence the dissolution, mobilization, and bioavailability of mercury in wetlands associated with the Sacramento-San Joaquin Delta area.

  5. Dietary Predictors of Maternal Prenatal Blood Mercury Levels in the ALSPAC Birth Cohort Study

    PubMed Central

    Steer, Colin D.; Hibbeln, Joseph R.; Emmett, Pauline M.; Lowery, Tony; Jones, Robert

    2013-01-01

    Background: Very high levels of prenatal maternal mercury have adverse effects on the developing fetal brain. It has been suggested that all possible sources of mercury should be avoided. However, although seafood is a known source of mercury, little is known about other dietary components that contribute to the overall levels of blood mercury. Objective: Our goal was to quantify the contribution of components of maternal diet to prenatal blood mercury level. Methods: Whole blood samples and information on diet and sociodemographic factors were collected from pregnant women (n = 4,484) enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC). The blood samples were assayed for total mercury using inductively coupled plasma dynamic reaction cell mass spectrometry. Linear regression was used to estimate the relative contributions of 103 dietary variables and 6 sociodemographic characteristics to whole blood total mercury levels (TBM; untransformed and log-transformed) based on R2 values. Results: We estimated that maternal diet accounted for 19.8% of the total variation in ln-TBM, with 44% of diet-associated variability (8.75% of the total variation) associated with seafood consumption (white fish, oily fish, and shellfish). Other dietary components positively associated with TBM included wine and herbal teas, and components with significant negative associations included white bread, meat pies or pasties, and french fries. Conclusions: Although seafood is a source of dietary mercury, seafood appeared to explain a relatively small proportion of the variation in TBM in our UK study population. Our findings require confirmation, but suggest that limiting seafood intake during pregnancy may have a limited impact on prenatal blood mercury levels. Citation: Golding J, Steer CD, Hibbeln JR, Emmett PM, Lowery T, Jones R. 2013. Dietary predictors of maternal prenatal blood mercury levels in the ALSPAC birth cohort study. Environ Health Perspect 121:1214–1218;?http://dx.doi.org/10.1289/ehp.1206115 PMID:23811414

  6. Mercury levels in Great Lakes herring gull eggs, 1972--1992

    SciTech Connect

    Weseloh, D.V.; Koster, M.D.; Ryckman, D.P.; Struger, J.

    1995-12-31

    Since 1971, the herring gull (Larus argentatus) has been used as a sentinel species for monitoring the levels of persistent contaminants in the Great Lakes ecosystem. In this study, 21 herring gull colonies in the Great Lakes and connecting channels were sampled for years 1972--1976, 1981--1983, 1985 and 1992. For each year, 10 eggs (usually) were collected from each colony site and analyzed for total mercury (ppm, wet weight). Results indicated that eggs from Lake Ontario displayed the highest mercury levels, mean = 0.28 (s.d. = 0.08) to 0.73 (0.23). Lake Erie typically displayed the lowest egg mercury levels, 0.18 (0.08) to 0.24 (0.11). Overall, mercury levels ranged from 0.12 (0.02) in 1985 to 0.88 (0.23) in 1982 for Channel-Shelter Island (Lake Huron) and Pigeon Island (Lake Ontario), respectively. Generally, all colony sites showed peak mercury levels in 1982. A significant decline in egg mercury levels was observed in six colony sites between 1972 and 1992 and in three colony sites between 1981 and 1992. The mean herring gull egg mercury levels observed in the early and mid 1970s and in 1982 for some colony sites were within the range found which potentially reduces hatchability in other fish-eating bird species.

  7. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA

    PubMed Central

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2015-01-01

    A number of contaminants affect fish health, including mercury and selenium, and the selenium: mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium: mercury molar ratios by tissues. Total mercury averaged 0.32 ± 0.02 ppm wet weight in edible muscle and 0.09 ± 0.01 ppm in brain. Selenium concentration averaged 0.37 ± 0.03 in muscle and 0.36 ± 0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium: mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium: mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. PMID:23202378

  8. Comparative Analysis for Polluted Agricultural Soils with Arsenic, Lead, and Mercury in Mexico

    SciTech Connect

    Yarto-Ramirez, Mario; Santos-Santos, Elvira; Gavilan-Garcia, Arturo; Castro-Diaz, Jose; Gavilan-Garcia, Irma Cruz; Rosiles, Rene; Suarez, Sara

    2004-03-31

    The use of mercury in Mexico has been associated with the mining industry of Zacatecas. This activity has polluted several areas currently used for agriculture. The main objective of this study was to investigate the heavy metal concentration (Hg, As and Pb) in soil of Guadalupe Zacatecas in order to justify a further environmental risk assessment in the site. A 2X3 km grid was used for the sampling process and 20 soil samples were taken. The analysis was developed using EPA SW 846: 3050B/6010B method for arsenic and metals and EPA SW 846: 7471A for total mercury. It was concluded that there are heavy metals in agricultural soils used for corn and bean farming. For this it is required to make an environmental risk assessment and a bioavailability study in order to determine if there's a risk for heavy metals bioaccumulation in animals or human beings or metal lixiviation to aquifers.

  9. Field analytical techniques for mercury in soils technology evaluation. Topical report, November 1994--March 1997

    SciTech Connect

    Solc, J.; Harju, J.A.; Grisanti, A.A.

    1998-02-01

    This report presents the evaluation of the four field analytical techniques for mercury detection in soils, namely (1) an anodic stripping voltametry technique (ASV) developed and tested by General Electric Corporation; (2) a static headspace analysis (SHSA) technique developed and tested by Dr. Ralph Turner of Oak Ridge National Laboratory; (3) the BiMelyze{reg_sign} Mercury Immunoassay (Bio) developed and tested by BioNebraska, Inc.; and (4) a transportable x-ray fluorescence (XRF) instrument/technique developed and tested by Spectrace, Inc.

  10. Fish consumption and hair mercury levels in women of childbearing age, Martin County, Florida.

    PubMed

    Nair, Anil; Jordan, Melissa; Watkins, Sharon; Washam, Robert; DuClos, Chris; Jones, Serena; Palcic, Jason; Pawlowicz, Marek; Blackmore, Carina

    2014-12-01

    The health effects of mercury in humans are mostly on the developing nervous system. Pregnant women and women who are breastfeeding must be targeted in order to decrease mercury exposure to the populations at highest risk-infants, unborn fetuses, and young children. This purpose of this study is to understand the demographics of fish-consumption patterns among women of childbearing age (including pregnant women) in Martin County, Florida, and to analyze the associations of mercury levels in participants' hair with socio-demographic variables in order to better design prevention messages and campaigns. Mercury concentrations in hair samples of 408 women ages 18-49 were assessed. Data on demographic factors, pregnancy status, fish consumption, and awareness of fish advisories were collected during personal interviews. Data were analyzed using descriptive statistics and multivariate logistic regression. The geometric and arithmetic means of hair mercury concentration were 0.371 and 0.676 µg/g of hair. One-fourth of the respondents had a concentration ?1 µg/g of hair. Consuming a higher number of fish meals per month, consumption of commercially purchased or locally caught fish higher in mercury, White race and income ?$75,000 were positively associated with the likelihood of having higher hair mercury levels. This study confirms the existence of a higher overall mean hair mercury level and a higher percentage of women with ?1 µg/g hair mercury level than those reported at the national level and in other regional studies. This suggests the need for region-specific fish consumption advisories to minimize mercury exposure in humans. PMID:24807406

  11. Mercury contamination study for flight system safety

    NASA Technical Reports Server (NTRS)

    Gorzynski, C. S., Jr.; Maycock, J. N.

    1972-01-01

    The effects and prevention of possible mercury pollution from the failure of solar electric propulsion spacecraft using mercury propellant were studied from tankage loading of post launch trajector injection. During preflight operations and initial flight mode there is little danger of mercury pollution if proper safety precautions are taken. Any spillage on the loading, mating, transportation, or launch pad areas is obvious and can be removed by vacuum cleaning soil and chemical fixing. Mercury spilled on Cape Kennedy ground soil will be chemically complexed and retained by the sandstone subsoil. A cover layer of sand or gravel on spilled mercury which has settled to the bottom of a water body adjacent to the system operation will control and eliminate the formation of toxic organic mercurials. Mercury released into the earth's atmosphere through leakage of a fireball will be diffused to low concentration levels. However, gas phase reactions of mercury with ozone could cause a local ozone depletion and result in serious ecological hazards.

  12. [Spatial distribution of mercury in soils of a typical small agricultural watershed in the Three Gorges Reservoir region].

    PubMed

    Wang, Ya; Zhao, Zheng; Mu, Zhi-jian; Wang, Dlng-yong; Yu, Ya-wei

    2015-01-01

    To understand the mercury (Hg) pollution level and the corresponding ecological risk in agricultural watershed of the Three Gorges Reservoir region, a typical watershed, Wangjiagou, located in Fuling, where is in interior zones of the Three Gorges Reservoir region, was selected as the study object. Meanwhile, ArcGIS geo-statistics module was conducted for investigation of the Hg contents and distribution characteristics in soils of different land use types including dry land, farmland, woodland and settlements. Also the corresponding Hg pollution level and ecological risk were assessed. The results suggested that soil Hg contents in this watershed ranged from 9.47 to 94.57 microg x kg(-1), and the mean value was (34.23 +/- 16.23) microg x kg(-1). Higher Hg contents in surfaces of soils were observed in woodland, followed by farmland and settlement. The lowest was found in dry land. Surfaces of soils significantly showed Hg accumulation, and an obvious inverse correlation between soil Hg contents and soil depths was also observed in this study. Additionally, geo-statistics analysis showed a weak spatial correlation of soil Hg contents in this watershed, indicating the spatial distribution of soil Hg in this watershed was mainly influenced by several natural factors such as atmospheric wet-dry deposit, vegetation coverage and topography, instead of anthropogenic interference. Overall confirmative soil Hg pollution was not found in this watershed, which showed a very low pollution index (-0.08), but a moderate potential ecological risk still existed (the ecological risk index was 57), of which woodland had the highest potential risk. The total capacity of Hg in this watershed was 25.39 kg, among which dry land accounted for 69%. PMID:25898656

  13. Inhibition of mercury release from forest soil by high atmospheric deposition of Ca˛? and SO?˛?.

    PubMed

    Luo, Yao; Duan, Lei; Xu, Guangyi; Hao, Jiming

    2015-09-01

    As one of the most important natural mercury (Hg) sources, soil release (emission to the atmosphere or leaching to soil water) depends on various factors, some of which can be affected by atmospheric deposition. We studied the effect of flue gas desulfurization gypsum (FGDG) addition on soil Hg release in a Masson pine (Pinus massoniana) forest in southwestern China. FGDG addition simulated atmospheric deposition of Ca(2+), SO4(2-) and Hg, which are commonly high in China. Results showed that Hg concentration in soil water decreased with the gypsum treatment, suggesting that the mobility of Hg in mineral soil was reduced. Moreover, the application of gypsum also seems to have decreased Hg emission from the soil, shown by the lower Hg contents in leaf tissues of ground vegetation in the treated plots than in the reference. Both Hg mobility in the soil and Hg emission to the atmosphere were decreased despite the additional Hg input from FGDG. The decreased DOC concentration in soil water and the elevated organic sulfur content in the soil Oe & Oa horizons were speculated to result in an enhanced capacity of surface soil to bind Hg, and thus to reduce Hg release from the soil. However, with the increasingly stringent control of particulate matter (PM) and sulfur dioxide (SO2) emissions in China, the deposition of Ca(2+) and SO4(2-) is expected to decrease, and their ability to inhibit soil Hg release is likely to decline in the future. PMID:25935601

  14. MERCURY LEVELS IN HAWAIIAN PREDATORY PEI-AGIC FISHES AND THEIR PREY ASA FUNCTION OF DEPTH AND ECOLOGY

    E-print Network

    Qiu, Bo

    MERCURY LEVELS IN HAWAIIAN PREDATORY PEI-AGIC FISHES AND THEIR PREY ASA FUNCTION OF DEPTH Gregory F,. P.av:.zza N{argaretA. N.,Icl\\{anus #12;ABSTRACT Mercury is drstributedthroughout the Earth in plants and animals. Inter- and intra-specific variations in mercury levels of predatory pelagic fish have

  15. Increased Mercury Levels in Patients with Celiac Disease following a Gluten-Free Regimen.

    PubMed

    Elli, Luca; Rossi, Valentina; Conte, Dario; Ronchi, Anna; Tomba, Carolina; Passoni, Manuela; Bardella, Maria Teresa; Roncoroni, Leda; Guzzi, Gianpaolo

    2015-01-01

    Background and Aim. Although mercury is involved in several immunological diseases, nothing is known about its implication in celiac disease. Our aim was to evaluate blood and urinary levels of mercury in celiac patients. Methods. We prospectively enrolled 30 celiac patients (20 treated with normal duodenal mucosa and 10 untreated with duodenal atrophy) and 20 healthy controls from the same geographic area. Blood and urinary mercury concentrations were measured by means of flow injection inductively coupled plasma mass spectrometry. Enrolled patients underwent dental chart for amalgam fillings and completed a food-frequency questionnaire to evaluate diet and fish intake. Results. Mercury blood/urinary levels were 2.4 ± 2.3/1.0 ± 1.4, 10.2 ± 6.7/2.2 ± 3.0 and 3.7 ± 2.7/1.3 ± 1.2 in untreated CD, treated CD, and healthy controls, respectively. Resulting mercury levels were significantly higher in celiac patients following a gluten-free diet. No differences were found regarding fish intake and number of amalgam fillings. No demographic or clinical data were significantly associated with mercury levels in biologic samples. Conclusion. Data demonstrate a fourfold increase of mercury blood levels in celiac patients following a gluten-free diet. Further studies are needed to clarify its role in celiac mechanism. PMID:25802516

  16. Increased Mercury Levels in Patients with Celiac Disease following a Gluten-Free Regimen

    PubMed Central

    Elli, Luca; Rossi, Valentina; Conte, Dario; Ronchi, Anna; Tomba, Carolina; Passoni, Manuela; Bardella, Maria Teresa; Roncoroni, Leda; Guzzi, Gianpaolo

    2015-01-01

    Background and Aim. Although mercury is involved in several immunological diseases, nothing is known about its implication in celiac disease. Our aim was to evaluate blood and urinary levels of mercury in celiac patients. Methods. We prospectively enrolled 30 celiac patients (20 treated with normal duodenal mucosa and 10 untreated with duodenal atrophy) and 20 healthy controls from the same geographic area. Blood and urinary mercury concentrations were measured by means of flow injection inductively coupled plasma mass spectrometry. Enrolled patients underwent dental chart for amalgam fillings and completed a food-frequency questionnaire to evaluate diet and fish intake. Results. Mercury blood/urinary levels were 2.4 ± 2.3/1.0 ± 1.4, 10.2 ± 6.7/2.2 ± 3.0 and 3.7 ± 2.7/1.3 ± 1.2 in untreated CD, treated CD, and healthy controls, respectively. Resulting mercury levels were significantly higher in celiac patients following a gluten-free diet. No differences were found regarding fish intake and number of amalgam fillings. No demographic or clinical data were significantly associated with mercury levels in biologic samples. Conclusion. Data demonstrate a fourfold increase of mercury blood levels in celiac patients following a gluten-free diet. Further studies are needed to clarify its role in celiac mechanism. PMID:25802516

  17. Latent effect of soil organic matter oxidation on mercury cycling within a southern boreal ecosystem.

    PubMed

    Gabriel, Mark; Kolka, Randy; Wickman, Trent; Woodruff, Laurel; Nater, Ed

    2012-01-01

    The focus of this study is to investigate processes causing the observed spatial variation of total mercury (THg) in the soil O horizon of watersheds within the Superior National Forest (Minnesota) and to determine if results have implications toward understanding long-term changes in THg concentrations for resident fish. Principal component analysis was used to evaluate the spatial relationships of 42 chemical elements in three soil horizons over 10 watersheds. Results indicate that soil organic carbon is the primary factor controlling the spatial variation of certain metals (Hg, Tl, Pb, Bi, Cd, Sn, Sb, Cu, and As) in the O and A soil horizons. In the B/E horizon, organic carbon appeared to play a minor role in metal spatial variation. These characteristics are consistent with the concentration of soil organic matter and carbon decreasing from the O to the B/E horizons. We also investigated the relationship between percent change in upland soil organic content and fish THg concentrations across all watersheds. Statistical regression analysis indicates that a 50% reduction in age-one and age-two fish THg concentration could result from an average 10% decrease in upland soil organic content. Disturbances that decrease the content of THg and organic matter in the O and A horizons (e.g., fire) may cause a short-term increase in atmospherically deposited mercury but, over the long term, may lead to decreased fish THg concentrations in affected watersheds. PMID:22370412

  18. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA

    USGS Publications Warehouse

    Gray, John E.; Theodorakos, Peter M.; Fey, David L.; Krabbenhoft, David P.

    2015-01-01

    Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8–11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03–0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9–14 ng/L) were generally higher than those found in springs and wells (0.05–3.1 ng/L), baseline streams (1.1–9.7 ng/L), and sources of drinking water (0.63–9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from <0.001 to 760 µg of Hg in leachate/g of sample leached, but only one leachate exceeded the USEPA Hg industrial soil screening level of 31 µg/g. Concentrations of Hg in soil gas collected at mined sites (690–82,000 ng/m3) were highly elevated compared to soil gas collected from baseline sites (1.2–77 ng/m3). However, air collected from mined areas at a height of 2 m above the ground surface contained concentrations of Hg (4.9–64 ng/m3) that were considerably lower than Hg in soil gas from the mined areas. Although concentrations of Hg emitted from mine-contaminated soils and mine wastes were elevated, persistent wind in southwest Texas disperses Hg in the air within a few meters of the ground surface.

  19. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA.

    PubMed

    Gray, John E; Theodorakos, Peter M; Fey, David L; Krabbenhoft, David P

    2015-02-01

    Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8-11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03-0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9-14 ng/L) were generally higher than those found in springs and wells (0.05-3.1 ng/L), baseline streams (1.1-9.7 ng/L), and sources of drinking water (0.63-9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from <0.001 to 760 µg of Hg in leachate/g of sample leached, but only one leachate exceeded the USEPA Hg industrial soil screening level of 31 µg/g. Concentrations of Hg in soil gas collected at mined sites (690-82,000 ng/m(3)) were highly elevated compared to soil gas collected from baseline sites (1.2-77 ng/m(3)). However, air collected from mined areas at a height of 2 m above the ground surface contained concentrations of Hg (4.9-64 ng/m(3)) that were considerably lower than Hg in soil gas from the mined areas. Although concentrations of Hg emitted from mine-contaminated soils and mine wastes were elevated, persistent wind in southwest Texas disperses Hg in the air within a few meters of the ground surface. PMID:24974151

  20. Ultralow Level Mercury Treatment Using Chemical Reduction and Air Stripping

    SciTech Connect

    Looney, B.B.

    2001-02-23

    The overall objective of this work is to develop a reasonable and cost-effective approach to meet the emerging mercury standards, especially for high volume outfalls with concentrations below the drinking water standard.

  1. Diffuse soil degassing of radon and mercury from abandoned underground coal mines in Southeastern Ohio

    NASA Astrophysics Data System (ADS)

    Ruiz, V. E.; Lopez, D. L.

    2002-12-01

    The exploitation of coal in Southeastern Ohio is associated to the production of acid mine drainage and poor water quality in rivers and streams. Water recharge to the underground coal mines occurs preferentially throughout subsidence features in areas where the overburden is thinner than around 60 feet, usually close to river and streams. Gases released from the coal beds such as methane and mercury, as well as radon generated in the rocks can diffuse throughout the overlying fractured rocks and soils and discharge to the atmosphere. The purpose of this research was to compare the gases released from mined and unmined areas in Southeastern Ohio. Radon and mercury concentrations were measured at 40 cm depth using a Pylon AB-5 Radiation Detector and an Arizona Mercury Analyzer respectively. An area of 59 miles2 (151 km2) close to the town of Corning, Ohio, was investigated. Distance between points was around 600-1000 m. Approximately half of the area was mined underground and half was not. Our results indicate that radon concentration is considerable higher in the mined areas. Mercury concentrations are more variable and do not correlate with mined areas. Accumulation of gases released in basements of houses located in zones of high soil radon concentration will be investigated.

  2. Elevated mercury levels in a wintering population of common eiders (Somateria mollissima) in the northeastern United States.

    PubMed

    Meattey, Dustin E; Savoy, Lucas; Beuth, Josh; Pau, Nancy; O'Brien, Kathleen; Osenkowski, Jason; Regan, Kevin; Lasorsa, Brenda; Johnson, Ian

    2014-09-15

    In North America and Europe, sea ducks are important indicators of ecological health and inshore marine pollution. To explore spatial variation in mercury accumulation in common eiders in the northeastern United States, we compared concentrations of total mercury in common eider blood at several New England locations between 1998 and 2013. Eider food items (mollusks) were collected and analyzed to determine if mercury concentrations in eider blood were indicative of local mercury bioavailability. Eiders from Plum Island Sound, MA had a significantly higher mean blood mercury concentration (0.83 ?g/g) than those in other locations. Mean mercury levels in this population were also nearly three times higher than any blood mercury concentrations reported for common eiders in published literature. We observed consistent patterns in eider blood mercury and blue mussel mercury concentrations between sites, suggesting a tentative predictive quality between the two species. PMID:25066457

  3. Mercury

    NASA Technical Reports Server (NTRS)

    Gault, D. E.; Burns, J. A.; Cassen, P.; Strom, R. G.

    1977-01-01

    Prior to the flight of the Mariner 10 spacecraft, Mercury was the least investigated and most poorly known terrestrial planet (Kuiper 1970, Devine 1972). Observational difficulties caused by its proximity to the Sun as viewed from Earth caused the planet to remain a small, vague disk exhibiting little surface contrast or details, an object for which only three major facts were known: 1. its bulk density is similar to that of Venus and Earth, much greater than that of Mars and the Moon; 2. its surface reflects electromagnetic radiation at all wavelengths in the same manner as the Moon (taking into account differences in their solar distances); and 3. its rotation period is in 2/3 resonance with its orbital period. Images obtained during the flyby by Mariner 10 on 29 March 1974 (and the two subsequent flybys on 21 September 1974 and 16 March 1975) revealed Mercury's surface in detail equivalent to that available for the Moon during the early 1960's from Earth-based telescopic views. Additionally, however, information was obtained on the planet's mass and size, atmospheric composition and density, charged-particle environment, and infrared thermal radiation from the surface, and most significantly of all, the existence of a planetary magnetic field that is probably intrinsic to Mercury was established. In the following, this new information is summarized together with results from theoretical studies and ground-based observations. In the quantum jumps of knowledge that have been characteristic of "space-age" exploration, the previously obscure body of Mercury has suddenly come into sharp focus. It is very likely a differentiated body, probably contains a large Earth-like iron-rich core, and displays a surface remarkably similar to that of the Moon, which suggests a similar evolutionary history.

  4. Increased mercury in forest soils under elevated carbon dioxide

    SciTech Connect

    Natali, Susan M.; Sa_udo-Wilhelmy, Sergio A.; Norby, Richard J; Finzi, Adrien C; Lerdau, Manuel T.

    2008-01-01

    Fossil fuel combustion is the primary anthropogenic source of both CO2 and Hg to the atmosphere. On a global scale, most Hg that enters ecosystems is derived from atmospheric Hg that deposits onto the land surface. Increasing concentrations of atmospheric CO2 may affect Hg deposition to terrestrial systems and storage in soils through CO2-mediated changes in plant and soil properties. We show, using free-air CO2 enrichment (FACE) experiments, that soil Hg concentrations are almost 30% greater under elevated atmospheric CO2 in two temperate forests. There were no direct CO2 effects, however, on litterfall, throughfall or stemflow Hg inputs. Soil Hg was positively correlated with percent soil organic matter (SOM), suggesting that CO2-mediated changes in SOM have influenced soil Hg concentrations. Through its impacts on SOM, elevated atmospheric CO2 may increase the Hg storage capacity of soils and modulate the movement of Hg through the biosphere. Such effects of rising CO2, ones that transcend the typically studied effects on C and nutrient cycling, are an important next phase for research on global environmental change.

  5. Mercury in the soil of two contrasting watersheds in the eastern United States

    USGS Publications Warehouse

    Burns, Douglas A.; Woodruff, Laurel G.; Bradley, Paul M.; Cannon, William F.

    2014-01-01

    Soil represents the largest store of mercury (Hg) in terrestrial ecosystems, and further study of the factors associated with soil Hg storage is needed to address concerns about the magnitude and persistence of global environmental Hg bioaccumulation. To address this need, we compared total Hg and methyl Hg concentrations and stores in the soil of different landscapes in two watersheds in different geographic settings with similar and relatively high methyl Hg concentrations in surface waters and biota, Fishing Brook, Adirondack Mountains, New York, and McTier Creek, Coastal Plain, South Carolina. Median total Hg concentrations and stores in organic and mineral soil samples were three-fold greater at Fishing Brook than at McTier Creek. Similarly, median methyl Hg concentrations were about two-fold greater in Fishing Brook soil than in McTier Creek soil, but this difference was significant only for mineral soil samples, and methyl Hg stores were not significantly different among these watersheds. In contrast, the methyl Hg/total Hg ratio was significantly greater at McTier Creek suggesting greater climate-driven methylation efficiency in the Coastal Plain soil than that of the Adirondack Mountains. The Adirondack soil had eight-fold greater soil organic matter than that of the Coastal Plain, consistent with greater total Hg stores in the northern soil, but soil organic matter – total Hg relations differed among the sites. A strong linear relation was evident at McTier Creek (r2 = 0.68; p2 = 0.13; p<0.001) and highly variable across the soil organic matter content range, suggesting excess Hg binding capacity in the Adirondack soil. These results suggest greater total Hg turnover time in Adirondack soil than that of the Coastal Plain, and that future declines in stream water Hg concentrations driven by declines in atmospheric Hg deposition will be more gradual and prolonged in the Adirondacks.

  6. An Exploration of Mercury Soils Treatment Technologies for the Y-12 Plant - 13217

    SciTech Connect

    Wrapp, John; Julius, Jonathon; Browning, Debbie; Kane, Michael; Whaley, Katherine; Estes, Chuck; Witzeman, John

    2013-07-01

    There are a number of areas at the Y-12 National Security Complex (Y-12) that have been contaminated with mercury due to historical mercury use and storage. Remediation of these areas is expected to generate large volumes of waste that are Resource Conservation and Recovery Act (RCRA) characteristically hazardous. These soils will require treatment to meet RCRA Land Disposal Restrictions (LDR) prior to disposal. URS - CH2M Oak Ridge LLC (UCOR) performed a feasibility assessment to evaluate on-site and off-site options for the treatment and disposal of mercury-contaminated soil from the Y-12 Site. The focus of the feasibility assessment was on treatment for disposal at the Environmental Management Waste Management Facility (EMWMF) located on the Oak Ridge Reservation. A two-phase approach was used in the evaluation process of treatment technologies. Phase 1 involved the selection of three vendors to perform treatability studies using their stabilization treatment technology on actual Y-12 soil. Phase II involved a team of waste management specialists performing an in-depth literature review of all available treatment technologies for treating mercury contaminated soil using the following evaluation criteria: effectiveness, feasibility of implementation, and cost. The result of the treatability study and the literature review revealed several viable on-site and off-site treatment options. This paper presents the methodology used by the team in the evaluation of technologies especially as related to EMWMF waste acceptance criteria, the results of the physical treatability studies, and a regulatory analysis for obtaining regulator approval for the treatment/disposal at the EMWMF. (authors)

  7. Low-Cost Options for Moderate Levels of Mercury Control

    SciTech Connect

    Sharon Sjostrom

    2006-03-31

    On March 15, 2005, EPA issued the Clean Air Mercury Rule, requiring phased-in reductions of mercury emissions from electric power generators. ADA-ES, Inc., with support from DOE/NETL and industry partners, is conducting evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. DOE/NETL targets for total mercury removal are {ge}55% (lignite), {ge}65% (subbituminous), and {ge}80% (bituminous). Based on work done to date at various scales, meeting the removal targets appears feasible. However, work needs to progress to more thoroughly document and test these promising technologies at full scale. This is the final site report for tests conducted at MidAmerican's Louisa Station, one of three sites evaluated in this DOE/NETL program. The other two sites in the program are MidAmerican's Council Bluff Station and Entergy's Independence Station. MidAmerican's Louisa Station burns Powder River Basin (PRB) coal and employs hot-side electrostatic precipitators with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal.

  8. Preconceptional monitoring of mercury levels in hair and blood as a tool for minimizing associated reproductive risks.

    PubMed

    Neuman, Gal; Gareri, Joey; Koren, Gideon

    2014-12-01

    We describe the case of a 41-year-old woman, planning a pregnancy, who had a spontaneous abortion and subsequently was found to have high blood mercury levels. The source of high mercury was in her diet that contained fish as her main source of protein. Serial measurements of mercury in hair and blood allowed the team to determine the exact time when safe levels of mercury were reached, to eliminate elevated mercury levels as a potential cause of spontaneous abortion and to use preconception counseling to minimize the risk for adverse pregnancy outcome. PMID:24831651

  9. Simultaneous removal of PCDD/Fs, pentachlorophenol and mercury from contaminated soil.

    PubMed

    Hung, Pao-Chen; Chang, Shu-Hao; Ou-Yang, Chia-Chien; Chang, Moo-Been

    2016-02-01

    Pentachlorophenol (PCP), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and mercury were simultaneously removed from heavily contaminated soil using a continuous pilot-scale thermal system (CPTS). Operating the system at 700 °C with 22 min of retention time ensured that the residual contaminants in remediated soil are lower in concentration than the soil standards of Taiwan EPA require. Both PCP and PCDD/Fs are effectively destroyed during the treatment at high temperatures in the CPTS, but significant dechlorination of PCDD/Fs is also found, resulting in lower net destruction efficiencies of TCDD/F and PeCDD/F-congeners, compared with those of highly chlorinated Hx-, Hp- and OCDD/F congeners. Moreover, 2,3,7,8-TetraCDD is significantly formed if the retention time is not long enough for total destruction. Inadequate reaction time (or retention time) even may lead to a rise in TEQ-value due to incomplete dechlorination. Mercury is significantly desorbed from contaminated soil and discharged through the exhaust. For PCP and PCDD/Fs, the exhaust discharge percentages including both the remediated soil and the exhaust are <0.03% and 1.14% of the input, respectively, achieved with 700 °C and 33 min retention time. In contrast, some 97.8% of input mercury rate is desorbed and discharged via the exhaust, so that the latter should be carefully cleaned via efficient air pollution control devices, whereas this contribution focuses on the conditions required for reaching adequate soil cleaning. PMID:26347926

  10. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy

    SciTech Connect

    Fantozzi, L.; Dini, F.; Tamburello, L.; Pirrone, N.; Sprovieri, F.

    2013-08-15

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m{sup ?2} h{sup ?1}) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m{sup ?2} h{sup ?1}) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m{sup ?2} h{sup ?1}, which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 °C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ? Mercury air/surface exchange from grass covered soil is different from bare soil. ? Light enhances mercury emissions and is the main parameter driving the process. ? The presence of wild vegetation covering the soil reduces mercury emission. ? Vegetative covers could be a solution to reduce atmospheric mercury pollution.

  11. Long-term mercury dynamics in UK soils.

    PubMed

    Tipping, E; Wadsworth, R A; Norris, D A; Hall, J R; Ilyin, I

    2011-12-01

    A model assuming first-order losses by evasion and leaching was used to evaluate Hg dynamics in UK soils since 1850. Temporal deposition patterns of Hg were constructed from literature information. Inverse modelling indicated that 30% of 898 rural sites receive Hg only from the global circulation, while in 51% of cases local deposition exceeds global. Average estimated deposition is 16 ?g Hg m(-2) a(-1) to rural soils, 19 ?g Hg m(-2) a(-1) to rural and non-rural soils combined. UK soils currently hold 2490 tonnes of reactive Hg, of which 2140 tonnes are due to anthropogenic deposition, mostly local in origin. Topsoil currently releases 5.1 tonnes of Hg(0) per annum to the atmosphere, about 50% more than the anthropogenic flux. Sorptive retention of Hg in the lower soil exerts a strong control on surface water Hg concentrations. Following decreases in inputs, soil Hg concentrations are predicted to decline over hundreds of years. PMID:21889245

  12. The Effect of Wildfire on Soil Mercury Concentrations in Southern California Watersheds

    PubMed Central

    Ferreira, Marcia; Mendez, Carolina B.; Navarro, Bridget; Lopez, Sonya; Jay, Jennifer A.

    2010-01-01

    Mercury (Hg) stored in vegetation and soils is known to be released to the atmosphere during wildfires, increasing atmospheric stores and altering terrestrial budgets. Increased erosion and transport of sediments is well-documented in burned watersheds, both immediately post-fire and as the watershed recovers; however, understanding post-fire mobilization of soil Hg within burned watersheds remains elusive. The goal of the current study is to better understand the impact of wildfire on soil-bound Hg during the immediate post-fire period as well as during recovery, in order to assess the potential for sediment-driven transport to and within surface waters in burned watersheds. Soils were collected from three southern California watersheds of similar vegetation and soil characteristics that experienced wildfire. Sampling in one of these watersheds was extended for several seasons (1.5 years) in order to investigate temporal changes in soil Hg concentrations. Laboratory analysis included bulk soil total Hg concentrations and total organic carbon of burned and unburned samples. Soils were also fractionated into a subset of grain sizes with analysis of Hg on each fraction. Low Hg concentrations were observed in surface soils immediately post-fire. Accumulation of Hg coincident with moderate vegetative recovery was observed in the burned surface soils 1 year following the fire, and mobilization was also noted during the second winter (rainy) season. Hg concentrations were highest in the fine-grained fraction of unburned soils; however, in the burned soils, the distribution of soil-bound Hg was less influenced by grain size. The accelerated accumulation of Hg observed in the burned soils, along with the elevated risk of erosion, could result in increased delivery of organic- or particulate-bound Hg to surface waters in post-fire systems. PMID:20936165

  13. Mysterious diel cycles of mercury emission from soils held in the dark at constant temperature

    SciTech Connect

    Zhang, Hong; Kuiken, Todd; Lindberg, Steven Eric

    2008-01-01

    It is well known that mercury (Hg) emission from soils is largely controlled by solar radiation and soil temperature, exhibiting diel cycles that closely follow diel variations of solar radiation. To study soil Hg emission processes, we conducted experiments by measuring soil Hg emission fluxes under controlled conditions in the laboratory with a dynamic flux chamber using outside ambient air as flushing air. Unexpectedly, we observed consistent, recurring diel cycles of Hg emissions from dry soils held at constant temperature in the dark in our laboratory. The peaks of the emissions also seemed subject to some seasonal variation and to respond to local weather conditions with lower flux peaks in wintertime and on cloudy or rainy days. Finally, much lower soil Hg emission fluxes were observed in the presence of Hg-free zero air than in the presence of outside ambient air. It is hypothesized that some unidentified air-borne substance(s) in the ambient air might be responsible for the observed diel cycles of soil Hg emission. Further elaborate mechanistic investigations are clearly needed to test the initial working hypotheses and uncover the cause for this interesting, mysterious phenomenon. The present work and recent finding of enhancement of Hg emissions from soil and mineral particles by O3 seem to point to a research need to probe the possible role of near-ground atmospheric chemistry in Hg air/soil exchange.

  14. Consumption of tomato products is associated with lower blood mercury levels in Inuit preschool children.

    PubMed

    Gagné, Doris; Lauzičre, Julie; Blanchet, Rosanne; Vézina, Carole; Vaissičre, Emilie; Ayotte, Pierre; Turgeon O'Brien, Huguette

    2013-01-01

    Some evidence suggests that various diet components and nutrients, including vegetables, fruit and food-derived antioxidants, could mitigate contaminant exposure and/or adverse health effects of contaminants. To examine the effect of the consumption of tomato products on blood mercury levels in Inuit preschool children, 155 Inuit children (25.0±9.1months) were recruited from 2006-2008 in Nunavik childcare centers (northern Québec, Canada). Food frequency questionnaires were completed at home and at the childcare center, and total blood mercury concentration was measured by inductively coupled plasma-mass spectrometry. Multivariate regression analysis was performed after multiple imputation. The median blood concentration of mercury was 9.5nmol/L. Age, duration of breastfeeding, annual consumption frequency of seal meat, and monthly consumption frequency of tomato products were significant predictors of blood mercury levels, whereas annual consumption frequencies of beluga muktuk, walrus, Arctic char, and caribou meat were not. Each time a participant consumed tomato products during the month before the interview was associated with a 4.6% lower blood mercury level (p=0.0005). All other significant predictors in the model were positively associated with blood mercury levels. Further studies should explore interactions between consumption of healthy store-bought foods available in Arctic regions and contaminant exposure. PMID:23127601

  15. Mercury levels in tissues of Giant otters (Pteronura brasiliensis) from the Rio Negro, Pantanal, Brazil.

    TOXLINE Toxicology Bibliographic Information

    Dias Fonseca FR; Malm O; Francine Waldemarin H

    2005-07-01

    This research reports the first data on mercury levels found in Giant otters (Pteronura brasiliensis) from South America. Mercury concentrations were analyzed from different organs/tissues of two animals found dead floating on the water of the Rio Negro in the Pantanal, Brazil. The mean mercury concentration ranged from 2.94 to 3.68 microg/g in hair, from 1.52 to 4.3 microg/g in liver, and from 1.11 to 4.59 microg/g in kidney and was 0.17 microg/g in muscle samples. In comparison with other research, there is no evidence of contamination in these animals and mercury concentrations in tissues appeared to be at levels below those associated with toxicity.

  16. Mercury levels in tissues of Giant otters (Pteronura brasiliensis) from the Rio Negro, Pantanal, Brazil.

    PubMed

    Dias Fonseca, Fabrizio Rafael; Malm, Olaf; Francine Waldemarin, Helen

    2005-07-01

    This research reports the first data on mercury levels found in Giant otters (Pteronura brasiliensis) from South America. Mercury concentrations were analyzed from different organs/tissues of two animals found dead floating on the water of the Rio Negro in the Pantanal, Brazil. The mean mercury concentration ranged from 2.94 to 3.68 microg/g in hair, from 1.52 to 4.3 microg/g in liver, and from 1.11 to 4.59 microg/g in kidney and was 0.17 microg/g in muscle samples. In comparison with other research, there is no evidence of contamination in these animals and mercury concentrations in tissues appeared to be at levels below those associated with toxicity. PMID:15910792

  17. Blood Mercury Level and Its Determinants among Dental Practitioners in Hamadan, Iran

    PubMed Central

    Kasraei, Sh.; Mortazavi, H.; Vahedi, M.; Bakianian Vaziri, P.; Assary, MJ.

    2010-01-01

    Objective: Exposure to mercury can occur in occupational and environmental settings. During clinical work with dental amalgam, the dental personnel are exposed to both metallic mercury and mercury vapor. The aim of the present study was to investigate blood mercury level (BML) and its determinants among dentists practicing in Hamadan city, Iran. Materials and Methods: This cross sectional study was done on all dental practitioners of Hamadan (n=43). Dentists were asked to complete a questionnaire, and then 5 ml blood samples were obtained from them. After preparation, mercury concentration of each sample was measured by cold vapor atomic absorption device. Pearson correlation test and regression models served for statistical analysis. Results: The mean blood concentration of mercury was 6.3 ?g/l (SD=1.31 range 4.15–8.93). BML was positively associated with age, years in practice, working hours per day, number of amalgam restorations per day, number of amalgam removal per week, sea food consumption, working years in present office, using amalgam powder, using diamond bur for amalgam removal, dry sterilization of amalgam contaminated instruments, and deficient air ventilation. Conclusion: BML of dentists in Hamadan was higher than standards. Working hours and number of amalgam restorations per day were significantly correlated with blood mercury. PMID:21998776

  18. Low-Cost Options for Moderate Levels of Mercury Control

    SciTech Connect

    Sharon Sjostrom

    2008-02-09

    This is the final technical report for a three-site project that is part of an overall program funded by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) and industry partners to obtain the necessary information to assess the feasibility and costs of controlling mercury from coal-fired utility plants. This report summarizes results from tests conducted at MidAmerican's Louisa Generating Station and Entergy's Independence Steam Electric Station (ISES) and sorbent screening at MidAmerican's Council Bluffs Energy Center (CBEC) (subsequently renamed Walter Scott Energy Center (WSEC)). Detailed results for Independence and Louisa are presented in the respective Topical Reports. As no full-scale testing was conducted at CBEC, screening updates were provided in the quarterly updates to DOE. ADA-ES, Inc., with support from DOE/NETL, EPRI, and other industry partners, has conducted evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. An overview of each plant configuration is presented: (1) MidAmerican's Louisa Generating Station burns Powder River Basin (PRB) coal in its 700-MW Unit 1 and employs hot-side electrostatic precipitators (ESPs) with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal. (2) MidAmerican's Council Bluffs Energy Center typically burns PRB coal in its 88-MW Unit 2. It employs a hot-side ESP for particulate control. Solid sorbents were screened for hot-side injection. (3) Entergy's Independence Steam Electric Station typically burns PRB coal in its 880-MW Unit 2. Various sorbent injection tests were conducted on 1/8 to 1/32 of the flue gas stream either within or in front of one of four ESP boxes (SCA = 542 ft{sup 2}/kacfm), specifically ESP B. Initial mercury control evaluations indicated that although significant mercury control could be achieved by using the TOXECON II{trademark} design, the sorbent concentration required was higher than expected, possibly due to poor sorbent distribution. Subsequently, the original injection grid design was modeled and the results revealed that the sorbent distribution pattern was determined by the grid design, fluctuations in flue gas flow rates, and the structure of the ESP box. To improve sorbent distribution, the injection grid and delivery system were redesigned and the effectiveness of the redesigned system was evaluated. This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase II project with the goal of developing mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. Results from testing at Independence indicate that the DOE goal was successfully achieved. Further improvements in the process are recommended, however. Results from testing at Louisa indicate that the DOE goal was not achievable using the tested high-temperature sorbent. Sorbent screening at Council Bluffs also indicated that traditional solid sorbents may not achieve significant mercury removal in hot-side applications.

  19. Mercury speciation in floodplain soils and sediments along a contaminated river transect

    SciTech Connect

    Wallschlaeger, D.; Desai, M.V.M.; Spengler, M.; Wilken, R.D.

    1998-09-01

    A novel mercury-specific sequential extraction procedure (SEP) for the assessment of mercury (Hg) speciation in soils and sediments, with emphasis on studying the interaction between Hg and organic matter (OM), was developed and tested. It was applied to determine Hg speciation in floodplain topsoils and surface sediments along the Hg-contaminated part of the river Elbe, and to simultaneously derive some information on the (re)mobilization potentials for Hg from these matrices. The majority of the total Hg in the ecosystem today is bound in the floodplains, which also still geographically reflect the historic emission record. Most of the Hg in both matrices is bound strongly to OM, suggesting low availability. However, distinct differences between Hg speciation in the floodplain soils and sediments were also discovered. Mercury deposited in the floodplains shows speciation patterns that indicate stronger fixation compared with Hg in the sediments. This difference is attributed to the association of Hg with larger quantities of OM, which presumably also has higher molecular weight (MW). By comparison, Hg in the sediments was distributed among weaker binding forms, which are more likely to liberate Hg. Particularly, sediments showed a total lack of sulfidic binding forms for Hg. Pronounced geographical trends were detected in the Hg speciation along the river transect, with a general downstream shift from weaker to stronger binding forms, probably due to increased association with OM. These studies indicate that Hg speciation in riverine ecosystems is dynamic and reflects the chemical mechanisms underlying (bio) geochemical processes like distribution and transport.

  20. Assessment of total mercury levels in Clarias gariepinus from the Sagua la Grande River, Cuba.

    PubMed

    De La Rosa, D; Lima, L; Olivares-Rieumont, S; Graham, D W; Enriquez, I; Diaz, O; Bastías, J M; Muńoz, O

    2009-01-01

    Total mercury levels (Thg) were quantified in Clarias gariepinus captured from the Sagua la Grande River (Cuba) in the vicinity of an active chlor-alkali plant, and relationships among place of capture; fish size, weight, and sex; and THg levels were assessed. THg levels ranged from 67 to 375 ng/g ww in collected fish, never exceeding the Cuban recommended maximum limit for fish consumption of 500 ng/g ww. No significant correlation was observed between mercury levels and fish allometric characteristics (p < 0.05); however, levels were significantly higher in fish captured below the chlor-alkali facility, suggesting a connection between mercury bioaccumulation and plant discharges. PMID:18841320

  1. Water and soil biotic relations in Mercury distribution

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Siegel, B. Z.; Puerner, N.; Speitel, T.; Thorarinsson, F.

    1975-01-01

    The distribution of Hg is considered both in terms of its availability in soil fractions and the relationship between Hg in plant samples and Hg in ambient soils or other supportive media. The plants were grouped by habitat into epipedic-epiphytic (mosses, lichens) and endopedic-aquatic-marine (Basidiomycetes and algae) samples; nonvascular and vascular forms were also distinguished. Sources included Alaska, Hawaii, New England and Iceland. Brief consideration was also given to Hg distribution in a plant-animal-soil community. Data were expressed in terms of plant Hg content and plant substratum concentration ratio. Average Hg contents and concentration ratios, and modal ranges for the ratios were determined. The results showed similar average Hg contents in all groups (126 to 199 ppb) but a low value (84 ppb) in the lichens; terrestrial forms had ratios of 3.5 to 7.6 whereas the marine algae yielded a figure of 78.7. A secondary mode in the range 0 to 0.1 appeared only in the Alaska-New England Group, over 500 km distant from active thermal sites. Evidence for both exclusion and concentration behavior was obtained.

  2. Where does the mercury in gaseous fluxes from soil come from? An applied stable isotope experiment

    NASA Astrophysics Data System (ADS)

    Mazur, Maxwell; Eckley, Chris; Mitchell, Carl

    2013-04-01

    The flux of gaseous mercury from soils is controlled by a number of physico-chemical factors including temperature, soil mercury concentration, boundary layer conditions, soil moisture, and often most notably, solar radiation. It has been presumed that the shallowest soils constitute the main source of Hg for evasion since this Hg is closer to the surface and since the organic horizon and shallow A-horizon soils generally have the most organic matter, where Hg is sorbed and accumulated. The evidence for the predominance of near surface soil as the principal source of Hg for evasion has generally been correlational in nature however and no direct experimental evidence currently exists. This experimental laboratory study directly assessed the depth from which Hg evades by labeling different soil layers (1cm in thickness) with an enriched Hg stable isotope and measuring Hg fluxes under constant, but relatively low light conditions. Fluxes were measured using a dynamic flux chamber coupled to high-precision air pumps and gold traps. The gold traps were thermally desorbed and Hg isotopes were measured by ICP-MS. Under dry soil conditions, we found that most labeled Hg fluxes were very low, with no discernible pattern in relation to tracer depth. In some dry condition measurements where tracer fluxes were significant (up to 69 ng/m2 h), they were four or more times less than measurements made with wetter soils. When soils were wetted to field capacity and then allowed to dry over time, measured surface fluxes peaked approximately 24 hours after wetting and quickly declined. The largest fluxes (270 ng/m2 h) measured after wetting were observed when the isotope enriched layer constituted the surface layer. Significant fluxes were measured after wetting when the enriched layer was at 0, 1 and 2 cm, and fluxes generally decreased exponentially with depth. Fluxes after wetting, when the enriched layer was 5cm below the surface, were non-significant. Our data provide direct evidence to corroborate previous assumptions that the upper 2 cm of soil do indeed constitute the principal zone of Hg source and Hg transport for soil Hg emissions to the atmosphere.

  3. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to...Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt...Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans Your...

  4. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to...Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt...Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans Your...

  5. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to...Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt...Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans Your...

  6. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to...Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt...Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans Your...

  7. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to...Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt...Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans Your...

