Sample records for soil moisture analysis

  1. Recent advances in (soil moisture) triple collocation analysis

    USDA-ARS?s Scientific Manuscript database

    To date, triple collocation (TC) analysis is one of the most important methods for the global scale evaluation of remotely sensed soil moisture data sets. In this study we review existing implementations of soil moisture TC analysis as well as investigations of the assumptions underlying the method....

  2. Galvanic Cell Type Sensor for Soil Moisture Analysis.

    PubMed

    Gaikwad, Pramod; Devendrachari, Mruthyunjayachari Chattanahalli; Thimmappa, Ravikumar; Paswan, Bhuneshwar; Raja Kottaichamy, Alagar; Makri Nimbegondi Kotresh, Harish; Thotiyl, Musthafa Ottakam

    2015-07-21

    Here we report the first potentiometric sensor for soil moisture analysis by bringing in the concept of Galvanic cells wherein the redox energies of Al and conducting polyaniline are exploited to design a battery type sensor. The sensor consists of only simple architectural components, and as such they are inexpensive and lightweight, making it suitable for on-site analysis. The sensing mechanism is proved to be identical to a battery type discharge reaction wherein polyaniline redox energy changes from the conducting to the nonconducting state with a resulting voltage shift in the presence of soil moisture. Unlike the state of the art soil moisture sensors, a signal derived from the proposed moisture sensor is probe size independent, as it is potentiometric in nature and, hence, can be fabricated in any shape or size and can provide a consistent output signal under the strong aberration conditions often encountered in soil moisture analysis. The sensor is regenerable by treating with 1 M HCl and can be used for multiple analysis with little read out hysteresis. Further, a portable sensor is fabricated which can provide warning signals to the end user when the moisture levels in the soil go below critically low levels, thereby functioning as a smart device. As the sensor is inexpensive, portable, and potentiometric, it opens up avenues for developing effective and energy efficient irrigation strategies, understanding the heat and water transfer at the atmosphere-land interface, understanding soil mechanics, forecasting the risk of natural calamities, and so on.

  3. Remote Sensing Soil Moisture Analysis by Unmanned Aerial Vehicles Digital Imaging

    NASA Astrophysics Data System (ADS)

    Yeh, C. Y.; Lin, H. R.; Chen, Y. L.; Huang, S. Y.; Wen, J. C.

    2017-12-01

    In recent years, remote sensing analysis has been able to apply to the research of climate change, environment monitoring, geology, hydro-meteorological, and so on. However, the traditional methods for analyzing wide ranges of surface soil moisture of spatial distribution surveys may require plenty resources besides the high cost. In the past, remote sensing analysis performed soil moisture estimates through shortwave, thermal infrared ray, or infrared satellite, which requires lots of resources, labor, and money. Therefore, the digital image color was used to establish the multiple linear regression model. Finally, we can find out the relationship between surface soil color and soil moisture. In this study, we use the Unmanned Aerial Vehicle (UAV) to take an aerial photo of the fallow farmland. Simultaneously, we take the surface soil sample from 0-5 cm of the surface. The soil will be baking by 110° C and 24 hr. And the software ImageJ 1.48 is applied for the analysis of the digital images and the hue analysis into Red, Green, and Blue (R, G, B) hue values. The correlation analysis is the result from the data obtained from the image hue and the surface soil moisture at each sampling point. After image and soil moisture analysis, we use the R, G, B and soil moisture to establish the multiple regression to estimate the spatial distributions of surface soil moisture. In the result, we compare the real soil moisture and the estimated soil moisture. The coefficient of determination (R2) can achieve 0.5-0.7. The uncertainties in the field test, such as the sun illumination, the sun exposure angle, even the shadow, will affect the result; therefore, R2 can achieve 0.5-0.7 reflects good effect for the in-suit test by using the digital image to estimate the soil moisture. Based on the outcomes of the research, using digital images from UAV to estimate the surface soil moisture is acceptable. However, further investigations need to be collected more than ten days (four

  4. Soil Moisture Project Evaluation Workshop

    NASA Technical Reports Server (NTRS)

    Gilbert, R. H. (Editor)

    1980-01-01

    Approaches planned or being developed for measuring and modeling soil moisture parameters are discussed. Topics cover analysis of spatial variability of soil moisture as a function of terrain; the value of soil moisture information in developing stream flow data; energy/scene interactions; applications of satellite data; verifying soil water budget models; soil water profile/soil temperature profile models; soil moisture sensitivity analysis; combinations of the thermal model and microwave; determing planetary roughness and field roughness; how crust or a soil layer effects microwave return; truck radar; and truck/aircraft radar comparison.

  5. Stochastic Analysis and Probabilistic Downscaling of Soil Moisture

    NASA Astrophysics Data System (ADS)

    Deshon, J. P.; Niemann, J. D.; Green, T. R.; Jones, A. S.

    2017-12-01

    Soil moisture is a key variable for rainfall-runoff response estimation, ecological and biogeochemical flux estimation, and biodiversity characterization, each of which is useful for watershed condition assessment. These applications require not only accurate, fine-resolution soil-moisture estimates but also confidence limits on those estimates and soil-moisture patterns that exhibit realistic statistical properties (e.g., variance and spatial correlation structure). The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution (9-40 km) soil moisture from satellite remote sensing or land-surface models to produce fine-resolution (10-30 m) estimates. The model was designed to produce accurate deterministic soil-moisture estimates at multiple points, but the resulting patterns do not reproduce the variance or spatial correlation of observed soil-moisture patterns. The primary objective of this research is to generalize the EMT+VS model to produce a probability density function (pdf) for soil moisture at each fine-resolution location and time. Each pdf has a mean that is equal to the deterministic soil-moisture estimate, and the pdf can be used to quantify the uncertainty in the soil-moisture estimates and to simulate soil-moisture patterns. Different versions of the generalized model are hypothesized based on how uncertainty enters the model, whether the uncertainty is additive or multiplicative, and which distributions describe the uncertainty. These versions are then tested by application to four catchments with detailed soil-moisture observations (Tarrawarra, Satellite Station, Cache la Poudre, and Nerrigundah). The performance of the generalized models is evaluated by comparing the statistical properties of the simulated soil-moisture patterns to those of the observations and the deterministic EMT+VS model. The versions of the generalized EMT+VS model with normally distributed stochastic components produce soil-moisture

  6. Multiscale soil moisture estimates using static and roving cosmic-ray soil moisture sensors

    NASA Astrophysics Data System (ADS)

    McJannet, David; Hawdon, Aaron; Baker, Brett; Renzullo, Luigi; Searle, Ross

    2017-12-01

    Soil moisture plays a critical role in land surface processes and as such there has been a recent increase in the number and resolution of satellite soil moisture observations and the development of land surface process models with ever increasing resolution. Despite these developments, validation and calibration of these products has been limited because of a lack of observations on corresponding scales. A recently developed mobile soil moisture monitoring platform, known as the rover, offers opportunities to overcome this scale issue. This paper describes methods, results and testing of soil moisture estimates produced using rover surveys on a range of scales that are commensurate with model and satellite retrievals. Our investigation involved static cosmic-ray neutron sensors and rover surveys across both broad (36 × 36 km at 9 km resolution) and intensive (10 × 10 km at 1 km resolution) scales in a cropping district in the Mallee region of Victoria, Australia. We describe approaches for converting rover survey neutron counts to soil moisture and discuss the factors controlling soil moisture variability. We use independent gravimetric and modelled soil moisture estimates collected across both space and time to validate rover soil moisture products. Measurements revealed that temporal patterns in soil moisture were preserved through time and regression modelling approaches were utilised to produce time series of property-scale soil moisture which may also have applications in calibration and validation studies or local farm management. Intensive-scale rover surveys produced reliable soil moisture estimates at 1 km resolution while broad-scale surveys produced soil moisture estimates at 9 km resolution. We conclude that the multiscale soil moisture products produced in this study are well suited to future analysis of satellite soil moisture retrievals and finer-scale soil moisture models.

  7. Improving long-term global precipitation dataset using multi-sensor surface soil moisture retrievals and the soil moisture analysis rainfall tool (SMART)

    USDA-ARS?s Scientific Manuscript database

    Using multiple historical satellite surface soil moisture products, the Kalman Filtering-based Soil Moisture Analysis Rainfall Tool (SMART) is applied to improve the accuracy of a multi-decadal global daily rainfall product that has been bias-corrected to match the monthly totals of available rain g...

  8. Soil moisture variability across different scales in an Indian watershed for satellite soil moisture product validation

    NASA Astrophysics Data System (ADS)

    Singh, Gurjeet; Panda, Rabindra K.; Mohanty, Binayak P.; Jana, Raghavendra B.

    2016-05-01

    Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA's Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected at two nested scale extents (0.5 km and 3 km) to understand the trend of soil moisture variability across these scales. This ground-based soil moisture sampling was conducted in the 500 km2 Rana watershed situated in eastern India. The study area is characterized as sub-humid, sub-tropical climate with average annual rainfall of about 1456 mm. Three 3x3 km square grids were sampled intensively once a day at 49 locations each, at a spacing of 0.5 km. These intensive sampling locations were selected on the basis of different topography, soil properties and vegetation characteristics. In addition, measurements were also made at 9 locations around each intensive sampling grid at 3 km spacing to cover a 9x9 km square grid. Intensive fine scale soil moisture sampling as well as coarser scale samplings were made using both impedance probes and gravimetric analyses in the study watershed. The ground-based soil moisture samplings were conducted during the day, concurrent with the SMAP descending overpass. Analysis of soil moisture spatial variability in terms of areal mean soil moisture and the statistics of higher-order moments, i.e., the standard deviation, and the coefficient of variation are presented. Results showed that the standard deviation and coefficient of variation of measured soil moisture decreased with extent scale by increasing mean soil moisture.

  9. Soil Moisture Memory in Climate Models

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    Water balance considerations at the soil surface lead to an equation that relates the autocorrelation of soil moisture in climate models to (1) seasonality in the statistics of the atmospheric forcing, (2) the variation of evaporation with soil moisture, (3) the variation of runoff with soil moisture, and (4) persistence in the atmospheric forcing, as perhaps induced by land atmosphere feedback. Geographical variations in the relative strengths of these factors, which can be established through analysis of model diagnostics and which can be validated to a certain extent against observations, lead to geographical variations in simulated soil moisture memory and thus, in effect, to geographical variations in seasonal precipitation predictability associated with soil moisture. The use of the equation to characterize controls on soil moisture memory is demonstrated with data from the modeling system of the NASA Seasonal-to-Interannual Prediction Project.

  10. Evaluation of Assimilated SMOS Soil Moisture Data for US Cropland Soil Moisture Monitoring

    NASA Technical Reports Server (NTRS)

    Yang, Zhengwei; Sherstha, Ranjay; Crow, Wade; Bolten, John; Mladenova, Iva; Yu, Genong; Di, Liping

    2016-01-01

    Remotely sensed soil moisture data can provide timely, objective and quantitative crop soil moisture information with broad geospatial coverage and sufficiently high resolution observations collected throughout the growing season. This paper evaluates the feasibility of using the assimilated ESA Soil Moisture Ocean Salinity (SMOS)Mission L-band passive microwave data for operational US cropland soil surface moisture monitoring. The assimilated SMOS soil moisture data are first categorized to match with the United States Department of Agriculture (USDA)National Agricultural Statistics Service (NASS) survey based weekly soil moisture observation data, which are ordinal. The categorized assimilated SMOS soil moisture data are compared with NASSs survey-based weekly soil moisture data for consistency and robustness using visual assessment and rank correlation. Preliminary results indicate that the assimilated SMOS soil moisture data highly co-vary with NASS field observations across a large geographic area. Therefore, SMOS data have great potential for US operational cropland soil moisture monitoring.

  11. Contributions of Precipitation and Soil Moisture Observations to the Skill of Soil Moisture Estimates in a Land Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Liu, Qing; Bindlish, Rajat; Cosh, Michael H.; Crow, Wade T.; deJeu, Richard; DeLannoy, Gabrielle J. M.; Huffman, George J.; Jackson, Thomas J.

    2011-01-01

    The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates from a land data assimilation system are assessed. Relative to baseline estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA), the study investigates soil moisture skill derived from (i) model forcing corrections based on large-scale, gauge- and satellite-based precipitation observations and (ii) assimilation of surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). Soil moisture skill is measured against in situ observations in the continental United States at 44 single-profile sites within the Soil Climate Analysis Network (SCAN) for which skillful AMSR-E retrievals are available and at four CalVal watersheds with high-quality distributed sensor networks that measure soil moisture at the scale of land model and satellite estimates. The average skill (in terms of the anomaly time series correlation coefficient R) of AMSR-E retrievals is R=0.39 versus SCAN and R=0.53 versus CalVal measurements. The skill of MERRA surface and root-zone soil moisture is R=0.42 and R=0.46, respectively, versus SCAN measurements, and MERRA surface moisture skill is R=0.56 versus CalVal measurements. Adding information from either precipitation observations or soil moisture retrievals increases surface soil moisture skill levels by IDDeltaR=0.06-0.08, and root zone soil moisture skill levels by DeltaR=0.05-0.07. Adding information from both sources increases surface soil moisture skill levels by DeltaR=0.13, and root zone soil moisture skill by DeltaR=0.11, demonstrating that precipitation corrections and assimilation of satellite soil moisture retrievals contribute similar and largely independent amounts of information.

  12. Validation of soil moisture ocean salinity (SMOS) satellite soil moisture products

    USDA-ARS?s Scientific Manuscript database

    The surface soil moisture state controls the partitioning of precipitation into infiltration and runoff. High-resolution observations of soil moisture will lead to improved flood forecasts, especially for intermediate to large watersheds where most flood damage occurs. Soil moisture is also key in d...

  13. Impact of Plant Functional Types on Coherence Between Precipitation and Soil Moisture: A Wavelet Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Hao, Yonghong; Stebler, Elaine; Tanaka, Nobuaki; Zou, Chris B.

    2017-12-01

    Mapping the spatiotemporal patterns of soil moisture within heterogeneous landscapes is important for resource management and for the understanding of hydrological processes. A critical challenge in this mapping is comparing remotely sensed or in situ observations from areas with different vegetation cover but subject to the same precipitation regime. We address this challenge by wavelet analysis of multiyear observations of soil moisture profiles from adjacent areas with contrasting plant functional types (grassland, woodland, and encroached) and precipitation. The analysis reveals the differing soil moisture patterns and dynamics between plant functional types. The coherence at high-frequency periodicities between precipitation and soil moisture generally decreases with depth but this is much more pronounced under woodland compared to grassland. Wavelet analysis provides new insights on soil moisture dynamics across plant functional types and is useful for assessing differences and similarities in landscapes with heterogeneous vegetation cover.

  14. Predicting root zone soil moisture with soil properties and satellite near-surface moisture data across the conterminous United States

    NASA Astrophysics Data System (ADS)

    Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E. A. H.

    2017-03-01

    Satellite-based near-surface (0-2 cm) soil moisture estimates have global coverage, but do not capture variations of soil moisture in the root zone (up to 100 cm depth) and may be biased with respect to ground-based soil moisture measurements. Here, we present an ensemble Kalman filter (EnKF) hydrologic data assimilation system that predicts bias in satellite soil moisture data to support the physically based Soil Moisture Analytical Relationship (SMAR) infiltration model, which estimates root zone soil moisture with satellite soil moisture data. The SMAR-EnKF model estimates a regional-scale bias parameter using available in situ data. The regional bias parameter is added to satellite soil moisture retrievals before their use in the SMAR model, and the bias parameter is updated continuously over time with the EnKF algorithm. In this study, the SMAR-EnKF assimilates in situ soil moisture at 43 Soil Climate Analysis Network (SCAN) monitoring locations across the conterminous U.S. Multivariate regression models are developed to estimate SMAR parameters using soil physical properties and the moderate resolution imaging spectroradiometer (MODIS) evapotranspiration data product as covariates. SMAR-EnKF root zone soil moisture predictions are in relatively close agreement with in situ observations when using optimal model parameters, with root mean square errors averaging 0.051 [cm3 cm-3] (standard error, s.e. = 0.005). The average root mean square error associated with a 20-fold cross-validation analysis with permuted SMAR parameter regression models increases moderately (0.082 [cm3 cm-3], s.e. = 0.004). The expected regional-scale satellite correction bias is negative in four out of six ecoregions studied (mean = -0.12 [-], s.e. = 0.002), excluding the Great Plains and Eastern Temperate Forests (0.053 [-], s.e. = 0.001). With its capability of estimating regional-scale satellite bias, the SMAR-EnKF system can predict root zone soil moisture over broad extents and has

  15. Effect of soil moisture on the temperature sensitivity of Northern soils

    NASA Astrophysics Data System (ADS)

    Minions, C.; Natali, S.; Ludwig, S.; Risk, D.; Macintyre, C. M.

    2017-12-01

    Arctic and boreal ecosystems are vast reservoirs of carbon and are particularly sensitive to climate warming. Changes in the temperature and precipitation regimes of these regions could significantly alter soil respiration rates, impacting atmospheric concentrations and affecting climate change feedbacks. Many incubation studies have shown that both temperature and soil moisture are important environmental drivers of soil respiration; this relationship, however, has rarely been demonstrated with in situ data. Here we present the results of a study at six field sites in Alaska from 2016 to 2017. Low-power automated soil gas systems were used to measure soil surface CO2 flux from three forced diffusion chambers and soil profile concentrations from three soil depth chambers at hourly intervals at each site. HOBO Onset dataloggers were used to monitor soil moisture and temperature profiles. Temperature sensitivity (Q10) was determined at each site using inversion analysis applied over different time periods. With highly resolved data sets, we were able to observe the changes in soil respiration in response to changes in temperature and soil moisture. Through regression analysis we confirmed that temperature is the primary driver in soil respiration, but soil moisture becomes dominant beyond a certain threshold, suppressing CO2 flux in soils with high moisture content. This field study supports the conclusions made from previous soil incubation studies and provides valuable insights into the impact of both temperature and soil moisture changes on soil respiration.

  16. Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF's Integrated Forecast System and the TMI soil moisture data set

    NASA Astrophysics Data System (ADS)

    Drusch, M.

    2007-02-01

    Satellite-derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analyzed from the modeled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. For this study, three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been performed for the 2-month period of June and July 2002: a control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating TMI (TRMM Microwave Imager) derived soil moisture over the southern United States. In this experimental run the satellite-derived soil moisture product is introduced through a nudging scheme using 6-hourly increments. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analyzed in the nudging experiment is the most accurate estimate when compared against in situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage.

  17. Understanding Soil Moisture

    USDA-ARS?s Scientific Manuscript database

    Understanding soil moisture is critical for landscape irrigation management. This landscaep irrigation seminar will compare volumetric and matric potential soil-moisture sensors, discuss the relationship between their readings and demonstrate how to use these data. Soil water sensors attempt to sens...

  18. Surface Soil Moisture Estimates Across China Based on Multi-satellite Observations and A Soil Moisture Model

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Yang, Tao; Ye, Jinyin; Li, Zhijia; Yu, Zhongbo

    2017-04-01

    Soil moisture is a key variable that regulates exchanges of water and energy between land surface and atmosphere. Soil moisture retrievals based on microwave satellite remote sensing have made it possible to estimate global surface (up to about 10 cm in depth) soil moisture routinely. Although there are many satellites operating, including NASA's Soil Moisture Acitive Passive mission (SMAP), ESA's Soil Moisture and Ocean Salinity mission (SMOS), JAXA's Advanced Microwave Scanning Radiometer 2 mission (AMSR2), and China's Fengyun (FY) missions, key differences exist between different satellite-based soil moisture products. In this study, we applied a single-channel soil moisture retrieval model forced by multiple sources of satellite brightness temperature observations to estimate consistent daily surface soil moisture across China at a spatial resolution of 25 km. By utilizing observations from multiple satellites, we are able to estimate daily soil moisture across the whole domain of China. We further developed a daily soil moisture accounting model and applied it to downscale the 25-km satellite-based soil moisture to 5 km. By comparing our estimated soil moisture with observations from a dense observation network implemented in Anhui Province, China, our estimated soil moisture results show a reasonably good agreement with the observations (RMSE < 0.1 and r > 0.8).

  19. Evapotranspiration Controls Imposed by Soil Moisture: A Spatial Analysis across the United States

    NASA Astrophysics Data System (ADS)

    Rigden, A. J.; Tuttle, S. E.; Salvucci, G.

    2014-12-01

    We spatially analyze the control over evapotranspiration (ET) imposed by soil moisture across the United States using daily estimates of satellite-derived soil moisture and data-driven ET over a nine-year period (June 2002-June 2011) at 305 locations. The soil moisture data are developed using 0.25-degree resolution satellite observations from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), where the 9-year time series for each 0.25-degree pixel was selected from three potential algorithms (VUA-NASA, U. Montana, & NASA) based on the maximum mutual information between soil moisture and precipitation (Tuttle & Salvucci (2014), Remote Sens Environ, 114: 207-222). The ET data are developed independent of soil moisture using an emergent relationship between the diurnal cycle of the relative humidity profile and ET. The emergent relation is that the vertical variance of the relative humidity profile is less than what would occur for increased or decreased ET rates, suggesting that land-atmosphere feedback processes minimize this variance (Salvucci and Gentine (2013), PNAS, 110(16): 6287-6291). The key advantage of using this approach to estimate ET is that no measurements of surface limiting factors (soil moisture, leaf area, canopy conductance) are required; instead, ET is estimated from meteorological data measured at 305 common weather stations that are approximately uniformly distributed across the United States. The combination of these two independent datasets allows for a unique spatial analysis of the control on ET imposed by the availability of soil moisture. We fit evaporation efficiency curves across the United States at each of the 305 sites during the summertime (May-June-July-August-September). Spatial patterns are visualized by mapping optimal curve fitting coefficients across the Unites States. An analysis of efficiency curves and their spatial patterns will be presented.

  20. An integrated GIS application system for soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Wang, Di; Shen, Runping; Huang, Xiaolong; Shi, Chunxiang

    2014-11-01

    The gaps in knowledge and existing challenges in precisely describing the land surface process make it critical to represent the massive soil moisture data visually and mine the data for further research.This article introduces a comprehensive soil moisture assimilation data analysis system, which is instructed by tools of C#, IDL, ArcSDE, Visual Studio 2008 and SQL Server 2005. The system provides integrated service, management of efficient graphics visualization and analysis of land surface data assimilation. The system is not only able to improve the efficiency of data assimilation management, but also comprehensively integrate the data processing and analysis tools into GIS development environment. So analyzing the soil moisture assimilation data and accomplishing GIS spatial analysis can be realized in the same system. This system provides basic GIS map functions, massive data process and soil moisture products analysis etc. Besides,it takes full advantage of a spatial data engine called ArcSDE to effeciently manage, retrieve and store all kinds of data. In the system, characteristics of temporal and spatial pattern of soil moiture will be plotted. By analyzing the soil moisture impact factors, it is possible to acquire the correlation coefficients between soil moisture value and its every single impact factor. Daily and monthly comparative analysis of soil moisture products among observations, simulation results and assimilations can be made in this system to display the different trends of these products. Furthermore, soil moisture map production function is realized for business application.

  1. Using satellite image data to estimate soil moisture

    NASA Astrophysics Data System (ADS)

    Chuang, Chi-Hung; Yu, Hwa-Lung

    2017-04-01

    Soil moisture is considered as an important parameter in various study fields, such as hydrology, phenology, and agriculture. In hydrology, soil moisture is an significant parameter to decide how much rainfall that will infiltrate into permeable layer and become groundwater resource. Although soil moisture is a critical role in many environmental studies, so far the measurement of soil moisture is using ground instrument such as electromagnetic soil moisture sensor. Use of ground instrumentation can directly obtain the information, but the instrument needs maintenance and consume manpower to operation. If we need wide range region information, ground instrumentation probably is not suitable. To measure wide region soil moisture information, we need other method to achieve this purpose. Satellite remote sensing techniques can obtain satellite image on Earth, this can be a way to solve the spatial restriction on instrument measurement. In this study, we used MODIS data to retrieve daily soil moisture pattern estimation, i.e., crop water stress index (cwsi), over the year of 2015. The estimations are compared with the observations at the soil moisture stations from Taiwan Bureau of soil and water conservation. Results show that the satellite remote sensing data can be helpful to the soil moisture estimation. Further analysis can be required to obtain the optimal parameters for soil moisture estimation in Taiwan.

  2. Assessment of SMOS Soil Moisture Retrieval Parameters Using Tau-Omega Algorithms for Soil Moisture Deficit Estimation

    NASA Technical Reports Server (NTRS)

    Srivastava, Prashant K.; Han, Dawei; Rico-Ramirez, Miguel A.; O'Neill, Peggy; Islam, Tanvir; Gupta, Manika

    2014-01-01

    Soil Moisture and Ocean Salinity (SMOS) is the latest mission which provides flow of coarse resolution soil moisture data for land applications. However, the efficient retrieval of soil moisture for hydrological applications depends on optimally choosing the soil and vegetation parameters. The first stage of this work involves the evaluation of SMOS Level 2 products and then several approaches for soil moisture retrieval from SMOS brightness temperature are performed to estimate Soil Moisture Deficit (SMD). The most widely applied algorithm i.e. Single channel algorithm (SCA), based on tau-omega is used in this study for the soil moisture retrieval. In tau-omega, the soil moisture is retrieved using the Horizontal (H) polarisation following Hallikainen dielectric model, roughness parameters, Fresnel's equation and estimated Vegetation Optical Depth (tau). The roughness parameters are empirically calibrated using the numerical optimization techniques. Further to explore the improvement in retrieval models, modifications have been incorporated in the algorithms with respect to the sources of the parameters, which include effective temperatures derived from the European Center for Medium-Range Weather Forecasts (ECMWF) downscaled using the Weather Research and Forecasting (WRF)-NOAH Land Surface Model and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) while the s is derived from MODIS Leaf Area Index (LAI). All the evaluations are performed against SMD, which is estimated using the Probability Distributed Model following a careful calibration and validation integrated with sensitivity and uncertainty analysis. The performance obtained after all those changes indicate that SCA-H using WRF-NOAH LSM downscaled ECMWF LST produces an improved performance for SMD estimation at a catchment scale.

  3. Estimating Surface Soil Moisture in Simulated AVIRIS Spectra

    NASA Technical Reports Server (NTRS)

    Whiting, Michael L.; Li, Lin; Ustin, Susan L.

    2004-01-01

    Soil albedo is influenced by many physical and chemical constituents, with moisture being the most influential on the spectra general shape and albedo (Stoner and Baumgardner, 1981). Without moisture, the intrinsic or matrix reflectance of dissimilar soils varies widely due to differences in surface roughness, particle and aggregate sizes, mineral types, including salts, and organic matter contents. The influence of moisture on soil reflectance can be isolated by comparing similar soils in a study of the effects that small differences in moisture content have on reflectance. However, without prior knowledge of the soil physical and chemical constituents within every pixel, it is nearly impossible to accurately attribute the reflectance variability in an image to moisture or to differences in the physical and chemical constituents in the soil. The effect of moisture on the spectra must be eliminated to use hyperspectral imagery for determining minerals and organic matter abundances of bare agricultural soils. Accurate soil mineral and organic matter abundance maps from air- and space-borne imagery can improve GIS models for precision farming prescription, and managing irrigation and salinity. Better models of soil moisture and reflectance will also improve the selection of soil endmembers for spectral mixture analysis.

  4. Soil Moisture Workshop

    NASA Technical Reports Server (NTRS)

    Heilman, J. L. (Editor); Moore, D. G. (Editor); Schmugge, T. J. (Editor); Friedman, D. B. (Editor)

    1978-01-01

    The Soil Moisture Workshop was held at the United States Department of Agriculture National Agricultural Library in Beltsville, Maryland on January 17-19, 1978. The objectives of the Workshop were to evaluate the state of the art of remote sensing of soil moisture; examine the needs of potential users; and make recommendations concerning the future of soil moisture research and development. To accomplish these objectives, small working groups were organized in advance of the Workshop to prepare position papers. These papers served as the basis for this report.

  5. Analysis of spatiotemporal soil moisture patterns at the catchment scale using a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Bogena, Heye R.; Huisman, Johan A.; Rosenbaum, Ulrike; Weuthen, Ansgar; Vereecken, Harry

    2010-05-01

    Soil water content plays a key role in partitioning water and energy fluxes and controlling the pattern of groundwater recharge. Despite the importance of soil water content, it is not yet measured in an operational way at larger scales. The aim of this paper is to present the potential of real-time monitoring for the analysis of soil moisture patterns at the catchment scale using the recently developed wireless sensor network SoilNet [1], [2]. SoilNet is designed to measure soil moisture, salinity and temperature in several depths (e.g. 5, 20 and 50 cm). Recently, a small forest catchment Wüstebach (~27 ha) has been instrumented with 150 sensor nodes and more than 1200 soil sensors in the framework of the Transregio32 and the Helmholtz initiative TERENO (Terrestrial Environmental Observatories). From August to November 2009, more than 6 million soil moisture measurements have been performed. We will present first results from a statistical and geostatistical analysis of the data. The observed spatial variability of soil moisture corresponds well with the 800-m scale variability described in [3]. The very low scattering of the standard deviation versus mean soil moisture plots indicates that sensor network data shows less artificial soil moisture variations than soil moisture data originated from measurement campaigns. The variograms showed more or less the same nugget effect, which indicates that the sum of the sub-scale variability and the measurement error is rather time-invariant. Wet situations showed smaller spatial variability, which is attributed to saturated soil water content, which poses an upper limit and is typically not strongly variable in headwater catchments with relatively homogeneous soil. The spatiotemporal variability in soil moisture at 50 cm depth was significantly lower than at 5 and 20 cm. This finding indicates that the considerable variability of the top soil is buffered deeper in the soil due to lateral and vertical water fluxes

  6. Improving the soil moisture data record of the U.S. Climate Reference Network (USCRN) and Soil Climate Analysis Network (SCAN)

    USDA-ARS?s Scientific Manuscript database

    Soil moisture estimates are valuable for hydrologic modeling, drought prediction and management, climate change analysis, and agricultural decision support. However, in situ measurements of soil moisture have only become available within the past few decades with additional sensors being installed ...

  7. Retrieving pace in vegetation growth using precipitation and soil moisture

    NASA Astrophysics Data System (ADS)

    Sohoulande Djebou, D. C.; Singh, V. P.

    2013-12-01

    The complexity of interactions between the biophysical components of the watershed increases the challenge of understanding water budget. Hence, the perspicacity of the continuum soil-vegetation-atmosphere's functionality still remains crucial for science. This study targeted the Texas Gulf watershed and evaluated the behavior of vegetation covers by coupling precipitation and soil moisture patterns. Growing season's Normalized Differential Vegetation Index NDVI for deciduous forest and grassland were used over a 23 year period as well as precipitation and soil moisture data. The role of time scales on vegetation dynamics analysis was appraised using both entropy rescaling and correlation analysis. This resulted in that soil moisture at 5 cm and 25cm are potentially more efficient to use for vegetation dynamics monitoring at finer time scale compared to precipitation. Albeit soil moisture at 5 cm and 25 cm series are highly correlated (R2>0.64), it appeared that 5 cm soil moisture series can better explain the variability of vegetation growth. A logarithmic transformation of soil moisture and precipitation data increased correlation with NDVI for the different time scales considered. Based on a monthly time scale we came out with a relationship between vegetation index and the couple soil moisture and precipitation [NDVI=a*Log(% soil moisture)+b*Log(Precipitation)+c] with R2>0.25 for each vegetation type. Further, we proposed to assess vegetation green-up using logistic regression model and transinformation entropy using the couple soil moisture and precipitation as independent variables and vegetation growth metrics (NDVI, NDVI ratio, NDVI slope) as the dependent variable. The study is still ongoing and the results will surely contribute to the knowledge in large scale vegetation monitoring. Keywords: Precipitation, soil moisture, vegetation growth, entropy Time scale, Logarithmic transformation and correlation between soil moisture and NDVI, precipitation and

  8. Soil moisture modeling review

    NASA Technical Reports Server (NTRS)

    Hildreth, W. W.

    1978-01-01

    A determination of the state of the art in soil moisture transport modeling based on physical or physiological principles was made. It was found that soil moisture models based on physical principles have been under development for more than 10 years. However, these models were shown to represent infiltration and redistribution of soil moisture quite well. Evapotranspiration has not been as adequately incorporated into the models.

  9. Multiscale analysis of surface soil moisture dynamics in a mesoscale catchment utilizing an integrated ecohydrological model

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Schneider, K.

    2012-12-01

    Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture, influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Numerous studies have shown that in addition to natural factors (rainfall, soil, topography etc.) agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil moisture patterns in agroecosystems. Integrative validation of plant growth and surface soil moisture dynamics serves as a basis for a spatially distributed modeling analysis of surface soil moisture patterns in the northern part of the Rur catchment (1100 sq km), Western Germany. An extensive three year dataset (2007-2009) of surface soil moisture-, plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was collected. Plant measurements were carried out biweekly for winter wheat, maize, and sugar beet during the growing season. Soil moisture was measured with three FDR soil moisture stations. Meteorological data was measured with an eddy flux station. The results of the model validation showed a very good agreement between the modeled plant parameters (biomass, green LAI) and the measured parameters with values between 0.84 and 0.98 (Willmotts index of agreement). The modeled surface soil moisture (0 - 20 cm) showed also a very favorable agreement with the measurements for winter wheat and sugar beet with an RMSE between 1.68 and 3.45 Vol.-%. For maize, the RMSE was less favorable particularly in the 1.5 months prior to harvest. The modeled soil

  10. Soil moisture at local scale: Measurements and simulations

    NASA Astrophysics Data System (ADS)

    Romano, Nunzio

    2014-08-01

    Soil moisture refers to the water present in the uppermost part of a field soil and is a state variable controlling a wide array of ecological, hydrological, geotechnical, and meteorological processes. The literature on soil moisture is very extensive and is developing so rapidly that it might be considered ambitious to seek to present the state of the art concerning research into this key variable. Even when covering investigations about only one aspect of the problem, there is a risk of some inevitable omission. A specific feature of the present essay, which may make this overview if not comprehensive at least of particular interest, is that the reader is guided through the various traditional and more up-to-date methods by the central thread of techniques developed to measure soil moisture interwoven with applications of modeling tools that exploit the observed datasets. This paper restricts its analysis to the evolution of soil moisture at the local (spatial) scale. Though a somewhat loosely defined term, it is linked here to a characteristic length of the soil volume investigated by the soil moisture sensing probe. After presenting the most common concepts and definitions about the amount of water stored in a certain volume of soil close to the land surface, this paper proceeds to review ground-based methods for monitoring soil moisture and evaluates modeling tools for the analysis of the gathered information in various applications. Concluding remarks address questions of monitoring and modeling of soil moisture at scales larger than the local scale with the related issue of data aggregation. An extensive, but not exhaustive, list of references is provided, enabling the reader to gain further insights into this subject.

  11. Impact of SMOS soil moisture data assimilation on NCEP-GFS forecasts

    NASA Astrophysics Data System (ADS)

    Zhan, X.; Zheng, W.; Meng, J.; Dong, J.; Ek, M.

    2012-04-01

    Soil moisture is one of the few critical land surface state variables that have long memory to impact the exchanges of water, energy and carbon between the land surface and atmosphere. Accurate information about soil moisture status is thus required for numerical weather, seasonal climate and hydrological forecast as well as for agricultural production forecasts, water management and many other water related economic or social activities. Since the successful launch of ESA's soil moisture ocean salinity (SMOS) mission in November 2009, about 2 years of soil moisture retrievals has been collected. SMOS is believed to be the currently best satellite sensors for soil moisture remote sensing. Therefore, it becomes interesting to examine how the collected SMOS soil moisture data are compared with other satellite-sensed soil moisture retrievals (such as NASA's Advanced Microwave Scanning Radiometer -AMSR-E and EUMETSAT's Advanced Scatterometer - ASCAT)), in situ soil moisture measurements, and how these data sets impact numerical weather prediction models such as the Global Forecast System of NOAA-NCEP. This study implements the Ensemble Kalman filter in GFS to assimilate the AMSR-E, ASCAT and SMOS soil moisture observations after a quantitative assessment of their error rate based on in situ measurements from ground networks around contiguous United States. in situ soil moisture measurements from ground networks (such as USDA Soil Climate Analysis network - SCAN and NOAA's U.S. Climate Reference Network -USCRN) are used to evaluate the GFS soil moisture simulations (analysis). The benefits and uncertainties of assimilating the satellite data products in GFS are examined by comparing the GFS forecasts of surface temperature and rainfall with and without the assimilations. From these examinations, the advantages of SMOS soil moisture data products over other satellite soil moisture data sets will be evaluated. The next step toward operationally assimilating soil moisture

  12. Utilization of point soil moisture measurements for field scale soil moisture averages and variances in agricultural landscapes

    USDA-ARS?s Scientific Manuscript database

    Soil moisture is a key variable in understanding the hydrologic processes and energy fluxes at the land surface. In spite of new technologies for in-situ soil moisture measurements and increased availability of remotely sensed soil moisture data, scaling issues between soil moisture observations and...

  13. On the assimilation of satellite derived soil moisture in numerical weather prediction models

    NASA Astrophysics Data System (ADS)

    Drusch, M.

    2006-12-01

    Satellite derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analysed from the modelled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. Three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF) have been performed for the two months period of June and July 2002: A control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating bias corrected TMI (TRMM Microwave Imager) derived soil moisture over the southern United States through a nudging scheme using 6-hourly departures. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analysed in the nudging experiment is the most accurate estimate when compared against in-situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage. The transferability of the results to other satellite derived soil moisture data sets will be discussed.

  14. Method for evaluating moisture tensions of soils using spectral data

    NASA Technical Reports Server (NTRS)

    Peterson, John B. (Inventor)

    1982-01-01

    A method is disclosed which permits evaluation of soil moisture utilizing remote sensing. Spectral measurements at a plurality of different wavelengths are taken with respect to sample soils and the bidirectional reflectance factor (BRF) measurements produced are submitted to regression analysis for development therefrom of predictable equations calculated for orderly relationships. Soil of unknown reflective and unknown soil moisture tension is thereafter analyzed for bidirectional reflectance and the resulting data utilized to determine the soil moisture tension of the soil as well as providing a prediction as to the bidirectional reflectance of the soil at other moisture tensions.

  15. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements

    NASA Astrophysics Data System (ADS)

    Dorigo, W. A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; Robock, A.; Jackson, T.

    2011-02-01

    In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations measuring soil moisture, in particular on a continuous basis, is still limited and the data they provide lack standardization of technique and protocol. To overcome many of these limitations, the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu) was initiated to serve as a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users. Data collecting networks share their soil moisture datasets with the ISMN on a voluntary and no-cost basis. Incoming soil moisture data are automatically transformed into common volumetric soil moisture units and checked for outliers and implausible values. Apart from soil water measurements from different depths, important metadata and meteorological variables (e.g., precipitation and soil temperature) are stored in the database. These will assist the user in correctly interpreting the soil moisture data. The database is queried through a graphical user interface while output of data selected for download is provided according to common standards for data and metadata. Currently (status January 2011), the ISMN contains data of 16 networks and more than 500 stations located in the North America, Europe, Asia, and Australia. The time period spanned by the entire database runs from 1952 until the present, although most datasets have originated during the last decade. The database is rapidly expanding, which means that

  16. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements

    NASA Astrophysics Data System (ADS)

    Dorigo, W. A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; Robock, A.; Jackson, T.