  8. Forest Structure Affects Soil Mercury Losses in the Presence and Absence of Wildfire.

    PubMed

    Homann, Peter S; Darbyshire, Robyn L; Bormann, Bernard T; Morrissette, Brett A

    2015-11-01

    Soil is an important, dynamic component of regional and global mercury (Hg) cycles. This study evaluated how changes in forest soil Hg masses caused by atmospheric deposition and wildfire are affected by forest structure. Pre and postfire soil Hg measurements were made over two decades on replicate experimental units of three prefire forest structures (mature unthinned, mature thinned, clear-cut) in Douglas-fir dominated forest of southwestern Oregon. In the absence of wildfire, O-horizon Hg decreased by 60% during the 14 years after clearcutting, possibly the result of decreased atmospheric deposition due to the smaller-stature vegetative canopy; in contrast, no change was observed in mature unthinned and thinned forest. Wildfire decreased O-horizon Hg by >88% across all forest structures and decreased mineral-soil (0 to 66 mm depth) Hg by 50% in thinned forest and clear-cut. The wildfire-associated soil Hg loss was positively related to the amount of surface fine wood that burned during the fire, the proportion of area that burned at >700 °C, fire severity as indicated by tree mortality, and soil C loss. Loss of soil Hg due to the 200?000 ha wildfire was more than four times the annual atmospheric Hg emissions from human activities in Oregon. PMID:26485585

  9. Mercury deposition and re-emission pathways in boreal forest soils investigated with Hg isotope signatures.

    PubMed

    Jiskra, Martin; Wiederhold, Jan G; Skyllberg, Ulf; Kronberg, Rose-Marie; Hajdas, Irka; Kretzschmar, Ruben

    2015-06-16

    Soils comprise the largest terrestrial mercury (Hg) pool in exchange with the atmosphere. To predict how anthropogenic emissions affect global Hg cycling and eventually human Hg exposure, it is crucial to understand Hg deposition and re-emission of legacy Hg from soils. However, assessing Hg deposition and re-emission pathways remains difficult because of an insufficient understanding of the governing processes. We measured Hg stable isotope signatures of radiocarbon-dated boreal forest soils and modeled atmospheric Hg deposition and re-emission pathways and fluxes using a combined source and process tracing approach. Our results suggest that Hg in the soils was dominantly derived from deposition of litter (?90% on average). The remaining fraction was attributed to precipitation-derived Hg, which showed increasing contributions in older, deeper soil horizons (up to 27%) indicative of an accumulation over decades. We provide evidence for significant Hg re-emission from organic soil horizons most likely caused by nonphotochemical abiotic reduction by natural organic matter, a process previously not observed unambiguously in nature. Our data suggest that Histosols (peat soils), which exhibit at least seasonally water-saturated conditions, have re-emitted up to one-third of previously deposited Hg back to the atmosphere. Re-emission of legacy Hg following reduction by natural organic matter may therefore be an important pathway to be considered in global models, further supporting the need for a process-based assessment of land/atmosphere Hg exchange. PMID:25946594

  10. Historical mercury contamination in sediments and catchment soils of Diss Mere, UK.

    PubMed

    Yang, Handong

    2010-07-01

    A 5.3 m sediment core and soil samples were taken from Diss Mere and its catchment. The sediment core was dated and Hg analysed on the sediment and soil samples. The Hg record of the sediment core shows that Diss Mere has been contaminated for the past thousand years and the historical trends in sediment contamination are in good agreement with the development of the weaving industry in Diss and hemp cultivation in the region. Mercury contamination in Diss Mere has been significant and reached a peak in the mid-19th century with sediment Hg concentrations over 50 microg g(-1). Elevated Hg concentrations were also found in contemporary soils in residential areas with former industrial land use. Although local hemp cultivation and the traditional weaving industry were abandoned a hundred years ago, Hg contamination caused by these activities still exists in the catchment, and affects the lake. PMID:20392552

  11. A basin-specific aquatic food web biomagnification model for estimation of mercury target levels.

    PubMed

    Hope, Bruce

    2003-10-01

    In the Willamette River Basin (WRB, Oregon, USA), health advisories currently limit consumption of fish that have accumulated methylmercury (MeHg) to levels posing a potential health risk for humans. Under the Clean Water Act, these advisories create the requirement for a total maximum daily load (TMDL) for mercury in the WRB. A TMDL is a calculation of the maximum amount of a pollutant that a body of water can receive and still meet water-quality standards. Because MeHg is known to biomagnify in aquatic food webs, a basin-specific biomagnification factor can be used, given a protective fish tissue criterion, to estimate total mercury concentrations in surface waters required to lower advisory mercury concentrations currently in fish in the WRB. This paper presents an aquatic food web biomagnification model that simulates inorganic mercury (Hg(II)) and MeHg accumulation in fish tissue and estimates WRB-specific biomagnification factors for resident fish species of concern to stakeholders. Probabilistic (two-dimensional Monte Carlo) techniques propagate parameter variability and uncertainty throughout the model, providing decision makers with credible range information and increased flexibility in establishing a specific mercury target level. The model predicts the probability of tissue mercury concentrations in eight fish species within the range of concentrations measured in these species over 20 years of water-quality monitoring. Estimated mean biomagnification factor values range from 1.12 x 10(6) to 7.66 x 10(6) and are within the range of U.S. Environmental Protection Agency national values. Several WRB-specific mercury target levels are generated, which very by their probability of affording human health protection relative to the federal MeHg tissue criterion of 0.30 mg/kg. Establishing a specific numeric target level is, however, a public policy decision, and one that will require further discussions among WRB stakeholders. PMID:14552019

  12. Brain and tissue levels of mercury after chronic methylmercury exposure in the monkey

    SciTech Connect

    Rice, D.C.

    1989-01-01

    Estimated half-lives of mercury following methylmercury exposure in humans are 52-93 d for whole body and 49-164 d for blood. In its most recent 1980 review, the World Health Organization concluded that there was no evidence to suggest that brain half-life differed from whole-body half-life. In the present study, female monkeys (Macaca fascicularis) were dosed for at least 1.7 yr with 10, 25, or 50 micrograms/kg.d of mercury as methylmercuric chloride. Dosing was discontinued, and blood half-life was determined to be about 14 d. Approximately 230 d after cessation of dosing, monkeys were sacrificed and organ and regional brain total mercury levels determined. One monkey that died while still being dosed had brain mercury levels three times higher than levels in blood. Theoretical calculations were performed assuming steady-state brain:blood ratios of 3, 5, or 10. Brain mercury levels were at least three orders of magnitude higher than those predicted by assuming the half-life in brain to be the same as that in blood. Estimated half-lives in brain were between 56 (brain:blood ratio of 3) and 38 (brain:blood ratio of 10) d. In addition, there was a dose-dependent difference in half-lives for some brain regions. These data clearly indicate that brain half-life is considerably longer than blood half-life in the monkey under conditions of chronic dosing.

  13. Characterization of soils from an industrial complex contaminated with elemental mercury

    SciTech Connect

    Miller, Carrie L. Watson, David B.; Lester, Brian P.; Lowe, Kenneth A.; Pierce, Eric M.; Liang, Liyuan

    2013-08-15

    Historical use of liquid elemental mercury (Hg(0){sub l}) at the Y-12 National Security Complex in Oak Ridge, TN, USA, resulted in large deposits of Hg(0){sub l} in the soils. The fate and distribution of the spilled Hg(0) are not well characterized. In this study we evaluated analytical tools for characterizing the speciation of Hg in the contaminated soils and then used the analytical techniques to examine the speciation of Hg in two soil cores collected at the site. These include x-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorption (HgT). XRF was not found to be suitable for evaluating Hg concentrations in heterogeneous soils containing low concentration of Hg or Hg(0) because Hg concentrations determined using this method were lower than those determined by HgT analysis and the XRF detection limit is 20 mg/kg. Hg(0){sub g} headspace analysis coupled with HgT measurements yielded good results for examining the presence of Hg(0){sub l} in soils and the speciation of Hg. The two soil cores are highly heterogeneous in both the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400 mg/kg. In the first core, Hg(0){sub l} was distributed throughout the 3.2 m depth, whereas the second core, from a location 12 m away, contained Hg(0){sub l} in a 0.3 m zone only. Sequential extractions showed organically associated Hg dominant at depths with low Hg concentration. Soil from the zone of groundwater saturation showed reducing conditions and the Hg is likely present as Hg-sulfide species. At this depth, lateral Hg transport in the groundwater may be a source of Hg detected in the soil at the deeper soil depths. Overall, characterization of soils containing Hg(0){sub l} is difficult because of the heterogeneous distribution of Hg within the soils. This is exacerbated in industrial facilities where fill materials make up much of the soils and historical and continued reworking of the subsurface has remobilized the Hg. -- Highlights: • Presence of Hg(0) and chemical transformations control the Hg speciation in soil. • Redox reactions can result in the mobilization and sequestration of Hg in soils. • Analysis of soils containing Hg(0) is complex due to sample heterogeneity.

  14. Comparative observations on levels of mercury in scalp hair of humans from different Islands

    NASA Astrophysics Data System (ADS)

    Renzoni, Aristeo

    1992-09-01

    Following the Minamata events, an extraordinary number of studies concerning mercury toxicity and human health have been undertaken. Particular attention has been given to the evaluation of the dose-response relationship, i.e., the body burden at which (evaluated through the mercury analyses in blood or hair) the risk of poisoning begins. The results of a comparative study concerning levels of mercury in the hair of fishermen living in small islands who eat seafood more than four times per week show that in two areas only, and only in a few cases in these areas, the mercury in the hair exceeds the limit at which a possible risk could exist. In fact, the limit of 50 mg/g of total mercury in the hair (indicated as the lower limit above which a possible risk could occur) is surpassed by nine fishermen out of a total of 39 at station 1 and by four fishermen out of a total of 26 at station 3. The average value at station 1 is 36.38 mg/g and that at station 3 is 30.31 mg. Many countries have set legal limits of mercury for seafood, but evidently the system does not offer a true protection for man. Only the provisional tolerable weekly intake (PTWI), as repeatedly suggested by WHO, should be considered the best guideline to prevent possibly harmful consequences.

  15. Achieving very low mercury levels in refinery wastewater by membrane filtration.

    SciTech Connect

    Urgun Demirtas, M.; Benda, P.; Gillenwater, P. S.; Negri, M. C.; Xiong, H.; Snyder, S. W.

    2012-05-15

    Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes were evaluated for their ability to achieve the world's most stringent Hg discharge criterion (<1.3 ng/L) in an oil refinery's wastewater. The membrane processes were operated at three different pressures to demonstrate the potential for each membrane technology to achieve the targeted effluent mercury concentrations. The presence of mercury in the particulate form in the refinery wastewater makes the use of MF and UF membrane technologies more attractive in achieving very low mercury levels in the treated wastewater. Both NF and RO were also able to meet the target mercury concentration at lower operating pressures (20.7 bar). However, higher operating pressures ({ge}34.5 bar) had a significant effect on NF and RO flux and fouling rates, as well as on permeate quality. SEM images of the membranes showed that pore blockage and narrowing were the dominant fouling mechanisms for the MF membrane while surface coverage was the dominant fouling mechanism for the other membranes. The correlation between mercury concentration and particle size distribution was also investigated to understand mercury removal mechanisms by membrane filtration. The mean particle diameter decreased with filtration from 1.1 {+-} 0.0 {micro}m to 0.74 {+-} 0.2 {micro}m after UF.

  16. Electronic Characterization of Defects in Narrow Gap Semiconductors-Comparison of Electronic Energy Levels and Formation Energies in Mercury Cadmium Telluride, Mercury Zinc Telluride, and Mercury Zinc Selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1996-01-01

    We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.

  17. Mercury in the Soil of Two Contrasting Watersheds in the Eastern United States

    PubMed Central

    Burns, Douglas A.; Woodruff, Laurel G.; Bradley, Paul M.; Cannon, William F.

    2014-01-01

    Soil represents the largest store of mercury (Hg) in terrestrial ecosystems, and further study of the factors associated with soil Hg storage is needed to address concerns about the magnitude and persistence of global environmental Hg bioaccumulation. To address this need, we compared total Hg and methyl Hg concentrations and stores in the soil of different landscapes in two watersheds in different geographic settings with similar and relatively high methyl Hg concentrations in surface waters and biota, Fishing Brook, Adirondack Mountains, New York, and McTier Creek, Coastal Plain, South Carolina. Median total Hg concentrations and stores in organic and mineral soil samples were three-fold greater at Fishing Brook than at McTier Creek. Similarly, median methyl Hg concentrations were about two-fold greater in Fishing Brook soil than in McTier Creek soil, but this difference was significant only for mineral soil samples, and methyl Hg stores were not significantly different among these watersheds. In contrast, the methyl Hg/total Hg ratio was significantly greater at McTier Creek suggesting greater climate-driven methylation efficiency in the Coastal Plain soil than that of the Adirondack Mountains. The Adirondack soil had eight-fold greater soil organic matter than that of the Coastal Plain, consistent with greater total Hg stores in the northern soil, but soil organic matter – total Hg relations differed among the sites. A strong linear relation was evident at McTier Creek (r2?=?0.68; p<0.001), but a linear relation at Fishing Brook was weak (r2?=?0.13; p<0.001) and highly variable across the soil organic matter content range, suggesting excess Hg binding capacity in the Adirondack soil. These results suggest greater total Hg turnover time in Adirondack soil than that of the Coastal Plain, and that future declines in stream water Hg concentrations driven by declines in atmospheric Hg deposition will be more gradual and prolonged in the Adirondacks. PMID:24551042

  18. Characterization of soils from an industrial complex contaminated with elemental mercury

    SciTech Connect

    Miller, Carrie L; Watson, David B; Liang, Liyuan; Lester, Brian P; Lowe, Kenneth Alan; Pierce, Eric M

    2013-01-01

    Historic use of liquid elemental mercury (Hg(0)l) at the Y-12 National Security Complex in Oak Ridge, TN, USA resulted in large deposits of Hg(0)l in the soils. An evaluation of analytical tools for characterizing the speciation of Hg in the soils at the Y-12 facility was conducted and these tequniques were used to examine the speciation of Hg in two soil cores collect at the site. These include X-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorption. Hg concentrations determined using XRF, a tool that has been suggestions for quick onsite characterization of soils, were lower than concentrations determined by HgT analysis and as a result this technique is not suitable for the evaluation of Hg concentrations in heterogeneous soils containing Hg(0)l. Hg(0)g headspace analysis can be used to examine the presence of Hg(0)l in soils and when coupled with HgT analysis an understanding of the speciation of Hg in soils can be obtained. Two soil cores collected within the Y-12 complex highlight the heterogeneity in the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400 mg/kg. At one location Hg(0)l was distributed throughout 3.2 meters of core whereas the core from a location only 12 meters away only contained Hg(0)l in 0.3 m zone of the core. Sequential extractions, used to examine the forms of Hg in the soils, indicated that at depths within the core that have low Hg concentrations organically associated Hg is dominant. Soil from the zone of groundwater inundation showed reduced characteristics and the Hg is likely present as Hg-sulfide species. At this location it appears that Hg transported within the groundwater is a source of Hg to the soil. Overall the characterization of Hg in soils containing Hg(0) l is difficult due to the heterogeneous distribution within the soils and this challenge is enhanced in industrial facilities in which fill material comprise most of the soils and historical and continuing reworking of the subsurface has remobilized the Hg.

  19. Pituitary gland levels of mercury, selenium, iron, and zinc in an Alzheimer`s disease study

    SciTech Connect

    Cornett, C.R.; Markesbery, W.R.; Wekstein, D.R.; Ehmann, W.D.

    1996-12-31

    Mercury, iron, selenium, and zinc imbalances have been observed in comparisons between Alzheimer`s disease (AD) and control subject brains. Analyses of the pituitary gland have demonstrated that this organ retains relatively high concentrations of trace elements, including mercury, iron, and zinc. Our previous work has shown that the pituitary glands of AD and control subjects are typically higher in these trace elements than brain samples from the same subject. Instrumental neutron activation analysis (INAA) was used to compare the pituitary trace element levels of AD and control subjects. This study also describes the intrasubject relationships of brain trace element levels to those in the pituitary gland of AD and control subjects.

  20. Assessment of Mercury in Soils, Crops, Earthworms, and Water when Soil is Treated with Gypsum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flue gas desulfurization (FGD) gypsum from fossil fuel combustion has many potential uses in agriculture, but there is concern about the potential environmental effects of its elevated mercury (Hg) concentration. The wet limestone scrubbing process that removes sulfur from flue gas (and produces gyp...

  1. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 5 Table 5 to Subpart IIIII of Part 63—Required Elements of Floor-Level Mercury Vapor...

  2. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 5 Table 5 to Subpart IIIII of Part 63—Required Elements of Floor-Level Mercury Vapor...

  3. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 5 Table 5 to Subpart IIIII of Part 63—Required Elements of Floor-Level Mercury Vapor...

  4. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 5 Table 5 to Subpart IIIII of Part 63—Required Elements of Floor-Level Mercury Vapor...

  5. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 5 Table 5 to Subpart IIIII of Part 63—Required Elements of Floor-Level Mercury Vapor...

  6. Population correlates of circulating mercury levels in Korean adults: the Korea National Health and Nutrition Examination Survey IV

    PubMed Central

    2014-01-01

    Background Prior studies focused on bioaccumulation of mercury (Hg) and on large, long-lived fish species as the major environmental source of Hg, but little is known about consumption of small-sized fish or about non-dietary determinants of circulating Hg levels. The purpose of this study was to evaluate whole blood mercury concentration (WBHg) and its major dietary and non-dietary correlates in Korean adults. Methods We analyzed cross-sectional data from 3,972 (male?=?1,994; female?=?1,978) participants who completed the Korean National Health and Nutrition Examination Survey IV, 2008 to 2009. Relevant factors included diet, geographic location of residence, demographics, and lifestyle. WBHg concentration was measured using cold-vapor atomic absorption spectrometry. Multivariable linear models assessed independent correlates of dietary and non-dietary factors for WBHg levels. Results Median levels of WBHg were 5.1 ?g/L in men and 3.7 ?g/L in women. Higher levels of fish/shellfish intake were associated with higher levels of WBHg. Higher consumption of small-sized fish was linked to higher levels of WBHg. Non-dietary predictors of higher WBHg were being male, greater alcohol consumption, higher income and education, overweight/obesity, increasing age, and living in the southeast region. Conclusions Both dietary and non-dietary factors were associated with WBHg levels in the Korean population. There is significant geographic variation in WBHg levels; residents living in the mid-south have higher WBHg levels. We speculate that uncontrolled geographic characteristics, such as local soil/water content and specific dietary habits are involved. PMID:24884916

  7. Invasive and exotic earthworms: an unaccounted change to mercury cycling in northeastern US forest soils

    NASA Astrophysics Data System (ADS)

    Richardson, J. B.; Friedland, A. J.; Görres, J. H.; Renock, D. J.; Jackson, B. P.

    2014-12-01

    Invasive and exotic earthworms are now present in many forested areas of the northeastern US with currently unquantified consequences to abiotic and biotic Hg cycling. To quantify these effects, we measured Hg concentrations (mg kg-1) and amounts (?g m-2) in earthworms and soil horizons at 45 soil pits from 9 sites in northern New England. Seven earthworm species were observed in varying assemblages. Most earthworm species attained concentrations of Hg potentially hazardous to wildlife that may ingest them, with highest concentrations found in shallow-burrowing, litter-feeders. Specifically, Aporrectodea rosea and Amynthas agrestis had the greatest Hg concentrations (0.9 ± 0.1) and Hg amounts (8 ± 2) ?g m-2. Aporrectodea rosea and Amynthas agrestis were found to inhabit the forest floor and the top 5 cm of the mineral horizons in high abundance, potentially making it a readily accessible prey species. Bioaccumulation of Hg by invasive and exotic earthworms may be an important mechanism that transfers Hg to ground foraging predators, such as thrushes, red-backed salamanders and foxes, which is generally unaccounted for in terrestrial food chains. Earthworm Hg concentrations were poorly correlated with their respective soil Hg concentrations, suggesting a species dependence for Hg bioaccumulation rather than site effects. We observed that forest floor Hg concentrations and amounts were 23% and 57% lower, respectively, at soil pits with earthworms compared to those without. Moreover, Hg amounts in forest floor-feeding earthworms exceeded the remaining forest floor Hg pools. Mercury concentrations and pools in the mineral soil were 21% and 33% lower, respectively, for soil pits with earthworms compared to those without. We hypothesize that enhanced decomposition, horizon disturbance and bioaccumulation by earthworms has decreased Hg amounts in the forest floor and mineral soil. Our results suggest that earthworms are decreasing Hg storage in forest soils with potential hazardous impacts for predatory animals in northeastern US forests and other ecosystems.

  8. Characterization of soils from an industrial complex contaminated with elemental mercury.

    PubMed

    Miller, Carrie L; Watson, David B; Lester, Brian P; Lowe, Kenneth A; Pierce, Eric M; Liang, Liyuan

    2013-08-01

    Historical use of liquid elemental mercury (Hg(0)l) at the Y-12 National Security Complex in Oak Ridge, TN, USA, resulted in large deposits of Hg(0)l in the soils. The fate and distribution of the spilled Hg(0) are not well characterized. In this study we evaluated analytical tools for characterizing the speciation of Hg in the contaminated soils and then used the analytical techniques to examine the speciation of Hg in two soil cores collected at the site. These include x-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorption (HgT). XRF was not found to be suitable for evaluating Hg concentrations in heterogeneous soils containing low concentration of Hg or Hg(0) because Hg concentrations determined using this method were lower than those determined by HgT analysis and the XRF detection limit is 20 mg/kg. Hg(0)g headspace analysis coupled with HgT measurements yielded good results for examining the presence of Hg(0)l in soils and the speciation of Hg. The two soil cores are highly heterogeneous in both the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400mg/kg. In the first core, Hg(0)l was distributed throughout the 3.2m depth, whereas the second core, from a location 12m away, contained Hg(0)l in a 0.3m zone only. Sequential extractions showed organically associated Hg dominant at depths with low Hg concentration. Soil from the zone of groundwater saturation showed reducing conditions and the Hg is likely present as Hg-sulfide species. At this depth, lateral Hg transport in the groundwater may be a source of Hg detected in the soil at the deeper soil depths. Overall, characterization of soils containing Hg(0)l is difficult because of the heterogeneous distribution of Hg within the soils. This is exacerbated in industrial facilities where fill materials make up much of the soils and historical and continued reworking of the subsurface has remobilized the Hg. PMID:23809204

  9. Blood mercury levels among Ontario anglers and sport-fish eaters.

    PubMed

    Cole, Donald C; Kearney, Jill; Sanin, Luz Helena; Leblanc, Alain; Weber, Jean-Phillippe

    2004-07-01

    We conducted two surveys of Ontario (Canada) fishers: a stratified sample of licensed anglers in two Lake Ontario communities (anglers, n=232) and a shore and community-based sample in five Great Lakes' Areas of Concern (AOC eaters, n=86). Among the 176 anglers consuming their catch, the median number of sport-fish meals/year was 34.2 meals and 10.9, respectively, in two communities, with a mean blood total mercury level among these sport-fish consumers of 2.8 microg/L. The vast majority of fish eaten by AOC eaters was from Ontario waters (74%). For AOC eaters, two broad country-of-origin groups were assembled: Euro-Canadians (EC) and Asian-Canadians (AC). EC consumed a median of 174 total fish meals/year and had a geometric mean total mercury level of 2.0 microg/L. Corresponding AC figures were 325 total fish meals/year and 7.9 microg/L. Overall, mercury levels among AOC eaters were higher than in many other Great Lakes populations but lower than in populations frequently consuming seafood. In multivariate models, mercury levels were significantly associated with levels of fish consumption among both anglers and EC AOC eaters. Given the nutritional and social benefits of fish consumption, prudent species and location choices should continue. PMID:15220065

  10. Mercury in Hazel Bolete Leccinum griseum and soil substratum: Distribution, bioconcentration and dietary exposure.

    PubMed

    Krasi?ska, Gra?yna; Falandysz, Jerzy

    2015-01-01

    This study aimed to examine the accumulation and distribution of total mercury (Hg) in fruiting bodies of edible wild-grown mushroom Hazel Bolete Leccinum griseum (Quél.) Singer, collected from six spatially distantly distributed places across Poland and to assess the probable dietary intake of the element by consumers. Mercury content of fungal and soil samples were determined by cold-vapour atomic absorption spectroscopy (CV-AAS) with a direct sample thermal decomposition coupled with gold wool trap of Hg and its further desorption and quantitative measurement at the wavelength of 296 nm. The median values of Hg content in caps of L. griseum collected from less-contaminated places (< 0.10 mg Hg kg(-1) dry matter in upper 0-10 cm layer of soil substratum) were from 0.23 mg kg(-1) dm to 0.43 mg kg(-1) dm. And for more contaminated topsoil (0.15 mg Hg kg(-1) dry matter), the median in caps was about 1.5 mg kg(-1) dry matter. The mushroom L. griseum has potential to accumulate Hg in fruiting bodies, while quantities of this element noted in consignments of this species originating from the forests with typical background values of Hg in topsoil are low. In the light of the published value of PTWI for Hg consumption of fruiting bodies of L. griseus emerged in forests of Poland is without health risk for consumers. Information on total mercury and methylmercury in Fungi of the genus Leccinum is also described briefly. PMID:26301852

  11. A Meta-analysis of Mercury Levels in Lavaca Bay Texas 

    E-print Network

    Pillado, Maria C.

    2014-05-07

    -ANALYSIS OF MERCURY LEVELS IN LAVACA BAY TEXAS A Thesis by MARIA C. PILLADO Submitted to the Office of Graduate and Professional Studies of Texas A&M University and the Graduate Faculty of The Texas A&M University – Corpus Christi in partial... Copyright 2014 Maria C. Pillado ...

  12. A gravimetric approach to providing SI traceability for concentration measurement results of mercury vapor at ambient air levels

    NASA Astrophysics Data System (ADS)

    Ent, Hugo; van Andel, Inge; Heemskerk, Maurice; van Otterloo, Peter; Bavius, Wijnand; Baldan, Annarita; Horvat, Milena; Brown, Richard J. C.; Quétel, Christophe R.

    2014-11-01

    Current measurement and calibration capabilities for mercury vapor in air are maintained at levels of 0.2-40??g?Hg?m-3. In this work, a mercury vapor generator has been developed to establish metrological traceability to the international system of units (SI) for mercury vapor measurement results ?15?ng?Hg?m-3, i.e. closer to realistic ambient air concentrations (1-2?ng?Hg?m-3) [1]. Innovations developed included a modified type of diffusion cell, a new measurement method to weigh the loss in (mercury) mass of these diffusion cells during use (ca. 6-8??g mass difference between successive weighings), and a new housing for the diffusion cells to maximize flow characteristics and to minimize temperature variations and adsorption effects. The newly developed mercury vapor generator system was tested by using diffusion cells generating 0.8 and 16?ng?Hg?min-1. The results also show that the filter system, to produce mercury free air, is working properly. Furthermore, and most importantly, the system is producing a flow with a stable mercury vapor content. Some additional improvements are still required to allow the developed mercury vapor generator to produce SI traceable mercury vapor concentrations, based upon gravimetry, at much lower concentration levels and reduced measurement uncertainties than have been achieved previously. The challenges to be met are especially related to developing more robust diffusion cells and better mass measurement conditions. The developed mercury vapor generator will contribute to more reliable measurement results of mercury vapor at ambient and background air levels, and also to better safety standards and cost reductions in industrial processes, such as the liquefied natural gas field, where aluminum main cryogenic heat exchangers are used which are particularly prone to corrosion caused by mercury.

  13. Air-surface exchange of mercury with soils amended with ash materials.

    PubMed

    Ericksen, Jody; Gustin, Mae Sexauer

    2006-07-01

    Air-surface exchange of mercury (Hg) was measured from soil low in Hg (0.013 mg/kg) amended with four different ash materials: a wood ash containing -10% coal ash (0.070 mg/kg Hg), a mixture of two subbituminous coal fly ashes (0.075 mg/kg Hg), a subbituminous coal ash containing -10% petroleum coke ash (1.2 mg/kg Hg), and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, -0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, -20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O3 concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m2 day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m2 day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m2 day and for soil with pads constructed of ash ranged from -50 to 90 ng/m2 day. Simple analytical tests (i.e., total Hg content, synthetic precipitation leaching procedure, heating, and indoor gas-exchange experiments) were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from (intact and disturbed) substrates before annual estimates of emissions can be developed. PMID:16878589

  14. A reactive transport model for mercury fate in contaminated soil-sensitivity analysis.

    PubMed

    Leterme, Bertrand; Jacques, Diederik

    2015-11-01

    We present a sensitivity analysis of a reactive transport model of mercury (Hg) fate in contaminated soil systems. The one-dimensional model, presented in Leterme et al. (2014), couples water flow in variably saturated conditions with Hg physico-chemical reactions. The sensitivity of Hg leaching and volatilisation to parameter uncertainty is examined using the elementary effect method. A test case is built using a hypothetical 1-m depth sandy soil and a 50-year time series of daily precipitation and evapotranspiration. Hg anthropogenic contamination is simulated in the topsoil by separately considering three different sources: cinnabar, non-aqueous phase liquid and aqueous mercuric chloride. The model sensitivity to a set of 13 input parameters is assessed, using three different model outputs (volatilized Hg, leached Hg, Hg still present in the contaminated soil horizon). Results show that dissolved organic matter (DOM) concentration in soil solution and the binding constant to DOM thiol groups are critical parameters, as well as parameters related to Hg sorption to humic and fulvic acids in solid organic matter. Initial Hg concentration is also identified as a sensitive parameter. The sensitivity analysis also brings out non-monotonic model behaviour for certain parameters. PMID:26099598

  15. MERCURY FLUX MEASUREMENTS OVER AIR AND WATER IN KEJIMKUJIK NATIONAL PARK, NOVA SCOTIA

    E-print Network

    Folkins, Ian

    MERCURY FLUX MEASUREMENTS OVER AIR AND WATER IN KEJIMKUJIK NATIONAL PARK, NOVA SCOTIA F. S. BOUDALA. Mercury flux measurements were conducted at two lakes and three soil sites in Kejimkujik National Park, located in the eastern Canadian province of Nova Scotia. One of the lakes had high levels of both mercury

  16. Fish Mercury Levels Appear to Be Increasing Lately: A Report from 40 Years of Monitoring in the Province of Ontario, Canada

    E-print Network

    Arhonditsis, George B.

    Fish Mercury Levels Appear to Be Increasing Lately: A Report from 40 Years of Monitoring, Ontario, Canada M9P 3V6 *S Supporting Information ABSTRACT: Recent mercury levels and trends reported for North America suggest a mixed (positive/negative) outlook for the environmental mercury problem. Using

  17. Remote sensing of Mercury-contaminated soils through plant reflection spectra

    NASA Astrophysics Data System (ADS)

    Dunagan, S. C.; Gilmore, M. S.; Varekamp, J. C.

    2005-12-01

    The spatial extent of Hg contamination is often poorly known because current methods used to identify and map Hg soil contamination on a regional scale are time consuming and expensive. Here we test whether vegetation growing in Hg-contaminated soils has discernible characteristics in visible/near-infrared (VNIR, 350-2500nm) spectra. Previous work indicates that Hg can cause chemical and structural changes in plant tissue, including chlorophyll substitution and cell damage, which we predict may alter the reflectance spectra of plants in a measurable way. To test this hypothesis, Mustard Spinach plants (n=21) were grown in mercury-spiked soils and in Hg-contaminated soils collected in the field. The plants were grown under controlled laboratory conditions over a full growth cycle. Foliar Hg concentrations (0.174-3.993ppm) of the Mustard Spinach plants were positively correlated with Hg concentrations of soils (0.091-39.35ppm). Leaf Hg increased throughout the growth cycle but decreased in the plants grown in the Hg-spiked and field-contaminated soil at the end of the growth cycle. Leaf Hg uptake appears to occur through both roots and leaves and may vary as a function of bioavailability of Hg in the soils. Reflectance spectra of leaves were measured under artificial light in the laboratory. The potential spectral effects of Hg on the plants were quantified with selected vegetation indices (VIs) including Ratio Vegetation Index (RVI), Red Edge Position (REP) and Amplitude (REA) and Normalized Difference Vegetation Index (NDVI) and compared to foliar Hg concentrations. Correlations between VIs and foliar Hg concentrations are not statistically significant. However, RVI and REP values of plants grown in Hg-spiked and in field-contaminated soils are lower relative to those from the control plants during the early and middle portions of the growth cycle and decrease more rapidly than those from control plants at the end of the growth cycle. These lower RVI and REP values may be related to lower chlorophyll abundances in the Hg-contaminated plants. The timing of the spectral differences suggests that phenology should be a critical component for future studies of both in situ and remote detection of foliar Hg content.

  18. Surveying Mercury Levels in Hair, Blood and Urine of under 7-Year Old Children from a Coastal City in China

    PubMed Central

    Chen, Guixia; Chen, Xiaoxin; Yan, Chonghuai; Wu, Xingdong; Zeng, Guozhang

    2014-01-01

    Aim: The average mercury load in children under 7-years old was determined in a populated but not overly industrial coastal area in China. Methods: 395 blood samples, 1072 urine samples, and 581 hair samples were collected from 1076 children, aged 0 to 6 years, from eight representative communities of Xiamen, China. Mercury levels in the samples were surveyed. Results: The 95% upper limits of mercury in blood, urine, and hair for the children were 2.30, 1.50 and 2100.00 ?g/kg, respectively. Levels tended to increase with age. Correlation analyses showed that mercury levels in blood and urine correlated with those in hair (n = 132), r = 0.49, p < 0.0001 and r = 0.20, p = 0.0008; however, blood mercury levels did not correlate with urine levels (n = 284), r = 0.07, p = 0.35. Conclusions: Surveying the average mercury load in children 0 to 6 years, and the 95% upper limit value of mercury in their blood, urine, and hair should help guide risk assessment and health management for children. PMID:25419876

  19. A comprehensive assessment of mercury exposure in penguin populations throughout the Southern Hemisphere: Using trophic calculations to identify sources of population-level variation.

    PubMed

    Brasso, Rebecka L; Chiaradia, André; Polito, Michael J; Raya Rey, Andrea; Emslie, Steven D

    2015-08-15

    The wide geographic distribution of penguins (Order Sphenisciformes) throughout the Southern Hemisphere provided a unique opportunity to use a single taxonomic group as biomonitors of mercury among geographically distinct marine ecosystems. Mercury concentrations were compared among ten species of penguins representing 26 geographically distinct breeding populations. Mercury concentrations were relatively low (?2.00ppm) in feathers from 18/26 populations considered. Population-level differences in trophic level explained variation in mercury concentrations among Little, King, and Gentoo penguin populations. However, Southern Rockhopper and Magellanic penguins breeding on Staten Island, Tierra del Fuego, had the highest mercury concentrations relative to their conspecifics despite foraging at a lower trophic level. The concurrent use of stable isotope and mercury data allowed us to document penguin populations at the greatest risk of exposure to harmful concentrations of mercury as a result of foraging at a high trophic level or in geographic 'hot spots' of mercury availability. PMID:26072048

  20. Mercury levels in sediments and mangrove oysters, Crassostrea rizophorae, from the north coast of Villa Clara, Cuba.

    PubMed

    Olivares-Rieumont, S; Lima, L; Rivero, S; Graham, D W; Alonso-Hernandez, C; Bolańo, Y

    2012-04-01

    Total mercury levels were quantified in sediments and oyster tissues (Crassostrea rizophorae) from the Sagua la Grande River estuary and offshore mangrove keys 19 km downstream of a chlor-alkali plant (CAP) in Villa Clara, Cuba. Relatively elevated total mercury levels were found in sediments from the estuary itself, ranging from 0.507 to 1.81 ?g g(-1) dry weight. However, levels were lower in sediments from the keys farther from the estuary. Oyster mercury levels were always acceptable for human consumption, although levels significantly correlated in sediments and oysters across sampling sites (p < 0.05), which suggests that mercury from the CAP is impacting coastal water quality conditions. PMID:22323046

  1. Preservation and storage techniques for low-level aqueous mercury speciation.

    PubMed

    Parker, Jennifer L; Bloom, Nicolas S

    2005-01-20

    Although researchers today generally employ appropriate techniques for the storage and preservation of aqueous samples for ambient-level mercury (ppb) speciation, these methods continue to be poorly documented. Numerous experiments were thus conducted to investigate the effects of acidification and bottle type on holding time for various mercury species [elemental mercury (Hg(0)), ionic mercury (Hg(II)), dimethyl mercury (DMHg), monomethyl mercury (MMHg), and dissolved-to-particulate ratio] as well as total mercury (THg). We documented that THg is stable for at least 300 days when stored at 0.4-0.5% acidity in either Teflon or glass bottles. In cases where THg is adsorbed to bottle walls, the addition of BrCl at least 24 h before analysis allowed all Hg to be quantitatively recovered. Polyethylene bottles allowed diffusion of Hg(0) through the bottle walls to or from the sample, depending on the Hg concentration of the sample and storage atmosphere. MMHg in freshwater samples can be stored refrigerated and unacidified for days to weeks with no observed degradation of MMHg. For long-term storage (at least 250 days), samples should be acidified with 0.4% HCl (v/v) and kept in the dark to avoid photodegradation (approximate t(1/2)=6 months). For saltwater samples, preservation with 0.2% (v/v) H(2)SO(4) is preferred to avoid exceeding the optimal chloride concentration if the distillation procedure is used for MMHg determination. For volatile species (Hg(0) and DMHg), samples should be collected in completely full glass bottles with Teflon-lined caps, as these species are lost rapidly (t(1/2)=10-20 h) from Teflon and polyethylene bottles. Because acids can enhance the rapid oxidation of volatile species, these samples should be stored refrigerated and unacidified and processed within 1-2 days if they cannot be purged and trapped in the field. Hg(II) and the dissolved-to-particulate ratio are more stable and can be stored for a period of days to weeks without preservation. PMID:15626395

  2. Colloidal mercury (Hg) distribution in soil samples by sedimentation field-flow fractionation coupled to mercury cold vapour generation atomic absorption spectroscopy.

    PubMed

    Santoro, A; Terzano, R; Medici, L; Beciani, M; Pagnoni, A; Blo, G

    2012-01-01

    Diverse analytical techniques are available to determine the particle size distribution of potentially toxic elements in matrices of environmental interest such as soil, sediments, freshwater and groundwater. However, a single technique is often not exhaustive enough to determine both particle size distribution and element concentration. In the present work, the investigation of mercury in soil samples collected from a polluted industrial site was performed by using a new analytical approach which makes use of sedimentation field-flow fractionation (SdFFF) coupled to cold vapour generation electrothermal atomic absorption spectroscopy (CV-ETAAS). The Hg concentration in the SdFFF fractions revealed a broad distribution from about 0.1 to 1 ?m, roughly following the particle size distributions, presenting a maximum at about 400-700 nm in diameter. A correlation between the concentration of Hg in the colloidal fraction and organic matter (O.M.) content in the soil samples was also found. However, this correlation is less likely to be related to Hg sorption to soil O.M. but rather to the presence of colloidal mercuric sulfide particles whose size is probably controlled by the occurrence of dissolved O.M. The presence of O.M. could have prevented the aggregation of smaller particles, leading to an accumulation of mercuric sulfides in the colloidal fraction. In this respect, particle size distribution of soil samples can help to understand the role played by colloidal particles in mobilising mercury (also as insoluble compounds) and provide a significant contribution in determining the environmental impact of this toxic element. PMID:22089540

  3. DNA barcodes reveal species-specific mercury levels in tuna sushi that pose a health risk to consumers

    PubMed Central

    Lowenstein, Jacob H.; Burger, Joanna; Jeitner, Christian W.; Amato, George; Kolokotronis, Sergios-Orestis; Gochfeld, Michael

    2010-01-01

    Excessive ingestion of mercury—a health hazard associated with consuming predatory fishes—damages neurological, sensory-motor and cardiovascular functioning. The mercury levels found in Bigeye Tuna (Thunnus obesus) and bluefin tuna species (Thunnus maccoyii, Thunnus orientalis, and Thunnus thynnus), exceed or approach levels permissible by Canada, the European Union, Japan, the US, and the World Health Organization. We used DNA barcodes to identify tuna sushi samples analysed for mercury and demonstrate that the ability to identify cryptic samples in the market place allows regulatory agencies to more accurately measure the risk faced by fish consumers and enact policies that better safeguard their health. PMID:20410032

  4. The level of mercury in human dental plaque and interaction in vitro between biofilms of Streptococcus mutans and dental amalgam.

    PubMed

    Lyttle, H A; Bowden, G H

    1993-09-01

    Mercury levels (micrograms/mg dry weight) in dental plaque from amalgam and enamel surfaces in human subjects with amalgam restorations were (range, mean, SD) 0.5-1.31, 0.72, 0.34 and 0.01-0.54, 0.2, 0.19, respectively. The levels of mercury in plaque from amalgam surfaces were significantly higher than those from plaque on enamel (p < 0.001). No mercury was detected in plaque from subjects without amalgam restorations. The mean level of mercury in a 24-hour collection of plaque was 2 micrograms (median, 1.8 micrograms), an amount close to those calculated by other workers (1.2-1.7 micrograms) for the amount of mercury liberated in the mouth from amalgam restorations in 24 h. Freshly prepared amalgam liberated relatively large amounts of mercury into culture broth in the first 24 h of exposure; subsequently, the levels declined except in the presence of Streptococcus mutans. In vitro, biofilms of Streptococcus mutans facilitated the release of mercury from freshly prepared amalgam, in what appeared to be a cyclical fashion. Amalgam aged for two years did not release mercury, even when supporting the growth of an S. mutans biofilm. The resistance of aged amalgam was attributed to the presence of a passive tarnish layer. The mercury released by the biofilm had an effect on the composition of the biofilm. The biofilms on fresh amalgam had significantly lower levels of carbohydrate (p < 0.001-p < 0.01) and protein (p < 0.001-p < 0.02) than did biofilms on aged amalgam and on control stainless steel wires. PMID:8360382

  5. Fish consumption patterns and hair mercury levels in children and their mothers in 17 EU countries.

    PubMed

    Castańo, Argelia; Cutanda, Francisco; Esteban, Marta; Pärt, Peter; Navarro, Carmen; Gómez, Silvia; Rosado, Montserrat; López, Ana; López, Estrella; Exley, Karen; Schindler, Birgit K; Govarts, Eva; Casteleyn, Ludwine; Kolossa-Gehring, Marike; Fiddicke, Ulrike; Koch, Holger; Angerer, Jürgen; Den Hond, Elly; Schoeters, Greet; Sepai, Ovnair; Horvat, Milena; Knudsen, Lisbeth E; Aerts, Dominique; Joas, Anke; Biot, Pierre; Joas, Reinhard; Jiménez-Guerrero, José A; Diaz, Gema; Pirard, Catherine; Katsonouri, Andromachi; Cerna, Milena; Gutleb, Arno C; Ligocka, Danuta; Reis, Fátima M; Berglund, Marika; Lupsa, Ioana-Rodica; Halzlová, Katarína; Charlier, Corinne; Cullen, Elizabeth; Hadjipanayis, Adamos; Krsková, Andrea; Jensen, Janne F; Nielsen, Jeanette K; Schwedler, Gerda; Wilhelm, Michael; Rudnai, Peter; Középesy, Szilvia; Davidson, Fred; Fischer, Mark E; Janasik, Beata; Namorado, Sónia; Gurzau, Anca E; Jajcaj, Michal; Mazej, Darja; Tratnik, Janja Snoj; Larsson, Kristin; Lehmann, Andrea; Crettaz, Pierre; Lavranos, Giagkos; Posada, Manuel

    2015-08-01

    The toxicity of methylmercury (MeHg) in humans is well established and the main source of exposure is via the consumption of large marine fish and mammals. Of particular concern are the potential neurodevelopmental effects of early life exposure to low-levels of MeHg. Therefore, it is important that pregnant women, children and women of childbearing age are, as far as possible, protected from MeHg exposure. Within the European project DEMOCOPHES, we have analyzed mercury (Hg) in hair in 1799 mother-child pairs from 17 European countries using a strictly harmonized protocol for mercury analysis. Parallel, harmonized questionnaires on dietary habits provided information on consumption patterns of fish and marine products. After hierarchical cluster analysis of consumption habits of the mother-child pairs, the DEMOCOPHES cohort can be classified into two branches of approximately similar size: one with high fish consumption (H) and another with low consumption (L). All countries have representatives in both branches, but Belgium, Denmark, Spain, Portugal and Sweden have twice as many or more mother-child pairs in H than in L. For Switzerland, Czech Republic, Hungary, Poland, Romania, Slovenia and Slovakia the situation is the opposite, with more representatives in L than H. There is a strong correlation (r=0.72) in hair mercury concentration between the mother and child in the same family, which indicates that they have a similar exposure situation. The clustering of mother-child pairs on basis of their fish consumption revealed some interesting patterns. One is that for the same sea fish consumption, other food items of marine origin, like seafood products or shellfish, contribute significantly to the mercury levels in hair. We conclude that additional studies are needed to assess and quantify exposure to mercury from seafood products, in particular. The cluster analysis also showed that 95% of mothers who consume once per week fish only, and no other marine products, have mercury levels 0.55 ?g/g. Thus, the 95th percentile of the distribution in this group is only around half the US-EPA recommended threshold of 1 ?g/g mercury in hair. Consumption of freshwater fish played a minor role in contributing to mercury exposure in the studied cohort. The DEMOCOPHES data shows that there are significant differences in MeHg exposure across the EU and that exposure is highly correlated with consumption of fish and marine products. Fish and marine products are key components of a healthy human diet and are important both traditionally and culturally in many parts of Europe. Therefore, the communication of the potential risks of mercury exposure needs to be carefully balanced to take into account traditional and cultural values as well as the potential health benefits from fish consumption. European harmonized human biomonitoring programs provide an additional dimension to national HMB programs and can assist national authorities to tailor mitigation and adaptation strategies (dietary advice, risk communication, etc.) to their country's specific requirements. PMID:25667172

  6. FIELD MEASUREMENT TECHNOLOGY FOR MERCURY IN SOIL AND SEDIMENT MILESTONE INC.'S DIRECT MERCURY ANALYZER (DMA)-80

    EPA Science Inventory

    Milestone's Direct Mercury Analyzer (DMA-80) was demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in May 2003 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The purpose of the Demonstration was to...

  7. FIELD MEASUREMENT TECHNOLOGY FOR MERCURY IN SOIL AND SEDIMENT OHIO LUMEX'S RA-915+/RP-91C MERCURY ANALYZER

    EPA Science Inventory

    Ohio Lumex's RA915+/91 C mercury analyzer was demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in May 2003, at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The purpose of the Demonstration was to c...

  8. Mercury levels in human hair and sex factors

    SciTech Connect

    Shimomura, S.; Kimura, A.; Nakagawa, H.; Takao, M.

    1980-06-01

    Evidence has been presented: (1) that the geometric mean is essential to the statistical analysis of the result of the amount of Hg in hair, and (2) that the individual Hg level in hair must be evaluated by the standard deviation of logarithmic values. The Hg level in hair obtained from 1324 inhabitants on Shikoku Island showed logarithmic-normal distribution curves, with higher values in males than in females. To verify such a sexual difference, hair samples were obtained from male and female children (N = 346), teenagers (N = 300), and adults (N = 354) living in an agricultural area of Tokushima Prefecture on the island. As the result, males were found to have more Hg than females in sexually mature teenagers and adults (P < 0.05 by F test) but not in younger children.

  9. Atmospheric Deposition and Fate of Mercury in High-altitude Watersheds of the Rocky Mountains.

    NASA Astrophysics Data System (ADS)

    Campbell, D. H.; Mast, M. A.; Ingersoll, G. P.; Manthorne, D. J.; Krabbenhoft, D. P.; Taylor, H. E.; Aiken, G. R.; Schuster, P. F.; Reddy, M. M.

    2003-12-01

    Despite the potential for cold high-altitude ecosystems to act as sinks in the global mercury cycle, atmospheric deposition and fate of mercury have not been measured extensively at mountain sites in the Western United States. At Buffalo Pass in northwestern Colorado (the highest site in the national Mercury Deposition Network at 3234 m elevation), mercury in wet deposition was 9 ? gm-2 in 2000, comparable to many sites in the upper Midwestern United States where fish consumption advisories are widespread because of elevated levels of mercury from atmospheric deposition. Similar levels of mercury deposition were measured about 90 km east of Buffalo Pass at Loch Vale in Rocky Mountain National Park (RMNP) during 2002. Concentrations of total mercury in headwater streams in RMNP averaged 2-4 ngL-1 during spring and summer of 2001-2002. Higher concentrations were observed during snowmelt and rainfall events. Dissolved mercury was generally greater than particulate mercury in these clear mountain streams. Mercury and dissolved organic carbon peaked as soils were flushed during early snowmelt and rainy summer periods. Overall, mercury deposition was greater than mercury export, indicating accumulation in alpine/subalpine ecosystems; however, the mercury exported in streamflow may contribute substantially to mercury loading in downstream lakes and reservoirs where fish consumption advisories have increased. Methyl mercury concentrations measured in the streams in 2002 were generally near or less than detection limits, however, extreme drought conditions limited hydrologic flushing of soils and wetlands that may be sources of methyl mercury. In 2003, surface and ground water from various alpine and subalpine landscapes were sampled to determine sources and transport of total and methyl mercury. The elevated levels of mercury in atmospheric deposition indicate a need for better understanding of mercury cycling and transport in high-altitude ecosystems of Western North America.

  10. Fate and transport of mercury in soil systems : a numerical model in HP1 and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Leterme, Bertrand; Jacques, Diederik

    2013-04-01

    Mercury (Hg) poses threats for human health and the environment, notably due to its persistence and its ability to bioaccumulate in ecosystems. Anthropogenic activities are major contributors of mercury release to soils. Main sources of contamination include manufacturing (chlor-alkali plants, manometer spill), mine tailings from mercury, gold and silver mining industries, wood preservation. The objective of this study was to develop a reactive transport model for simulating mercury fate and transport in the unsaturated zone, and to gain insight in the fate and transport of Hg following anthropogenic soil contamination. The present work is done in the framework of the IMaHg project, which aims at providing recommendations to improve management of sites contaminated by mercury within the SNOWMAN funding framework. A model of mercury fate and transport in soil systems was developed using the reactive transport code HP1 (Jacques and Šim?nek, 2010). The geochemical database THERMODDEM (Blanc et al., 2012) is used, augmented with some speciation data from (Skyllberg, 2012). The main processes accounted for in the model are : Hg aqueous speciation (including complexation with dissolved organic matter (DOM) - humic and fulvic acids, and thiol groups), Hg sorption to solid organic matter (SOM), dissolution of solid phase Hg (e.g. cinnabar HgS(s)), dissolution of Hg non-aqueous liquid phase (NAPL), sunlight-driven Hg(II) reduction to Hg(0), Hg(0) diffusion in the gas phase and volatilization, DOM sorption to soil minerals. Colloid facilitated transport is implicitly accounted for by solute transport of Hg-DOM complexes. Because we focused on soil systems having a high Hg contamination, some processes showing relatively smaller Hg fluxes could be neglected such as vegetation uptake and atmospheric wet and dry deposition. NAPL migration and entrapment is not modelled, as pollution is assumed to be historical and only residual NAPL to be present. Mercury methylation and demethylation was not implemented, because it could be neglected in an oxidising environment. However, if the model is to be tested in more reducing conditions (e.g. shallow groundwater table), methyl- and dimethylmercury formation can be non negligible. Using 50 year time series of daily weather observations in Dessel (Belgium) and a typical sandy soil with deep groundwater (free drainage, oxic conditions), a sensitivity analysis was performed to assess the relative importance of processes and parameters within the model. We used the elementary effects method (Morris, 1991; Campolongo et al., 2007), which draws trajectories across the parameter space to derive information on the global sensitivity of the selected input parameters. The impact of different initial contamination phases (solid, NAPL, aqueous and combinations of these) was also tested. Simulation results are presented in terms of (i) Hg volatilized to the atmosphere; (ii) Hg leached out of the soil profile; (iii) Hg still present in the soil horizon originally polluted; and (iv) Hg still present in the soil profile but below the original contaminated horizon. Processes and parameters identified as critical based on the sensitivity analysis differ from one scenario to the other ; depending on pollution type (cinnabar, NAPL, aqueous Hg), on the indicator assessed and on time (after 5, 25 or 50 years). However, in general DOM in soil water was the most critical parameter. Other important parameters were those related to Hg sorption on SOM (thiols, and humic and fulvic acids), and to Hg complexation with DOM. Initial Hg concentration was also often identified as a sensitive parameter. Interactions between factors and non linear effects as measured by the elementary effect method were generally important, but also dependent on the type of contamination and on time. No model calibration was performed until now. The numerical tool could greatly benefit from partial model calibration and/or validation. Ideally, detailed speciation data on a contaminated sites would be required, together with a good characteriz

  11. Mercury in the River Nura and its floodplain, Central Kazakhstan: II. Floodplain soils and riverbank silt deposits.

    PubMed

    Heaven, S; Ilyushchenko, M A; Kamberov, I M; Politikov, M I; Tanton, T W; Ullrich, S M; Yanin, E P

    2000-10-01

    A unique and serious case of mercury pollution has occurred in the River Nura and its floodplain in Central Kazakhstan, where mercury-rich wastewater from an acetaldehyde plant was discharged largely without treatment for several decades. In the river, the mercury became associated with millions of tonnes of power station fly ash, forming a new type of deposit known as 'technogenic silt'. During spring floods these highly contaminated silts are transported downstream and are dispersed over the floodplain, leading to widespread contamination of the land. A detailed survey of the floodplain was carried out to investigate the extent of pollution and to assess the need for remediation. Total mercury concentrations in the topsoils of the floodplain ranged from near background levels to over 100 mg/kg. Mercury concentrations in river bank deposits were found to range from a mean of 73.3 mg/kg Hg in the most contaminated section of the river to a mean of 13.4 mg/kg Hg at a distance of 70 km downstream. Concentrations were lower than corresponding concentrations in the riverbed within the first 25 km from the source of the pollution, but thereafter they were significantly higher. The results show that over the past 30-40 years a large proportion of the contaminated sediments from the river was deposited on the 70 km of banks and in the floodplain below the pollution source. Topsoils of the floodplain and silt deposits located on or close to the river banks contain an estimated 53 t and 65 t of mercury respectively, with an additional 62 t in a small natural swamp which was formerly used as a waste disposal area. The contamination is serious but relatively localized, with > 70% of the total amount of mercury in topsoils and > 90% of mercury in river bank deposits located within 25 km from the source. PMID:11032115

  12. Levels of cadmium and mercury in the hair of Atlantic walruses (Odobenus rosmarus rosmarus) from Svalbard, Norway

    SciTech Connect

    Wiig, O.; Renzoni, A.; Gjertz, I.

    1999-08-01

    Hair samples of 15 adult male Atlantic walruses (Odobenus rosmarus rosmarus) collected from anesthetized individuals at Svalbard, Norway, were analyzed for cadmium and total mercury. The mean level of cadmium was 0.860 {+-} 0.321 {micro}g/g dry weight and the mean level of mercury was 0.235 {+-} 0.100 {micro}g/g dry weight. Levels of cadmium and mercury in hair of walruses from other areas are not known. Both cadmium and mercury levels in hair of walruses from Svalbard are relatively low compared to the levels found in the hair of other marine mammal species. It has been documented from a number of marine species, including marine mammals such as ringed seals and polar bears, that both cadmium and mercury levels of Svalbard are lower than in other areas. It is uncertain as to what degree levels in hair reflect levels in internal organs in walruses. In rare and highly endangered species or populations tissue samples can be difficult to collect. In walruses, it is possible to collect hair from anesthetized individuals or at the haul-out sites during molt, to monitor heavy metal levels of the population.

  13. Mercury levels, reproduction, and hematology in western grebes from three California Lakes, USA

    SciTech Connect

    Elbert, R.A.; Anderson, D.W.

    1998-02-01

    Twenty-three healthy adult western and Clark`s grebes (Aechmorphorus occidentalis and Aechmorphorus clarkii) were collected at three study sites in California, USA, in 1992: Clear Lake, Lake County; Eagle Lake, Lassen County; and Tule Lake, Siskiyou County. Liver, kidney, breast muscle, and brain were analyzed for total mercury (Hg) concentration (ppm wet weight), and blood was analyzed for various blood parameters. Clear Lake birds had greater Hg concentrations in kidney, breast muscle, and brain than birds from the other two lakes whereas liver concentrations were not statistically different. Average concentrations for Clear Lake birds were 2.74 ppm for liver, 2.06 ppm for kidney, 1.06 ppm for breast muscle, and 0.28 ppm for brain. The tissue levels of kidney, breast muscle, and brain at the other two study sites were one half the levels found at Clear Lake. These mean tissue levels were near, but below, those known to cause adverse effects. When data from all sites were merged, kidney, breast muscle, and brain concentrations are positively correlated to each other. Liver concentrations were not correlated to any other value. Brain Hg concentrations were also negatively correlated to blood potassium and blood phosphorus levels. Kidney Hg levels were positively correlated to percent blood heterophils and negatively correlated to percent eosinophils, suggesting that mercury levels might be affecting immune function. These biomarkers could not be related to any obvious ecological effects.

  14. Determination of Ultratrace Levels of Mercury in SRM 2781 Domestic Sludge by Combustion RNAA

    SciTech Connect

    Bruce R. Norman; Donald A. Becker; Richard T. Lostritto

    2000-11-12

    The domestic sludge SRM 2781 was collected from Denver, Colorado, sewage disposal district 1 (DMSDD) in the early 1990s. The DMSDD calls this material 'domestic' because only light industry is present in this district. The term 'domestic' differs from an 'industrial' label by the amount of heavy industry present in the area. The determination of mercury and other toxic elements in these sludges is important to monitor the sources and pathways of environmental exposure to these materials. Analytical results for the determination of total mercury in SRM 2781, domestic sludge, by radiochemical neutron activation analysis (RNAA) are listed in Table I. These analyses were made to measure the total mercury for use in the certification process of this reference material. The control sample data agreed well with the certified values and confirm the methods, procedures, and corrections used. This RNAA combustion procedure is effective in producing high-quality analytical data at the microgram/kilogram concentration level in both the organic and inorganic matrices of these samples. The procedure has both high sensitivity and freedom from significant reagent blanks when properly performed.

  15. Mercury interferes with endogenous antioxidant levels in Yukon River subsistence-fed sled dogs

    NASA Astrophysics Data System (ADS)

    Dunlap, Kriya L.; Reynolds, Arleigh J.; Gerlach, S. Craig; Duffy, Lawrence K.

    2011-10-01

    Before adopting modern corn-and-grain-based western processed diets, circumpolar people had a high fat and protein subsistence diet and exhibited a low incidence of obesity, diabetes and cardiovascular disease. Some health benefits are attributable to a subsistence diet that is rich in omega-3 fatty acids and antioxidants. Pollution, both global and local, is a threat to wild foods, as it introduces contaminants into the food system. Northern indigenous people and their sled dogs are exposed to a variety of contaminants, including mercury, that accumulate in the fish and game that they consume. The sled dogs in Alaskan villages are maintained on the same subsistence foods as their human counterparts, primarily salmon, and therefore they can be used as a food systems model for researching the impact of changes in dietary components. In this study, the antioxidant status and mercury levels were measured for village sled dogs along the Yukon River. A reference kennel, maintained on a nutritionally balanced commercial diet, was also measured for comparison. Total antioxidant status was inversely correlated with the external stressor mercury.

  16. High levels of mercury contamination in multiple media of the Carson River drainage basin of Nevada: implications for risk assessment.

    PubMed Central

    Gustin, M S; Taylor, G E; Leonard, T L

    1994-01-01

    Approximately 5.5 x 109 g (4.0 x 105) of mercury was discharged into the Carson River Drainage Basin of west-central Nevada during processing of the gold- and silver-rich Comstock ore in the late 1800s. For the past 13 decades, mercury has been redistributed throughout 500 km2 of the basin, and concentrations are some of the highest reported values in North America. This article documents the concentrations of mercury in the air, water, and substrate at both contaminated and noncontaminated sites within the basin and discusses the implications for risk assessment. At contaminated areas, the range of mercury concentrations are as follows: mill tailings, 3-1610 micrograms/g; unfiltered reservoir water, 53-591 ng/l; atmospheric vapor, 2-294 ng/m3. These values are three to five orders of magnitude greater than natural background. In all media at contaminated sites, concentrations are spatially variable, and air and water mercury concentrations vary temporally. The study are in situated in a natural mercuriferous belt, and regional background mercury concentrations in all environmental media are higher than values typically cited for natural background. As a mercury-contaminated site in North America, the Carson River Drainage Basin is unusual for a number of reasons, including its location in a natural mercuriferous belt, high and sustained levels of anthropogenic mercury inputs, long exposure time, aridity of the climate, and the riparian setting in an arid landscape, where biological activity is concentrated in the same areas that contain high levels of mercury in multiple media. Images Figure 1. Figure 2. Figure 3. Figure 4. Figure 4. Figure 4. PMID:9657709

  17. Applications of Organic and Inorganic Amendments Induce Changes in the Mobility of Mercury and Macro- and Micronutrients of Soils

    PubMed Central

    García-Sánchez, Mercedes; Šípková, Adéla; Száková, Ji?ina; Kaplan, Lukáš; Ochecová, Pavla; Tlustoš, Pavel

    2014-01-01

    Both soil organic matter and sulfur (S) can reduce or even suppress mercury (Hg) mobility and bioavailability in soil. A batch incubation experiment was conducted with a Chernozem and a Luvisol artificially contaminated by 440?mg·kg?1?Hg showing wide differences in their physicochemical properties and available nutrients. The individual treatments were (i) digestate from the anaerobic fermentation of biowaste; (ii) fly ash from wood chip combustion; and (iii) ammonium sulfate, and every treatment was added with the same amount of S. The mobile Hg portion in Chernozem was highly reduced by adding digestate, even after 1 day of incubation, compared to control. Meanwhile, the outcome of these treatments was a decrease of mobile Hg forms as a function of incubation time whereas the contents of magnesium (Mg), potassium (K), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), and phosphorus (P) were stimulated by the addition of digestate in both soils. The available calcium (Ca) contents were not affected by the digestate addition. The experiment proved digestate application as the efficient measure for fast reduction of mobile Hg at extremely contaminated soils. Moreover, the decrease of the mobile mercury portion was followed by improvement of the nutrient status of the soils. PMID:25401138

  18. Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season

    PubMed Central

    Burger, Joanna; Gochfeld, Michael

    2014-01-01

    There are few data on risks to biota and humans from mercury levels in saltwater fish. This paper examines mercury and selenium levels in muscle of 19 species of fish caught by recreational fisherfolk off the New Jersey shore, as a function of species of fish, size, and season, and risk of mercury to consumers. Average mercury levels ranged from 0.01 ppm (wet weight) (Menhaden Brevoortia tyrannus) to 1.83 ppm (Mako Shark Isurus oxyrinchus). There were four categories of mercury levels: very high (only Mako), high (averaging 0.3–0.5 ppm, 3 species), medium (0.14–0.20 ppm, 10 species), and low (below 0.13 ppm, 5 species). Average selenium levels for the fish species ranged from 0.18 ppm to 0.58 ppm, and had lower variability than mercury (coefficient of variation=38.3 vs 69.1%), consistent with homeostatic regulation of this essential element. The correlation between mercury and selenium was significantly positive for five and negative for two species. Mercury levels showed significant positive correlations with fish size for ten species. Size was the best predictor of mercury levels. Selenium showed no consistent relationship to fish length. Over half of the fish species had some individual fish with mercury levels over 0.3 ppm, and a third had fish with levels over 0.5 ppm, levels that pose a human health risk for high end consumers. Conversely several fish species had no individuals above 0.5 ppm, and few above 0.3 ppm, suggesting that people who eat fish frequently, can reduce their risk from mercury by selecting which species (and which size) to consume. Overall, with the exception of shark, Bluefin Tuna (Thunnus thynnus), Bluefish (Pomatomus saltatrix) and Striped Bass (Morone saxatilis), the species sampled are generally medium to low in mercury concentration. Selenium:mercury molar ratios were generally above 1:1, except for the Mako shark. PMID:21292311

  19. Targeting geothermal exploration sites in the Mount St. Helens area using soil mercury surveys

    SciTech Connect

    Holmes, J.; Waugh, K.

    1983-11-01

    The background mercury level was determined for the areas studied, providing preliminary information for future work. Identification of areas which might merit more intensive sampling was also accomplished. The clusters of samples with high Hg concentrations in both areas may indicate high heat flow and should be investigated further. Problems involving the use of this method in the Cascades were also identified. Both areas north and south of the mountain had approximately the same standard deviation (expressed as a percentage of the mean), even though the sampling horizons seemed much more consistent and less disturbed in the Marble Mountain area than in the Green River Soda Springs area. This may indicate that for these areas, secondary controls are more important, or that Hg anomalies are much smaller than indicated in studies of other areas.

  20. Expression of hepatic metallothionein messenger RNA in feral and caged fish species correlates with muscle mercury levels.

    PubMed

    Schlenk, D; Zhang, Y S; Nix, J

    1995-08-01

    Metallothioneins (MTs) are low-molecular-weight cytosolic proteins that are induced by cellular stress as well as exposure to various heavy metals including mercury. Excessive residues of mercury have recently been identified in various fish species of the lower Ouachita River system in Arkansas. Fillets of mature largemouth bass (Micropterus salmoides) collected from Woodard Lake, an ox-bow lake of the Ouachita River, possessed muscle residues of mercury ranging from 0.3 to 1.0 ppm (micrograms/g). To assess the usefulness of using MT expression as a biomarker of mercury exposure, livers and fillets were obtained from feral bass of Woodard Lake. Ouachita served as a control site having mercury residues below detection. Analyses using a ribonuclease protection assay with winter flounder MT cDNA revealed that bass had significantly elevated levels of MT mRNA which correlated (r2 = 0.756) with the levels of mercury in muscle fillets. To further explore the water quality of Woodard Lake, 10 juvenile channel catfish were housed in cages and placed where feral collections were made in both sites for 2 weeks. Mercury was not detected in muscle or liver and no significant difference in hepatic MT mRNA was observed. These data demonstrate that MT mRNA expression can be used as a tool to assess exposure to heavy metals and suggest that the elevated levels of mercury in large predatory fish may be due to trophic magnification rather than a single point-source exposure. PMID:7498068

  1. How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments

    SciTech Connect

    Wallschlaeger, D.; Desai, M.V.M.; Spengler, M.; Windmoeller, C.C.; Wilken, R.D.

    1998-09-01

    The interaction of mercury (Hg) and humic substances (hs) was studied in floodplain topsoils and surface sediments of the contaminated German river Elbe. An intimate coupling exists between the geochemical cycles of Hg and organic carbon (OC) in this ecosystem. Humic substances exert a dominant influence on several important parallel geochemical pathways of Hg, including binding, transformation, and transport processes. Significant differences exist between the Hg-hs associations in floodplains and sediments. Both humic acids (ha) and fulvic acids (fa) contribute to Hg binding in the sediments. In contrast, ultrafiltration experiments proved that Hg in the floodplain soils is almost exclusively bound to very large humic acids (ha) with a nominal molecular weight (MW) > 300,000. Successive cation and anion exchange experiments demonstrated that those Hg-ha complexes are inert toward competition by other cations, and also apparently predominantly electroneutral. Speciation transformation reactions in the solid phase were investigated by sequential extraction and thermal release experiments. Upon addition of Hg model compounds to a sediment matrix, all species were transformed to the same new speciation pattern, regardless of their original speciation. The accompanying alterations in availability and solubility were partially due to interconversion between the different Hg redox states, including Hg(I). Simultaneously, partial transformation of added Hg{sup 2+} into volatile Hg compounds (35% in 10 d) was observed. Finally, Hg association with water-soluble ha continuously increased downstream, indicating that hs play a key role in both lateral and longitudinal Hg transport in the Elbe ecosystem.

  2. Levels of mercury in alligators (Alligator mississippiensis) collected along a transect through the Florida Everglades

    USGS Publications Warehouse

    Rumbold, D.G.; Fink, L.E.; Laine, K.A.; Niemczyk, S.L.; Chandrasekhar, T.; Wankel, Scott D.; Kendall, C.

    2002-01-01

    As part of a multi-agency study of alligator health, 28 American alligators (Alligator mississippiensis) were captured along a transect through the Florida Everglades in 1999. Liver and tail muscle tissues were sampled and analyzed on a wet weight basis for total mercury (THg) using cold-vapor atomic absorption spectrophotometry. All tissues had detectable concentrations of THg that ranged from 0.6 to 17 mg/kg in liver and from 0.1 to 1.8 mg/kg in tail muscle. THg was more concentrated in liver tissue than tail muscle, but levels were highly correlated between tissues. THg concentrations in tissue differed significantly among locations, with animals from Everglades National Park (ENP) having mean concentrations of THg in liver (10.4 mg/kg) and tail muscle (1.2 mg/kg) that were two-fold higher than basin-wide averages (4.9 and 0.64 mg/kg, respectively). The reasons for higher contamination of ENP alligators were unclear and could not be explained by differences in sex, length, weight or animal age. While ??15N values were positively correlated with THg concentrations in tail muscle, spatial patterns in isotopic composition did not explain the elevated THg levels in ENP alligators. Therefore, it appears that ENP alligators were more highly exposed to mercury in their environment than individuals in other areas. Comparisons to a previous survey by Yanochko et al. [Arch Environ Contam Toxicol 32 (1997) 323] suggest that mercury levels have declined in some Everglades alligators since 1994. ?? 2002 Elsevier Science B.V. All rights reserved.

  3. Long-term changes in fish mercury levels in the historically impacted English-Wabigoon River system (Canada).

    PubMed

    Neff, Margaret R; Bhavsar, Satyendra P; Arhonditsis, George B; Fletcher, Rachael; Jackson, Donald A

    2012-09-01

    The English-Wabigoon River system in Northwestern Ontario, Canada, was one of the most heavily mercury-contaminated waterways in the world due to historical discharges in the 1960s from a chlor-alkali plant. This study examines long-term (1970-2010) monitoring data to assess temporal trends in mercury contamination in Walleye, Northern Pike and Lake Whitefish, three species important for sport and subsistence fishing in this region, using dynamic linear modeling and piecewise regression. For all lakes and species, there is a significant decline (36-94%) in mercury concentrations through time; however, there is evidence that this decline is either slowing down or levelling off. Concentrations in the English-Wabigoon fish are elevated, and may still present a potential health risk to humans consuming fish from this system. Various biotic and abiotic factors are examined as possible explanations to slowing rates of decline in mercury concentrations observed in the mid-1980s. PMID:22785387

  4. A new, catchment-scale model for simulating methyl and total mercury in soils and surface waters

    NASA Astrophysics Data System (ADS)

    Futter, M. N.; Poste, A. E.; Whitehead, P. G.; Dillon, P. J.

    2012-04-01

    Mercury (Hg) is a potent and persistent neurotoxin. It is subject to long-range atmospheric transport, accumulates in catchment soils, and can pose health risks to humans and animals both at the point of use as well as in remote locations. Elevated concentrations of methyl mercury (MeHg) in fish are related to atmospheric Hg deposition and have resulted in fish consumption advisories in many parts of North America and Fennoscandia. After more than 150 years of elevated Hg deposition in Europe and North America, there remains a large inventory of Hg in the terrestrial catchments of lakes, which continues to be exported to receiving waters despite decreasing atmospheric inputs. While a substantial Hg pool exists in boreal catchment soils, fluxes of Hg from catchments via stream runoff tend to be much lower than atmospheric Hg inputs. Terrestrial catchments receiving similar atmospheric Hg inputs can have markedly different patterns of Hg output in stream water. Considering the importance of catchment processes in determining Hg flux to lakes and subsequent MeHg concentrations in fish, there is a need to characterize Hg cycling and transport in boreal and temperate forest-covered catchments. We present a new, catchment-scale, process-based dynamic model for simulating Hg in soils and surface waters. The Integrated Catchments Model for Mercury (INCA-Hg) simulates transport of gaseous, dissolved and solid Hg and transformations between elemental (Hg0), ionic (Hg(II)) and MeHg in natural and semi-natural landscapes. The mathematical description represents the model as a series of linked, first-order differential equations describing chemical and hydrological processes in catchment soils and waters which control surface water Hg dynamics and subsequent fluxes to lakes and other receiving waters. The model simulates daily time series between one and one hundred years long and can be applied to catchments ranging in size from <1 to ~10000 km2. Here we present applications of the model to two boreal forest headwater catchments in central Canada where we were able to reproduce observed patterns of stream water total mercury (THg) and MeHg fluxes and concentrations. Model performance was assessed using Monte Carlo techniques. Simulated in-stream THg and MeHg concentrations were sensitive to hydrologic controls and terrestrial and aquatic process rates. Our results show the need for new research to better quantify in-situ methylation and demethylation rates in soils and surface waters and for additional surveys of soil Hg concentrations. These data are needed for constraining model simulations of the effects of changing climate, Hg deposition and land management on fluxes of THg and MeHg.

  5. Determination of the potential for release of mercury from combustion product amended soils: Part 2 - Coal fly ash generated stabilized soil and degradation products

    SciTech Connect

    Mae Sexauer Gustin; Mei Xin; Jody Ericksen; George C. Fernandez

    2008-11-15

    The potential for mercury (Hg) releases to the air and water from three soils, two subbituminous coal fly ashes, and mixtures of these materials as stabilized soil was assessed. In addition, the potential for Hg release from crushed stabilized material mixed into soil simulating degradation over time was investigated. In general, atmospheric Hg deposition was measured for the ash and materials made using the ash with the higher Hg concentration, whereas the second ash material and materials generated using this ash exhibited emission as the dominant flux. Fluxes measured from stabilized material were less than that measured for the pure ash material but of the same direction. Although the stabilized and degraded stabilized materials exhibited Hg fluxes that were significantly different from base soils, values were within the range reported for low Hg-containing background soils. Because of limitations of the experimental design (i.e., reduced light exposures and measurement of flux from dry materials) reported fluxes are most likely underestimates of that which would occur in the natural environment. Materials made to simulate degradation of the stabilized material did not exhibit higher releases than the stabilized material alone. Synthetic Precipitation Leaching Procedure (SPLP; EPA method 1312) results showed that the chemistry of a soil, especially pH, may influence the amount of Hg released to soil solutions, with more acidic soils potentially enhancing Hg release. 25 refs., 9 figs., 4 tabs.

  6. Total mercury levels in muscle tissue of swordfish (Xiphias gladius) and bluefin tuna (Thunnus thynnus) from the Mediterranean Sea (Italy).

    PubMed

    Storelli, M M; Marcotrigiano, G O

    2001-07-01

    This study was carried out to determine the current levels of total mercury in the muscle tissue of swordfish (Xiphias gladius) and bluefin tuna (Thunnus thynnus) caught in the Mediterranean Sea with the purpose of ascertaining whether the concentrations exceeded the maximum level fixed by the European Commission Decision. In addition, specimens of each species were divided into different ranges of weight to investigate the influence of size on mercury accumulation in order to provide data upon which commercial fishing strategies and marketing of swordfish and bluefin tuna may be based. Higher mean levels of total mercury were found in bluefin tuna (1.02 microg g(-1) wet wt) than in swordfish (0.49 microg g(-1) wet wt). In 4.3% of swordfish and in 44.3% of bluefin tuna analyzed, total mercury concentrations exceeded the maximum level fixed by the European Commission Decision (Hg = 1 microg g(-1) wet wt). Besides, for bluefin tuna the total mercury level variability observed, due to size, suggests that there should be greater regulatory control by the authorities. PMID:11456192

  7. Mercury in the environment

    NASA Technical Reports Server (NTRS)

    Fulkerson, W.; Lyon, W. S.; Shults, W. D.; Wallace, R. A.

    1972-01-01

    Problems in assessing mercury concentrations in environmental materials are discussed. Data for situations involving air, water, rocks, soils, sediments, sludges, fossil fuels, plants, animals, foods, and man are drawn together and briefly evaluated. Details are provided regarding the toxicity of mercury along with tentative standards and guidelines for mercury in air, drinking water, and food.

  8. Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains

    USGS Publications Warehouse

    Gustin, M.S.; Coolbaugh, M.F.; Engle, M.A.; Fitzgerald, B.C.; Keislar, R.E.; Lindberg, S.E.; Nacht, D.M.; Quashnick, J.; Rytuba, J.J.; Sladek, C.; Zhang, H.; Zehner, R.E.

    2003-01-01

    Waste rock and ore associated with Hg, precious and base metal mining, and their surrounding host rocks are typically enriched in mercury relative to natural background concentrations (<0.1 ??g Hg g-1). Mercury fluxes to the atmosphere from mineralized areas can range from background rates (0-15 ng m-2 h-1) to tens of thousands of ng m-2 h-1. Mercury enriched substrate constitutes a long-term source of mercury to the global atmospheric mercury pool. Mercury emissions from substrate are influenced by light, temperature, precipitation, and substrate mercury concentration, and occur during the day and night. Light-enhanced emissions are driven by two processes: desorption of elemental mercury accumulated at the soil:air interface, and photo reduction of mercury containing phases. To determine the need for and effectiveness of regulatory controls on short-lived anthropogenic point sources the contribution of mercury from geologic non-point sources to the atmospheric mercury pool needs to be quantified. The atmospheric mercury contribution from small areas of mining disturbance with relatively high mercury concentrations are, in general, less than that from surrounding large areas of low levels of mercury enrichment. In the arid to semi-arid west-ern United States volatilization is the primary means by which mercury is released from enriched sites.

  9. Review of State Soil Cleanup Levels for Dioxin (December 2009)

    EPA Science Inventory

    This final report summarizes a survey of state soil cleanup levels for dioxin and characterizes the science underlying these values. The objective of this project was to summarize existing state cleanup levels for dioxin in soil, together with their scientific bases where availa...

  10. Arsenic and mercury in the soils of an industrial city in the Donets Basin, Ukraine

    USGS Publications Warehouse

    Conko, Kathryn M.; Landa, Edward R.; Kolker, Allan; Kozlov, Kostiantyn; Gibb, Herman J.; Centeno, Jose; Panov, Boris S.; Panov, Yuri B.

    2013-01-01

    Soil and house dust collected in and around Hg mines and a processing facility in Horlivka, a mid-sized city in the Donets Basin of southeastern Ukraine, have elevated As and Hg levels. Surface soils collected at a former Hg-processing facility had up to 1300 mg kg?1 As and 8800 mg kg?1 Hg; 1M HCl extractions showed 74–93% of the total As, and 1–13% of the total Hg to be solubilized, suggesting differential environmental mobility between these elements. In general, lower extractability of As and Hg was seen in soil samples up to 12 km from the Hg-processing facility, and the extractable (1M HCl, synthetic precipitation, deionized water) fractions of As are greater than those for Hg, indicating that Hg is present in a more resistant form than As. The means (standard deviation) of total As and Hg in grab samples collected from playgrounds and public spaces within 12 km of the industrial facility were 64 (±38) mg kg?1 As and 12 (±9.4) mg kg?1 Hg; all concentrations are elevated compared to regional soils. The mean concentrations of As and Hg in dust from homes in Horlivka were 5–15 times higher than dust from homes in a control city. Estimates of possible exposure to As and Hg through inadvertent soil ingestion are provided.

  11. Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method.

    PubMed

    Liu, Guangliang; Cabrera, Julio; Allen, Marshall; Cai, Yong

    2006-10-01

    A new attempt to characterize Hg speciation and to evaluate Hg mobility in soils was made by applying operationally defined speciation techniques coupled with fractionation of soil components to a soil sample collected just outside the Y-12 boundary of the Oak Ridge Reservation (ORR) site. The soil sample was fractionated based on redoximorphic features and particle size and a sequential extraction procedure and thermal desorption technique were then applied to the fractionated soil components. The redoximorphic concentration component was observed to have higher Hg concentrations than the redoximorphic depletion component in the soil, and fine particles contained higher concentrations of Hg compared with coarse particles. The preliminary results of using thermal desorption as well as the sequential extraction procedure suggested that Hg0 and other "easily" vaporized Hg species accounted for 10-30% of total Hg in the soil. Sequential extraction analysis showed that both soluble and bioavailable Hg fractions were relatively small proportions whereas the organic matter bound mercury fraction constituted the major form of Hg species in the sample. The results suggest that Hg retained in the redoximorphic concentrations was less volatile and labile than Hg in the redoximorphic depletions possibly due to the strong binding affinity of Fe/Mn oxides and organic matter to Hg. PMID:16904164

  12. Levels of total mercury in marine organisms from Adriatic Sea, Italy.

    PubMed

    Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Zaccaroni, Annalisa; Olivieri, Vincenzo; Amorena, Michele

    2009-08-01

    The presence of total mercury in fish, crustacean and cephalopod from Adriatic Sea, was investigated. The highest concentrations were observed in decreasing order in: Norway lobster (0.97 +/- 0.24 mg/kg; mean +/- SE), European hake (0.59 +/- 0.14 mg/kg), red mullet (0.48 +/- 0.09 mg/kg), blue whiting (0.38 +/- 0.09 mg/kg), Atlantic mackerel (0.36 +/- 0.08 mg/kg) and European flying squid (0.25 +/- 0.03 mg/kg). A significant difference (p < 0.01) was found between the levels of total mercury in Norway lobster and those detected in all other species. The 25% of all samples exceeded the maximum limit fixed by Commission Regulation (EC) No 1881/2006. The results show that fish and fishery products can exceed the maximum levels and stress the need of more information for consumers in particular for people that eat large amount of fish. PMID:19434348

  13. Levels of total mercury in predatory fish sold in Canada in 2005.

    PubMed

    Dabeka, R W; McKenzie, A D; Forsyth, D S

    2011-06-01

    Total mercury was analysed in 188 samples of predatory fish purchased at the retail level in Canada in 2005. The average concentrations (ng g(-1), range) were: sea bass 329 (38-1367), red snapper 148 (36-431), orange roughy 543 (279-974), fresh water trout 55 (20-430), grouper 360 (8-1060), black cod 284 (71-651), Arctic char 37 (28-54), king fish 440 (42-923), tilefish 601 (79-1164) and marlin 854 (125-2346). The Canadian standard for maximum total mercury allowed in the edible portions of fish sold at the retail level is 1000 ng g(-1) for shark, swordfish, marlin, orange roughy, escolar and both fresh and frozen tuna. The standard is 500 ng g(-1) for all other types of fish. In this study, despite the small number of samples of each species, the 1000 ng g(-1) maximum was exceeded in five samples of marlin (28%). The 500 ng g(-1) maximum was exceeded by six samples of sea bass (20%), four of tilefish (50%), five of grouper (24%), six of king fish (40%) and one of black cod (13%). PMID:21623497

  14. LOCATIONAL DIFFERENCES IN MERCURY AND SELENIUM LEVELS IN 19 SPECIES OF SALTWATER FISH FROM NEW JERSEY

    PubMed Central

    Burger, Joanna; Jeitner, Christian; Gochfeld, Michael

    2014-01-01

    Individuals who fish, and their families that ingest self-caught fish, make decisions about where to fish, what type of fish to eat, and the quantity of fish to eat. While federal and state agencies often issue consumption advisories for some fish with high mercury (Hg) concentrations, advisories seldom provide the actual metal levels to the general public. There are few data for most saltwater fish, and even less information on variations in Hg levels in fish within a state or geographical region. The objective of this study was to provide Hg concentrations from 19 species of fish caught in different locations in New Jersey to (1) test the hypothesis that mean metal levels vary geographically, (2) provide this information to individuals who fish these coastal waters, and (3) provide a range of values for risk assessors who deal with saltwater fish exposure in the Northeastern United States. Selenium (Se) was also examined because of its purported moderating effect on the toxicity of Hg. Hg levels showed significant geographical variation for 10 of 14 species that were caught in more than one region of New Jersey, but there were significant locational differences for Se in only 5 of the fish. Mercury levels were significantly lower in fish collected from northern New Jersey (except for ling, Molva molva), compared to other regions. As might be expected, locational differences in Hg levels were greatest for fish species with the highest Hg concentrations (shark, Isurus oxyrinchus; tuna, Thunnus thynnus and T. albacares; striped bass, Morone saxatilis; bluefish, Pomatomus saltatrix). Fishers and their families might reduce their risk from Hg exposure not only by selecting fish generally lower in Hg, but by fishing predominantly in some regions over others, further lowering the potential risk. Health professionals might use these data to advise patients on which fish are safest to consume (in terms of Hg exposure) from particular geographical regions. PMID:21598171

  15. Mercury in municipal solid wastes and New Jersey mercury prevention and reduction program

    SciTech Connect

    Erdogan, H.; Stevenson, E.

    1994-12-31

    Mercury is a very toxic heavy metal which accumulates in the brain causing neurological damages involving psychasthenic and vegetative syndrome. At high exposure levels it causes behavioral and personality changes, loss of memory and insomnia. Long-term exposure or exposure during pregnancy to mercury or mercury compounds can permanently damage the kidney and fetus. In addition to potential effects on human health, mercury poisoning can also affect other living organisms. Mercury is different than other heavy metals. It consistently biomagnifies and bioaccumulates within the aquatic food chain. Global sources of mercury release are both natural and anthropogenic. Natural sources include volatilization of gaseous-mercury iron soils ana rocks, volcanic releases, evaporation from the ocean and other water bodies. Anthropogenic sources are fuel and coal combustion, mining, smelting, manufacturing activities, disposal of sludge, pesticides, animal and food waste, and incineration of municipal solid waste. Worldwide combustion of municipal solid waste is the second largest source of atmospheric emission of mercury. In New Jersey, incineration of solid waste is the largest source of atmospheric emission of mercury. The New Jersey Department of Environmental Protection and Energy (NJDEPE) has developed a comprehensive program to control and prevent emission of mercury resulting from combustion municipal solid waste.

  16. MERGANSER- Predicting Mercury Levels in Fish and Loons in New England Lakes

    EPA Science Inventory

    MERGANSER (MERcury Geo-spatial AssesmentS for the New England Region) is an empirical least squares multiple regression model using atmospheric deposition of mercury (Hg) and readily obtainable lake and watershed features to predict fish and common loon Hg (as methyl mercury) in ...

  17. Successful Characterization and Remedial Contour of Highly Contaminated Mercury Soil at the Y-12 National Security Complex - 13593

    SciTech Connect

    White, Aaron; Rigas, Michael; Birchfield, Joseph W. III

    2013-07-01

    An area known as the 81-10 pad within the footprint of the Y-12 National Security Complex, suspected to be heavily contaminated with mercury, was slated for characterization in support of a Federal Facilities Agreement (FFA) milestone to be accomplished by September 30, 2012. A full remedial design report (RDR) required the soil in Exposure Unit -9 (EU-9) to be fully characterized for a number of contaminates of concern including mercury. The goal of this characterization effort was to determine what soil, if any, would need to be removed for the protection of industrial workers and impacts to the surface and ground water. Funding for this project was made available using buy-back scope under the American Recovery and Reinvestment Act (ARRA). The EU-9 soil unit involved 3 different classifications which were determined as follows: Class 1: Known to have been impacted, contamination is likely; Class 2: Suspected to have been impacted, contamination is unknown; Class 3: Area not known to have been impacted, contamination unlikely. Due to various sampling and analysis events since the 1980's, significant mercury contamination was expected under the concrete pad of an area known as 81-10. Mercury contamination outside of the boundary of this pad within the EU-9 footprint was not known and therefore an original planned estimate of 1,461 cubic meters of material were expected to be heavily contaminated with mercury requiring removal, treatment and disposal. Through the use of a highly effective nature and extent sampling and analysis design that involved a hybrid of statistically-based and judgmental sampling, the actual remedial contour requiring removal was approximately 717 cubic meters, roughly 12% of the original estimate. This characterization approach was executed in full compliance with the Record of Decision (ROD) [1] documents that were agreed upon by the U.S. Department of Energy, Environmental Protection Agency and Tennessee Department of Environment and Conservation. In addition, the RDR was completed ahead of the FFA milestone date of September 30, 2012. (authors)

  18. Mercury accumulation by lower trophic-level organisms in lentic systems within the Guadalupe River watershed, California

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Moon, Gerald E.; Husby, Peter; Lincoff, Andrew; Carter, James L.; Croteau, Marie-Noële

    2005-01-01

    The water columns of four reservoirs (Almaden, Calero, Guadalupe and Lexington Reservoirs) and an abandoned quarry pit filled by Alamitos Creek drainage for recreational purposes (Lake Almaden) were sampled on September 14 and 15, 2004 to provide the first measurements of mercury accumulation by phytoplankton and zooplankton in lentic systems (bodies of standing water, as in lakes and reservoirs) within the Guadalupe River watershed, California. Because of widespread interest in ecosystem effects associated with historic mercury mining within and downgradient of the Guadalupe Riverwatershed, transfer of mercury to lower trophic-level organisms was examined. The propensity of mercury to bioaccumulate, particularly in phytoplankton and zooplankton at the base of the food web, motivated this attempt to provide information in support of developing trophic-transfer and solute-transport models for the watershed, and hence in support of subsequent evaluation of load-allocation strategies. Both total mercury and methylmercury were examined in these organisms. During a single sampling event, replicate samples from the reservoir water column were collected and processed for dissolved-total mercury, dissolved-methylmercury, phytoplankton mercury speciation, phytoplankton taxonomy and biomass, zooplankton mercury speciation, and zooplankton taxonomy and biomass. The timing of this sampling event was coordinated with sampling and analysis of fish from these five water bodies, during a period of the year when vertical stratification in the reservoirs generates a primary source of methylmercury to the watershed. Ancillary data, including dissolved organic carbon and trace-metal concentrations as well as vertical profiles of temperature, dissolved oxygen, specific conductance and pH, were gathered to provide a water-quality framework from which to compare the results for mercury. This work, in support of the Guadalupe River Mercury Total Maximum Daily Load (TMDL) Study, provides the first measurements of mercury trophic transfer through planktonic communities in this watershed. It is worth reemphasizing that this data set represents a single ?snap shot? of conditions in water bodies within the Guadalupe River watershed to: (1) fill gaps in trophic transfer information, and (2) provide a scientific basis for future process-based studies with enhanced temporal and spatial coverage. This electronic document was unconventionally formatted to enhance the accessibility of information to a wide range of interest groups.

  19. Methylmercury levels and bioaccumulation in the aquatic food web of a highly mercury-contaminated reservoir.

    PubMed

    Carrasco, Luis; Benejam, Lluís; Benito, Josep; Bayona, Josep M; Díez, Sergi

    2011-10-01

    The low Ebro River basin (NE Spain) represents a particular case of chronic and long-term mercury pollution due to the presence of an industrial waste (up to 436 ?g/g of Hg) coming from a chlor-alkali plant Albeit high total mercury (THg) levels have been previously described in several aquatic species from the surveyed area, methylmercury (MeHg) values in fish individuals have never been reported. Accordingly, in order to investigate bioaccumulation patterns at different levels of the aquatic food web of such polluted area, crayfish and various fish species, were analysed for THg and MeHg content. At the hot spot, THg mean values of crayfish muscle tissue and hepatopancreas were 10 and 15 times, respectively, greater than the local background level. Higher mean THg concentrations were detected in piscivorous (THg=0.848 ± 0.476 ?g/g wet weight (ww); MeHg=0.672 ± 0.364 ?g/g ww) than in non-piscivorous fish (THg=0.305 ± 0.163 ?g/g ww; MeHg=0.278 ± 0.239 ?g/g ww). Although these results indicated that THg in fish increased significantly with increasing trophic position, the percentage of the methylated form of Hg was not strongly influenced by differences in relative trophic position. This is an important finding, since the fraction of THg as MeHg in the top fish predator was unexpectedly lower than for other species of the aquatic food chain. Moreover, mean THg concentrations in piscivorous fish exceed the maximum level recommended for human consumption. From our findings, it is clear that for this specific polluted system, speciation becomes almost mandatory when risk assessment is based on MeHg, since single measurements of THg are inadequate and could lead to an over- or under-estimation of contamination levels. PMID:21658770

  20. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.; Li, Wei-Gang

    1995-01-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  1. Can mercury in fish be reduced by water level management? Evaluating the effects of water level fluctuation on mercury accumulation in yellow perch (Perca flavescens)

    USGS Publications Warehouse

    Larson, James H.; Maki, Ryan P.; Knights, Brent C.; Gray, Brian R.

    2014-01-01

    Mercury (Hg) contamination of fisheries is a major concern for resource managers of many temperate lakes. Anthropogenic Hg contamination is largely derived from atmospheric deposition within a lake’s watershed, but its incorporation into the food web is facilitated by bacterial activity in sediments. Temporal variation in Hg content of fish (young-of-year yellow perch) in the regulated lakes of the Rainy–Namakan complex (on the border of the United States and Canada) has been linked to water level (WL) fluctuations, presumably through variation in sediment inundation. As a result, Hg contamination of fish has been linked to international regulations of WL fluctuation. Here we assess the relationship between WL fluctuations and fish Hg content using a 10-year dataset covering six lakes. Within-year WL rise did not appear in strongly supported models of fish Hg, but year-to-year variation in maximum water levels (?maxWL) was positively associated with fish Hg content. This WL effect varied in magnitude among lakes: In Crane Lake, a 1 m increase in ?maxWL from the previous year was associated with a 108 ng increase in fish Hg content (per gram wet weight), while the same WL change in Kabetogama was associated with only a 5 ng increase in fish Hg content. In half the lakes sampled here, effect sizes could not be distinguished from zero. Given the persistent and wide-ranging extent of Hg contamination and the large number of regulated waterways, future research is needed to identify the conditions in which WL fluctuations influence fish Hg content.

  2. Soil properties discriminating Araucaria forests with different disturbance levels.

    PubMed

    Bertini, Simone Cristina Braga; Azevedo, Lucas Carvalho Basilio; Stromberger, Mary E; Cardoso, Elke Jurandy Bran Nogueira

    2015-04-01

    Soil biological, chemical, and physical properties can be important for monitoring soil quality under one of the most spectacular vegetation formation on Atlantic Forest Biome, the Araucaria Forest. Our aim was to identify a set of soil variables capable of discriminating between disturbed, reforested, and native Araucaria forest soils such that these variables could be used to monitor forest recovery and maintenance. Soil samples were collected at dry and rainy season under the three forest types in two state parks at Săo Paulo State, Brazil. Soil biological, chemical, and physical properties were evaluated to verify their potential to differentiate the forest types, and discriminant analysis was performed to identify the variables that most contribute to the differentiation. Most of physical and chemical variables were sensitive to forest disturbance level, but few biological variables were significantly different when comparing native, reforested, and disturbed forests. Despite more than 20 years following reforestation, the reforested soils were chemically and biologically distinct from native and disturbed forest soils, mainly because of the greater acidity and Al3+ content of reforested soil. Disturbed soils, in contrast, were coarser in texture and contained greater concentrations of extractable P. Although biological properties are generally highly sensitive to disturbance and amelioration efforts, the most important soil variables to discriminate forest types in both seasons included Al3+, Mg2+, P, and sand, and only one microbial attribute: the NO2- oxidizers. Therefore, these five variables were the best candidates, of the variables we employed, for monitoring Araucaria forest disturbance and recovery. PMID:25792021

  3. Overview of investigations into mercury in ground water, soils, and septage, New Jersey coastal plain

    USGS Publications Warehouse

    Barringer, J.L.; Szabo, Z.