    2011-05-01

    In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations measuring soil moisture, in particular on a continuous basis, is still limited and the data they provide lack standardization of technique and protocol. To overcome many of these limitations, the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu) was initiated to serve as a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users. Data collecting networks share their soil moisture datasets with the ISMN on a voluntary and no-cost basis. Incoming soil moisture data are automatically transformed into common volumetric soil moisture units and checked for outliers and implausible values. Apart from soil water measurements from different depths, important metadata and meteorological variables (e.g., precipitation and soil temperature) are stored in the database. These will assist the user in correctly interpreting the soil moisture data. The database is queried through a graphical user interface while output of data selected for download is provided according to common standards for data and metadata. Currently (status May 2011), the ISMN contains data of 19 networks and more than 500 stations located in North America, Europe, Asia, and Australia. The time period spanned by the entire database runs from 1952 until the present, although most datasets have originated during the last decade. The database is rapidly expanding, which means that both the

  17. Evaluating ESA CCI Soil Moisture in East Africa

    NASA Technical Reports Server (NTRS)

    McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R.; Wang, Shugong; Peters-Lidard, Christa D.; Verdin, James P.

    2016-01-01

    To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASAs Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R greater than 0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.

  18. Evaluating ESA CCI soil moisture in East Africa.

    PubMed

    McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R; Wang, Shugong; Peters-Lidard, Christa D; Verdin, James P

    2016-06-01

    To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASA's Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R>0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.

  19. Soil moisture: Some fundamentals. [agriculture - soil mechanics

    NASA Technical Reports Server (NTRS)

    Milstead, B. W.

    1975-01-01

    A brief tutorial on soil moisture, as it applies to agriculture, is presented. Information was taken from books and papers considered freshman college level material, and is an attempt to briefly present the basic concept of soil moisture and a minimal understanding of how water interacts with soil.

  20. Evaluation of a Soil Moisture Data Assimilation System Over West Africa

    NASA Astrophysics Data System (ADS)

    Bolten, J. D.; Crow, W.; Zhan, X.; Jackson, T.; Reynolds, C.

    2009-05-01

    A crucial requirement of global crop yield forecasts by the U.S. Department of Agriculture (USDA) International Production Assessment Division (IPAD) is the regional characterization of surface and sub-surface soil moisture. However, due to the spatial heterogeneity and dynamic nature of precipitation events and resulting soil moisture, accurate estimation of regional land surface-atmosphere interactions based sparse ground measurements is difficult. IPAD estimates global soil moisture using daily estimates of minimum and maximum temperature and precipitation applied to a modified Palmer two-layer soil moisture model which calculates the daily amount of soil moisture withdrawn by evapotranspiration and replenished by precipitation. We attempt to improve upon the existing system by applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA soil moisture model. This work aims at evaluating the utility of merging satellite-retrieved soil moisture estimates with the IPAD two-layer soil moisture model used within the DBMS. We present a quantitative analysis of the assimilated soil moisture product over West Africa (9°N- 20°N; 20°W-20°E). This region contains many key agricultural areas and has a high agro- meteorological gradient from desert and semi-arid vegetation in the North, to grassland, trees and crops in the South, thus providing an ideal location for evaluating the assimilated soil moisture product over multiple land cover types and conditions. A data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing assimilated soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model

  1. Remote sensing of soil moisture using airborne hyperspectral data

    USGS Publications Warehouse

    Finn, M.; Lewis, M.; Bosch, D.; Giraldo, Mario; Yamamoto, K.; Sullivan, D.; Kincaid, R.; Luna, R.; Allam, G.; Kvien, Craig; Williams, M.

    2011-01-01

    Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.

  2. Drive by Soil Moisture Measurement: A Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Senanayake, I. P.; Willgoose, G. R.; Yeo, I. Y.; Hancock, G. R.

    2017-12-01

    Two of the common attributes of soil moisture are that at any given time it varies quite markedly from point to point, and that there is a significant deterministic pattern that underlies this spatial variation and which is typically 50% of the spatial variability. The spatial variation makes it difficult to determine the time varying catchment average soil moisture using field measurements because any individual measurement is unlikely to be equal to the average for the catchment. The traditional solution to this is to make many measurements (e.g. with soil moisture probes) spread over the catchment, which is very costly and manpower intensive, particularly if we need a time series of soil moisture variation across a catchment. An alternative approach, explored in this poster is to use the deterministic spatial pattern of soil moisture to calibrate one site (e.g. a permanent soil moisture probe at a weather station) to the spatial pattern of soil moisture over the study area. The challenge is then to determine the spatial pattern of soil moisture. This poster will present results from a proof of concept project, where data was collected by a number of undergraduate engineering students, to estimate the spatial pattern. The approach was to drive along a series of roads in a catchment and collect soil moisture measurements at the roadside using field portable soil moisture probes. This drive was repeated a number of times over the semester, and the time variation and spatial persistence of the soil moisture pattern were examined. Provided that the students could return to exactly the same location on each collection day there was a strong persistent pattern in the soil moisture, even while the average soil moisture varied temporally as a result of preceding rainfall. The poster will present results and analysis of the student data, and compare these results with several field sites where we have spatially distributed permanently installed soil moisture probes. The

  3. Converting Soil Moisture Observations to Effective Values for Improved Validation of Remotely Sensed Soil Moisture

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Crosson, William L.; Limaye, Ashutosh; Manu, Andrew; Archer, Frank

    2005-01-01

    We compare soil moisture retrieved with an inverse algorithm with observations of mean moisture in the 0-6 cm soil layer. A significant discrepancy is noted between the retrieved and observed moisture. Using emitting depth functions as weighting functions to convert the observed mean moisture to observed effective moisture removes nearly one-half of the discrepancy noted. This result has important implications in remote sensing validation studies.

  4. Dust emission parameterization scheme over the MENA region: Sensitivity analysis to soil moisture and soil texture

    NASA Astrophysics Data System (ADS)

    Gherboudj, Imen; Beegum, S. Naseema; Marticorena, Beatrice; Ghedira, Hosni

    2015-10-01

    The mineral dust emissions from arid/semiarid soils were simulated over the MENA (Middle East and North Africa) region using the dust parameterization scheme proposed by Alfaro and Gomes (2001), to quantify the effect of the soil moisture and clay fraction in the emissions. For this purpose, an extensive data set of Soil Moisture and Ocean Salinity soil moisture, European Centre for Medium-Range Weather Forecasting wind speed at 10 m height, Food Agricultural Organization soil texture maps, MODIS (Moderate Resolution Imaging Spectroradiometer) Normalized Difference Vegetation Index, and erodibility of the soil surface were collected for the a period of 3 years, from 2010 to 2013. Though the considered data sets have different temporal and spatial resolution, efforts have been made to make them consistent in time and space. At first, the simulated sandblasting flux over the region were validated qualitatively using MODIS Deep Blue aerosol optical depth and EUMETSAT MSG (Meteosat Seciond Generation) dust product from SEVIRI (Meteosat Spinning Enhanced Visible and Infrared Imager) and quantitatively based on the available ground-based measurements of near-surface particulate mass concentrations (PM10) collected over four stations in the MENA region. Sensitivity analyses were performed to investigate the effect of soil moisture and clay fraction on the emissions flux. The results showed that soil moisture and soil texture have significant roles in the dust emissions over the MENA region, particularly over the Arabian Peninsula. An inversely proportional dependency is observed between the soil moisture and the sandblasting flux, where a steep reduction in flux is observed at low friction velocity and a gradual reduction is observed at high friction velocity. Conversely, a directly proportional dependency is observed between the soil clay fraction and the sandblasting flux where a steep increase in flux is observed at low friction velocity and a gradual increase is

  5. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    Soil moisture distribution usually presents extreme variation at multiple spatial scales. Image analysis could be a useful tool for investigating these spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to describe the local scaling of apparent soil moisture distribution and (ii) to define apparent soil moisture patterns from vertical planes of Vertisol pit images. Two soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. One was excavated in April/2011 and the other pit was established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. For more details see Cumbrera et al. (2012). Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, using the concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012). This method is based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. We have applied it to each soil image. The results show that, in spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used to study the dynamical change of soil moisture sampling in agreement with previous results (Millán et al., 2016). REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and

  6. The international soil moisture network: A data hosting facility for global in situ soil moisture measurements

    USDA-ARS?s Scientific Manuscript database

    In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land co...

  7. Spatial variability of soil moisture retrieved by SMOS satellite

    NASA Astrophysics Data System (ADS)

    Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Boguslaw; Rojek, Edyta; Slominski, Jan; Lipiec, Jerzy

    2015-04-01

    Standard statistical methods assume that the analysed variables are independent. Since the majority of the processes observed in the nature are continuous in space and time, this assumption introduces a significant limitation for understanding the examined phenomena. In classical approach, valuable information about the locations of examined observations is completely lost. However, there is a branch of statistics, called geostatistics, which is the study of random variables, but taking into account the space where they occur. A common example of so-called "regionalized variable" is soil moisture. Using in situ methods it is difficult to estimate soil moisture distribution because it is often significantly diversified. Thanks to the geostatistical methods, by employing semivariance analysis, it is possible to get the information about the nature of spatial dependences and their lengths. Since the Soil Moisture and Ocean Salinity mission launch in 2009, the estimation of soil moisture spatial distribution for regional up to continental scale started to be much easier. In this study, the SMOS L2 data for Central and Eastern Europe were examined. The statistical and geostatistical features of moisture distributions of this area were studied for selected natural soil phenomena for 2010-2014 including: freezing, thawing, rainfalls (wetting), drying and drought. Those soil water "states" were recognized employing ground data from the agro-meteorological network of ground-based stations SWEX and SMUDP2 data from SMOS. After pixel regularization, without any upscaling, the geostatistical methods were applied directly on Discrete Global Grid (15-km resolution) in ISEA 4H9 projection, on which SMOS observations are reported. Analysis of spatial distribution of SMOS soil moisture, carried out for each data set, in most cases did not show significant trends. It was therefore assumed that each of the examined distributions of soil moisture in the adopted scale satisfies

  8. Estimating error cross-correlations in soil moisture data sets using extended collocation analysis

    USDA-ARS?s Scientific Manuscript database

    Consistent global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite-based soil moisture data into water balance models or merging multi-source soil moisture retrievals int...

  9. Modeling soil moisture memory in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Gou, S.; Miller, G. R.

    2011-12-01

    Antecedent soil conditions create an ecosystem's "memory" of past rainfall events. Such soil moisture memory effects may be observed over a range of timescales, from daily to yearly, and lead to feedbacks between hydrological and ecosystem processes. In this study, we modeled the soil moisture memory effect on savanna ecosystems in California, Arizona, and Africa, using a system dynamics model created to simulate the ecohydrological processes at the plot-scale. The model was carefully calibrated using soil moisture and evapotranspiration data collected at three study sites. The model was then used to simulate scenarios with various initial soil moisture conditions and antecedent precipitation regimes, in order to study the soil moisture memory effects on the evapotranspiration of understory and overstory species. Based on the model results, soil texture and antecedent precipitation regime impact the redistribution of water within soil layers, potentially causing deeper soil layers to influence the ecosystem for a longer time. Of all the study areas modeled, soil moisture memory of California savanna ecosystem site is replenished and dries out most rapidly. Thus soil moisture memory could not maintain the high rate evapotranspiration for more than a few days without incoming rainfall event. On the contrary, soil moisture memory of Arizona savanna ecosystem site lasts the longest time. The plants with different root depths respond to different memory effects; shallow-rooted species mainly respond to the soil moisture memory in the shallow soil. The growing season of grass is largely depended on the soil moisture memory of the top 25cm soil layer. Grass transpiration is sensitive to the antecedent precipitation events within daily to weekly timescale. Deep-rooted plants have different responses since these species can access to the deeper soil moisture memory with longer time duration Soil moisture memory does not have obvious impacts on the phenology of woody plants

  10. Analysis of soil moisture extraction algorithm using data from aircraft experiments

    NASA Technical Reports Server (NTRS)

    Burke, H. H. K.; Ho, J. H.

    1981-01-01

    A soil moisture extraction algorithm is developed using a statistical parameter inversion method. Data sets from two aircraft experiments are utilized for the test. Multifrequency microwave radiometric data surface temperature, and soil moisture information are contained in the data sets. The surface and near surface ( or = 5 cm) soil moisture content can be extracted with accuracy of approximately 5% to 6% for bare fields and fields with grass cover by using L, C, and X band radiometer data. This technique is used for handling large amounts of remote sensing data from space.

  11. Validation of the Soil Moisture Active Passive (SMAP) satellite soil moisture retrieval in an Arctic tundra environment

    NASA Astrophysics Data System (ADS)

    Wrona, Elizabeth; Rowlandson, Tracy L.; Nambiar, Manoj; Berg, Aaron A.; Colliander, Andreas; Marsh, Philip

    2017-05-01

    This study examines the Soil Moisture Active Passive soil moisture product on the Equal Area Scalable Earth-2 (EASE-2) 36 km Global cylindrical and North Polar azimuthal grids relative to two in situ soil moisture monitoring networks that were installed in 2015 and 2016. Results indicate that there is no relationship between the Soil Moisture Active Passive (SMAP) Level-2 passive soil moisture product and the upscaled in situ measurements. Additionally, there is very low correlation between modeled brightness temperature using the Community Microwave Emission Model and the Level-1 C SMAP brightness temperature interpolated to the EASE-2 Global grid; however, there is a much stronger relationship to the brightness temperature measurements interpolated to the North Polar grid, suggesting that the soil moisture product could be improved with interpolation on the North Polar grid.

  12. Remote sensing of soil moisture using airborne hyperspectral data

    USGS Publications Warehouse

    Finn, Michael P.; Lewis, Mark (David); Bosch, David D.; Giraldo, Mario; Yamamoto, Kristina H.; Sullivan, Dana G.; Kincaid, Russell; Luna, Ronaldo; Allam, Gopala Krishna; Kvien, Craig; Williams, Michael S.

    2011-01-01

    Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R 2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.

  13. Soil moisture monitoring for crop management

    NASA Astrophysics Data System (ADS)

    Boyd, Dale

    2015-07-01

    The 'Risk management through soil moisture monitoring' project has demonstrated the capability of current technology to remotely monitor and communicate real time soil moisture data. The project investigated whether capacitance probes would assist making informed pre- and in-crop decisions. Crop potential and cropping inputs are increasingly being subject to greater instability and uncertainty due to seasonal variability. In a targeted survey of those who received regular correspondence from the Department of Primary Industries it was found that i) 50% of the audience found the information generated relevant for them and less than 10% indicted with was not relevant; ii) 85% have improved their knowledge/ability to assess soil moisture compared to prior to the project, with the most used indicator of soil moisture still being rain fall records; and iii) 100% have indicated they will continue to use some form of the technology to monitor soil moisture levels in the future. It is hoped that continued access to this information will assist informed input decisions. This will minimise inputs in low decile years with a low soil moisture base and maximise yield potential in more favourable conditions based on soil moisture and positive seasonal forecasts

  14. Crop yield monitoring in the Sahel using root zone soil moisture anomalies derived from SMOS soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Gibon, François; Pellarin, Thierry; Alhassane, Agali; Traoré, Seydou; Baron, Christian

    2017-04-01

    West Africa is greatly vulnerable, especially in terms of food sustainability. Mainly based on rainfed agriculture, the high variability of the rainy season strongly impacts the crop production driven by the soil water availability in the soil. To monitor this water availability, classical methods are based on daily precipitation measurements. However, the raingauge network suffers from the poor network density in Africa (1/10000km2). Alternatively, real-time satellite-derived precipitations can be used, but they are known to suffer from large uncertainties which produce significant error on crop yield estimations. The present study proposes to use root soil moisture rather than precipitation to evaluate crop yield variations. First, a local analysis of the spatiotemporal impact of water deficit on millet crop production in Niger was done, from in-situ soil moisture measurements (AMMA-CATCH/OZCAR (French Critical Zone exploration network)) and in-situ millet yield survey. Crop yield measurements were obtained for 10 villages located in the Niamey region from 2005 to 2012. The mean production (over 8 years) is 690 kg/ha, and ranges from 381 to 872 kg/ha during this period. Various statistical relationships based on soil moisture estimates were tested, and the most promising one (R>0.9) linked the 30-cm soil moisture anomalies from mid-August to mid-September (grain filling period) to the crop yield anomalies. Based on this local study, it was proposed to derive regional statistical relationships using 30-cm soil moisture maps over West Africa. The selected approach was to use a simple hydrological model, the Antecedent Precipitation Index (API), forced by real-time satellite-based precipitation (CMORPH, PERSIANN, TRMM3B42). To reduce uncertainties related to the quality of real-time rainfall satellite products, SMOS soil moisture measurements were assimilated into the API model through a Particular Filter algorithm. Then, obtained soil moisture anomalies were

  15. Spatiotemporal Variability of Hillslope Soil Moisture Across Steep, Highly Dissected Topography

    NASA Astrophysics Data System (ADS)

    Jarecke, K. M.; Wondzell, S. M.; Bladon, K. D.

    2016-12-01

    Hillslope ecohydrological processes, including subsurface water flow and plant water uptake, are strongly influenced by soil moisture. However, the factors controlling spatial and temporal variability of soil moisture in steep, mountainous terrain are poorly understood. We asked: How do topography and soils interact to control the spatial and temporal variability of soil moisture in steep, Douglas-fir dominated hillslopes in the western Cascades? We will present a preliminary analysis of bimonthly soil moisture variability from July-November 2016 at 0-30 and 0-60 cm depth across spatially extensive convergent and divergent topographic positions in Watershed 1 of the H.J. Andrews Experimental Forest in central Oregon. Soil moisture monitoring locations were selected following a 5 m LIDAR analysis of topographic position, aspect, and slope. Topographic position index (TPI) was calculated as the difference in elevation to the mean elevation within a 30 m radius. Convergent (negative TPI values) and divergent (positive TPI values) monitoring locations were established along northwest to northeast-facing aspects and within 25-55 degree slopes. We hypothesized that topographic position (convergent vs. divergent), as well as soil physical properties (e.g., texture, bulk density), control variation in hillslope soil moisture at the sub-watershed scale. In addition, we expected the relative importance of hillslope topography to the spatial variability in soil moisture to differ seasonally. By comparing the spatiotemporal variability of hillslope soil moisture across topographic positions, our research provides a foundation for additional understanding of subsurface flow processes and plant-available soil-water in forests with steep, highly dissected terrain.

  16. Investigation of remote sensing techniques of measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Blanchard, A. J.; Nieber, J. L.; Lascano, R.; Tsang, L.; Vanbavel, C. H. M.

    1981-01-01

    Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models.

  17. Value of Available Global Soil Moisture Products for Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Mladenova, Iliana; Bolten, John; Crow, Wade; de Jeu, Richard

    2016-04-01

    The first operationally derived and publicly distributed global soil moil moisture product was initiated with the launch of the Advanced Scanning Microwave Mission on the NASA's Earth Observing System Aqua satellite (AMSR-E). AMSR-E failed in late 2011, but its legacy is continued by AMSR2, launched in 2012 on the JAXA Global Change Observation Mission-Water (GCOM-W) mission. AMSR is a multi-frequency dual-polarization instrument, where the lowest two frequencies (C- and X-band) were used for soil moisture retrieval. Theoretical research and small-/field-scale airborne campaigns, however, have demonstrated that soil moisture would be best monitored using L-band-based observations. This consequently led to the development and launch of the first L-band-based mission-the ESA's Soil Moisture Ocean Salinity (SMOS) mission (2009). In early 2015 NASA launched the second L-band-based mission, the Soil Moisture Active Passive (SMAP). These satellite-based soil moisture products have been demonstrated to be invaluable sources of information for mapping water stress areas, crop monitoring and yield forecasting. Thus, a number of agricultural agencies routinely utilize and rely on global soil moisture products for improving their decision making activities, determining global crop production and crop prices, identifying food restricted areas, etc. The basic premise of applying soil moisture observations for vegetation monitoring is that the change in soil moisture conditions will precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop condition change. Here this relationship was evaluated across multiple microwave frequencies by examining the lag rank cross-correlation coefficient between the soil moisture observations and the Normalized Difference Vegetation Index (NDVI). A main goal of our analysis is to evaluate and inter-compare the value of the different soil moisture products derived using L-band (SMOS

  18. Soil moisture - precipitation feedbacks in observations and models (Invited)

    NASA Astrophysics Data System (ADS)

    Taylor, C.

    2013-12-01

    There is considerable uncertainty about the strength, geographical extent, and even the sign of feedbacks between soil moisture and precipitation. Whilst precipitation trivially increases soil moisture, the impact of soil moisture, via surface fluxes, on convective rainfall is far from straight-forward, and likely depends on space and time scale, soil and synoptic conditions, and the nature of the convection itself. In considering how daytime convection responds to surface fluxes, large-scale models based on convective parameterisations may not necessarily provide reliable depictions, particularly given their long-standing inability to reproduce a realistic diurnal cycle of convection. On the other hand, long-term satellite data provide the potential to establish robust relationships between soil moisture and precipitation across the world, notwithstanding some fundamental weaknesses and uncertainties in the datasets. Here, results from regional and global satellite-based analyses are presented. Globally, using 3-hourly precipitation and daily soil moisture datasets, a methodology has been developed to compare the statistics of antecedent soil moisture in the region of localised afternoon rain events (Taylor et al 2012). Specifically the analysis tests whether there are any significant differences in pre-event soil moisture between rainfall maxima and nearby (50-100km) minima. The results reveal a clear signal across a number of semi-arid regions, most notably North Africa, indicating a preference for afternoon rain over drier soil. Analysis by continent and by climatic zone reveals that this signal (locally a negative feedback) is evident in other continents and climatic zones, but is somewhat weaker. This may be linked to the inherent geographical differences across the world, as detection of a feedback requires water-stressed surfaces coincident with frequent active convective initiations. The differences also reflect the quality and utility of the soil moisture

  19. Landscape complexity and soil moisture variation in south Georgia, USA, for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Giraldo, Mario A.; Bosch, David; Madden, Marguerite; Usery, Lynn; Kvien, Craig

    2008-08-01

    SummaryThis research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar

  20. Landscape complexity and soil moisture variation in south Georgia, USA, for remote sensing applications

    USGS Publications Warehouse

    Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Kvien, Craig

    2008-01-01

    This research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil

  1. Mode Decomposition Methods for Soil Moisture Prediction

    NASA Astrophysics Data System (ADS)

    Jana, R. B.; Efendiev, Y. R.; Mohanty, B.

    2014-12-01

    Lack of reliable, well-distributed, long-term datasets for model validation is a bottle-neck for most exercises in soil moisture analysis and prediction. Understanding what factors drive soil hydrological processes at different scales and their variability is very critical to further our ability to model the various components of the hydrologic cycle more accurately. For this, a comprehensive dataset with measurements across scales is very necessary. Intensive fine-resolution sampling of soil moisture over extended periods of time is financially and logistically prohibitive. Installation of a few long term monitoring stations is also expensive, and needs to be situated at critical locations. The concept of Time Stable Locations has been in use for some time now to find locations that reflect the mean values for the soil moisture across the watershed under all wetness conditions. However, the soil moisture variability across the watershed is lost when measuring at only time stable locations. We present here a study using techniques such as Dynamic Mode Decomposition (DMD) and Discrete Empirical Interpolation Method (DEIM) that extends the concept of time stable locations to arrive at locations that provide not simply the average soil moisture values for the watershed, but also those that can help re-capture the dynamics across all locations in the watershed. As with the time stability, the initial analysis is dependent on an intensive sampling history. The DMD/DEIM method is an application of model reduction techniques for non-linearly related measurements. Using this technique, we are able to determine the number of sampling points that would be required for a given accuracy of prediction across the watershed, and the location of those points. Locations with higher energetics in the basis domain are chosen first. We present case studies across watersheds in the US and India. The technique can be applied to other hydro-climates easily.

  2. A comparative study of the SMAP passive soil moisture product with existing satellite-based soil moisture products

    USDA-ARS?s Scientific Manuscript database

    NASA Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015 to provide global mapping of high-resolution soil moisture and freeze thaw state every 2-3 days using an L-band (active) radar and an L-band (passive) radiometer. The radiometer-only soil moisture product (L2...

  3. SoilNet - A Zigbee based soil moisture sensor network

    NASA Astrophysics Data System (ADS)

    Bogena, H. R.; Weuthen, A.; Rosenbaum, U.; Huisman, J. A.; Vereecken, H.

    2007-12-01

    Soil moisture plays a key role in partitioning water and energy fluxes, in providing moisture to the atmosphere for precipitation, and controlling the pattern of groundwater recharge. Large-scale soil moisture variability is driven by variation of precipitation and radiation in space and time. At local scales, land cover, soil conditions, and topography act to redistribute soil moisture. Despite the importance of soil moisture, it is not yet measured in an operational way, e.g. for a better prediction of hydrological and surface energy fluxes (e.g. runoff, latent heat) at larger scales and in the framework of the development of early warning systems (e.g. flood forecasting) and the management of irrigation systems. The SoilNet project aims to develop a sensor network for the near real-time monitoring of soil moisture changes at high spatial and temporal resolution on the basis of the new low-cost ZigBee radio network that operates on top of the IEEE 802.15.4 standard. The sensor network consists of soil moisture sensors attached to end devices by cables, router devices and a coordinator device. The end devices are buried in the soil and linked wirelessly with nearby aboveground router devices. This ZigBee wireless sensor network design considers channel errors, delays, packet losses, and power and topology constraints. In order to conserve battery power, a reactive routing protocol is used that determines a new route only when it is required. The sensor network is also able to react to external influences, e.g. such as rainfall occurrences. The SoilNet communicator, routing and end devices have been developed by the Forschungszentrum Juelich and will be marketed through external companies. We will present first results of experiments to verify network stability and the accuracy of the soil moisture sensors. Simultaneously, we have developed a data management and visualisation system. We tested the wireless network on a 100 by 100 meter forest plot equipped with 25

  4. Soil-moisture constants and their variation

    Treesearch

    Walter M. Broadfoot; Hubert D. Burke

    1958-01-01

    "Constants" like field capacity, liquid limit, moisture equivalent, and wilting point are used by most students and workers in soil moisture. These constants may be equilibrium points or other values that describe soil moisture. Their values under specific soil and cover conditions have been discussed at length in the literature, but few general analyses and...

  5. On-irrigator pasture soil moisture sensor

    NASA Astrophysics Data System (ADS)

    Eng-Choon Tan, Adrian; Richards, Sean; Platt, Ian; Woodhead, Ian

    2017-02-01

    In this paper, we presented the development of a proximal soil moisture sensor that measured the soil moisture content of dairy pasture directly from the boom of an irrigator. The proposed sensor was capable of soil moisture measurements at an accuracy of  ±5% volumetric moisture content, and at meter scale ground area resolutions. The sensor adopted techniques from the ultra-wideband radar to enable measurements of ground reflection at resolutions that are smaller than the antenna beamwidth of the sensor. An experimental prototype was developed for field measurements. Extensive field measurements using the developed prototype were conducted on grass pasture at different ground conditions to validate the accuracy of the sensor in performing soil moisture measurements.

  6. Soil Moisture Estimation Using Hyperspectral SWIR Imagery

    NASA Astrophysics Data System (ADS)

    Lewis, D.

    2007-12-01

    The U.S. Geological Survey (USGS) is engaged with the U.S. Department of Agriculture's (USDA) Agricultural Research Service (ARS) and the University of Georgia's National Environmentally Sound Production Agriculture Laboratory (NESPAL) both in Tifton, Georgia, USA, to develop transformations for medium and high resolution remotely sensed images to generate moisture indicators for soil. The Institute for Technology Development (ITD) is located at the Stennis Space Center in southern Mississippi and has developed hyperspectral sensor systems that, when mounted in aircraft, collect electromagnetic reflectance data of the terrain. The sensor suite consists of sensors for three different sections of the electromagnetic spectrum; the Ultra-Violet (UV), Visible/Near InfraRed (VNIR) and Short Wave InfraRed (SWIR). The USDA/ ARS' Southeast Watershed Research Laboratory has probes that measure and record soil moisture. Data taken from the ITD SWIR sensor and the USDA/ARS soil moisture meters were analyzed to study the informatics relationships between SWIR data and measured soil moisture. The geographic locations of 29 soil moisture meters provided by the USDA/ARS are in the vicinity of Tifton, Georgia. Using USGS Digital Ortho Quads (DOQ), flightlines were drawn over the 29 soil moisture meters. The SWIR sensor was installed into an aircraft. The coordinates for the flightlines were also loaded into the navigational system of the aircraft. This airborne platform was used to collect the data over these flightlines. In order to prepare the data set for analysis, standard preprocessing was performed. These standard processes included sensor calibration, spectral subsetting, and atmospheric calibration. All 60 bands of the SWIR data were collected for each line in the image data, 15 bands of which were stripped from the data set leaving 45 bands of information in the wavelength range of 906 to 1705 nanometers. All the image files were calibrated using the regression equations

  7. Microstrip Ring Resonator for Soil Moisture Measurements

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Li, Eric S.

    1993-01-01

    Accurate determination of spatial soil moisture distribution and monitoring its temporal variation have a significant impact on the outcomes of hydrologic, ecologic, and climatic models. Development of a successful remote sensing instrument for soil moisture relies on the accurate knowledge of the soil dielectric constant (epsilon(sub soil)) to its moisture content. Two existing methods for measurement of dielectric constant of soil at low and high frequencies are, respectively, the time domain reflectometry and the reflection coefficient measurement using an open-ended coaxial probe. The major shortcoming of these methods is the lack of accurate determination of the imaginary part of epsilon(sub soil). In this paper a microstrip ring resonator is proposed for the accurate measurement of soil dielectric constant. In this technique the microstrip ring resonator is placed in contact with soil medium and the real and imaginary parts of epsilon(sub soil) are determined from the changes in the resonant frequency and the quality factor of the resonator respectively. The solution of the electromagnetic problem is obtained using a hybrid approach based on the method of moments solution of the quasi-static formulation in conjunction with experimental data obtained from reference dielectric samples. Also a simple inversion algorithm for epsilon(sub soil) = epsilon'(sub r) + j(epsilon"(sub r)) based on regression analysis is obtained. It is shown that the wide dynamic range of the measured quantities provides excellent accuracy in the dielectric constant measurement. A prototype microstrip ring resonator at L-band is designed and measurements of soil with different moisture contents are presented and compared with other approaches.

  8. Evaluation of Remote Sensing and Hydrological Model Based Soil Moisture Datasets in Drought Perspective

    NASA Astrophysics Data System (ADS)

    Hüsami Afşar, M.; Bulut, B.; Yilmaz, M. T.

    2017-12-01

    Soil moisture is one of the fundamental parameters of the environment that plays a major role in carbon, energy, and water cycles. Spatial distribution and temporal changes of soil moisture is one of the important components in climatic, ecological and natural hazards at global, regional and local levels scales. Therefore retrieval of soil moisture datasets has a great importance in these studies. Given soil moisture can be retrieved through different platforms (i.e., in-situ measurements, numerical modeling, and remote sensing) for the same location and time period, it is often desirable to evaluate these different datasets to assign the most accurate estimates for different purposes. During last decades, efforts have been given to provide evaluations about different soil moisture products based on various statistical analysis of the soil moisture time series (i.e., comparison of correlation, bias, and their error standard deviation). On the other hand, there is still need for the comparisons of the soil moisture products in drought analysis context. In this study, LPRM and NOAH Land Surface Model soil moisture datasets are investigated in drought analysis context using station-based watershed average datasets obtained over four USDA ARS watersheds as ground truth. Here, the drought analysis are performed using the standardized soil moisture datasets (i.e., zero mean and one standard deviation) while the droughts are defined as consecutive negative anomalies less than -1 for longer than 3 months duration. Accordingly, the drought characteristics (duration and severity) and false alarm and hit/miss ratios of LPRM and NOAH datasets are validated using station-based datasets as ground truth. Results showed that although the NOAH soil moisture products have better correlations, LPRM based soil moisture retrievals show better consistency in drought analysis. This project is supported by TUBITAK Project number 114Y676.

  9. Australian Soil Moisture Field Experiments in Support of Soil Moisture Satellite Observations

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Walker, Jeff; Rudiger, Christopher; Panciera, Rocco

    2010-01-01

    Large-scale field campaigns provide the critical fink between our understanding retrieval algorithms developed at the point scale, and algorithms suitable for satellite applications at vastly larger pixel scales. Retrievals of land parameters must deal with the substantial sub-pixel heterogeneity that is present in most regions. This is particularly the case for soil moisture remote sensing, because of the long microwave wavelengths (L-band) that are optimal. Yet, airborne L-band imagers have generally been large, heavy, and required heavy-lift aircraft resources that are expensive and difficult to schedule. Indeed, US soil moisture campaigns, have been constrained by these factors, and European campaigns have used non-imagers due to instrument and aircraft size constraints. Despite these factors, these campaigns established that large-scale soil moisture remote sensing was possible, laying the groundwork for satellite missions. Starting in 2005, a series of airborne field campaigns have been conducted in Australia: to improve our understanding of soil moisture remote sensing at large scales over heterogeneous areas. These field data have been used to test and refine retrieval algorithms for soil moisture satellite missions, and most recently with the launch of the European Space Agency's Soil Moisture Ocean Salinity (SMOS) mission, to provide validation measurements over a multi-pixel area. The campaigns to date have included a preparatory campaign in 2005, two National Airborne Field Experiments (NAFE), (2005 and 2006), two campaigns to the Simpson Desert (2008 and 2009), and one Australian Airborne Cal/val Experiment for SMOS (AACES), just concluded in the austral spring of 2010. The primary airborne sensor for each campaign has been the Polarimetric L-band Microwave Radiometer (PLMR), a 6-beam pushbroom imager that is small enough to be compatible with light aircraft, greatly facilitating the execution of the series of campaigns, and a key to their success. An

  10. The Integration of SMOS Soil Moisture in a Consistent Soil Moisture Climate Record

    NASA Astrophysics Data System (ADS)

    de Jeu, Richard; Kerr, Yann; Wigneron, Jean Pierre; Rodriguez-Fernandez, Nemesio; Al-Yaari, Amen; van der Schalie, Robin; Dolman, Han; Drusch, Matthias; Mecklenburg, Susanne

    2015-04-01

    Recently, a study funded by the European Space Agency (ESA) was set up to provide guidelines for the development of a global soil moisture climate record with a special emphasis on the integration of SMOS. Three different data fusion approaches were designed and implemented on 10 year passive microwave data (2003-2013) from two different satellite sensors; the ESA Soil Moisture Ocean Salinity Mission (SMOS) and the NASA/JAXA Advanced Scanning Microwave Radiometer (AMSR-E). The AMSR-E data covered the period from January 2003 until Oct 2011 and SMOS data covered the period from June 2010 until the end of 2013. The fusion approaches included a neural network approach (Rodriguez-Fernandez et al., this conference session HS6.4), a regression approach (Wigneron et al., 2004), and an approach based on the baseline algorithm of ESAs current Climate Change Initiative soil moisture program, the Land Parameter Retrieval Model (Van der Schalie et al., this conference session HS6.4). With this presentation we will show the first results from this study including a description of the different approaches and the validation activities using both globally covered modeled datasets and ground observations from the international soil moisture network. The statistical validation analyses will give us information on the temporal and spatial performance of the three different approaches. Based on these results we will then discuss the next steps towards a seamless integration of SMOS in a consistent soil moisture climate record. References Wigneron J.-P., J.-C. Calvet, P. de Rosnay, Y. Kerr, P. Waldteufel, K. Saleh, M. J. Escorihuela, A. Kruszewski, 'Soil Moisture Retrievals from Bi-Angular L-band Passive Microwave Observations', IEEE Trans. Geosc. Remote Sens. Let., vol 1, no. 4, 277-281, 2004.

  11. Soil moisture profile variability in land-vegetation- atmosphere continuum

    NASA Astrophysics Data System (ADS)

    Wu, Wanru

    Soil moisture is of critical importance to the physical processes governing energy and water exchanges at the land-air boundary. With respect to the exchange of water mass, soil moisture controls the response of the land surface to atmospheric forcing and determines the partitioning of precipitation into infiltration and runoff. Meanwhile, the soil acts as a reservoir for the storage of liquid water and slow release of water vapor into the atmosphere. The major motivation of the study is that the soil moisture profile is thought to make a substantial contribution to the climate variability through two-way interactions between the land-surface and the atmosphere in the coupled ocean-atmosphere-land climate system. The characteristics of soil moisture variability with soil depth may be important in affecting the atmosphere. The natural variability of soil moisture profile is demonstrated using observations. The 16-year field observational data of soil moisture with 11-layer (top 2.0 meters) measured soil depths over Illinois are analyzed and used to identify and quantify the soil moisture profile variability, where the atmospheric forcing (precipitation) anomaly propagates down through the land-branch of the hydrological cycle with amplitude damping, phase shift, and increasing persistence. Detailed statistical data analyses, which include application of the periodogram method, the wavelet method and the band-pass filter, are made of the variations of soil moisture profile and concurrently measured precipitation for comparison. Cross-spectral analysis is performed to obtain the coherence pattern and phase correlation of two time series for phase shift and amplitude damping calculation. A composite of the drought events during this time period is analyzed and compared with the normal (non-drought) case. A multi-layer land surface model is applied for modeling the soil moisture profile variability characteristics and investigating the underlying mechanisms. Numerical

  12. The soil moisture active passive experiments (SMAPEx): Towards soil moisture retrieval from the SMAP mission

    USDA-ARS?s Scientific Manuscript database

    NASA’s Soil Moisture Active Passive (SMAP) mission, scheduled for launch in 2014, will carry the first combined L-band radar and radiometer system with the objective of mapping near surface soil moisture and freeze/thaw state globally at near-daily time step (2-3 days). SMAP will provide three soil ...

  13. Development of an Objective High Spatial Resolution Soil Moisture Index

    NASA Astrophysics Data System (ADS)

    Zavodsky, B.; Case, J.; White, K.; Bell, J. R.

    2015-12-01

    Drought detection, analysis, and mitigation has become a key challenge for a diverse set of decision makers, including but not limited to operational weather forecasters, climatologists, agricultural interests, and water resource management. One tool that is heavily used is the United States Drought Monitor (USDM), which is derived from a complex blend of objective data and subjective analysis on a state-by-state basis using a variety of modeled and observed precipitation, soil moisture, hydrologic, and vegetation and crop health data. The NASA Short-term Prediction Research and Transition (SPoRT) Center currently runs a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework. The LIS-Noah is run at 3-km resolution for local numerical weather prediction (NWP) and situational awareness applications at select NOAA/National Weather Service (NWS) forecast offices over the Continental U.S. (CONUS). To enhance the practicality of the LIS-Noah output for drought monitoring and assessing flood potential, a 30+-year soil moisture climatology has been developed in an attempt to place near real-time soil moisture values in historical context at county- and/or watershed-scale resolutions. This LIS-Noah soil moisture climatology and accompanying anomalies is intended to complement the current suite of operational products, such as the North American Land Data Assimilation System phase 2 (NLDAS-2), which are generated on a coarser-resolution grid that may not capture localized, yet important soil moisture features. Daily soil moisture histograms are used to identify the real-time soil moisture percentiles at each grid point according to the county or watershed in which the grid point resides. Spatial plots are then produced that map the percentiles as proxies to the different USDM categories. This presentation will highlight recent developments of this gridded, objective soil moisture index, comparison to subjective

  14. A Methodology for Soil Moisture Retrieval from Land Surface Temperature, Vegetation Index, Topography and Soil Type

    NASA Astrophysics Data System (ADS)

    Pradhan, N. R.