    2006-01-01

    Since the early 1980s, investigations by health departments of eight counties in southern New Jersey, by the NJ Department of Environmental Protection (NJDEP), and subsequently by the US Geological Survey (USGS), have shown that Hg concentrations in water tapped by about 600 domestic wells exceed the maximum contaminant level (MCL) of 2 ??g/L. The wells are finished in the areally extensive unconfined Kirkwood-Cohansey aquifer system of New Jersey's Coastal Plain; background concentrations of Hg in water from this system are < 0.01 ??g/L. Evidence of contributions from point sources of Hg, such as landfills or commercial and industrial hazardous-waste sites, is lacking. During 1996-2003, the USGS collected water samples from 203 domestic, irrigation, observation, and production wells using ultraclean techniques; septage, leach-field effluent, soils, and aquifer sediments also were sampled. Elevated concentrations of NH4, B, Cl, NO3, and Na and presence of surfactants in domestic-well water indicate that septic-system effluent can affect water quality in unsewered residential areas, but neither septage nor effluent appears to be a major Hg source. Detections of hydrogen sulfide in ground water at a residential area indicate localized reducing conditions; undetectable SO4 concentrations in water from other residential areas indicate that reducing conditions, which could be conducive to Hg methylation, may be common locally. Volatile organic compounds (VOCs), mostly chlorinated solvents, also are found in ground water at the affected areas, but statistically significant associations between presence of Hg and VOCs were absent for most areas evaluated. Hg concentrations are lower in some filtered water samples than in paired unfiltered samples, likely indicating that some Hg is associated with particles or colloids. The source of colloids may be soils, which, when undisturbed, contain higher concentrations of Hg than do disturbed soils and aquifer sediments. Soil disturbance during residential development and inputs from septic systems are hypothesized to mobilize Hg from soils to ground water. ?? Springer 2006.

  4. Soil organic matter must be restored to near original levels

    SciTech Connect

    Wallace, A. )

    1994-01-01

    Burning of fossil fuels globally helps put 3 billion metric tons of carbon into the atmosphere per year more than is removed by all carbon sinks, By far the best use of that carbon would be to arrange sufficient extra plan growth and then transfer that plant growth into new stable soil organic matter. Twenty or more years of such effort would immensely improve the soils of the world. Any fraction of it would help decrease the threat of global greenhouse warming. A great worldwide goal should be to increase levels of soil organic matter levels considerably. It should be possible. The most important research relating to soil organic matter is perhaps yet to be done. Elucidation of the regulators involved in the build-up and decomposition processes of various types of soil organic matter deserves high priority. It should be possible to develop technologies where the regulators can be managed and controlled for the beneficial purpose of increasing levels of soil organic matter. The role of calcium in stabilizing soil organic matter needs more study. Genetic engineering of specific microorganisms may be needed to increase levels of soil organic matter.

  5. Seasonal, locational and size variations in mercury and selenium levels in striped bass (Morone saxatilis) from New Jersey

    PubMed Central

    Gochfeld, Michael; Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn

    2014-01-01

    We examined total mercury and selenium levels in muscle of striped bass (Morone saxatilis) collected from 2005 to 2008 from coastal New Jersey. Of primary interest was whether there were differences in mercury and selenium levels as a function of size and location, and whether the legal size limits increased the exposure of bass consumers to mercury. We obtained samples mainly from recreational anglers, but also by seine and trawl. For the entire sample (n = 178 individual fish), the mean (± standard error) for total mercury was 0.39 ± 0.02 ?g/g (= 0.39 ppm, wet weight basis) with a maximum of 1.3 ?g/g (= 1.3 ppm wet weight). Mean selenium level was 0.30 ± 0.01 ?g/g (w/w) with a maximum of 0.9 ?g/g). Angler-caught fish (n = 122) were constrained by legal size limits to exceed 61 cm (24 in.) and averaged 72.6 ± 1.3 cm long; total mercury averaged 0.48 ± 0.021 ?g/g and selenium averaged 0.29 ± 0.01 ?g/g. For comparable sizes, angler-caught fish had significantly higher mercury levels (0.3 vs 0.21 ?g/g) than trawled fish. In both the total and angler-only samples, mercury was strongly correlated with length (Kendall tau = 0.37; p < 0.0001) and weight (0.38; p < 0.0001), but was not correlated with condition or with selenium. In the whole sample and all subsamples, total length yielded the highest r2 (up to 0.42) of any variable for both mercury and selenium concentrations. Trawled fish from Long Branch in August and Sandy Hook in October were the same size (68.9 vs 70.1 cm) and had the same mercury concentrations (0.22 vs 0.21 ppm), but different selenium levels (0.11 vs 0.28 ppm). The seined fish (all from Delaware Bay) had the same mercury concentration as the trawled fish from the Atlantic coast despite being smaller. Angler-caught fish from the North (Sandy Hook) were larger but had significantly lower mercury than fish from the South (mainly Cape May). Selenium levels were high in small fish, low in medium-sized fish, and increased again in larger fish, but overall selenium was correlated with length (tau = 0.14; p = 0.006) and weight (tau = 0.27; p < 0.0001). Length-squared contributed significantly to selenium models, reflecting the non-linear relationship. Inter-year differences were explained partly by differences in sizes. The selenium:mercury molar ratio was below 1:1 in 20% of the fish and 25% of the angler-caught fish. Frequent consumption of large striped bass can result in exposure above the EPA’s reference dose, a problem particularly for fetal development. PMID:22226733

  6. Seasonal, locational and size variations in mercury and selenium levels in striped bass (Morone saxatilis) from New Jersey.

    PubMed

    Gochfeld, Michael; Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn

    2012-01-01

    We examined total mercury and selenium levels in muscle of striped bass (Morone saxatilis) collected from 2005 to 2008 from coastal New Jersey. Of primary interest was whether there were differences in mercury and selenium levels as a function of size and location, and whether the legal size limits increased the exposure of bass consumers to mercury. We obtained samples mainly from recreational anglers, but also by seine and trawl. For the entire sample (n=178 individual fish), the mean (±standard error) for total mercury was 0.39±0.02 ?g/g (=0.39 ppm, wet weight basis) with a maximum of 1.3 ?g/g (=1.3 ppm wet weight). Mean selenium level was 0.30±0.01 ?g/g (w/w) with a maximum of 0.9 ?g/g). Angler-caught fish (n=122) were constrained by legal size limits to exceed 61 cm (24 in.) and averaged 72.6±1.3 cm long; total mercury averaged 0.48±0.021 ?g/g and selenium averaged 0.29±0.01 ?g/g. For comparable sizes, angler-caught fish had significantly higher mercury levels (0.3 vs 0.21 ?g/g) than trawled fish. In both the total and angler-only samples, mercury was strongly correlated with length (Kendall tau=0.37; p<0.0001) and weight (0.38; p<0.0001), but was not correlated with condition or with selenium. In the whole sample and all subsamples, total length yielded the highest r(2) (up to 0.42) of any variable for both mercury and selenium concentrations. Trawled fish from Long Branch in August and Sandy Hook in October were the same size (68.9 vs 70.1cm) and had the same mercury concentrations (0.22 vs 0.21 ppm), but different selenium levels (0.11 vs 0.28 ppm). The seined fish (all from Delaware Bay) had the same mercury concentration as the trawled fish from the Atlantic coast despite being smaller. Angler-caught fish from the North (Sandy Hook) were larger but had significantly lower mercury than fish from the South (mainly Cape May). Selenium levels were high in small fish, low in medium-sized fish, and increased again in larger fish, but overall selenium was correlated with length (tau=0.14; p=0.006) and weight (tau=0.27; p<0.0001). Length-squared contributed significantly to selenium models, reflecting the non-linear relationship. Inter-year differences were explained partly by differences in sizes. The selenium:mercury molar ratio was below 1:1 in 20% of the fish and 25% of the angler-caught fish. Frequent consumption of large striped bass can result in exposure above the EPA's reference dose, a problem particularly for fetal development. PMID:22226733

  7. Atmospheric mercury incorporation in soils of an area impacted by a chlor-alkali plant (Grenoble, France): contribution of canopy uptake.

    PubMed

    Guédron, Stéphane; Grangeon, Sylvain; Jouravel, Glorianne; Charlet, Laurent; Sarret, Géraldine

    2013-02-15

    This study focused on the fluxes of mercury (Hg) and mechanisms of incorporation into soils surrounding a chlor-alkali plant suspected to have emitted up to ~600 kg Hg year(-1) for decades into the atmosphere. Comparison of vertical Hg soil profiles with As, Cu, Ni and Zn (which were not emitted by the plant) support Hg enrichment in surface horizons due to atmospheric Hg inputs from the chlor-alkali plant. Based on chemical extractions and elemental correlations, Hg was found to be weakly leachable and bio-available for plants, and most probably strongly bound to organic matter. In contrast, other trace elements were probably associated with phyllosilicates, iron oxides or with primary minerals. Hg stocks in the surface horizon of a forested soil (1255 mg Hg m(-3)) were two-fold higher than in an agricultural soil (636 mg Hg m(-3)) at a similar distance to the plant. The difference was attributed to the interception of atmospheric Hg by the canopy (most likely gaseous elemental Hg and reactive gaseous Hg) and subsequent litterfall incorporation. Some differences in the ability to trap atmospheric Hg were observed between tree species. The characterization of the litter showed an increasing Hg concentration in the plant material proportional to their degradation stage. In agricultural soils, very low Hg concentrations found in corn leaves and grains suggested a limited uptake via both the foliar and root pathways. Thus, the short-term risk of Hg transfer to agricultural crops and higher levels of the trophic chain appeared limited. A possible risk which remains to be evaluated is the possible transfer of Hg-rich particles from the forest topsoil to downstream aquatic ecosystems during rain and snowmelt events. PMID:23354376

  8. Total mercury, cadmium and lead levels in main export fish of Sri Lanka.

    PubMed

    Jinadasa, B K K K; Edirisinghe, E M R K B; Wickramasinghe, I

    2014-01-01

    Total mercury (Hg), cadmium (Cd) and lead (Pb) levels were determined in the muscle of four commercialised exported fish species Thunnus albacares (yellowfin tuna), Xiphias gladius (swordfish), Makaira indica (black marlin) and Lutjanus sp (red snapper) collected from the Indian Ocean, Sri Lanka, during July 2009-March 2010 and measured by atomic absorption spectrophotometry. Results show that swordfish (n = 176) contained the highest total Hg (0.90 ± 0.51 mg/kg) and Cd (0.09 ± 0.13 mg/kg) levels, whereas yellowfin tuna (n = 140) contained the highest Pb levels (0.11 ± 0.16 mg/kg). The lowest total Hg (0.16 ± 0.11 mg/kg), Cd (0.01 ± 0.01 mg/kg) and Pb (0.04 ± 0.04 mg/kg) levels were found in red snapper (n = 28). Black marlin (n = 24) contained moderate levels of total Hg (0.49 ± 0.37), Cd (0.02 ± 0.02) and Pb (0.05 ± 0.05). Even though there are some concerns during certain months of the year, this study demonstrates the safety of main export fish varieties in terms of total Hg, Cd and Pb. PMID:25070289

  9. Evidence of Mercurial Contamination and Denundation Downstream of New Idria Mercury Mine, San Benito County, California

    NASA Astrophysics Data System (ADS)

    Letsinger, H. E.; Sharma, R. K.; Weinman, B.

    2014-12-01

    California's Central Valley water quality and soils are essential to the survival of the valley's communities and agriculture. Therefore, detection of possible contaminants within the valley streams and soils are paramount to the protection of this land and the people that depend upon it. Here we explore the impact of the contaminated stream beds near the New Idria Mercury Mine site, San Benito County, California. Previous work by Ganguli et al. (2000) has been done in this area to determine the mercury levels associated with the water that flows near the ghost town of New Idria. We performed geochemical analyses on the finer bed sediments from channels draining the area, as well as the coarser sediments taken from along the channel banks, to determine mercury transport downriver from the source. Using a novel application of tau, a mass transfer coefficient typically used in critical zone studies or soil production and weathering rates, we determine downstream weathering, accumulation, and transport of mercury. Our initial geochemical data showed higher tau values upstream as well as within the banks of the contaminated streambed and a greater accumulation of mercury near the pollution source (i.e., mine tailings, (? ~ 103)). Tau results also show elevated mercurial levels existing downstream, with accumulations in mid- (? ~ 102) and down-stream (? ~ 10) reaches. Combining tau results with more traditional indices of chemical weathering (CIA) support consistent overall Hg-weathering processes with low levels of chemical weathering and higher dominance of coupled physical-anthropogenic weathering.

  10. The Effect of Mercury and PCBs on Organisms from Lower Trophic Levels of a Georgia Salt Marsh

    E-print Network

    Pennings, Steven C.

    The Effect of Mercury and PCBs on Organisms from Lower Trophic Levels of a Georgia Salt Marsh V. D Abstract. We examined several indicators of salt marsh func- tion, focusing on primary producers, microbes.S. salt marshes support a vigorous detrital-based food web (Montague and Wiegert 1990; Vernberg 1993

  11. POPULATION-LEVEL RESPONSE OF THE COMMON LOON TO MERCURY IN TWO CANADIAN PROVINCES: A MATRIX MODELING APPROACH

    EPA Science Inventory

    We used data collected from Common Loon Gavia immer populations in two Canadian provinces to demonstrate a matrix population modeling approach for evaluating population-level responses to stressors and to understand how these populations may have responded to mercury contaminatio...

  12. Behavior of mercury in bio-systems. II. Depuration of /sup 203/Hg/sup 2 +/ in various trophic levels

    SciTech Connect

    Hamdy, M.K.; Prabhu, N.V.

    1984-01-01

    Using radiotracer techniques, the depuration rates for methylmercury at three trophic levels in an aquatic ecosystem are examined. Bacteria (decomposers), mosquito larvae (primary consumers), and fish (secondary consumers) were studied. Results indicated that depuration rates for mercury were temperature dependent - the rate of depuration increased with increase in temperature (up to 45/sup 0/C)

  13. Total mercury levels in hair, toenail, and urine among women free from occupational exposure and their relations to renal tubular function

    SciTech Connect

    Ohno, Tomoko; Sakamoto, Mineshi; Kurosawa, Tomoko; Dakeishi, Miwako; Iwata, Toyoto; Murata, Katsuyuki . E-mail: winestem@med.akita-u.ac.jp

    2007-02-15

    To investigate the relations among total mercury levels in hair, toenail, and urine, together with potential effects of methylmercury intake on renal tubular function, we determined their levels, and urinary N-acetyl-{beta}-d-glucosaminidase activity (NAG) and {alpha}{sub 1}-microglobulin (AMG) in 59 women free from occupational exposures, and estimated daily mercury intakes from fish and other seafood using a food frequency questionnaire. Mercury levels (mean+/-SD) in the women were 1.51+/-0.91{mu}g/g in hair, 0.59+/-0.32{mu}g/g in toenail, and 0.86+/-0.66{mu}g/g creatinine in urine; and, there were positive correlations among them (P<0.001). The daily mercury intake of 9.15+/-7.84{mu}g/day was significantly correlated with total mercury levels in hair, toenail, and urine (r=0.551, 0.537, and 0.604, P<0.001). Among the women, the NAG and AMG were positively correlated with both the daily mercury intake and mercury levels in hair, toenail, and urine (P<0.01); and, these relations were almost similar when using multiple regression analysis to adjust for possible confounders such as urinary cadmium (0.47+/-0.28{mu}g/g creatinine) and smoking status. In conclusion, mercury resulting from fish consumption can explain total mercury levels in hair, toenail, and urine to some degree (about 30%), partly through the degradation into the inorganic form, and it may confound the renal tubular effect of other nephrotoxic agents. Also, the following equation may be applicable to the population neither with dental amalgam fillings nor with occupational exposures: [hair mercury ({mu}g/g)]=2.44x[toenail mercury ({mu}g/g)].

  14. High levels of reactive gaseous mercury observed at a high elevation research laboratory in the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Faďn, X.; Obrist, D.; Hallar, A. G.; McCubbin, I.; Rahn, T.

    2009-10-01

    The chemical cycling and spatiotemporal distribution of mercury in the troposphere is poorly understood. We measured gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate mercury (HgP) along with carbon monoxide (CO), ozone (O3), aerosols, and meteorological variables at Storm Peak Laboratory at an elevation of 3200 m a.s.l., in Colorado, from 28 April to 1 July 2008. The mean mercury concentrations were 1.6 ng m-3 (GEM), 20 pg m-3 (RGM) and 9 pg m-3 (HgP). We observed eight events of strongly enhanced atmospheric RGM levels with maximum concentrations up to 137 pg m-3. RGM enhancement events lasted for long time periods of 2 to 6 days showing both enriched level during daytime and nighttime when other tracers (e.g., aerosols) showed different representations of boundary layer air and free tropospheric air. During seven of these events, RGM was inversely correlated to GEM (RGM/GEM regression slope ~-0.1), but did not exhibit correlations with ozone, carbon monoxide, or aerosol concentrations. Relative humidity was the dominant factor affecting RGM levels with high RGM levels always present whenever relative humidity was below 40 to 50%. We conclude that RGM enhancements observed at Storm Peak Laboratory were not induced by pollution events and were related to oxidation of tropospheric GEM. High RGM levels were not limited to upper tropospheric or stratospherically influenced air masses, indicating that entrainment processes and deep vertical mixing of free tropospheric air enriched in RGM may lead to high RGM levels throughout the troposphere and into the boundary layer over the Western United States. Based on backtrajectory analysis and a lack of mass balance between RGM and GEM, atmospheric production of RGM may also have occurred in some distance allowing for scavenging and/or deposition of RGM prior to reaching the laboratory. Our observations provide evidence that the tropospheric pool of mercury is frequently enriched in divalent mercury, that high RGM levels are not limited to upper tropospheric air masses, but that the build-up of high RGM in the troposphere is limited to the presence of dry air.

  15. Development of novel activated carbon-based adsorbents for the control of mercury emissions from coal-fired power plants

    SciTech Connect

    Radisav D. Vidic

    1999-03-01

    In addition to naturally occurring mercury sources, anthropogenic activities increase the mercury loading to the environment. Although not all produced mercury is dissipated directly into the environment, only minor portions of the total production are stocked or recycled, and the rest of the mercury and its compounds is finally released in some way into atmosphere, surface waters and soil, or ends in landfills dumps, and refuse. Since mercury and its compounds are highly toxic, their presence in the environment constitutes potential impact on all living organisms, including man. The first serious consequence of industrial mercury discharges causing neurological disorder even death occurred in Minimata, Japan in 1953. Systematic studies showed that mercury poisoning is mainly found in fish-eating populations. However, various levels of mercury are also found in food other than fish. During the past several decades, research has been conducted on the evaluation of risks due to exposure to mercury and the development of control technologies for mercury emissions. In 1990, the Clean Air Act Amendments listed mercury, along with 10 other metallic species, as a hazardous air pollutant (HAP). This has further stimulated research for mercury control during the past several years. The impact of mercury on humans, sources of mercury in the environment, current mercury control strategies and the objective of this research are discussed in this section.

  16. Mercury cycling in terrestrial watersheds

    USGS Publications Warehouse

    Shanley, James B.; Bishop, Kevin

    2012-01-01

    This chapter discusses mercury cycling in the terrestrial landscape, including inputs from the atmosphere, accumulation in soils and vegetation, outputs in streamflow and volatilization, and effects of land disturbance. Mercury mobility in the terrestrial landscape is strongly controlled by organic matter. About 90% of the atmospheric mercury input is retained in vegetation and organic matter in soils, causing a buildup of legacy mercury. Some mercury is volatilized back to the atmosphere, but most export of mercury from watersheds occurs by streamflow. Stream mercury export is episodic, in association with dissolved and particulate organic carbon, as stormflow and snowmelt flush organic-rich shallow soil horizons. The terrestrial landscape is thus a major source of mercury to downstream aquatic environments, where mercury is methylated and enters the aquatic food web. With ample organic matter and sulfur, methylmercury forms in uplands as well—in wetlands, riparian zones, and other anoxic sites. Watershed features (topography, land cover type, and soil drainage class) are often more important than atmospheric mercury deposition in controlling the amount of stream mercury and methylmercury export. While reductions in atmospheric mercury deposition may rapidly benefit lakes, the terrestrial landscape will respond only over decades, because of the large stock and slow turnover of legacy mercury. We conclude with a discussion of future scenarios and the challenge of managing terrestrial mercury.

  17. Low-level mercury in children: associations with sleep duration and cytokines TNF-? and IL-6.

    PubMed

    Gump, Brooks B; Gabrikova, Elena; Bendinskas, Kestutis; Dumas, Amy K; Palmer, Christopher D; Parsons, Patrick J; MacKenzie, James A

    2014-10-01

    There is a sizeable literature suggesting that mercury (Hg) exposure affects cytokine levels in humans. In addition to their signaling role in the immune system, some cytokines are also integrally associated with sleep behavior. In this cross-sectional study of 9-11 year old children (N=100), we measured total blood Hg in whole blood, serum levels of tumor necrosis factor ? (TNF-?) and interleukin 6 (IL-6), and objectively measured sleep and activity using actigraphy. Increasing blood Hg was associated with significantly shorter sleep duration and lower levels of TNF-?. IL-6 was not associated with sleep or blood Hg. This study is the first to document an association between total blood Hg and sleep (albeit a small effect), and the first to consider the associations of total blood Hg with cytokines TNF-? and IL-6 in a pediatric sample. Further research using alternative designs (e.g., time-series) is necessary to determine if there is a causal pathway linking low-level Hg exposure to sleep restriction and reduced cytokines. PMID:25173056

  18. Different approaches to establish soil organic carbon saturation level

    NASA Astrophysics Data System (ADS)

    Gristina, L.; Lo Magno, G. L.; Novara, A.

    2012-04-01

    Current estimates of potential organic carbon content in soil have been developed using linear or saturation models. Linear model assumes a first order kinetics for decomposition processes, and a linear relationship between C input level and soil organic carbon (SOC) level at equilibrium; while saturation model suggests little o no increase in steady state SOC stock with an increase of Carbon input. Our results from a long term experiment (20 years), carried out in a Mediterranean agro-ecosystem, showed no difference in carbon accumulation with an increase of carbon input, and seem to suggest that soil can become saturated.It is need additional research on which are the mathematical expressions that better describe SOC saturation in different environment and how quantify the carbon saturation level. In this research we propose three different approaches based on mathematical, economic and environmental criteria to establish the soil carbon storage potential.

  19. Projecting Fish Mercury Levels in the Province of Ontario, Canada and the Implications for Fish and Human Health.

    PubMed

    Gandhi, Nilima; Bhavsar, Satyendra P; Tang, Rex W K; Arhonditsis, George B

    2015-12-15

    Fish mercury levels appear to be increasing in Ontario, Canada, which covers a wide geographical area and contains about 250?000 lakes including a share of the North American Great Lakes. Here we project 2050 mercury levels in Ontario fish, using the recently measured levels and rates of changes observed during the last 15 years, and present potential implications for fish and human health. Percentage of northern Ontario waterbodies where sublethal effects of mercury on fish can occur may increase by 2050 from 60% to >98% for Walleye (WE), 44% to 59-70% for Northern Pike (NP), and 70% to 76-92% for Lake Trout (LT). Ontario waterbodies with unrestricted fish consumption advisories for the general population may deteriorate from 24-76% to <1-33% for WE, 40-95% to 1-93% for NP, and 39-89% to 18-86% for LT. Similarly, Ontario waterbodies with do not eat advisories for the sensitive population may increase from 32-84% to 73-100% for WE, 9-72% to 12-100% for NP, and 19-71% to 24-89% for LT. Risk to health of Ontario fish and humans consuming these fish may increase substantially over the next few decades if the increasing mercury trend continues and updated advisories based on continued monitoring are not issued/followed. PMID:26592742

  20. Investigation of increased mercury levels in the fisheries of Lower East Fork Poplar Creek (Lefpc), Oak Ridge Reservation, Tennessee

    SciTech Connect

    Byrne-Kelly, D.; Cornish, J.; Hart, A.; Southworth, G.; Sims, L.

    2007-07-01

    The DOE Western Environmental Technology Office (WETO) is supporting remediation efforts on the U.S. Department of Energy Oak Ridge Reservation in Oak Ridge, Tennessee by performing this study. MSE Technology Applications, Inc. (MSE) has performed a series of literature reviews and bench-scale testing to further evaluate the mercury problem in the Lower East Fork Poplar Creek (LEFPC) at Oak Ridge. The primary problem is that total mercury (HgT) levels in LEFPC water decrease, while HgT levels in sunfish muscle tissue increase, with distance away from the National Security Complex (NSC), despite extensive source control efforts at the facility and within downstream riparian zones. Furthermore, dissolved methylmercury (d-MeHg) levels increase downstream from the NSC, especially during warm weather and/or high flow events. MSE performed four test series that focused on conversion of aqueous phase elemental mercury (Hg deg. A) to methyl mercury (MeHg) by algal-bacterial bio-films (periphyton) present in the stream-bed of LEFPC. Small (mg/L) quantities of un-sulphured molasses and peptone were added to some of the Hinds Creek samples to stimulate initial bacterial growth. Other Hinds Creek samples either were dosed with glutaraldehyde to preclude microbial growth, or were wrapped in aluminum foil to preclude Hg photochemical redox effects. The bench-scale testing for Phase II was completed August 2006. The final reporting and the planning for Phase III testing are in progress. (authors)

  1. DEVELOPING SOIL SCREENING LEVELS FOR SOIL INVERTEBRATES AND PLANTS

    EPA Science Inventory

    U.S. Environmental Protection Agency (USEPA), as part of a collaborative effort among USEPA, DoD, DOE, states, universities and industry, is developing Ecological Screening Levels (Eco-SSLs) for approximately 24 of the most common contaminants founrd at Superfund sites. Eco-SSLs ...

  2. Factors Affecting Mercury and Selenium Levels-in New Jersey Flatfish: Low Risk to Human Consumers

    PubMed Central

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Shukla, Sheila; Gochfeld, Michael

    2014-01-01

    Some fish contain high levels of mercury (Hg), which could pose a risk to fish eaters themselves or their children. In making decisions about fish consumption, people must decide whether to eat fish, how much to eat, what species to eat, and what size fish to eat, as well as suitable (or unsuitable) locations, among other factors. Yet to make sound decisions, people need to know the levels of Hg in fish as a function of species, size, and location of capture. Levels of Hg and selenium (Se) were examined in three species of flatfish (fluke or summer flounder [Paralichthys dentatus], winter flounder [Pseudopleuronectes americanus], and windowpane [Scophthalmus aquosus]) from New Jersey as a function of species, fish size, season, and location. Flatfish were postulated to have low levels of Hg because they are low on the food chain and are bottom feeders, and data were generated to provide individuals with information on a species that might be safe to eat regularly. Although there were interspecific differences in Hg levels in the 3 species, total Hg levels averaged 0.18, 0.14, and 0.06 ppm (?g/g, wet weigh) in windowpane, fluke, and winter flounder, and selenium levels averaged 0.36, 0.35, and 0.25 ppm, respectively. For windowpane, 15% had Hg levels above 0.3 ppm, but no individual fish had Hg levels over 0.5 ppm. There were no significant seasonal differences in Hg levels, although Se was significantly higher in fluke in summer compared to spring. There were few geographical differences among New Jersey locations. Correlations between Hg and Se levels were low. Data, based on 464 fish samples, indicate that Hg levels are below various advisory levels and pose little risk to typical New Jersey fish consumers. A 70-kg person eating 1 meal (8 oz or 227 g) per week would not exceed the U.S. Environmental Protection Agency reference dose of 0.1 ?g/kg body weight/d of methylmercury (MeHg). However, high-end fish eaters consuming several such meals per week may exceed recommended levels. PMID:19557613

  3. Mercury and methylmercury levels in the main traded fish species in Hong Kong.

    PubMed

    Chung, S W C; Kwong, K P; Tang, A S P; Xiao, Y; Ho, P Y Y

    2008-01-01

    Levels of total mercury (tHg) and mono-methylmercury (MeHg) were measured in 280 different fish, including fresh/frozen raw whole fish of 89 different species and canned tuna fish of three different species, that are traded mainly in Hong Kong, China. These samples were purchased from different commercial outlets between April and August 2007. All samples of raw whole fish were identified at species level by the Agriculture, Fisheries and Conservation Department. The range for tHg and MeHg of all samples were 3-1370 and 3-1010 µg kg(-1), respectively, with medians of 63 and 48 µg kg(-1), respectively. The results show that, according to Hong Kong legislation, the products on the market are generally 'safe'. A total of 277 samples (99?) contained tHg and MeHg below the legal limit of 500 µg kg(-1). The remaining three samples of alfonsino (species: Beryx splendens) were found to contain tHg and MeHg at levels higher than 500 µg kg(-1) (tHg: 609-1370 µg kg(-1); MeHg: 509-1010 µg kg(-1)). The ratios of MeHg to tHg in the different fish species ranged from 0.46 to 0.99. PMID:24784806

  4. Superpredation increases mercury levels in a generalist top predator, the eagle owl.

    PubMed

    Lourenço, Rui; Tavares, Paula C; del Mar Delgado, Maria; Rabaça, Joăo E; Penteriani, Vincenzo

    2011-06-01

    Superpredation can increase the length of the food chain and potentially lead to mercury (Hg) bioaccumulation in top predators. We analysed the relationship of Hg concentrations in eagle owls Bubo bubo to diet composition and the percentage of mesopredators in the diet. Hg levels were measured in the adult feathers of eagle owls from 33 owl territories in the south-western Iberian Peninsula, and in three trophic levels of their prey: primary consumers, secondary consumers and mesopredators. In addition, we studied 6,181 prey in the eagle owl diet. Hg concentrations increased along the food chain, but the concentrations in eagle owls showed considerable variation. The Hg concentration in eagle owls increased when the percentage of mesopredators in the diet increased and the percentage of primary consumers decreased. Superpredation is often related to food stress, and the associated increase in accumulation of Hg may cause additional negative effects on vertebrate top predators. Hg levels in these eagle owl populations are relatively low, but future monitoring is recommended. PMID:21298339

  5. Zinc and N-acetylcysteine modify mercury distribution and promote increase in hepatic metallothionein levels.

    PubMed

    Oliveira, Vitor Antunes; Oliveira, Cláudia Sirlene; Mesquita, Mariana; Pedroso, Taise Fonseca; Costa, Lidiane Machado; Fiuza, Tiago da Luz; Pereira, Maria Ester

    2015-10-01

    This study investigated the ability of zinc (Zn) and N-acetylcysteine (NAC) in preventing the biochemical alterations caused by mercury (Hg) and the retention of this metal in different organs. Adult female rats received ZnCl2 (27mg/kg) and/or NAC (5mg/kg) or saline (0.9%) subcutaneously and after 24h they received HgCl2 (5mg/kg) or saline (0.9%). Twenty-four hours after, they were sacrificed and analyses were performed. Hg inhibited hepatic, renal, and blood ?-aminolevulinic acid dehydratase (?-ALA-D) activity, decreased renal total thiol levels, as well as increased serum creatinine and urea levels and aspartate aminotransferase activity. HgCl2-exposed groups presented an important retention of Hg in all the tissues analyzed. All pre-treatments demonstrated tendency in preventing hepatic ?-ALA-D inhibition, whereas only ZnCl2 showed this effect on blood enzyme. Moreover, the combination of these compounds completely prevented liver and blood Hg retention. The exposure to Zn and Hg increased hepatic metallothionein levels. These results show that Zn and NAC presented promising effects against the toxicity caused by HgCl2. PMID:26302927

  6. DEVELOPMENT AND TEST APPLICATION A SCREENING-LEVEL MERCURY FATE MODEL AND TOOL FOR EVALUATING WILDLIFE EXPOSURE RISK FOR SURFACE WATERS WITH MERCURY-CONTAMINATED SEDIMENTS (SERAFM)

    EPA Science Inventory

    Complex chemical cycling of mercury in aquatic ecosystems means that tracing the linkage between anthropogenic and natural loadings of mercury to watersheds and water bodies and associated concentrations in the environment are difficult to establish without the assistance of nume...

  7. Influence of socio-demographic and diet determinants on the levels of mercury in preschool children from a Mediterranean island.

    PubMed

    Garí, Mercč; Grimalt, Joan O; Torrent, Maties; Sunyer, Jordi

    2013-11-01

    Mercury levels measured in 302 hair samples of 4 year-old children from Menorca (western Mediterranean Sea) are reported. Their concentrations, arithmetic mean 1.4 ?g/g, ranging between 0.040 ?g/g and 10 ?g/g, were higher than in other children inland populations but lower than in previously studied island cohorts, e.g. Faroe, Madeira and Seychelles. 20% of the samples were above the WHO recommended values. Higher concentrations in females than males were observed. Frequent consumption of fish and other seafood were significantly related to the observed mercury concentrations. Oily fish was the main source of this pollutant but shellfish and squid consumption were also associated with high mercury concentrations. Maternal smoking, occupational status or previous siblings were also found to significantly influence the levels of this pollutant. McCarthy Scales of Children's Abilities used to assess children's motor and cognitive abilities did not show association with mercury concentrations at 4 years of age. PMID:23959058

  8. Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Witwicki, D.L.; Miller, M.E.

    2008-01-01

    Biological soil crusts (BSCs) are an integral part of dryland ecosystems and often included in long-term ecological monitoring programs. Estimating moss and lichen cover is fairly easy and non-destructive, but documenting cyanobacterial level of development (LOD) is more difficult. It requires sample collection for laboratory analysis, which causes soil surface disturbance. Assessing soil surface stability also requires surface disturbance. Here we present a visual technique to assess cyanobacterial LOD and soil surface stability. We define six development levels of cyanobacterially dominated soils based on soil surface darkness. We sampled chlorophyll a concentrations (the most common way of assessing cyanobacterial biomass), exopolysaccharide concentrations, and soil surface aggregate stability from representative areas of each LOD class. We found that, in the laboratory and field, LOD classes were effective at predicting chlorophyll a soil concentrations (R2=68-81%), exopolysaccharide concentrations (R2=71%), and soil aggregate stability (R2=77%). We took representative photos of these classes to construct a field guide. We then tested the ability of field crews to distinguish these classes and found this technique was highly repeatable among observers. We also discuss how to adjust this index for the different types of BSCs found in various dryland regions.

  9. Mercury availability by operationally defined fractionation in granulometric distributions of soils and mine wastes from an abandoned cinnabar mine.

    PubMed

    Fernández-Martínez, R; Loredo, J; Ordóńez, A; Rucandio, I

    2014-05-01

    Mercury contamination from historic cinnabar mines represents a potential risk to the environment. Asturias, in Northern Spain, was one of the largest metallurgic and mining producer areas of Hg in Europe during the 20th century until the end of activities in 1974. Mining operations have caused Hg release and dispersion throughout the area. In this study, soils collected from calcine piles and surrounding soils at an abandoned Hg mine and metallurgical plant in Mieres (Asturias, Spain) were distributed in different particle-size subsamples. Fractionation of Hg was performed by means of a Hg-specific sequential extraction procedure complemented with the selective determination of organic Hg fraction by a specific extraction method. Extremely high concentrations of total Hg were found in calcine piles. Concentrations and mobility of Hg decreased markedly with the distance in soils located 25 m both above and below the chimney of the metallurgical plant. The sequential extraction results indicated that Hg is primarily found as elemental Hg followed by sulfide Hg in the finest subsamples. However, this distribution is inverted in the coarser grain fractions where sulfide Hg prevails. Calcine piles exhibited exceptionally high values of mobile Hg (up to 5350 ?g g(-1) in the finest subsample). Accumulation of Hg in the elemental Hg fraction was observed at decreasing grain size which is indicative of deposition of Hg vapors from the metallurgical plant. Enrichment of sulfide Hg was found in the finest subsamples of soils sampled below the chimney (up to 99 ?g g(-1)). Significant organic Hg contents were observed in the soil samples (up to 2.8 ?g g(-1)), higher than those found in other abandoned Hg mining sites. A strong correlation was observed between organic Hg and Hg humic and fulvic complexes, as well as with the elemental Hg fraction. This indicates that both humic and fulvic material and elemental Hg must be the primary variables controlling Hg methylation in these soils. PMID:24664209

  10. A coupled monitoring network to conduct an assessment of mercury transformation and mobilization in floodplain soils: South River, Virginia

    NASA Astrophysics Data System (ADS)

    Lazareva, O.; Sparks, D. L.; Landis, R.; Ptacek, C. J.; Hicks, S.; Montgomery, D.

    2013-12-01

    Mercury (Hg) was used between 1929 and 1950 by the DuPont plant in the production of rayon acetate fiber in Waynesboro, Virginia and released into the South River. The contamination of Hg was discovered in the 1970s and remained elevated in water, soil, sediments, and biota. The primary goal of this study is to investigate the processes that govern biogeochemical transformation and mobilization of Hg in floodplain soils at South River Mile 3.5, characterize geochemical gradients in soils and how they change over time, and to enable targeted sampling at Hg loading hot spots. The biogeochemical data will play a supporting role and be used to further develop our understanding of the processes controlling the leaching of Hg and our conceptual model. Our over-arching hypothesis is to test if leaching of bank soils is a significant source of dissolved or colloidal inorganic Hg. This effort requires an interdisciplinary geochemical approach and sensor technology to understand the interactions between floodplain soil, groundwater, and river. Our investigation will include 10 months' worth data from a number of state-of-the-art in-situ monitoring sensors, such as custom-designed redox probes, soil moisture, temperature, pressure, and conductivity installed at the site. Our preliminary results showed that the concentration of total Hg in soils was up to 900 mg/kg (wet weight).There is a significant redox gradient across the floodplain soil profile. Within the top 40 -70 cm, major changes in redox conditions from oxidizing (Eh ?+600 mV) to very reducing (Eh ?-300 mV) corresponded to heavy rainfall and overbank flooding events. High variations in stream stage may govern the surface water - groundwater exchange facilitating the downward or upward movement of the capillary fringe and saturated zone through the soil horizons, affecting soil redox potential, stability of Hg-bearing minerals and leaching of inorganic Hg into dissolved and colloidal phases. These phases may be directly transported to the South River or methylated within the saturated zone of the bank and subsequently released.

  11. Landscape influence on soil carbon and nutrient levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Past runoff, erosion, and management practices influence nutrient levels on the landscape. These starting levels affect future nutrient transport due to runoff, erosion, and leaching events. The purpose of this study was to examine closed-depression landscape effects on surface soil organic matter, ...

  12. Mercury Concentrations in Plant Tissues as Affected by FGDG Application to Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flue Gas Desulfurization Gypsum (FGDG) is produced by reducing sulfur dioxide emissions from themo-electric coal-fired power plants. The most common practice of FGDG production may trap some of the Mercury (Hg) present in the coal that normally would escape as vapor in the stack gases. Concern for t...

  13. Mercury, Cadmium, and Lead Levels in Human Placenta: A Systematic Review

    PubMed Central

    Esteban-Vasallo, María D.; Aragonés, Nuria; Pollan, Marina; López-Abente, Gonzalo

    2012-01-01

    Background: Placental tissue may furnish information on the exposure of both mother and fetus. Mercury (Hg), cadmium (Cd), and lead (Pb) are toxicants of interest in pregnancy because they are associated with alterations in child development. Objectives: The aim of this study was to summarize the available information regarding total Hg, Cd, and Pb levels in human placenta and possible related factors. Methods: We performed a systematic search of PubMed/MEDLINE, EMBASE, Lilacs, OSH, and Web of Science for original papers on total Hg, Cd, or Pb levels in human placenta that were published in English or Spanish (1976–2011). Data on study design, population characteristics, collection and analysis of placenta specimens, and main results were extracted using a standardized form. Results: We found a total of 79 papers (73 different studies). Hg, Cd, and Pb levels were reported in 24, 46, and 46 studies, respectively. Most studies included small convenience samples of healthy pregnant women. Studies were heterogeneous regarding populations selected, processing of specimens, and presentation of results. Hg concentrations > 50 ng/g were found in China (Shanghai), Japan, and the Faroe Islands. Cd levels ranged from 1.2 ng/g to 53 ng/g and were highest in the United States, Japan, and Eastern Europe. Pb showed the greatest variability, with levels ranging from 1.18 ng/g in China (Shanghai) to 500 ng/g in a polluted area of Poland. Conclusion: The use of the placenta as a biomarker to assess heavy metals exposure is not properly developed because of heterogeneity among the studies. International standardized protocols are needed to enhance comparability and increase the usefulness of this promising tissue in biomonitoring studies. PMID:22591711

  14. Factors influencing blood mercury levels of inhabitants living near fishing areas.

    PubMed

    Lee, Ching-Chang; Chang, Jung-Wei; Huang, Hsin-Yi; Chen, Hsiu-Ling

    2012-05-01

    Methylmercury (MeHg), a well-known neuro-toxicant, is usually emitted by industrial and other man-made activities; it is ingested with seafood and shellfish, and accumulates in the human body. The aim of this study was to compare the differences in blood levels of total mercury (T-Hg) and MeHg in residents of 4 coastal sites and 4 inland sites around Taiwan. Meanwhile, the potential question is warranted to find out the association between dietary intake and MeHg accumulation. We found that coastal residents had significantly higher mean blood T-Hg levels (mean: 16.1 ?g/L, range: 0.9-184.9 ?g/L) than inland residents (mean: 11.8 ?g/L, range: 0.8-146.6 ?g/L). The same was for blood MeHg levels: coastal residents (mean: 16.5 ?g/L, range: 0.9-184.9 ?g/L), inland residents (mean: 11.8 ?g/L, range: 2.1-133.4 ?g/L). These elevated levels were positively associated with seafood and shellfish consumption. However, the nature of their residential area may also be an important factor, because the highest T-Hg and MeHg levels were found in residents of a relatively non-industrialized area. To protect vulnerable population-especially children and pregnant women-it is important to know whether locally caught or raised and consumed fish has any source of Hg and MeHg pollution. PMID:22444062

  15. Total mercury, methylmercury, and selected elements in soils of the Fishing Brook watershed, Hamilton County, New York, and the McTier Creek watershed, Aiken County, South Carolina, 2008

    USGS Publications Warehouse

    Woodruff, Laurel G.; Cannon, William F.; Knightes, Christopher D.; Chapelle, Francis H.; Bradley, Paul M.; Burns, Douglas A.; Brigham, Mark E.; Lowery, Mark A.

    2010-01-01

    Mercury is an element of on-going concern for human and aquatic health. Mercury sequestered in upland and wetland soils represents a source that may contribute to mercury contamination in sensitive ecosystems. An improved understanding of mercury cycling in stream ecosystems requires identification and quantification of mercury speciation and transport dynamics in upland and wetland soils within a watershed. This report presents data for soils collected in 2008 from two small watersheds in New York and South Carolina. In New York, 163 samples were taken from multiple depths or soil horizons at 70 separate locations near Fishing Brook, located in Hamilton County. At McTier Creek, in Aiken County, South Carolina, 81 samples from various soil horizons or soil depths were collected from 24 locations. Sample locations within each watershed were selected to characterize soil geochemistry in distinct land-cover compartments. Soils were analyzed for total mercury, selenium, total and carbonate carbon, and 42 other elements. A subset of the samples was also analyzed for methylmercury.

  16. Feathers as a Tool to Assess Mercury Contamination in Gentoo Penguins: Variations at the Individual Level

    PubMed Central

    Pedro, Sara; Xavier, José C.; Tavares, Sílvia; Trathan, Phil N.; Ratcliffe, Norman; Paiva, Vitor H.; Medeiros, Renata; Pereira, Eduarda; Pardal, Miguel A.

    2015-01-01

    Feathers have been widely used to assess mercury contamination in birds as they reflect metal concentrations accumulated between successive moult periods: they are also easy to sample and have minimum impact on the study birds. Moult is considered the major pathway for mercury excretion in seabirds. Penguins are widely believed to undergo a complete, annual moult during which they do not feed. As penguins lose all their feathers, they are expected to have a low individual-variability in feather mercury concentration as all feathers are formed simultaneously from the same somatic reserves. This assumption is central to penguin studies that use feathers to examine the annual or among-individual variation in mercury concentrations in penguins. To test this assumption, we measured the mercury concentrations in 3–5 body feathers of 52 gentoo penguins (Pygoscelis papua) breeding at Bird Island, South Georgia (54°S 38°W). Twenty-five percent of the penguins studied showed substantial within-individual variation in the amount of mercury in their feathers (Coefficient of Variation: 34.7–96.7%). This variation may be caused by differences in moult patterns among individuals within the population leading to different interpretations in the overall population. Further investigation is now needed to fully understand individual variation in penguins’ moult. PMID:26352664

  17. Feathers as a Tool to Assess Mercury Contamination in Gentoo Penguins: Variations at the Individual Level.

    PubMed

    Pedro, Sara; Xavier, José C; Tavares, Sílvia; Trathan, Phil N; Ratcliffe, Norman; Paiva, Vitor H; Medeiros, Renata; Pereira, Eduarda; Pardal, Miguel A

    2015-01-01

    Feathers have been widely used to assess mercury contamination in birds as they reflect metal concentrations accumulated between successive moult periods: they are also easy to sample and have minimum impact on the study birds. Moult is considered the major pathway for mercury excretion in seabirds. Penguins are widely believed to undergo a complete, annual moult during which they do not feed. As penguins lose all their feathers, they are expected to have a low individual-variability in feather mercury concentration as all feathers are formed simultaneously from the same somatic reserves. This assumption is central to penguin studies that use feathers to examine the annual or among-individual variation in mercury concentrations in penguins. To test this assumption, we measured the mercury concentrations in 3-5 body feathers of 52 gentoo penguins (Pygoscelis papua) breeding at Bird Island, South Georgia (54°S 38°W). Twenty-five percent of the penguins studied showed substantial within-individual variation in the amount of mercury in their feathers (Coefficient of Variation: 34.7-96.7%). This variation may be caused by differences in moult patterns among individuals within the population leading to different interpretations in the overall population. Further investigation is now needed to fully understand individual variation in penguins' moult. PMID:26352664

  18. Method for fixating sludges and soils contaminated with mercury and other heavy metals

    DOEpatents

    Broderick, Thomas E.; Roth, Rachel L.; Carlson, Allan L.

    2005-06-28

    The invention relates to a method, composition and apparatus for stabilizing mercury and other heavy metals present in a particulate material such that the metals will not leach from the particulate material. The method generally involves the application of a metal reagent, a sulfur-containing compound, and the addition of oxygen to the particulate material, either through agitation, sparging or the addition of an oxygen-containing compound.

  19. IMPACT OF ELIMINATING MERCURY REMOVAL PRETREATMENT ON THE PERFORMANCE OF A HIGH LEVEL RADIOACTIVE WASTE MELTER OFFGAS SYSTEM

    SciTech Connect

    Zamecnik, J; Alexander Choi, A

    2009-03-17

    The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: (1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; (2) adjust feed rheology; and (3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid pretreatment has been proposed to eliminate the production of hydrogen in the pretreatment systems; alternative reductants would be used to control redox. However, elimination of formic acid would result in significantly more mercury in the melter feed; the current specification is no more than 0.45 wt%, while the maximum expected prior to pretreatment is about 2.5 wt%. An engineering study has been undertaken to estimate the effects of eliminating mercury removal on the melter offgas system performance. A homogeneous gas-phase oxidation model and an aqueous phase model were developed to study the speciation of mercury in the DWPF melter offgas system. The model was calibrated against available experimental data and then applied to DWPF conditions. The gas-phase model predicted the Hg{sub 2}{sup 2-}/Hg{sup 2+} ratio accurately, but some un-oxidized Hg{sup 0} remained. The aqueous model, with the addition of less than 1 mM Cl{sub 2} showed that this remaining Hg{sup 0} would be oxidized such that the final Hg{sub 2}{sup 2+}/Hg{sup 2+} ratios matched the experimental data. The results of applying the model to DWPF show that due to excessive shortage of chloride, only 6% of the mercury fed is expected to be chlorinated, mostly as Hg{sub 2}Cl{sub 2}, while the remaining mercury would exist either as elemental mercury (90%) or HgO (4%).

  20. Assessment of soil organic matter fluxes at the EU level

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Campling, Paul

    2010-05-01

    Soil has a complex relationship with climate change. Soil helps take carbon dioxide out of the air and as such it absorbs millions of tons each year, but with the Earth still warming micro-organisms grow faster, consume more soil organic matter and release carbon dioxide. The net result is a relative decline in soil organic carbon. With a growing population and higher bio-energy demands, more land is likely to be required for settlement, for commercial activity and for bio-energy production. Conversions from terrestrial ecosystems to urban and commercial activity will alter both the production and losses of organic matter, and have an indirect impact on potential SOM levels. Conversions between different terrestrial ecosystems have a direct impact on SOM levels. Net SOM losses are reported for several land conversions, e.g. from grassland to arable land, from wetlands to drained agricultural land, from crop rotations to monoculture, reforestation of agricultural land. In the context of looking for measures to support best practices to manage soil organic matter in Europe we propose a method to assess soil organic matter fluxes at the EU level. We adopt a parsimonious approach that is comparable to the nutrient balance approaches developed by the OECD and Eurostat. We describe the methodology and present the initial results of a European carbon balance indicator that uses existing European statistical and land use change databases. The carbon balance consists of the following components: organic matter production (I), organic matter losses (O), land use changes that effect both production and losses (E). These components are set against the (mostly legislative) boundary conditions that determine the maximum input potential (MIP) for soil organic matter. In order to budget SOM losses due to mineralisation, runs will be made with a multi-compartment SOM model that takes into account management practices, climate and different sources of organic matter.

  1. Estimation and mapping of wet and dry mercury deposition across northeastern North America

    USGS Publications Warehouse

    Miller, E.K.; Vanarsdale, A.; Keeler, G.J.; Chalmers, A.; Poissant, L.; Kamman, N.C.; Brulotte, R.

    2005-01-01

    Whereas many ecosystem characteristics and processes influence mercury accumulation in higher trophic-level organisms, the mercury flux from the atmosphere to a lake and its watershed is a likely factor in potential risk to biota. Atmospheric deposition clearly affects mercury accumulation in soils and lake sediments. Thus, knowledge of spatial patterns in atmospheric deposition may provide information for assessing the relative risk for ecosystems to exhibit excessive biotic mercury contamination. Atmospheric mercury concentrations in aerosol, vapor, and liquid phases from four observation networks were used to estimate regional surface concentration fields. Statistical models were developed to relate sparsely measured mercury vapor and aerosol concentrations to the more commonly measured mercury concentration in precipitation. High spatial resolution deposition velocities for different phases (precipitation, cloud droplets, aerosols, and reactive gaseous mercury (RGM)) were computed using inferential models. An empirical model was developed to estimate gaseous elemental mercury (GEM) deposition. Spatial patterns of estimated total mercury deposition were complex. Generally, deposition was higher in the southwest and lower in the northeast. Elevation, land cover, and proximity to urban areas modified the general pattern. The estimated net GEM and RGM fluxes were each greater than or equal to wet deposition in many areas. Mercury assimilation by plant foliage may provide a substantial input of methyl-mercury (MeHg) to ecosystems. ?? 2005 Springer Science+Business Media, Inc.

  2. N2O emission rates in a California meadow soil are influenced by fertilizer level, soil moisture and the

    E-print Network

    Bohannan, Brendan

    N2O emission rates in a California meadow soil are influenced by fertilizer level, soil moisture to manipulations of temperature, soil moisture and nitrogenous fertilizer concentration were studied for 16 of fertilizer, the rates decreased sharply in response to increasing soil moisture and temperature. Second

  3. Goldilocks and three factors that make mercury in fish more than just mercury deposition: sulfur, land use and climate (Invited)

    NASA Astrophysics Data System (ADS)

    Bishop, K. H.; Eklöf, K.; Nilsson, M. B.; Osterwalder, S.; Ĺkerblom, S.

    2013-12-01

    The problem of mercury in fish is often framed as a problem created by anthropogenic emissions of mercury increasing the levels of mercury in the environment. But the methylation step that is crucial to making mercury available for bioaccumulation in the aquatic food web is influenced by more than just the concentration of mercury in the environment. Redox conditions, the quality of organic matter, and, in the case of methylation by sulfur reducing bacteria, the availability of sulfur, have all been shown to influence methylmercury concentrations in surface waters and/or mercury in the biota. This creates many possibilities for human influence on mercury bioaccumulation in freshwater fish. But it also creates possibilities for mitigating those human influences, if we can understand them. Forest harvest is one type of land use with a documented human influence on mercury levels in fish. Atmospheric deposition of sulfur is another potential influence on the mercury cycle, as is warming of the climate. Some for the possibilities for controlling the mercury problem may be overlooked by too much focus on mercury deposition and concentrations of total mercury in the landscape relative to these other factors. A range of field studies in FennoScandia published over the last 15 years were analyzed to explore the relative contribution of these different anthropogenic factors on the cycling of mercury. The studies included synoptic surveys across gradients of atmospheric deposition and land use (clear felling, site preparation and stump harvest) in relation to either fish mercury, sediment mercury, peat methylation potential or methylmercury concentrations in water. Long-term field manipulations (6-15 years) of land use (forest harvest) or combinations of sulphur deposition, nitrogen deposition and well greenhouse warming on peatland were also studied. The results suggest that the variation of total mercury in soils or water is less important than several of the other factors influenced by human activity. Two of the most important of these other factors are sulphur deposition and forest harvest. But these influences can also be neutralized by yet other factors (such as greenhouse warming in the case of sulphur deposition). This helps explain why different types of human influence have been so hard to discern from spatial and temporal patterns of mercury in fish, even though there is good reason to suggestion that forestry and atmospheric sulfur deposition are major factors in the mercury problem with regards to fish in FennoScandia and other high-latitude regions.

  4. Zinc movement in sewage-sludge-treated soils as influenced by soil properties, irrigation water quality, and soil moisture level

    USGS Publications Warehouse

    Welch, J.E.; Lund, L.J.

    1989-01-01

    A soil column study was conducted to assess the movement of Zn in sewage-sludge-amended soils. Varables investigated were soil properties, irrigation water quality, and soil moisture level. Bulk samples of the surface layer of six soil series were packed into columns, 10.2 cm in diameter and 110 cm in length. An anaerobically digested municipal sewage sludge was incorporated into the top 20 cm of each column at a rate of 300 mg ha-1. The columns were maintained at moisture levels of saturation and unsaturation and were leached with two waters of different quality. At the termination of leaching, the columns were cut open and the soil was sectioned and analyzed. Zinc movement was evaluated by mass balance accounting and correlation and regression analysis. Zinc movement in the unsaturated columns ranged from 3 to 30 cm, with a mean of 10 cm. The difference in irrigation water quality did not have an effect on Zn movement. Most of the Zn applied to the unsaturated columns remained in the sludge-amended soil layer (96.1 to 99.6%, with a mean of 98.1%). The major portion of Zn leached from the sludge-amended soil layer accumulated in the 0- to 3-cm depth (35.7 to 100%, with a mean of 73.6%). The mean final soil pH values decreased in the order: saturated columns = sludge-amended soil layer > untreated soils > unsaturated columns. Total Zn leached from the sludge-amended soil layer was correlated negatively at P = 0.001 with final pH (r = -0.85). Depth of Zn movement was correlated negatively at P = 0.001 with final pH (r = -0.91). Multiple linear regression analysis showed that the final pH accounted for 72% of the variation in the total amounts of Zn leached from the sludge-amended soil layer of the unsaturated columns and accounted for 82% of the variation in the depth of Zn movement among the unsaturated columns. A significant correlation was not found between Zn and organic carbon in soil solutions, but a negative correlation significant at P = 0.001 was found between pH and Zn (r = -0.61).

  5. Soil carbon levels in irrigated Western Corn Belt cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An irrigated monoculture corn, monoculture soybean, and soybean-corn cropping systems study was initiated in 1991 on a uniform site in the Platte Valley near Shelton, Nebraska. The objective was to determine the long-term effects of these cropping systems on soil organic carbon levels. Four corn hyb...

  6. Sources of Mercury to East Fork Poplar Creek Downstream from the Y-12 National Security Complex: Inventories and Export Rates

    SciTech Connect

    Southworth, George R; Greeley Jr, Mark Stephen; Peterson, Mark J; Lowe, Kenneth Alan; Ketelle, Richard H; Floyd, Stephanie B

    2010-02-01

    East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee, has been heavily contaminated with mercury (also referred to as Hg) since the 1950s as a result of historical activities at the U.S. Department of Energy (DOE) Y-12 National Security Complex (formerly the Oak Ridge Y-12 Plant and hereinafter referred to as Y-12). During the period from 1950 to 1963, spills and leaks of elemental mercury (Hg{sup 0}) contaminated soil, building foundations, and subsurface drainage pathways at the site, while intentional discharges of mercury-laden wastewater added 100 metric tons of mercury directly to the creek (Turner and Southworth 1999). The inventory of mercury estimated to be lost to soil and rock within the facility was 194 metric tons, with another estimated 70 metric tons deposited in floodplain soils along the 25 km length of EFPC (Turner and Southworth 1999). Remedial actions within the facility reduced mercury concentrations in EFPC water at the Y-12 boundary from > 2500 ng/L to about 600 ng/L by 1999 (Southworth et al. 2000). Further actions have reduced average total mercury concentration at that site to {approx}300 ng/L (2009 RER). Additional source control measures planned for future implementation within the facility include sediment/soil removal, storm drain relining, and restriction of rainfall infiltration within mercury-contaminated areas. Recent plans to demolish contaminated buildings within the former mercury-use areas provide an opportunity to reconstruct the storm drain system to prevent the entry of mercury-contaminated water into the flow of EFPC. Such actions have the potential to reduce mercury inputs from the industrial complex by perhaps as much as another 80%. The transformation and bioaccumulation of mercury in the EFPC ecosystem has been a perplexing subject since intensive investigation of the issue began in the mid 1980s. Although EFPC was highly contaminated with mercury (waterborne mercury exceeded background levels by 1000-fold, mercury in sediments by more than 2000-fold) in the 1980s, mercury concentrations in EFPC fish exceeded those in fish from regional reference sites by only a little more than 10-fold. This apparent low bioavailability of mercury in EFPC, coupled with a downstream pattern of mercury in fish in which mercury decreased in proportion to dilution of the upstream source, lead to the assumption that mercury in fish would respond to decreased inputs of dissolved mercury to the stream's headwaters. However, during the past two decades when mercury inputs were decreasing, mercury concentrations in fish in Lower EFPC (LEFPC) downstream of Y-12 increased while those in Upper EFPC (UEFPC) decreased. The key assumption of the ongoing cleanup efforts, and concentration goal for waterborne mercury were both called into question by the long-term monitoring data. The large inventory of mercury within the watershed downstream presents a concern that the successful treatment of sources in the headwaters may not be sufficient to reduce mercury bioaccumulation within the system to desired levels. The relative importance of headwater versus floodplain mercury sources in contributing to mercury bioaccumulation in EFPC is unknown. A mercury transport study conducted by the Tennessee Valley Authority (TVA) in 1984 estimated that floodplain sources contributed about 80% of the total annual mercury export from the EFPC system (ORTF 1985). Most of the floodplain inputs were associated with wet weather, high flow events, while much of the headwater flux occurred under baseflow conditions. Thus, day-to-day exposure of biota to waterborne mercury was assumed to be primarily determined by the Y-12 source. The objective of this study was to evaluate the results of recent studies and monitoring within the EFPC drainage with a focus on discerning the magnitude of floodplain mercury sources and how long these sources might continue to contaminate the system after headwater sources are eliminated or greatly reduced.

  7. Reaching soil cleanup levels by vapor extraction: Laboratory approach

    SciTech Connect

    Hoag, G.E.; Nadim, F.; Dahmani, A.M.

    1996-11-01

    Nonaqueous phase liquids (NAPLs) such as gasoline and chlorinated solvents have a very low water solubility. When these compounds enter the unsaturated soil, buoyancy and capillary forces may hold a portion of them in the soil pores as residual saturation. Hoag and Marley have reported 12--20% residual saturation for gasoline in a partially water saturated sand. Soil Vapor Extraction (SVE) is a technique that removes volatile and some semi-volatile organic compounds from the unsaturated soil by induced flow of air. Through contacts with each state`s EPA office, it was concluded that 21 states have their own regulations for soil cleanup levels and the others follow the guidelines set forth by the Federal RCRA and CERCLA regulations. The State of Connecticut Department of Environmental Protection (DEP) requires contaminated soils to be remediated to a level such that the amount of contaminant partitioning into the liquid phase remains below the drinking water standard, under equilibrium condition. These standards are 0.001 mg/L for benzene, 1 mg/L for toluene, 0.7 mg/L for ethyl benzene, and 0.005 mg/L for trichloroethylene and tetrachloroethylene. In order to determine the amount of volatile organics that partition into the liquid phase a test called Toxic Characteristics Leaching Procedure with Zero Headspace Extraction (TCLP-ZHE) is applied to contaminated soils. This test determines the amount of VOC that would partition into the liquid phase in the TCLP-ZHE procedure. This study presents two different laboratory experiments to determine where SVE technology alone, can be an adequate remedy selection for sites that are contaminated with VOCs.

  8. Relationship between Blood Mercury Level and Risk of Cardiovascular Diseases: Results from the Fourth Korea National Health and Nutrition Examination Survey (KNHANES IV) 2008–2009

    PubMed Central

    Kim, Young-Nam; Kim, Young A; Yang, Ae-Ri; Lee, Bog-Hieu

    2014-01-01

    Limited epidemiologic data is available regarding the cardiovascular effects of mercury exposure. The purpose of this study was to determine the relationship between mercury exposure from fish consumption and cardiovascular disease in a nationally representative sample of Korean adults using the Fourth Korea National Health and Nutrition Examination Survey (KNHANES IV 2008~2009). Survey logistic regression models accounting for the complex sampling were used to estimate the odds ratios (OR) adjusted for fish consumption frequency, age, education, individual annual income, household annual income, body mass index (BMI), waist circumference (WC), alcohol consumption status, and smoking status. The mean blood mercury level in the population was 5.44 ?g/L. Trends toward increased blood mercury levels were seen for increased education level (P=0.0011), BMI (P<0.0001), WC (P<0.0001), and fish (i.e., anchovy) consumption frequency (P=0.0007). The unadjusted OR for hypertension in the highest blood mercury quartile was 1.450 [95% confidential interval (CI): 1.106~1.901] times higher than that of the lowest quartile. The fish consumption-adjusted OR for hypertension in the highest blood mercury quartile was 1.550 (95% CI: 1.131~2.123) times higher than that of the lowest quartile, and the OR for myocardial infarction or angina in the highest blood mercury quartile was 3.334 (95% CI: 1.338~8.308) times higher than that of the lowest quartile. No associations were observed between blood mercury levels and stroke. These findings suggest that mercury in the blood may be associated with an increased risk of hypertension and myocardial infarction or angina in the general Korean population. PMID:25580399

  9. New Jersey mercury regulations

    SciTech Connect

    Elias, D.F.; Corbin, W.E.

    1996-12-31

    Mercury, or quicksilver, and its major ore cinnabar (HgS) have been known for thousands of years. Health effects from mercury such as dementia were known as early as the late 19th century ({open_quotes}mad as a hatter{close_quotes}). In the 1960`s and 1970`s, reported levels of mercury in tuna reawakened public awareness of mercury pollution. In the 1970`s, major epidemics of acute mercury poisoning were reported in Japan and Iraq. These incidents highlighted the extreme health risks, such as kidney damage, birth defects, and death, associated with severe mercury poisoning. Fetuses and young children are particularly vulnerable since mercury poisoning can damage growing neural tissues. Recently, the perception of mercury as a dangerous pollutant has been on the rise. Advisories warning the public to avoid or reduce the consumption of freshwater fish caught in specific waterbodies due to mercury contamination have been issued in numerous states. The discovery of mercury in {open_quotes}pristine{close_quotes} lakes in the United States, Canada, and Scandinavia, remote from industry and any known mercury sources, has focused attention on atmospheric emissions of mercury as potential significant sources of mercury.

  10. Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study

    USGS Publications Warehouse

    Hintelmann, H.; Harris, R.; Heyes, A.; Hurley, J.P.; Kelly, C.A.; Krabbenhoft, D.P.; Lindberg, S.; Rudd, J.W.M.; Scott, K.J.; St. Louis, V.L.

    2002-01-01

    The METAALICUS (Mercury Experiment To Assess Atmospheric Loading In Canada and the US) project is a whole ecosystem experiment designed to study the activity, mobility, and availability of atmospherically deposited mercury. To investigate the dynamics of mercury newly deposited onto a terrestrial ecosystem, an enriched stable isotope of mercury (202Hg) was sprayed onto a Boreal forest subcatchment in an experiment that allowed us, for the first time, to monitor the fate of "new" mercury in deposition and to distinguish it from native mercury historically stored in the ecosystem. Newly deposited mercury was more reactive than the native mercury with respect to volatilization and methylation pathways. Mobility through runoff was very low and strongly decreased with time because of a rapid equilibration with the large native pool of "bound" mercury. Over one season, only ???8% of the added 202Hg volatilized to the atmosphere and less than 1% appeared in runoff. Within a few months, approximately 66% of the applied 202Hg remained associated with above ground vegetation, with the rest being incorporated into soils. The fraction of 202Hg bound to vegetation was much higher than seen for native Hg (<5% vegetation), suggesting that atmospherically derived mercury enters the soil pool with a time delay, after plants senesce and decompose. The initial mobility of mercury received through small rain events or dry deposition decreased markedly in a relatively short time period, suggesting that mercury levels in terrestrial runoff may respond slowly to changes in mercury deposition rates.

  11. Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of Canada geese of the New Jersey Meadowlands

    SciTech Connect

    Tsipoura, Nellie; Burger, Joanna; Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854 ; Newhouse, Michael; Jeitner, Christian; Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854 ; Gochfeld, Michael; Environmental and Occupational Medicine. Robert Wood Johnson Medical School, 170 Frelinghuysen Road, Piscataway, NJ 08854 ; Mizrahi, David

    2011-08-15

    The New Jersey Meadowlands are located within the heavily urbanized New York/New Jersey Harbor Estuary and have been subject to contamination due to effluent and runoff from industry, traffic, and homes along the Hackensack River and nearby waterways. These extensive wetlands, though heavily impacted by development and pollution, support a wide array of bird and other wildlife species. Persistent contaminants may pose threats to birds in these habitats, affecting reproduction, egg hatchability, nestling survival, and neurobehavioral development. Metals of concern in the Meadowlands include arsenic, cadmium, chromium, lead, and mercury. These metals were analyzed in eggs, feathers, muscle, and liver of Canada geese (Branta canadensis) breeding in four wetland sites. We sampled geese collected during control culling (n=26) and collected eggs from goose nests (n=34). Levels of arsenic were below the minimum quantification level (MQL) in most samples, and cadmium and mercury were low in all tissues sampled. Chromium levels were high in feather samples. Mercury levels in eggs of Canada geese, an almost exclusively herbivorous species, were lower (mean {+-}SE 4.29{+-}0.30 {mu}g/g wet weight) than in eggs of omnivorous mallards (Anas platyrhynchos), and insectivorous red-winged blackbirds (Agelaius phoeniceus) and marsh wrens (Cistothorus palustris) from the Meadowlands, consistent with trophic level differences. However, lead levels were higher in the goose eggs (161{+-}36.7 ng/g) than in the other species. Geese also had higher levels of lead in feathers (1910{+-}386 ng/g) than those seen in Meadowlands passerines. By contrast, muscle and liver lead levels were within the range reported in waterfowl elsewhere, possibly a reflection of metal sequestration in eggs and feathers. Elevated lead levels may be the result of sediment ingestion or ingestion of lead shot and sinkers. Finally, lead levels in goose liver (249{+-}44.7 ng/g) and eggs (161{+-}36.7 ng/g) may pose a risk if consumed frequently by humans. Mill Creek, the site with the most documented prior contamination, had significantly elevated cadmium, chromium, mercury, and lead in goose tissues. - Highlights: {yields} The NJ Meadowlands include extensive wetlands in the urban NYC metropolitan area. {yields} We analyzed eggs, feathers, muscle, and liver of Canada geese at 4 Meadowlands sites. {yields} As, Cd, and Hg were low in all tissues sampled, while Cr was high in feathers. {yields} Pb was higher in goose eggs and feathers than in other Meadowlands bird species. {yields} Pb in muscle and liver was lower and within the range seen in waterfowl elsewhere.

  12. Disparities in Children’s Blood Lead and Mercury Levels According to Community and Individual Socioeconomic Positions

    PubMed Central

    Lim, Sinye; Ha, Mina; Hwang, Seung-Sik; Son, Mia; Kwon, Ho-Jang

    2015-01-01

    We aimed to examine the associations between blood lead and mercury levels and individual and community level socioeconomic positions (SEPs) in school-aged children. A longitudinal cohort study was performed in 33 elementary schools in 10 cities in Korea. Among a total of 6094 children included at baseline, the final study population, 2281 children followed-up biennially, were analyzed. The geometric mean (GM) levels of blood lead were 1.73 ?g/dL (range 0.02–9.26) and 1.56 ?g/dL (range 0.02–6.83) for male and female children, respectively. The blood lead levels were significantly higher in males, children living in rural areas, and those with lower individual SEP. The GM levels of blood mercury were 2.07 ?g/L (range 0.09–12.67) and 2.06 ?g/L (range 0.03–11.74) for males and females, respectively. Increased blood mercury levels were significantly associated with urban areas, higher individual SEP, and more deprived communities. The risk of high blood lead level was significantly higher for the lower individual SEP (odds ratio (OR) 2.18, 95% confidence interval (CI) 1.36–3.50 in the lowest educational attainment of the father), with a significant dose-response relationship observed after adjusting for the community SEP. The association between high blood lead levels and lower individual SEP was much stronger in the more deprived communities (OR 2.88, 95% CI 1.27–6.53) than in the less deprived communities (OR 1.40, 95% CI 0.76–2.59), and showed a significant decreasing trend during the follow-up only in the less deprived communities. The risk of high blood mercury levels was higher in higher individual SEP (OR 0.64, 95% CI 0.40–1.03 in the lowest educational attainment of the father), with a significant dose-response relationship noted. Significant decreasing trends were observed during the follow-up both in the less and more deprived communities. From a public health point-of-view, community level intervention with different approaches for different metals is warranted to protect children from environmental exposure. PMID:26035667

  13. A COUPLED MONITORING NETWORK TO CONDUCT AN ASSESSMENT OF MERCURY TRANSFORMATION AND MOBILIZATION IN FLOODPLAIN SOILS

    E-print Network

    Sparks, Donald L.

    IN FLOODPLAIN SOILS: SOUTH RIVER, VIRGINIA O. LAZAREVA1*, D. L. SPARKS1, R. LANDIS2, C.J. PTACEK3, J. MA3, J. A biogeochemical transformation and mobilization of Hg in floodplain and river bank soils at South River Mile 3

  14. Mercury accumulation in bats near hydroelectric reservoirs in Peninsular Malaysia.

    PubMed

    Syaripuddin, Khairunnisa; Kumar, Anjali; Sing, Kong-Wah; Halim, Muhammad-Rasul Abdullah; Nursyereen, Muhammad-Nasir; Wilson, John-James

    2014-09-01

    In large man-made reservoirs such as those resulting from hydroelectric dam construction, bacteria transform the relatively harmless inorganic mercury naturally present in soil and the submerged plant matter into toxic methylmercury. Methylmercury then enters food webs and can accumulate in organisms at higher trophic levels. Bats feeding on insects emerging from aquatic systems can show accumulation of mercury consumed through their insect prey. In this study, we investigated whether the concentration of mercury in the fur of insectivorous bat species was significantly higher than that in the fur of frugivorous bat species, sampled near hydroelectric reservoirs in Peninsular Malaysia. Bats were sampled at Temenggor Lake and Kenyir Lake and fur samples from the most abundant genera of the two feeding guilds-insectivorous (Hipposideros and Rhinolophus) and frugivorous (Cynopterus and Megaerops) were collected for mercury analysis. We found significantly higher concentrations of total mercury in the fur of insectivorous bats. Mercury concentrations also differed significantly between insectivorous bats sampled at the two sites, with bats from Kenyir Lake, the younger reservoir, showing higher mercury concentrations, and between the insectivorous genera, with Hipposideros bats showing higher mercury concentrations. Ten bats (H. cf. larvatus) sampled at Kenyir Lake had mercury concentrations approaching or exceeding 10 mg/kg, which is the threshold at which detrimental effects occur in humans, bats and mice. PMID:24840106

  15. Riverine source of Arctic Ocean mercury inferred from atmospheric observations

    NASA Astrophysics Data System (ADS)

    Fisher, Jenny A.; Jacob, Daniel J.; Soerensen, Anne L.; Amos, Helen M.; Steffen, Alexandra; Sunderland, Elsie M.

    2012-07-01

    Methylmercury is a potent neurotoxin that accumulates in aquatic food webs. Human activities, including industry and mining, have increased inorganic mercury inputs to terrestrial and aquatic ecosystems. Methylation of this mercury generates methylmercury, and is thus a public health concern. Marine methylmercury is a particular concern in the Arctic, where indigenous peoples rely heavily on marine-based diets. In the summer, atmospheric inorganic mercury concentrations peak in the Arctic, whereas they reach a minimum in the northern mid-latitudes. Here, we use a global three-dimensional ocean-atmosphere model to examine the cause of this Arctic summertime maximum. According to our simulations, circumpolar rivers deliver large quantities of mercury to the Arctic Ocean during summer; the subsequent evasion of this riverine mercury to the atmosphere can explain the summertime peak in atmospheric mercury levels. We infer that rivers are the dominant source of mercury to the Arctic Ocean on an annual basis. Our simulations suggest that Arctic Ocean mercury concentrations could be highly sensitive to climate-induced changes in river flow, and to increases in the mobility of mercury in soils, for example as a result of permafrost thaw and forest fires.

  16. Correlates between Feeding Ecology and Mercury Levels in Historical and Modern Arctic Foxes (Vulpes lagopus)

    PubMed Central

    Krone, Oliver; Stefanski, Volker; Wibbelt, Gudrun; Unnsteinsdóttir, Ester Rut; Hersteinsson, Páll; Schares, Gereon; Doronina, Lilia; Goltsman, Mikhail; Greenwood, Alex D.

    2013-01-01

    Changes in concentration of pollutants and pathogen distribution can vary among ecotypes (e.g. marine versus terrestrial food resources). This may have important implications for the animals that reside within them. We examined 1) canid pathogen presence in an endangered arctic fox (Vulpes lagopus) population and 2) relative total mercury (THg) level as a function of ecotype (‘coastal’ or ‘inland’) for arctic foxes to test whether the presence of pathogens or heavy metal concentration correlate with population health. The Bering Sea populations on Bering and Mednyi Islands were compared to Icelandic arctic fox populations with respect to inland and coastal ecotypes. Serological and DNA based pathogen screening techniques were used to examine arctic foxes for pathogens. THg was measured by atomic absorption spectrometry from hair samples of historical and modern collected arctic foxes and samples from their prey species (hair and internal organs). Presence of pathogens did not correlate with population decline from Mednyi Island. However, THg concentration correlated strongly with ecotype and was reflected in the THg concentrations detected in available food sources in each ecotype. The highest concentration of THg was found in ecotypes where foxes depended on marine vertebrates for food. Exclusively inland ecotypes had low THg concentrations. The results suggest that absolute exposure to heavy metals may be less important than the feeding ecology and feeding opportunities of top predators such as arctic foxes which may in turn influence population health and stability. A higher risk to wildlife of heavy metal exposure correlates with feeding strategies that rely primarily on a marine based diet. PMID:23671561

  17. Chlorinated hydrocarbon and mercury levels in bald eagles (Haliaeetus leucocephalus) found dead in British Columbia, 1988--1993

    SciTech Connect

    Elliott, J.E.; Wilson, L.K.; Norstrom, R.J.; Langelier, K.M.

    1994-12-31

    Liver samples from 70 bald eagles found dead or dying in British Columbia between 1988 and 1993 were analyzed for organochlorine and mercury levels. A subset of 11 eagles found around the Strait of Georgia, an area of known pulp mill pollution, in summer (and therefore presumably resident birds) were analyzed for polychlorinated dibenzo-p-dioxins (PCDDS) and polychlorinated dibenzofurans (PCDFs). Levels of DDE and PCBs ranged from less than 1 mg/kg to 190 and 65 mg/kg respectively. Levels of other organochlorines were generally less than 1 mg/kg, with the exception of some chlordane-related compounds which were occasionally over 2 mg/kg. All birds analyzed for PCDDs/PCDFs contained detectable levels of the major 2,378-substituted isomers. Some birds had extremely high levels, one eagle collected near a kraft pulp mill site contained: 400 ng/kg 2378-TCDD, 1400 ng/kg 12378-PnCDD and 4400 ng/kg 123678-HxCDD. All but two eagles had > 1 mg/kg dry wt. of mercury in liver; most contained less than 1 0 mg/kg d.w. but one bird had 130 mg/kg, a level of toxicological concern. All carcasses were autopsied and cause of death determined wherever possible. The relationship between cause of death and sublethal exposure to OCs and Hg is analyzed and discussed.

  18. DIETARY METHYL MERCURY EXPOSURE IN AMERICAN KESTRELS; PILOT STUDY

    EPA Science Inventory

    Anthropogenic mercury emissions have increased atmospheric mercury levels about threefold since the advent of industrial activity. Atmospheric deposition is the primary source of mercury in the environment hence mercury contamination has increased in similar fashion. Methyl mercu...

  19. REVIEW OF PUBLISHED LITERATURE FOR MEASUREMENT OF MERCURY AND METHYL MERCURY LEVELS FOR FISH AND FISH-EATING BIRDS IN CARSON RIVER

    EPA Science Inventory

    This project involves conducting a literature search with the goal of identifying "robust" methods for measuring mercury concentrations in biological tissues. Mercury is a significant contaminant of concern in Region 9, due in large part to the extensive mining activities of the...

  20. Characterizing Soil Organic Matter Degradation Levels in Permafrost-affected Soils using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Matamala, R.; Jastrow, J. D.; Calderon, F.; Liang, C.; Miller, R. M.; Ping, C. L.; Michaelson, G. J.; Hofmann, S.

    2014-12-01

    Diffuse-reflectance Fourier-transform mid-infrared spectroscopy (MidIR) was used to (1) investigate soil quality along a latitudinal gradient of Alaskan soils, and in combination with soil incubations, (2) to assess the relative lability of soil organic matter in the active layer and upper permafrost for some of those soils. Twenty nine sites were sampled along a latitudinal gradient (78.79 N to 55.35 N deg). The sites included 8 different vegetation types (moss/lichen, non-acidic and acidic tundra, shrub areas, deciduous forests, mixed forests, coniferous forests, and grassland). At each site, soils were separated by soil horizons and analyzed for pH, cation exchange capacity (CEC), organic and inorganic C, and total N. Samples were also scanned to obtain MidIR spectra, and ratios of characteristic bands previously suggested as indicators of organic matter quality or degradation level were calculated. Principal component analysis showed that axis 1 explained 70% of the variation and was correlated with the general Organic:Mineral ratio, soil organic C, total N, and CEC, but not with vegetation type. Axis 2 explained 25% of the variation and was correlated with most of the band ratios, with negative values for the condensation index (ratio of aromatic to aliphatic organic matter) and positive values for all humification ratios (HU1: ratio of aliphatic to polysaccharides; HU2: ratio of aromatics to polysaccharides; and HU3 ratio of lignin/phenols to polysaccharides) suggesting that axis 2 variations were related to differences in level of soil organic matter degradation. Active organic, active mineral and permafrost layers from selected tundra sites were incubated for two months at -1, 1, 4, 8 and 16 ?C. The same band ratios were correlated with total CO2 mineralized during the incubations. Data from 4?C showed that the cumulative respired CO2 from the active organic layer across all sites was negatively correlated with the HU1 humification ratio, suggesting that HU1 might be a good indicator of lability for comparing active layer organic soils. We will explore correlations at the other incubation temperatures and further evaluate the utility of MidIR band ratios for predicting the potential decomposability of organic matter in permafrost-region soils.

  1. [Mercury fluxes from conifer-broadleaf forested field in central subtropical forest zone].

    PubMed

    Ma, Ming; Wang, Ding-Yong; Shen, Yuan-Yuan; Sun, Rong-Guo; Huang, Li-Xin

    2014-01-01

    Total gaseous mercury fluxes of forested field soils in the subtropical forest zones, Chongqing, Southwestern China were continually monitored from April 2011 to March 2012 to provide insights into the characteristics of gaseous mercury flux with conifer-broadleaf forest covers. Samples were collected from surfaces of forest fields as the most representative terrestrial surfaces in Jinyun Mountain. Simultaneously, meteorological parameters at the soil level relating to GEM fluxes, such as soil temperature, air humidity, and solar radiation were analyzed, and variations of atmospheric GEM concentration were examined. The results showed that annual averaged fluxes from soils in the forest and open-air site were (16.82 +/- 6.70) ng x (m2 x h)(-1), which was significantly higher than that in the natural background area. Moreover, there was a clear seasonal variation on the forest field. In growing season, the average mercury flux was (22.23 +/- 13.19) ng x (m2 x h)(-1), while in dormant season the value was (6.01 +/- 4. 05) ng x (m2 x h)(-1). Diurnal variation characteristics of mercury fluxes were closely related to solar radiation on the forest field. Mercury fluxes of the soils were significantly correlated with soil temperature, air temperature and relative humidity, which may be caused by the relationship between solar radiation intensity and mercury emission fluxes from soils. PMID:24720190

  2. Mercury levels and trends (1993-2009) in bream (Abramis brama L.) and zebra mussels (Dreissena polymorpha) from German surface waters.

    PubMed

    Lepom, Peter; Irmer, Ulrich; Wellmitz, Jörg

    2012-01-01

    Mercury concentrations have been analysed in bream (Abramis brama L.) and zebra mussels (Dreissena polymorpha) collected at 17 freshwater sites in Germany from 1993-2009 and 1994-2009, respectively, within the German Environmental Specimen programme. Mercury concentrations in bream ranged from 21 to 881 ng g(-1) wet weight with lowest concentrations found at the reference site Lake Belau and highest in fish from the river Elbe and its tributaries. Statistical analysis revealed site-specific differences and significant decreasing temporal trends in mercury concentrations at most of the sampling sites. The decrease in mercury levels in bream was most pronounced in fish from the river Elbe and its tributary Mulde, while in fish from the river Saale mercury levels increased. Temporal trends seem to level off in recent years. Mercury concentrations in zebra mussels were much lower than those in bream according to their lower trophic position and varied by one order of magnitude from 4.1 to 42 ng g(-1) wet weight (33-336 ng g(-1) dry weight). For zebra mussels, trend analyses were performed for seven sampling sites at the rivers Saar and Elbe of which three showed significant downward trends. There was a significant correlation of the geometric mean concentrations in bream and zebra mussel over the entire study period at each sampling site (Pearson's correlation coefficient=0.892, p=0.00002). A comparison of the concentrations in bream with the environmental quality standard (EQS) of 20 ng g(-1) wet weight set for mercury in biota by the EU showed that not a single result was in compliance with this limit value, not even those from the reference site. Current mercury levels in bream from German rivers exceed the EQS by a factor 4.5-20. Thus, piscivorous top predators are still at risk of secondary poisoning by mercury exposure via the food chain. It was suggested focusing monitoring of mercury in forage fish (trophic level 3 or 4) for compliance checking with the EQS for biota and considering the age dependency of mercury concentrations in fish in the monitoring strategy. PMID:22071369

  3. Mercury contamination in the vicinity of a chlor-alkali plant and potential risks to local population.

    PubMed

    Reis, Ana Teresa; Rodrigues, Sónia Morais; Araújo, Clarisse; Coelho, Joăo Pedro; Pereira, Eduarda; Duarte, Armando C

    2009-04-01

    A mercury-cell chlor-alkali plant operated in Estarreja (North-western Portugal) for 50 years causing widespread environmental contamination. Although production by this process ceased in 2002, mercury contamination from the plant remains significant. The main objective of this study was to investigate mercury impact on the nearby environment and potential risks to local population. To assess the level of contamination soil samples were collected from agricultural fields in the vicinity of the plant, extending the study by taking samples of the predominant vegetation suitable for animal and human consumption, water samples, and fish species from a nearby coastal lagoon, to gain a preliminary insight into the potential for contamination of the terrestrial and aquatic food web. To determine population exposure to mercury, hair samples were collected from local residents. Total mercury concentration in the 0-15 cm layer of soil was found to be highly variable, ranging between 0.010 and 91 mg kg(-1), although mercury contamination of soils was found to be restricted to a confined area. Lolium perenne roots contained between 0.0070 and 2.0 mg kg(-1), and there is evidence that root systems uptake mercury from the soil. Levels of mercury in the aerial parts of plants ranged between 0.018 and 0.98 mg kg(-1). It appears that plants with higher mercury concentration in soils and roots also display higher mercury concentration in leaves. Total mercury concentration in water samples ranged between 12 and 846 ng L(-1), all samples presenting concentrations below the maximum level allowable for drinking water defined in the Portuguese law (1.0 microg L(-1)). Mercury levels in fish samples were below the maximum limit defined in the Portuguese law (0.5 mg kg(-1)), ranging from 0.0040 to 0.24 mg kg(-1). Vegetables collected presented maximum mercury concentration of 0.17 mg kg(-1). In general, food is not contaminated and should not be responsible for major human exposure to the metal. Mercury determined in human hair samples (0.090-4.2 mg kg(-1); mean 1.5 mg kg(-1)) can be considered within normal limits, according to WHO guidelines suggesting that it is not affecting the local population. Despite being subject to decades of mercury emissions, nowadays this pollutant is only found in limited small areas and must not constitute a risk for human health, should these areas be restricted and monitored. Considering the present data, it appears that the population from Estarreja is currently not being affected by mercury levels that still remain in the environment. PMID:19211131

  4. Dynamics of Maize Carbon Contribution to Soil Organic Carbon in Association with Soil Type and Fertility Level

    PubMed Central

    Pei, Jiubo; Li, Hui; Li, Shuangyi; An, Tingting; Farmer, John; Fu, Shifeng; Wang, Jingkuan

    2015-01-01

    Soil type and fertility level influence straw carbon dynamics in the agroecosystems. However, there is a limited understanding of the dynamic processes of straw-derived and soil-derived carbon and the influence of the addition of straw carbon on soil-derived organic carbon in different soils associated with different fertility levels. In this study, we applied the in-situ carborundum tube method and 13C-labeled maize straw (with and without maize straw) at two cropland (Phaeozem and Luvisol soils) experimental sites in northeast China to quantify the dynamics of maize-derived and soil-derived carbon in soils associated with high and low fertility, and to examine how the addition of maize carbon influences soil-derived organic carbon and the interactions of soil type and fertility level with maize-derived and soil-derived carbon. We found that, on average, the contributions of maize-derived carbon to total organic carbon in maize-soil systems during the experimental period were differentiated among low fertility Luvisol (from 62.82% to 42.90), high fertility Luvisol (from 53.15% to 30.00%), low fertility Phaeozem (from 58.69% to 36.29%) and high fertility Phaeozem (from 41.06% to 16.60%). Furthermore, the addition of maize carbon significantly decreased the remaining soil-derived organic carbon in low and high fertility Luvisols and low fertility Phaeozem before two months. However, the increasing differences in soil-derived organic carbon between both soils with and without maize straw after two months suggested that maize-derived carbon was incorporated into soil-derived organic carbon, thereby potentially offsetting the loss of soil-derived organic carbon. These results suggested that Phaeozem and high fertility level soils would fix more maize carbon over time and thus were more beneficial for protecting soil-derived organic carbon from maize carbon decomposition. PMID:25774529

  5. Mercury exposure, serum antinuclear/antinucleolar antibodies, and serum cytokine levels in mining populations in Amazonian Brazil: a cross-sectional study.

    PubMed

    Gardner, Renee M; Nyland, Jennifer F; Silva, Ines A; Ventura, Ana Maria; de Souza, Jose Maria; Silbergeld, Ellen K

    2010-05-01

    Mercury is an immunotoxic substance that has been shown to induce autoimmune disease in rodent models, characterized by lymphoproliferation, overproduction of immunoglobulin (IgG and IgE), and high circulating levels of auto-antibodies directed at antigens located in the nucleus (antinuclear auto-antibodies, or ANA) or the nucleolus (antinucleolar auto-antibodies, or ANoA). We have reported elevated levels of ANA and ANoA in human populations exposed to mercury in artisanal gold mining, though other confounding variables that may also modulate ANA/ANoA levels were not well controlled. The goal of this study is to specifically test whether occupational and environmental conditions (other than mercury exposure) that are associated with artisanal gold mining affect the prevalence of markers of autoimmune dysfunction. We measured ANA, ANoA, and cytokine concentrations in serum and compared results from mercury-exposed artisanal gold miners to those from diamond and emerald miners working under similar conditions and with similar socio-economic status and risks of infectious disease. Mercury-exposed gold miners had higher prevalence of detectable ANA and ANoA and higher titers of ANA and ANoA as compared to diamond and emerald miners with no occupational mercury exposure. Also, mercury-exposed gold miners with detectable ANA or ANoA in serum had significantly higher concentrations of pro-inflammatory cytokines IL-1beta, TNF-alpha, and IFN-gamma in serum as compared to the diamond and emerald miners. This study provides further evidence that mercury exposure may lead to autoimmune dysfunction and systemic inflammation in affected populations. PMID:20176347

  6. Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury.

    PubMed

    Hseu, Zeng-Yei; Huang, Yu-Tuan; Hsi, Hsing-Cheng

    2014-09-01

    When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (> 50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550 degrees C with a heating rate of 5 degrees C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550 degrees C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg. Implications: A remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants. PMID:25282998

  7. Groundwater Modeling Of Mercury Pollution At A Former Mercury Cell Chlor Alkali Facility In Pavoldar, Kazakhstan

    EPA Science Inventory

    In Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severly contaminated with mercury and mercury compounds as a result of the industrial activity of this chemical pla...

  8. Tuna fish diet influences cat behavior. [Elevated levels of selenium and mercury in commercial tuna fish cat food

    SciTech Connect

    Houpt, K.A.; Essick, L.A.; Shaw, E.B.; Alo, D.K.; Gilmartin, J.E.; Gutenmann, W.H.; Littman, C.B.; Lisk, D.J.

    1988-01-01

    When observed in their home cages, cats fed commercial tuna fish cat food were less active, vocalized less, and spent more time on the floor and more time eating than cats fed commercial beef cat food. There were no differences in response to human handling between the two groups. There were no differences in learning ability on a two-choice point maze or in reversal learning in the same maze between beef- and tuna-fed cats. The behavior of the groups differed in a 15-min open field test only in the number of toys contacted. Cats fed the tuna had elevated tissue levels of mercury and selenium.

  9. Soil Organic Matter and Macronutrient Levels after Mill Mud Application to Sugarcane Growing in a Sand Soil.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mill mud contains high nutrient levels and is often applied to sugarcane grown in sand soils at high rates. The potential for nutrient leaching into the subsoil is not known. An experiment was conducted to assess soil organic matter and macronutrient movement into three soil depths (0- to 6-, 6- to ...

  10. Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy

    USGS Publications Warehouse

    Rimondi, V.; Gray, J.E.; Costagliola, P.; Vaselli, O.; Lattanzi, P.

    2012-01-01

    The distribution and translocation of mercury (Hg) was studied in the Paglia River ecosystem, located downstream from the inactive Abbadia San Salvatore mine (ASSM). The ASSM is part of the Monte Amiata Hg district, Southern Tuscany, Italy, which was one of the world’s largest Hg districts. Concentrations of Hg and methyl-Hg were determined in mine-waste calcine (retorted ore), sediment, water, soil, and freshwater fish collected from the ASSM and the downstream Paglia River. Concentrations of Hg in calcine samples ranged from 25 to 1500 ?g/g, all of which exceeded the industrial soil contamination level for Hg of 5 ?g/g used in Italy. Stream and lake sediment samples collected downstream from the ASSM ranged in Hg concentration from 0.26 to 15 ?g/g, of which more than 50% exceeded the probable effect concentration for Hg of 1.06 ?g/g, the concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Stream and lake sediment methyl-Hg concentrations showed a significant correlation with TOC indicating considerable methylation and potential bioavailability of Hg. Stream water contained Hg as high as 1400 ng/L, but only one water sample exceeded the 1000 ng/L drinking water Hg standard used in Italy. Concentrations of Hg were elevated in freshwater fish muscle samples and ranged from 0.16 to 1.2 ?g/g (wet weight), averaged 0.84 ?g/g, and 96% of these exceeded the 0.3 ?g/g (methyl-Hg, wet weight) USEPA fish muscle standard recommended to protect human health. Analysis of fish muscle for methyl-Hg confirmed that > 90% of the Hg in these fish is methyl-Hg. Such highly elevated Hg concentrations in fish indicated active methylation, significant bioavailability, and uptake of Hg by fish in the Paglia River ecosystem. Methyl-Hg is highly toxic and the high Hg concentrations in these fish represent a potential pathway of Hg to the human food chain.

  11. Influence of Cadmium and Mercury on Activities of Ligninolytic Enzymes and Degradation of Polycyclic Aromatic Hydrocarbons by Pleurotus ostreatus in Soil

    PubMed Central

    Baldrian, Petr; in der Wiesche, Carsten; Gabriel, Ji?í; Nerud, František; Zadražil, František

    2000-01-01

    The white-rot fungus Pleurotus ostreatus was able to degrade the polycyclic aromatic hydrocarbons (PAHs) benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, and benzo[ghi]perylene in nonsterile soil both in the presence and in the absence of cadmium and mercury. During 15 weeks of incubation, recovery of individual compounds was 16 to 69% in soil without additional metal. While soil microflora contributed mostly to degradation of pyrene (82%) and benzo[a]anthracene (41%), the fungus enhanced the disappearance of less-soluble polycyclic aromatic compounds containing five or six aromatic rings. Although the heavy metals in the soil affected the activity of ligninolytic enzymes produced by the fungus (laccase and Mn-dependent peroxidase), no decrease in PAH degradation was found in soil containing Cd or Hg at 10 to 100 ppm. In the presence of cadmium at 500 ppm in soil, degradation of PAHs by soil microflora was not affected whereas the contribution of fungus was negligible, probably due to the absence of Mn-dependent peroxidase activity. In the presence of Hg at 50 to 100 ppm or Cd at 100 to 500 ppm, the extent of soil colonization by the fungus was limited. PMID:10831426

  12. Preliminary results of mercury levels in raw and cooked seafood and their public health impact.

    PubMed

    Costa, Fernanda do N; Korn, Maria Graças A; Brito, Geysa B; Ferlin, Stacy; Fostier, Anne H

    2016-02-01

    Mercury is toxic for human health and one of the main routes of exposure is through consumption of contaminated fish and shellfish. The objective of this work was to assess the possible mercury contamination of bivalves (Anomalocardia brasiliana, Lucina pectinata, Callinectes sapidus), crustacean (C. sapidus) and fish (Bagre marinus and Diapterus rhombeus) collected on Salinas da Margarida, BA (Brazil), a region which carciniculture, fishing and shellfish extraction are the most important economic activities. The effect of cooking on Hg concentration in the samples was also studied. The results showed that Hg concentration was generally higher in the cooked samples than in raw samples. This increase can be related to the effect of Hg pre-concentration, formation of complexes involving mercury species and sulfhydryl groups present in tissues and/or loss of water and fat. The highest concentrations were found in B. marinus samples ranging 837.0-1585.3 ?g kg(-1), which exceeded those recommended by Brazilian Health Surveillance Agency (ANVISA). In addition, Hg values found in the other samples also suggest the monitoring of the Hg concentrations in seafood consumed from the region. PMID:26304418

  13. Recovery and removal of mercury from mixed wastes. Final report, September 1994--June 1995

    SciTech Connect

    Sutton, W.F.; Weyand, T.E.; Koshinski, C.J.