    2015-12-01

    Soil moisture conditions have an impact upon hydrological processes, biological and biogeochemical processes, eco-hydrology, floods and droughts due to changing climate, near-surface atmospheric conditions and the partition of incoming solar and long-wave radiation between sensible and latent heat fluxes. Hence, soil moisture conditions virtually effect on all aspects of engineering / military engineering activities such as operational mobility, detection of landmines and unexploded ordinance, natural material penetration/excavation, peaking factor analysis in dam design etc. Like other natural systems, soil moisture pattern can vary from completely disorganized (disordered, random) to highly organized. To understand this varying soil moisture pattern, this research utilized topographic wetness index from digital elevation models (DEM) along with vegetation index from remotely sensed measurements in red and near-infrared bands, as well as land surface temperature (LST) in the thermal infrared bands. This research developed a methodology to relate a combined index from DEM, LST and vegetation index with the physical soil moisture properties of soil types and the degree of saturation. The advantage in using this relationship is twofold: first it retrieves soil moisture content at the scale of soil data resolution even though the derived indexes are in a coarse resolution, and secondly the derived soil moisture distribution represents both organized and disorganized patterns of actual soil moisture. The derived soil moisture is used in driving the hydrological model simulations of runoff, sediment and nutrients.

  15. Response of spectral vegetation indices to soil moisture in grasslands and shrublands

    USGS Publications Warehouse

    Zhang, Li; Ji, Lei; Wylie, Bruce K.

    2011-01-01

    The relationships between satellite-derived vegetation indices (VIs) and soil moisture are complicated because of the time lag of the vegetation response to soil moisture. In this study, we used a distributed lag regression model to evaluate the lag responses of VIs to soil moisture for grasslands and shrublands at Soil Climate Analysis Network sites in the central and western United States. We examined the relationships between Moderate Resolution Imaging Spectroradiometer (MODIS)-derived VIs and soil moisture measurements. The Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) showed significant lag responses to soil moisture. The lag length varies from 8 to 56 days for NDVI and from 16 to 56 days for NDWI. However, the lag response of NDVI and NDWI to soil moisture varied among the sites. Our study suggests that the lag effect needs to be taken into consideration when the VIs are used to estimate soil moisture.

  16. Soil Moisture Sensing

    USDA-ARS?s Scientific Manuscript database

    Soil moisture monitoring can be useful as an irrigation management tool for both landscapes and agriculture, sometimes replacing an evapotranspiration (ET) based approach or as a useful check on ET based approaches since the latter tend to drift off target over time. All moisture sensors, also known...

  17. Space-time modeling of soil moisture

    NASA Astrophysics Data System (ADS)

    Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio

    2017-11-01

    A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.

  18. Assimilation of Passive and Active Microwave Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.

    2012-01-01

    Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.

  19. Global response of the growing season to soil moisture and topography

    NASA Astrophysics Data System (ADS)

    Guevara, M.; Arroyo, C.; Warner, D. L.; Equihua, J.; Lule, A. V.; Schwartz, A.; Taufer, M.; Vargas, R.

    2017-12-01

    Soil moisture has a direct influence in plant productivity. Plant productivity and its greenness can be inferred by remote sensing with higher spatial detail than soil moisture. The objective was to improve the coarse scale of currently available satellite soil moisture estimates and identify areas of strong coupling between the interannual variability soil moisture and the maximum greenness vegetation fraction (MGVF) at the global scale. We modeled, cross-validated and downscaled remotely sensed soil moisture using machine learning and digital terrain analysis across 23 years (1991-2013) of available data. Improving the accuracy (0.69-0.87 % of cross-validated explained variance) and the spatial detail (from 27 to 15km) of satellite soil moisture, we filled temporal gaps of information across vegetated areas where satellite soil moisture does not work properly. We found that 7.57% of global vegetated area shows strong correlation with our downscaled product (R2>0.5, Fig. 1). We found a dominant positive response of vegetation greenness to topography-based soil moisture across water limited environments, however, the tropics and temperate environments of higher latitudes showed a sparse negative response. We conclude that topography can be used to effectively improve the spatial detail of globally available remotely sensed soil moisture, which is convenient to generate unbiased comparisons with global vegetation dynamics, and better inform land and crop modeling efforts.

  20. Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS

    NASA Astrophysics Data System (ADS)

    Tobin, Kenneth J.; Torres, Roberto; Crow, Wade T.; Bennett, Marvin E.

    2017-09-01

    This study applied the exponential filter to produce an estimate of root-zone soil moisture (RZSM). Four types of microwave-based, surface satellite soil moisture were used. The core remotely sensed data for this study came from NASA's long-lasting AMSR-E mission. Additionally, three other products were obtained from the European Space Agency Climate Change Initiative (CCI). These datasets were blended based on all available satellite observations (CCI-active, CCI-passive, and CCI-combined). All of these products were 0.25° and taken daily. We applied the filter to produce a soil moisture index (SWI) that others have successfully used to estimate RZSM. The only unknown in this approach was the characteristic time of soil moisture variation (T). We examined five different eras (1997-2002; 2002-2005; 2005-2008; 2008-2011; 2011-2014) that represented periods with different satellite data sensors. SWI values were compared with in situ soil moisture data from the International Soil Moisture Network at a depth ranging from 20 to 25 cm. Selected networks included the US Department of Energy Atmospheric Radiation Measurement (ARM) program (25 cm), Soil Climate Analysis Network (SCAN; 20.32 cm), SNOwpack TELemetry (SNOTEL; 20.32 cm), and the US Climate Reference Network (USCRN; 20 cm). We selected in situ stations that had reasonable completeness. These datasets were used to filter out periods with freezing temperatures and rainfall using data from the Parameter elevation Regression on Independent Slopes Model (PRISM). Additionally, we only examined sites where surface and root-zone soil moisture had a reasonably high lagged r value (r > 0. 5). The unknown T value was constrained based on two approaches: optimization of root mean square error (RMSE) and calculation based on the normalized difference vegetation index (NDVI) value. Both approaches yielded comparable results; although, as to be expected, the optimization approach generally outperformed NDVI-based estimates

  1. Plan of research for integrated soil moisture studies. Recommendations of the Soil Moisture Working Group

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Soil moisture information is a potentially powerful tool for applications in agriculture, water resources, and climate. At present, it is difficult for users of this information to clearly define their needs in terms of accuracy, resolution and frequency because of the current sparsity of data. A plan is described for defining and conducting an integrated and coordinated research effort to develop and refine remote sensing techniques which will determine spatial and temporal variations of soil moisture and to utilize soil moisture information in support of agricultural, water resources, and climate applications. The soil moisture requirements of these three different application areas were reviewed in relation to each other so that one plan covering the three areas could be formulated. Four subgroups were established to write and compile the plan, namely models, ground-based studies, aircraft experiments, and spacecraft missions.

  2. Comparing soil moisture memory in satellite observations and models

    NASA Astrophysics Data System (ADS)

    Stacke, Tobias; Hagemann, Stefan; Loew, Alexander

    2013-04-01

    A major obstacle to a correct parametrization of soil processes in large scale global land surface models is the lack of long term soil moisture observations for large parts of the globe. Currently, a compilation of soil moisture data derived from a range of satellites is released by the ESA Climate Change Initiative (ECV_SM). Comprising the period from 1978 until 2010, it provides the opportunity to compute climatological relevant statistics on a quasi-global scale and to compare these to the output of climate models. Our study is focused on the investigation of soil moisture memory in satellite observations and models. As a proxy for memory we compute the autocorrelation length (ACL) of the available satellite data and the uppermost soil layer of the models. Additional to the ECV_SM data, AMSR-E soil moisture is used as observational estimate. Simulated soil moisture fields are taken from ERA-Interim reanalysis and generated with the land surface model JSBACH, which was driven with quasi-observational meteorological forcing data. The satellite data show ACLs between one week and one month for the greater part of the land surface while the models simulate a longer memory of up to two months. Some pattern are similar in models and observations, e.g. a longer memory in the Sahel Zone and the Arabian Peninsula, but the models are not able to reproduce regions with a very short ACL of just a few days. If the long term seasonality is subtracted from the data the memory is strongly shortened, indicating the importance of seasonal variations for the memory in most regions. Furthermore, we analyze the change of soil moisture memory in the different soil layers of the models to investigate to which extent the surface soil moisture includes information about the whole soil column. A first analysis reveals that the ACL is increasing for deeper layers. However, its increase is stronger in the soil moisture anomaly than in its absolute values and the first even exceeds the

  3. Error characterization of microwave satellite soil moisture data sets using fourier analysis

    USDA-ARS?s Scientific Manuscript database

    Soil moisture is a key geophysical variable in hydrological and meteorological processes. Accurate and current observations of soil moisture over meso to global scales used as inputs to hydrological, weather and climate modelling will benefit the predictability and understanding of these processes. ...

  4. Error characterization of microwave satellite soil moisture data sets using fourier analysis

    USDA-ARS?s Scientific Manuscript database

    Abstract: Soil moisture is a key geophysical variable in hydrological and meteorological processes. Accurate and current observations of soil moisture over mesoscale to global scales as inputs to hydrological, weather and climate modelling will benefit the predictability and understanding of these p...

  5. High-resolution soil moisture mapping in Afghanistan

    NASA Astrophysics Data System (ADS)

    Hendrickx, Jan M. H.; Harrison, J. Bruce J.; Borchers, Brian; Kelley, Julie R.; Howington, Stacy; Ballard, Jerry

    2011-06-01

    Soil moisture conditions have an impact upon virtually all aspects of Army activities and are increasingly affecting its systems and operations. Soil moisture conditions affect operational mobility, detection of landmines and unexploded ordinance, natural material penetration/excavation, military engineering activities, blowing dust and sand, watershed responses, and flooding. This study further explores a method for high-resolution (2.7 m) soil moisture mapping using remote satellite optical imagery that is readily available from Landsat and QuickBird. The soil moisture estimations are needed for the evaluation of IED sensors using the Countermine Simulation Testbed in regions where access is difficult or impossible. The method has been tested in Helmand Province, Afghanistan, using a Landsat7 image and a QuickBird image of April 23 and 24, 2009, respectively. In previous work it was found that Landsat soil moisture can be predicted from the visual and near infra-red Landsat bands1-4. Since QuickBird bands 1-4 are almost identical to Landsat bands 1- 4, a Landsat soil moisture map can be downscaled using QuickBird bands 1-4. However, using this global approach for downscaling from Landsat to QuickBird scale yielded a small number of pixels with erroneous soil moisture values. Therefore, the objective of this study is to examine how the quality of the downscaled soil moisture maps can be improved by using a data stratification approach for the development of downscaling regression equations for each landscape class. It was found that stratification results in a reliable downscaled soil moisture map with a spatial resolution of 2.7 m.

  6. Using the Spatial Persistence of Soil Moisture Patterns to Estimate Catchment Soil Moisture in Semi-arid Areas

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.

    2006-12-01

    In humid catchments the spatial distribution of soil water is dominated by subsurface lateral fluxes, which leads to a persistent spatial pattern of soil moisture principally described by the topographic index. In contrast, semi-arid, and dryer, catchments are dominated by vertical fluxes (infiltration and evapotranspiration) and persistent spatial patterns, if they exist, are subtler. In the first part of this presentation the results of a reanalysis of a number of catchment-scale long-term spatially-distributed soil moisture data sets are presented. We concentrate on Tarrawarra and SASMAS, both catchments in Australia that are water-limited for at least part of the year and which have been monitored using a variety of technologies. Using the data from permanently installed instruments (neutron probe and reflectometry) both catchments show persistent patterns at the 1-3 year timescale. This persistent pattern is not evident in the field campaign data where field portable instruments (reflectometry) instruments were used. We argue, based on high-resolution soil moisture semivariograms, that high short-distance variability (100mm scale) means that field portable instrument cannot be replaced at the same location with sufficient accuracy to ensure deterministic repeatability of soil moisture measurements from campaign to campaign. The observed temporal persistence of the spatial pattern can be caused by; (1) permanent features of the landscape (e.g. vegetation, soils), or (2) long term memory in the soil moisture store. We argue that it is permanent in which case it is possible to monitor the soil moisture status of a catchment using a single location measurement (continuous in time) of soil moisture using a permanently installed reflectometry instrument. This instrument will need to be calibrated to the catchment averaged soil moisture but the temporal persistence of the spatial pattern of soil moisture will mean that this calibration will be deterministically

  7. Irrigation scheduling using soil moisture sensors

    USDA-ARS?s Scientific Manuscript database

    Soil moisture sensors were evaluated and used for irrigation scheduling in humid region. Soil moisture sensors were installed in soil at depths of 15cm, 30cm, and 61cm belowground. Soil volumetric water content was automatically measured by the sensors in a time interval of an hour during the crop g...

  8. Soil-moisture sensors and irrigation management

    USDA-ARS?s Scientific Manuscript database

    This agricultural irrigation seminar will cover the major classes of soil-moisture sensors; their advantages and disadvantages; installing and reading soil-moisture sensors; and using their data for irrigation management. The soil water sensor classes include the resistance sensors (gypsum blocks, g...

  9. Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Vinnikov, Konstantin YA.; Schlosser, C. Adam; Speranskaya, Nina A.; Xue, Yongkang

    1995-01-01

    Soil moisture observations in sites with natural vegetation were made for several decades in the former Soviet Union at hundreds of stations. In this paper, the authors use data from six of these stations from different climatic regimes, along with ancillary meteorological and actinometric data, to demonstrate a method to validate soil moisture simulations with biosphere and bucket models. Some early and current general circulation models (GCMs) use bucket models for soil hydrology calculations. More recently, the Simple Biosphere Model (SiB) was developed to incorporate the effects of vegetation on fluxes of moisture, momentum, and energy at the earth's surface into soil hydrology models. Until now, the bucket and SiB have been verified by comparison with actual soil moisture data only on a limited basis. In this study, a Simplified SiB (SSiB) soil hydrology model and a 15-cm bucket model are forced by observed meteorological and actinometric data every 3 h for 6-yr simulations at the six stations. The model calculations of soil moisture are compared to observations of soil moisture, literally 'ground truth,' snow cover, surface albedo, and net radiation, and with each other. For three of the stations, the SSiB and 15-cm bucket models produce good simulations of seasonal cycles and interannual variations of soil moisture. For the other three stations, there are large errors in the simulations by both models. Inconsistencies in specification of field capacity may be partly responsible. There is no evidence that the SSiB simulations are superior in simulating soil moisture variations. In fact, the models are quite similar since SSiB implicitly has a bucket embedded in it. One of the main differences between the models is in the treatment of runoff due to melting snow in the spring -- SSiB incorrectly puts all the snowmelt into runoff. While producing similar soil moisture simulations, the models produce very different surface latent and sensible heat fluxes, which

  10. The moisture response of soil heterotrophic respiration: Interaction with soil properties.

    USDA-ARS?s Scientific Manuscript database

    Soil moisture-respiration functions are used to simulate the various mechanisms determining the relations between soil moisture content and carbon mineralization. Soil models used in the simulation of global carbon fluxes often apply simplified functions assumed to represent an average moisture-resp...

  11. A Time Series Analysis of Global Soil Moisture Data Products for Water Cycle Studies

    NASA Astrophysics Data System (ADS)

    Zhan, X.; Yin, J.; Liu, J.; Fang, L.; Hain, C.; Ferraro, R. R.; Weng, F.

    2017-12-01

    Water is essential for sustaining life on our planet Earth and water cycle is one of the most important processes of out weather and climate system. As one of the major components of the water cycle, soil moisture impacts significantly the other water cycle components (e.g. evapotranspiration, runoff, etc) and the carbon cycle (e.g. plant/crop photosynthesis and respiration). Understanding of soil moisture status and dynamics is crucial for monitoring and predicting the weather, climate, hydrology and ecological processes. Satellite remote sensing has been used for soil moisture observation since the launch of the Scanning Multi-channel Microwave Radiometer (SMMR) on NASA's Nimbus-7 satellite in 1978. Many satellite soil moisture data products have been made available to the science communities and general public. The soil moisture operational product system (SMOPS) of NOAA NESDIS has been operationally providing global soil moisture data products from each of the currently available microwave satellite sensors and their blends. This presentation will provide an update of SMOPS products. The time series of each of these soil moisture data products are analyzed against other data products, such as precipitation and evapotranspiration from other independent data sources such as the North America Land Data Assimilation System (NLDAS). Temporal characteristics of these water cycle components are explored against some historical events, such as the 2010 Russian, 2010 China and 2012 United States droughts, 2015 South Carolina floods, etc. Finally whether a merged global soil moisture data product can be used as a climate data record is evaluated based on the above analyses.

  12. Soil moisture observations using L-, C-, and X-band microwave radiometers

    NASA Astrophysics Data System (ADS)

    Bolten, John Dennis

    The purpose of this thesis is to further the current understanding of soil moisture remote sensing under varying conditions using L-, C-, and X-band. Aircraft and satellite instruments are used to investigate the effects of frequency and spatial resolution on soil moisture sensitivity. The specific objectives of the research are to examine multi-scale observed and modeled microwave radiobrightness, evaluate new EOS Aqua Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperature and soil moisture retrievals, and examine future satellite-based technologies for soil moisture sensing. The cycling of Earth's water, energy and carbon is vital to understanding global climate. Over land, these processes are largely dependent on the amount of moisture within the top few centimeters of the soil. However, there are currently no methods available that can accurately characterize Earth's soil moisture layer at the spatial scales or temporal resolutions appropriate for climate modeling. The current work uses ground truth, satellite and aircraft remote sensing data from three large-scale field experiments having different land surface, topographic and climate conditions. A physically-based radiative transfer model is used to simulate the observed aircraft and satellite measurements using spatially and temporally co-located surface parameters. A robust analysis of surface heterogeneity and scaling is possible due to the combination of multiple datasets from a range of microwave frequencies and field conditions. Accurate characterization of spatial and temporal variability of soil moisture during the three field experiments is achieved through sensor calibration and algorithm validation. Comparisons of satellite observations and resampled aircraft observations are made using soil moisture from a Numerical Weather Prediction (NWP) model in order to further demonstrate a soil moisture correlation where point data was unavailable. The influence of vegetation, spatial

  13. Historical climate controls soil respiration responses to current soil moisture.

    PubMed

    Hawkes, Christine V; Waring, Bonnie G; Rocca, Jennifer D; Kivlin, Stephanie N

    2017-06-13

    Ecosystem carbon losses from soil microbial respiration are a key component of global carbon cycling, resulting in the transfer of 40-70 Pg carbon from soil to the atmosphere each year. Because these microbial processes can feed back to climate change, understanding respiration responses to environmental factors is necessary for improved projections. We focus on respiration responses to soil moisture, which remain unresolved in ecosystem models. A common assumption of large-scale models is that soil microorganisms respond to moisture in the same way, regardless of location or climate. Here, we show that soil respiration is constrained by historical climate. We find that historical rainfall controls both the moisture dependence and sensitivity of respiration. Moisture sensitivity, defined as the slope of respiration vs. moisture, increased fourfold across a 480-mm rainfall gradient, resulting in twofold greater carbon loss on average in historically wetter soils compared with historically drier soils. The respiration-moisture relationship was resistant to environmental change in field common gardens and field rainfall manipulations, supporting a persistent effect of historical climate on microbial respiration. Based on these results, predicting future carbon cycling with climate change will require an understanding of the spatial variation and temporal lags in microbial responses created by historical rainfall.

  14. Historical climate controls soil respiration responses to current soil moisture

    PubMed Central

    Waring, Bonnie G.; Rocca, Jennifer D.; Kivlin, Stephanie N.

    2017-01-01

    Ecosystem carbon losses from soil microbial respiration are a key component of global carbon cycling, resulting in the transfer of 40–70 Pg carbon from soil to the atmosphere each year. Because these microbial processes can feed back to climate change, understanding respiration responses to environmental factors is necessary for improved projections. We focus on respiration responses to soil moisture, which remain unresolved in ecosystem models. A common assumption of large-scale models is that soil microorganisms respond to moisture in the same way, regardless of location or climate. Here, we show that soil respiration is constrained by historical climate. We find that historical rainfall controls both the moisture dependence and sensitivity of respiration. Moisture sensitivity, defined as the slope of respiration vs. moisture, increased fourfold across a 480-mm rainfall gradient, resulting in twofold greater carbon loss on average in historically wetter soils compared with historically drier soils. The respiration–moisture relationship was resistant to environmental change in field common gardens and field rainfall manipulations, supporting a persistent effect of historical climate on microbial respiration. Based on these results, predicting future carbon cycling with climate change will require an understanding of the spatial variation and temporal lags in microbial responses created by historical rainfall. PMID:28559315

  15. Field scale spatiotemporal analysis of surface soil moisture for evaluating point-scale in situ networks

    USDA-ARS?s Scientific Manuscript database

    Soil moisture is an intrinsic state variable that varies considerably in space and time. From a hydrologic viewpoint, soil moisture controls runoff, infiltration, storage and drainage. Soil moisture determines the partitioning of the incoming radiation between latent and sensible heat fluxes. Althou...

  16. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1996-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive Microwave soil moisture sensors currently considered for space operation are in the range 10-20 km. The most useful frequency range for soil moisture sensing is 1-5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations.

  17. Evaluation of gravimetric ground truth soil moisture data collected for the agricultural soil moisture experiment, 1978 Colby, Kansas, aircraft mission

    NASA Technical Reports Server (NTRS)

    Arya, L. M.; Phinney, D. E. (Principal Investigator)

    1980-01-01

    Soil moisture data acquired to support the development of algorithms for estimating surface soil moisture from remotely sensed backscattering of microwaves from ground surfaces are presented. Aspects of field uniformity and variability of gravimetric soil moisture measurements are discussed. Moisture distribution patterns are illustrated by frequency distributions and contour plots. Standard deviations and coefficients of variation relative to degree of wetness and agronomic features of the fields are examined. Influence of sampling depth on observed moisture content an variability are indicated. For the various sets of measurements, soil moisture values that appear as outliers are flagged. The distribution and legal descriptions of the test fields are included along with examinations of soil types, agronomic features, and sampling plan. Bulk density data for experimental fields are appended, should analyses involving volumetric moisture content be of interest to the users of data in this report.

  18. New Physical Algorithms for Downscaling SMAP Soil Moisture

    NASA Astrophysics Data System (ADS)

    Sadeghi, M.; Ghafari, E.; Babaeian, E.; Davary, K.; Farid, A.; Jones, S. B.; Tuller, M.

    2017-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission provides new means for estimation of surface soil moisture at the global scale. However, for many hydrological and agricultural applications the spatial SMAP resolution is too low. To address this scale issue we fused SMAP data with MODIS observations to generate soil moisture maps at 1-km spatial resolution. In course of this study we have improved several existing empirical algorithms and introduced a new physical approach for downscaling SMAP data. The universal triangle/trapezoid model was applied to relate soil moisture to optical/thermal observations such as NDVI, land surface temperature and surface reflectance. These algorithms were evaluated with in situ data measured at 5-cm depth. Our results demonstrate that downscaling SMAP soil moisture data based on physical indicators of soil moisture derived from the MODIS satellite leads to higher accuracy than that achievable with empirical downscaling algorithms. Keywords: Soil moisture, microwave data, downscaling, MODIS, triangle/trapezoid model.

  19. Methods of measuring soil moisture in the field

    USGS Publications Warehouse

    Johnson, A.I.

    1962-01-01

    For centuries, the amount of moisture in the soil has been of interest in agriculture. The subject of soil moisture is also of great importance to the hydrologist, forester, and soils engineer. Much equipment and many methods have been developed to measure soil moisture under field conditions. This report discusses and evaluates the various methods for measurement of soil moisture and describes the equipment needed for each method. The advantages and disadvantages of each method are discussed and an extensive list of references is provided for those desiring to study the subject in more detail. The gravimetric method is concluded to be the most satisfactory method for most problems requiring onetime moisture-content data. The radioactive method is normally best for obtaining repeated measurements of soil moisture in place. It is concluded that all methods have some limitations and that the ideal method for measurement of soil moisture under field conditions has yet to be perfected.

  20. Spatial-temporal variability of soil moisture and its estimation across scales

    NASA Astrophysics Data System (ADS)

    Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R.

    2010-02-01

    The soil moisture is a quantity of paramount importance in the study of hydrologic phenomena and soil-atmosphere interaction. Because of its high spatial and temporal variability, the soil moisture monitoring scheme was investigated here both for soil moisture retrieval by remote sensing and in view of the use of soil moisture data in rainfall-runoff modeling. To this end, by using a portable Time Domain Reflectometer, a sequence of 35 measurement days were carried out within a single year in seven fields located inside the Vallaccia catchment, central Italy, with area of 60 km2. Every sampling day, soil moisture measurements were collected at each field over a regular grid with an extension of 2000 m2. The optimization of the monitoring scheme, with the aim of an accurate mean soil moisture estimation at the field and catchment scale, was addressed by the statistical and the temporal stability. At the field scale, the number of required samples (NRS) to estimate the field-mean soil moisture within an accuracy of 2%, necessary for the validation of remotely sensed soil moisture, ranged between 4 and 15 for almost dry conditions (the worst case); at the catchment scale, this number increased to nearly 40 and it refers to almost wet conditions. On the other hand, to estimate the mean soil moisture temporal pattern, useful for rainfall-runoff modeling, the NRS was found to be lower. In fact, at the catchment scale only 10 measurements collected in the most "representative" field, previously determined through the temporal stability analysis, can reproduce the catchment-mean soil moisture with a determination coefficient, R2, higher than 0.96 and a root-mean-square error, RMSE, equal to 2.38%. For the "nonrepresentative" fields the accuracy in terms of RMSE decreased, but similar R2 coefficients were found. This insight can be exploited for the sampling in a generic field when it is sufficient to know an index of soil moisture temporal pattern to be incorporated in

  1. A new Downscaling Approach for SMAP, SMOS and ASCAT by predicting sub-grid Soil Moisture Variability based on Soil Texture

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Rötzer, K.; Bogena, H. R.; Vereecken, H.

    2017-12-01

    Improving the coarse spatial resolution of global soil moisture products from SMOS, SMAP and ASCAT is currently an up-to-date topic. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. A method has been developed that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. Here, we predict for each SMOS, SMAP and ASCAT grid cell the sub-grid soil moisture variability based on the SoilGrids1km data set. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean. The resulting data set provides important information for downscaling coarse soil moisture observations of the SMOS, SMAP and ASCAT missions. Downscaling SMAP data by a field capacity proxy indicates adequate accuracy of the sub-grid soil moisture patterns.

  2. Spatio-temporal Root Zone Soil Moisture Estimation for Indo - Gangetic Basin from Satellite Derived (AMSR-2 and SMOS) Surface Soil Moisture

    NASA Astrophysics Data System (ADS)

    Sure, A.; Dikshit, O.

    2017-12-01

    Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.

  3. SMAP Radiometer Captures Views of Global Soil Moisture

    NASA Image and Video Library

    2015-05-06

    These maps of global soil moisture were created using data from the radiometer instrument on NASA Soil Moisture Active Passive SMAP observatory. Evident are regions of increased soil moisture and flooding during April, 2015.

  4. Soil moisture depletion patterns around scattered trees

    Treesearch

    Robert R. Ziemer

    1968-01-01

    Soil moisture was measured around an isolated mature sugar pine tree (Pinus lambertiana Dougl.) in the mixed conifer forest type of the north central Sierra Nevada, California, from November 1965 to October 1966. From a sequence of measurements, horizontal and vertical soil moisture profiles were developed. Estimated soil moisture depletion from the 61-foot radius plot...

  5. NASA Giovanni: A Tool for Visualizing, Analyzing, and Inter-comparing Soil Moisture Data

    NASA Technical Reports Server (NTRS)

    Teng, William; Rui, Hualan; Vollmer, Bruce; deJeu, Richard; Fang, Fan; Lei, Guang-Dih; Parinussa, Robert

    2014-01-01

    There are many existing satellite soil moisture algorithms and their derived data products, but there is no simple way for a user to inter-compare the products or analyze them together with other related data. An environment that facilitates such inter-comparison and analysis would be useful for validation of satellite soil moisture retrievals against in situ data and for determining the relationships between different soil moisture products. As part of the NASA Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure) family of portals, which has provided users worldwide with a simple but powerful way to explore NASA data, a beta prototype Giovanni Inter-comparison of Soil Moisture Products portal has been developed. A number of soil moisture data products are currently included in the prototype portal. More will be added, based on user requirements and feedback and as resources become available. Two application examples for the portal are provided. The NASA Giovanni Soil Moisture portal is versatile and extensible, with many possible uses, for research and applications, as well as for the education community.

  6. Soil moisture retrieval by active/passive microwave remote sensing data

    NASA Astrophysics Data System (ADS)

    Wu, Shengli; Yang, Lijuan

    2012-09-01

    This study develops a new algorithm for estimating bare surface soil moisture using combined active / passive microwave remote sensing on the basis of TRMM (Tropical Rainfall Measuring Mission). Tropical Rainfall Measurement Mission was jointly launched by NASA and NASDA in 1997, whose main task was to observe the precipitation of the area in 40 ° N-40 ° S. It was equipped with active microwave radar sensors (PR) and passive sensor microwave imager (TMI). To accurately estimate bare surface soil moisture, precipitation radar (PR) and microwave imager (TMI) are simultaneously used for observation. According to the frequency and incident angle setting of PR and TMI, we first need to establish a database which includes a large range of surface conditions; and then we use Advanced Integral Equation Model (AIEM) to calculate the backscattering coefficient and emissivity. Meanwhile, under the accuracy of resolution, we use a simplified theoretical model (GO model) and the semi-empirical physical model (Qp Model) to redescribe the process of scattering and radiation. There are quite a lot of parameters effecting backscattering coefficient and emissivity, including soil moisture, surface root mean square height, correlation length, and the correlation function etc. Radar backscattering is strongly affected by the surface roughness, which includes the surface root mean square roughness height, surface correlation length and the correlation function we use. And emissivity is differently affected by the root mean square slope under different polarizations. In general, emissivity decreases with the root mean square slope increases in V polarization, and increases with the root mean square slope increases in H polarization. For the GO model, we found that the backscattering coefficient is only related to the root mean square slope and soil moisture when the incident angle is fixed. And for Qp Model, through the analysis, we found that there is a quite good relationship

  7. Reconstructions of Soil Moisture for the Upper Colorado River Basin Using Tree-Ring Chronologies

    NASA Astrophysics Data System (ADS)

    Tootle, G.; Anderson, S.; Grissino-Mayer, H.

    2012-12-01

    Soil moisture is an important factor in the global hydrologic cycle, but existing reconstructions of historic soil moisture are limited. Tree-ring chronologies (TRCs) were used to reconstruct annual soil moisture in the Upper Colorado River Basin (UCRB). Gridded soil moisture data were spatially regionalized using principal components analysis and k-nearest neighbor techniques. Moisture sensitive tree-ring chronologies in and adjacent to the UCRB were correlated with regional soil moisture and tested for temporal stability. TRCs that were positively correlated and stable for the calibration period were retained. Stepwise linear regression was applied to identify the best predictor combinations for each soil moisture region. The regressions explained 42-78% of the variability in soil moisture data. We performed reconstructions for individual soil moisture grid cells to enhance understanding of the disparity in reconstructive skill across the regions. Reconstructions that used chronologies based on ponderosa pines (Pinus ponderosa) and pinyon pines (Pinus edulis) explained increased variance in the datasets. Reconstructed soil moisture was standardized and compared with standardized reconstructed streamflow and snow water equivalent from the same region. Soil moisture reconstructions were highly correlated with streamflow and snow water equivalent reconstructions, indicating reconstructions of soil moisture in the UCRB using TRCs successfully represent hydrologic trends, including the identification of periods of prolonged drought.

  8. The Impact of Soil Moisture Initialization On Seasonal Precipitation Forecasts

    NASA Technical Reports Server (NTRS)

    Koster, R. D.; Suarez, M. J.; Tyahla, L.; Houser, Paul (Technical Monitor)

    2002-01-01

    Some studies suggest that the proper initialization of soil moisture in a forecasting model may contribute significantly to the accurate prediction of seasonal precipitation, especially over mid-latitude continents. In order for the initialization to have any impact at all, however, two conditions must be satisfied: (1) the initial soil moisture anomaly must be "remembered" into the forecasted season, and (2) the atmosphere must respond in a predictable way to the soil moisture anomaly. In our previous studies, we identified the key land surface and atmospheric properties needed to satisfy each condition. Here, we tie these studies together with an analysis of an ensemble of seasonal forecasts. Initial soil moisture conditions for the forecasts are established by forcing the land surface model with realistic precipitation prior to the start of the forecast period. As expected, the impacts on forecasted precipitation (relative to an ensemble of runs that do not utilize soil moisture information) tend to be localized over the small fraction of the earth with all of the required land and atmosphere properties.

  9. Upscaling sparse ground-based soil moisture observations for the validation of satellite surface soil moisture products

    USDA-ARS?s Scientific Manuscript database

    The contrast between the point-scale nature of current ground-based soil moisture instrumentation and the footprint resolution (typically >100 square kilometers) of satellites used to retrieve soil moisture poses a significant challenge for the validation of data products from satellite missions suc...

  10. Exploiting Soil Moisture, Precipitation, and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Chen, F.; Reichle, R. H.; Xia, Y.; Liu, Q.

    2018-05-01

    Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of land surface models tasked with characterizing the surface water and energy balance. Temporal variability in this partitioning is due, in part, to changes in prestorm soil moisture, which determine soil infiltration capacity and unsaturated storage. Utilizing the National Aeronautics and Space Administration Soil Moisture Active Passive Level-4 soil moisture product in combination with streamflow and precipitation observations, we demonstrate that land surface models (LSMs) generally underestimate the strength of the positive rank correlation between prestorm soil moisture and event runoff coefficients (i.e., the fraction of rainfall accumulation volume converted into stormflow runoff during a storm event). Underestimation is largest for LSMs employing an infiltration-excess approach for stormflow runoff generation. More accurate coupling strength is found in LSMs that explicitly represent subsurface stormflow or saturation-excess runoff generation processes.

  11. Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation

    NASA Astrophysics Data System (ADS)

    Akbar, Ruzbeh; Short Gianotti, Daniel; McColl, Kaighin A.; Haghighi, Erfan; Salvucci, Guido D.; Entekhabi, Dara

    2018-03-01

    The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface-only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface-only soil moisture observations. To proceed, first an observation-based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry-downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root-mean-squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation-driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge-corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east-west gradient across the contiguous United States (CONUS), such that large Δz depths (>200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale.

  12. Multispectral determination of soil moisture. [Guymon, Oklahoma

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Simonett, D. S. (Principal Investigator); Hajic, E. J.; Blanchard, B. J.

    1980-01-01

    The edited Guymon soil moisture data collected on August 2, 5, 14, 17, 1978 were grouped into four field cover types for statistical analysis. These are the bare, milo with rows parallel to field of view, milo with rows perpendicular to field of view and alfalfa cover groups. There are 37, 22, 24 and 14 observations respectively in each group for each sensor channel and each soil moisture layer. A subset of these data called the 'five cover set' (VEG5) limited the scatterometer data to the 15 deg look angle and was used to determine discriminant functions and combined group regressions.

  13. Airborne gamma radiation soil moisture measurements over short flight lines

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.; Carrol, Thomas R.; Lipinski, Daniel M.

    1990-01-01

    Results are presented on airborne gamma radiation measurements of soil moisture condition, carried out along short flight lines as part of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE). Data were collected over an area in Kansas during the summers of 1987 and 1989. The airborne surveys, together with ground measurements, provide the most comprehensive set of airborne and ground truth data available in the U.S. for calibrating and evaluating airborne gamma flight lines. Analysis showed that, using standard National Weather Service weights for the K, Tl, and Gc radiation windows, the airborne soil moisture estimates for the FIFE lines had a root mean square error of no greater than 3.0 percent soil moisture. The soil moisture estimates for sections having acquisition time of at least 15 sec were found to be reliable.

  14. Relating coccidioidomycosis (valley fever) incidence to soil moisture conditions.

    PubMed

    Coopersmith, E J; Bell, J E; Benedict, K; Shriber, J; McCotter, O; Cosh, M H

    2017-04-17

    Coccidioidomycosis (also called Valley fever) is caused by a soilborne fungus, Coccidioides spp. , in arid regions of the southwestern United States. Though some who develop infections from this fungus remain asymptomatic, others develop respiratory disease as a consequence. Less commonly, severe illness and death can occur when the infection spreads to other regions of the body. Previous analyses have attempted to connect the incidence of coccidioidomycosis to broadly available climatic measurements, such as precipitation or temperature. However, with the limited availability of long-term, in situ soil moisture data sets, it has not been feasible to perform a direct analysis of the relationships between soil moisture levels and coccidioidomycosis incidence on a larger temporal and spatial scale. Utilizing in situ soil moisture gauges throughout the southwest from the U.S. Climate Reference Network and a model with which to extend those estimates, this work connects periods of higher and lower soil moisture in Arizona and California between 2002 and 2014 to the reported incidence of coccidioidomycosis. The results indicate that in both states, coccidioidomycosis incidence is related to soil moisture levels from previous summers and falls. Stated differently, a higher number of coccidioidomycosis cases are likely to be reported if previous bands of months have been atypically wet or dry, depending on the location.

  15. Electrical methods of determining soil moisture content

    NASA Technical Reports Server (NTRS)

    Silva, L. F.; Schultz, F. V.; Zalusky, J. T.

    1975-01-01

    The electrical permittivity of soils is a useful indicator of soil moisture content. Two methods of determining the permittivity profile in soils are examined. A method due to Becher is found to be inapplicable to this situation. A method of Slichter, however, appears to be feasible. The results of Slichter's method are extended to the proposal of an instrument design that could measure available soil moisture profile (percent available soil moisture as a function of depth) from a surface measurement to an expected resolution of 10 to 20 cm.

  16. Automated Quality Control of in Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products

    NASA Astrophysics Data System (ADS)

    Ek, M. B.; Xia, Y.; Ford, T.; Wu, Y.; Quiring, S. M.

    2015-12-01

    The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable due to the diversity of climatological conditions, land cover, soil texture, and topographies of the stations and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy and imprecision in the data set can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure the data is of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System phase 2 (NLDAS-2) Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20 cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and West Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1,200 NASMD stations in the near future.

  17. Ultrasound Algorithm Derivation for Soil Moisture Content Estimation

    NASA Technical Reports Server (NTRS)

    Belisle, W.R.; Metzl, R.; Choi, J.; Aggarwal, M. D.; Coleman, T.

    1997-01-01

    Soil moisture content can be estimated by evaluating the velocity at which sound waves travel through a known volume of solid material. This research involved the development of three soil algorithms relating the moisture content to the velocity at which sound waves moved through dry and moist media. Pressure and shear wave propagation equations were used in conjunction with soil property descriptions to derive algorithms appropriate for describing the effects of moisture content variation on the velocity of sound waves in soils with and without complete soil pore water volumes, An elementary algorithm was used to estimate soil moisture contents ranging from 0.08 g/g to 0.5 g/g from sound wave velocities ranging from 526 m/s to 664 m/s. Secondary algorithms were also used to estimate soil moisture content from sound wave velocities through soils with pores that were filled predominantly with air or water.

  18. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    NASA Astrophysics Data System (ADS)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  19. Version 3 of the SMAP Level 4 Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Liu, Qing; Ardizzone, Joe; Crow, Wade; De Lannoy, Gabrielle; Kolassa, Jana; Kimball, John; Koster, Randy

    2017-01-01

    The NASA Soil Moisture Active Passive (SMAP) Level 4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root zone (0-100 cm) soil moisture as well as related land surface states and fluxes from 31 March 2015 to present with a latency of 2.5 days. The ensemble-based L4_SM algorithm is a variant of the Goddard Earth Observing System version 5 (GEOS-5) land data assimilation system and ingests SMAP L-band (1.4 GHz) Level 1 brightness temperature observations into the Catchment land surface model. The soil moisture analysis is non-local (spatially distributed), performs downscaling from the 36-km resolution of the observations to that of the model, and respects the relative uncertainties of the modeled and observed brightness temperatures. Prior to assimilation, a climatological rescaling is applied to the assimilated brightness temperatures using a 6 year record of SMOS observations. A new feature in Version 3 of the L4_SM data product is the use of 2 years of SMAP observations for rescaling where SMOS observations are not available because of radio frequency interference, which expands the impact of SMAP observations on the L4_SM estimates into large regions of northern Africa and Asia. This presentation investigates the performance and data assimilation diagnostics of the Version 3 L4_SM data product. The L4_SM soil moisture estimates meet the 0.04 m3m3 (unbiased) RMSE requirement. We further demonstrate that there is little bias in the soil moisture analysis. Finally, we illustrate where the assimilation system overestimates or underestimates the actual errors in the system.

  20. Soil Moisture-Atmosphere Feedbacks on Atmospheric Tracers: The Effects of Soil Moisture on Precipitation and Near-Surface Chemistry

    NASA Astrophysics Data System (ADS)

    Tawfik, Ahmed B.

    The atmospheric component is described by rapid fluctuations in typical state variables, such as temperature and water vapor, on timescales of hours to days and the land component evolves on daily to yearly timescales. This dissertation examines the connection between soil moisture and atmospheric tracers under varying degrees of soil moisture-atmosphere coupling. Land-atmosphere coupling is defined over the United States using a regional climate model. A newly examined soil moisture-precipitation feedback is identified for winter months extending the previous summer feedback to colder temperature climates. This feedback is driven by the freezing and thawing of soil moisture, leading to coupled land-atmosphere conditions near the freezing line. Soil moisture can also affect the composition of the troposphere through modifying biogenic emissions of isoprene (C5H8). A novel first-order Taylor series decomposition indicates that isoprene emissions are jointly driven by temperature and soil moisture in models. These compounds are important precursors for ozone formation, an air pollutant and a short-lived forcing agent for climate. A mechanistic description of commonly observed relationships between ground-level ozone and meteorology is presented using the concept of soil moisture-temperature coupling regimes. The extent of surface drying was found to be a better predictor of ozone concentrations than temperature or humidity for the Eastern U.S. This relationship is evaluated in a coupled regional chemistry-climate model under several land-atmosphere coupling and isoprene emissions cases. The coupled chemistry-climate model can reproduce the observed soil moisture-temperature coupling pattern, yet modeled ozone is insensitive to changes in meteorology due to the balance between isoprene and the primary atmospheric oxidant, the hydroxyl radical (OH). Overall, this work highlights the importance of soil moisture-atmosphere coupling for previously neglected cold climate

  1. Advanced microwave soil moisture studies. [Big Sioux River Basin, Iowa

    NASA Technical Reports Server (NTRS)

    Dalsted, K. J.; Harlan, J. C.

    1983-01-01

    Comparisons of low level L-band brightness temperature (TB) and thermal infrared (TIR) data as well as the following data sets: soil map and land cover data; direct soil moisture measurement; and a computer generated contour map were statistically evaluated using regression analysis and linear discriminant analysis. Regression analysis of footprint data shows that statistical groupings of ground variables (soil features and land cover) hold promise for qualitative assessment of soil moisture and for reducing variance within the sampling space. Dry conditions appear to be more conductive to producing meaningful statistics than wet conditions. Regression analysis using field averaged TB and TIR data did not approach the higher sq R values obtained using within-field variations. The linear discriminant analysis indicates some capacity to distinguish categories with the results being somewhat better on a field basis than a footprint basis.

  2. Impacts of soil moisture content on visual soil evaluation

    NASA Astrophysics Data System (ADS)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Bondi, Giulia; Creamer, Rachel; Holden, Nick

    2017-04-01

    Visual Soil Examination and Evaluation (VSE) techniques offer tools for soil quality assessment. They involve the visual and tactile assessment of soil properties such as aggregate size and shape, porosity, redox morphology, soil colour and smell. An increasing body of research has demonstrated the reliability and utility of VSE techniques. However a number of limitations have been identified, including the potential impact of soil moisture variation during sampling. As part of a national survey of grassland soil quality in Ireland, an evaluation of the impact of soil moisture on two widely used VSE techniques was conducted. The techniques were Visual Evaluation of Soil Structure (VESS) (Guimarães et al., 2011) and Visual Soil Assessment (VSA) (Shepherd, 2009). Both generate summarising numeric scores that indicate soil structural quality, though employ different scoring mechanisms. The former requires the assessment of properties concurrently and the latter separately. Both methods were deployed on 20 sites across Ireland representing a range of soils. Additional samples were taken for soil volumetric water (θ) determination at 5-10 and 10-20 cm depth. No significant correlation was observed between θ 5-10 cm and either VSE technique. However, VESS scores were significantly related to θ 10-20 cm (rs = 0.40, sig = 0.02) while VSA scores were not (rs = -0.33, sig = 0.06). VESS and VSA scores can be grouped into quality classifications (good, moderate and poor). No significant mean difference was observed between θ 5-10 cm or θ 10-20 cm according to quality classification by either method. It was concluded that VESS scores may be affected by soil moisture variation while VSA appear unaffected. The different scoring mechanisms, where the separate assessment and scoring of individual properties employed by VSA, may limit soil moisture effects. However, moisture content appears not to affect overall structural quality classification by either method. References

  3. Soil moisture in sessile oak forest gaps

    NASA Astrophysics Data System (ADS)

    Zagyvainé Kiss, Katalin Anita; Vastag, Viktor; Gribovszki, Zoltán; Kalicz, Péter

    2015-04-01

    By social demands are being promoted the aspects of the natural forest management. In forestry the concept of continuous forest has been an accepted principle also in Hungary since the last decades. The first step from even-aged stand to continuous forest can be the forest regeneration based on gap cutting, so small openings are formed in a forest due to forestry interventions. This new stand structure modifies the hydrological conditions for the regrowth. Without canopy and due to the decreasing amounts of forest litter the interception is less significant so higher amount of precipitation reaching the soil. This research focuses on soil moisture patterns caused by gaps. The spatio-temporal variability of soil water content is measured in gaps and in surrounding sessile oak (Quercus petraea) forest stand. Soil moisture was determined with manual soil moisture meter which use Time-Domain Reflectometry (TDR) technology. The three different sizes gaps (G1: 10m, G2: 20m, G3: 30m) was opened next to Sopron on the Dalos Hill in Hungary. First, it was determined that there is difference in soil moisture between forest stand and gaps. Second, it was defined that how the gap size influences the soil moisture content. To explore the short term variability of soil moisture, two 24-hour (in growing season) and a 48-hour (in dormant season) field campaign were also performed in case of the medium-sized G2 gap along two/four transects. Subdaily changes of soil moisture were performed. The measured soil moisture pattern was compared with the radiation pattern. It was found that the non-illuminated areas were wetter and in the dormant season the subdaily changes cease. According to our measurements, in the gap there is more available water than under the forest stand due to the less evaporation and interception loss. Acknowledgements: The research was supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0004 and AGRARKLIMA.2 VKSZ_12-1-2013-0034.

  4. Evaluation of AMSR2 soil moisture products over the contiguous United States using in situ data from the International Soil Moisture Network

    NASA Astrophysics Data System (ADS)

    Wu, Qiusheng; Liu, Hongxing; Wang, Lei; Deng, Chengbin

    2016-03-01

    High quality soil moisture datasets are required for various environmental applications. The launch of the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the Global Change Observation Mission 1-Water (GCOM-W1) in May 2012 has provided global near-surface soil moisture data, with an average revisit frequency of two days. Since AMSR2 is a new passive microwave system in operation, it is very important to evaluate the quality of AMSR2 products before widespread utilization of the data for scientific research. In this paper, we provide a comprehensive evaluation of the AMSR2 soil moisture products retrieved by the Japan Aerospace Exploration Agency (JAXA) algorithm. The evaluation was performed for a three-year period (July 2012-June 2015) over the contiguous United States. The AMSR2 soil moisture products were evaluated by comparing ascending and descending overpass products to each other as well as comparing them to in situ soil moisture observations of 598 monitoring stations obtained from the International Soil Moisture Network (ISMN). The accuracy of AMSR2 soil moisture product was evaluated against several types of monitoring networks, and for different land cover types and ecoregions. Three performance metrics, including mean difference (MD), root mean squared difference (RMSD), and correlation coefficient (R), were used in our accuracy assessment. Our evaluation results revealed that AMSR2 soil moisture retrievals are generally lower than in situ measurements. The AMSR2 soil moisture retrievals showed the best agreement with in situ measurements over the Great Plains and the worst agreement over forested areas. This study offers insights into the suitability and reliability of AMSR2 soil moisture products for different ecoregions. Although AMSR2 soil moisture retrievals represent useful and effective measurements for some regions, further studies are required to improve the data accuracy.

  5. Assimilating soil moisture into an Earth System Model

    NASA Astrophysics Data System (ADS)

    Stacke, Tobias; Hagemann, Stefan

    2017-04-01

    Several modelling studies reported potential impacts of soil moisture anomalies on regional climate. In particular for short prediction periods, perturbations of the soil moisture state may result in significant alteration of surface temperature in the following season. However, it is not clear yet whether or not soil moisture anomalies affect climate also on larger temporal and spatial scales. In an earlier study, we showed that soil moisture anomalies can persist for several seasons in the deeper soil layers of a land surface model. Additionally, those anomalies can influence root zone moisture, in particular during explicitly dry or wet periods. Thus, one prerequisite for predictability, namely the existence of long term memory, is evident for simulated soil moisture and might be exploited to improve climate predictions. The second prerequisite is the sensitivity of the climate system to soil moisture. In order to investigate this sensitivity for decadal simulations, we implemented a soil moisture assimilation scheme into the Max-Planck Institute for Meteorology's Earth System Model (MPI-ESM). The assimilation scheme is based on a simple nudging algorithm and updates the surface soil moisture state once per day. In our experiments, the MPI-ESM is used which includes model components for the interactive simulation of atmosphere, land and ocean. Artificial assimilation data is created from a control simulation to nudge the MPI-ESM towards predominantly dry and wet states. First analyses are focused on the impact of the assimilation on land surface variables and reveal distinct differences in the long-term mean values between wet and dry state simulations. Precipitation, evapotranspiration and runoff are larger in the wet state compared to the dry state, resulting in an increased moisture transport from the land to atmosphere and ocean. Consequently, surface temperatures are lower in the wet state simulations by more than one Kelvin. In terms of spatial pattern

  6. NASA Giovanni: A Tool for Visualizing, Analyzing, and Inter-Comparing Soil Moisture Data

    NASA Technical Reports Server (NTRS)

    Teng, William; Rui, Hualan; Vollmer, Bruce; deJeu, Richard; Fang, Fan; Lei, Guang-Dih

    2012-01-01

    There are many existing satellite soil moisture algorithms and their derived data products, but there is no simple way for a user to inter-compare the products or analyze them together with other related data (e.g., precipitation). An environment that facilitates such inter-comparison and analysis would be useful for validation of satellite soil moisture retrievals against in situ data and for determining the relationships between different soil moisture products. The latter relationships are particularly important for applications users, for whom the continuity of soil moisture data, from whatever source, is critical. A recent example was provided by the sudden demise of EOS Aqua AMSR-E and the end of its soil moisture data production, as well as the end of other soil moisture products that had used the AMSR-E brightness temperature data. The purpose of the current effort is to create an environment, as part of the NASA Giovanni family of portals, that facilitates inter-comparisons of soil moisture algorithms and their derived data products.

  7. Statistical analysis of simulated global soil moisture and its memory in an ensemble of CMIP5 general circulation models

    NASA Astrophysics Data System (ADS)

    Wiß, Felix; Stacke, Tobias; Hagemann, Stefan

    2014-05-01

    the tropics, north western Canada, eastern U.S. and northern Europe up to few years in the Sahara, the Arabian Peninsula, continental Eurasia and central U.S. Some models simulate very long memory all over the globe. This behavior is associated with differences between the models in the maximum root and soil depth. Models with shallow roots and deep soils exhibit longer memories than models with similar soil and root depths. Further analysis will be conducted to clearly divide models into groups based on their inter-model spatial correlation of simulated soil moisture characteristics.

  8. An inversion method for retrieving soil moisture information from satellite altimetry observations

    NASA Astrophysics Data System (ADS)

    Uebbing, Bernd; Forootan, Ehsan; Kusche, Jürgen; Braakmann-Folgmann, Anne

    2016-04-01

    ) deriving time-invariant spatial patterns (base-functions) by applying principal component analysis (PCA) to simulated soil moisture from a large-scale land surface model. (ii) Estimating time-variable soil moisture evolution by fitting these base functions of (i) to the along-track retracked backscatter coefficients in a least squares sense. (iii) Combining the estimated time-variable amplitudes and the pre-computed base-functions, which results in reconstructed (spatio-temporal) soil moisture information. We will show preliminary results that are compared to available high-resolution soil moisture model data over the region (the Australian Water Resource Assessment, AWRA model). We discuss the possibility of using altimetry-derived soil moisture estimations to improve the simulation skill of soil moisture in the Global Land Data Assimilation System (GLDAS) over Australia.

  9. State of the Art in Large-Scale Soil Moisture Monitoring

    NASA Technical Reports Server (NTRS)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  10. Soil moisture sensors for continuous monitoring

    USGS Publications Warehouse

    Amer, Saud A.; Keefer, T. O.; Weltz, M.A.; Goodrich, David C.; Bach, Leslie

    1995-01-01

    Certain physical and chemical properties of soil vary with soil water content. The relationship between these properties and water content is complex and involves both the pore structure and constituents of the soil solution. One of the most economical techniques to quantify soil water content involves the measurement of electrical resistance of a dielectric medium that is in equilibrium with the soil water content. The objective of this research was to test the reliability and accuracy of fiberglass soil-moisture electrical resistance sensors (ERS) as compared to gravimetric sampling and Time Domain Reflectometry (TDR). The response of the ERS was compared to gravimetric measurements at eight locations on the USDA-ABS Walnut Gulch Experimental Watershed. The comparisons with TDR sensors were made at three additional locations on the same watershed. The high soil rock content (>45 percent) at seven locations resulted in consistent overestimation of soil water content by the ERS method. Where rock content was less than 10 percent, estimation of soil water was within 5 percent of the gravimetric soil water content. New methodology to calibrate the ERS sensors for rocky soils will need to be developed before soil water content values can be determined with these sensors. (KEY TERMS: soil moisture; soil water; infiltration; instrumentation; soil moisture sensors.)

  11. Relating coccidioidomycosis (valley fever) incidence to soil moisture conditions

    PubMed Central

    Coopersmith, E. J.; Bell, J. E.; Benedict, K.; Shriber, J.; McCotter, O.; Cosh, M. H.

    2017-01-01

    Coccidioidomycosis (also called Valley fever) is caused by a soilborne fungus, Coccidioides spp., in arid regions of the southwestern United States. Though some who develop infections from this fungus remain asymptomatic, others develop respiratory disease as a consequence. Less commonly, severe illness and death can occur when the infection spreads to other regions of the body. Previous analyses have attempted to connect the incidence of coccidioidomycosis to broadly available climatic measurements, such as precipitation or temperature. However, with the limited availability of long-term, in situ soil moisture data sets, it has not been feasible to perform a direct analysis of the relationships between soil moisture levels and coccidioidomycosis incidence on a larger temporal and spatial scale. Utilizing in situ soil moisture gauges throughout the southwest from the U.S. Climate Reference Network and a model with which to extend those estimates, this work connects periods of higher and lower soil moisture in Arizona and California between 2002 and 2014 to the reported incidence of coccidioidomycosis. The results indicate that in both states, coccidioidomycosis incidence is related to soil moisture levels from previous summers and falls. Stated differently, a higher number of coccidioidomycosis cases are likely to be reported if previous bands of months have been atypically wet or dry, depending on the location. PMID:29124249

  12. Impact of Soil Moisture Initialization on Seasonal Weather Prediction

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Houser, Paul (Technical Monitor)

    2002-01-01

    The potential role of soil moisture initialization in seasonal forecasting is illustrated through ensembles of simulations with the NASA Seasonal-to-Interannual Prediction Project (NSIPP) model. For each boreal summer during 1997-2001, we generated two 16-member ensembles of 3-month simulations. The first, "AMIP-style" ensemble establishes the degree to which a perfect prediction of SSTs would contribute to the seasonal prediction of precipitation and temperature over continents. The second ensemble is identical to the first, except that the land surface is also initialized with "realistic" soil moisture contents through the continuous prior application (within GCM simulations leading up to the start of the forecast period) of a daily observational precipitation data set and the associated avoidance of model drift through the scaling of all surface prognostic variables. A comparison of the two ensembles shows that soil moisture initialization has a statistically significant impact on summertime precipitation and temperature over only a handful of continental regions. These regions agree, to first order, with regions that satisfy three conditions: (1) a tendency toward large initial soil moisture anomalies, (2) a strong sensitivity of evaporation to soil moisture, and (3) a strong sensitivity of precipitation to evaporation. The degree to which the initialization improves forecasts relative to observations is mixed, reflecting a critical need for the continued development of model parameterizations and data analysis strategies.

  13. Use of physically-based models and Soil Taxonomy to identify soil moisture classes: Problems and proposals

    NASA Astrophysics Data System (ADS)

    Bonfante, A.; Basile, A.; de Mascellis, R.; Manna, P.; Terribile, F.

    2009-04-01

    Soil classification according to Soil Taxonomy include, as fundamental feature, the estimation of soil moisture regime. The term soil moisture regime refers to the "presence or absence either of ground water or of water held at a tension of less than 1500 kPa in the soil or in specific horizons during periods of the year". In the classification procedure, defining of the soil moisture control section is the primary step in order to obtain the soil moisture regimes classification. Currently, the estimation of soil moisture regimes is carried out through simple calculation schemes, such as Newhall and Billaux models, and only in few cases some authors suggest the use of different more complex models (i.e., EPIC) In fact, in the Soil Taxonomy, the definition of the soil moisture control section is based on the wetting front position in two different conditions: the upper boundary is the depth to which a dry soil will be moistened by 2.5 cm of water within 24 hours and the lower boundary is the depth to which a dry soil will be moistened by 7.5 cm of water within 48 hours. Newhall, Billaux and EPIC models don't use physical laws to describe soil water flows, but they use a simple bucket-like scheme where the soil is divided into several compartments and water moves, instantly, only downward when the field capacity is achieved. On the other side, a large number of one-dimensional hydrological simulation models (SWAP, Cropsyst, Hydrus, MACRO, etc..) are available, tested and successfully used. The flow is simulated according to pressure head gradients through the numerical solution of the Richard's equation. These simulation models can be fruitful used to improve the study of soil moisture regimes. The aims of this work are: (i) analysis of the soil moisture control section concept by a physically based model (SWAP); (ii) comparison of the classification obtained in five different Italian pedoclimatic conditions (Mantova and Lodi in northern Italy; Salerno, Benevento and

  14. AMSR2 Soil Moisture Product Validation

    NASA Technical Reports Server (NTRS)

    Bindlish, R.; Jackson, T.; Cosh, M.; Koike, T.; Fuiji, X.; de Jeu, R.; Chan, S.; Asanuma, J.; Berg, A.; Bosch, D.; hide

    2017-01-01

    The Advanced Microwave Scanning Radiometer 2 (AMSR2) is part of the Global Change Observation Mission-Water (GCOM-W) mission. AMSR2 fills the void left by the loss of the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) after almost 10 years. Both missions provide brightness temperature observations that are used to retrieve soil moisture. Merging AMSR-E and AMSR2 will help build a consistent long-term dataset. Before tackling the integration of AMSR-E and AMSR2 it is necessary to conduct a thorough validation and assessment of the AMSR2 soil moisture products. This study focuses on validation of the AMSR2 soil moisture products by comparison with in situ reference data from a set of core validation sites. Three products that rely on different algorithms were evaluated; the JAXA Soil Moisture Algorithm (JAXA), the Land Parameter Retrieval Model (LPRM), and the Single Channel Algorithm (SCA). Results indicate that overall the SCA has the best performance based upon the metrics considered.

  15. Evaluating the Utility of Remotely-Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Bolten, John D.; Crow, Wade T.; Zhan, Xiwu; Jackson, Thomas J.; Reynolds,Curt

    2010-01-01

    Soil moisture is a fundamental data source used by the United States Department of Agriculture (USDA) International Production Assessment Division (IPAD) to monitor crop growth stage and condition and subsequently, globally forecast agricultural yields. Currently, the USDA IPAD estimates surface and root-zone soil moisture using a two-layer modified Palmer soil moisture model forced by global precipitation and temperature measurements. However, this approach suffers from well-known errors arising from uncertainty in model forcing data and highly simplified model physics. Here we attempt to correct for these errors by designing and applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA modified Palmer soil moisture model. An assessment of soil moisture analysis products produced from this assimilation has been completed for a five-year (2002 to 2007) period over the North American continent between 23degN - 50degN and 128degW - 65degW. In particular, a data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing EnKF soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline Palmer model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model simulation suggests that the assimilation of AMSR-E surface soil moisture retrievals can add significant value to USDA root-zone predictions derived from real-time satellite precipitation products.

  16. SMALT - Soil Moisture from Altimetry

    NASA Astrophysics Data System (ADS)

    Smith, Richard; Salloway, Mark; Berry, Philippa; Hahn, Sebastian; Wagner, Wolfgang; Egido, Alejandro; Dinardo, Salvatore; Lucas, Bruno Manuel; Benveniste, Jerome

    2014-05-01

    Soil surface moisture is a key scientific parameter; however, it is extremely difficult to measure remotely, particularly in arid and semi-arid terrain. This paper outlines the development of a novel methodology to generate soil moisture estimates in these regions from multi-mission satellite radar altimetry. Key to this approach is the development of detailed DRy Earth ModelS (DREAMS), which encapsulate the detailed and intricate surface brightness variations over the Earth's land surface, resulting from changes in surface roughness and composition. DREAMS have been created over a number of arid and semi-arid deserts worldwide to produce historical SMALT timeseries over soil moisture variation. These products are available in two formats - a high resolution track product which utilises the altimeter's high frequency content alongtrack and a multi-looked 6" gridded product at facilitate easy comparison/integeration with other remote sensing techniques. An overview of the SMALT processing scheme, covering the progression of the data from altimeter sigma0 through to final soil moisture estimate, is included along with example SMALT products. Validation has been performed over a number of deserts by comparing SMALT products with other remote sensing techniques, results of the comparison between SMALT and Metop Warp 5.5 are presented here. Comparisons with other remote sensing techniques have been limited in scope due to differences in the operational aspects of the instruments, the restricted geographical coverage of the DREAMS and the low repeat temporal sampling rate of the altimeter. The potential to expand the SMALT technique into less arid areas has been investigated. Small-scale comparison with in-situ and GNSS-R data obtained by the LEiMON experimental campaign over Tuscany, where historical trends exist within both SMALT and SMC probe datasets. A qualitative analysis of unexpected backscatter characteristics in dedicated dry environments is performed with

  17. Enhancing soil moisture monitoring via cosmic-ray neutron sensing in farmlands by combining field site tests with an uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Oswald, S. E.; Scheiffele, L. M.; Baroni, G.; Ingwersen, J.; Schrön, M.

    2017-12-01

    One application of Cosmic-Ray Neutron Sensing (CRNS) is to investigate soil moisture on agricultural fields during the crop season. This fully employs the non-invasive character of CRNS without interference with agricultural practices of the farmland. The changing influence of vegetation on CRNS has to be dealt with as well as spatio-temporal influences, e.g. by irrigation or harvest. Previous work revealed that the CRNS signal on farmland shows complex and non-unique response because of the hydrogen pools in different depths and distances. This creates a challenge for soil moisture estimation and subsequent use for irrigation management or hydrological modelling. Thus, a special aim of our study was to assess the uncertainty of CRNS in cropped fields and to identify underlying causes of uncertainty. We have applied CRNS at two field sites during the growing season that were accompanied by intensive measurements of soil moisture, vegetation parameters, and irrigation events. Sources of uncertainty were identified from the experimental data. A Monte Carlo approach was used to propagate these uncertainties to CRNS soil moisture estimations. In addition, a sensitivity analysis was performed to identify the most important factors explaining this uncertainty. Results showed that CRNS soil moisture compares well to the soil moisture network when the point values were converted to weighted water content with all hydrogen pools included. However, when considered as a stand-alone method to retrieve volumetric soil moisture, the performance decreased. The support volume including its penetration depth showed also a considerable uncertainty, especially in relatively dry soil moisture conditions. Of seven factors analyzed, actual soil moisture profile, bulk density, incoming neutron correction and calibrated parameter N0 were found to play an important role. One possible improvement could be a simple correction factor based on independent data of soil moisture profiles to

  18. Soil Moisture or Groundwater?

    NASA Astrophysics Data System (ADS)

    Swenson, S. C.; Lawrence, D. M.

    2017-12-01

    Partitioning the vertically integrated water storage variations estimated from GRACE satellite data into the components of which it is comprised requires independent information. Land surface models, which simulate the transfer and storage of moisture and energy at the land surface, are often used to estimate water storage variability of snow, surface water, and soil moisture. To obtain an estimate of changes in groundwater, the estimates of these storage components are removed from GRACE data. Biases in the modeled water storage components are therefore present in the residual groundwater estimate. In this study, we examine how soil moisture variability, estimated using the Community Land Model (CLM), depends on the vertical structure of the model. We then explore the implications of this uncertainty in the context of estimating groundwater variations using GRACE data.

  19. Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1985-01-01

    Because of the large contrast between the dielectric constant of liquid water and that of dry soil at microwave wavelength, there is a strong dependence of the thermal emission and radar backscatter from the soil on its moisture content. This dependence provides a means for the remote sensing of the moisture content in a surface layer approximately 5 cm thick. The feasibility of these techniques is demonstrated from field, aircraft and spacecraft platforms. The soil texture, surface roughness, and vegetative cover affect the sensitivity of the microwave response to moisture variations with vegetation being the most important. It serves as an attenuating layer which can totally obscure the surface. Research indicates that it is possible to obtain five or more levels of moisture discrimination and that a mature corn crop is the limiting vegetation situation.

  20. Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values

    NASA Astrophysics Data System (ADS)

    Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.

    2018-04-01

    Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.

  1. Using Data Assimilation Diagnostics to Assess the SMAP Level-4 Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Liu, Qing; De Lannoy, Gabrielle; Crow, Wade; Kimball, John; Koster, Randy; Ardizzone, Joe

    2018-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with approx.2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of approx. 0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under approx. 3 K), the soil moisture increments (under approx. 0.01 cu m/cu m), and the surface soil temperature increments (under approx. 1 K). Typical instantaneous values are approx. 6 K for O-F residuals, approx. 0.01 (approx. 0.003) cu m/cu m for surface (root-zone) soil moisture increments, and approx. 0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.

  2. Global Assessment of the SMAP Level-4 Soil Moisture Product Using Assimilation Diagnostics

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Liu, Qing; De Lannoy, Gabrielle; Crow, Wade; Kimball, John; Koster, Randy; Ardizzone, Joe

    2018-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with approx. 2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of approx. 0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under approx. 3 K), the soil moisture increments (under approx. 0.01 cu m/cu m), and the surface soil temperature increments (under approx. 1 K). Typical instantaneous values are approx. 6 K for O-F residuals, approx. 0.01 (approx. 0.003) cu m/cu m for surface (root-zone) soil moisture increments, and approx. 0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.

  3. SMOS/SMAP Synergy for SMAP Level 2 Soil Moisture Algorithm Evaluation

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann

    2011-01-01

    Soil Moisture Active Passive (SMAP) satellite has been proposed to provide global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolutions, respectively. SMAP would also provide a radiometer-only soil moisture product at 40-km spatial resolution. This product and the supporting brightness temperature observations are common to both SMAP and European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are opportunities for synergies between the two missions. These include exploiting the data for calibration and validation and establishing longer term L-band brightness temperature and derived soil moisture products. In this investigation we will be using SMOS brightness temperature, ancillary data, and soil moisture products to develop and evaluate a candidate SMAP L2 passive soil moisture retrieval algorithm. This work will begin with evaluations based on the SMOS product grids and ancillary data sets and transition to those that will be used by SMAP. An important step in this analysis is reprocessing the multiple incidence angle observations provided by SMOS to a global brightness temperature product that simulates the constant 40 degree incidence angle observations that SMAP will provide. The reprocessed brightness temperature data provide a basis for evaluating different SMAP algorithm alternatives. Several algorithms are being considered for the SMAP radiometer-only soil moisture retrieval. In this first phase, we utilized only the Single Channel Algorithm (SCA), which is based on the radiative transfer equation and uses the channel that is most sensitive to soil moisture (H-pol). Brightness temperature is corrected sequentially for the effects of temperature, vegetation, roughness (dynamic ancillary data sets) and soil texture (static ancillary data set). European Centre for Medium-Range Weather Forecasts (ECMWF) estimates of soil temperature for the top layer (as provided as part of the SMOS

  4. Information and Complexity Measures Applied to Observed and Simulated Soil Moisture Time Series

    USDA-ARS?s Scientific Manuscript database

    Time series of soil moisture-related parameters provides important insights in functioning of soil water systems. Analysis of patterns within these time series has been used in several studies. The objective of this work was to compare patterns in observed and simulated soil moisture contents to u...

  5. Survey of methods for soil moisture determination

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Jackson, T. J.; Mckim, H. L.

    1979-01-01

    Existing and proposed methods for soil moisture determination are discussed. These include: (1) in situ investigations including gravimetric, nuclear, and electromagnetic techniques; (2) remote sensing approaches that use the reflected solar, thermal infrared, and microwave portions of the electromagnetic spectrum; and (3) soil physics models that track the behavior of water in the soil in response to meteorological inputs (precipitation) and demands (evapotranspiration). The capacities of these approaches to satisfy various user needs for soil moisture information vary from application to application, but a conceptual scheme for merging these approaches into integrated systems to provide soil moisture information is proposed that has the potential for meeting various application requirements.

  6. Concerning the relationship between evapotranspiration and soil moisture

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Chang, Jy-Tai

    1987-01-01

    The relationship between the evapotranspiration and soil moisture during the drying, supply-limited phase is studied. A second scaling parameter, based on the evapotranspirational supply and demand concept of Federer (1982), is defined; the parameter, referred to as the threshold evapotranspiration, occurs in vegetation-covered surfaces just before leaf stomata close and when surface tension restricts moisture release from bare soil pores. A simple model for evapotranspiration is proposed. The effects of natural soil heterogeneities on evapotranspiration computed from the model are investigated. It is observed that the natural variability in soil moisture, caused by the heterogeneities, alters the relationship between regional evapotranspiration and the area average soil moisture.

  7. Summary: Remote sensing soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmer, F. A.; Werner, H. D.; Waltz, F. A.

    1970-01-01

    During the 1969 and 1970 growing seasons research was conducted to investigate the relationship between remote sensing imagery and soil moisture. The research was accomplished under two completely different conditions: (1) cultivated cropland in east central South Dakota, and (2) rangeland in western South Dakota. Aerial and ground truth data are being studied and correlated in order to evaluate the moisture supply and water use. Results show that remote sensing is a feasible method for monitoring soil moisture.

  8. Inflatable Antenna Microwave Radiometer for Soil Moisture Measurement

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Kendall, Bruce M.; Schroeder, Lyle C.; Harrington, Richard F.

    1993-01-01

    Microwave measurements of soil moisture are not being obtained at the required spatial Earth resolution with current technology. Recently, new novel designs for lightweight reflector systems have been developed using deployable inflatable antenna structures which could enable lightweight real-aperture radiometers. In consideration of this, a study was conducted at the NASA Langley Research Center (LaRC) to determine the feasibility of developing a microwave radiometer system using inflatable reflector antenna technology to obtain high spatial resolution radiometric measurements of soil moisture from low Earth orbit and which could be used with a small and cost effective launch vehicle. The required high resolution with reasonable swath width coupled with the L-band measurement frequency for soil moisture dictated the use of a large (30 meter class) real aperture antenna in conjunction with a pushbroom antenna beam configuration and noise-injection type radiometer designs at 1.4 and 4.3 GHz to produce a 370 kilometer cross-track swath with a 10 kilometer resolution that could be packaged for launch with a Titan 2 class vehicle. This study includes design of the inflatable structure, control analysis, structural and thermal analysis, antenna and feed design, radiometer design, payload packaging, orbital analysis, and electromagnetic losses in the thin membrane inflatable materials.

  9. [Bare Soil Moisture Inversion Model Based on Visible-Shortwave Infrared Reflectance].

    PubMed

    Zheng, Xiao-po; Sun, Yue-jun; Qin, Qi-ming; Ren, Hua-zhong; Gao, Zhong-ling; Wu, Ling; Meng, Qing-ye; Wang, Jin-liang; Wang, Jian-hua

    2015-08-01

    Soil is the loose solum of land surface that can support plants. It consists of minerals, organics, atmosphere, moisture, microbes, et al. Among its complex compositions, soil moisture varies greatly. Therefore, the fast and accurate inversion of soil moisture by using remote sensing is very crucial. In order to reduce the influence of soil type on the retrieval of soil moisture, this paper proposed a normalized spectral slope and absorption index named NSSAI to estimate soil moisture. The modeling of the new index contains several key steps: Firstly, soil samples with different moisture level were artificially prepared, and soil reflectance spectra was consequently measured using spectroradiometer produced by ASD Company. Secondly, the moisture absorption spectral feature located at shortwave wavelengths and the spectral slope of visible wavelengths were calculated after analyzing the regular spectral feature change patterns of different soil at different moisture conditions. Then advantages of the two features at reducing soil types' effects was synthesized to build the NSSAI. Thirdly, a linear relationship between NSSAI and soil moisture was established. The result showed that NSSAI worked better (correlation coefficient is 0.93) than most of other traditional methods in soil moisture extraction. It can weaken the influences caused by soil types at different moisture levels and improve the bare soil moisture inversion accuracy.

  10. NASA Soil Moisture Data Products and Their Incorporation in DREAM

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Holland, Donald; Henderson, Vaneshette

    2005-01-01

    NASA provides soil moisture data products that include observations from the Advanced Microwave Scanning Radiometer on the Earth Observing System Aqua satellite, field measurements from the Soil Moisture Experiment campaigns, and model predictions from the Land Information System and the Goddard Earth Observing System Data Assimilation System. Incorporation of the NASA soil moisture products in the Dust Regional Atmospheric Model is possible through use of the satellite observations of soil moisture to set initial conditions for the dust simulations. An additional comparison of satellite soil moisture observations with mesoscale atmospheric dynamics modeling is recommended. Such a comparison would validate the use of NASA soil moisture data in applications and support acceptance of satellite soil moisture data assimilation in weather and climate modeling.

  11. A simple nudging scheme to assimilate ASCAT soil moisture data in the WRF model

    NASA Astrophysics Data System (ADS)

    Capecchi, V.; Gozzini, B.

    2012-04-01

    The present work shows results obtained in a numerical experiment using the WRF (Weather and Research Forecasting, www.wrf-model.org) model. A control run where soil moisture is constrained by GFS global analysis is compared with a test run where soil moisture analysis is obtained via a simple nudging scheme using ASCAT data. The basic idea of the assimilation scheme is to "nudge" the first level (0-10 cm below ground in NOAH model) of volumetric soil moisture of the first-guess (say θ(b,1) derived from global model) towards the ASCAT derived value (say ^θ A). The soil moisture analysis θ(a,1) is given by: { θ + K (^θA - θ ) l = 1 θ(a,1) = θ(b,l) (b,l) l > 1 (b,l) (1) where l is the model soil level. K is a constant scalar value that is user specified and in this study it is equal to 0.2 (same value as in similar studies). Soil moisture is critical for estimating latent and sensible heat fluxes as well as boundary layer structure. This parameter is, however, poorly assimilated in current global and regional numerical models since no extensive soil moisture observation network exists. Remote sensing technologies offer a synoptic view of the dynamics and spatial distribution of soil moisture with a frequent temporal coverage and with a horizontal resolution similar to mesoscale NWP model. Several studies have shown that measurements of normalized backscatter (surface soil wetness) from the Advanced Scatterometer (ASCAT) operating at microwave frequencies and boarded on the meteorological operational (Metop) satellite, offer quality information about surface soil moisture. Recently several studies deal with the implementation of simple assimilation procedures (nudging, Extended Kalman Filter, etc...) to integrate ASCAT data in NWP models. They found improvements in screen temperature predictions, particularly in areas such as North-America and in the Tropics, where it is strong the land-atmosphere coupling. The ECMWF (Newsletter No. 127) is currently

  12. Soil moisture and vegetation patterns in northern California forests

    Treesearch

    James R. Griffin

    1967-01-01

    Twenty-nine soil-vegetation plots were studied in a broad transect across the southern Cascade Range. Variations in soil moisture patterns during the growing season and in soil moisture tension values are discussed. Plot soil moisture values for 40- and 80-cm. depths in August and September are integrated into a soil drought index. Vegetation patterns are described in...

  13. Drought monitoring with soil moisture active passive (SMAP) measurements

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok; Vu, Tue; Veettil, Anoop Valiya; Entekhabi, Dara

    2017-09-01

    Recent launch of space-borne systems to estimate surface soil moisture may expand the capability to map soil moisture deficit and drought with global coverage. In this study, we use Soil Moisture Active Passive (SMAP) soil moisture geophysical retrieval products from passive L-band radiometer to evaluate its applicability to forming agricultural drought indices. Agricultural drought is quantified using the Soil Water Deficit Index (SWDI) based on SMAP and soil properties (field capacity and available water content) information. The soil properties are computed using pedo-transfer function with soil characteristics derived from Harmonized World Soil Database. The SMAP soil moisture product needs to be rescaled to be compatible with the soil parameters derived from the in situ stations. In most locations, the rescaled SMAP information captured the dynamics of in situ soil moisture well and shows the expected lag between accumulations of precipitation and delayed increased in surface soil moisture. However, the SMAP soil moisture itself does not reveal the drought information. Therefore, the SMAP based SWDI (SMAP_SWDI) was computed to improve agriculture drought monitoring by using the latest soil moisture retrieval satellite technology. The formulation of SWDI does not depend on longer data and it will overcome the limited (short) length of SMAP data for agricultural drought studies. The SMAP_SWDI is further compared with in situ Atmospheric Water Deficit (AWD) Index. The comparison shows close agreement between SMAP_SWDI and AWD in drought monitoring over Contiguous United States (CONUS), especially in terms of drought characteristics. The SMAP_SWDI was used to construct drought maps for CONUS and compared with well-known drought indices, such as, AWD, Palmer Z-Index, sc-PDSI and SPEI. Overall the SMAP_SWDI is an effective agricultural drought indicator and it provides continuity and introduces new spatial mapping capability for drought monitoring. As an

  14. Measuring Soil Moisture in Skeletal Soils Using a COSMOS Rover

    NASA Astrophysics Data System (ADS)

    Medina, C.; Neely, H.; Desilets, D.; Mohanty, B.; Moore, G. W.

    2017-12-01

    The presence of coarse fragments directly influences the volumetric water content of the soil. Current surface soil moisture sensors often do not account for the presence of coarse fragments, and little research has been done to calibrate these sensors under such conditions. The cosmic-ray soil moisture observation system (COSMOS) rover is a passive, non-invasive surface soil moisture sensor with a footprint greater than 100 m. Despite its potential, the COSMOS rover has yet to be validated in skeletal soils. The goal of this study was to validate measurements of surface soil moisture as taken by a COSMOS rover on a Texas skeletal soil. Data was collected for two soils, a Marfla clay loam and Chinati-Boracho-Berrend association, in West Texas. Three levels of data were collected: 1) COSMOS surveys at three different soil moistures, 2) electrical conductivity surveys within those COSMOS surveys, and 3) ground-truth measurements. Surveys with the COSMOS rover covered an 8000-h area and were taken both after large rain events (>2") and a long dry period. Within the COSMOS surveys, the EM38-MK2 was used to estimate the spatial distribution of coarse fragments in the soil around two COSMOS points. Ground truth measurements included coarse fragment mass and volume, bulk density, and water content at 3 locations within each EM38 survey. Ground-truth measurements were weighted using EM38 data, and COSMOS measurements were validated by their distance from the samples. There was a decrease in water content as the percent volume of coarse fragment increased. COSMOS estimations responded to both changes in coarse fragment percent volume and the ground-truth volumetric water content. Further research will focus on creating digital soil maps using landform data and water content estimations from the COSMOS rover.