    1995-06-01

    In recognition of the major environmental problem created by mercury contamination of wastes and soils at an estimated 200,000 sites along US natural gas and oil pipelines and at a number of government facilities, including Oak Ridge, Savannah River, Hanford, and Rocky Flats, the US Department of Energy (DOE) is seeking an effective and economical process for removing mercury from various DOE waste streams in order to allow the base waste streams to be treated by means of conventional technologies. In response to the need for Unproved mercury decontamination technology, Mercury Recovery Services (MRS) has developed and commercialized a thermal treatment process for the recovery of mercury from contaminated soils and industrial wastes. The objectives of this program were to: demonstrate the technical and economic feasibility of the MRS process to successfully remove and recover mercury from low-level mixed waste containing mercury compounds (HgO, HgS, HgCl{sub 2}) and selected heavy metal compounds (PbO, CdO); determine optimum processing conditions required to consistently reduce the residual total mercury content to 1 mg/kg while rendering the treated product nontoxic as determined by TCLP methods; and provide an accurate estimate of the capital and operating costs for a commercial processing facility designed specifically to remove and recovery mercury from various waste streams of interest at DOE facilities. These objectives were achieved in a four-stage demonstration program described within with results.

  14. Legacy source of mercury in an urban stream-wetland ecosystem in central North Carolina, USA.

    PubMed

    Deonarine, Amrika; Hsu-Kim, Heileen; Zhang, Tong; Cai, Yong; Richardson, Curtis J

    2015-11-01

    In the United States, aquatic mercury contamination originates from point and non-point sources to watersheds. Here, we studied the contribution of mercury in urban runoff derived from historically contaminated soils and the subsequent production of methylmercury in a stream-wetland complex (Durham, North Carolina), the receiving water of this runoff. Our results demonstrated that the mercury originated from the leachate of grass-covered athletic fields. A fraction of mercury in this soil existed as phenylmercury, suggesting that mercurial anti-fungal compounds were historically applied to this soil. Further downstream in the anaerobic sediments of the stream-wetland complex, a fraction (up to 9%) of mercury was converted to methylmercury, the bioaccumulative form of the metal. Importantly, the concentrations of total mercury and methylmercury were reduced to background levels within the stream-wetland complex. Overall, this work provides an example of a legacy source of mercury that should be considered in urban watershed models and watershed management. PMID:25577695

  15. Temporal trends (1989–2011) in levels of mercury and other heavy metals in feathers of fledgling great egrets nesting in Barnegat Bay, NJ

    SciTech Connect

    Burger, Joanna

    2013-04-15

    There is an abundance of data for levels of metals from a range of species, but relatively few long-term time series from the same location. In this paper I examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers from fledgling great egrets (Ardea alba) collected at nesting colonies in Barnegat Bay, New Jersey from 1989 to 2011. The primary objectives were to test the null hypotheses that (1) There were no temporal differences in metal levels in feathers of fledgling great egrets, and (2) Great egrets nesting in different areas of Barnegat Bay (New Jersey) did not differ in metal levels. There were significant yearly variations in levels of all heavy metals in feathers of fledgling great egret, but levels decreased significantly from 1989 to 2011 only for lead (1470 ppb to 54.3 ppb), cadmium (277 ppb to 30.5 ppb), and manganese (only since 1996; 2669 ppb to 329 ppb)). Although mercury levels decreased from 2003–2008 (6430 ppb to 1042 ppb), there was no pattern before 2003, and levels increased after 2008 to 2610 ppb in 2011. Lead, cadmium, chromium, manganese and mercury were higher in feathers from great egrets nesting in the northern part of the bay, and selenium was highest in feathers from mid-bay. The lack of a temporal decline in mercury levels in feathers of great egrets is cause for concern, since the high levels in feathers from some years (means as high as 6430 ppb) are in the range associated with adverse effects (5000 ppb for feathers). -- Highlights: ? Metals were monitored in feathers of great egrets from Barnegat Bay, New Jersey. ? Levels of cadmium and lead decreased significantly from 1989–2011. ? Mercury levels in feathers from great egrets did not decline from 1989–2011. ? Metal levels were generally higher in great egrets and black-crowned night heron feathers than in snowy egrets.

  16. Mercury migration into ground water, a literature study

    SciTech Connect

    Carlton, W.H.; Carden, J.L.; Kury, R.; Eichholz, G.G.

    1994-11-01

    This report presents a broad review of the technical literature dealing with mercury migration in the soil. The approach followed was to identify relevant articles by searching bibliographic data bases, obtaining the promising articles and searching these articles for any additional relevant citations. Eight catagories were used to organize the literature, with a review and summary of each paper. Catagories used were the following: chemical states of mercury under environmental conditions; diffusion of mercury vapor through soil; solubility and stability of mercury in environmental waters; transport of mercury on colloids; models for mercury migration through the environment; analytical techniques; retention of mercury by soil components; formation of organomecurials.

  17. Environmental factors determining the trace-level sorption of silver and thallium to soils

    E-print Network

    Environmental factors determining the trace-level sorption of silver and thallium to soils Astrid R (Ag) and thallium (Tl) are nonessential elements that can be highly toxic to a number of biota even than thallium to all the soils. The peaty-muck soil sorbed Ag more strongly than the mineral soils

  18. LEVELS OF CDDS, CDFS, PCBS AND HG IN RURAL SOILS OF US

    EPA Science Inventory

    No systematic survey of dioxins in soil has been conducted in the US. Soils represent the largest reservoir source of dioxins. As point source emissions are reduced emissions from soils become increasingly important. Understanding the distribution of dioxin levels in soils is ...

  19. Progress and Future Plans for Mercury Remediation at the Y-12 National Security Complex, Oak Ridge, Tennessee - 13059

    SciTech Connect

    Wilkerson, Laura O.; DePaoli, Susan M.; Turner, Ralph

    2013-07-01

    The U.S. Department of Energy (DOE), along with the Tennessee Department of Environment and Conservation (TDEC) and the U.S. Environmental Protection Agency (EPA), has identified mercury contamination at the Y-12 National Security Complex (Y-12) as the highest priority cleanup risk on the Oak Ridge Reservation (ORR). The historic loss of mercury to the environment dwarfs any other contaminant release on the ORR. Efforts over the last 20 years to reduce mercury levels leaving the site in the surface waters of Upper East Fork Poplar Creek (UEFPC) have not resulted in a corresponding decrease in mercury concentrations in fish. Further reductions in mercury surface water concentrations are needed. Recent stimulus funding through the American Recovery and Reinvestment Act of 2009 (ARRA) has supported several major efforts involving mercury cleanup at Y-12. Near-term implementation activities are being pursued with remaining funds and include design of a centrally located mercury treatment facility for waterborne mercury, treatability studies on mercury-contaminated soils, and free mercury removal from storm drains. Out-year source removal will entail demolition/disposal of several massive uranium processing facilities along with removal and disposal of underlying contaminated soil. As a National Priorities List (NPL) site, cleanup is implemented under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and directed by the Federal Facility Agreement (FFA) between DOE, EPA, and TDEC. The CERCLA process is followed to plan, reach approval, implement, and monitor the cleanup. (authors)

  20. Mercury concentrations in breast feathers of three upper trophic level marine predators from the western Aleutian Islands, Alaska.

    PubMed

    Kaler, Robb S A; Kenney, Leah A; Bond, Alexander L; Eagles-Smith, Collin A

    2014-05-15

    Mercury (Hg) is a toxic element distributed globally through atmospheric transport. Agattu Island, located in the western Aleutian Islands, Alaska, has no history of point-sources of Hg contamination. We provide baseline levels of total mercury (THg) concentrations in breast feathers of three birds that breed on the island. Geometric mean THg concentrations in feathers of fork-tailed storm-petrels (Oceanodroma furcata; 6703 ± 1635, ng/g fresh weight [fw]) were higher than all other species, including snowy owl (Bubo scandiacus; 2105 ± 1631, ng/g fw), a raptor with a diet composed largely of storm-petrels at Agattu Island. There were no significant differences in mean THg concentrations of breast feathers among adult Kittlitz's murrelet (Brachyramphus brevirostris; 1658 ± 1276, ng/g fw) and chicks (1475 ± 671, ng/g fw) and snowy owls. The observed THg concentrations in fork-tailed storm-petrel feathers emphasizes the need for further study of Hg pollution in the western Aleutian Islands. PMID:24656750

  1. Demographic, behavioral, dietary, and socioeconomic characteristics related to persistent organic pollutants and mercury levels in pregnant women in Japan.

    PubMed

    Miyashita, Chihiro; Sasaki, Seiko; Saijo, Yasuaki; Okada, Emiko; Kobayashi, Sumitaka; Baba, Toshiaki; Kajiwara, Jumboku; Todaka, Takashi; Iwasaki, Yusuke; Nakazawa, Hiroyuki; Hachiya, Noriyuki; Yasutake, Akira; Murata, Katsuyuki; Kishi, Reiko

    2015-08-01

    Persistent organic pollutants and mercury are known environmental chemicals that have been found to be ubiquitous in not only the environment but also in humans, including women of reproductive age. The purpose of this study was to evaluate the association between personal lifestyle characteristics and environmental chemical levels during the perinatal period in the general Japanese population. This study targeted 322 pregnant women enrolled in the Hokkaido Study on Environment and Children's Health. Each participant completed a self-administered questionnaire and a food-frequency questionnaire to obtain relevant information on parental demographic, behavioral, dietary, and socioeconomic characteristics. In total, 58 non-dioxin-like polychlorinated biphenyls, 17 dibenzo-p-dioxins and -dibenzofuran, and 12 dioxin-like polychlorinated biphenyls congeners, perfluorooctane sulfonate, perfluorooctanoic acid, and mercury were measured in maternal samples taken during the perinatal period. Linear regression models were constructed against potential related factors for each chemical concentration. Most concentrations of environmental chemicals were correlated with the presence of other environmental chemicals, especially in the case of non-dioxin-like polychlorinated biphenyls and, polychlorinated dibenzo-p-dioxins and -dibezofurans and dioxin-like polychlorinated biphenyls which had similar exposure sources and persistence in the body. Maternal smoking and alcohol habits, fish and beef intake and household income were significantly associated with concentrations of environmental chemicals. These results suggest that different lifestyle patterns relate to varying exposure to environmental chemicals. PMID:25829055

  2. Mercury concentrations in breast feathers of three upper trophic level marine predators from the western Aleutian Islands, Alaska

    USGS Publications Warehouse

    Kaler, Robb S.A.; Kenney, Leah A.; Bond, Alexander L.; Eagles-Smith, Collin A.

    2014-01-01

    Mercury (Hg) is a toxic element distributed globally through atmospheric transport. Agattu Island, located in the western Aleutian Islands, Alaska, has no history of point-sources of Hg contamination. We provide baseline levels of total mercury (THg) concentrations in breast feathers of three birds that breed on the island. Geometric mean THg concentrations in feathers of fork-tailed storm-petrels (Oceanodroma furcata; 6703 ± 1635, ng/g fresh weight [fw]) were higher than all other species, including snowy owl (Bubo scandiacus; 2105 ± 1631, ng/g fw), a raptor with a diet composed largely of storm-petrels at Agattu Island. There were no significant differences in mean THg concentrations of breast feathers among adult Kittlitz’s murrelet (Brachyramphus brevirostris; 1658 ± 1276, ng/g fw) and chicks (1475 ± 671, ng/g fw) and snowy owls. The observed THg concentrations in fork-tailed storm-petrel feathers emphasizes the need for further study of Hg pollution in the western Aleutian Islands.

  3. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; MILIAN, L.; LIPFERT, F.; SUBRAMANIAM, S.; BLAKE, R.

    2005-09-21

    Mercury is a neurotoxin that accumulates in the food chain and is therefore a health concern. The primary human exposure pathway is through fish consumption. Coal-fired power plants emit mercury and there is uncertainty over whether this creates localized hot spots of mercury leading to substantially higher levels of mercury in water bodies and therefore higher exposure. To obtain direct evidence of local deposition patterns, soil and vegetations samples from around three U.S. coal-fired power plants were collected and analyzed for evidence of hot spots and for correlation with model predictions of deposition. At all three sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. It was estimated that less than 2% of the total mercury emissions from these plants deposited within 15 km of these plants. These small percentages of deposition are consistent with the literature review findings of only minor perturbations in environmental levels, as opposed to hot spots, near the plants. The major objective of the sampling studies was to determine if there was evidence for hot spots of mercury deposition around coal-fired power plants. From a public health perspective, such a hot spot must be large enough to insure that it did not occur by chance, and it must increase mercury concentrations to a level in which health effects are a concern in a water body large enough to support a population of subsistence fishers. The results of this study suggest that neither of these conditions has been met.

  4. TRANSPORT OF LOW-LEVEL RADIOACTIVE SOIL AT DEEP-OCEAN DISPOSAL SITE

    EPA Science Inventory

    Transport studies were conducted to assess ocean disposal of soil contaminated with low-level natural radioisotopes. he experimental approach involved characterization of the soil for parameters affecting transport and fate of radionuclides- Radioactivity was associated with disc...

  5. Biomonitoring of Lead, Cadmium, Total Mercury, and Methylmercury Levels in Maternal Blood and in Umbilical Cord Blood at Birth in South Korea.

    PubMed

    Kim, Yu-Mi; Chung, Jin-Young; An, Hyun Sook; Park, Sung Yong; Kim, Byoung-Gwon; Bae, Jong Woon; Han, Myoungseok; Cho, Yeon Jean; Hong, Young-Seoub

    2015-01-01

    With rising concerns of heavy metal exposure in pregnancy and early childhood, this study was conducted to assess the relationship between the lead, cadmium, mercury, and methylmercury blood levels in pregnancy and neonatal period. The study population included 104 mothers and their children pairs who completed both baseline maternal blood sampling at the second trimester and umbilical cord blood sampling at birth. The geometric mean maternal blood levels of lead, cadmium, total mercury, and methylmercury at the second trimester were 1.02 ± 1.39 µg/dL, 0.61 ± 1.51 µg/L, 2.97 ± 1.45 µg/L, and 2.39 ± 1.45 µg/L, respectively, and in the newborns, these levels at birth were 0.71 ± 1.42 µg/dL, 0.01 ± 5.31 µg/L, 4.44 ± 1.49 µg/L, and 3.67 ± 1.51 µg/L, respectively. The mean ratios of lead, cadmium, total mercury, and methylmercury levels in the newborns to those in the mothers were 0.72, 0.04, 1.76, and 1.81, respectively. The levels of most heavy metals in pregnant women and infants were higher in this study than in studies from industrialized western countries. The placenta appears to protect fetuses from cadmium; however, total mercury and methylmercury were able to cross the placenta and accumulate in fetuses. PMID:26516876

  6. Biomonitoring of Lead, Cadmium, Total Mercury, and Methylmercury Levels in Maternal Blood and in Umbilical Cord Blood at Birth in South Korea

    PubMed Central

    Kim, Yu-Mi; Chung, Jin-Young; An, Hyun Sook; Park, Sung Yong; Kim, Byoung-Gwon; Bae, Jong Woon; Han, Myoungseok; Cho, Yeon Jean; Hong, Young-Seoub

    2015-01-01

    With rising concerns of heavy metal exposure in pregnancy and early childhood, this study was conducted to assess the relationship between the lead, cadmium, mercury, and methylmercury blood levels in pregnancy and neonatal period. The study population included 104 mothers and their children pairs who completed both baseline maternal blood sampling at the second trimester and umbilical cord blood sampling at birth. The geometric mean maternal blood levels of lead, cadmium, total mercury, and methylmercury at the second trimester were 1.02 ± 1.39 µg/dL, 0.61 ± 1.51 µg/L, 2.97 ± 1.45 µg/L, and 2.39 ± 1.45 µg/L, respectively, and in the newborns, these levels at birth were 0.71 ± 1.42 µg/dL, 0.01 ± 5.31 µg/L, 4.44 ± 1.49 µg/L, and 3.67 ± 1.51 µg/L, respectively. The mean ratios of lead, cadmium, total mercury, and methylmercury levels in the newborns to those in the mothers were 0.72, 0.04, 1.76, and 1.81, respectively. The levels of most heavy metals in pregnant women and infants were higher in this study than in studies from industrialized western countries. The placenta appears to protect fetuses from cadmium; however, total mercury and methylmercury were able to cross the placenta and accumulate in fetuses. PMID:26516876

  7. Effects of numerical tolerance levels on an atmospheric chemistry model for mercury

    SciTech Connect

    Ferris, D.C.; Burns, D.S.; Shuford, J.

    1996-12-31

    A Box Model was developed to investigate the atmospheric oxidation processes of mercury in the environment. Previous results indicated the most important influences on the atmospheric concentration of HgO(g) are (i) the flux of HgO(g) volatilization, which is related to the surface medium, extent of contamination, and temperature, and (ii) the presence of Cl{sub 2} in the atmosphere. The numerical solver which has been incorporated into the ORganic CHemistry Integrated Dispersion (ORCHID) model uses the Livermore Solver of Ordinary Differential Equations (LSODE). In the solution of the ODE`s, LSODE uses numerical tolerances. The tolerances effect computer run time, the relative accuracy of ODE calculated species concentrations and whether or not LSODE converges to a solution using this system of equations. The effects of varying these tolerances on the solution of the box model and the ORCHID model will be discussed.

  8. Cloud point extraction and spectrophotometric determination of mercury species at trace levels in environmental samples.

    PubMed

    Ulusoy, Halil ?brahim; Gürkan, Ramazan; Ulusoy, Songül

    2012-01-15

    A new micelle-mediated separation and preconcentration method was developed for ultra-trace quantities of mercury ions prior to spectrophotometric determination. The method is based on cloud point extraction (CPE) of Hg(II) ions with polyethylene glycol tert-octylphenyl ether (Triton X-114) in the presence of chelating agents such as 1-(2-pyridylazo)-2-naphthol (PAN) and 4-(2-thiazolylazo) resorcinol (TAR). Hg(II) ions react with both PAN and TAR in a surfactant solution yielding a hydrophobic complex at pH 9.0 and 8.0, respectively. The phase separation was accomplished by centrifugation for 5 min at 3500 rpm. The calibration graphs obtained from Hg(II)-PAN and Hg(II)-TAR complexes were linear in the concentration ranges of 10-1000 ?g L(-1) and 50-2500 ?g L(-1) with detection limits of 1.65 and 14.5 ?g L(-1), respectively. The relative standard deviations (RSDs) were 1.85% and 2.35% in determinations of 25 and 250 ?g L(-1) Hg(II), respectively. The interference effect of several ions were studied and seen commonly present ions in water samples had no significantly effect on determination of Hg(II). The developed methods were successfully applied to determine mercury concentrations in environmental water samples. The accuracy and validity of the proposed methods were tested by means of five replicate analyses of the certified standard materials such as QC Metal LL3 (VWR, drinking water) and IAEA W-4 (NIST, simulated fresh water). PMID:22265535

  9. Mercury hair levels and factors that influence exposure for residents of Huancavelica, Peru.

    PubMed

    Hagan, Nicole; Robins, Nicholas; Hsu-Kim, Heileen; Halabi, Susan; Espinoza Gonzales, Ruben Dario; Ecos, Enrique; Richter, Daniel; Vandenberg, John

    2015-06-01

    Between 1564 and 1810, nearly 17,000 metric tons of mercury (Hg) vapor was released to the environment during cinnabar refining in the small town of Huancavelica, Peru. The present study characterizes individual exposure to mercury using total and speciated Hg from residential samples, total Hg in hair, and self-reported questionnaire data regarding factors influencing exposure (e.g., frequency of fish consumption, occupation). Total Hg concentrations in hair from 118 participants ranged from 0.10 to 3.6 µg/g, similar to concentrations found in the USA and lower than concentrations in other Hg-exposed populations around the world. Pearson's correlation coefficients for data in this study suggest that there is a positive correlation between concentrations of total Hg in hair and concentrations of total Hg in adobe bricks, dirt floors, and surface dust; however, these correlations are not statistically significant. Results of a one-way analysis of variance (ANOVA) identified that total Hg concentrations in hair were significantly related to gender (p < 0.001), living in a neighborhood where smelters were previously located (p = 0.021), smoking status (p = 0.003), frequency of house cleaning (p = 0.019), and frequency of fish consumption (p = 0.046). These results highlight the need for further studies to better characterize Hg exposure in Huancavelica, particularly as related to residential contamination. A comprehensive analysis of residential Hg contamination and exposure in Huancavelica will guide the development and implementation of mitigation and remediation strategies in the community to reduce potential health risks from residential Hg exposure. PMID:25467206

  10. MERCURY IN MARINE LIFE DATABASE

    EPA Science Inventory

    The purpose of the Mercury in Marine Life Project is to organize information on estuarine and marine species so that EPA can better understand both the extent of monitoring for mercury and level of mercury contamination in the biota of coastal environments. This report follows a ...

  11. ATMOSPHERIC MERCURY TRANSPORT AND DEPOSITION

    EPA Science Inventory

    The current state of our scientific understanding the mercury cycle tells us that most of the mercury getting into fish comes from atmospheric deposition, but methylation of that mercury in aquatic systems is required for the concentrations in fish to reach harmful levels. We st...

  12. IMPACT OF NOBLE METALS AND MERCURY ON HYDROGEN GENERATION DURING HIGH LEVEL WASTE PRETREATMENT AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Stone, M; Tommy Edwards, T; David Koopman, D

    2009-03-03

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies radioactive High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. HLW consists of insoluble metal hydroxides (primarily iron, aluminum, calcium, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The pretreatment process in the Chemical Processing Cell (CPC) consists of two process tanks, the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) as well as a melter feed tank. During SRAT processing, nitric and formic acids are added to the sludge to lower pH, destroy nitrite and carbonate ions, and reduce mercury and manganese. During the SME cycle, glass formers are added, and the batch is concentrated to the final solids target prior to vitrification. During these processes, hydrogen can be produced by catalytic decomposition of excess formic acid. The waste contains silver, palladium, rhodium, ruthenium, and mercury, but silver and palladium have been shown to be insignificant factors in catalytic hydrogen generation during the DWPF process. A full factorial experimental design was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%, as shown in Table 1. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), three duplicate midpoint runs, and one additional replicate run to assess reproducibility away from the midpoint. Midpoint testing was used to identify potential quadratic effects from the three factors. A single sludge simulant was used for all tests and was spiked with the required amount of noble metals immediately prior to performing the test. Acid addition was kept effectively constant except to compensate for variations in the starting mercury concentration. SME cycles were also performed during six of the tests.

  13. ON-SITE MERCURY ANALYSIS OF SOIL AT HAZARDOUS WASTE SITES BY IMMUNOASSAY AND ASV

    EPA Science Inventory

    Two field methods for Hg, immunoassay and anodic stripping voltammetry (ASV), that can provide onsite results for quick decisions at hazardous waste sites were evaluated. Each method was applied to samples from two Superfund sites that contain high levels of Hg; Sulphur Bank Me...

  14. Soils

    NASA Astrophysics Data System (ADS)

    Schaetzl, Randall J.; Anderson, Sharon

    2005-06-01

    This comprehensive work on all aspects of soils includes introductory chapters on soil morphology, physics, mineralogy and organisms in anticipation of the more advanced analysis of the subject that follows. Replete with hundreds of high-quality figures and a large glossary, its global perspective makes it an invaluable text for anyone studying soils, landforms and landscape change in middle to upper-level undergraduate and graduate courses.

  15. Introduction of mercury resistant bacterial strains to Hg(II) amended soil microcosms increases the resilience of the natural microbial community to mercury stress

    SciTech Connect

    de Lipthay, Julia R.; Rasmussen, Lasse D.; Serensen, Soren J.

    2004-03-17

    Heavy metals are among the most important groups of pollutant compounds, and they are highly persistent in the soil environment. Techniques that can be used for the remediation of heavy metal contaminated environments thus need to be evolved. In the present study we evaluated the effect of introducing a Hg resistance plasmid in subsurface soil communities. This was done in microcosms with DOE subsurface soils amended with 5-10 ppm of HgCl2. Two microcosms were set up. In microcosm A we studied the effect of adding strain S03539 containing either the Hg resistance conjugative plasmid, pJORD 70, or the Hg resistance mobilizable plasmid, pPB117. In microcosm B we studied the effect of adding strain KT2442 with and without pJORD70. For both microcosms, the effect on the resilience of the indigenous bacterial community as well as the effect on the soil concentration of Hg was evaluated.

  16. Mercury contamination in bank swallows and double-crested cormorants from the Carson River, Nevada

    SciTech Connect

    Kim, R.; Brewer, R.; Peterson, S.C.; Mach, C.

    1995-12-31

    An ecological risk assessment was performed in conjunction with a remedial investigation at the Carson River Mercury Site (CRMS) in northwestern Nevada. Large quantities of mercury used in the processing of gold and silver during mining operations in the mid to late 1800s are distributed throughout the Carson River ecosystem. Previous investigations indicated elevated levels of mercury in soil, sediment, water, and the aquatic food chain. Bird exposure to mercury was determined by measuring total mercury and monomethyl mercury in blood and feather samples from 15 unfledged double-crested cormorants (Phalacrocorax auritus), and in blood, feather, and liver samples from 18 juvenile bank swallows (Riparia riparia) at both the CRMS and uncontaminated background locations. Monomethyl mercury accounted for 90 to 98% of the total mercury in the samples. Total mercury concentrations in bird tissues collected at the CRMS were significantly higher than at background locations. Average total mercury concentrations (wet weight) for the swallow blood, liver, and feather samples collected at the CRMS were 2.63, 3.96, and 2.01 mg/kg, respectively; compared with 0.74, 1,03, and 1.84 mg/kg, respectively at the background area. Average total mercury concentrations for cormorant samples collected at the CRMS were 17.07 mg/kg for blood, and 105.1 1 mg/kg for feathers. Cormorant samples collected at the background location had average total mercury concentrations of 0.49 mg/kg for blood and 8.99 mg/kg for feathers. Results are compared with published residue-effects levels to evaluate avian risks.

  17. Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant.

    PubMed

    Bravo, Andrea Garcia; Cosio, Claudia; Amouroux, David; Zopfi, Jakob; Chevalley, Pierre-Alain; Spangenberg, Jorge E; Ungureanu, Viorel-Gheorghe; Dominik, Janusz

    2014-02-01

    We examined mercury (Hg) biogeochemistry and biomagnification in the Babeni Reservoir, a system strongly affected by the release of Hg from a chlor-alkali plant. Total mercury (THg) concentrations in river water reached 88 ng L(-1) but decreased rapidly in the reservoir (to 9 ng L(-1)). In contrast, monomethylmercury (MMHg) concentrations increased from the upstream part of the reservoir to the central part (0.7 ng L(-1)), suggesting high methylation within the reservoir. Moreover, vertical water column profiles of THg and MMHg indicated that Hg methylation mainly occurred deep in the water column and at the sediment-water interface. The discharge of Hg from a chlor-alkali plant in Valcea region caused the highest MMHg concentrations ever found in non-piscivorous fish worldwide. MMHg concentrations and bioconcentration factors (BCF) of plankton and macrophytes revealed that the highest biomagnification of MMHg takes place in primary producers. PMID:24216231

  18. Environmental mercury concentrations in cultured low-trophic-level fish using food waste-based diets.

    PubMed

    Cheng, Zhang; Mo, Wing Yin; Man, Yu Bon; Lam, Cheung Lung; Choi, Wai Ming; Nie, Xiang Ping; Liu, Yi Hui; Wong, Ming Hung

    2015-01-01

    In this study, different types of food wastes were used as the major source of protein to replace the fish meal in fish feeds to produce quality fish (polyculture of different freshwater fish). During October 2011-April 2012, the concentrations of Hg in water, suspended particulate matter, and sediment of the three experimental fish ponds located in Sha Tau Kok Organic Farm were monitored, and the results were similar to or lower than those detected in commercial fish ponds around the Pearl River Delta (PRD) region (by comparing data of previous and present studies). Health risk assessments indicated that human consumption of grass carp (Ctenopharyngodon idellus), a herbivore which fed food waste feed pellets would be safer than other fish species: mud carp (Cirrhina molitorella), bighead carp (Hypophthalmichthys nobilis), and largemouth bass (Lepomis macrochirus). Due to the lower species diversity and substantially shorter food chains of the polyculture system consisting of only three fish species, the extent of Hg biomagnification was significantly lower than other polyculture ponds around PRD. Furthermore, the use of food waste instead of fish meal (mainly consisted of contaminated trash fish) further reduced the mercury accumulation in the cultured fish. PMID:25087497

  19. Determining Critical Phosphorus Levels for Cool Season Seedlings Established on Calcareous Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sufficient soil phosphorus (P) is critical for rapid seedling establishment. P-deficient seedlings lack vigor and form low density turf areas which are more susceptible to soil erosion and nutrient loss. A greenhouse study was conducted to determine the critical soil P-levels necessary to establish ...

  20. Soil trampling in an Antarctic Specially Protected Area: tools to assess levels of human impact

    E-print Network

    Justel Eusebio, Ana

    Soil trampling in an Antarctic Specially Protected Area: tools to assess levels of human impact P of current advice relating to travel on foot over Antarctic vegetation-free soils. These are based to alter both physical and biological characteristics of Byers Peninsula soils, although at the lowest

  1. Influence of a chlor-alkali superfund site on mercury bioaccumulation in periphyton and low-trophic level fauna

    USGS Publications Warehouse

    Buckman, Kate L.; Marvin-DiPasquale, Mark C.; Taylor, Vivien F.; Chalmers, Ann T.; Broadley, Hannah J.; Agee, Jennifer L.; Jackson, Brian P.; Chen, Celia Y.

    2015-01-01

    In Berlin, New Hampshire, USA, the Androscoggin River flows adjacent to a former chlor-alkali facility that is a US Environmental Protection Agency Superfund site and source of mercury (Hg) to the river. The present study was conducted to determine the fate and bioaccumulation of methylmercury (MeHg) to lower trophic-level taxa in the river. Surface sediment directly adjacent to the source showed significantly elevated MeHg (10–40× increase, mean?±?standard deviation [SD]: 20.1?±?24.8 ng g–1 dry wt) and total mercury (THg; 10–30× increase, mean?±?SD: 2045?±?2669 ng g–1 dry wt) compared with all other reaches, with sediment THg and MeHg from downstream reaches elevated (3–7× on average) relative to the reference (THg mean?±?SD: 33.5?±?9.33 ng g–1 dry wt; MeHg mean?±?SD: 0.52?±?0.21?ng g–1 dry wt). Water column THg concentrations adjacent to the point source for both particulate (0.23?ng L–1) and dissolved (0.76?ng L–1) fractions were 5-fold higher than at the reference sites, and 2-fold to 5-fold higher than downstream. Methylmercury production potential of periphyton material was highest (2–9?ng g–1 d–1 dry wt) adjacent to the Superfund site; other reaches were close to or below reporting limits (0. 1?ng g–1 d–1 dry wt). Total Hg and MeHg bioaccumulation in fauna was variable across sites and taxa, with no clear spatial patterns downstream of the contamination source. Crayfish, mayflies, and shiners showed a weak positive relationship with porewater MeHg concentration.

  2. Influence of a chlor-alkali superfund site on mercury bioaccumulation in periphyton and low-trophic level fauna.

    PubMed

    Buckman, Kate L; Marvin-DiPasquale, Mark; Taylor, Vivien F; Chalmers, Ann; Broadley, Hannah J; Agee, Jennifer; Jackson, Brian P; Chen, Celia Y

    2015-07-01

    In Berlin, New Hampshire, USA, the Androscoggin River flows adjacent to a former chlor-alkali facility that is a US Environmental Protection Agency Superfund site and source of mercury (Hg) to the river. The present study was conducted to determine the fate and bioaccumulation of methylmercury (MeHg) to lower trophic-level taxa in the river. Surface sediment directly adjacent to the source showed significantly elevated MeHg (10-40× increase, mean?±?standard deviation [SD]: 20.1?±?24.8 ng g(-1) dry wt) and total mercury (THg; 10-30× increase, mean?±?SD: 2045?±?2669 ng g(-1) dry wt) compared with all other reaches, with sediment THg and MeHg from downstream reaches elevated (3-7× on average) relative to the reference (THg mean?±?SD: 33.5?±?9.33 ng g(-1) dry wt; MeHg mean?±?SD: 0.52?±?0.21?ng g(-1) dry wt). Water column THg concentrations adjacent to the point source for both particulate (0.23?ng L(-1)) and dissolved (0.76?ng L(-1)) fractions were 5-fold higher than at the reference sites, and 2-fold to 5-fold higher than downstream. Methylmercury production potential of periphyton material was highest (2-9?ng g(-1) d(-1) dry wt) adjacent to the Superfund site; other reaches were close to or below reporting limits (0. 1?ng g(-1) d(-1) dry wt). Total Hg and MeHg bioaccumulation in fauna was variable across sites and taxa, with no clear spatial patterns downstream of the contamination source. Crayfish, mayflies, and shiners showed a weak positive relationship with porewater MeHg concentration. PMID:25732794

  3. Current approaches of the management of mercury poisoning: need of the hour

    PubMed Central

    2014-01-01

    Mercury poisoning cases have been reported in many parts of the world, resulting in many deaths every year. Mercury compounds are classified in different chemical types such as elemental, inorganic and organic forms. Long term exposure to mercury compounds from different sources e.g. water, food, soil and air lead to toxic effects on cardiovascular, pulmonary, urinary, gastrointestinal, neurological systems and skin. Mercury level can be measured in plasma, urine, feces and hair samples. Urinary concentration is a good indicator of poisoning of elemental and inorganic mercury, but organic mercury (e.g. methyl mercury) can be detected easily in feces. Gold nanoparticles (AuNPs) are a rapid, cheap and sensitive method for detection of thymine bound mercuric ions. Silver nanoparticles are used as a sensitive detector of low concentration Hg2+ ions in homogeneous aqueous solutions. Besides supportive therapy, British anti lewisite, dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA. succimer) and dimercaptopropanesulfoxid acid (DMPS) are currently used as chelating agents in mercury poisoning. Natural biologic scavengers such as algae, azolla and other aquatic plants possess the ability to uptake mercury traces from the environment. PMID:24888360

  4. Groundwater Modeling of Mercury Pollution at a Former Mercury Cell Chlor Alkali Facility in Pavlodar City, Kazakhstan

    EPA Science Inventory

    In northern Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severely contaminated with mercury and mercury compounds as a result of the industrial activity of this ch...

  5. Determination of spatial continuity of soil lead levels in an urban residential neighborhood

    SciTech Connect

    Shinn, N.J.; Bing-Canar, J.; Cailas, M.; Peneff, N.; Binns, H.J.

    2000-01-01

    This study uses geostatistical techniques to model and estimate soil lead levels in an urban, residential neighborhood. Sixty-two composite soil samples in a four-block area of brick and stone homes were obtained. The spatial continuity of soil lead levels was modeled with a semi-variogram, which was then used to estimate lead levels at unsampled locations, a process called kriging. Because soil lead levels were spatially correlated, it is likely that a nonrandom process generated the lead distribution found. This finding signifies the existence of lead sources which were tentatively identified on historical maps of the area and from past traffic volume patterns. The distribution of kriged estimates of soil lead levels provides an explanatory tool for exploring and identifying potential sources and may be useful for targeting urban soil abatement efforts.

  6. Mercury in the ecosystem

    SciTech Connect

    Mitra, S.

    1986-01-01

    This treatise on the environmental dispersion of mercury emphasizes the importance of ''mercury-consciousness'' in the present-day world, where rapidly expanding metallurgical, chemical, and other industrial developments are causing widespread contamination of the atmosphere, soil, and water by this metal and its toxic organic derivatives. Concepts concerning the mechanism of mercury dispersion and methyl-mercury formation in the physico-biological ecosystem are discussed in detail and a substantial body of data on the degree and nature of the mercury contamination of various plants, fish, and land animals by industrial and urban effluents is presented. Various analytical methods for the estimation of mercury in inorganic and organic samples are presented. These serve as a ready guide to the selection of the correct method for analyzing environmental samples. This book is reference work in mercury-related studies. It is written to influence industrial policies of governments in their formulation of control measures to avoid the recurrence of human tragedies such as the well-known Minamata case in Japan, and the lesser known cases in Iraq, Pakistan, and Guatamala.

  7. Influence of Reservoir Water Level Fluctuations on Sediment Methylmercury Concentrations Downstream of the Historical Black Butte Mercury Mine, OR

    EPA Science Inventory

    Mercury (Hg) is a pollutant of global concern due to its ability to accumulate as methylmercury (MeHg) in biota. Mercury is methylated by anaerobic microorganisms such as sulfate reducing bacteria (SRB) in water and sediment. Throughout North America, reservoirs tend to have e...

  8. Assessment of mercury toxicity by the changes in oxygen consumption and ion levels in the freshwater snail, Pila globosa, and the mussel, Lamellidens marginalis

    SciTech Connect

    Sivaramakrishna, B.; Radhakrishnaiah, K.; Suresh, A. )

    1991-06-01

    There are many studies on mercury toxicity in freshwater fishes but very few on freshwater molluscs (Wright 1978) though they serve as bio-indicators of metal pollution. A few reports on marine gastropods and bivalves indicated the importance of these animals in metal toxicity studies. Hence, in the present study, the level of tolerance of the freshwater gastropod Pila globosa and of a freshwater bivalve Lamellidens marginalis mercury at lethal and sublethal levels was determined and compared with the rate of whole animal oxygen consumption and the level of sodium, potassium and calcium ions in the hepatopancreas and the foot of these animals. As the period of exposure is one of the important factors in toxicity studies, the level of tolerance was determined at 120 hours of exposure and the other parameters were analyzed at 1, 3 and 5 days in lethal and at 1, 7 and 15 days in sublethal concentrations.

  9. Mercury levels assessment and its relationship with oxidative stress biomarkers in children from three localities in Yucatan, Mexico.

    PubMed

    Rangel-Méndez, Jorge A; Arcega-Cabrera, Flor E; Fargher, Lane F; Moo-Puc, Rosa E

    2016-02-01

    Mercury (Hg) is a global pollutant that is released into the environment from geologic and anthropogenic sources. Once it enters an organism, it generates several toxicity mechanisms and oxidative stress has been proposed as the main one. Metal susceptibility is greater in children, which is a result of their physiology and behavior. In Yucatan, Mexico, burning of unregulated garbage dumps and household trash, ingestion of top marine predators, and pottery manufacturing are among the conditions that could promote Hg exposure. However, for Yucatan, there are no published studies that report Hg levels and associated oxidative stress status in children. Therefore, this study aimed to assess Hg levels in blood and urine and oxidative stress biomarkers levels in a sample of 107 healthy children from three localities in Yucatan, Mexico, as well as investigate the relationship between these parameters. Hg was detected in 11 (10.28%) of blood samples and 38 (35.51%) of urine samples collected from the participating children. Fourteen subjects showed Hg above recommended levels. The oxidative stress biomarkers were slightly elevated in comparison with other studies and were statistically different between the sampling sites. No linear correlation between Hg levels and oxidative stress biomarkers was found. Nevertheless, exploratory univariate and multivariate analysis showed non-linear relations among the measured variables. Globally, the study provides, for the first time, information regarding Hg levels and their relationship with oxidative stress biomarkers in a juvenile population from Mexico's southeast (Yucatan) region. In agreement with worldwide concern about Hg, this study should stimulate studies on metal monitoring in humans (especially children) among scientists working in Mexico, the establishment of polices for its regulation, and the reduction of human health risks. PMID:26580741

  10. Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada

    SciTech Connect

    Butler Walker, Jody . E-mail: jody@butlerwalker.ca; Houseman, Jan; Seddon, Laura; McMullen, Ed; Tofflemire, Karen; Mills, Carole; Corriveau, Andre; Weber, Jean-Philippe; LeBlanc, Alain; Walker, Mike; Donaldson, Shawn G.; Van Oostdam, Jay

    2006-03-15

    Maternal and umbilical cord blood levels of mercury (Hg), lead (Pb), cadmium (Cd), and the trace elements copper (Cu), zinc (Zn), and selenium (Se) are reported for Inuit, Dene/Metis, Caucasian, and Other nonaboriginal participants from Arctic Canada. This is the first human tissue monitoring program covering the entire Northwest Territories and Nunavut for multiple contaminants and establishes a baseline upon which future comparisons can be made. Results for chlorinated organic pesticides and PCBs for these participants have been reported elsewhere. Between May 1994 and June 1999, 523 women volunteered to participate by giving their written informed consent, resulting in the collection of 386 maternal blood samples, 407 cord samples, and 351 cord:maternal paired samples. Geometric mean (GM) maternal total mercury (THg) concentrations ranged from 0.87{mu}g/L (SD=1.95) in the Caucasian group of participants (n=134) to 3.51{mu}g/L (SD=8.30) in the Inuit group (n=146). The GM of the Inuit group was 2.6-fold higher than that of the Dene/Metis group (1.35{mu}g/L, SD=1.60, n=92) and significantly higher than those of all other groups (P<0.0001). Of Inuit women participants, 3% (n=4) were within Health Canada's level of concern range (20-99{mu}g/L) for methylmercury (MeHg) exposure. Of Inuit and Dene/Metis cord samples, 56% (n=95) and 5% (n=4), respectively, exceeded 5.8{mu}g/L MeHg, the revised US Environmental Protection Agency lower benchmark dose. GM maternal Pb was significantly higher in Dene/Metis (30.9{mu}g/L or 3.1{mu}g/dL; SD=29.1{mu}g/L) and Inuit (31.6{mu}g/L, SD=38.3) participants compared with the Caucasian group (20.6{mu}g/L, SD=17.9) (P<0.0001). Half of all participants were smokers. GM blood Cd in moderate smokers (1-8 cigarettes/day) and in heavy smokers (>8 cigarettes/day) was 7.4-fold higher and 12.5-fold higher, respectively, than in nonsmokers. The high percentage of smokers among Inuit (77%) and Dene/Metis (48%) participants highlights the need for ongoing public health action directed at tobacco prevention, reduction, and cessation for women of reproductive age. Pb and THg were detected in more than 95% of all cord blood samples, with GMs of 21 {mu}g/L and 2.7{mu}g/L, respectively, and Cd was detected in 26% of all cord samples, with a GM of 0.08{mu}g/L. Cord:maternal ratios from paired samples ranged from 0.44 to 4.5 for THg, from 0.5 to 10.3 for MeHg, and 0.1 to 9.0 for Pb. On average, levels of THg, MeHg, and Zn were significantly higher in cord blood than in maternal blood (P<0.0001), whereas maternal Cd, Pb, Se, and Cu levels were significantly higher than those in cord blood (P<0.0001). There was no significant relationship between methylmercury and selenium for the range of MeHg exposures in this study. Ongoing monitoring of populations at risk and traditional food species, as well as continued international efforts to reduce anthropogenic sources of mercury, are recommended.

  11. Tracking quicksilver: estimation of mercury waste from consumer products and subsequent verification by analysis of soil, water, sediment, and plant samples from the Cebu City, Philippines, landfill.

    PubMed

    Buagas, Dale Jo B; Megraso, Cristi Cesar F; Namata, John Darwin O; Lim, Patrick John Y; Gatus, Karen P; Cańete, Aloysius M L

    2015-03-01

    Source attribution of mercury (Hg) is critical for policy development to minimize the impact of Hg in wastes. Mercury content of consumer products and its subsequent release into the waste stream of Cebu City, Philippines, is estimated through surveys that employed validated, enumerator-administered questionnaires. Initially, a citywide survey (n?=?1636) indicates that each household annually generates 1.07 ppm Hg (i.e., mg Hg/kg waste) and that linear and compact fluorescent lamps (17.2 %) and thermometers (52.1 %) are the major sources of Hg. A subsequent survey (n?=?372) in the vicinity of the city's municipal solid waste landfill shows that residents in the area annually generate 0.38 ppm Hg per household, which is less than the citywide mean; surprisingly though, less affluent respondents living closer to the landfill site reported more Hg from thermometers and sphygmomanometers. Analysis of collected soil (0.238 ppm), leachate water (6.5 ppb), sediment (0.109 ppm), and three plants (0.393 to 0.695 ppm) shows no significant variation throughout five stations in and around the landfill site, although the period of collection is significant for soil (P?=?0.001) and Cenchrus echinatus (P?=?0.016). Detected Hg in the landfill is considerably less than the annual estimated release, indicating that there is minimal accumulation of Hg in the soil or in plants. As a result of this project, a policy brief has been provided to the Cebu City council in aid of hazardous waste legislation. PMID:25712628

  12. Sensitivity of the sea snail Gibbula umbilicalis to mercury exposure--linking endpoints from different biological organization levels.

    PubMed

    Cabecinhas, Adriana S; Novais, Sara C; Santos, Sílvia C; Rodrigues, Andreia C M; Pestana, Joăo L T; Soares, Amadeu M V M; Lemos, Marco F L

    2015-01-01

    Mercury contamination is a common phenomenon in the marine environment and for this reason it is important to develop cost-effective and relevant tools to assess its toxic effects on a number of different species. To evaluate the possible effects of Hg in the sea snail Gibbula umbilicalis, animals were exposed to increasing concentrations of the contaminant in the ionic form for 96 h. After this exposure period, mortality, feeding and flipping behavior, the activity of the biomarkers glutathione S-transferase, superoxide dismutase, catalase, lactate dehydrogenase and cholinesterase, the levels of lipid peroxidation and cellular energy allocation were measured. After 96 h of exposure to the highest Hg concentration (?LC20), there was a significant inhibition of the cholinesterase activity as well as impairment in the flipping behavior and post-exposure feeding of the snails. Cholinesterase inhibition was correlated with the impairment of behavioral responses also caused by exposure to Hg. These endpoints, including the novel flipping test, revealed sensitivity to Hg and might be used as relevant early warning indicators of prospective effects at higher biological organization levels, making these parameters potential tools for environmental risk assessment. The proposed test species showed sensitivity to Hg and proved to be a suitable and resourceful species to be used in ecotoxicological testing to assess effects of other contaminants in marine ecosystems. PMID:25112574

  13. Trace elements in Antarctic fish species and the influence of foraging habitats and dietary habits on mercury levels.

    PubMed

    Goutte, Aurélie; Cherel, Yves; Churlaud, Carine; Ponthus, Jean-Pierre; Massé, Guillaume; Bustamante, Paco

    2015-12-15

    This study aims at describing and interpreting concentration profiles of trace elements in seven Antarctic fish species (N=132 specimens) off Adélie Land. Ichthyofauna plays a key role in the Antarctic ecosystem, as they occupy various ecological niches, including cryopelagic (ice-associated), pelagic, and benthic habitats. Firstly, trace element levels in the studied specimens were similar to those previously observed in fish from the Southern Ocean. Apart from manganese and zinc, concentrations of arsenic, cadmium, copper, iron, mercury (Hg), nickel, selenium and silver differed among fish species. Muscle ?(13)C and ?(15)N values were determined to investigate whether the fish foraging habitats and dietary habits could explain Hg levels. Species and foraging habitat (?(13)C) were strong predictors for variations of Hg concentrations in muscle tissues. The highest Hg contamination was found in shallow benthic fish compared to cryopelagic and pelagic fish. This pattern was likely due to the methylation of Hg in the coastal sediment and the photodemethylation by ultraviolet radiation in surface waters. PMID:26327642

  14. Clean conditions for the determination of ultra-low levels of mercury in ice and snow samples.

    PubMed

    Ferrari, C P; Moreau, A L; Boutron, C F

    2000-03-01

    Laboratory facilities and methods are presented for the determination of ultra-low levels of mercury (Hg) in ice and snow samples originating from polar ice caps or temperate regions. Special emphasis will be given to the presentation of the clean laboratory and the cleaning procedures. The laboratory is pressurized with air filtered through high efficiency particle filters. This first filtration is not enough to get rid of contamination by Hg in air. Experiments are conducted in a clean bench, especially built for Hg analysis, equipped with both particle filter and activated charcoal filter. It allows to obtain very low levels of atmospheric Hg contamination. Ultrapure water is produced for cleaning all the plastic containers that will be used for ice and snow samples and also for the dilution of the standards. Hg content in laboratory water is about 0.08+/-0.02 pg/g. A Teflon system has been developed for the determination of Hg in ice and snow samples based on Hg(II) reduction to Hg(0) with a SnCl2/HNO3 solution followed by the measurement of gaseous Hg(0) with a Hg analyzer GARDIS 1A+ based on the Cold Vapor Atomic Absorption Spectroscopy method. Blank determination is discussed. PMID:11220334

  15. Soil characterization methods for unsaturated low-level waste sites

    SciTech Connect

    Wierenga, P.J.; Young, M.H. . Dept. of Soil and Water Science); Gee, G.W.; Kincaid, C.T. ); Hills, R.G. . Dept. of Mechanical Engineering); Nicholson, T.J.; Cady, R.E. )

    1993-01-01

    To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies.