  15. Gravity changes, soil moisture and data assimilation

    NASA Astrophysics Data System (ADS)

    Walker, J.; Grayson, R.; Rodell, M.; Ellet, K.

    2003-04-01

    Remote sensing holds promise for near-surface soil moisture and snow mapping, but current techniques do not directly resolve the deeper soil moisture or groundwater. The benefits that would arise from improved monitoring of variations in terrestrial water storage are numerous. The year 2002 saw the launch of NASA's Gravity Recovery And Climate Experiment (GRACE) satellites, which are mapping the Earth's gravity field at such a high level of precision that we expect to be able to infer changes in terrestrial water storage (soil moisture, groundwater, snow, ice, lake, river and vegetation). The project described here has three distinct yet inter-linked components that all leverage off the same ground-based monitoring and land surface modelling framework. These components are: (i) field validation of a relationship between soil moisture and changes in the Earth's gravity field, from ground- and satellite-based measurements of changes in gravity; (ii) development of a modelling framework for the assimilation of gravity data to constrain land surface model predictions of soil moisture content (such a framework enables the downscaling and disaggregation of low spatial (500 km) and temporal (monthly) resolution measurements of gravity change to finer spatial and temporal resolutions); and (iii) further refining the downscaling and disaggregation of space-borne gravity measurements by making use of other remotely sensed information, such as the higher spatial (25 km) and temporal (daily) resolution remotely sensed near-surface soil moisture measurements from the Advanced Microwave Scanning Radiometer (AMSR) instruments on Aqua and ADEOS II. The important field work required by this project will be in the Murrumbidgee Catchment, Australia, where an extensive soil moisture monitoring program by the University of Melbourne is already in place. We will further enhance the current monitoring network by the addition of groundwater wells and additional soil moisture sites. Ground

  16. Soil Moisture and the Persistence of North American Drought.

    NASA Astrophysics Data System (ADS)

    Oglesby, Robert J.; Erickson, David J., III

    1989-11-01

    We describe numerical sensitivity experiments exploring the effects of soil moisture on North American summertime climate using the NCAR CCMI, a 12-layer global atmospheric general circulation model. In particular. the hypothesis that reduced soil moisture may help induce and amplify warm, dry summers over midlatitude continental interiors is examined. Equilibrium climate statistics are computed for the perpetual July model response to imposed soil moisture anomalies over North America between 36° and 49°N. In addition, the persistence of imposed soil moisture anomalies is examined through use of the seasonal cycle mode of operation with use of various initial atmospheric states both equilibrated and nonequilibrated to the initial soil moisture anomaly.The climate statistics generated by thew model simulations resemble in a general way those of the summer of 1988, when extensive heat and drought occurred over much of North America. A reduction in soil moisture in the model leads to an increase in surface temperature, lower surface pressure, increased ridging aloft, and a northward shift of the jet stream. Low-level moisture advection from the Gulf of Mexico is important in determining where persistent soil moisture deficits can be maintained. In seasonal cycle simulations, it lock longer for an initially unequilibrated atmosphere to respond to the imposed soil moisture anomaly, via moisture transport from the Gulf of Mexico, than when initially the atmosphere was in equilibrium with the imposed anomaly., i.e., the initial state was obtained from the appropriate perpetual July simulation. The results demonstrate the important role of soil moisture in prolonging and/or amplifying North American summertime drought.

  17. Inversion of Farmland Soil Moisture in Large Region Based on Modified Vegetation Index

    NASA Astrophysics Data System (ADS)

    Wang, J. X.; Yu, B. S.; Zhang, G. Z.; Zhao, G. C.; He, S. D.; Luo, W. R.; Zhang, C. C.

    2018-04-01

    Soil moisture is an important parameter for agricultural production. Efficient and accurate monitoring of soil moisture is an important link to ensure the safety of agricultural production. Remote sensing technology has been widely used in agricultural moisture monitoring because of its timeliness, cyclicality, dynamic tracking of changes in things, easy access to data, and extensive monitoring. Vegetation index and surface temperature are important parameters for moisture monitoring. Based on NDVI, this paper introduces land surface temperature and average temperature for optimization. This article takes the soil moisture in winter wheat growing area in Henan Province as the research object, dividing Henan Province into three main regions producing winter wheat and dividing the growth period of winter wheat into the early, middle and late stages on the basis of phenological characteristics and regional characteristics. Introducing appropriate correction factor during the corresponding growth period of winter wheat, correcting the vegetation index in the corresponding area, this paper establishes regression models of soil moisture on NDVI and soil moisture on modified NDVI based on correlation analysis and compare models. It shows that modified NDVI is more suitable as a indicator of soil moisture because of the better correlation between soil moisture and modified NDVI and the higher prediction accuracy of the regression model of soil moisture on modified NDVI. The research in this paper has certain reference value for winter wheat farmland management and decision-making.

  18. Downscaling SMAP Soil Moisture Using Geoinformation Data and Geostatistics

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Wang, L.

    2017-12-01

    Soil moisture is important for agricultural and hydrological studies. However, ground truth soil moisture data for wide area is difficult to achieve. Microwave remote sensing such as Soil Moisture Active Passive (SMAP) can offer a solution for wide coverage. However, existing global soil moisture products only provide observations at coarse spatial resolutions, which often limit their applications in regional agricultural and hydrological studies. This paper therefore aims to generate fine scale soil moisture information and extend soil moisture spatial availability. A statistical downscaling scheme is presented that incorporates multiple fine scale geoinformation data into the downscaling of coarse scale SMAP data in the absence of ground measurement data. Geoinformation data related to soil moisture patterns including digital elevation model (DEM), land surface temperature (LST), land use and normalized difference vegetation index (NDVI) at a fine scale are used as auxiliary environmental variables for downscaling SMAP data. Generalized additive model (GAM) and regression tree are first conducted to derive statistical relationships between SMAP data and auxiliary geoinformation data at an original coarse scale, and residuals are then downscaled to a finer scale via area-to-point kriging (ATPK) by accounting for the spatial correlation information of the input residuals. The results from standard validation scores as well as the triple collocation (TC) method against soil moisture in-situ measurements show that the downscaling method can significantly improve the spatial details of SMAP soil moisture while maintain the accuracy.

  19. The global distribution and dynamics of surface soil moisture

    NASA Astrophysics Data System (ADS)

    McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara

    2017-01-01

    Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

  20. What is the philosophy of modelling soil moisture movement?

    NASA Astrophysics Data System (ADS)

    Chen, J.; Wu, Y.

    2009-12-01

    In laboratory, the soil moisture movement in the different soil textures has been analysed. From field investigation, at a spot, the soil moisture movement in the root zone, vadose zone and shallow aquifer has been explored. In addition, on ground slopes, the interflow in the near surface soil layers has been studied. Along the regions near river reaches, the expansion and shrink of the saturated area due to rainfall occurrences have been observed. From those previous explorations regarding soil moisture movement, numerical models to represent this hydrologic process have been developed. However, generally, due to high heterogeneity and stratification of soil in a basin, modelling soil moisture movement is rather challenging. Normally, some empirical equations or artificial manipulation are employed to adjust the soil moisture movement in various numerical models. In this study, we inspect the soil moisture movement equations used in a watershed model, SWAT (Soil and Water Assessment Tool) (Neitsch et al., 2005), to examine the limitations of our knowledge in such a hydrologic process. Then, we adopt the features of a topographic-information based on a hydrologic model, TOPMODEL (Beven and Kirkby, 1979), to enhance the representation of soil moisture movement in SWAT. Basically, the results of the study reveal, to some extent, the philosophy of modelling soil moisture movement in numerical models, which will be presented in the conference. Beven, K.J. and Kirkby, M.J., 1979. A physically based variable contributing area model of basin hydrology. Hydrol. Science Bulletin, 24: 43-69. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R. and King, K.W., 2005. Soil and Water Assessment Tool Theoretical Documentation, Grassland, soil and research service, Temple, TX.

  1. An overview of the measurements of soil moisture and modeling of moisture flux in FIFE

    NASA Technical Reports Server (NTRS)

    Wang, J. R.

    1992-01-01

    Measurements of soil moisture and calculations of moisture transfer in the soil medium and at the air-soil interface were performed over a 15-km by 15-km test site during FIFE in 1987 and 1989. The measurements included intensive soil moisture sampling at the ground level and surveys at aircraft altitudes by several passive and active microwave sensors as well as a gamma radiation device.

  2. A microwave systems approach to measuring root zone soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W.; Paris, J. F.; Clark, B. V.

    1983-01-01

    Computer microwave satellite simulation models were developed and the program was used to test the ability of a coarse resolution passive microwave sensor to measure soil moisture over large areas, and to evaluate the effect of heterogeneous ground covers with the resolution cell on the accuracy of the soil moisture estimate. The use of realistic scenes containing only 10% to 15% bare soil and significant vegetation made it possible to observe a 60% K decrease in brightness temperature from a 5% soil moisture to a 35% soil moisture at a 21 cm microwave wavelength, providing a 1.5 K to 2 K per percent soil moisture sensitivity to soil moisture. It was shown that resolution does not affect the basic ability to measure soil moisture with a microwave radiometer system. Experimental microwave and ground field data were acquired for developing and testing a root zone soil moisture prediction algorithm. The experimental measurements demonstrated that the depth of penetration at a 21 cm microwave wavelength is not greater than 5 cm.

  3. Southern U.S. Soil Moisture Map

    NASA Image and Video Library

    2015-05-19

    Southern U.S. NASA's SMAP soil moisture retrievals from April 27, 2015, when severe storms were affecting Texas. Top: radiometer data alone. Bottom: combined radar and radiometer data with a resolution of 5.6 miles (9 kilometers). The combined product reveals more detailed surface soil moisture features. http://photojournal.jpl.nasa.gov/catalog/PIA19338

  4. Soil moisture needs in earth sciences

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1992-01-01

    The author reviews the development of passive and active microwave techniques for measuring soil moisture with respect to how the data may be used. New science programs such as the EOS, the GEWEX Continental-Scale International Project (GCIP) and STORM, a mesoscale meteorology and hydrology project, will have to account for soil moisture either as a storage in water balance computations or as a state variable in-process modeling. The author discusses future soil moisture needs such as frequency of measurement, accuracy, depth, and spatial resolution, as well as the concomitant model development that must proceed concurrently if the development in microwave technology is to have a major impact in these areas.

  5. Evaluation of Ku-Band Sensitivity To Soil Moisture: Soil Moisture Change Detection Over the NAFE06 Study Area

    USDA-ARS?s Scientific Manuscript database

    A very promising technique for spatial disaggregation of soil moisture is on the combination of radiometer and radar observations. Despite their demonstrated potential for long term large scale monitoring of soil moisture, passive and active have their disadvantages in terms of temporal and spatial ...

  6. SOIL moisture data intercomparison

    NASA Astrophysics Data System (ADS)

    Kerr, Yann; Rodriguez-Frenandez, Nemesio; Al-Yaari, Amen; Parens, Marie; Molero, Beatriz; Mahmoodi, Ali; Mialon, Arnaud; Richaume, Philippe; Bindlish, Rajat; Mecklenburg, Susanne; Wigneron, Jean-Pierre

    2016-04-01

    The Soil Moisture and Ocean Salinity satellite (SMOS) was launched in November 2009 and started delivering data in January 2010. Subsequently, the satellite has been in operation for over 6 years while the retrieval algorithms from Level 1 to Level 2 underwent significant evolutions as knowledge improved. Other approaches for retrieval at Level 2 over land were also investigated while Level 3 and 4 were initiated. In this présentation these improvements are assessed by inter-comparisons of the current Level 2 (V620) against the previous version (V551) and new products either using neural networks or Level 3. In addition a global evaluation of different SMOS soil moisture (SM) products is performed comparing products with those of model simulations and other satellites (AMSR E/ AMSR2 and ASCAT). Finally, all products were evaluated against in situ measurements of soil moisture (SM). The study demonstrated that the V620 shows a significant improvement (including those at level1 improving level2)) with respect to the earlier version V551. Results also show that neural network based approaches can yield excellent results over areas where other products are poor. Finally, global comparison indicates that SMOS behaves very well when compared to other sensors/approaches and gives consistent results over all surfaces from very dry (African Sahel, Arizona), to wet (tropical rain forests). RFI (Radio Frequency Interference) is still an issue even though detection has been greatly improved while RFI sources in several areas of the world are significantly reduced. When compared to other satellite products, the analysis shows that SMOS achieves its expected goals and is globally consistent over different eco climate regions from low to high latitudes and throughout the seasons.

  7. Soil moisture ground truth, Lafayette, Indiana, site; St. Charles Missouri, site; Centralia, Missouri, site

    NASA Technical Reports Server (NTRS)

    Jones, E. B.

    1975-01-01

    The soil moisture ground-truth measurements and ground-cover descriptions taken at three soil moisture survey sites located near Lafayette, Indiana; St. Charles, Missouri; and Centralia, Missouri are given. The data were taken on November 10, 1975, in connection with airborne remote sensing missions being flown by the Environmental Research Institute of Michigan under the auspices of the National Aeronautics and Space Administration. Emphasis was placed on the soil moisture in bare fields. Soil moisture was sampled in the top 0 to 1 in. and 0 to 6 in. by means of a soil sampling push tube. These samples were then placed in plastic bags and awaited gravimetric analysis.

  8. Measuring soil moisture with imaging radars

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Vanzyl, Jakob; Engman, Ted

    1995-01-01

    An empirical model was developed to infer soil moisture and surface roughness from radar data. The accuracy of the inversion technique is assessed by comparing soil moisture obtained with the inversion technique to in situ measurements. The effect of vegetation on the inversion is studied and a method to eliminate the areas where vegetation impairs the algorithm is described.

  9. Logging effects on soil moisture losses

    Treesearch

    Robert R. Ziemer

    1978-01-01

    Abstract - The depletion of soil moisture within the surface 15 feet by an isolated mature sugar pine and an adjacent uncut forest in the California Sierra Nevada was measured by the neutron method every 2 weeks for 5 consecutive summers. Soil moisture recharge was measured periodically during the intervening winters. Groundwater fluctuations within the surface 50...

  10. Soil Texture Often Exerts a Stronger Influence Than Precipitation on Mesoscale Soil Moisture Patterns

    NASA Astrophysics Data System (ADS)

    Dong, Jingnuo; Ochsner, Tyson E.

    2018-03-01

    Soil moisture patterns are commonly thought to be dominated by land surface characteristics, such as soil texture, at small scales and by atmospheric processes, such as precipitation, at larger scales. However, a growing body of evidence challenges this conceptual model. We investigated the structural similarity and spatial correlations between mesoscale (˜1-100 km) soil moisture patterns and land surface and atmospheric factors along a 150 km transect using 4 km multisensor precipitation data and a cosmic-ray neutron rover, with a 400 m diameter footprint. The rover was used to measure soil moisture along the transect 18 times over 13 months. Spatial structures of soil moisture, soil texture (sand content), and antecedent precipitation index (API) were characterized using autocorrelation functions and fitted with exponential models. Relative importance of land surface characteristics and atmospheric processes were compared using correlation coefficients (r) between soil moisture and sand content or API. The correlation lengths of soil moisture, sand content, and API ranged from 12-32 km, 13-20 km, and 14-45 km, respectively. Soil moisture was more strongly correlated with sand content (r = -0.536 to -0.704) than with API for all but one date. Thus, land surface characteristics exhibit coherent spatial patterns at scales up to 20 km, and those patterns often exert a stronger influence than do precipitation patterns on mesoscale spatial patterns of soil moisture.

  11. Spatial Estimation of Soil Moisture Using Synthetic Aperture Radar in Alaska

    NASA Astrophysics Data System (ADS)

    Meade, N. G.; Hinzman, L. D.; Kane, D. L.

    1999-01-01

    A spatially distributed Model of Arctic Thermal and Hydrologic processes (MATH) has been developed. One of the attributes of this model is the spatial and temporal prediction of soil moisture in the active layer. The spatially distributed output from this model required verification data obtained through remote sensing to assess performance at the watershed scale independently. Therefore, a neural network was trained to predict soil moisture contents near the ground surface. The input to train the neural network is synthetic aperture radar (SAR) pixel value, and field measurements of soil moisture, and vegetation, which were used as a surrogate for surface roughness. Once the network was trained, soil moisture predictions were made based on SAR pixel value and vegetation. These results were then used for comparison with results from the hydrologic model. The quality of neural network input was less than anticipated. Our digital elevation model (DEM) was not of high enough resolution to allow exact co-registration with soil moisture measurements; therefore, the statistical correlations were not as good as hoped. However, the spatial pattern of the SAR derived soil moisture contents compares favorably with the hydrologic MATH model results. Primary surface parameters that effect SAR include topography, surface roughness, vegetation cover and soil texture. Single parameters that are considered to influence SAR include incident angle of the radar, polarization of the radiation, signal strength and returning signal integration, to name a few. These factors influence the reflectance, but if one adequately quantifies the influences of terrain and roughness, it is considered possible to extract information on soil moisture from SAR imagery analysis and in turn use SAR imagery to validate hydrologic models

  12. Preliminary analysis of the sensitivity of AIRSAR images to soil moisture variations

    NASA Technical Reports Server (NTRS)

    Pardipuram, Rajan; Teng, William L.; Wang, James R.; Engman, Edwin T.

    1993-01-01

    Synthetic Aperture Radar (SAR) images acquired from various sources such as Shuttle Imaging Radar B (SIR-B) and airborne SAR (AIRSAR) have been analyzed for signatures of soil moisture. The SIR-B measurements have shown a strong correlation between measurements of surface soil moisture (0-5 cm) and the radar backscattering coefficient sigma(sup o). The AIRSAR measurements, however, indicated a lower sensitivity. In this study, an attempt has been made to investigate the causes for this reduced sensitivity.

  13. Analysis of Large Scale Spatial Variability of Soil Moisture Using a Geostatistical Method

    DTIC Science & Technology

    2010-01-25

    2010 / Accepted: 19 January 2010 / Published: 25 January 2010 Abstract: Spatial and temporal soil moisture dynamics are critically needed to...scale observed and simulated estimates of soil moisture under pre- and post-precipitation event conditions. This large scale variability is a crucial... dynamics is essential in the hydrological and meteorological modeling, improves our understanding of land surface–atmosphere interactions. Spatial and

  14. Evaluation of soil moisture barrier.

    DOT National Transportation Integrated Search

    2000-06-01

    This report is an extension report and examines one of the measures being tried to stabilize the development : of pavement damage on expansive soils, which is the use of horizontal moisture barriers. The moisture barrier : will not stop horizontal fl...

  15. Understanding tree growth in response to moisture variability: Linking 32 years of satellite based soil moisture observations with tree rings

    NASA Astrophysics Data System (ADS)

    Albrecht, Franziska; Dorigo, Wouter; Gruber, Alexander; Wagner, Wolfgang; Kainz, Wolfgang

    2014-05-01

    Climate change induced drought variability impacts global forest ecosystems and forest carbon cycle dynamics. Physiological drought stress might even become an issue in regions generally not considered water-limited. The water balance at the soil surface is essential for forest growth. Soil moisture is a key driver linking precipitation and tree development. Tree ring based analyses are a potential approach to study the driving role of hydrological parameters for tree growth. However, at present two major research gaps are apparent: i) soil moisture records are hardly considered and ii) only a few studies are linking tree ring chronologies and satellite observations. Here we used tree ring chronologies obtained from the International Tree ring Data Bank (ITRDB) and remotely sensed soil moisture observations (ECV_SM) to analyze the moisture-tree growth relationship. The ECV_SM dataset, which is being distributed through ESA's Climate Change Initiative for soil moisture covers the period 1979 to 2010 at a spatial resolution of 0.25°. First analyses were performed for Mongolia, a country characterized by a continental arid climate. We extracted 13 tree ring chronologies suitable for our analysis from the ITRDB. Using monthly satellite based soil moisture observations we confirmed previous studies on the seasonality of soil moisture in Mongolia. Further, we investigated the relationship between tree growth (as reflected by tree ring width index) and remotely sensed soil moisture records by applying correlation analysis. In terms of correlation coefficient a strong response of tree growth to soil moisture conditions of current April to August was observed, confirming a strong linkage between tree growth and soil water storage. The highest correlation was found for current April (R=0.44), indicating that sufficient water supply is vital for trees at the beginning of the growing season. To verify these results, we related the chronologies to reanalysis precipitation and

  16. Multi-site assimilation of a terrestrial biosphere model (BETHY) using satellite derived soil moisture data

    NASA Astrophysics Data System (ADS)

    Wu, Mousong; Sholze, Marko

    2017-04-01

    We investigated the importance of soil moisture data on assimilation of a terrestrial biosphere model (BETHY) for a long time period from 2010 to 2015. Totally, 101 parameters related to carbon turnover, soil respiration, as well as soil texture were selected for optimization within a carbon cycle data assimilation system (CCDAS). Soil moisture data from Soil Moisture and Ocean Salinity (SMOS) product was derived for 10 sites representing different plant function types (PFTs) as well as different climate zones. Uncertainty of SMOS soil moisture data was also estimated using triple collocation analysis (TCA) method by comparing with ASCAT dataset and BETHY forward simulation results. Assimilation of soil moisture to the system improved soil moisture as well as net primary productivity(NPP) and net ecosystem productivity (NEP) when compared with soil moisture derived from in-situ measurements and fluxnet datasets. Parameter uncertainties were largely reduced relatively to prior values. Using SMOS soil moisture data for assimilation of a terrestrial biosphere model proved to be an efficient approach in reducing uncertainty in ecosystem fluxes simulation. It could be further used in regional an global assimilation work to constrain carbon dioxide concentration simulation by combining with other sources of measurements.

  17. Land-atmosphere coupling and soil moisture memory contribute to long-term agricultural drought

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Newman, M.; Lawrence, D. M.; Livneh, B.; Lombardozzi, D. L.

    2017-12-01

    We assessed the contribution of land-atmosphere coupling and soil moisture memory on long-term agricultural droughts in the US. We performed an ensemble of climate model simulations to study soil moisture dynamics under two atmospheric forcing scenarios: active and muted land-atmosphere coupling. Land-atmosphere coupling contributes to a 12% increase and 36% decrease in the decorrelation time scale of soil moisture anomalies in the US Great Plains and the Southwest, respectively. These differences in soil moisture memory affect the length and severity of modeled drought. Consequently, long-term droughts are 10% longer and 3% more severe in the Great Plains, and 15% shorter and 21% less severe in the Southwest. An analysis of Coupled Model Intercomparsion Project phase 5 data shows four fold uncertainty in soil moisture memory across models that strongly affects simulated long-term droughts and is potentially attributable to the differences in soil water storage capacity across models.

  18. Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations

    NASA Technical Reports Server (NTRS)

    Reichle, R. H.

    2010-01-01

    Root zone soil moisture controls the land-atmosphere exchange of water and energy and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments we assimilate synthetic surface soil moisture observations into four different models (Catchment, Mosaic, Noah and CLM) using the Ensemble Kalman Filter. We demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Our experiments also suggest that (faced with unknown true subsurface physics) overestimating surface to root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Finally, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types.

  19. Spatio-Temporal Analysis of Surface Soil Moisture in Evaluating Ground Truth Monitoring Sites for Remotely Sensed Observations

    USDA-ARS?s Scientific Manuscript database

    Soil moisture is an intrinsic state variable that varies considerably in space and time. Although soil moisture is highly variable, repeated measurements of soil moisture at the field or small watershed scale can often reveal certain locations as being temporally stable and representative of the are...

  20. Core vs. Bulk Samples in Soil-Moisture Tension Analyses

    Treesearch

    Walter M. Broadfoot

    1954-01-01

    The usual laboratory procedure in determining soil-moisture tension values is to use "undisturbed" soil cores for tensions up to 60 cm. of water and bulk soil samples for higher tensions. Low tensions are usually obtained with a tension table and the higher tensions by use of pressure plate apparatus. In tension analysis at the Vicksburg Infiltration Project...

  1. Downscaling near-surface soil moisture from field to plot scale: A comparative analysis under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Nasta, Paolo; Penna, Daniele; Brocca, Luca; Zuecco, Giulia; Romano, Nunzio

    2018-02-01

    Indirect measurements of field-scale (hectometer grid-size) spatial-average near-surface soil moisture are becoming increasingly available by exploiting new-generation ground-based and satellite sensors. Nonetheless, modeling applications for water resources management require knowledge of plot-scale (1-5 m grid-size) soil moisture by using measurements through spatially-distributed sensor network systems. Since efforts to fulfill such requirements are not always possible due to time and budget constraints, alternative approaches are desirable. In this study, we explore the feasibility of determining spatial-average soil moisture and soil moisture patterns given the knowledge of long-term records of climate forcing data and topographic attributes. A downscaling approach is proposed that couples two different models: the Eco-Hydrological Bucket and Equilibrium Moisture from Topography. This approach helps identify the relative importance of two compound topographic indexes in explaining the spatial variation of soil moisture patterns, indicating valley- and hillslope-dependence controlled by lateral flow and radiative processes, respectively. The integrated model also detects temporal instability if the dominant type of topographic dependence changes with spatial-average soil moisture. Model application was carried out at three sites in different parts of Italy, each characterized by different environmental conditions. Prior calibration was performed by using sparse and sporadic soil moisture values measured by portable time domain reflectometry devices. Cross-site comparisons offer different interpretations in the explained spatial variation of soil moisture patterns, with time-invariant valley-dependence (site in northern Italy) and hillslope-dependence (site in southern Italy). The sources of soil moisture spatial variation at the site in central Italy are time-variant within the year and the seasonal change of topographic dependence can be conveniently

  2. Analysis of in situ resources for the Soil Moisture Active Passive Validation Experiments in 2015 and 2016

    NASA Astrophysics Data System (ADS)

    Cosh, M. H.; Jackson, T. J.; Colliander, A.; Bindlish, R.; McKee, L.; Goodrich, D. C.; Prueger, J. H.; Hornbuckle, B. K.; Coopersmith, E. J.; Holifield Collins, C.; Smith, J.

    2016-12-01

    With the launch of the Soil Moisture Active Passive Mission (SMAP) in 2015, a new era of soil moisture monitoring was begun. Soil moisture is available on a near daily basis at a 36 km resolution for the globe. But this dataset is only as valuable if its products are accurate and reliable. Therefore, in order to demonstrate the accuracy of the soil moisture product, NASA enacted an extensive calibration and validation program with many in situ soil moisture networks contributing data across a variety of landscape regimes. However, not all questions can be answered by these networks. As a result, two intensive field experiments were executed to provide more detailed reference points for calibration and validation. Multi-week field campaigns were conducted in Arizona and Iowa at the USDA Agricultural Research Service Walnut Gulch and South Fork Experimental Watersheds, respectively. Aircraft observations were made to provide a high resolution data product. Soil moisture, soil roughness and vegetation data were collected at high resolution to provide a downscaled dataset to compare against aircraft and satellite estimates.

  3. Enhanced Soil Moisture Initialization Using Blended Soil Moisture Product and Regional Optimization of LSM-RTM Coupled Land Data Assimilation System.

    NASA Astrophysics Data System (ADS)

    Nair, A. S.; Indu, J.

    2017-12-01

    Prediction of soil moisture dynamics is high priority research challenge because of the complex land-atmosphere interaction processes. Soil moisture (SM) plays a decisive role in governing water and energy balance of the terrestrial system. An accurate SM estimate is imperative for hydrological and weather prediction models. Though SM estimates are available from microwave remote sensing and land surface model (LSM) simulations, it is affected by uncertainties from several sources during estimation. Past studies have generally focused on land data assimilation (DA) for improving LSM predictions by assimilating soil moisture from single satellite sensor. This approach is limited by the large time gap between two consequent soil moisture observations due to satellite repeat cycle of more than three days at the equator. To overcome this, in the present study, we have performed DA using ensemble products from the soil moisture operational product system (SMOPS) blended soil moisture retrievals from different satellite sensors into Noah LSM. Before the assimilation period, the Noah LSM is initialized by cycling through seven multiple loops from 2008 to 2010 forcing with Global data assimilation system (GDAS) data over the Indian subcontinent. We assimilated SMOPS into Noah LSM for a period of two years from 2010 to 2011 using Ensemble Kalman Filter within NASA's land information system (LIS) framework. Results show that DA has improved Noah LSM prediction with a high correlation of 0.96 and low root mean square difference of 0.0303 m3/m3 (figure 1a). Further, this study has also investigated the notion of assimilating microwave brightness temperature (Tb) as a proxy for SM estimates owing to the close proximity of Tb and SM. Preliminary sensitivity analysis show a strong need for regional parameterization of radiative transfer models (RTMs) to improve Tb simulation. Towards this goal, we have optimized the forward RTM using swarm optimization technique for direct Tb

  4. Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS

    USDA-ARS?s Scientific Manuscript database

    his study applied the exponential filter to produce an estimate of root-zone soil moisture (RZSM). Four types of microwave-based, surface satellite soil moisture were used. The core remotely sensed data for this study came from NASA’s long lasting AMSR-E mission. Additionally three other products we...

  5. Soil Moisture under Different Vegetation cover in response to Precipitation

    NASA Astrophysics Data System (ADS)

    Liang, Z.; Zhang, J.; Guo, B.; Ma, J.; Wu, Y.

    2016-12-01

    The response study of soil moisture to different precipitation and landcover is significant in the field of Hydropedology. The influence of precipitation to soil moisture is obvious in addition to individual stable aquifer. With data of Hillsborough County, Florida, USA, the alluvial wetland forest and ungrazed Bahia grass that under wet and dry periods were chosen as the research objects, respectively. HYDRUS-3D numerical simulation method was used to simulate soil moisture dynamics in the root zone (10-50 cm) of those vegetation. The soil moisture response to precipitation was analyzed. The results showed that the simulation results of alluvial wetland forest by HYDRUS-3D were better than that of the Bahia grass, and for the same vegetation, the simulation results of soil moisture under dry period were better. Precipitation was more in June, 2003, the soil moisture change of alluvial wetland forest in 10-30 cm soil layer and Bahia grass in 10 cm soil layer were consistent with the precipitation change conspicuously. The alluvial wetland forest soil moisture declined faster than Bahia grass under dry period, which demonstrated that Bahia grass had strong ability to hold water. Key words: alluvial wetland forest; Bahia grass; soil moisture; HYDRUS-3D; precipitation

  6. Soil Moisture Remote Sensing with GNSS-R at the Valencia Anchor Station. The SOMOSTA (Soil Moisture Station) Experiment

    NASA Astrophysics Data System (ADS)

    Lopez-Baeza, Ernesto

    2016-07-01

    In this paper, the SOMOSTA (Soil Moisture Monitoring Station) experiment on soil moisture monitoring byGlobal Navigation Satellite System Reflected signals(GNSS-R) at the Valencia Anchor Station is introduced. L-band microwaves have very good advantages in soil moisture remote sensing, for being unaffected by clouds and the atmosphere, and for the ability to penetrate vegetation. During this experimental campaign, the ESA GNSS-R Oceanpal antenna was installed on the same tower as the ESA ELBARA-II passive microwave radiometer, both measuring instruments having similar field of view. This experiment is fruitfully framed within the ESA - China Programme of Collaboration on GNSS-R. The GNSS-R instrument has an up-looking antenna for receiving direct signals from satellites, and two down-looking antennas for receiving LHCP (left-hand circular polarisation) and RHCP (right-hand circular polarisation) reflected signals from the soil surface. We could collect data from the three different antennas through the two channels of Oceanpal and, in addition, calibration could be performed to reduce the impact from the differing channels. Reflectivity was thus measured and soil moisture could be retrieved by the L- MEB (L-band Microwave Emission of the Biosphere) model considering the effect of vegetation optical thickness and soil roughness. By contrasting GNSS-R and ELBARA-II radiometer data, a negative correlation existed between reflectivity measured by GNSS-R and brightness temperature measured by the radiometer. The two parameters represent reflection and absorption of the soil. Soil moisture retrieved by both L-band remote sensing methods shows good agreement. In addition, correspondence with in-situ measurements and rainfall is also good.

  7. Temporal transferability of soil moisture calibration equations

    USDA-ARS?s Scientific Manuscript database

    Several large-scale field campaigns have been conducted over the last 20 years that require accurate estimates of soil moisture conditions. These measurements are manually conducted using soil moisture probes which require calibration. The calibration process involves the collection of hundreds of...

  8. A nonlinear coupled soil moisture-vegetation model

    NASA Astrophysics Data System (ADS)

    Liu, Shikuo; Liu, Shida; Fu, Zuntao; Sun, Lan

    2005-06-01

    Based on the physical analysis that the soil moisture and vegetation depend mainly on the precipitation and evaporation as well as the growth, decay and consumption of vegetation a nonlinear dynamic coupled system of soil moisture-vegetation is established. Using this model, the stabilities of the steady states of vegetation are analyzed. This paper focuses on the research of the vegetation catastrophe point which represents the transition between aridness and wetness to a great extent. It is shown that the catastrophe point of steady states of vegetation depends mainly on the rainfall P and saturation value v0, which is selected to balance the growth and decay of vegetation. In addition, when the consumption of vegetation remains constant, the analytic solution of the vegetation equation is obtained.

  9. Field-Scale Soil Moisture Observations in Irrigated Agriculture Fields Using the Cosmic-ray Neutron Rover

    NASA Astrophysics Data System (ADS)

    Franz, T. E.; Avery, W. A.; Finkenbiner, C. E.; Wang, T.; Brocca, L.

    2014-12-01

    Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at the field-scale (~500 m) using the newly developed cosmic-ray neutron rover near Waco, NE. Here we mapped soil moisture of 144 quarter section fields (a mix of maize, soybean, and natural areas) each week during the 2014 growing season (May to September). The 11 x11 km study domain also contained 3 stationary cosmic-ray neutron probes for independent validation of the rover surveys. Basic statistical analysis of the domain indicated a strong inverted parabolic relationship between the mean and variance of soil moisture. The relationship between the mean and higher order moments were not as strong. Geostatistical analysis indicated the range of the soil moisture semi-variogram was significantly shorter during periods of heavy irrigation as compared to non-irrigated periods. Scaling analysis indicated strong power law behavior between the variance of soil moisture and averaging area with minimal dependence of mean soil moisture on the slope of the power law function. Statistical relationships derived from the rover dataset offer a novel set of observations that will be useful in: 1) calibrating and validating land surface models, 2) calibrating and validating crop models, 3) soil moisture covariance estimates for statistical downscaling of remote sensing products such as SMOS and SMAP, and 4) provide center-pivot scale mean soil moisture data for optimal irrigation timing and volume amounts.

  10. Microwave remote sensing and its application to soil moisture detection

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Experimental measurements were utilized to demonstrate a procedure for estimating soil moisture, using a passive microwave sensor. The investigation showed that 1.4 GHz and 10.6 GHz can be used to estimate the average soil moisture within two depths; however, it appeared that a frequency less than 10.6 GHz would be preferable for the surface measurement. Average soil moisture within two depths would provide information on the slope of the soil moisture gradient near the surface. Measurements showed that a uniform surface roughness similar to flat tilled fields reduced the sensitivity of the microwave emission to soil moisture changes. Assuming that the surface roughness was known, the approximate soil moisture estimation accuracy at 1.4 GHz calculated for a 25% average soil moisture and an 80% degree of confidence, was +3% and -6% for a smooth bare surface, +4% and -5% for a medium rough surface, and +5.5% and -6% for a rough surface.

  11. Towards Generating Long-term AMSR-based Soil Moisture Data Record

    NASA Astrophysics Data System (ADS)

    Mladenova, I. E.; Jackson, T. J.; Bindlish, R.; Cosh, M. H.

    2014-12-01

    in order to ensure consistency between both instruments. The corresponding soil moisture retrievals from AMSR-E and AMSR2 demonstrated reasonable agreement relative to in situ data. A detailed discussion that focuses on this analysis as well as possible approaches for removing the observed bias in the brightness temperature observations will be presented.

  12. Soil moisture retrival from Sentinel-1 and Modis synergy

    NASA Astrophysics Data System (ADS)

    Gao, Qi; Zribi, Mehrez; Escorihuela, Maria Jose; Baghdadi, Nicolas

    2017-04-01

    This study presents two methodologies retrieving soil moisture from SAR remote sensing data. The study is based on Sentinel-1 data in the VV polarization, over a site in Urgell, Catalunya (Spain). In the two methodologies using change detection techniques, preprocessed radar data are combined with normalized difference vegetation index (NDVI) auxiliary data to estimate the mean soil moisture with a resolution of 1km. By modeling the relationship between the backscatter difference and NDVI, the soil moisture at a specific NDVI value is retrieved. The first algorithm is already developed on West Africa(Zribi et al., 2014) from ERS scatterometer data to estimate soil water status. In this study, it is adapted to Sentinel-1 data and take into account the high repetitiveness of data in optimizing the inversion approach. Another new method is developed based on the backscatter difference between two adjacent days of Sentinel-1 data w.r.t. NDVI, with smaller vegetation change, the backscatter difference is more sensitive to soil moisture. The proposed methodologies have been validated with the ground measurement in two demonstrative fields with RMS error about 0.05 (in volumetric moisture), and the coherence between soil moisture variations and rainfall events is observed. Soil moisture maps at 1km resolution are generated for the study area. The results demonstrate the potential of Sentinel-1 data for the retrieval of soil moisture at 1km or even better resolution.

  13. Soil moisture and soil temperature variability among three plant communities in a High Arctic Lake Basin

    NASA Astrophysics Data System (ADS)

    Davis, M. L.; Konkel, J.; Welker, J. M.; Schaeffer, S. M.

    2017-12-01

    Soil moisture and soil temperature are critical to plant community distribution and soil carbon cycle processes in High Arctic tundra. As environmental drivers of soil biochemical processes, the predictability of soil moisture and soil temperature by vegetation zone in High Arctic landscapes has significant implications for the use of satellite imagery and vegetation distribution maps to estimate of soil gas flux rates. During the 2017 growing season, we monitored soil moisture and soil temperature weekly at 48 sites in dry tundra, moist tundra, and wet grassland vegetation zones in a High Arctic lake basin. Soil temperature in all three communities reflected fluctuations in air temperature throughout the season. Mean soil temperature was highest in the dry tundra community at 10.5±0.6ºC, however, did not differ between moist tundra and wet grassland communities (2.7±0.6 and 3.1±0.5ºC, respectively). Mean volumetric soil moisture differed significantly among all three plant communities with the lowest and highest soil moisture measured in the dry tundra and wet grassland (30±1.2 and 65±2.7%), respectively. For all three communities, soil moisture was highest during the early season snow melt. Soil moisture in wet grassland remained high with no significant change throughout the season, while significant drying occurred in dry tundra. The most significant change in soil moisture was measured in moist tundra, ranging from 61 to 35%. Our results show different gradients in soil moisture variability within each plant community where: 1) soil moisture was lowest in dry tundra with little change, 2) highest in wet grassland with negligible change, and 3) variable in moist tundra which slowly dried but remained moist. Consistently high soil moisture in wet grassland restricts this plant community to areas with no significant drying during summer. The moist tundra occupies the intermediary areas between wet grassland and dry tundra and experiences the widest range

  14. Reconciling spatial and temporal soil moisture effects on afternoon rainfall

    PubMed Central

    Guillod, Benoit P.; Orlowsky, Boris; Miralles, Diego G.; Teuling, Adriaan J.; Seneviratne, Sonia I.

    2015-01-01

    Soil moisture impacts on precipitation have been strongly debated. Recent observational evidence of afternoon rain falling preferentially over land parcels that are drier than the surrounding areas (negative spatial effect), contrasts with previous reports of a predominant positive temporal effect. However, whether spatial effects relating to soil moisture heterogeneity translate into similar temporal effects remains unknown. Here we show that afternoon precipitation events tend to occur during wet and heterogeneous soil moisture conditions, while being located over comparatively drier patches. Using remote-sensing data and a common analysis framework, spatial and temporal correlations with opposite signs are shown to coexist within the same region and data set. Positive temporal coupling might enhance precipitation persistence, while negative spatial coupling tends to regionally homogenize land surface conditions. Although the apparent positive temporal coupling does not necessarily imply a causal relationship, these results reconcile the notions of moisture recycling with local, spatially negative feedbacks. PMID:25740589

  15. The Soil Moisture Active/Passive Mission (SMAP)

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active/Passive (SMAP) mission will deliver global views of soil moisture content and its freeze/thaw state that are critical terrestrial water cycle state variables. Polarized measurements obtained with a shared antenna L-band radar and radiometer system will allow accurate estima...

  16. Evaluation of SMAP Level 2 Soil Moisture Algorithms Using SMOS Data

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann; Shi, J. C.

    2011-01-01

    The objectives of the SMAP (Soil Moisture Active Passive) mission are global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolution, respectively. SMAP will provide soil moisture with a spatial resolution of 10 km with a 3-day revisit time at an accuracy of 0.04 m3/m3 [1]. In this paper we contribute to the development of the Level 2 soil moisture algorithm that is based on passive microwave observations by exploiting Soil Moisture Ocean Salinity (SMOS) satellite observations and products. SMOS brightness temperatures provide a global real-world, rather than simulated, test input for the SMAP radiometer-only soil moisture algorithm. Output of the potential SMAP algorithms will be compared to both in situ measurements and SMOS soil moisture products. The investigation will result in enhanced SMAP pre-launch algorithms for soil moisture.

  17. A Comparison of Methods for a Priori Bias Correction in Soil Moisture Data Assimilation

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.; Reichle, Rolf H.; Harrison, Kenneth W.; Peters-Lidard, Christa D.; Yatheendradas, Soni; Santanello, Joseph A.

    2011-01-01

    Data assimilation is being increasingly used to merge remotely sensed land surface variables such as soil moisture, snow and skin temperature with estimates from land models. Its success, however, depends on unbiased model predictions and unbiased observations. Here, a suite of continental-scale, synthetic soil moisture assimilation experiments is used to compare two approaches that address typical biases in soil moisture prior to data assimilation: (i) parameter estimation to calibrate the land model to the climatology of the soil moisture observations, and (ii) scaling of the observations to the model s soil moisture climatology. To enable this research, an optimization infrastructure was added to the NASA Land Information System (LIS) that includes gradient-based optimization methods and global, heuristic search algorithms. The land model calibration eliminates the bias but does not necessarily result in more realistic model parameters. Nevertheless, the experiments confirm that model calibration yields assimilation estimates of surface and root zone soil moisture that are as skillful as those obtained through scaling of the observations to the model s climatology. Analysis of innovation diagnostics underlines the importance of addressing bias in soil moisture assimilation and confirms that both approaches adequately address the issue.

  18. The Soil Moisture Active and Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Nijoku, Eni G.; ONeill, Peggy E.; Kellogg, Kent H.; Crow, Wade T.; Edelstein, Wendy N.; Entin, Jared K.; Goodman, Shawn D.; Jackson, Thomas J.; Johnson, Joel; hide

    2009-01-01

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen from thawed land surfaces. Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy and carbon transfers between land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP soil moisture and freeze/thaw timing observations will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes. The SMAP mission concept would utilize an L-band radar and radiometer. These instruments will share a rotating 6-meter mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. The SMAP instruments provide direct measurements of surface conditions. In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and estimates of land surface-atmosphere exchanges of water, energy and carbon. SMAP is scheduled for a 2014 launch date

  19. Soil moisture retrieval from Sentinel-1 satellite data

    NASA Astrophysics Data System (ADS)

    Benninga, Harm-Jan; van der Velde, Rogier; Su, Zhongbo

    2016-04-01

    Reliable up-to-date information on the current water availability and models to evaluate management scenarios are indispensable for skilful water management. The Sentinel-1 radar satellite programme provides an opportunity to monitor water availability (as surface soil moisture) from space on an operational basis at unprecedented fine spatial and temporal resolutions. However, the influences of soil roughness and vegetation cover complicate the retrieval of soil moisture states from radar data. In this contribution, we investigate the sensitivity of Sentinel-1 radar backscatter to soil moisture states and vegetation conditions. The analyses are based on 105 Sentinel-1 images in the period from October 2014 to January 2016 covering the Twente region in the Netherlands. This area is almost flat and has a heterogeneous landscape, including agricultural (mainly grass, cereal and corn), forested and urban land covers. In-situ measurements at 5 cm depth collected from the Twente soil moisture monitoring network are used as reference. This network consists of twenty measurement stations (most of them at agricultural fields) distributed across an area of 50 km × 40 km. The Normalized Difference Vegetation Index (NDVI) derived from optical images is adopted as proxy to represent seasonal variability in vegetation conditions. The results from this sensitivity study provide insight into the potential capability of Sentinel-1 data for the estimation of soil moisture states and they will facilitate the further development of operational retrieval methods. An operationally applicable soil moisture retrieval method requires an algorithm that is usable without the need for area specific model calibration with detailed field information (regarding roughness and vegetation). Because it is not yet clear which method provides the most reliable soil moisture retrievals from Sentinel-1 data, multiple soil moisture retrieval methods will be studied in which the fine spatiotemporal

  20. Root Water Uptake and Soil Moisture Pattern Dynamics - Capturing Connections, Controls and Causalities

    NASA Astrophysics Data System (ADS)

    Blume, T.; Heidbuechel, I.; Hassler, S. K.; Simard, S.; Guntner, A.; Stewart, R. D.; Weiler, M.

    2015-12-01

    We hypothesize that there is a shift in controls on landscape scale soil moisture patterns when plants become active during the growing season. Especially during the summer soil moisture patterns are not only controlled by soils, topography and related abiotic site characteristics but also by root water uptake. Root water uptake influences soil moisture patterns both in the lateral and vertical direction. Plant water uptake from different soil depths is estimated based on diurnal fluctuations in soil moisture content and was investigated with a unique setup of 46 field sites in Luxemburg and 15 field sites in Germany. These sites cover a range of geologies, soils, topographic positions and types of vegetation. Vegetation types include pasture, pine forest (young and old) and different deciduous forest stands. Available data at all sites includes information at high temporal resolution from 3-5 soil moisture and soil temperature profiles, matrix potential, piezometers and sapflow sensors as well as standard climate data. At sites with access to a stream, discharge or water level is also recorded. The analysis of soil moisture patterns over time indicates a shift in regime depending on season. Depth profiles of root water uptake show strong differences between different forest stands, with maximum depths ranging between 50 and 200 cm. Temporal dynamics of signal strength within the profile furthermore suggest a locally shifting spatial distribution of root water uptake depending on water availability. We will investigate temporal thresholds (under which conditions spatial patterns of root water uptake become most distinct) as well as landscape controls on soil moisture and root water uptake dynamics.

  1. Soil moisture and evapotranspiration predictions using Skylab data

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Moore, D. G.; Horton, M. L.; Russell, M. J.

    1975-01-01

    The author has identified the following significant results. Multispectral reflectance and emittance data from the Skylab workshop were evaluated for prediction of evapotranspiration and soil moisture for an irrigated region of southern Texas. Wavelengths greater than 2.1 microns were required to spectrally distinguish between wet and dry fallow surfaces. Thermal data provided a better estimate of soil moisture than did data from the reflective bands. Thermal data were dependent on soil moisture but not on the type of agricultural land use. The emittance map, when used in conjunction with existing models, did provide an estimate of evapotranspiration rates. Surveys of areas of high soil moisture can be accomplished with space altitude thermal data. Thermal data will provide a reliable input into irrigation scheduling.

  2. Soil moisture and the persistence of North American drought

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Erickson, David J., III

    1989-01-01

    Numerical sensitivity experiments on the effects of soil moisture on North American summertime climate are performed using a 12-layer global atmospheric general circulation model. Consideration is given to the hypothesis that reduced soil moisture may induce and amplify warm, dry summers of midlatitude continental interiors. The simulations resemble the conditions of the summer of 1988, including an extensive drought over much of North America. It is found that a reduction in soil moisture leads to an increase in surface temperature, lower surface pressure, increased ridging aloft, and a northward shift of the jet stream. It is shown that low-level moisture advection from the Gulf of Mexico is important in the maintenance of persistent soil moisture deficits.

  3. Use of Ultrasonic Technology for Soil Moisture Measurement

    NASA Technical Reports Server (NTRS)

    Choi, J.; Metzl, R.; Aggarwal, M. D.; Belisle, W.; Coleman, T.

    1997-01-01

    In an effort to improve existing soil moisture measurement techniques or find new techniques using physics principles, a new technique is presented in this paper using ultrasonic techniques. It has been found that ultrasonic velocity changes as the moisture content changes. Preliminary values of velocities are 676.1 m/s in dry soil and 356.8 m/s in 100% moist soils. Intermediate values can be calibrated to give exact values for the moisture content in an unknown sample.

  4. Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers

    PubMed Central

    Liu, Cheng; Qian, Hongzhou; Cao, Weixing; Ni, Jun

    2018-01-01

    To meet the demand of intelligent irrigation for accurate moisture sensing in the soil vertical profile, a soil profile moisture sensor was designed based on the principle of high-frequency capacitance. The sensor consists of five groups of sensing probes, a data processor, and some accessory components. Low-resistivity copper rings were used as components of the sensing probes. Composable simulation of the sensor’s sensing probes was carried out using a high-frequency structure simulator. According to the effective radiation range of electric field intensity, width and spacing of copper ring were set to 30 mm and 40 mm, respectively. A parallel resonance circuit of voltage-controlled oscillator and high-frequency inductance-capacitance (LC) was designed for signal frequency division and conditioning. A data processor was used to process moisture-related frequency signals for soil profile moisture sensing. The sensor was able to detect real-time soil moisture at the depths of 20, 30, and 50 cm and conduct online inversion of moisture in the soil layer between 0–100 cm. According to the calibration results, the degree of fitting (R2) between the sensor’s measuring frequency and the volumetric moisture content of soil sample was 0.99 and the relative error of the sensor consistency test was 0–1.17%. Field tests in different loam soils showed that measured soil moisture from our sensor reproduced the observed soil moisture dynamic well, with an R2 of 0.96 and a root mean square error of 0.04. In a sensor accuracy test, the R2 between the measured value of the proposed sensor and that of the Diviner2000 portable soil moisture monitoring system was higher than 0.85, with a relative error smaller than 5%. The R2 between measured values and inversed soil moisture values for other soil layers were consistently higher than 0.8. According to calibration test and field test, this sensor, which features low cost, good operability, and high integration, is qualified for

  5. Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers.

    PubMed

    Gao, Zhenran; Zhu, Yan; Liu, Cheng; Qian, Hongzhou; Cao, Weixing; Ni, Jun

    2018-05-21

    To meet the demand of intelligent irrigation for accurate moisture sensing in the soil vertical profile, a soil profile moisture sensor was designed based on the principle of high-frequency capacitance. The sensor consists of five groups of sensing probes, a data processor, and some accessory components. Low-resistivity copper rings were used as components of the sensing probes. Composable simulation of the sensor’s sensing probes was carried out using a high-frequency structure simulator. According to the effective radiation range of electric field intensity, width and spacing of copper ring were set to 30 mm and 40 mm, respectively. A parallel resonance circuit of voltage-controlled oscillator and high-frequency inductance-capacitance (LC) was designed for signal frequency division and conditioning. A data processor was used to process moisture-related frequency signals for soil profile moisture sensing. The sensor was able to detect real-time soil moisture at the depths of 20, 30, and 50 cm and conduct online inversion of moisture in the soil layer between 0⁻100 cm. According to the calibration results, the degree of fitting ( R ²) between the sensor’s measuring frequency and the volumetric moisture content of soil sample was 0.99 and the relative error of the sensor consistency test was 0⁻1.17%. Field tests in different loam soils showed that measured soil moisture from our sensor reproduced the observed soil moisture dynamic well, with an R ² of 0.96 and a root mean square error of 0.04. In a sensor accuracy test, the R ² between the measured value of the proposed sensor and that of the Diviner2000 portable soil moisture monitoring system was higher than 0.85, with a relative error smaller than 5%. The R ² between measured values and inversed soil moisture values for other soil layers were consistently higher than 0.8. According to calibration test and field test, this sensor, which features low cost, good operability, and high integration

  6. Remotely sensed soil moisture input to a hydrologic model

    NASA Technical Reports Server (NTRS)

    Engman, E. T.; Kustas, W. P.; Wang, J. R.

    1989-01-01

    The possibility of using detailed spatial soil moisture maps as input to a runoff model was investigated. The water balance of a small drainage basin was simulated using a simple storage model. Aircraft microwave measurements of soil moisture were used to construct two-dimensional maps of the spatial distribution of the soil moisture. Data from overflights on different dates provided the temporal changes resulting from soil drainage and evapotranspiration. The study site and data collection are described, and the soil measurement data are given. The model selection is discussed, and the simulation results are summarized. It is concluded that a time series of soil moisture is a valuable new type of data for verifying model performance and for updating and correcting simulated streamflow.

  7. Estimation of Soil Moisture Profile using a Simple Hydrology Model and Passive Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    Soman, Vishwas V.; Crosson, William L.; Laymon, Charles; Tsegaye, Teferi

    1998-01-01

    Soil moisture is an important component of analysis in many Earth science disciplines. Soil moisture information can be obtained either by using microwave remote sensing or by using a hydrologic model. In this study, we combined these two approaches to increase the accuracy of profile soil moisture estimation. A hydrologic model was used to analyze the errors in the estimation of soil moisture using the data collected during Huntsville '96 microwave remote sensing experiment in Huntsville, Alabama. Root mean square errors (RMSE) in soil moisture estimation increase by 22% with increase in the model input interval from 6 hr to 12 hr for the grass-covered plot. RMSEs were reduced for given model time step by 20-50% when model soil moisture estimates were updated using remotely-sensed data. This methodology has a potential to be employed in soil moisture estimation using rainfall data collected by a space-borne sensor, such as the Tropical Rainfall Measuring Mission (TRMM) satellite, if remotely-sensed data are available to update the model estimates.

  8. SMALT - Soil Moisture from Altimetry project

    NASA Astrophysics Data System (ADS)

    Smith, Richard; Benveniste, Jérôme; Dinardo, Salvatore; Lucas, Bruno Manuel; Berry, Philippa; Wagner, Wolfgang; Hahn, Sebastian; Egido, Alejandro

    Soil surface moisture is a key scientific parameter; however, it is extremely difficult to measure remotely, particularly in arid and semi-arid terrain. This paper outlines the development of a novel methodology to generate soil moisture estimates in these regions from multi-mission satellite radar altimetry. Key to this approach is the development of detailed DRy Earth ModelS (DREAMS), which encapsulate the detailed and intricate surface brightness variations over the Earth’s land surface, resulting from changes in surface roughness and composition. DREAMS have been created over a number of arid and semi-arid deserts worldwide to produce historical SMALT timeseries over soil moisture variation. These products are available in two formats - a high resolution track product which utilises the altimeter’s high frequency content alongtrack and a multi-looked 6” gridded product at facilitate easy comparison/integeration with other remote sensing techniques. An overview of the SMALT processing scheme, covering the progression of the data from altimeter sigma0 through to final soil moisture estimate, is included along with example SMALT products. Validation has been performed over a number of deserts by comparing SMALT products with other remote sensing techniques, results of the comparison between SMALT and Metop Warp 5.5 are presented here. Comparisons with other remote sensing techniques have been limited in scope due to differences in the operational aspects of the instruments, the restricted geographical coverage of the DREAMS and the low repeat temporal sampling rate of the altimeter. The potential to expand the SMALT technique into less arid areas has been investigated. Small-scale comparison with in-situ and GNSS-R data obtained by the LEiMON experimental campaign over Tuscany, where historical trends exist within both SMALT and SMC probe datasets. A qualitative analysis of unexpected backscatter characteristics in dedicated dry environments is performed

  9. Spatial and temporal variability of soil moisture on the field with and without plants*

    NASA Astrophysics Data System (ADS)

    Usowicz, B.; Marczewski, W.; Usowicz, J. B.

    2012-04-01

    Spatial and temporal variability of the natural environment is its inherent and unavoidable feature. Every element of the environment is characterized by its own variability. One of the kinds of variability in the natural environment is the variability of the soil environment. To acquire better and deeper knowledge and understanding of the temporal and spatial variability of the physical, chemical and biological features of the soil environment, we should determine the causes that induce a given variability. Relatively stable features of soil include its texture and mineral composition; examples of those variables in time are the soil pH or organic matter content; an example of a feature with strong dynamics is the soil temperature and moisture content. The aim of this study was to identify the variability of soil moisture on the field with and without plants using geostatistical methods. The soil moisture measurements were taken on the object with plant canopy and without plants (as reference). The measurements of soil moisture and meteorological components were taken within the period of April-July. The TDR moisture sensors covered 5 cm soil layers and were installed in the plots in the soil layers of 0-0.05, 0.05-0.1, 0.1-0.15, 0.2-0.25, 0.3-0.35, 0.4-0.45, 0.5-0.55, 0.8-0.85 m. Measurements of soil moisture were taken once a day, in the afternoon hours. For the determination of reciprocal correlation, precipitation data and data from soil moisture measurements with the TDR meter were used. Calculations of reciprocal correlation of precipitation and soil moisture at various depths were made for three objects - spring barley, rye, and bare soil, at the level of significance of p<0.05. No significant reciprocal correlation was found between the precipitation and soil moisture in the soil profile for any of the objects studied. Although the correlation analysis indicates a lack of correlation between the variables under consideration, observation of the soil

  10. Evaluation of the validated soil moisture product from the SMAP radiometer

    USDA-ARS?s Scientific Manuscript database

    In this study, we used a multilinear regression approach to retrieve surface soil moisture from NASA’s Soil Moisture Active Passive (SMAP) satellite data to create a global dataset of surface soil moisture which is consistent with ESA’s Soil Moisture and Ocean Salinity (SMOS) satellite retrieved sur...

  11. Boreal Forest Permafrost Sensitivity Ecotypes to changes in Snow Depth and Soil Moisture

    NASA Astrophysics Data System (ADS)

    Dabbs, A.; Romanovsky, V. E.; Kholodov, A. L.

    2017-12-01

    Changes in the global climate, pronounced especially in polar regions due to their accelerated warming, are expected by many global climate models to have large impacts on the moisture budget throughout the world. Permafrost extent and the soil temperature regime are both strongly dependent on soil moisture and snow depth because of their immense effects on the thermal properties of the soil column and surface energy balance respectively. To assess how the ground thermal regime at various ecotypes may react to a change in the moisture budget, we performed a sensitivity analysis using the Geophysical Institute Permafrost Laboratory model, which simulates subsurface temperature dynamics by solving a one-dimensional nonlinear heat equation with phase change. We used snow depth and air temperature data from the Fairbanks International Airport meteorological station as forcing for this sensitivity analysis. We looked at five different ecotypes within the boreal forest region of Alaska: mixed, deciduous and black forests, willow shrubs and tundra. As a result of this analysis, we found that ecotypes with higher soil moisture contents, such as willow shrubs, are most sensitive to changes in snow depth due to the larger amount of latent heat trapped underneath the snow during the freeze up of active layer. In addition, soil within these ecotypes has higher thermal conductivity due to high saturation degree allowing for deeper seasonal freezing. Also, we found that permafrost temperatures were most sensitive to changes in soil moisture in ecotypes that were not completely saturated such as boreal forest. These ecotypes lacked complete saturation because of thick organic layers that have very high porosities or partially drained mineral soils. Contrarily, tundra had very little response to changes in soil moisture due to its thin organic layer and almost completely saturated soil column. This difference arises due to the disparity between the frozen and unfrozen thermal

  12. Rainfall estimation from soil moisture data: crash test for SM2RAIN algorithm

    NASA Astrophysics Data System (ADS)

    Brocca, Luca; Albergel, Clement; Massari, Christian; Ciabatta, Luca; Moramarco, Tommaso; de Rosnay, Patricia

    2015-04-01

    mean square differences and categorical scores were used to evaluate the goodness of the results. This analysis wants to draw global picture of the performance of SM2RAIN algorithm in absence of errors in soil moisture and rainfall data. First preliminary results over Europe have shown that SM2RAIN performs particularly well over southern Europe (e.g., Spain, Italy and Greece) while its performances diminish by moving towards Northern latitudes (Scandinavia) and over Alps. The results on a global scale will be shown and discussed at the conference session. REFERENCES Brocca, L., Melone, F., Moramarco, T., Wagner, W. (2013). A new method for rainfall estimation through soil moisture observations. Geophysical Research Letters, 40(5), 853-858. Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer, S., Kidd, R., Dorigo, W., Wagner, W., Levizzani, V. (2014). Soil as a natural rain gauge: estimating global rainfall from satellite soil moisture data. Journal of Geophysical Research, 119(9), 5128-5141. Chen F, Crow WT, Ryu D. (2014) Dual forcing and state correction via soil moisture assimilation for improved rainfall-runoff modeling. J Hydrometeor, 15, 1832-1848. Crow, W.T., van den Berg, M.J., Huffman, G.J., Pellarin, T. (2011). Correcting rainfall using satellite-based surface soil moisture retrievals: the soil moisture analysis rainfall tool (SMART). Water Resour Res, 47, W08521. Dee, D. P.,et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteorol. Soc., 137, 553-597 Massari, C., Brocca, L., Moramarco, T., Tramblay, Y., Didon Lescot, J.-F. (2014). Potential of soil moisture observations in flood modelling: estimating initial conditions and correcting rainfall. Advances in Water Resources, 74, 44-53.

  13. A simulation study of scene confusion factors in sensing soil moisture from orbital radar

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Dobson, M. C.; Moezzi, S.; Roth, F. T.

    1983-01-01

    Simulated C-band radar imagery for a 124-km by 108-km test site in eastern Kansas is used to classify soil moisture. Simulated radar resolutions are 100 m by 100 m, 1 km by 1km, and 3 km by 3 km. Distributions of actual near-surface soil moisture are established daily for a 23-day accounting period using a water budget model. Within the 23-day period, three orbital radar overpasses are simulated roughly corresponding to generally moist, wet, and dry soil moisture conditions. The radar simulations are performed by a target/sensor interaction model dependent upon a terrain model, land-use classification, and near-surface soil moisture distribution. The accuracy of soil-moisture classification is evaluated for each single-date radar observation and also for multi-date detection of relative soil moisture change. In general, the results for single-date moisture detection show that 70% to 90% of cropland can be correctly classified to within +/- 20% of the true percent of field capacity. For a given radar resolution, the expected classification accuracy is shown to be dependent upon both the general soil moisture condition and also the geographical distribution of land-use and topographic relief. An analysis of cropland, urban, pasture/rangeland, and woodland subregions within the test site indicates that multi-temporal detection of relative soil moisture change is least sensitive to classification error resulting from scene complexity and topographic effects.

  14. Satellite Based Soil Moisture Product Validation Using NOAA-CREST Ground and L-Band Observations

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Campo, C.; Temimi, M.; Lakhankar, T.; Khanbilvardi, R.

    2015-12-01

    Soil moisture content is among most important physical parameters in hydrology, climate, and environmental studies. Many microwave-based satellite observations have been utilized to estimate this parameter. The Advanced Microwave Scanning Radiometer 2 (AMSR2) is one of many remotely sensors that collects daily information of land surface soil moisture. However, many factors such as ancillary data and vegetation scattering can affect the signal and the estimation. Therefore, this information needs to be validated against some "ground-truth" observations. NOAA - Cooperative Remote Sensing and Technology (CREST) center at the City University of New York has a site located at Millbrook, NY with several insitu soil moisture probes and an L-Band radiometer similar to Soil Moisture Passive and Active (SMAP) one. This site is among SMAP Cal/Val sites. Soil moisture information was measured at seven different locations from 2012 to 2015. Hydra probes are used to measure six of these locations. This study utilizes the observations from insitu data and the L-Band radiometer close to ground (at 3 meters height) to validate and to compare soil moisture estimates from AMSR2. Analysis of the measurements and AMSR2 indicated a weak correlation with the hydra probes and a moderate correlation with Cosmic-ray Soil Moisture Observing System (COSMOS probes). Several differences including the differences between pixel size and point measurements can cause these discrepancies. Some interpolation techniques are used to expand point measurements from 6 locations to AMSR2 footprint. Finally, the effect of penetration depth in microwave signal and inconsistencies with other ancillary data such as skin temperature is investigated to provide a better understanding in the analysis. The results show that the retrieval algorithm of AMSR2 is appropriate under certain circumstances. This validation algorithm and similar study will be conducted for SMAP mission. Keywords: Remote Sensing, Soil

  15. Soil moisture dynamics and smoldering combustion limits of pocosin soils in North Carolina, USA

    Treesearch

    James Reardon; Gary Curcio; Roberta Bartlette

    2009-01-01

    Smoldering combustion of wetland organic soils in the south-eastern USA is a serious management concern. Previous studies have reported smoldering was sensitive to a wide range of moisture contents, but studies of soil moisture dynamics and changing smoldering combustion potential in wetland communities are limited. Linking soil moisture measurements with estimates of...

  16. Downscaled soil moisture from SMAP evaluated using high density observations

    USDA-ARS?s Scientific Manuscript database

    Recently, a soil moisture downscaling algorithm based on a regression relationship between daily temperature changes and daily average soil moisture was developed to produce an enhanced spatial resolution on soil moisture product for the Advanced Microwave Scanning Radiometer–EOS (AMSR-E) satellite ...

  17. Data assimilation to extract soil moisture information from SMAP observations

    USDA-ARS?s Scientific Manuscript database

    This study compares different methods to extract soil moisture information through the assimilation of Soil Moisture Active Passive (SMAP) observations. Neural Network(NN) and physically-based SMAP soil moisture retrievals were assimilated into the NASA Catchment model over the contiguous United Sta...

  18. Moisture-strength-constructability guidelines for subgrade foundation soils found in Indiana.

    DOT National Transportation Integrated Search

    2016-09-01

    Soil moisture is an important indicator of constructability in the field. Construction activities become difficult when the soil moisture content is excessive, especially in fine-grained soils. Change orders caused by excessive soil moisture during c...

  19. Surface soil moisture retrieval using the L-band synthetic aperture radar onboard the Soil Moisture Active Passive satellite and evaluation at core validation sites

    USDA-ARS?s Scientific Manuscript database

    This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface soil moisture ...

  20. Application of Multitemporal Remotely Sensed Soil Moisture for the Estimation of Soil Physical Properties

    NASA Technical Reports Server (NTRS)

    Mattikalli, N. M.; Engman, E. T.; Jackson, T. J.; Ahuja, L. R.

    1997-01-01

    This paper demonstrates the use of multitemporal soil moisture derived from microwave remote sensing to estimate soil physical properties. The passive microwave ESTAR instrument was employed during June 10-18, 1992, to obtain brightness temperature (TB) and surface soil moisture data in the Little Washita watershed, Oklahoma. Analyses of spatial and temporal variations of TB and soil moisture during the dry-down period revealed a direct relationship between changes in T and soil moisture and soil physical (viz. texture) and hydraulic (viz. saturated hydraulic conductivity, K(sat)) properties. Statistically significant regression relationships were developed for the ratio of percent sand to percent clay (RSC) and K(sat), in terms of change components of TB and surface soil moisture. Validation of results using field measured values and soil texture map indicated that both RSC and K(sat) can be estimated with reasonable accuracy. These findings have potential applications of microwave remote sensing to obtain quick estimates of the spatial distributions of K(sat), over large areas for input parameterization of hydrologic models.

  1. Evaluation of soil and vegetation response to drought using SMOS soil moisture satellite observations

    NASA Astrophysics Data System (ADS)

    Piles, Maria; Sánchez, Nilda; Vall-llossera, Mercè; Ballabrera, Joaquim; Martínez, Justino; Martínez-Fernández, José; Camps, Adriano; Font, Jordi

    2014-05-01

    Soil moisture plays an important role in determining the likelihood of droughts and floods that may affect an area. Knowledge of soil moisture distribution as a function of time and space is highly relevant for hydrological, ecological and agricultural applications, especially in water-limited or drought-prone regions. However, measuring soil moisture is challenging because of its high variability; point-scale in-situ measurements are scarce being remote sensing the only practical means to obtain regional- and global-scale soil moisture estimates. The ESA's Soil Moisture and Ocean Salinity (SMOS) is the first satellite mission ever designed to measuring the Earth's surface soil moisture at near daily time scales with levels of accuracy previously not attained. Since its launch in November 2009, significant efforts have been dedicated to validate and fine-tune the retrieval algorithms so that SMOS-derived soil moisture estimates meet the standards required for a wide variety of applications. In this line, the SMOS Barcelona Expert Center (BEC) is distributing daily, monthly, and annual temporal averages of 0.25-deg global soil moisture maps, which have proved useful for assessing drought and water-stress conditions. In addition, a downscaling algorithm has been developed to combine SMOS and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) data into fine-scale (< 1km) soil moisture estimates, which permits extending the applicability of the data to regional and local studies. Fine-scale soil moisture maps are currently limited to the Iberian Peninsula but the algorithm is dynamic and can be transported to any region. Soil moisture maps are generated in a near real-time fashion at BEC facilities and are used by Barcelona's fire prevention services to detect extremely dry soil and vegetation conditions posing a risk of fire. Recently, they have been used to explain drought-induced tree mortality episodes and forest decline in the Catalonia region. These

  2. Strengths and weaknesses of temporal stability analysis for monitoring and estimating grid-mean soil moisture in a high-intensity irrigated agricultural landscape

    NASA Astrophysics Data System (ADS)

    Ran, Youhua; Li, Xin; Jin, Rui; Kang, Jian; Cosh, Michael H.

    2017-01-01

    Monitoring and estimating grid-mean soil moisture is very important for assessing many hydrological, biological, and biogeochemical processes and for validating remotely sensed surface soil moisture products. Temporal stability analysis (TSA) is a valuable tool for identifying a small number of representative sampling points to estimate the grid-mean soil moisture content. This analysis was evaluated and improved using high-quality surface soil moisture data that were acquired by a wireless sensor network in a high-intensity irrigated agricultural landscape in an arid region of northwestern China. The performance of the TSA was limited in areas where the representative error was dominated by random events, such as irrigation events. This shortcoming can be effectively mitigated by using a stratified TSA (STSA) method, proposed in this paper. In addition, the following methods were proposed for rapidly and efficiently identifying representative sampling points when using TSA. (1) Instantaneous measurements can be used to identify representative sampling points to some extent; however, the error resulting from this method is significant when validating remotely sensed soil moisture products. Thus, additional representative sampling points should be considered to reduce this error. (2) The calibration period can be determined from the time span of the full range of the grid-mean soil moisture content during the monitoring period. (3) The representative error is sensitive to the number of calibration sampling points, especially when only a few representative sampling points are used. Multiple sampling points are recommended to reduce data loss and improve the likelihood of representativeness at two scales.

  3. Misrepresentation and amendment of soil moisture in conceptual hydrological modelling

    NASA Astrophysics Data System (ADS)

    Zhuo, Lu; Han, Dawei

    2016-04-01

    Although many conceptual models are very effective in simulating river runoff, their soil moisture schemes are generally not realistic in comparison with the reality (i.e., getting the right answers for the wrong reasons). This study reveals two significant misrepresentations in those models through a case study using the Xinanjiang model which is representative of many well-known conceptual hydrological models. The first is the setting of the upper limit of its soil moisture at the field capacity, due to the 'holding excess runoff' concept (i.e., runoff begins on repletion of its storage to the field capacity). The second is neglect of capillary rise of water movement. A new scheme is therefore proposed to overcome those two issues. The amended model is as effective as its original form in flow modelling, but represents more logically realistic soil water processes. The purpose of the study is to enable the hydrological model to get the right answers for the right reasons. Therefore, the new model structure has a better capability in potentially assimilating soil moisture observations to enhance its real-time flood forecasting accuracy. The new scheme is evaluated in the Pontiac catchment of the USA through a comparison with satellite observed soil moisture. The correlation between the XAJ and the observed soil moisture is enhanced significantly from 0.64 to 0.70. In addition, a new soil moisture term called SMDS (Soil Moisture Deficit to Saturation) is proposed to complement the conventional SMD (Soil Moisture Deficit).

  4. Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes.

    PubMed

    Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören

    2014-01-01

    Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.

  5. Assessment of the SMAP Passive Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Chan, Steven K.; Bindlish, Rajat; O'Neill, Peggy E.; Njoku, Eni; Jackson, Tom; Colliander, Andreas; Chen, Fan; Burgin, Mariko; Dunbar, Scott; Piepmeier, Jeffrey; hide

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015. The observatory was developed to provide global mapping of high-resolution soil moisture and freeze-thaw state every two to three days using an L-band (active) radar and an L-band (passive) radiometer. After an irrecoverable hardware failure of the radar on July 7, 2015, the radiometer-only soil moisture product became the only operational Level 2 soil moisture product for SMAP. The product provides soil moisture estimates posted on a 36 kilometer Earth-fixed grid produced using brightness temperature observations from descending passes. Within months after the commissioning of the SMAP radiometer, the product was assessed to have attained preliminary (beta) science quality, and data were released to the public for evaluation in September 2015. The product is available from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center. This paper provides a summary of the Level 2 Passive Soil Moisture Product (L2_SM_P) and its validation against in situ ground measurements collected from different data sources. Initial in situ comparisons conducted between March 31, 2015 and October 26, 2015, at a limited number of core validation sites (CVSs) and several hundred sparse network points, indicate that the V-pol Single Channel Algorithm (SCA-V) currently delivers the best performance among algorithms considered for L2_SM_P, based on several metrics. The accuracy of the soil moisture retrievals averaged over the CVSs was 0.038 cubic meter per cubic meter unbiased root-mean-square difference (ubRMSD), which approaches the SMAP mission requirement of 0.040 cubic meter per cubic meter.

  6. Assimilation of SMOS brightness temperatures in the ECMWF EKF for the analysis of soil moisture

    NASA Astrophysics Data System (ADS)

    Munoz-Sabater, Joaquin

    2012-07-01

    Since November 2nd 2009, the European Centre for Medium-Range Weather Forecasts (ECMWF) has being monitoring, in Near Real Time (NRT), L-band brightness temperatures measured by the Soil Moisture and Ocean Salinity (SMOS) satellite mission of the European Space Agency (ESA). The main objective of the monitoring suite for SMOS data is to systematically monitor the difference between SMOS observed brightness temperatures and the corresponding model equivalent simulated by the Community Microwave Emission Model (CMEM), the so-called first guess departures. This is a crucial step, as first guess departures is the quantity used in the analysis. The ultimate goal is to investigate how the assimilation of SMOS brightness temperatures over land improves the weather forecast skill, through a more accurate initialization of the global soil moisture state. In this presentation, some significant results from the activities preparing for the assimilation of SMOS data are shown. Among these activities, an effective data thinning strategy, a practical approach to reduce noise from the observed brightness temperatures and a bias correction scheme are of special interest. Firstly, SMOS data needs to be significantly thinned as the data volume delivered for a single orbit is too large for the current operational capabilities in any Numerical Weather Prediction system. Different thinning strategies have been analysed and tested. The most suitable one is the assimilation of SMOS brightness temperatures which match the ECMWF T511 (~40 km) reduced Gaussian Grid. Secondly, SMOS observational noise is reduced significantly by averaging the data in angular bins. In addition, this methodology contributes to further thinning of the SMOS data before the analysis. Finally, a bias correction scheme based on a CDF matching is applied to the observations to ensure an unbiased dataset ready for assimilation in the ECMWF surface analysis system. The current ECMWF operational soil moisture analysis

  7. Coupling rainfall observations and satellite soil moisture for predicting event soil loss in Central Italy

    NASA Astrophysics Data System (ADS)

    Todisco, Francesca; Brocca, Luca; Termite, Loris Francesco; Wagner, Wolfgang

    2015-04-01

    specifically the analysis was focused on the evaluation of the effectiveness of coupling modeled or satellite-derived soil moisture with USLE-derived models in predicting event unit soil loss at the plot scale in a silty-clay soil in Central Italy. To this end was used the database of the Masse experimental station developed considering for a given erosive event (an event yielding a measurable soil loss) the simultaneous measures of the total runoff amount, Qe (mm), and soil loss per unit area, Ae (Mg-ha-1) at plot scale and of the rainfall data required to derive the erosivity factor Re according to Wischmeiser and Smith (1978), with a MIT=6 h (Bagarello et al., 2013; Todisco et al., 2012). To the purpose of this investigation only data collected on the λ = 22 m long plots were considered: 63 erosive events in the period 2008-2013, 18 occurred during the dry period (from June to September) and the other 45 in the complementary period (wet period). The models tested are the USLE/RUSLE and some USLE-derived formulations in which the event erosivity factor, Re, is corrected by the antecedent soil moisture, θ, and powered to an exponent α > 0 (α =1: linear model; α ≠ 1: power model). Both soil moisture data the satellite retrieved (θ = θsat) and the estimates (θ = θest) of Soil Water Balance model (Brocca et al., 2011) were tested. The results have been compared with those obtained by the USLE/RUSLE, USLE-M and USLE-MM models coupled with a parsimonious rainfall-runoff model, MILc, (Brocca et al. 2011) for the prediction of runoff volume (that in these models is the term used to correct the erosivity factor Re). The results showed that: including direct consideration of antecedent soil moisture and runoff in the event rainfall-runoff factor of the RUSLE/USLE enhanced the capacity of the model to account for variations in event soil loss when soil moisture and runoff volume are measured or predicted reasonably well; the accuracy of the original USLE/RUSLE model was

  8. Inter-Comparison of SMAP, SMOS and GCOM-W Soil Moisture Products

    NASA Astrophysics Data System (ADS)

    Bindlish, R.; Jackson, T. J.; Chan, S.; Burgin, M. S.; Colliander, A.; Cosh, M. H.

    2016-12-01

    The Soil Moisture Active Passive (SMAP) mission was launched on Jan 31, 2015. The goal of the SMAP mission is to produce soil moisture with accuracy better than 0.04 m3/m3 with a revisit frequency of 2-3 days. The validated standard SMAP passive soil moisture product (L2SMP) with a spatial resolution of 36 km was released in May 2016. Soil moisture observations from in situ sensors are typically used to validate the satellite estimates. But, in situ observations provide ground truth for limited amount of landcover and climatic conditions. Although each mission will have its own issues, observations by other satellite instruments can be play a role in the calibration and validation of SMAP. SMAP, SMOS and GCOM-W missions share some commonnalities because they are currently providing operational brightness temperature and soil moisture products. SMAP and SMOS operate at L-band but GCOM-W uses X-band observations for soil moisture estimation. All these missions use different ancillary data sources, parameterization and algorithm to retrieve soil moisture. Therefore, it is important to validate and to compare the consistency of these products. Soil moisture products from the different missions will be compared with the in situ observations. SMAP soil moisture products will be inter-compared at global scales with SMOS and GCOM-W soil moisture products. The major contribution of satellite product inter-comparison is that it allows the assessment of the quality of the products over wider geographical and climate domains. Rigorous assessment will lead to a more reliable and accurate soil moisture product from all the missions.