  16. Environmental impact of mercury and other heavy metals

    NASA Astrophysics Data System (ADS)

    Lindqvist, Oliver

    The environmental impact of heavy metals is reviewed. One significant source of emissions of heavy metals to air is waste incineration. Consumer batteries contributes significantly to this problem, as well as to heavy metal leakage to groundwater from landfill deposits. The situation in Sweden is used as an example to describe how the deposition from the atmosphere still is increasing the load of heavy metals, like mercury, cadmium and lead, in top soils and aquatic sediments. Critical factors and effect levels for Hg, Cd, Pb, Cu, Zn and As are discussed. Specific questions like mercury contents in present battery waste and heavy metal contents in new and future secondary batteries are addressed.

  17. CONSERVATION TILLAGE IMPACTS ON NATIONAL SOIL AND ATMOSPHERIC CARBON LEVELS

    EPA Science Inventory

    Soil organic matter is the largest global terrestrial C pool and is a source of CO2, CH4 and other greenhouse gases. hanges in soil organic C (SOC) content and fossil fuel C emissions in response to conversion of conventional tillage to conservation tillage in the contiguous USA ...

  18. The effect of fire on mercury cycling in the soils of forested watersheds: Acadia National Park, Maine, U.S.A

    USGS Publications Warehouse

    Amirbahman, A.; Ruck, P.L.; Fernandez, I.J.; Haines, T.A.; Kahl, J.S.

    2004-01-01

    This study compares mercury (Hg) and methylmercury (MeHg) distribution in the soils of two forested stream watersheds at Acadia National Park, Maine, U.S.A. Cadillac Brook watershed, which burned in 1947, has thin soils and predominantly deciduous vegetation. It was compared to the unburned Hadlock Brook watershed, with thicker soil and predominantly coniferous vegetation. Soils in both watersheds were primarily well drained. The fire had a significant impact on the Cadillac watershed, by raising the soil pH, altering the vegetation, and reducing carbon and Hg pools. Total Hg content was significantly higher (P < 0.05) in Hadlock soils (0.18 kg Hg ha-1) compared to Cadillac soils (0. 13 kg Hg ha-1). Hadlock O horizon had an average Hg concentration of 134??48 ng Hg g-1 dry weight, compared to 103??23 ng Hg g-1 dry weight in Cadillac O horizon. Soil pH was significantly higher in all soil horizons at Cadillac compared to Hadlock soils. This difference was especially significant in the O horizon, where Cadillac soils had an average pH of 3.41??0.22 compared to Hadlock soils with an average pH of 2.99??0.13. To study the mobilization potential of Hg in the O horizons of the two watersheds, batch adsorption experiments were conducted, and the results were modeled using surface complexation modeling. The results of Hg adsorption experiments indicated that the dissolved Hg concentration was controlled by the dissolved organic carbon (DOC) concentration. The adsorption isotherms suggest that Hg is more mobile in the O horizon of the unburned Hadlock watershed because of higher solubility of organic carbon resulting in higher DOC concentrations in that watershed. Methylmercury concentrations, however, were consistently higher in the burned Cadillac O horizon (0.20??0.13 ng Hg g-1 dry weight) than in the unburned Hadlock O horizon (0.07??0.07 ng Hg g-1 dry weight). Similarly, Cadillac soils possessed a higher MeHg content (0.30 g MeHg ha-1) than Hadlock soils (0.16 g MeHg ha-1). The higher MeHg concentrations in Cadillac soils may reflect generally faster rates of microbial metabolism due to more rapid nutrient cycling and higher soil pH in the deciduous forest. In this research, we have shown that the amount of MeHg is not a function of the total pool of Hg in the watershed. Indeed, MeHg was inversely proportional to total Hg, suggesting that landscape factors such as soil pH, vegetation type, or land use history (e.g., fire) may be the determining factors for susceptibility to high Hg in biota. ?? 2004 Kluwer Academic Publisher. Printed in the Netherlands.

  19. IMPACT OF HIGH SOIL PHOSPHORUS LEVELS ON SOIL BIOLOGICAL ACTIVITY AND PHYSICAL PROPERTIES OF OXISOLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For the Cerrado region of Brazil to be agriculturally productive, large amount of P fertilizer must be added to overcome the P-fixation capacity of these Oxisol soils. Additions of large amounts of fertilizer affect the chemistry of the soil and may affect the soil physical and biological properties...

  20. Evaluation of SMAP Level 2 Soil Moisture Algorithms Using SMOS Data

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann; Shi, J. C.

    2011-01-01

    The objectives of the SMAP (Soil Moisture Active Passive) mission are global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolution, respectively. SMAP will provide soil moisture with a spatial resolution of 10 km with a 3-day revisit time at an accuracy of 0.04 m3/m3 [1]. In this paper we contribute to the development of the Level 2 soil moisture algorithm that is based on passive microwave observations by exploiting Soil Moisture Ocean Salinity (SMOS) satellite observations and products. SMOS brightness temperatures provide a global real-world, rather than simulated, test input for the SMAP radiometer-only soil moisture algorithm. Output of the potential SMAP algorithms will be compared to both in situ measurements and SMOS soil moisture products. The investigation will result in enhanced SMAP pre-launch algorithms for soil moisture.

  1. Mercury and Your Health

    MedlinePLUS

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  2. Mercury and trace element contents of Donbas coals and associated mine water in the vicinity of Donetsk, Ukraine

    USGS Publications Warehouse

    Kolker, A.; Panov, B.S.; Panov, Y.B.; Landa, E.R.; Conko, K.M.; Korchemagin, V.A.; Shendrik, T.; McCord, J.D.

    2009-01-01

    Mercury-rich coals in the Donets Basin (Donbas region) of Ukraine were sampled in active underground mines to assess the levels of potentially harmful elements and the potential for dispersion of metals through use of this coal. For 29 samples representing c11 to m3 Carboniferous coals, mercury contents range from 0.02 to 3.5 ppm (whole-coal dry basis). Mercury is well correlated with pyritic sulfur (0.01 to 3.2 wt.%), with an r2 of 0.614 (one outlier excluded). Sulfides in these samples show enrichment of minor constituents in late-stage pyrite formed as a result of interaction of coal with hydrothermal fluids. Mine water sampled at depth and at surface collection points does not show enrichment of trace metals at harmful levels, indicating pyrite stability at subsurface conditions. Four samples of coal exposed in the defunct open-cast Nikitovka mercury mines in Gorlovka have extreme mercury contents of 12.8 to 25.5 ppm. This coal was formerly produced as a byproduct of extracting sandstone-hosted cinnabar ore. Access to these workings is unrestricted and small amounts of extreme mercury-rich coal are collected for domestic use, posing a limited human health hazard. More widespread hazards are posed by the abandoned Nikitovka mercury processing plant, the extensive mercury mine tailings, and mercury enrichment of soils extending into residential areas of Gorlovka.

  3. ENVIRONMENTAL CHAMBER STUDIES OF MERCURY REACTIONS IN THE ATMOSPHERE

    EPA Science Inventory

    Mercury is released into the environment through both natural and anthropogenic pathways. The cycling and fate of mercury in atmospheric, soil, and water ecosystems is impacted by various factors, including chemical transformation and transport. An understanding of these proces...

  4. Predicting mercury in mallard ducklings from mercury in chorioallantoic membranes

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.

    2003-01-01

    Methylmercury has been suspected as a cause of impaired reproduction in wild birds, but the confounding effects of other environmental stressors has made it difficult to determine how much mercury in the eggs of these wild species is harmful. Even when a sample egg can be collected from the nest of a wild bird and the mercury concentration in that egg compared to the laboratory-derived thresholds for reproductive impairment, additional information on the mercury levels in other eggs from that nest would be helpful in determining whether harmful levels of mercury were present in the clutch. The measurement of mercury levels in chorioallantoic membranes offers a possible way to estimate how much mercury was in a chick that hatched from an egg, and also in the whole fresh egg itself. While an embryo is developing, wastes are collected in a sac called the chorioallantoic membranes, which often remain inside the eggshell and can be collected for contaminant analysis. We fed methylmercury to captive mallards to generate a broad range of mercury levels in eggs, allowed the eggs to hatch normally, and then compared mercury concentrations in the hatchling versus the chorioallantoic membranes left behind in the eggshell. When the data from eggs laid by mercury- treated females were expressed as common logarithms, a linear equation was created by which the concentration of mercury in a duckling could be predicted from the concentration of mercury in the chorioallantoic membranes from the same egg. Therefore, if it were not possible to collect a sample egg from a clutch of wild bird eggs, the collection of the chorioallantoic membranes could be substituted, and the mercury predicted to be in the chick or whole egg could be compared to the thresholds of mercury that have been shown to cause harm in controlled feeding studies with pheasants, chickens, and mallards.

  5. Mercury Issues and Complexities in Oak Ridge, Tennessee; Redefining the Conceptual Model - 12277

    SciTech Connect

    Peterson, Mark; Southworth, George; Watson, David; Looney, Brian; Eddy-Dilek, Carol; Ketelle, Richard

    2012-07-01

    Releases of mercury from an industrial facility in Oak Ridge, Tennessee in the 1950's and early 1960's resulted in contamination of soil and groundwater within the facility, as well as downstream surface waters. Remediation efforts, which began in the 1980's, have decreased waterborne mercury concentrations near the facility, but elevated levels of mercury remain in the soil, sediment, water, and biota. Widespread distribution of mercury sources and complex mercury transport pathways are some of many challenges at the site. For effective environmental management and closure decision making relative to mercury contamination at the facilities, an up-to-date conceptual model of mercury source areas, processes, likely flow paths, and flux was deemed necessary. Recent facility and reconfiguration efforts, site characterizations, remedial actions, and research are facilitating the collection of new mercury data in Oak Ridge. To develop the current model, a multi-organizational team reviewed existing conceptual models from a variety of sources, consolidated historical data and source information, gathered input from local experts with extensive site knowledge, and used recently collected mercury data from a variety of sampling programs. The developed site conceptual model indicates that the nature and extent of mercury concentration and contaminant flux has significantly changed in the ten years since flux-based conceptual models were used for previous remedial action decisions. A new water treatment system has effectively reduced mercury inputs to the creek and is removing substantially greater quantities of mercury from groundwater than was expected. However, fish concentrations in downstream waters have not responded to decreased water concentrations in the stream. Flux from one large out-fall at the creek's headwaters appears to be a greater percentage of the overall flux leaving the site than previous years, albeit year to year variation in flux is large, and the many small sources of mercury identified in the model may also be important if the goal is to reach very low mercury levels in stream water and fish. The conceptual model is a key reference in helping to prioritize future remedial actions, defining future monitoring, conducting numerical modeling efforts, and evaluating research needs. (authors)

  6. Summary of Pilot-Scale Activities with Mercury Contaminated Sludges (U)

    SciTech Connect

    Cicero, C.A.; Hutson, N.D.; Zamecnik, J.R.; Smith, M.E.; Miller, D. H.; Ritter, J.A.; Hardy, B.J.; Jantzen, C.M.

    1995-10-02

    Technologies for treatment of low level mixed wastes (LLMW) are currently being investigated by the Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE). The Savannah River Technology Center (SRTC) has been chartered by the MWFA to study vitrification treatment of the wastes through an Office of Technology Development (OTD) Technical Task Plan (TTP). SRTC`s efforts have included crucible-scale studies and pilot-scale testing on simulated LLMW sludges, resins, soils, and other solid wastes. Results from the crucible-scale studies have been used as the basis for the pilot-scale demonstrations. One of the streams to be investigated in fiscal year (FY) 1995 by SRTC was a mercury waste. In FY 1995, SRTC performed crucible-scale studies with mercury contaminated soil. This waste stream was selected because of the large number of DOE sites that have an inventory of contaminated or hazardous soil. More importantly, it was readily available for treatment. Pilot-scale studies were to be completed in FY 1995, but could not be completed due to a reduction in funding. Since the main driver for focusing on a mercury waste stream was to determine how the mercury could be treated, a compilation of pilot-scale tests with mercury sludges performed under the guidance of SRTC is provided in this report. The studies summarized in this report include several pilot-scale vitrification demonstrations with simulated radioactive sludges that contained mercury. The pilot-scale studies were performed at the SRTC in the Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS). The studies involved complete glass and offgas product characterization. Future pilot-scale studies with mercury streams will likely be performed with mercury contaminated soils, sediments, or sludges because of the need to dispose of this technically challenging waste stream. (Abstract Truncated)

  7. Mercury Emissions

    EPA Science Inventory

    This indicator presents nationwide mercury emissions data for 1990 to 1993, 2002, and 2005. This information improves understanding of how mercury emissions, which over time eventually deposit on land and water and cause mercury to accumulate in the food web, have changed in r...

  8. Low mercury levels in marine fish from estuarine and coastal environments in southern China.

    PubMed

    Pan, Ke; Chan, Heidi; Tam, Yin Ki; Wang, Wen-Xiong

    2014-02-01

    This study is the first comprehensive evaluation of total Hg and methylmercury (MeHg) concentrations in wild marine fish from an estuarine and a coastal ecosystem in southern China. A total of 571 fish from 54 different species were examined. Our results showed that the Hg levels were generally low in the fish, and the Hg levels were below 30 ng g(-1) (wet weight) for 82% of the samples, which may be related to the reduced size of the fish and altered food web structure due to overfishing. Decreased coastal wetland coverage and different carbon sources may be responsible for the habitat-specific Hg concentrations. The degree of biomagnification was relatively low in the two systems. PMID:24292441

  9. Identification of elemental mercury in the subsurface

    DOEpatents

    Jackson, Dennis G

    2015-01-06

    An apparatus and process is provided for detecting elemental mercury in soil. A sacrificial electrode of aluminum is inserted below ground to a desired location using direct-push/cone-penetrometer based equipment. The insertion process removes any oxides or previously found mercury from the electrode surface. Any mercury present adjacent the electrode can be detected using a voltmeter which indicates the presence or absence of mercury. Upon repositioning the electrode within the soil, a fresh surface of the aluminum electrode is created allowing additional new measurements.

  10. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield airborne mercury vapor concentrations greater than 0.1 mg/cu m in the total spacecraft atmosphere for exposures lasting 30 days or less or 0.01 mg/cu m mercury vapor for exposures lasting more than 30 days. We also encourage the use of alternative devices that do not contain mercury.

  11. DEVELOPMENT OF TOXICITY REFERENCE VALUES FOR ECOLOGICAL SOIL SCREENING LEVELS (ECO-SSLS) FOR TERRESTRIAL WILDLIFE

    EPA Science Inventory

    Ecological Soil Screening Levels (Eco-SSLs) protective of terrestrial wildlife were developed by the USEPA Superfund. The wildlife Eco-SSL is the soil contaminant concentration where the Effect Dose (TRV) and Exposure Dose are equal (amount of contaminant in the diet that is take...

  12. Changes in Soil Nitrate-N Levels from Late Summer to Early Spring in Montana

    E-print Network

    Lawrence, Rick L.

    of better soil sampling conditions and because it provides more time for growers to make fertilizerChanges in Soil Nitrate-N Levels from Late Summer to Early Spring in Montana Clain Jones 1 Western Ag Res Ctr, Corvallis AGRICULTURAL EXPERIMENT STATION Fertilizer Facts Fertilizer Check-Off Dec

  13. Soil Potassium Levels in Pastures of Northeast Dairy and Beef Farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive levels of soil potassium (K) can lead to increased concentration of K in forages, causing metabolic disorders in ruminants, especially in pre-parturition cows and heifers. Composite soil samples (15 to 20 cores) were taken from pastures on five farms in the northeast USA: two farms in Pen...

  14. There has been growing international concern that mercury pollution has become a global prob-

    E-print Network

    Jacob, Daniel J.

    levels and models of atmospheric chemistry have shown that continuing emissions and their global.45 0.20 Evasion Net burial Surface soil Ocean Wet + Dry River 4.25 4.75 6.75 2.0 4.5 Figure 1a. Preindustrial mercury biogeochemical cycle NOTE: Fluxes are in megamoles (Mmol) per year. SOURCE: R.P. Mason

  15. [Homologues Levels and Distribution Pattern of Polychlorinated Biphenyls in Typical Capacitor Contaminated Soil].

    PubMed

    Liu, Jie; Li, Xiao-dong; Zhao, Zhong-hua; Qi, Zhi-fu; Chen, Tong; Yan, Jian-hua

    2015-09-01

    The homologues levels, distribution characteristics and TEQ of 209 PCBs in soil collected around 3 storage sites of PCB-containing wastes were investigated. The PCBs contents and environmental risk were evaluated to provide a scientific basis for site remediation of PCBs contaminated soil. Totally 12 soil samples were collected from 3 PCB-contaminated sites. The analysis results showed that the PCB-concentration in Soil A was 1 705. 0 µg.g-1 ± 424. 3 µg.g-1 (n =4), higher than Soil B (233. 0 µg.g-1 ± 80. 0, n = 4) and Soil C (225. 7 µg.g-1 ± 90. 2 µg.g-1, n = 4), indicating the soil was heavily polluted by PCBs. Trichlorobiphenyl and Tetrachlorobiphenyl dominated the homologues of PCBs. The mass fraction of chlorine in Soil A, Soil B and Soil C was 43. 7% 1. 0%, 45.5% ± 0. 5% and 44.9% ± 0.3%, respectively, which was similar as Aroclor1242 and l#PCB insulating oil. There was an obvious linear correlation between indicator PCBs and total PCBs (R2 = 0. 998), so indicator PCBs can be used to estimate the level of total PCBs. PCB77, PCB105, PCB118 were predominant in doxin-like PCBs, accounting for 89. 5% ± 4. 0% in total. The TEQ levels of the soil samples (in WHO-TEQ) were 3. 56-63. 55 ng.g-1, which demonstrated a high environmental risk in the area. PCB28/31, PCB33/20, PCB66/80, PCB70, PCB32 and PCB18 were the main PCBs isomers. Compared with other results, the local soil was heavily contaminated by PCBs and the surroundings were under a relatively high risk of environmental contamination. PMID:26717710

  16. Cooperative Learning in a Soil Mechanics Course at Undergraduate Level

    ERIC Educational Resources Information Center

    Pinho-Lopes, M.; Macedo, J.; Bonito, F.

    2011-01-01

    The implementation of the Bologna Process enforced a significant change on traditional learning models, which were focused mainly on the transmission of knowledge. The results obtained in a first attempt at implementation of a cooperative learning model in the Soil Mechanics I course of the Department of Civil Engineering of the University of…

  17. Mercury Exposure and Children’s Health

    PubMed Central

    Bose-O’Reilly, Stephan; McCarty, Kathleen M.; Steckling, Nadine; Lettmeier, Beate

    2011-01-01

    Acute or chronic mercury exposure can cause adverse effects during any period of development. Mercury is a highly toxic element; there is no known safe level of exposure. Ideally, neither children nor adults should have any mercury in their bodies because it provides no physiological benefit. Prenatal and postnatal mercury exposures occur frequently in many different ways. Pediatricians, nurses, and other health care providers should understand the scope of mercury exposures and health problems among children and be prepared to handle mercury exposures in medical practice. Prevention is the key to reducing mercury poisoning. Mercury exists in different chemical forms: elemental (or metallic), inorganic, and organic (methylmercury and ethyl mercury). Mercury exposure can cause acute and chronic intoxication at low levels of exposure. Mercury is neuro-, nephro-, and immunotoxic. The development of the child in utero and early in life is at particular risk. Mercury is ubiquitous and persistent. Mercury is a global pollutant, bio-accumulating, mainly through the aquatic food chain, resulting in a serious health hazard for children. This article provides an extensive review of mercury exposure and children’s health. PMID:20816346

  18. Mercury pollution in Malaysia.

    PubMed

    Hajeb, Parvaneh; Jinap, S; Ismail, Ahmad; Mahyudin, Nor Ainy

    2012-01-01

    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to humans in Malaysia will be useful in establishing the levels at which detrimental effects in both humans and marine life may occur, and therefore the levels at which warning should be raised or limits established. In particular, we believe that two or three monitoring centers should be established in Peninsular Malaysia, and one in East Malaysia for the specific purpose of monitoring for the presence of hazardous environmental chemicals, and particularly monitoring for heavy metals such as mercury that reach food that is subject to consistent human consumption. PMID:22610296

  19. [Mercury and Alzheimer's disease].

    PubMed

    Mutter, J; Naumann, J; Schneider, R; Walach, H

    2007-09-01

    Higher mercury concentrations were found in brain regions and blood of some patients with Alzheimer's disease (AD). Low levels of inorganic mercury were able to cause AD- typical nerve cell deteriorations in vitro and in animal experiments. Other metals like zinc, aluminum, copper, cadmium, manganese, iron, and chrome are not able to elicit all of these deteriorations in low levels, yet they aggravate the toxic effects of mercury (Hg). Main human sources for mercury are fish consumption (Methyl-Hg) and dental amalgam (Hg vapour). Regular fish consumption reduces the risk of development of AD. Amalgam consists of approx. 50 % of elementary mercury which is constantly being vaporized and absorbed by the organism. Mercury levels in brain tissues are 2 - 10 fold higher in individuals with dental amalgam. Persons showing a genetically determined subgroup of transportation protein for fats (apolipoprotein E4) have an increased AD risk. Apoliprotein E (APO E) is found in high concentrations in the central nervous system. The increased AD risk through APO E4 might be caused by its reduced ability to bind heavy metals. Latest therapeutic approaches to the treatment of Alzheimer disease embrace pharmaceuticals which remove or bind metals from the brain. Preliminary success has been documented with chelation of synergistic toxic metals (Fe, Al, Zn, Cu) and therefore also Hg. The available data does not answer the question, whether mercury is a relevant risk factor in AD distinctively. In sum, the findings from epidemiological and demographical studies, the frequency of amalgam application in industrialized countries, clinical studies, experimental studies and the dental state of Alzheimer patients in comparison to controls suggest a decisive role for inorganic mercury in the etiology of Alzheimer's disease. Other factors currently discussed as causes (e. g. other metals, inflammations, dietetic factors, vitamin deficiency, oxidative distress, and metabolic impairments) may act as co-factors. PMID:17628833

  20. LOCAL IMPACTS OF MERCURY EMISSIONS FROM THE MONTICELLO COAL FIRED POWER PLANT.

    SciTech Connect

    SULLIVAN, T.M.; ADAMS, J.; MILIAN, L.; SUBRAMANIAN, S.; FEAGIN, L.; WILLIAMS, J.; BOYD, A.

    2006-10-31

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as currently proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury ''hot spots'', using two types of evidence. First, the world-wide literature was searched for reports of deposition around mercury sources, including coal-fired power plants. Second, soil samples from around two mid-sized U.S. coal-fired power plants were collected and analyzed for evidence of ''hot spots'' and for correlation with model predictions of deposition. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (A) local soil concentration Hg increments of 30%-60%, (B) sediment increments of 18-30%, (C) wet deposition increments of 11-12%, and (D) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content. Soil and vegetation sampling programs were performed around the Monticello coal fired power plant. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with model predictions. The study found the following: (1) There was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. At the Monticello plant, excess soil Hg was associated with soil characteristics with higher values near the lake. Vegetation concentration showed some correlation with soil concentrations having higher mercury in vegetation when the soil mercury. (2) Based on computer modeling, Hg deposition was primarily RGM with much lower deposition from elemental mercury. The total deposition within 50 Km of the plant was predicted to be 4.2% of the total emitted. In the deposition, RGM is responsible for 98.7% of the total deposition, elemental mercury accounts for 1.1% and particulate mercury accounts for 0.2%. Less than 1% of the elemental mercury emitted was predicted to deposit within 50 km.

  1. Mercury Pollution in Soils from the Yacuambi River (Ecuadorian Amazon) as a Result of Gold Placer Mining.

    PubMed

    López-Blanco, Charo; Collahuazo, Luis; Torres, Sandra; Chinchay, Luis; Ayala, Diana; Benítez, Paulina

    2015-09-01

    Gold mining is known to generate important economic products but also to produce several types of contamination/pollution. We report here the first data about Hg concentrations in the soils of the Yacuambi River in the Ecuadorian Amazon. We analyzed soil samples to assess the extent of contamination caused by gold placer mining in this area. Hg concentrations in soils exceeded the local background concentrations. High concentrations of Mn, As, Pb, Cr, Cu, Fe and Zn in some soil samples were probably derived from the geology of the site, which is rich in polysulfides and metamorphic rocks. Placer mining may accelerate the natural release of these elements to the environment by the exposure of the bedrock to the atmosphere. Accumulation of Hg in the river soils may be a potential source of toxicity for aquatic life and a risk to human health in the future. PMID:26183387

  2. Blood levels of lead, cadmium, and mercury in the Korean population: Results from the Second Korean National Human Exposure and Bio-monitoring Examination

    SciTech Connect

    Son, Ji-Young; Lee, Jinheon; Paek, Domyung; Lee, Jong-Tae

    2009-08-15

    In Korea, there have been a number of efforts to measure levels of exposure to environmental pollutants among the population. This paper focuses on investigating the distribution of, extent of, and factors influencing the blood levels of lead, cadmium, and mercury in the Korean population, working from data obtained from the Second Korean National Human Exposure and Bio-monitoring Examination. To that end, blood metal concentrations were analyzed from a total of 2369 participants who were 18 years of age and older. The geometric mean concentrations and their 95% confidence intervals of metals in blood were found to be lead, 1.72 {mu}g/dL (95% CI, 1.68-1.76); cadmium, 1.02 {mu}g/L (95% CI, 1.00-1.05); and mercury, 3.80 {mu}g/L (95% CI, 3.66-3.93). Regression analyses indicate that the levels of metals in the blood are mainly influenced by gender, age, and the education levels of the participants. Current smoking status is also found to be a significant factor for increasing both lead and cadmium levels. Although our study, as the first nationwide survey of exposure to environmental pollutants in Korea, has value on its own, it should be expanded and extended in order to provide information on environmental exposure pathways and to watch for changes in the level of exposure to environmental pollutants among the population.

  3. Measuring and Monitoring Soil Carbon Sequestration at the Project Level

    SciTech Connect

    Izaurralde, R Cesar C.

    2005-05-26

    This paper presents an overview of the status of soil carbon sequestration (SCS) and discusses methods for measuring and monitoring carbon changes in agricultural and grassland soils. The topics reviewed include: soil sampling, analysis, models and remote sensing. Significant scientific and technological advances in the area of SCS have been achieved during the last 15 years. A number of feasibility or pilot projects are underway worldwide under a variety of environmental and socioeconomic situations. To further advance the field of SCS, more projects like these will have to be implemented in order to develop an internationally-accepted and adaptable framework that can guide landowner, energy, and government groups in the development of SCS projects. The formation of a collaborative network for this type of SCS projects can be very helpful to compare the methodologies in use across diverse environments and to exchange data for laboratory quality controls and verification of simulation models among other purposes. These projects will also be useful to advance new methodologies that integrate many of the novel concepts discussed in the previous sections as well as many yet to be discovered.

  4. Influence of aboveground tree biomass, home age, and yard maintenance on soil carbon levels in residential yards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past decade, research in urban soils has focused on the soil carbon (C) sequestration capacity in residential yards. We performed a case study to examine four potential drivers for soil C levels in residential yards. In 67 yards containing trees, we examined the relationship of soil C (kg m-2...

  5. Copper and lead levels in crops and soils of the Holland Marsh Area-Ontario

    SciTech Connect

    Czuba, M.; Hutchinson, T.C.

    1980-01-01

    A study was made of the occurrence, distribution, and concentrations of the heavy metals copper (Cu) and lead (Pb) in the soils and crops of the important horticultural area north of Toronto known as the Holland Marsh. The soils are deep organic mucks (> 85% organic matter), derived by the drainage of black marshland soils, which has been carried out over the past 40 years. A comparison is made between the Pb and Cu concentrations in undrained, uncultivated areas of the marsh and in the intensively used horticultural area. Analyses show a marked accumulation of Cu in surface layers of cultivated soils, with a mean surface concentration of 130 ppM, declining to 20 ppM at a 32-cm depth. Undrained (virgin) soils of the same marshes had < 20 ppM at all depths. Lead concentrations also declined through the profile, from concentrations of 22 to 10 ppM. In comparison, undrained areas had elevated Pb levels. Cultivation appeared to have increased Cu, but lowered Pb in the marsh. Copper and lead levels found in the crops were generally higher in the young spring vegetables than in the mature fall ones. Leafy crops, especially lettuce (Lactuca L.) and celery (Apium graveolens), accumulated higher Pb levels in their foliage compared with levels in root crops. Cultivation procedures, including past pesticide applications and fertilizer additions, appeared to be principal sources of Cu. Mobility from the soil and into the plant for these elements in the marsh muck soils is discussed.

  6. Determination of cadmium, lead and mercury residual levels in meat of canned light tuna (Katsuwonus pelamis and Thunnus albacares) and fresh little tunny (Euthynnus alletteratus) in Libya

    PubMed Central

    Abolghait, S.K.; Garbaj, A.M.

    2015-01-01

    Surveillance for mercury (Hg), lead (Pb) and cadmium (Cd) contamination in tuna products is crucial for consumer food safety. Hg, Pb and Cd contaminants were monitored in a total of 60 specimens of fresh little tunny (Euthynnus alletteratus) and popular brands of skipjack and yellowfin (Katsuwonus pelamis and Thunnus albacares) canned tuna commercially available in Tripoli, Libya. Direct Mercury Analyzer (DMA-80) was implemented for determination of total Hg level and graphite furnace atomic absorption spectrometry (GFAAS) was employed for determination of Cd and Pb concentrations. The results indicated that Hg had the highest concentration level and Cd had the lowest concentration level either in tested canned tuna or fresh little tunny samples. The average concentration of Hg in fresh little tunny samples was 1.185 ± 0.968 mg kg-1 wet weight (ww) and often exceeded the standard permissible limit. In addition, canned yellowfin tuna had the lowest levels of Cd (0.027 ± 0.026 mg kg-1 ww), Pb (0.075 ± 0.071) and Hg (0.163 ± 0.122 mg kg-1 ww). Results of the current surveillance indicated that canned skipjack and yellowfin tuna sold in Tripoli markets show contaminant levels well under the European thresholds adopted for Cd, Pb and Hg. However, consumption of large quantities of Mediterranean little tunny products significantly increases human exposure to the risk of Hg toxicity. PMID:26623379

  7. Determination of cadmium, lead and mercury residual levels in meat of canned light tuna (Katsuwonus pelamis and Thunnus albacares) and fresh little tunny (Euthynnus alletteratus) in Libya.

    PubMed

    Abolghait, S K; Garbaj, A M

    2015-01-01

    Surveillance for mercury (Hg), lead (Pb) and cadmium (Cd) contamination in tuna products is crucial for consumer food safety. Hg, Pb and Cd contaminants were monitored in a total of 60 specimens of fresh little tunny (Euthynnus alletteratus) and popular brands of skipjack and yellowfin (Katsuwonus pelamis and Thunnus albacares) canned tuna commercially available in Tripoli, Libya. Direct Mercury Analyzer (DMA-80) was implemented for determination of total Hg level and graphite furnace atomic absorption spectrometry (GFAAS) was employed for determination of Cd and Pb concentrations. The results indicated that Hg had the highest concentration level and Cd had the lowest concentration level either in tested canned tuna or fresh little tunny samples. The average concentration of Hg in fresh little tunny samples was 1.185 ± 0.968 mg kg(-1) wet weight (ww) and often exceeded the standard permissible limit. In addition, canned yellowfin tuna had the lowest levels of Cd (0.027 ± 0.026 mg kg(-1) ww), Pb (0.075 ± 0.071) and Hg (0.163 ± 0.122 mg kg(-1) ww). Results of the current surveillance indicated that canned skipjack and yellowfin tuna sold in Tripoli markets show contaminant levels well under the European thresholds adopted for Cd, Pb and Hg. However, consumption of large quantities of Mediterranean little tunny products significantly increases human exposure to the risk of Hg toxicity. PMID:26623379

  8. Mercury speciation in the colloidal fraction of a soil polluted by a chlor-alkali plant: a case study in the South of Italy.

    PubMed

    Santoro, A; Terzano, R; Blo, G; Fiore, S; Mangold, S; Ruggiero, P

    2010-03-01

    Mercury (Hg) speciation in different size fractions of a soil sample collected near an industrial area located in the South of Italy, which had been polluted by the dumping of Hg-containing wastes from a chlor-alkali plant, was investigated by XANES spectroscopy. In particular, a special procedure has been developed to study the soil colloidal fraction, both for sample preparation and for XANES data collection. In this soil, Hg was speciated in quite insoluble inorganic forms such as cinnabar (alpha-HgS), metacinnabar (beta-HgS), corderoite (Hg(3)S(2)Cl(2)), and some amorphous Hg, S and Cl-containing species, all derived from the land-disposal of K106 Hg-containing wastes. The contribution of the above-mentioned chemical forms to Hg speciation changed as a function of particle size. For the fraction <2 mm the speciation was: amorphous Hg-S-Cl (34%) > corderoite (26%) > cinnabar (20%) = metacinnabar (20%); for the fraction <2 microm: amorphous Hg-S-Cl (40%) > metacinnabar (24%) > corderoite (20%) > cinnabar (16%); and for the fraction 430-650 nm, where most of the colloidal Hg was concentrated: amorphous Hg-S-Cl (56%) > metacinnabar (33%) > corderoite (6%) > cinnabar (5%). From these data it emerged that, even if Hg was speciated in quite insoluble forms, the colloidal fraction, which is the most mobile and thus the most dangerous, was enriched in relatively more soluble species (i.e. amorphous Hg-S-Cl and metacinnabar), as compared with cinnabar. This aspect should be seriously taken into account when planning environmental risk assessment, since the small particle size in which Hg is concentrated and the changing speciation passing from millimetre to nanometre size could turn apparently safe conditions into more hazardous ones. PMID:20157270

  9. Got Mercury?

    NASA Astrophysics Data System (ADS)

    Meyers, Valerie E.; McCoy, Torin J.; Garcia, Hector D.; James, John T.

    2010-09-01

    Many lamps used in various spacecraft contain elemental mercury, which is efficiently absorbed by the lungs as a vapor. The liquid metal vaporizes slowly at room temperature, but may vaporize completely when lamps are operating. Because current spacecraft environmental control systems are unable to remove mercury vapors, we considered short-term and long-term exposures. We estimated mercury vapor releases from stowed lamps during missions lasting ? 30 days, whereas we conservatively assumed complete vaporization from stowed lamps during missions lasting > 30 days and from operating lamps regardless of mission duration. The toxicity of mercury and its lack of removal have led Johnson Space Center’s Toxicology Group to recommend stringent safety controls and verifications for hardware containing elemental mercury that could yield airborne mercury vapor concentrations > 0.1 mg/m3 in the total spacecraft atmosphere for exposures lasting ? 30 days, or concentrations > 0.01 mg/m3 for exposures lasting > 30 days.

  10. Direct analysis of environmental and biological samples for total mercury with comparison of sequential atomic absorption and fluorescence measurements from a single combustion event

    NASA Astrophysics Data System (ADS)

    Cizdziel, James V.; Tolbert, Candice; Brown, Garry

    2010-02-01

    A Direct Mercury Analyzer (DMA) based on sample combustion, concentration of mercury by amalgamation with gold, and cold vapor atomic absorption spectrometry (CVAAS) was coupled to a mercury-specific cold vapor atomic fluorescence spectrometer (CVAFS). The purpose was to evaluate combustion-AFS, a technique which is not commercially available, for low-level analysis of mercury in environmental and biological samples. The experimental setup allowed for comparison of dual measurements of mercury (AAS followed by AFS) for a single combustion event. The AFS instrument control program was modified to properly time capture of mercury from the DMA, avoiding deleterious combustion products from reaching its gold traps. Calibration was carried out using both aqueous solutions and solid reference materials. The absolute detection limits for mercury were 0.002 ng for AFS and 0.016 ng for AAS. Recoveries for reference materials ranged from 89% to 111%, and the precision was generally found to be <10% relative standard deviation (RSD). The two methods produced similar results for samples of hair, finger nails, coal, soil, leaves and food stuffs. However, for samples with mercury near the AAS detection limit (e.g., filter paper spotted with whole blood and segments of tree rings) the signal was still quantifiable with AFS, demonstrating the lower detection limit and greater sensitivity of AFS. This study shows that combustion-AFS is feasible for the direct analysis of low levels of mercury in solid samples that would otherwise require time-consuming and contamination-prone digestion.

  11. Hg soil pollution around the Flix chlor-alkali plant

    NASA Astrophysics Data System (ADS)

    Esbrí, José Maria; López-Berdoces, Miguel Angel; Martínez-Coronado, Alba; Fernández-Calderon, Sergio; Díez, Sergi; León Higueras, Pablo

    2014-05-01

    Main mercury consumer in industrialized countries is the chlor-alkali industry. In Spain, this industry declares 2.54 tons of mercury emissions to the atmosphere per year, but the losses of mercury in this industrial process seem to be higher than this. In the next 15 years, these industries are going to make a technology change to a free mercury based technology. This study has been applied to the Flix (Tarragona, NE Spain) plant, located very near the Ebro River. Local industrial activity started in the late 18th Century, being the first Spanish industrial precinct in activity. Technology used in this plant is obsolete, and produces important emissions to the atmosphere. Besides, it has also produced an important pollution problem in the Ebro River. The aim of this work is the characterization of mercury soil pollution around the oldest chlor-alkali plant (CAP), actually in process of decommissioning. For this porpoises, we provided data of mercury in soils and in olive oil leaves, in order to assess the extent of this pollution, and the consequences in terms of transferring to local agricultural biota. We present data from two soils geochemistry surveys, one centered in the general area, and a second one centered in an anomalous area identified by the first survey, at the Ebro margins downstream the town area. A total of 126 surface soil samples were taken and analyzed for total mercury by means of a Lumex RA-915+ device with RP- 91C pyrolysis attachment. Soil-plant transfer was studied based on mercury contents in olive leaves, the most ubiquitous plant species in the area; these biological samples were thoroughly clean and freeze-dried before its total mercury analysis in a Lumex RA-915+ device with its RP-91c pyrolysis attachment. Mercury contents in soils reach maximum levels in the vicinity of CAP (495 mg kg-1), much higher than baseline levels found in the area (0.18 mg kg-1, in average). These polluted soils are located near CAP and the riverbanks of Ebro meander, downstream the town area. Mercury seems to be partially available to plants, especially in the CAP surrounding area, where total mercury levels in olive leaves reach maximum values of 1.27 mg kg-1, and average concentration is 0.48 mg kg-1, higher than tolerable level for agronomic crops establish by Kabata-Pendias (2010) in 0.2 mg kg-1. Although correlation coefficients between Hgsoil-Hgplants are low, is possible to characterize plant absorption by logistic curves. Main conclusions of this work are: i) A fraction of mercury vapor emitted by CAP has been deposited on local soils by wet and dry deposition; ii) Mercury in local soils seems to be bioavailable for plants as highlights mercury levels in olive trees; iii) In this work we have identified risks areas with polluted soils.

  12. Recovery of soil unicellular eukaryotes: an efficiency and activity analysis on the single cell level.

    PubMed

    Lentendu, Guillaume; Hübschmann, Thomas; Müller, Susann; Dunker, Susanne; Buscot, François; Wilhelm, Christian

    2013-12-01

    Eukaryotic unicellular organisms are an important part of the soil microbial community, but they are often neglected in soil functional microbial diversity analysis, principally due to the absence of specific investigation methods in the special soil environment. In this study we used a method based on high-density centrifugation to specifically isolate intact algal and yeast cells, with the aim to analyze them with flow cytometry and sort them for further molecular analysis such as deep sequencing. Recovery efficiency was tested at low abundance levels that fit those in natural environments (10(4) to 10(6) cells per g soil). Five algae and five yeast morphospecies isolated from soil were used for the testing. Recovery efficiency was between 1.5 to 43.16% and 2 to 30.2%, respectively, and was dependent on soil type for three of the algae. Control treatments without soil showed that the majority of cells were lost due to the method itself (58% and 55.8% respectively). However, the cell extraction technique did not much compromise cell vitality because a fluorescein di-acetate assay indicated high viability percentages (73.3% and 97.2% of cells, respectively). The low abundant algae and yeast morphospecies recovered from soil were cytometrically analyzed and sorted. Following, their DNA was isolated and amplified using specific primers. The developed workflow enables isolation and enrichment of intact autotrophic and heterotrophic soil unicellular eukaryotes from natural environments for subsequent application of deep sequencing technologies. PMID:23680233

  13. Assessing the potential for re-emission of mercury deposited in precipitation from arid soils using a stable isotope

    USGS Publications Warehouse

    Ericksen, J.A.; Gustin, M.S.; Lindberg, S.E.; Olund, S.D.; Krabbenhoft, D.P.

    2005-01-01

    A solution containing 198Hg in the form of HgCl2 was added to a 4 m2 area of desert soils in Nevada, and soil Hg fluxes were measured using three dynamic flux chambers. There was an immediate release of 198Hg after it was applied, and then emissions decreased exponentially. Within the first 6 h after the isotope was added to the soil, ???12 ng m-2 of 198Hg was emitted to the atmosphere, followed by a relatively steady flux of the isotope at 0.2 ?? 0.2 ng m-2 h-1 for the remainder of the experiment (62 days). Over this time, -200 ng m-2 or 2% of the 198Hg isotope was emitted from the soil, and we estimate that ???6% of the isotope would be re-emitted in a year's time. During the experiment, dry deposition of elemental Hg from the atmosphere was measured with an average deposition rate of 0.2 ?? 0.1 ng m-2 h-1. Emission of ambient Hg from the soil was observed after soil wetting with the isotope solution and after a storm event. However, the added moisture from the storm event did not affect 198Hg flux. Results suggest that in this desert environment, where there is limited precipitation, Hg deposited by wet processes is not readily re-emitted and that dry deposition of elemental Hg may be an important process. ?? 2005 American Chemical Society.

  14. Utilizing ERTS imagery to detect plant diseases and nutrient deficiencies, soil types and soil moisture levels

    NASA Technical Reports Server (NTRS)

    Parks, W. L.; Sewell, J. I.; Hilty, J. W.; Rennie, J. C. (principal investigators)

    1974-01-01

    The author has identified the following significant results. ERTS-1 imagery may be used to delineate soil associations. It does have the capacity to divide soils into groups such that their land use and management would be similar. It offers definite potential for making grass flood-plain, wetland, river shoreline, and land use change surveys. Production of volume strata and forest type from the two usable bands of ERTS-1 imagery were of questionable value. No imagery was received for evaluation during the time of year when maine dwarf mosaic virus and southern corn leaf blight were active.

  15. Environmental assessment of mercury pollution in urban tailings from gold mining.

    PubMed

    Leiva, Manuel A G; Morales, Sandra

    2013-04-01

    It is well-known that small-scale artisanal mining is a source of mercury emissions into the environment, mainly from the use of rudimentary technologies that use mercury amalgamation in the extraction process. Mines near Andacollo, which is located in the Coquimbo region of Chile, use primitive methods to mine gold and copper. In this study, we determined the mercury content of gold mining wastes from Andacollo. At each site, we randomly sampled the soil at the surface and at a depth of 2 m following the ISO 10381 guidelines. Mercury analysis was performed with a direct mercury analyzer. At least one site was contaminated at a mercury concentration of 13.6±1.4 mg kg(-1), which was above the international recommendations that were set by the Canadian Council of Ministers of the Environment's soil quality guidelines (CA-SQG) and the Dutch guidelines (NL-RIVM). At least four of the fourteen sites in this study were within the control and tolerance levels of these recommendations. Better characterization of these sites is required to establish whether they represent a risk to the local community. Based on the US-EPA recommendations, which have a higher tolerance limit, none of the fourteen sites should pose a risk to humans. PMID:23357562

  16. Ecological effects of mercury in aquatic ecosystems

    SciTech Connect

    Suchanek, T.H.; Richerson, P.J.

    1994-12-31

    As a result of former mining operations, roughly 100 tons of mercury were released into Clear Lake, California. In 1992 the authors conducted a baseline survey designed to evaluate the levels and potential effects of mercury within this aquatic ecosystem. Both surficial sediments and cores confirm a clear exponential decline in total mercury and methyl mercury as a function of distance from the mine site. The ratio of methyl/total mercury in surficial sediments, however, increases exponentially as a function of distance from the mine. Declines in total mercury in water were not as steep as for sediments. Plankton, oligochaetes and chironomids also exhibited exponential declines in total mercury but not methyl mercury as a function of distance from the mine. Patterns of invertebrate population and community level parameters will be discussed in relation to mercury and other potential pollutants. Fish showed increasing mercury levels with increasing body size and the following species specific differences: carp < silversides < channel catfish < largemouth bass. Some higher than expected levels of methyl mercury were found at sites distant from the mine. An hypothesis to explain these methyl mercury distributions as a function of bioavailability will be presented.

  17. Human exposure to mercury in the vicinity of chlor-alkali plant.

    PubMed

    Gibicar, Darija; Horvat, Milena; Logar, Martina; Fajon, Vesna; Falnoga, Ingrid; Ferrara, Romano; Lanzillotta, Enrica; Ceccarini, Claudia; Mazzolai, Barbara; Denby, Bruce; Pacyna, Jozef

    2009-05-01

    The main objectives of our study were to estimate the impact of a mercury cell chlor-alkali (MCCA) complex in Rosignano Solvay (Tuscany, Italy) on the local environment and to assess mercury exposure of inhabitants living near the plant. Measurement campaigns of atmospheric Hg near the MCCA plant showed that the impact of the emitted Hg from the industry on the terrestrial environment is restricted to a close surrounding area. Total gaseous mercury concentrations in ambient air of inhabited area around the MCCA plant were in the range of 8.0-8.7 ng/m3 in summer and 2.8-4.2 ng/m3 in winter. Peaks of up to 100 ng/m3 were observed at particular meteorological conditions. Background levels of 2 ng/m3 were reached within a radius of 3 km from the plant. Reactive gaseous mercury emissions from the plant constituted around 4.2% of total gaseous mercury and total particulate mercury emission constituted around 1.0% of total gaseous mercury emitted. Analysis of local vegetables and soil samples showed relatively low concentrations of total mercury (30.1-2919 microgHg/kg DW in the soil; <0.05-111 microgHg/kg DW in vegetables) and methylmercury (0.02-3.88 microgHg/kg DW in the soil; 0.03-1.18 microgHg/kg DW in vegetables). Locally caught marine fish and fresh marine fish from the local market had concentrations of total Hg from 0.049 to 2.48 microgHg/g FW, of which 37-100% were in the form of methylmercury. 19% of analysed fish exceeded 1.0 microgHg/g FW level, which is a limit set by the European Union law on Hg concentrations in edible marine species for tuna, swordfish and shark, while 39% of analysed fish exceeded the limit of 0.5 microgHg/g FW set for all other edible marine species. Risk assessment performed by calculating ratio of probable daily intake (PDI) and provisional tolerable daily intake (PTDI) for mercury species for various exposure pathways showed no risks to human health for elemental and inorganic mercury, except for some individuals with higher number of amalgam fillings, while PDI/PTDI ratio for methylmercury and total mercury exceeded the toxicologically tolerable value due to the potential consumption of contaminated marine fish. PMID:19286175

  18. DEVELOPMENT OF A WATERSHED-BASED MERCURY POLLUTION CHARACTERIZATION SYSTEM

    EPA Science Inventory

    To investigate total mercury loadings to streams in a watershed, we have developed a watershed-based source quantification model ? Watershed Mercury Characterization System. The system uses the grid-based GIS modeling technology to calculate total soil mercury concentrations and ...

  19. The planet Mercury (1971)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

  20. Utilizing ERTS imagery to detect plant diseases and nutrient deficiencies, soil types and soil moisture levels

    NASA Technical Reports Server (NTRS)

    Parks, W. L. (principal investigator); Sewell, J. I.; Hilty, J. W.; Rennie, J. C.