  9. Soil moisture downscaling using a simple thermal based proxy

    NASA Astrophysics Data System (ADS)

    Peng, Jian; Loew, Alexander; Niesel, Jonathan

    2016-04-01

    Microwave remote sensing has been largely applied to retrieve soil moisture (SM) from active and passive sensors. The obvious advantage of microwave sensor is that SM can be obtained regardless of atmospheric conditions. However, existing global SM products only provide observations at coarse spatial resolutions, which often hamper their applications in regional hydrological studies. Therefore, various downscaling methods have been proposed to enhance the spatial resolution of satellite soil moisture products. The aim of this study is to investigate the validity and robustness of a simple Vegetation Temperature Condition Index (VTCI) downscaling scheme over different climates and regions. Both polar orbiting (MODIS) and geostationary (MSG SEVIRI) satellite data are used to improve the spatial resolution of the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA CCI) soil moisture, which is a merged product based on both active and passive microwave observations. The results from direct validation against soil moisture in-situ measurements, spatial pattern comparison, as well as seasonal and land use analyses show that the downscaling method can significantly improve the spatial details of CCI soil moisture while maintain the accuracy of CCI soil moisture. The application of the scheme with different satellite platforms and over different regions further demonstrate the robustness and effectiveness of the proposed method. Therefore, the VTCI downscaling method has the potential to facilitate relevant hydrological applications that require high spatial and temporal resolution soil moisture.

  10. Why is SMOS Drier than the South Fork In-situ Soil Moisture Network?

    NASA Astrophysics Data System (ADS)

    Walker, V. A.; Hornbuckle, B. K.; Cosh, M. H.

    2014-12-01

    Global maps of near-surface soil moisture are currently being produced by the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite mission at 40 km. Within the next few months NASA's Soil Moisture Active Passive (SMAP) satellite mission will begin producing observations of near-surface soil moisture at 10 km. Near-surface soil moisture is the water content of the first 3 to 5 cm of the soil. Observations of near-surface soil moisture are expected to improve weather and climate forecasts. These satellite observations must be validated. We define validation as determining the space/time statistical characteristics of the uncertainty. A standard that has been used for satellite validation is in-situ measurements of near-surface soil moisture made with a network of sensors spanning the extent of a satellite footprint. Such a network of sensors has been established in the South Fork of the Iowa River in Central Iowa by the USDA ARS. Our analysis of data in 2013 indicates that SMOS has a dry bias: SMOS near-surface soil moisture is between 0.05 to 0.10 m^3m^{-3} lower than what is observed by the South Fork network. A dry bias in SMOS observations has also been observed in other regions of North America. There are many possible explanations for this difference: underestimation of vegetation, or soil surface roughness; undetected radio frequency interference (RFI); a retrieval model that is not appropriate for agricultural areas; or the use of an incorrect surface temperature in the retrieval process. We will begin our investigation by testing this last possibility: that SMOS is using a surface temperature that is too low which results in a drier soil moisture that compensates for this error. We will present a comparison of surface temperatures from the European Center for Medium-range Weather Forecasting (ECMWF) used to retrieve near-surface soil moisture from SMOS measurements of brightness temperature, and surface temperatures in the South Fork

  11. Soil moisture variability over Odra watershed: Comparison between SMOS and GLDAS data

    NASA Astrophysics Data System (ADS)

    Zawadzki, Jaroslaw; Kędzior, Mateusz

    2016-03-01

    Monitoring of temporal and spatial soil moisture variability is an important issue, both from practical and scientific point of view. It is well known that passive, L-band, radiometric measurements provide best soil moisture estimates. Unfortunately as it was observed during Soil Moisture and Ocean Salinity (SMOS) mission, which was specially dedicated to measure soil moisture, these measurements suffer significant data loss. It is caused mainly by radio frequency interference (RFI) which strongly contaminates Central Europe and even in particularly unfavorable conditions, might prevent these data from being used for regional or watershed scale analysis. Nevertheless, it is highly awaited by researchers to receive statistically significant information on soil moisture over the area of a big watershed. One of such watersheds, the Odra (Oder) river watershed, lies in three European countries - Poland, Germany and the Czech Republic. The area of the Odra river watershed is equal to 118,861 km2 making it the second most important river in Poland as well as one of the most significant one in Central Europe. This paper examines the SMOS soil moisture data in the Odra river watershed in the period from 2010 to 2012. This attempt was made to check the possibility of assessing, from the low spatial resolution observations of SMOS, useful information that could be exploited for practical aims in watershed scale, for example, in water storage models even while moderate RFI takes place. Such studies, performed over the area of a large watershed, were recommended by researchers in order to obtain statistically significant results. To meet these expectations, Centre Aval de Traitement des Donnes SMOS (CATDS), 3-days averaged data, together with Global Land Data Assimilation System (GLDAS) National Centers for Environmental Prediction/Oregon State University/Air Force/Hydrologic Research Lab (NOAH) model 0.25 soil moisture values were used for statistical analyses and mutual

  12. Microwave Soil Moisture Retrieval Under Trees

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Lang, R.; Kurum, M.; Joseph, A.; Jackson, T.; Cosh, M.

    2008-01-01

    Soil moisture is recognized as an important component of the water, energy, and carbon cycles at the interface between the Earth's surface and atmosphere. Current baseline soil moisture retrieval algorithms for microwave space missions have been developed and validated only over grasslands, agricultural crops, and generally light to moderate vegetation. Tree areas have commonly been excluded from operational soil moisture retrieval plans due to the large expected impact of trees on masking the microwave response to the underlying soil moisture. Our understanding of the microwave properties of trees of various sizes and their effect on soil moisture retrieval algorithms at L band is presently limited, although research efforts are ongoing in Europe, the United States, and elsewhere to remedy this situation. As part of this research, a coordinated sequence of field measurements involving the ComRAD (for Combined Radar/Radiometer) active/passive microwave truck instrument system has been undertaken. Jointly developed and operated by NASA Goddard Space Flight Center and George Washington University, ComRAD consists of dual-polarized 1.4 GHz total-power radiometers (LH, LV) and a quad-polarized 1.25 GHz L band radar sharing a single parabolic dish antenna with a novel broadband stacked patch dual-polarized feed, a quad-polarized 4.75 GHz C band radar, and a single channel 10 GHz XHH radar. The instruments are deployed on a mobile truck with an 19-m hydraulic boom and share common control software; real-time calibrated signals, and the capability for automated data collection for unattended operation. Most microwave soil moisture retrieval algorithms developed for use at L band frequencies are based on the tau-omega model, a simplified zero-order radiative transfer approach where scattering is largely ignored and vegetation canopies are generally treated as a bulk attenuating layer. In this approach, vegetation effects are parameterized by tau and omega, the microwave

  13. Soil moisture under contrasted atmospheric conditions in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, César; Cerdà, Artemi; Vicente-Serrano, Sergio M.

    2014-05-01

    Soil moisture plays a key role on the recently abandoned agriculture land where determine the recovery and the erosion rates (Cerdà, 1995), on the soil water repellency degree (Bodí et al., 2011) and on the hydrological cycle (Cerdà, 1999), the plant development (García Fayos et al., 2000) and the seasonality of the geomorphological processes (Cerdà, 2002). Moreover, Soil moisture is a key factor on the semiarid land (Ziadat and Taimeh, 2013), on the productivity of the land (Qadir et al., 2013) and soils treated with amendments (Johnston et al., 2013) and on soil reclamation on drained saline-sodic soils (Ghafoor et al., 2012). In previous study (Azorin-Molina et al., 2013) we investigated the intraannual evolution of soil moisture in soils under different land managements in the Valencia region, Eastern Spain, and concluded that soil moisture recharges are much controlled by few heavy precipitation events; 23 recharge episodes during 2012. Most of the soil moisture recharge events occurred during the autumn season under Back-Door cold front situations. Additionally, sea breeze front episodes brought isolated precipitation and moisture to mountainous areas within summer (Azorin-Molina et al., 2009). We also evidenced that the intraanual evolution of soil moisture changes are positively and significatively correlated (at p<0.01) with the amount of measured precipitation. In this study we analyze the role of other crucial atmospheric parameters (i.e., temperature, relative humidity, global solar radiation, and wind speed and wind direction) in the intraanual evolution of soil moisture; focussing our analyses on the soil moisture discharge episodes. Here we present 1-year of soil moisture measurements at two experimental sites in the Valencia region, one representing rainfed orchard typical from the Mediterranean mountains (El Teularet-Sierra de Enguera), and a second site corresponding to an irrigated orange crop (Alcoleja). Key Words: Soil Moisture Discharges

  14. Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Tarquis, Ana M.; Gascó, Gabriel; Millán, Humberto

    2012-07-01

    SummaryImage analysis could be a useful tool for investigating the spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to define apparent soil moisture patterns from vertical planes of Vertisol pit images and (ii) to describe the scaling of apparent soil moisture distribution using fractal parameters. Twelve soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. Six of them were excavated in April/2011 and six pits were established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. Each soil image was analyzed using two fractal scaling exponents, box counting (capacity) dimension (DBC) and interface fractal dimension (Di), and three prefractal scaling coefficients, the total number of boxes intercepting the foreground pattern at a unit scale (A), fractal lacunarity at the unit scale (Λ1) and Shannon entropy at the unit scale (S1). All the scaling parameters identified significant differences between both sets of spatial patterns. Fractal lacunarity was the best discriminator between apparent soil moisture patterns. Soil image interpretation with fractal exponents and prefractal coefficients can be incorporated within a site-specific agriculture toolbox. While fractal exponents convey information on space filling characteristics of the pattern, prefractal coefficients represent the investigated soil property as seen through a higher resolution microscope. In spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used in connection with traditional soil moisture sampling, which always renders punctual estimates.

  15. The impact of non-isothermal soil moisture transport on evaporation fluxes in a maize cropland

    NASA Astrophysics Data System (ADS)

    Shao, Wei; Coenders-Gerrits, Miriam; Judge, Jasmeet; Zeng, Yijian; Su, Ye

    2018-06-01

    The process of evaporation interacts with the soil, which has various comprehensive mechanisms. Multiphase flow models solve air, vapour, water, and heat transport equations to simulate non-isothermal soil moisture transport of both liquid water and vapor flow, but are only applied in non-vegetated soils. For (sparsely) vegetated soils often energy balance models are used, however these lack the detailed information on non-isothermal soil moisture transport. In this study we coupled a multiphase flow model with a two-layer energy balance model to study the impact of non-isothermal soil moisture transport on evaporation fluxes (i.e., interception, transpiration, and soil evaporation) for vegetated soils. The proposed model was implemented at an experimental agricultural site in Florida, US, covering an entire maize-growing season (67 days). As the crops grew, transpiration and interception became gradually dominated, while the fraction of soil evaporation dropped from 100% to less than 20%. The mechanisms of soil evaporation vary depending on the soil moisture content. After precipitation the soil moisture content increased, exfiltration of the liquid water flow could transport sufficient water to sustain evaporation from soil, and the soil vapor transport was not significant. However, after a sufficient dry-down period, the soil moisture content significantly reduced, and the soil vapour flow significantly contributed to the upward moisture transport in topmost soil. A sensitivity analysis found that the simulations of moisture content and temperature at the soil surface varied substantially when including the advective (i.e., advection and mechanical dispersion) vapour transport in simulation, including the mechanism of advective vapour transport decreased soil evaporation rate under wet condition, while vice versa under dry condition. The results showed that the formulation of advective soil vapor transport in a soil-vegetation-atmosphere transfer continuum can

  16. Effects of climate change on soil moisture over China from 1960-2006

    USGS Publications Warehouse

    Zhu, Q.; Jiang, H.; Liu, J.

    2009-01-01

    Soil moisture is an important variable in the climate system and it has sensitive impact on the global climate. Obviously it is one of essential components in the climate change study. The Integrated Biosphere Simulator (IBIS) is used to evaluate the spatial and temporal patterns of soil moisture across China under the climate change conditions for the period 1960-2006. Results show that the model performed better in warm season than in cold season. Mean errors (ME) are within 10% for all the months and root mean squared errors (RMSE) are within 10% except winter season. The model captured the spatial variability higher than 50% in warm seasons. Trend analysis based on the Mann-Kendall method indicated that soil moisture in most area of China is decreased especially in the northern China. The areas with significant increasing trends in soil moisture mainly locate at northwestern China and small areas in southeastern China and eastern Tibet plateau. ?? 2009 IEEE.

  17. Error in Radar-Derived Soil Moisture due to Roughness Parameterization: An Analysis Based on Synthetical Surface Profiles

    PubMed Central

    Lievens, Hans; Vernieuwe, Hilde; Álvarez-Mozos, Jesús; De Baets, Bernard; Verhoest, Niko E.C.

    2009-01-01

    In the past decades, many studies on soil moisture retrieval from SAR demonstrated a poor correlation between the top layer soil moisture content and observed backscatter coefficients, which mainly has been attributed to difficulties involved in the parameterization of surface roughness. The present paper describes a theoretical study, performed on synthetical surface profiles, which investigates how errors on roughness parameters are introduced by standard measurement techniques, and how they will propagate through the commonly used Integral Equation Model (IEM) into a corresponding soil moisture retrieval error for some of the currently most used SAR configurations. Key aspects influencing the error on the roughness parameterization and consequently on soil moisture retrieval are: the length of the surface profile, the number of profile measurements, the horizontal and vertical accuracy of profile measurements and the removal of trends along profiles. Moreover, it is found that soil moisture retrieval with C-band configuration generally is less sensitive to inaccuracies in roughness parameterization than retrieval with L-band configuration. PMID:22399956

  18. Observing and modeling links between soil moisture, microbes and CH4 fluxes from forest soils

    NASA Astrophysics Data System (ADS)

    Christiansen, Jesper; Levy-Booth, David; Barker, Jason; Prescott, Cindy; Grayston, Sue

    2017-04-01

    Soil moisture is a key driver of methane (CH4) fluxes in forest soils, both of the net uptake of atmospheric CH4 and emission from the soil. Climate and land use change will alter spatial patterns of soil moisture as well as temporal variability impacting the net CH4 exchange. The impact on the resultant net CH4 exchange however is linked to the underlying spatial and temporal distribution of the soil microbial communities involved in CH4 cycling as well as the response of the soil microbial community to environmental changes. Significant progress has been made to target specific CH4 consuming and producing soil organisms, which is invaluable in order to understand the microbial regulation of the CH4 cycle in forest soils. However, it is not clear as to which extent soil moisture shapes the structure, function and abundance of CH4 specific microorganisms and how this is linked to observed net CH4 exchange under contrasting soil moisture regimes. Here we report on the results from a research project aiming to understand how the CH4 net exchange is shaped by the interactive effects soil moisture and the spatial distribution CH4 consuming (methanotrophs) and producing (methanogens). We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs and methanogens, soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient in a temperate rainforest on the Canadian Pacific coast. Furthermore, we conducted laboratory experiments to determine whether the net CH4 exchange from hydrologically contrasting forest soils responded differently to changes in soil moisture. Lastly, we modelled the microbial mediation of net CH4 exchange along the soil moisture gradient using structural equation modeling. Our study shows that it is possible to link spatial patterns of in situ net exchange of CH4 to microbial abundance of CH4 consuming and producing organisms. We also show that the microbial

  19. SMOS soil moisture validation with U.S. in situ newworks

    USDA-ARS?s Scientific Manuscript database

    Estimation of soil moisture at large scale has been performed using several satellite-based passive microwave sensors using a variety of retrieval methods. The most recent source of soil moisture is the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission. Since it is a new sensor u...

  20. Soil moisture dynamics modeling considering multi-layer root zone.

    PubMed

    Kumar, R; Shankar, V; Jat, M K

    2013-01-01

    The moisture uptake by plant from soil is a key process for plant growth and movement of water in the soil-plant system. A non-linear root water uptake (RWU) model was developed for a multi-layer crop root zone. The model comprised two parts: (1) model formulation and (2) moisture flow prediction. The developed model was tested for its efficiency in predicting moisture depletion in a non-uniform root zone. A field experiment on wheat (Triticum aestivum) was conducted in the sub-temperate sub-humid agro-climate of Solan, Himachal Pradesh, India. Model-predicted soil moisture parameters, i.e., moisture status at various depths, moisture depletion and soil moisture profile in the root zone, are in good agreement with experiment results. The results of simulation emphasize the utility of the RWU model across different agro-climatic regions. The model can be used for sound irrigation management especially in water-scarce humid, temperate, arid and semi-arid regions and can also be integrated with a water transport equation to predict the solute uptake by plant biomass.

  1. Inter-comparison of soil moisture sensors from the soil moisture active passive marena Oklahoma in situ sensor testbed (SMAP-MOISST)

    USDA-ARS?s Scientific Manuscript database

    The diversity of in situ soil moisture network protocols and instrumentation led to the development of a testbed for comparing in situ soil moisture sensors. Located in Marena, Oklahoma on the Oklahoma State University Range Research Station, the testbed consists of four base stations. Each station ...

  2. Patterns and scaling properties of surface soil moisture in an agricultural landscape: An ecohydrological modeling study

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Schneider, K.

    2013-08-01

    Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale

  3. Multifrequency remote sensing of soil moisture. [Guymon, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Theis, S. W.; Mcfarland, M. J.; Rosenthal, W. D.; Jones, C. L. (Principal Investigator)

    1982-01-01

    Multifrequency sensor data collected at Guymon, Oklahoma and Dalhart, Texas using NASA's C-130 aircraft were used to determine which of the all-weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. In comparison to other active and passive microwave sensors the L-band radiometer (1) was influenced least by ranges in surface roughness; (2) demonstrated the most sensitivity to soil moisture differences in terms of the range of return from the full range of soil moisture; and (3) was less sensitive to errors in measurement in relation to the range of sensor response. L-band emissivity related more strongly to soil moisture when moisture was expressed as percent of field capacity. The perpendicular vegetation index as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture.

  4. Downscaling soil moisture over East Asia through multi-sensor data fusion and optimization of regression trees

    NASA Astrophysics Data System (ADS)

    Park, Seonyoung; Im, Jungho; Park, Sumin; Rhee, Jinyoung

    2017-04-01

    Soil moisture is one of the most important keys for understanding regional and global climate systems. Soil moisture is directly related to agricultural processes as well as hydrological processes because soil moisture highly influences vegetation growth and determines water supply in the agroecosystem. Accurate monitoring of the spatiotemporal pattern of soil moisture is important. Soil moisture has been generally provided through in situ measurements at stations. Although field survey from in situ measurements provides accurate soil moisture with high temporal resolution, it requires high cost and does not provide the spatial distribution of soil moisture over large areas. Microwave satellite (e.g., advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR2), the Advanced Scatterometer (ASCAT), and Soil Moisture Active Passive (SMAP)) -based approaches and numerical models such as Global Land Data Assimilation System (GLDAS) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) provide spatial-temporalspatiotemporally continuous soil moisture products at global scale. However, since those global soil moisture products have coarse spatial resolution ( 25-40 km), their applications for agriculture and water resources at local and regional scales are very limited. Thus, soil moisture downscaling is needed to overcome the limitation of the spatial resolution of soil moisture products. In this study, GLDAS soil moisture data were downscaled up to 1 km spatial resolution through the integration of AMSR2 and ASCAT soil moisture data, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and Moderate Resolution Imaging Spectroradiometer (MODIS) data—Land Surface Temperature, Normalized Difference Vegetation Index, and Land cover—using modified regression trees over East Asia from 2013 to 2015. Modified regression trees were implemented using Cubist, a commercial software tool based on machine learning. An

  5. Is soil moisture initialization important for seasonal to decadal predictions?

    NASA Astrophysics Data System (ADS)

    Stacke, Tobias; Hagemann, Stefan

    2014-05-01

    The state of soil moisture can can have a significant impact on regional climate conditions for short time scales up to several months. However, focusing on seasonal to decadal time scales, it is not clear whether the predictive skill of global a Earth System Model might be enhanced by assimilating soil moisture data or improving the initial soil moisture conditions with respect to observations. As a first attempt to provide answers to this question, we set up an experiment to investigate the life time (memory) of extreme soil moisture states in the coupled land-atmosphere model ECHAM6-JSBACH, which is part of the Max Planck Institute for Meteorology's Earth System Model (MPI-ESM). This experiment consists of an ensemble of 3 years simulations which are initialized with extreme wet and dry soil moisture states for different seasons and years. Instead of using common thresholds like wilting point or critical soil moisture, the extreme states were extracted from a reference simulation to ensure that they are within the range of simulated climate variability. As a prerequisite for this experiment, the soil hydrology in JSBACH was improved by replacing the bucket-type soil hydrology scheme with a multi-layer scheme. This new scheme is a more realistic representation of the soil, including percolation and diffusion fluxes between up to five separate layers, the limitation of bare soil evaporation to the uppermost soil layer and the addition of a long term water storage below the root zone in regions with deep soil. While the hydrological cycle is not strongly affected by this new scheme, it has some impact on the simulated soil moisture memory which is mostly strengthened due to the additional deep layer water storage. Ensemble statistics of the initialization experiment indicate perturbation lengths between just a few days up to several seasons for some regions. In general, the strongest effects are seen for wet initialization during northern winter over cold and humid

  6. Mapping surface soil moisture with L-band radiometric measurements

    NASA Technical Reports Server (NTRS)

    Wang, James R.; Shiue, James C.; Schmugge, Thomas J.; Engman, Edwin T.

    1989-01-01

    A NASA C-130 airborne remote sensing aircraft was used to obtain four-beam pushbroom microwave radiometric measurements over two small Kansas tall-grass prairie region watersheds, during a dry-down period after heavy rainfall in May and June, 1987. While one of the watersheds had been burned 2 months before these measurements, the other had not been burned for over a year. Surface soil-moisture data were collected at the time of the aircraft measurements and correlated with the corresponding radiometric measurements, establishing a relationship for surface soil-moisture mapping. Radiometric sensitivity to soil moisture variation is higher in the burned than in the unburned watershed; surface soil moisture loss is also faster in the burned watershed.

  7. Analysis of in situ resources of for the Soil Moisture Active Passive Validation Experiments in 2015 and 2016

    USDA-ARS?s Scientific Manuscript database

    With the launch of the Soil Moisture Active Passive Mission (SMAP) in 2015, a new era of soil moisture monitoring was begun. Soil moisture is available on a near daily basis at a 36 km resolution for the globe. But this dataset is only as valuable if its products are accurate and reliableas its acc...

  8. SMERGE: A multi-decadal root-zone soil moisture product for CONUS

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Dong, J.; Tobin, K. J.; Torres, R.

    2017-12-01

    Multi-decadal root-zone soil moisture products are of value for a range of water resource and climate applications. The NASA-funded root-zone soil moisture merging project (SMERGE) seeks to develop such products through the optimal merging of land surface model predictions with surface soil moisture retrievals acquired from multi-sensor remote sensing products. This presentation will describe the creation and validation of a daily, multi-decadal (1979-2015), vertically-integrated (both surface to 40 cm and surface to 100 cm), 0.125-degree root-zone product over the contiguous United States (CONUS). The modeling backbone of the system is based on hourly root-zone soil moisture simulations generated by the Noah model (v3.2) operating within the North American Land Data Assimilation System (NLDAS-2). Remotely-sensed surface soil moisture retrievals are taken from the multi-sensor European Space Agency Climate Change Initiative soil moisture data set (ESA CCI SM). In particular, the talk will detail: 1) the exponential smoothing approach used to convert surface ESA CCI SM retrievals into root-zone soil moisture estimates, 2) the averaging technique applied to merge (temporally-sporadic) remotely-sensed with (continuous) NLDAS-2 land surface model estimates of root-zone soil moisture into the unified SMERGE product, and 3) the validation of the SMERGE product using long-term, ground-based soil moisture datasets available within CONUS.

  9. An Evaluation of Soil Moisture Retrievals Using Aircraft and Satellite Passive Microwave Observations during SMEX02

    NASA Technical Reports Server (NTRS)

    Bolten, John D.; Lakshmi, Venkat

    2009-01-01

    The Soil Moisture Experiments conducted in Iowa in the summer of 2002 (SMEX02) had many remote sensing instruments that were used to study the spatial and temporal variability of soil moisture. The sensors used in this paper (a subset of the suite of sensors) are the AQUA satellite-based AMSR-E (Advanced Microwave Scanning Radiometer- Earth Observing System) and the aircraft-based PSR (Polarimetric Scanning Radiometer). The SMEX02 design focused on the collection of near simultaneous brightness temperature observations from each of these instruments and in situ soil moisture measurements at field- and domain- scale. This methodology provided a basis for a quantitative analysis of the soil moisture remote sensing potential of each instrument using in situ comparisons and retrieved soil moisture estimates through the application of a radiative transfer model. To this end, the two sensors are compared with respect to their estimation of soil moisture.

  10. The Value of SMAP Soil Moisture Observations For Agricultural Applications

    NASA Astrophysics Data System (ADS)

    Mladenova, I. E.; Bolten, J. D.; Crow, W.; Reynolds, C. A.

    2017-12-01

    Knowledge of the amount of soil moisture (SM) in the root zone (RZ) is critical source of information for crop analysts and agricultural agencies as it controls crop development and crop condition changes and can largely impact end-of-season yield. Foreign Agricultural Services (FAS), a subdivision of U.S. Department of Agriculture (USDA) that is in charge with providing information on current and expected global crop supply and demand estimates, has been relying on RZSM estimates generated by the modified two-layer Palmer model, which has been enhanced to allow the assimilation of satellite-based soil moisture data. Generally the accuracy of model-based soil moisture estimates is dependent on the precision of the forcing data that drives the model and more specifically, the accuracy of the precipitation data. Data assimilation gives the opportunity to correct for such precipitation-related inaccuracies and enhance the quality of the model estimates. Here we demonstrate the value of ingesting passive-based soil moisture observations derived from the Soil Moisture Active Passive (SMAP) mission. In terms of agriculture, general understanding is that the change in soil moisture conditions precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop conditions. Therefore, we assess the accuracy of the SMAP enhanced Palmer model by examining the lag rank cross-correlation coefficient between the model generated soil moisture observations and the Normalized Difference Vegetation Index (NDVI).

  11. Accomplishments of the NASA Johnson Space Center portion of the soil moisture project in fiscal year 1981

    NASA Technical Reports Server (NTRS)

    Paris, J. F.; Arya, L. M.; Davidson, S. A.; Hildreth, W. W.; Richter, J. C.; Rosenkranz, W. A.

    1982-01-01

    The NASA/JSC ground scatterometer system was used in a row structure and row direction effects experiment to understand these effects on radar remote sensing of soil moisture. Also, a modification of the scatterometer system was begun and is continuing, to allow cross-polarization experiments to be conducted in fiscal years 1982 and 1983. Preprocessing of the 1978 agricultural soil moisture experiment (ASME) data was completed. Preparations for analysis of the ASME data is fiscal year 1982 were completed. A radar image simulation procedure developed by the University of Kansas is being improved. Profile soil moisture model outputs were compared quantitatively for the same soil and climate conditions. A new model was developed and tested to predict the soil moisture characteristic (water tension versus volumetric soil moisture content) from particle-size distribution and bulk density data. Relationships between surface-zone soil moisture, surface flux, and subsurface moisture conditions are being studied as well as the ways in which measured soil moisture (as obtained from remote sensing) can be used for agricultural applications.

  12. Evaluation of soil pH and moisture content on in-situ ozonation of pyrene in soils.

    PubMed

    Luster-Teasley, S; Ubaka-Blackmoore, N; Masten, S J

    2009-08-15

    In this study, pyrene spiked soil (300 ppm) was ozonated at pH levels of 2, 6, and 8 and three moisture contents. It was found that soil pH and moisture content impacted the effectiveness of PAH oxidation in unsaturated soils. In air-dried soils, as pH increased, removal increased, such that pyrene removal efficiencies at pH 6 and pH 8 reached 95-97% at a dose of 2.22 mg O(3)/mg pyrene. Ozonation at 16.2+/-0.45 mg O(3)/ppm pyrene in soil resulted in 81-98% removal of pyrene at all pH levels tested. Saturated soils were tested at dry, 5% or 10% moisture conditions. The removal of pyrene was slower in moisturized soils, with the efficiency decreasing as the moisture content increased. Increasing the pH of the soil having a moisture content of 5% resulted in improved pyrene removals. On the contrary, in the soil having a moisture content of 10%, as the pH increased, pyrene removal decreased. Contaminated PAH soils were stored for 6 months to compare the efficiency of PAH removal in freshly contaminated soil and aged soils. PAH adsorption to soil was found to increase with longer exposure times; thus requiring much higher doses of ozone to effectively oxidize pyrene.

  13. Soil Moisture Extremes Observed by METOP ASCAT: Was 2012 an Exceptional Year?

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Paulik, Christoph; Hahn, Sebastian; Melzer, Thomas; Parinussa, Robert; de Jeu, Richard; Dorigo, Wouter; Chung, Daniel; Enenkel, Markus

    2013-04-01

    In summer 2012 the international press reported widely about the severe drought that had befallen large parts of the United States. Yet, the US drought was only one of several major droughts that occurred in 2012: Southeastern Europe, Central Asia, Brazil, India, Southern Australia and several other regions suffered from similarly dry soil conditions. This raises the question whether 2012 was an exceptionally dry year? In this presentation we will address this question by analyzing global soil moisture patterns as observed by the Advanced Scatterometer (ASCAT) flown on board of the METOP-A satellite. We firstly compare the 2012 ASCAT soil moisture data to all available ASCAT measurements acquired by the instrument since the launch of METOP-A in November 2006. Secondly, we compare the 2012 data to a long-term soil moisture data set derived by merging the ASCAT soil moisture data with other active and passive microwave soil moisture retrievals as described by Liu et al. (2012) and Wagner et al. (2012) (see also http://www.esa-soilmoisture-cci.org/). A first trend analysis of the latter long-term soil moisture data set carried out by Dorigo et al. (2012) has revealed that over the period 1988-2010 significant trends were observed over 27 % of the area covered by the data set, of which 73 % were negative (soil drying) and only 27 % were positive (soil wetting). In this presentation we will show how the inclusion of the years 2011 and 2012 affects the areal extent and strengths of these significant trends. REFERENCES Dorigo, W., R. de Jeu, D. Chung, R. Parinussa, Y. Liu, W. Wagner, D. Fernández-Prieto (2012) Evaluating global trends (1988-2010) in harmonized multi-satellite surface soil moisture, Geophysical Research Letters, 39, L18405, 1-7. Liu, Y.Y., W.A. Dorigo, R.M. Parinussa, R.A.M. de Jeu, W. Wagner, M.F. McCabe, J.P. Evans, A.I.J.M. van Dijk (2012) Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment

  14. The Contribution of Soil Moisture Information to Forecast Skill: Two Studies

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    2010-01-01

    This talk briefly describes two recent studies on the impact of soil moisture information on hydrological and meteorological prediction. While the studies utilize soil moisture derived from the integration of large-scale land surface models with observations-based meteorological data, the results directly illustrate the potential usefulness of satellite-derived soil moisture information (e.g., from SMOS and SMAP) for applications in prediction. The first study, the GEWEX- and ClIVAR-sponsored GLACE-2 project, quantifies the contribution of realistic soil moisture initialization to skill in subseasonal forecasts of precipitation and air temperature (out to two months). The multi-model study shows that soil moisture information does indeed contribute skill to the forecasts, particularly for air temperature, and particularly when the initial local soil moisture anomaly is large. Furthermore, the skill contributions tend to be larger where the soil moisture initialization is more accurate, as measured by the density of the observational network contributing to the initialization. The second study focuses on streamflow prediction. The relative contributions of snow and soil moisture initialization to skill in streamflow prediction at seasonal lead, in the absence of knowledge of meteorological anomalies during the forecast period, were quantified with several land surface models using uniquely designed numerical experiments and naturalized streamflow data covering mUltiple decades over the western United States. In several basins, accurate soil moisture initialization is found to contribute significant levels of predictive skill. Depending on the date of forecast issue, the contributions can be significant out to leads of six months. Both studies suggest that improvements in soil moisture initialization would lead to increases in predictive skill. The relevance of SMOS and SMAP satellite-based soil moisture information to prediction are discussed in the context of these

  15. A Round Robin evaluation of AMSR-E soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Mittelbach, Heidi; Hirschi, Martin; Nicolai-Shaw, Nadine; Gruber, Alexander; Dorigo, Wouter; de Jeu, Richard; Parinussa, Robert; Jones, Lucas A.; Wagner, Wolfgang; Seneviratne, Sonia I.

    2014-05-01

    Large-scale and long-term soil moisture observations based on remote sensing are promising data sets to investigate and understand various processes of the climate system including the water and biochemical cycles. Currently, the ESA Climate Change Initiative for soil moisture develops and evaluates a consistent global long-term soil moisture data set, which is based on merging passive and active remotely sensed soil moisture. Within this project an inter-comparison of algorithms for AMSR-E and ASCAT Level 2 products was conducted separately to assess the performance of different retrieval algorithms. Here we present the inter-comparison of AMSR-E Level 2 soil moisture products. These include the public data sets from University of Montana (UMT), Japan Aerospace and Space Exploration Agency (JAXA), VU University of Amsterdam (VUA; two algorithms) and National Aeronautics and Space Administration (NASA). All participating algorithms are applied to the same AMSR-E Level 1 data set. Ascending and descending paths of scaled surface soil moisture are considered and evaluated separately in daily and monthly resolution over the 2007-2011 time period. Absolute values of soil moisture as well as their long-term anomalies (i.e. removing the mean seasonal cycle) and short-term anomalies (i.e. removing a five weeks moving average) are evaluated. The evaluation is based on conventional measures like correlation and unbiased root-mean-square differences as well as on the application of the triple collocation method. As reference data set, surface soil moisture of 75 quality controlled soil moisture sites from the International Soil Moisture Network (ISMN) are used, which cover a wide range of vegetation density and climate conditions. For the application of the triple collocation method, surface soil moisture estimates from the Global Land Data Assimilation System are used as third independent data set. We find that the participating algorithms generally display a better

  16. Contribution of Soil Moisture Information to Streamflow Prediction in the Snowmelt Season: A Continental-Scale Analysis

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Mahanama, Sarith; Koster, Randal; Lettenmaier, Dennis

    2009-01-01

    In areas dominated by winter snowcover, the prediction of streamflow during the snowmelt season may benefit from three pieces of information: (i) the accurate prediction of weather variability (precipitation, etc.) leading up to and during the snowmelt season, (ii) estimates of the amount of snow present during the winter season, and (iii) estimates of the amount of soil moisture underlying the snowpack during the winter season. The importance of accurate meteorological predictions and wintertime snow estimates is obvious. The contribution of soil moisture to streamflow prediction is more subtle yet potentially very important. If the soil is dry below the snowpack, a significant fraction of the snowmelt may be lost to streamflow and potential reservoir storage, since it may infiltrate the soil instead for later evaporation. Such evaporative losses are presumably smaller if the soil below the snowpack is wet. In this paper, we use a state-of-the-art land surface model to quantify the contribution of wintertime snow and soil moisture information -- both together and separately -- to skill in forecasting springtime streamflow. We find that soil moisture information indeed contributes significantly to streamflow prediction skill.

  17. Microstrip transmission line for soil moisture measurement

    NASA Astrophysics Data System (ADS)

    Chen, Xuemin; Li, Jing; Liang, Renyue; Sun, Yijie; Liu, C. Richard; Rogers, Richard; Claros, German

    2004-12-01

    Pavement life span is often affected by the amount of voids in the base and subgrade soils, especially moisture content in pavement. Most available moisture sensors are based on the capacitive sensing using planar blades. Since the planar sensor blades are fabricated on the same surface to reduce the overall size of the sensor, such structure cannot provide very high accuracy for moisture content measurement. As a consequence, a typical capacitive moisture sensor has an error in the range of 30%. A more accurate measurement is based on the time domain refelctometer (TDR) measurement. However, typical TDR system is fairly expensive equipment, very large in size, and difficult to operate, the moisture content measurement is limited. In this paper, a novel microstrip transmission line based moisture sensor is presented. This sensor uses the phase shift measurement of RF signal going through a transmission line buried in the soil to be measured. Since the amplitude of the transmission measurement is a strong function of the conductivity (loss of the media) and the imaginary part of dielectric constant, and the phase is mainly a strong function of the real part of the dielectric constant, measuring phase shift in transmission mode can directly obtain the soil moisture information. This sensor was designed and implemented. Sensor networking was devised. Both lab and field data show that this sensor is sensitive and accurate.

  18. Aircraft active microwave measurements for estimating soil moisture

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Chang, A.; Schmugge, T. J.

    1981-01-01

    Both active and passive microwave sensors are sensitive to variations in near-surface soil moisture. The principal advantage of active microwave systems for soil moisture applications is that high spatial resolution can be retained even at satellite attitudes. The considered investigation is concerned with the use of active microwave scatterometers for estimating near-surface soil moisture. Microwave scatterometer data were obtained during a series of three aircraft flights over a group of Oklahoma research watersheds during May 1978. Data were obtained for the C, L, and P bands at angles of incidence between 5 and 50 degrees. The best results were obtained using C band data at incidence angles of 10 and 15 degrees and soil moisture depth of 0 to 15 cm. These results were in excellent agreement with the conclusions of the truck-mounted scatterometer measurement program reported by Ulaby et al. (1978, 1979).

  19. Soil moisture by extraction and gas chromatography

    NASA Technical Reports Server (NTRS)

    Merek, E. L.; Carle, G. C.

    1973-01-01

    To determine moisture content of soils rapidly and conveniently extract moisture with methanol and determine water content of methanol extract by gas chromatography. Moisture content of sample is calculated from weight of water and methanol in aliquot and weight of methanol added to sample.

  20. Agricultural Decision Support Through Robust Assimilation of Satellite Derived Soil Moisture Estimates

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cruise, J.; Mecikalski, J. R.

    2012-12-01

    Soil Moisture is a key component in the hydrological process, affects surface and boundary layer energy fluxes and is the driving factor in agricultural production. Multiple in situ soil moisture measuring instruments such as Time-domain Reflectrometry (TDR), Nuclear Probes etc. are in use along with remote sensing methods like Active and Passive Microwave (PM) sensors. In situ measurements, despite being more accurate, can only be obtained at discrete points over small spatial scales. Remote sensing estimates, on the other hand, can be obtained over larger spatial domains with varying spatial and temporal resolutions. Soil moisture profiles derived from satellite based thermal infrared (TIR) imagery can overcome many of the problems associated with laborious in-situ observations over large spatial domains. An area where soil moisture observation and assimilation is receiving increasing attention is agricultural crop modeling. This study revolves around the use of the Decision Support System for Agrotechnology Transfer (DSSAT) crop model to simulate corn yields under various forcing scenarios. First, the model was run and calibrated using observed precipitation and model generated soil moisture dynamics. Next, the modeled soil moisture was updated using estimates derived from satellite based TIR imagery and the Atmospheric Land Exchange Inverse (ALEXI) model. We selected three climatically different locations to test the concept. Test Locations were selected to represent varied climatology. Bell Mina, Alabama - South Eastern United States, representing humid subtropical climate. Nabb, Indiana - Mid Western United States, representing humid continental climate. Lubbok, Texas - Southern United States, representing semiarid steppe climate. A temporal (2000-2009) correlation analysis of the soil moisture values from both DSSAT and ALEXI were performed and validated against the Land Information System (LIS) soil moisture dataset. The results clearly show strong

  1. Soil moisture-soil temperature interrelationships on a sandy-loam soil exposed to full sunlight

    Treesearch

    David A. Marquis

    1967-01-01

    In a study of birch regeneration in New Hampshire, soil moisture and temperature were found to be intimately related. Not only does low moisture lead to high temperature, but high temperature undoubtedly accelerates soil drying, setting up a vicious cycle of heating and drying that may prevent seed germination or kill seedlings.

  2. Using Remotely Sensed Soil Moisture to Estimate Fire Risk in Tropical Peatlands

    NASA Astrophysics Data System (ADS)

    Dadap, N.; Cobb, A.; Hoyt, A.; Harvey, C. F.; Konings, A. G.