    1973-01-01

    The author has identified the following significant results. The delineation of soil associations and detection of drainage patterns, erosion and sedimentation through the use of ERTS-1 imagery are shown. Corn blight and corn virus could not be detected from ERTS-1 and detection of forest composition was at a very low probability.

  1. Mercury CEM Calibration

    SciTech Connect

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  2. Phytoremediation of Ionic and Methyl Mercury Pollution

    SciTech Connect

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to control the chemical speciation, electrochemical state, transport, and aboveground binding of mercury in order to manage this toxicant.

  3. Identifying the requirements of an agricultural robot for sensing and adjusting soil nutrient and pH levels

    E-print Network

    Teague, Nicole (Nicole Dawn)

    2011-01-01

    The nutrient requirements of soils using in agriculture for crop production were examined to determine the needs of a robotic system used to detect and regulate the nutrition levels of the soil. Nitrogen, phosphorus, and ...

  4. Mercury Thermometer Replacement Alternatives Thermometer Description Non-Mercury Non-Mercury Non-Mercury

    E-print Network

    Mercury Thermometer Replacement Alternatives Length Thermometer Description Non-Mercury Non-Mercury Non-Mercury Range / Division VWR-Enviro-Safe® Fisherbrand® Brooklyn Thermometer Company Inc. Total/A #12;Mercury Thermometer Replacement Alternatives Length Thermometer Description Non-Mercury Non-Mercury

  5. Plants Regulate Soil Organic Matter Decomposition in Response to Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Megonigal, P.; Mueller, P.; Jensen, K.

    2014-12-01

    Tidal wetlands have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to their land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal wetlands become perched high in the tidal frame, decreasing their vulnerability to accelerated sea level rise. Plant growth responses to sea level rise are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of soil organic matter decomposition to rapid sea level rise. Here we quantified the effects of sea level on SOM decomposition rates by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian's Global Change Research Wetland. SOM decomposition rate was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated with a two end-member ?13C-CO2 model. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to flood duration over a 35 cm range in soil surface elevation. However, decomposition rates were strongly and positively related to aboveground biomass (R2?0.59, p?0.01). We conclude that soil carbon loss through decomposition is driven by plant responses to sea level in this intensively studied tidal marsh. If this result applies more generally to tidal wetlands, it has important implications for modeling soil organic matter and surface elevation change in response to accelerated sea level rise.

  6. Heavy Metals Concentration Levels in Soils throughout the East San Francisco Bay Area, California

    NASA Astrophysics Data System (ADS)

    Hagan, K.; Ramirez, N.; Diaz, J.; Cuff, K.; Adarkwah, N.

    2008-12-01

    Previous studies have shown that soils near structures made of pressure treated wood created before 2003 often contain high levels of arsenic, which was widely used in the processing of such wood. One such study, conducted by student scientists affiliated with the SF ROCKS program at San Francisco State University, found high levels of arsenic in soils collected from several children's play areas in San Francisco (Negrete, et al., 2006). Due to the known health risks associated with high concentrations of arsenic, and given a general lack of data related to soils of the East San Francisco Bay Area, the current study was initiated to determine whether or not dangerously high levels of arsenic exist in soils near public schools and playgrounds located in Richmond and Oakland, California. Soil samples were collected from approximately 100 locations in and around such areas, and analyzed for arsenic and a variety of other heavy metals concentration levels using an ICP spectrometer. Preliminary results demonstrate arsenic levels that exceed the EPA's 0.4 ppm action limit in 27 of the 100 sites from which samples were collected. Also, strong correlations between arsenic and various metals in the soil were found, such as arsenic with chromium (0.7022) and nickel (0.6588). Additionally, dangerously high levels of arsenic and lead were found in soils collected along the shores of a small lake fed by Leona Creek on the campus of Mills College in the Oakland foothills, approximately 2 kilometers downstream from a former iron sulphide mine. This occurrence constitutes evidence that the owner of the mine has not complied with recent orders from a local regulatory agency to make sure that mine effluents are safe.

  7. Spinach and mustard greens response to soil type, sulfur addition and lithium level

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A greenhouse experiment was conducted near Weslaco, Texas (Lat. 26o 8' N, Long. 97o 57' W) between Dec. 2006 and Feb 2007 to evaluate the effect of soil type, added sulfur and lithium level on the growth and leaf nutrients, particularly biofortified levels of Li and S, in spinach and mustard gree...

  8. Effect of Greens and Soil Type, Sulfur Addition and Lithium Level on Leaf Constituents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A greenhouse experiment was conducted near Weslaco, Texas (Lat. 26o 8' N, Long. 97o 57' W) between Dec. 2006 and Feb 2007 to evaluate the effect of soil type, added sulfur and lithium level on the growth and leaf nutrients, particularly biofortified levels of Li and S, in spinach and mustard gree...

  9. INVESTIGATION OF THE LIGHT ENHANCED EMISSION OF MERCURY FROM NATURALLY ENRICHED SUBSTRATES. (R827622E02)

    EPA Science Inventory

    Incident radiation has been reported to facilitate mercury release from soils. In this study the influence of light on mercury emissions from substrates amended with pure synthetic mercury species, and from naturally and anthropogenically mercury-enriched substrates were inves...

  10. Mercury Trends in Multiple Fish Species in the Everglades Protection Area

    E-print Network

    Ma, Lena

    Mercury Trends in Multiple Fish Species in the Everglades Protection Area Major Paper Nicole M. Howard Spring 2011 Soil and Water Science Department #12;2 Introduction Mercury in the South Florida-alkali facilities. When mercury-containing materials are burned or incinerated, mercury is released in gaseous

  11. CASE STUDY. MERCURY POLLUTION NEAR A CHEMICAL PLANT IN NORTHERN KAZAKHSTAN

    EPA Science Inventory

    In northern Kazakhstan, there is a serious case of mercury pollution near Pavlodar City from an old mercury cell chlor-alkali plant. The soil, sediment, and water are contaminated with more than a thousand tons of mercury and mercury compounds as a result of the operation of the ...

  12. Mercury Pollution Near A Chlor-Alkali Plant In Northern Kazakhstan

    EPA Science Inventory

    In northern Kazakhstan, there is a serious case of mercury pollution near Pavlodar City from an old mercury cell chlor-alkali plant. The soil, sediment, and water is contaminated with more than a thousand tons of mercury and mercury compounds as a result of the operation of the ...

  13. MOVEMENT OF MERCURY-203 IN PLANTS

    EPA Science Inventory

    Seeds of Pisum sativum, varieties Little Marvel and Alaska, were planted in soils contaminated with radioactive ionic mercury, methylmercury or phenylmercury compounds. After saturation, stems, leaves, and pods were harvested and analyzed by gamma spectroscopy. Utilizing a least ...

  14. Monte-Carlo human health risk assessment of mercury emissions from a MSW gasification plant.

    PubMed

    Lonati, Giovanni; Zanoni, Francesca

    2013-02-01

    The potential impact of the atmospheric emission of mercury from a new waste gasification plant is assessed by means of a probabilistic approach based on probability density functions for the description of the input data (namely, emission rate of mercury gaseous and particulate species) and the model parameters involved in the individual risk exposure assessment through the pathways of inhalation, soil ingestion, dermal contact, and diet. The use of probability functions allowed the uncertainty in the input data and model parameters to be accounted for; the uncertainty was propagated throughout the evaluation by Monte Carlo technique, resulting in the probability distributions for the ambient air and soil concentrations nearby the plant and for the subsequent individual risk, estimated in terms of hazard index for both an adult and a child receptor. The estimated median concentration levels in air and soil are respectively in the 1.6 × 10(-3)-2.2 × 10(-2) ng m(-3) range and in the 3.5 × 10(-4)-1.7 × 10(-2) mg kg(-1) range, that is at least two orders of magnitude lower than the current background concentration in the ambient air and one order of magnitude lower than the concentration locally measured in the soil. The diet pathway is responsible for the most part (>80%) of the daily mercury intake, which, however, is at least four (median estimated values) and three orders (estimates for a reasonable maximum exposure) lower than the reference dose in the most part of the modeling domain. According to the locally measured background mercury levels in air and soil the additional contribution of the plant emissions to the environmental mercury levels appears of small significance, with an almost negligible impact on the hazard index for the population living in the neighborhood of the plant. PMID:23177017

  15. Mercury pollution near an industrial source in southwest Finland

    SciTech Connect

    Hynninen, V.; Lodenius, M.

    1986-02-01

    Mercury is very sparse in Finnish rocks and soils. Some mercury occurs in the ore of the Outokumpu mine, SE Finland. Metal ore from this mine is refined in the metallurgical plants at Kokkola and Harjavalta. Elevated mercury contents have been observed in the environment of the plant at Kokkola but no data have been published about the possible mercury contamination around the Harjavalta plant.

  16. Mercury CEM Calibration

    SciTech Connect

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The outputs of mercury generators are compared to one another using a nesting procedure which allows direct comparison of one generator with another and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define generator performance as affected by variables such as pressure, temperature, line voltage, and shipping. WRI is focusing efforts to determine actual generator performance related to the variables defined in the qualification portion of the interim protocol. The protocol will then be further revised by EPA based on what can actually be achieved with the generators. Another focus of the study is to evaluate approaches for field verification of generator performance. Upcoming work includes evaluation of oxidized mercury calibration generators, for which a separate protocol will be prepared by EPA. In addition, the variability of the spectrometers/analyzers under various environmental conditions needs to be defined and understood better. A main objective of the current work is to provide data on the performance and capabilities of elemental mercury generator/calibration systems for the development of realistic NIST traceability protocols for mercury vapor standards for continuous emission CEM calibration. This work is providing a direct contribution to the enablement of continuous emissions monitoring at coal-fired power plants in conformance with the CAMR. EPA Specification 12 states that mercury CEMs must be calibrated with NIST-traceable standards (Federal Register 2005). The initial draft of an elemental mercury generator traceability protocol was circulated by EPA in May 2007 for comment, and an interim protocol was issued in August 2007 (EPA 2007). Initially it was assumed that the calibration and implementation of mercury CEMs would be relatively simple, and implementation would follow the implementation of the Clean Air Interstate Rule (CAIR) SO{sub 2} and NO{sub x} monitoring, and sulfur emissions cap and trade. However, mercury has proven to be significantly more difficult

  17. Phytoremediation of Ionic and Methyl Mercury Pollution

    SciTech Connect

    Meagher, Richard B.

    2004-12-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.

  18. Sea level and turbidity controls on mangrove soil surface elevation change

    NASA Astrophysics Data System (ADS)

    Lovelock, Catherine E.; Adame, Maria Fernanda; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-02-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  19. Soil carbon levels in pastures in the humid United States under different fertility levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With current global climate change concerns, there is increased interest in the role of agriculture in CO2 release or sequestration. Tillage based practices tend to release soil carbon while non-tillage practices and forage crops tend to sequester carbon. There is a need for greater quantification...

  20. Resource seeking strategies of zoosporic true fungi in heterogeneous soil habitats at the microscale level

    PubMed Central

    Gleason, Frank H.; Crawford, John W.; Neuhauser, Sigrid; Henderson, Linda E.; Lilje, Osu

    2012-01-01

    Zoosporic true fungi have frequently been identified in samples from soil and freshwater ecosystems using baiting and molecular techniques. In fact some species can be components of the dominant groups of microorganisms in particular soil habitats. Yet these microorganisms have not yet been directly observed growing in soil ecosystems. Significant physical characteristics and features of the three-dimensional structures of soils which impact microorganisms at the microscale level are discussed. A thorough knowledge of soil structures is important for studying the distribution of assemblages of these fungi and understanding their ecological roles along spatial and temporal gradients. A number of specific adaptations and resource seeking strategies possibly give these fungi advantages over other groups of microorganisms in soil ecosystems. These include chemotactic zoospores, mechanisms for adhesion to substrates, rhizoids which can penetrate substrates in small spaces, structures which are resistant to environmental extremes, rapid growth rates and simple nutritional requirements. These adaptations are discussed in the context of the characteristics of soils ecosystems. Recent advances in instrumentation have led to the development of new and more precise methods for studying microorganisms in three-dimensional space. New molecular techniques have made identification of microbes possible in environmental samples. PMID:22308003

  1. EVALUATION, ASSESSMENT, AND DETERMINATION OF RISK TO HIGH TROPHIC LEVEL PISCIVORES IN THE MID-ATLANTIC: A SPATIAL, BIOLOGICAL, AND COMPARATIVE CASE STUDY OF MERCURY IN VIRGINIA AND NEW ENGLAND BALD EAGLE (HALIAEETUS LEUCOCEPHALUS) POPULATIONS

    EPA Science Inventory

    I predict that some portion of the Virginia bald eagle population will exhibit levels at or above those considered detrimental to productivity and reproductive success. The analysis of independent variables and their relationship to elevated blood mercury levels will help t...

  2. Validation of Bayesian kriging of arsenic, chromium, lead and mercury surface soil concentrations based on internode sampling

    PubMed Central

    Aelion, C.M.; Davis, H.T.; Liu, Y.; Lawson, A.B.; McDermott, S.

    2009-01-01

    Bayesian kriging is a useful tool for estimating spatial distributions of metals; however, estimates are generally only verified statistically. In this study surface soil samples were collected on a uniform grid and analyzed for As, Cr, Pb, and Hg. The data were interpolated at individual locations by Bayesian kriging. Estimates were validated using a leave-one-out cross validation (LOOCV) statistical method which compared the measured and LOOCV predicted values. Validation also was carried out using additional field sampling of soil metal concentrations at points between original sampling locations, which were compared to kriging prediction distributions. LOOCV results suggest that Bayesian kriging was a good predictor of metal concentrations. When measured internode metal concentrations and estimated kriged values were compared, the measured values were located within the 5th – 95th percentile prediction distributions in over half of the internode locations. Estimated and measured internode concentrations were most similar for As and Pb. Kriged estimates did not compare as well to measured values for concentrations below the analytical minimum detection limit, or for internode samples that were very close to the original sampling node. Despite inherent variability in metal concentrations in soils, the kriged estimates were validated statistically and by in situ measurement. PMID:19603658

  3. Validation of Bayesian kriging of arsenic, chromium, lead, and mercury surface soil concentrations based on internode sampling.

    PubMed

    Aelion, C M; Davis, H T; Liu, Y; Lawson, A B; McDermott, S

    2009-06-15

    Bayesian kriging is a useful tool for estimating spatial distributions of metals; however, estimates are generally only verified statistically. In this study surface soil samples were collected on a uniform grid and analyzed for As, Cr, Pb, and Hg. The data were interpolated at individual locations by Bayesian kriging. Estimates were validated using a leave-one-out cross validation (LOOCV) statistical method which compared the measured and LOOCV predicted values. Validation also was carried out using additional field sampling of soil metal concentrations at points between original sampling locations, which were compared to kriging prediction distributions. LOOCV results suggest that Bayesian kriging was a good predictor of metal concentrations. When measured internode metal concentrations and estimated kriged values were compared, the measured values were located within the 5th-95th percentile prediction distributions in over half of the internode locations. Estimated and measured internode concentrations were most similar for As and Pb. Kriged estimates did not compare as well to measured values for concentrations below the analytical minimum detection limit, or for internode samples that were very close to the original sampling node. Despite inherent variability in, metal concentrations in soils, the kriged estimates were validated statistically and by in situ measurement. PMID:19603658

  4. Mercury Quick Facts: Health Effects of Mercury Exposure

    MedlinePLUS

    ... short-term exposure to high levels of mercury vapors • Cough, sore throat • Shortness of breath • Chest pain • Nausea, vomiting, diarrhea • Increase in blood pressure or heart rate • A metallic taste in the ...

  5. Impact of Organic versus Conventional Farming Practices on Soil Leachate Total Nitrogen Levels

    NASA Astrophysics Data System (ADS)

    Collopy, A.; Schloss, J.; Hale, S. R.; Rock, B. N.

    2008-12-01

    Approximately 50 percent of US drinking water comes from groundwater sources. The US Department of Agriculture (USDA) has standards for organic certification designed to promote groundwater quality. In order to be USDA certified organic, a farmer must 1) never use conventional pesticides, 2) never use fertilizers made with synthetic ingredients, and 3) have been farming organically for over five years. We tested for differences between organic and conventional farming on nitrogen levels in water percolating through soils and hypothesized that organically farmed soil leachate would have lower nitrogen concentrations than conventionally farmed soil leachate. Soil samples collected from fields under organic farming practices did not show significantly lower total nitrate concentrations than samples collected from fields under conventional farming practices. Instead, it was determined that the type of crop being grown has greater influence on leachate total nitrate than the type of farming practice.

  6. Bioavailability of caesium-137 from chernozem soils with high and low levels of radioactive contamination

    NASA Astrophysics Data System (ADS)

    Paramonova, Tatiana; Shamshurina, Eugenia; Machaeva, Ekaterina; Belyaev, Vladimir

    2014-05-01

    Bioavailability of Cs-137 in "soil-plant" system of radioactively contaminated terrestrial ecosystems is the most important factor in the understanding of ecological situation. There are many factors affecting the features of Cs-137 biogeochemical cycle: period since an accident, type and intensity of radioactive fallout, general properties of landscape and the specifics of soil and plant covers, etc. In order to evaluate the importance of soil contamination level for the process of Cs-137 translocation from soil to plant the research in forest-steppe areas of Russia with similar natural properties, but contrasting high (Tula region) and low (Kursk region) levels of radioactive Chernobyl fallout (about 25 years after accident) was conducted. Soil cover of both sites is presented by chernozems with bulk density 1.1-1.2 g/cm3, 6-7% humus and neutral pH 6.5-7.2; plant cover under investigation consist of dry and wet meadows with bioproductivity 1.6-2.5 kg/m2 and 85-90% of biomass concentrated underground, that is typical for Russian forest-steppe landscapes. At the same time levels of soil regional contamination with Cs-137 differ by an order - 620-710 Bq/kg (210-250 kBq/m2) in Tula region and 30-55 Bq/kg (10-20 kBq/m2) in Kursk region. At a higher level of soil radioactive contamination specific activity of Cs-137 in vegetation of meadows is noticeably increased (103-160 Bq/kg in Tula region versus 12-14 Bq/kg in Kursk region) with correlation coefficient r 0.87. Increasing of Cs-137 in the underground parts of plants plays a decisive role in this process, while the specific radionuclide's activity in the aboveground parts of different sites is almost invariant (and ubiquitously roots contain 2-5 times more Cs-137 than shoots). The values of transfer factors for Cs-137 (the ratio of the specific Cs-137 activities in the plant tissue and in the soil) at various levels of soil radioactive contamination vary within a relatively narrow range 0.1-0.4, that confirms the discrimination in the radionuclide root uptake. And the higher the level of soil contamination, the more pronounced decreasing of Cs-137 transfer factors with correlation coefficient r -0.89. Further, transfer factors of Cs-137 for aboveground parts of meadow vegetation consist of 0.03-0.012 and always are 2-4 times lower than transfer factors for underground parts. This suggests an existence of biological barrier between the roots and shoots and suppression in the translocation of Cs-137s into aboveground parts of plants. Moreover bioavailability of Cs-137 in the sites of wet meadows is, in accordance with the transfer factors values, even a few more then in the sites of dry meadows regardless of the level of soil radioactive contamination. Thus, general parameters of radionuclide's accumulation in vegetation is closely dependent on its supplies in soil. However, the proportion of Cs-137 root uptake isn't determined by the level of soil radioactive contamination, but mostly by the biological features of vegetation. Study was conducted with the support from the Russian Foundation for Basic Research (project no. 14-05-00903).

  7. [Mercury dynamics of several plants collected from the water-level fluctuation zone of the Three Gorges Reservoir area during flooding and its impact on water body].

    PubMed

    Zhang, Xiang; Zhang, Cheng; Sun, Rong-guo; Wang, Ding-yong

    2014-12-01

    Submerged plants are a major source for the abnormal elevation of methylmercury in reservoir. Several specific plants (Echinochloa crusgalli, Cynodondactylon and Corn stover) were collected and inundated in a simulated aquatic environment in the laboratory for investigating the mercury (Hg) dynamics in plants and the release process into water, aiming to find out the properties of Hg dynamics of plants under inundation conditions and its impact on water body in the Water-Level Fluctuation Zone of the Three Gorges Reservoir Area. The results showed that the contents of total mercury in several plants were in the range of 9. 21-12.07 ng x g(-1), and the percentage content of methylmercury (MeHg) was about 1%-2%. The content of total mercury (THg) in plants gradually decreased, by 35.81%-55.96%, whereas that of the dissolved mercury (DHg) increased sharply, by 103.23% -232.15%, which indicated an emission of Hg from plants to water in the process of decomposition. Furthermore, the state of inundation provided sufficient conditions for the methylation process in plants and therefore caused an increase of the content of methylmercury in the plant residues, which was 3.04-6.63 times as much as the initial content. The concentration of dissolved methylmercury (DMeHg) in the overlying water also increased significantly by 14.84- 16.05 times compared with the initial concentration. Meanwhile, the concentration of dissolved oxygen (DO) in the overlying water was significantly and negatively correlated with DMeHg. On the other hand, the concentration of dissolved organic carbon (DOC) in the overlying water was significantly and positively correlated with DMeHg. During the whole inundation period, the increase of DHg in the overlying water accounted for 41.74% -47.01% of the total amount of THg emission, and there was a negative correlation between the content of THg in plant residues and that of DHg in the overlying water. PMID:25826925

  8. [Composition and Density of Soil Fauna in the Region with Enhanced Radioactivity Level (Komi Republic, Vodnyi)].

    PubMed

    Kolesnikova, A A; Kudrin, A A; Konakova, T N; Taskaeva, A A

    2015-01-01

    Studies on the influence of high levels of radiation on soil fauna were carried out in 2012 in the territory formed as a result of the activity of the enterprise for extraction and production of radium from reservoir water and waste of uranium ore from 1931 to 1956. At present the local radioactive pollution in this area is caused by the presence of heavy natural radionuclides 226Ra, 238U and products of their disintegration in soils. The oppression of soil invertebrate.fauna in pine forests and meadows with high levels of radionuclides and heavy metals is revealed. Also shown is the decrease in the number and density of different taxonomic groups of invertebrates, reduction of the diversity and spectrum of trophic groups and vital forms in the area with a high content of radionuclides in soil. Our results are in agreement with the results obtained by the similar studies showing negative influence of high-level ionizing radiation on soil fauna. PMID:26310020

  9. OBSERVATIONS AND ANALYSIS OF MERCURY IN THE TOP SOIL WITHIN A 100-METER RADIUS OF A CHLORALKALI PLANT IN NORTHER KAZAKHSTAN USING EPA METHOD 7473

    EPA Science Inventory

    This limited study has shown a comparison of mercury concentrations at different sample collection locations at the chlor-alkali plant in Northern Kazakhstan. Method 7473 uses a direct mercury analyzer for Hg in solid samples. A small amount of sample is dried and combusted. The ...

  10. Heavy metals in the soils of Bloemfontein, South Africa: concentration levels and possible sources.

    PubMed

    Clark, J H A; Tredoux, M; van Huyssteen, C W

    2015-07-01

    The possible heavy metal and metalloid contamination in the soils around a coal-generated power station, situated on the eastern end of the central business district of Bloemfontein, central South Africa, was investigated. One-hundred and thirty-three samples (22 dust samples collected inside buildings and 111 soil samples) were collected for the study and analysed for As, Se, Cd, Sb and Hg. The results indicated generally elevated levels for Cd, Sb and Hg, and some localised contamination of As, but no significant increases in the non-metal Se. In fact, Se levels indicated a deficiency of the element in the study area. In general, the dust samples showed elevated levels of all elements (except Se) relative to the soils. A possible source for the enrichment might have been the release of ash, containing trace amounts of these elements, from the local power station; however, because the highest concentration in soils was found in the industrial areas, other processes could have contributed or even have been the sole cause of the elevated levels. High levels of As occur at an abandoned horse race course and were probably caused by the questionable practice of administering As-containing tonics to the horses shortly before they run a race. PMID:26085278

  11. Mercury in the Anthropocene Ocean

    E-print Network

    Lamborg, Carl H.

    The toxic metal mercury is present only at trace levels in the ocean, but it accumulates in fish at concentrations high enough to pose a threat to human and environmental health. Human activity has dramatically altered the ...

  12. Mercury banned

    SciTech Connect

    Lomuscio, J.

    1990-10-01

    This article describes the banning of the use of mercury as a biocide in indoor paints. Mercury will be allowed in outdoor paints but products must be labelled that they contain the metal and must include a warning for outdoor use only. Because mercury can offgas into the environment for several months after a room is painted, exposed individuals may be at risk for kidney disease, neurological impairment, gastrointestinal problems and cardiovascular disorders. Some paint manufacturers feel that the EPA has overreacted to an isolated case in which mercury in paint was found to be responsible for the serious illness of a five-year-old boy. They say that the new mandate will cost the industry an estimated $50 million to mix up-to-code paints, print new labels and test other biocides for efficacy.

  13. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    PubMed Central

    Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety. PMID:23230464

  14. Environmental Mercury and Its Toxic Effects

    PubMed Central

    Rice, Kevin M.; Walker, Ernest M.; Wu, Miaozong; Gillette, Chris

    2014-01-01

    Mercury exists naturally and as a man-made contaminant. The release of processed mercury can lead to a progressive increase in the amount of atmospheric mercury, which enters the atmospheric-soil-water distribution cycles where it can remain in circulation for years. Mercury poisoning is the result of exposure to mercury or mercury compounds resulting in various toxic effects depend on its chemical form and route of exposure. The major route of human exposure to methylmercury (MeHg) is largely through eating contaminated fish, seafood, and wildlife which have been exposed to mercury through ingestion of contaminated lower organisms. MeHg toxicity is associated with nervous system damage in adults and impaired neurological development in infants and children. Ingested mercury may undergo bioaccumulation leading to progressive increases in body burdens. This review addresses the systemic pathophysiology of individual organ systems associated with mercury poisoning. Mercury has profound cellular, cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, reproductive, and embryonic toxicological effects. PMID:24744824

  15. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie; James, John T.; McCoy, Torin; Garcia, Hector

    2010-01-01

    Many lamps used in various spacecraft contain elemental mercury, which is efficiently absorbed through the lungs as a vapor. The liquid metal vaporizes slowly at room temperature, but may be completely vaporized when lamps are operating. Because current spacecraft environmental control systems are unable to remove mercury vapors, we considered short-term and long-term exposures. Using an existing study, we estimated mercury vapor releases from lamps that are not in operation during missions lasting less than or equal to 30 days; whereas we conservatively assumed complete vaporization from lamps that are operating or being used during missions lasing more than 30 days. Based on mercury toxicity, the Johnson Space Center's Toxicology Group recommends stringent safety controls and verifications for any hardware containing elemental mercury that could yield airborne mercury vapor concentrations greater than 0.1 mg/m3 in the total spacecraft atmosphere for exposures lasting less than or equal to 30 days, or concentrations greater than 0.01 mg/m3 for exposures lasting more than 30 days.

  16. Using Reading Grade Level to Assess Readability of Selected Plant and Soil Science Textbooks.

    ERIC Educational Resources Information Center

    Graveel, John G.; Fribourg, Henry A.

    1987-01-01

    Reported is a study designed to determine whether reading grade level (RGL) assessment techniques used for elementary and secondary education textbooks would discriminate among plant and soil science textbooks. The study was to select the RGL indices suited to quantify the readability of these sources, and to identify the factors affecting…

  17. Optimization of an oxygen-based approach for community-level physiological profiling of soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current approaches for rapid assessment of carbon source utilization by whole soil communities (i.e., community-level physiological profiling or CLPP) provides a limited, biased view of microbial communities with little connection to in situ activities. We developed an alternative CLPP approach bas...

  18. [Development of lead benchmarks for soil based on human blood lead level in China].

    PubMed

    Zhang, Hong-zhen; Luo, Yong-ming; Zhang, Hai-bo; Song, Jing; Xia, Jia-qi; Zhao, Qi-guo

    2009-10-15

    Lead benchmarks for soil are mainly established based on blood lead concentration of children. This is because lead plays a dramatically negative role in children's cognitive development and intellectual performance and thus soil lead has been concerned as main lead exposure source for children. Based on the extensively collection of domestic available data, lead levels in air, drinking water are 0.12-1.0 microg x m(-3) and 2-10 microg x L(-1); ingestion of lead from food by children of 0-6 years old is 10-25 microg x d(-1); geometric mean of women blood lead 1concentration of child bearing age is 4.79 microg x dL(-1), with 1.48 GSD. Lead benchmarks for soil were calculated with the Integration Exposure Uptake Biokinetic Model (IEUBK) and the Adult Lead Model (ALM). The results showed the lead criteria values for residual land and commercial/industrial land was 282 mg x kg(-1) and 627 mg x kg(-1) respectively, which was slightly lower compared with U.S.A. and U.K. Parameters sensitivity analysis indicated that lead exposure scenario of children in China was significantly different from children in developed countries and children lead exposure level in China was obviously higher. Urgent work is required for the relationship studies between lead exposure scenario and blood lead level of children and establishment of risk assessment guideline of lead contaminated soil based on human blood lead level. PMID:19968127

  19. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition

    USGS Publications Warehouse

    Harris, R.C.; Rudd, J.W.M.; Amyot, M.; Babiarz, C.L.; Beaty, K.G.; Blanchfield, P.J.; Bodaly, R.A.; Branfireun, B.A.; Gilmour, C.C.; Graydon, J.A.; Heyes, A.; Hintelmann, H.; Hurley, J.P.; Kelly, C.A.; Krabbenhoft, D.P.; Lindberg, S.E.; Mason, R.P.; Paterson, M.J.; Podemski, C.L.; Robinson, A.; Sandilands, K.A.; Southworthn, G.R.; St. Louis, V.L.; Tate, M.T.

    2007-01-01

    Methylmercury contamination of fisheries from centuries of industrial atmospheric emissions negatively impacts humans and wild-life worldwide. The response of fish methylmercury concentrations to changes in mercury deposition has been difficult to establish because sediments/soils contain large pools of historical contamination, and many factors in addition to deposition affect fish mercury. To test directly the response of fish contamination to changing mercury deposition, we conducted a whole-ecosystem experiment, increasing the mercury load to a lake and its watershed by the addition of enriched stable mercury isotopes. The isotopes allowed us to distinguish between experimentally applied mercury and mercury already present in the ecosystem and to examine bioaccumulation of mercury deposited to different parts of the watershed. Fish methylmercury concentrations responded rapidly to changes in mercury deposition over the first 3 years of study. Essentially all of the increase in fish methylmercury concentrations came from mercury deposited directly to the lake surface. In contrast, <1% of the mercury isotope deposited to the watershed was exported to the lake. Steady state was not reached within 3 years. Lake mercury isotope concentrations were still rising in lake biota, and watershed mercury isotope exports to the lake were increasing slowly. Therefore, we predict that mercury emissions reductions will yield rapid (years) reductions in fish methylmercury concentrations and will yield concomitant reductions in risk. However, a full response will be delayed by the gradual export of mercury stored in watersheds. The rate of response will vary among lakes depending on the relative surface areas of water and watershed. ?? 2007 by The National Academy of Sciences of the USA.

  20. SMOS/SMAP Synergy for SMAP Level 2 Soil Moisture Algorithm Evaluation

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann

    2011-01-01

    Soil Moisture Active Passive (SMAP) satellite has been proposed to provide global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolutions, respectively. SMAP would also provide a radiometer-only soil moisture product at 40-km spatial resolution. This product and the supporting brightness temperature observations are common to both SMAP and European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are opportunities for synergies between the two missions. These include exploiting the data for calibration and validation and establishing longer term L-band brightness temperature and derived soil moisture products. In this investigation we will be using SMOS brightness temperature, ancillary data, and soil moisture products to develop and evaluate a candidate SMAP L2 passive soil moisture retrieval algorithm. This work will begin with evaluations based on the SMOS product grids and ancillary data sets and transition to those that will be used by SMAP. An important step in this analysis is reprocessing the multiple incidence angle observations provided by SMOS to a global brightness temperature product that simulates the constant 40 degree incidence angle observations that SMAP will provide. The reprocessed brightness temperature data provide a basis for evaluating different SMAP algorithm alternatives. Several algorithms are being considered for the SMAP radiometer-only soil moisture retrieval. In this first phase, we utilized only the Single Channel Algorithm (SCA), which is based on the radiative transfer equation and uses the channel that is most sensitive to soil moisture (H-pol). Brightness temperature is corrected sequentially for the effects of temperature, vegetation, roughness (dynamic ancillary data sets) and soil texture (static ancillary data set). European Centre for Medium-Range Weather Forecasts (ECMWF) estimates of soil temperature for the top layer (as provided as part of the SMOS ancillary data) were used to correct for surface temperature effects and to derive microwave emissivity. ECMWF data were also used for precipitation forecasts, presence of snow, and frozen ground. Vegetation options are described below. One year of soil moisture observations from a set of four watersheds in the U.S. were used to evaluate four different retrieval methodologies: (1) SMOS soil moisture estimates (version 400), (2) SeA soil moisture estimates using the SMOS/SMAP data with SMOS estimated vegetation optical depth, which is part of the SMOS level 2 product, (3) SeA soil moisture estimates using the SMOS/SMAP data and the MODIS-based vegetation climatology data, and (4) SeA soil moisture estimates using the SMOS/SMAP data and actual MODIS observations. The use of SMOS real-world global microwave observations and the analyses described here will help in the development and selection of different land surface parameters and ancillary observations needed for the SMAP soil moisture algorithms. These investigations will greatly improve the quality and reliability of this SMAP product at launch.

  1. Mercury Emission From Phragmites in a Contaminated Wetland

    NASA Astrophysics Data System (ADS)

    Bubb, M.; Peters, S.

    2008-12-01

    Characterizing the role of vegetation has been an elusive component to a complete understanding of the mercury cycle. Defining this contribution is of ecological and environmental significance as it pertains to contaminated industrial sites. Various studies have demonstrated that foliar exchange of gaseous mercury is bi-directional and may depend on atmospheric concentrations of mercury as well as other environmental parameters. In particular emergent aquatic vegetation such as Typha, Cladium, and Phragmites, in areas of elevated mercury soil concentrations have been shown to generate relatively high daytime fluxes of ~30ng/m2/hr, ~20ng/m2/hr, and in one case 90ng/m2/hr, respectively. For this research mercury fluxes were measured from foliar surfaces of Phragmites australis in a highly contaminated portion of the New Jersey Hackensack Meadowlands using a dynamic flux chamber. The chamber is constructed from UV transparent acrylic sheets sized to average Phragmites leaves and employs a sheath-like design so that it may be easily slid over foliage with minimal interference. The design also circumvents the use of foams or silicone as sealant which in the past have been shown to emit or absorb mercury. Laboratory and field tests have shown good agreement between ambient air and chamber blank mercury levels. During field excursions generally 5-7 adjacent plants would be sampled for 20-30 min each.Over one 6-hour sampling period in late summer 2008 mean Phragmites flux was - 0.12ng/m2/hr±0.25 with a maximum negative flux of -0.64ng/m2/hr. Another sampling period showed a positive average of 0.07ng/m2/hr±0.07 with a maximum of 0.11ng/m2/hr. These values, as well as those observed in earlier literature, are likely the result of significant environmental parameters operating on the mechanism by which foliar flux is produced. Such parameters include, incoming solar radiation, wind velocity, air temperature, air quality, humidity, sediment pore water mercury concentrations, as well as internal leaf properties such as transpiration and relative humidity. It is the ongoing goal of this study to relate the magnitude of mercury flux with said parameters in order to better understand the controls by which emission is enhanced or diminished.

  2. High levels of maternally transferred mercury do not affect reproductive output or embryonic survival of northern watersnakes (Nerodia sipedon).

    PubMed

    Chin, Stephanie Y; Willson, John D; Cristol, Daniel A; Drewett, David V V; Hopkins, William A

    2013-03-01

    Maternal transfer is an important exposure pathway for contaminants because it can directly influence offspring development. Few studies have examined maternal transfer of contaminants, such as mercury (Hg), in snakes, despite their abundance and high trophic position in many ecosystems where Hg is prevalent. The objectives of the present study were to determine if Hg is maternally transferred in northern watersnakes (Nerodia sipedon) and to evaluate the effects of maternal Hg on reproduction. The authors captured gravid female watersnakes (n?=?31) along the South River in Waynesboro, Virginia, USA, where an extensive Hg-contamination gradient exists. The authors measured maternal tissue and litter Hg concentrations and, following birth, assessed (1) reproductive parameters (i.e., litter size and mass, neonate mass); (2) rates of infertility, death during development, stillbirths, malformations, and runts; and (3) the overall viability of offspring. Mercury concentrations in females were strongly and positively correlated with concentrations in litters, suggesting that N. sipedon maternally transfer Hg in proportion to their tissue residues. Maternal transfer resulted in high concentrations (up to 10.10?mg/kg dry wt total Hg) of Hg in offspring. The authors found little evidence of adverse effects of Hg on these measures of reproductive output and embryonic survival, suggesting that N. sipedon may be more tolerant of Hg than other vertebrate species. Given that this is the first study to examine the effects of maternally transferred contaminants in snakes and that the authors did not measure all reproductive endpoints, further research is needed to better understand factors that influence maternal transfer and associated sublethal effects on offspring. PMID:23233365

  3. A multivariate linear regression model for predicting children's blood lead levels based on soil lead levels: A study at four Superfund sites

    SciTech Connect

    Lewin, M.D.; Sarasua, S.; Jones, P.A. . Div. of Health Studies)

    1999-07-01

    For the purpose of examining the association between blood lead levels and household-specific soil lead levels, the authors used a multivariate linear regression model to find a slope factor relating soil lead levels to blood lead levels. They used previously collected data from the Agency for Toxic Substances and Disease Registry's (ATSDR's) multisite lead and cadmium study. The data included in the blood lead measurements of 1,015 children aged 6--71 months, and corresponding household-specific environmental samples. The environmental samples included lead in soil, house dust, interior paint, and tap water. After adjusting for income, education or the parents, presence of a smoker in the household, sex, and dust lead, and using a double log transformation, they found a slope factor of 0.1388 with a 95% confidence interval of 0.09--0.19 for the dose-response relationship between the natural log of the soil lead level and the natural log of the blood lead level. The predicted blood lead level corresponding to a soil lead level of 500 mg/kg was 5.99 [micro]g/kg with a 95% prediction interval of 2.08--17.29. Predicted values and their corresponding prediction intervals varied by covariate level. The model shows that increased soil lead level is associated with elevated blood leads in children, but that predictions based on this regression model are subject to high levels of uncertainty and variability.

  4. Local Impacts of Mercury Emissions from the Three Pennsylvania Coal Fired Power Plants.

    SciTech Connect

    Sullivan,T.; Adams,J.; Bender, M.; Bu, C.; Piccolo, N.; Campbell, C.

    2008-02-01

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury 'hot spots'. Soil and oak leaf samples from around three large U.S. coal-fired power plants in Western Pennsylvania were collected and analyzed for evidence of 'hot spots'. These three plants (Conemaugh, Homer City, and Keystone) are separated by a total distance of approximately 30 miles. Each emits over 500 pounds of mercury per year which is well above average for mercury emissions from coal plants in the U.S. Soil and oak leaf sampling programs were performed around each power plant. Sampling rings one-mile apart were used with eight or nine locations on each ring. The prevailing winds in the region are from the west. For this reason, sampling was conducted out to 10 miles from the Conemaugh plant which is southeast of the others. The other plants were sampled to a distance of five miles. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with wind patterns. The study found the following: (1) There was some correlation between the prevailing wind direction and measured soil and oak leaf concentrations. This correlation was not statistically significant, but higher soil concentrations were generally found in the east and southeast from the plants and lower soil concentrations were found west/southwest from the plants. The prevailing winds are to the east. The Conemaugh plant which was the most southeast of the three plants did have the highest average oak leaf and soil mercury concentrations. Based on emissions, the Keystone plant would be expected to see the highest concentrations as it emitted about 25% more mercury than the other two plants. (2) The results of this study did not turn up strong evidence for large areas (several square miles) of elevated mercury concentrations around the three coal-fired power plants that were tested. This does not mean that there is no effect, there was some evidence of increasing mercury content to the east and south of these plants, however, the trends were not statistically significant suggesting that if the effects exist, they are small.

  5. [Effects of waste water sediments on the levels of heavy metals ion the soil and plants].

    PubMed

    Siniagina, N A; Sul'din, B V; Tumanov, A N; Chetvergov, E V

    2004-01-01

    Field small-plot experiments studied the effects of sediments of waste water from Saransk disposal systems. The content of toxic heavy metals (lead, arsenic, and cadmium) in the waste-water sediments, was shown to be not greater than their maximum permissible concentrations (32, 2, and 10 mg per kg of dried soil, respectively). With the use of waste-water sediments, the content of manganese, copper, tin, nickel, vanadium, beryllium, cobalt, iron, and chromium was found to correspond to their baseline level in the soil and plants. PMID:15141618

  6. The development of applied action levels for soil contact: a scenario for the exposure of humans to soil in a residential setting.

    PubMed

    Sedman, R M

    1989-02-01

    The California Site Mitigation Decision Tree Manual, 1985, was developed by the California Department of Health Services to provide a detailed technical basis for managing uncontrolled hazardous waste sites. The Decision Tree describes a process that relies on criteria, Applied Action Levels (AALs) to evaluate and, if necessary, mitigate the impact of uncontrolled hazardous waste sites on the public health and the environment. AALs are developed for individual substances, species, and media of exposure. AALs have been routinely developed for the media of air and water; however, an approach for developing AALs for soil contact was lacking. Given that the air pathway for soil contact is addressed in AALs for air, two routes of exposure, ingestion and dermal contact, are addressed in developing AALs for soil contact. The approach assumes a lifetime of exposure to soil in a residential setting. Age-related changes in exposure are included in the scenario. Exposure to soil due to ingestion and dermal contact are quantitated independently and then integrated in the final exposure scenario. A mass balance approach using four elements is employed to quantitate soil ingestion for a young child. Changes in soil ingestion with age are based on age-related changes in blood lead concentration and mouthing behavior. Dermal exposure to soil was determined from studies that reported skin soil load and from estimates of exposed skin surface area. Age-related changes in the dermal exposure to soil are also based on changes with age of blood lead concentration and mouthing behavior. The estimates of exposure to soil due to ingestion and dermal contact are integrated, and an approach for developing AALs is advanced. AALs are derived by allocating the Maximum Exposure Level as described in the Decision Tree to the average daily exposure to soil. Toxicokinetic considerations for the two routes of exposure must be included in deriving AALs for the soil medium of exposure. PMID:2651104

  7. Bacterial Communities in Malagasy Soils with Differing Levels of Disturbance Affecting Botanical Diversity

    PubMed Central

    Blasiak, Leah C.; Schmidt, Alex W.; Andriamiarinoro, Honoré; Mulaw, Temesgen; Rasolomampianina, Rado; Applequist, Wendy L.; Birkinshaw, Chris; Rejo-Fienena, Félicitée; Lowry, Porter P.; Schmidt, Thomas M.; Hill, Russell T.

    2014-01-01

    Madagascar is well-known for the exceptional biodiversity of its macro-flora and fauna, but the biodiversity of Malagasy microbial communities remains relatively unexplored. Understanding patterns of bacterial diversity in soil and their correlations with above-ground botanical diversity could influence conservation planning as well as sampling strategies to maximize access to bacterially derived natural products. We present the first detailed description of Malagasy soil bacterial communities from a targeted 16S rRNA gene survey of greater than 290,000 sequences generated using 454 pyrosequencing. Two sampling plots in each of three forest conservation areas were established to represent different levels of disturbance resulting from human impact through agriculture and selective exploitation of trees, as well as from natural impacts of cyclones. In parallel, we performed an in-depth characterization of the total vascular plant morphospecies richness within each plot. The plots representing different levels of disturbance within each forest did not differ significantly in bacterial diversity or richness. Changes in bacterial community composition were largest between forests rather than between different levels of impact within a forest. The largest difference in bacterial community composition with disturbance was observed at the Vohibe forest conservation area, and this difference was correlated with changes in both vascular plant richness and soil pH. These results provide the first survey of Malagasy soil bacterial diversity and establish a baseline of botanical diversity within important conservation areas. PMID:24465484

  8. Priming effect in agricultural and forest soils depending on glucose level and N addition

    NASA Astrophysics Data System (ADS)

    Splettstoesser, Thomas; Kumar, Amit; Sun, Yue

    2015-04-01

    Growing plants continuously release easily available organic compounds into the rhizosphere. By their interactions with soil microbial biomass (MB) these compounds result in changes of organic matter turnover rates. The understanding of this priming effect (PE) is important for the estimation of climate change impacts on different land use systems. In order to investigate the PE, we conducted a soil incubation experiment under laboratory conditions with two loamy soils: one under cropland and the second under a deciduous forest near Göttingen. 13C and 14C Glucose were added in four levels reaching from 10% to 300% of MB-C. Furthermore two nitrogen levels were established in order to investigate the effects of fertilization on PE. During the whole experiment CO2 release was monitored by trapping in a NaOH solution. Nitrogen mineralization rate, activity of enzymes, and composition of MB were analyzed at the start, after one day, after one week and at the end of the experiment. The results on priming effects induced in agricultural and forest soils depending on N and glucose levels will be presented.

  9. Mercury levels assessment in hair of riverside inhabitants of the Tapajós River, Pará State, Amazon, Brazil: fish consumption as a possible route of exposure.

    PubMed

    Faial, Kleber; Deus, Ricardo; Deus, Simonny; Neves, Ramiro; Jesus, Iracina; Santos, Elisabeth; Alves, Cláudio Nahum; Brasil, Davi

    2015-04-01

    The study present evaluated the levels of mercury (Hg) and methylmercury (MeHg) in hair samples of people from Barreiras community, riverside inhabitants of the Tapajós River (Pará, Brazil), an area impacted by clandestine gold mining, as well as we analyzed the levels of Hg and Se (selenium) in nine fish species (carnivores and non-carnivorous) from the Tapajós River, which stand out as the main species consumed by riverside inhabitants, to evaluate a relationship between frequency of fish consumption and Hg concentration, and also to evaluate possible mechanisms of fish protection (or non-protection) to Hg exposure by Se. Furthermore we analyze the water quality to evaluate the environmental trophic state, fact responsible by creating conditions that can potentiate the effects of toxic mercury. Concentrations of Hg and MeHg were analyzed in hair samples of 141 volunteers in different age band. Of those, 84.40% of samples present values above the threshold for biological tolerance, which is 6.00?gg(-1) of total Hg in hair. Total Hg, in men there was a variation of 2.07-24.93?gg(-1), while for women the variation was 4.84-27.02?gg(-1). Consequently, the level of MeHg in men presented a variation of 1.49-19.57?gg(-1), with an average of 11.68?gg(-1), while with women the variation was from 3.73 to 22.35?gg(-1), with an average of 10.38?gg(-1). In fish species, Hg concentrations in carnivorous species had an average of 0.66?gg(-1), higher than that permitted by current legislation, ranging from 0.30 to 0.98?gg(-1), while the non-carnivorous species have values below the recommended by the legislation averaging 0.09?gg(-1), ranging between 0.02 and 0.44?gg(-1). For Se in fish, show that among carnivores, the contents of Se ranged between 0.18 and 0.54?gg(-1) with a mean of 0.34?gg(-1), while for non-carnivores these values were of the order of 0.16-0.56?gg(-1), with an average of 0.32?gg(-1). In surface water quality variables at the sampling points all showed values in accordance with the range established by current legislation. In this regard, the results provided by this study, while not conclusive, are strong indicators that despite not having been shown the relationship between the concentration of mercury in hair and feeding habits along the Tapajós River basin communities showed that a plausible correlation exists between levels of mercury and selenium in fish. This fact may serve as a subsidy to research human health, because in the Amazon, there is still a lot to examine with regards to the full understanding of the Se cycle. PMID:25467850

  10. The influence of floodplains on mercury availability

    SciTech Connect

    Wallschlaeger, D.; Wilken, R.D.

    1997-09-01