    2017-12-01

    Tropical peatlands in Equatorial Asia have become more vulnerable to fire due to deforestation and peatland drainage over the last 30 years. In these regions, water table depth has been shown to play an important role in mediating fire risk as it serves as a proxy for peat moisture content. However, water table depth observations are sparse and expensive. Soil moisture could provide a more direct indicator of fire risk than water table depth. In this study, we use new soil moisture retrievals from the Soil Moisture Active Passive (SMAP) satellite to demonstrate that - contrary to popular wisdom - remotely sensed soil moisture observations are possible over most Southeast Asian peatlands. Soil moisture estimation in this region was previously thought to be impossible over tropical peatlands because of dense vegetation cover. We show that vegetation density is sufficiently low across most Equatorial Asian peatlands to allow soil moisture estimation, and hypothesize that deforestation and other anthropogenic changes in land cover have combined to reduce overall vegetation density sufficient to allow soil moisture estimation. We further combine burned area estimates from the Global Fire Emissions Database and SMAP soil moisture retrievals to show that soil moisture provides a strong signal for fire risk in peatlands, with fires occurring at a much greater rate over drier soils. We will also develop an explicit fire risk model incorporating soil moisture with additional climatic, land cover, and anthropogenic predictor variables.

  3. Preliminary assessment of soil moisture over vegetation

    NASA Technical Reports Server (NTRS)

    Carlson, T. N.

    1986-01-01

    Modeling of surface energy fluxes was combined with in-situ measurement of surface parameters, specifically the surface sensible heat flux and the substrate soil moisture. A vegetation component was incorporated in the atmospheric/substrate model and subsequently showed that fluxes over vegetation can be very much different than those over bare soil for a given surface-air temperature difference. The temperature signatures measured by a satellite or airborne radiometer should be interpreted in conjunction with surface measurements of modeled parameters. Paradoxically, analyses of the large-scale distribution of soil moisture availability shows that there is a very high correlation between antecedent precipitation and inferred surface moisture availability, even when no specific vegetation parameterization is used in the boundary layer model. Preparatory work was begun in streamlining the present boundary layer model, developing better algorithms for relating surface temperatures to substrate moisture, preparing for participation in the French HAPEX experiment, and analyzing aircraft microwave and radiometric surface temperature data for the 1983 French Beauce experiments.

  4. Improving Simulated Soil Moisture Fields Through Assimilation of AMSR-E Soil Moisture Retrievals with an Ensemble Kalman Filter and a Mass Conservation Constraint

    NASA Technical Reports Server (NTRS)

    Li, Bailing; Toll, David; Zhan, Xiwu; Cosgrove, Brian

    2011-01-01

    Model simulated soil moisture fields are often biased due to errors in input parameters and deficiencies in model physics. Satellite derived soil moisture estimates, if retrieved appropriately, represent the spatial mean of soil moisture in a footprint area, and can be used to reduce model bias (at locations near the surface) through data assimilation techniques. While assimilating the retrievals can reduce model bias, it can also destroy the mass balance enforced by the model governing equation because water is removed from or added to the soil by the assimilation algorithm. In addition, studies have shown that assimilation of surface observations can adversely impact soil moisture estimates in the lower soil layers due to imperfect model physics, even though the bias near the surface is decreased. In this study, an ensemble Kalman filter (EnKF) with a mass conservation updating scheme was developed to assimilate the actual value of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture retrievals to improve the mean of simulated soil moisture fields by the Noah land surface model. Assimilation results using the conventional and the mass conservation updating scheme in the Little Washita watershed of Oklahoma showed that, while both updating schemes reduced the bias in the shallow root zone, the mass conservation scheme provided better estimates in the deeper profile. The mass conservation scheme also yielded physically consistent estimates of fluxes and maintained the water budget. Impacts of model physics on the assimilation results are discussed.

  5. Use of soil moisture sensors for irrigation scheduling

    USDA-ARS?s Scientific Manuscript database

    Various types of soil moisture sensing devices have been developed and are commercially available for water management applications. Each type of soil moisture sensors has its advantages and shortcomings in terms of accuracy, reliability, and cost. Resistive and capacitive based sensors, and time-d...

  6. Divergent surface and total soil moisture projections under global warming

    USGS Publications Warehouse

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  7. Enhancing SMAP Soil Moisture Retrievals via Superresolution Techniques

    NASA Astrophysics Data System (ADS)

    Beale, K. D.; Ebtehaj, A. M.; Romberg, J. K.; Bras, R. L.

    2017-12-01

    Soil moisture is a key state variable that modulates land-atmosphere interactions and its high-resolution global scale estimates are essential for improved weather forecasting, drought prediction, crop management, and the safety of troop mobility. Currently, NASA's Soil Moisture Active/Passive (SMAP) satellite provides a global picture of soil moisture variability at a resolution of 36 km, which is prohibitive for some hydrologic applications. The goal of this research is to enhance the resolution of SMAP passive microwave retrievals by a factor of 2 to 4 using modern superresolution techniques that rely on the knowledge of high-resolution land surface models. In this work, we explore several super-resolution techniques including an empirical dictionary method, a learned dictionary method, and a three-layer convolutional neural network. Using a year of global high-resolution land surface model simulations as training set, we found that we are able to produce high-resolution soil moisture maps that outperform the original low-resolution observations both qualitatively and quantitatively. In particular, on a patch-by-patch basis we are able to produce estimates of high-resolution soil moisture maps that improve on the original low-resolution patches by on average 6% in terms of mean-squared error, and 14% in terms of the structural similarity index.

  8. Evaluation of Long-term Soil Moisture Proxies in the U.S. Great Plains

    NASA Astrophysics Data System (ADS)

    Yuan, S.; Quiring, S. M.

    2016-12-01

    Soil moisture plays an important role in land-atmosphere interactions through both surface energy and water balances. However, despite its importance, there are few long-term records of observed soil moisture for investigating long-term spatial and temporal variations of soil moisture. Hence, it is necessary to find suitable approximations of soil moisture observations. 5 drought indices will be compared with simulated and observed soil moisture over the U.S. Great Plains during two time periods (1980 - 2012 and 2003 - 2012). Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer Z Index (zindex) and Crop Moisture Index (CMI) will be calculated by PRISM data. The soil moisture simulations will be derived from NLDAS. In situ soil moisture will be obtained from North American Soil Moisture Database. The evaluation will focus on three main aspects: trends, variations and persistence. The results will support further research investigating long-term variations in soil moisture-climate interactions.

  9. The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert.

    PubMed

    Li, Bonan; Wang, Lixin; Kaseke, Kudzai F; Li, Lin; Seely, Mary K

    2016-01-01

    Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months' continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling

  10. The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert

    PubMed Central

    Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Li, Lin; Seely, Mary K.

    2016-01-01

    Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months’ continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling

  11. Validation of SMAP Surface Soil Moisture Products with Core Validation Sites

    NASA Technical Reports Server (NTRS)

    Colliander, A.; Jackson, T. J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S. B.; Cosh, M. H.; Dunbar, R. S.; Dang, L.; Pashaian, L.; hide

    2017-01-01

    The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well calibrated in situ soil moisture measurements within SMAP product grid pixels for diverse conditions and locations.The estimation of the average soil moisture within the SMAP product grid pixels based on in situ measurements is more reliable when location specific calibration of the sensors has been performed and there is adequate replication over the spatial domain, with an up-scaling function based on analysis using independent estimates of the soil moisture distribution. SMAP fulfilled these requirements through a collaborative CalVal Partner program.This paper presents the results from 34 candidate core validation sites for the first eleven months of the SMAP mission. As a result of the screening of the sites prior to the availability of SMAP data, out of the 34 candidate sites 18 sites fulfilled all the requirements at one of the resolution scales (at least). The rest of the sites are used as secondary information in algorithm evaluation. The results indicate that the SMAP radiometer-based soil moisture data product meets its expected performance of 0.04 cu m/cu m volumetric soil moisture (unbiased root mean square error); the combined radar-radiometer product is close to its expected performance of 0.04 cu m/cu m, and the radar-based product meets its target accuracy of 0.06 cu m/cu m (the lengths of the combined and radar-based products are truncated to about 10 weeks because of the SMAP radar failure). Upon completing the intensive CalVal phase of the mission the SMAP project will continue to enhance the products in the primary and extended geographic domains, in co-operation with the CalVal Partners, by continuing the comparisons over the existing core validation sites and inclusion of candidate sites that can address shortcomings.

  12. A multiyear study of soil moisture patterns across agricultural and forested landscapes

    NASA Astrophysics Data System (ADS)

    Georgakakos, C. B.; Hofmeister, K.; O'Connor, C.; Buchanan, B.; Walter, T.

    2017-12-01

    This work compares varying spatial and temporal soil moisture patterns in wet and dry years between forested and agricultural landscapes. This data set spans 6 years (2012-2017) of snow-free soil moisture measurements across multiple watersheds and land covers in New York State's Finger Lakes region. Due to the relatively long sampling period, we have captured fluctuations in soil moisture dynamics across wetter, dryer, and average precipitation years. We can therefore analyze response of land cover types to precipitation under varying climatic and hydrologic conditions. Across the study period, mean soil moisture in forest soils was significantly drier than in agricultural soils, and exhibited a smaller range of moisture conditions. In the drought year of 2016, soil moisture at all sites was significantly drier compared to the other years. When comparing the effects of land cover and year on soil moisture, we found that land cover had a more significant influence. Understanding the difference in landscape soil moisture dynamics between forested and agricultural land will help predict watershed responses to changing precipitation patterns in the future.

  13. Remote sensing of soil moisture with microwave radiometers

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Wilheit, T.; Webster, W., Jr.; Gloerson, P.

    1976-01-01

    Results are presented that were derived from measurements made by microwave radiometers during the March 1972 and February 1973 flights of National Aeronautics and Space Administration (NASA) Convair-9900 aircraft over agricultural test sites in the southwestern part of United States. The purpose of the missions was to study the use of microwave radiometers for the remote sensing of soil moisture. The microwave radiometers covered the 0.8- to 21-cm wavelength range. The results show a good linear correlation between the observed microwave brightness temperature and moisture content of the 0- to 1-cm layer of the soil. The results at the largest wavelength (21 cm) show the greatest sensitivity to soil moisture variations and indicate the possibility of sensing these variations through a vegetative canopy. The effect of soil texture on the emission from the soil was also studied and it was found that this effect can be compensated for by expressing soil moisture as a percent of field capacity for the soil. The results were compared with calculations based on a radiative transfer model for layered dielectrics and the agreement is very good at the longer wavelengths. At the shorter wavelengths, surface roughness effects are larger and the agreement becomes poorer.

  14. Evaluating Land-Atmosphere Interactions with the North American Soil Moisture Database

    NASA Astrophysics Data System (ADS)

    Giles, S. M.; Quiring, S. M.; Ford, T.; Chavez, N.; Galvan, J.

    2015-12-01

    The North American Soil Moisture Database (NASMD) is a high-quality observational soil moisture database that was developed to study land-atmosphere interactions. It includes over 1,800 monitoring stations the United States, Canada and Mexico. Soil moisture data are collected from multiple sources, quality controlled and integrated into an online database (soilmoisture.tamu.edu). The period of record varies substantially and only a few of these stations have an observation record extending back into the 1990s. Daily soil moisture observations have been quality controlled using the North American Soil Moisture Database QAQC algorithm. The database is designed to facilitate observationally-driven investigations of land-atmosphere interactions, validation of the accuracy of soil moisture simulations in global land surface models, satellite calibration/validation for SMOS and SMAP, and an improved understanding of how soil moisture influences climate on seasonal to interannual timescales. This paper provides some examples of how the NASMD has been utilized to enhance understanding of land-atmosphere interactions in the U.S. Great Plains.

  15. Soil moisture inferences from thermal infrared measurements of vegetation temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, R. D. (Principal Investigator)

    1981-01-01

    Thermal infrared measurements of wheat (Triticum durum) canopy temperatures were used in a crop water stress index to infer root zone soil moisture. Results indicated that one time plant temperature measurement cannot produce precise estimates of root zone soil moisture due to complicating plant factors. Plant temperature measurements do yield useful qualitative information concerning soil moisture and plant condition.

  16. Combined evaluation of optical and microwave satellite dataset for soil moisture deficit estimation

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K.; Han, Dawei; Islam, Tanvir; Singh, Sudhir Kumar; Gupta, Manika; Gupta, Dileep Kumar; Kumar, Pradeep

    2016-04-01

    Soil moisture is a key variable responsible for water and energy exchanges from land surface to the atmosphere (Srivastava et al., 2014). On the other hand, Soil Moisture Deficit (or SMD) can help regulating the proper use of water at specified time to avoid any agricultural losses (Srivastava et al., 2013b) and could help in preventing natural disasters, e.g. flood and drought (Srivastava et al., 2013a). In this study, evaluation of Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) and soil moisture from Soil Moisture and Ocean Salinity (SMOS) satellites are attempted for prediction of Soil Moisture Deficit (SMD). Sophisticated algorithm like Adaptive Neuro Fuzzy Inference System (ANFIS) is used for prediction of SMD using the MODIS and SMOS dataset. The benchmark SMD estimated from Probability Distributed Model (PDM) over the Brue catchment, Southwest of England, U.K. is used for all the validation. The performances are assessed in terms of Nash Sutcliffe Efficiency, Root Mean Square Error and the percentage of bias between ANFIS simulated SMD and the benchmark. The performance statistics revealed a good agreement between benchmark and the ANFIS estimated SMD using the MODIS dataset. The assessment of the products with respect to this peculiar evidence is an important step for successful development of hydro-meteorological model and forecasting system. The analysis of the satellite products (viz. SMOS soil moisture and MODIS LST) towards SMD prediction is a crucial step for successful hydrological modelling, agriculture and water resource management, and can provide important assistance in policy and decision making. Keywords: Land Surface Temperature, MODIS, SMOS, Soil Moisture Deficit, Fuzzy Logic System References: Srivastava, P.K., Han, D., Ramirez, M.A., Islam, T., 2013a. Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. Journal of Hydrology 498, 292-304. Srivastava, P.K., Han, D., Rico

  17. Study Variability of Seasonal Soil Moisture in Ensemble of CMIP5 Models Over South Asia During 1950-2005

    NASA Astrophysics Data System (ADS)

    Fahim, A. M.; Shen, R.; Yue, Z.; Di, W.; Mushtaq Shah, S.

    2015-12-01

    Moisture in the upper most layer of soil column from 14 different models under Coupled Model Intercomparison Project Phase-5 (CMIP5) project were analyzed for four seasons of the year. Aim of this study was to explore variability in soil moisture over south Asia using multi model ensemble and relationship between summer rainfall and soil moisture for spring and summer season. GLDAS (Global Land Data Assimilation System) dataset set was used for comparing CMIP5 ensemble mean soil moisture in different season. Ensemble mean represents soil moisture well in accordance with the geographical features; prominent arid regions are indicated profoundly. Empirical Orthogonal Function (EOF) analysis was applied to study the variability. First component of EOF explains 17%, 16%, 11% and 11% variability for spring, summer, autumn and winter season respectively. Analysis reveal increasing trend in soil moisture over most parts of Afghanistan, Central and north western parts of Pakistan, northern India and eastern to south eastern parts of China, in spring season. During summer, south western part of India exhibits highest negative trend while rest of the study area show minute trend (increasing or decreasing). In autumn, south west of India is under highest negative loadings. During winter season, north western parts of study area show decreasing trend. Summer rainfall has very week (negative or positive) spatial correlation, with spring soil moisture, while possess higher correlation with summer soil moisture. Our studies have significant contribution to understand complex nature of land - atmosphere interactions, as soil moisture prediction plays an important role in the cycle of sink and source of many air pollutants. Next level of research should be on filling the gaps between accurately measuring the soil moisture using satellite remote sensing and land surface modelling. Impact of soil moisture in tracking down different types of pollutant will also be studied.

  18. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation

    NASA Technical Reports Server (NTRS)

    Akbar, Ruzbeh; Cosh, Michael H.; O'Neill, Peggy E.; Entekhabi, Dara; Moghaddam, Mahta

    2017-01-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  19. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation.

    PubMed

    Akbar, Ruzbeh; Cosh, Michael H; O'Neill, Peggy E; Entekhabi, Dara; Moghaddam, Mahta

    2017-07-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithm's performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3/cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  20. Design of a global soil moisture initialization procedure for the simple biosphere model

    NASA Technical Reports Server (NTRS)

    Liston, G. E.; Sud, Y. C.; Walker, G. K.

    1993-01-01

    Global soil moisture and land-surface evapotranspiration fields are computed using an analysis scheme based on the Simple Biosphere (SiB) soil-vegetation-atmosphere interaction model. The scheme is driven with observed precipitation, and potential evapotranspiration, where the potential evapotranspiration is computed following the surface air temperature-potential evapotranspiration regression of Thomthwaite (1948). The observed surface air temperature is corrected to reflect potential (zero soil moisture stress) conditions by letting the ratio of actual transpiration to potential transpiration be a function of normalized difference vegetation index (NDVI). Soil moisture, evapotranspiration, and runoff data are generated on a daily basis for a 10-year period, January 1979 through December 1988, using observed precipitation gridded at a 4 deg by 5 deg resolution.

  1. Long-Term Evaluation of the AMSR-E Soil Moisture Product Over the Walnut Gulch Watershed, AZ

    NASA Astrophysics Data System (ADS)

    Bolten, J. D.; Jackson, T. J.; Lakshmi, V.; Cosh, M. H.; Drusch, M.

    2005-12-01

    The Advanced Microwave Scanning Radiometer -Earth Observing System (AMSR-E) was launched aboard NASA's Aqua satellite on May 4th, 2002. Quantitative estimates of soil moisture using the AMSR-E provided data have required routine radiometric data calibration and validation using comparisons of satellite observations, extended targets and field campaigns. The currently applied NASA EOS Aqua ASMR-E soil moisture algorithm is based on a change detection approach using polarization ratios (PR) of the calibrated AMSR-E channel brightness temperatures. To date, the accuracy of the soil moisture algorithm has been investigated on short time scales during field campaigns such as the Soil Moisture Experiments in 2004 (SMEX04). Results have indicated self-consistency and calibration stability of the observed brightness temperatures; however the performance of the moisture retrieval algorithm has been poor. The primary objective of this study is to evaluate the quality of the current version of the AMSR-E soil moisture product for a three year period over the Walnut Gulch Experimental Watershed (150 km2) near Tombstone, AZ; the northern study area of SMEX04. This watershed is equipped with hourly and daily recording of precipitation, soil moisture and temperature via a network of raingages and a USDA-NRCS Soil Climate Analysis Network (SCAN) site. Surface wetting and drying are easily distinguished in this area due to the moderately-vegetated terrain and seasonally intense precipitation events. Validation of AMSR-E derived soil moisture is performed from June 2002 to June 2005 using watershed averages of precipitation, and soil moisture and temperature data from the SCAN site supported by a surface soil moisture network. Long-term assessment of soil moisture algorithm performance is investigated by comparing temporal variations of moisture estimates with seasonal changes and precipitation events. Further comparisons are made with a standard soil dataset from the European

  2. Large-area Soil Moisture Surveys Using a Cosmic-ray Rover: Approaches and Results from Australia

    NASA Astrophysics Data System (ADS)

    Hawdon, A. A.; McJannet, D. L.; Renzullo, L. J.; Baker, B.; Searle, R.

    2017-12-01

    Recent improvements in satellite instrumentation has increased the resolution and frequency of soil moisture observations, and this in turn has supported the development of higher resolution land surface process models. Calibration and validation of these products is restricted by the mismatch of scales between remotely sensed and contemporary ground based observations. Although the cosmic ray neutron soil moisture probe can provide estimates soil moisture at a scale useful for the calibration and validation purposes, it is spatially limited to a single, fixed location. This scaling issue has been addressed with the development of mobile soil moisture monitoring systems that utilizes the cosmic ray neutron method, typically referred to as a `rover'. This manuscript describes a project designed to develop approaches for undertaking rover surveys to produce soil moisture estimates at scales comparable to satellite observations and land surface process models. A custom designed, trailer-mounted rover was used to conduct repeat surveys at two scales in the Mallee region of Victoria, Australia. A broad scale survey was conducted at 36 x 36 km covering an area of a standard SMAP pixel and an intensive scale survey was conducted over a 10 x 10 km portion of the broad scale survey, which is at a scale equivalent to that used for national water balance modelling. We will describe the design of the rover, the methods used for converting neutron counts into soil moisture and discuss factors controlling soil moisture variability. We found that the intensive scale rover surveys produced reliable soil moisture estimates at 1 km resolution and the broad scale at 9 km resolution. We conclude that these products are well suited for future analysis of satellite soil moisture retrievals and finer scale soil moisture models.

  3. A Citizen Science Soil Moisture Sensor to Support SMAP Calibration/Validation

    NASA Astrophysics Data System (ADS)

    Podest, E.; Das, N. N.

    2016-12-01

    The Soil Moisture Active Passive (SMAP) satellite mission was launched in Jan. 2015 and is currently acquiring global measurements of soil moisture in the top 5 cm of the soil every 3 days. SMAP has partnered with the GLOBE program to engage students from around the world to collect in situ soil moisture and help validate SMAP measurements. The current GLOBE SMAP soil moisture protocol consists in collecting a soil sample, weighing, drying and weighing it again in order to determine the amount of water in the soil. Preparation and soil sample collection can take up to 20 minutes and drying can take up to 3 days. We have hence developed a soil moisture measurement device based on Arduino-like microcontrollers along with off-the-shelf and homemade sensors that are accurate, robust, inexpensive and quick and easy to use so that they can be implemented by the GLOBE community and citizen scientists alike. This talk will discuss building, calibration and validation of the soil moisture measuring device and assessing the quality of the measurements collected. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  4. Evaluation of a Soil Moisture Data Assimilation System Over the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Bolten, J. D.; Crow, W. T.; Zhan, X.; Reynolds, C. A.; Jackson, T. J.

    2008-12-01

    A data assimilation system has been designed to integrate surface soil moisture estimates from the EOS Advanced Microwave Scanning Radiometer (AMSR-E) with an online soil moisture model used by the USDA Foreign Agriculture Service for global crop estimation. USDA's International Production Assessment Division (IPAD) of the Office of Global Analysis (OGA) ingests global soil moisture within a Crop Assessment Data Retrieval and Evaluation (CADRE) Decision Support System (DSS) to provide nowcasts of crop conditions and agricultural-drought. This information is primarily used to derive mid-season crop yield estimates for the improvement of foreign market access for U.S. agricultural products. The CADRE is forced by daily meteorological observations (precipitation and temperature) provided by the Air Force Weather Agency (AFWA) and World Meteorological Organization (WMO). The integration of AMSR-E observations into the two-layer soil moisture model employed by IPAD can potentially enhance the reliability of the CADRE soil moisture estimates due to AMSR-E's improved repeat time and greater spatial coverage. Assimilation of the AMSR-E soil moisture estimates is accomplished using a 1-D Ensemble Kalman filter (EnKF) at daily time steps. A diagnostic calibration of the filter is performed using innovation statistics by accurately weighting the filter observation and modeling errors for three ranges of vegetation biomass density estimated using historical data from the Advanced Very High Resolution Radiometer (AVHRR). Assessment of the AMSR-E assimilation has been completed for a five year duration over the conterminous United States. To evaluate the ability of the filter to compensate for incorrect precipitation forcing into the model, a data denial approach is employed by comparing soil moisture results obtained from separate model simulations forced with precipitation products of varying uncertainty. An analysis of surface and root-zone anomalies is presented for each

  5. Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain

    NASA Astrophysics Data System (ADS)

    Gruber, A.; Crow, W. T.; Dorigo, W. A.

    2018-02-01

    Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model-based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two-dimensional (2-D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground-based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2-D system is compared to that obtained from the 1-D assimilation of remote sensing retrievals to assess the value of ground-based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite-based surface soil moisture retrievals.

  6. The NASA Soil Moisture Active Passive (SMAP) Mission: Overview

    NASA Technical Reports Server (NTRS)

    O'Neill, Peggy; Entekhabi, Dara; Njoku, Eni; Kellogg, Kent

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council?s Decadal Survey [1]. Its mission design consists of L-band radiometer and radar instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every 2-3 days. The combined active/passive microwave soil moisture product will have a spatial resolution of 10 km and a mean latency of 24 hours. In addition, the SMAP surface observations will be combined with advanced modeling and data assimilation to provide deeper root zone soil moisture and net ecosystem exchange of carbon. SMAP is expected to launch in the late 2014 - early 2015 time frame.

  7. SMAP Level 4 Surface and Root Zone Soil Moisture

    NASA Technical Reports Server (NTRS)

    Reichle, R.; De Lannoy, G.; Liu, Q.; Ardizzone, J.; Kimball, J.; Koster, R.

    2017-01-01

    The SMAP Level 4 soil moisture (L4_SM) product provides global estimates of surface and root zone soil moisture, along with other land surface variables and their error estimates. These estimates are obtained through assimilation of SMAP brightness temperature observations into the Goddard Earth Observing System (GEOS-5) land surface model. The L4_SM product is provided at 9 km spatial and 3-hourly temporal resolution and with about 2.5 day latency. The soil moisture and temperature estimates in the L4_SM product are validated against in situ observations. The L4_SM product meets the required target uncertainty of 0.04 m(exp. 3)m(exp. -3), measured in terms of unbiased root-mean-square-error, for both surface and root zone soil moisture.

  8. Soil moisture dynamics and their effect on bioretention performance in Northeast Ohio

    NASA Astrophysics Data System (ADS)

    Bush, S. A.; Jefferson, A.; Jarden, K.; Kinsman-Costello, L. E.; Grieser, J.

    2014-12-01

    time and peak flow, are altered relative to a control street. This analysis suggests that street-scale implementation of bioretention can reduce the impact of impervious surface on stormflows, but more information is needed to fully understand how soil moisture of the bioretentions affects inter-storm variability in performance.

  9. Validation of SMAP surface soil moisture products with core validation sites

    USDA-ARS?s Scientific Manuscript database

    The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well-calibrated in situ soil moisture measurements within SMAP product grid pixels for diver...

  10. Precipitation estimation using L-Band and C-Band soil moisture retrievals

    USDA-ARS?s Scientific Manuscript database

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterome...

  11. Development and Validation of The SMAP Enhanced Passive Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Chan, S.; Bindlish, R.; O'Neill, P.; Jackson, T.; Chaubell, J.; Piepmeier, J.; Dunbar, S.; Colliander, A.; Chen, F.; Entekhabi, D.; hide

    2017-01-01

    Since the beginning of its routine science operation in March 2015, the NASA SMAP observatory has been returning interference-mitigated brightness temperature observations at L-band (1.41 GHz) frequency from space. The resulting data enable frequent global mapping of soil moisture with a retrieval uncertainty below 0.040 cu m/cu m at a 36 km spatial scale. This paper describes the development and validation of an enhanced version of the current standard soil moisture product. Compared with the standard product that is posted on a 36 km grid, the new enhanced product is posted on a 9 km grid. Derived from the same time-ordered brightness temperature observations that feed the current standard passive soil moisture product, the enhanced passive soil moisture product leverages on the Backus-Gilbert optimal interpolation technique that more fully utilizes the additional information from the original radiometer observations to achieve global mapping of soil moisture with enhanced clarity. The resulting enhanced soil moisture product was assessed using long-term in situ soil moisture observations from core validation sites located in diverse biomes and was found to exhibit an average retrieval uncertainty below 0.040 cu m/cu m. As of December 2016, the enhanced soil moisture product has been made available to the public from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center.

  12. Radar for Measuring Soil Moisture Under Vegetation

    NASA Technical Reports Server (NTRS)

    Moghaddam, Mahta; Moller, Delwyn; Rodriguez, Ernesto; Rahmat-Samii, Yahya

    2004-01-01

    A two-frequency, polarimetric, spaceborne synthetic-aperture radar (SAR) system has been proposed for measuring the moisture content of soil as a function of depth, even in the presence of overlying vegetation. These measurements are needed because data on soil moisture under vegetation canopies are not available now and are necessary for completing mathematical models of global energy and water balance with major implications for global variations in weather and climate.

  13. Evaluation of uncertainty in field soil moisture estimations by cosmic-ray neutron sensing

    NASA Astrophysics Data System (ADS)

    Scheiffele, Lena Maria; Baroni, Gabriele; Schrön, Martin; Ingwersen, Joachim; Oswald, Sascha E.

    2017-04-01

    wheat (Pforzheim, 2013) and maize (Braunschweig, 2014) and differ in soil type and management. The results confirm a general good agreement between soil moisture estimated by CRNS and the soil moisture network. However, several sources of uncertainty were identified i.e., overestimation of dry conditions, strong effects of the additional hydrogen pools and an influence of the vertical soil moisture profile. Based on that, a global sensitivity analysis based on Monte Carlo sampling can be performed and evaluated in terms of soil moisture and footprint characteristics. The results allow quantifying the role of the different factors and identifying further improvements in the method.

  14. Joint microwave and infrared studies for soil moisture determination

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.; Schieldge, J. P.; Kahle, A. B. (Principal Investigator)

    1980-01-01

    The feasibility of using a combined microwave-thermal infrared system to determine soil moisture content is addressed. Of particular concern are bare soils. The theoretical basis for microwave emission from soils and the transport of heat and moisture in soils is presented. Also, a description is given of the results of two field experiments held during vernal months in the San Joaquin Valley of California.

  15. Examining diel patterns of soil and xylem moisture using electrical resistivity imaging

    NASA Astrophysics Data System (ADS)

    Mares, Rachel; Barnard, Holly R.; Mao, Deqiang; Revil, André; Singha, Kamini

    2016-05-01

    The feedbacks among forest transpiration, soil moisture, and subsurface flowpaths are poorly understood. We investigate how soil moisture is affected by daily transpiration using time-lapse electrical resistivity imaging (ERI) on a highly instrumented ponderosa pine and the surrounding soil throughout the growing season. By comparing sap flow measurements to the ERI data, we find that periods of high sap flow within the diel cycle are aligned with decreases in ground electrical conductivity and soil moisture due to drying of the soil during moisture uptake. As sap flow decreases during the night, the ground conductivity increases as the soil moisture is replenished. The mean and variance of the ground conductivity decreases into the summer dry season, indicating drier soil and smaller diel fluctuations in soil moisture as the summer progresses. Sap flow did not significantly decrease through the summer suggesting use of a water source deeper than 60 cm to maintain transpiration during times of shallow soil moisture depletion. ERI captured spatiotemporal variability of soil moisture on daily and seasonal timescales. ERI data on the tree showed a diel cycle of conductivity, interpreted as changes in water content due to transpiration, but changes in sap flow throughout the season could not be interpreted from ERI inversions alone due to daily temperature changes.

  16. Correlation Between Soil Moisture and Dust Emissions: An Investigation for Global Climate Modeling

    NASA Technical Reports Server (NTRS)

    Fredrickson, Carley; Tan, Qian

    2017-01-01

    This work is using the newly available NASA SMAP soil moisture measurement data to evaluate its impact on the atmospheric dust emissions. Dust is an important component of atmospheric aerosols, which affects both climate and air quality. In this work, we focused on semi-desert regions, where dust emissions show seasonal variations due to soil moisture changes, i.e. in Sahel of Africa. We first identified three Aerosol Robotic Network (AERONET) sites in the Sahel (IER_Cinzana, Banizoumbou, and Zinder_Airport). We then utilized measurements of aerosol optical depth (AOD), fine mode fraction, size distribution, and single-scattering albedo and its wave-length dependence to select dust plumes from the available measurements We matched the latitude and longitude of the AERONET station to the corresponding SMAP data cell in the years 2015 and 2016, and calculated their correlation coefficient. Additionally, we looked at the correlation coefficient with a three-day and a five-day shift to check the impact of soil moisture on dust plumes with some time delay. Due to the arid nature of Banizoumbou and Zinder_Airport, no correlation was found to exist between local soil moisture and dust aerosol load. While IER_Cinzana had soil moisture levels above the satellite threshold of 0.02cm3/cm3, R-value approaching zero indicated no presence of a correlation. On the other hand, Ilorin demonstrated a significant negative correlation between aerosol optical depth and soil moisture. When isolating the analysis to Ilorin's dry season, a negative correlation of -0.593 was the largest dust-isolated R-value recorded, suggesting that soil moisture is driven the dust emission in this semi-desert region during transitional season.

  17. Multi-Scale Soil Moisture Monitoring and Modeling at ARS Watersheds for NASA's Soil Moisture Active Passive (SMAP) Calibration/Validation Mission

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Cosh, M. H.

    2014-12-01

    NASA's SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networks. This can be achieved via the integration of NLDAS precipitation data to perform calibration of models at each ­in-situ gauge. In turn, these models and the gauges' volumetric estimations are used to generate soil moisture estimates at a 500m scale throughout a given test watershed by leveraging, at each location, the gauge-calibrated models deemed most appropriate in terms of proximity, calibration efficacy, soil-textural similarity, and topography. Four ARS watersheds, located in Iowa, Oklahoma, Georgia, and Arizona are employed to demonstrate the utility of this approach. The South Fork watershed in Iowa represents the simplest case - the soil textures and topography are relative constants and the variability of soil moisture is simply tied to the spatial variability of precipitation. The Little Washita watershed in Oklahoma adds soil textural variability (but remains topographically simple), while the Little River watershed in Georgia incorporates topographic classification. Finally, the Walnut Gulch watershed in Arizona adds a dense precipitation network to be employed for even finer-scale modeling estimates. Results suggest RMSE values at or below the 4% volumetric standard adopted for the SMAP mission are attainable over the desired spatial scales via this integration of modeling efforts and existing in-situ networks.

  18. Fiber Optic Thermo-Hygrometers for Soil Moisture Monitoring.

    PubMed

    Leone, Marco; Principe, Sofia; Consales, Marco; Parente, Roberto; Laudati, Armando; Caliro, Stefano; Cutolo, Antonello; Cusano, Andrea

    2017-06-20

    This work deals with the fabrication, prototyping, and experimental validation of a fiber optic thermo-hygrometer-based soil moisture sensor, useful for rainfall-induced landslide prevention applications. In particular, we recently proposed a new generation of fiber Bragg grating (FBGs)-based soil moisture sensors for irrigation purposes. This device was realized by integrating, inside a customized aluminum protection package, a FBG thermo-hygrometer with a polymer micro-porous membrane. Here, we first verify the limitations, in terms of the volumetric water content (VWC) measuring range, of this first version of the soil moisture sensor for its exploitation in landslide prevention applications. Successively, we present the development, prototyping, and experimental validation of a novel, optimized version of a soil VWC sensor, still based on a FBG thermo-hygrometer, but able to reliably monitor, continuously and in real-time, VWC values up to 37% when buried in the soil.

  19. Fiber Optic Thermo-Hygrometers for Soil Moisture Monitoring

    PubMed Central

    Leone, Marco; Principe, Sofia; Consales, Marco; Parente, Roberto; Laudati, Armando; Caliro, Stefano; Cutolo, Antonello; Cusano, Andrea

    2017-01-01

    This work deals with the fabrication, prototyping, and experimental validation of a fiber optic thermo-hygrometer-based soil moisture sensor, useful for rainfall-induced landslide prevention applications. In particular, we recently proposed a new generation of fiber Bragg grating (FBGs)-based soil moisture sensors for irrigation purposes. This device was realized by integrating, inside a customized aluminum protection package, a FBG thermo-hygrometer with a polymer micro-porous membrane. Here, we first verify the limitations, in terms of the volumetric water content (VWC) measuring range, of this first version of the soil moisture sensor for its exploitation in landslide prevention applications. Successively, we present the development, prototyping, and experimental validation of a novel, optimized version of a soil VWC sensor, still based on a FBG thermo-hygrometer, but able to reliably monitor, continuously and in real-time, VWC values up to 37% when buried in the soil. PMID:28632172

  20. On the temporal and spatial variability of near-surface soil moisture for the identification of representative in situ soil moisture monitoring stations

    USDA-ARS?s Scientific Manuscript database

    The high spatio-temporal variability of soil moisture complicates the validation of remotely sensed soil moisture products using in-situ monitoring stations. Therefore, a standard methodology for selecting the most repre- sentative stations for the purpose of validating satellites and land surface ...

  1. Creating soil moisture maps based on radar satellite imagery

    NASA Astrophysics Data System (ADS)

    Hnatushenko, Volodymyr; Garkusha, Igor; Vasyliev, Volodymyr

    2017-10-01

    The presented work is related to a study of mapping soil moisture basing on radar data from Sentinel-1 and a test of adequacy of the models constructed on the basis of data obtained from alternative sources. Radar signals are reflected from the ground differently, depending on its properties. In radar images obtained, for example, in the C band of the electromagnetic spectrum, soils saturated with moisture usually appear in dark tones. Although, at first glance, the problem of constructing moisture maps basing on radar data seems intuitively clear, its implementation on the basis of the Sentinel-1 data on an industrial scale and in the public domain is not yet available. In the process of mapping, for verification of the results, measurements of soil moisture obtained from logs of the network of climate stations NOAA US Climate Reference Network (USCRN) were used. This network covers almost the entire territory of the United States. The passive microwave radiometers of Aqua and SMAP satellites data are used for comparing processing. In addition, other supplementary cartographic materials were used, such as maps of soil types and ready moisture maps. The paper presents a comparison of the effect of the use of certain methods of roughening the quality of radar data on the result of mapping moisture. Regression models were constructed showing dependence of backscatter coefficient values Sigma0 for calibrated radar data of different spatial resolution obtained at different times on soil moisture values. The obtained soil moisture maps of the territories of research, as well as the conceptual solutions about automation of operations of constructing such digital maps, are presented. The comparative assessment of the time required for processing a given set of radar scenes with the developed tools and with the ESA SNAP product was carried out.

  2. Hydrologic downscaling of soil moisture using global data without site-specific calibration

    USDA-ARS?s Scientific Manuscript database

    Numerous applications require fine-resolution (10-30 m) soil moisture patterns, but most satellite remote sensing and land-surface models provide coarse-resolution (9-60 km) soil moisture estimates. The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales soil moistu...

  3. Rapid prototyping of soil moisture estimates using the NASA Land Information System

    NASA Astrophysics Data System (ADS)

    Anantharaj, V.; Mostovoy, G.; Li, B.; Peters-Lidard, C.; Houser, P.; Moorhead, R.; Kumar, S.

    2007-12-01

    The Land Information System (LIS), developed at the NASA Goddard Space Flight Center, is a functional Land Data Assimilation System (LDAS) that incorporates a suite of land models in an interoperable computational framework. LIS has been integrated into a computational Rapid Prototyping Capabilities (RPC) infrastructure. LIS consists of a core, a number of community land models, data servers, and visualization systems - integrated in a high-performance computing environment. The land surface models (LSM) in LIS incorporate surface and atmospheric parameters of temperature, snow/water, vegetation, albedo, soil conditions, topography, and radiation. Many of these parameters are available from in-situ observations, numerical model analysis, and from NASA, NOAA, and other remote sensing satellite platforms at various spatial and temporal resolutions. The computational resources, available to LIS via the RPC infrastructure, support e- Science experiments involving the global modeling of land-atmosphere studies at 1km spatial resolutions as well as regional studies at finer resolutions. The Noah Land Surface Model, available with-in the LIS is being used to rapidly prototype soil moisture estimates in order to evaluate the viability of other science applications for decision making purposes. For example, LIS has been used to further extend the utility of the USDA Soil Climate Analysis Network of in-situ soil moisture observations. In addition, LIS also supports data assimilation capabilities that are used to assimilate remotely sensed soil moisture retrievals from the AMSR-E instrument onboard the Aqua satellite. The rapid prototyping of soil moisture estimates using LIS and their applications will be illustrated during the presentation.

  4. Calibration and validation of the COSMOS rover for surface soil moisture

    USDA-ARS?s Scientific Manuscript database

    The mobile COsmic-ray Soil Moisture Observing System (COSMOS) rover may be useful for validating satellite-based estimates of near surface soil moisture, but the accuracy with which the rover can measure 0-5 cm soil moisture has not been previously determined. Our objectives were to calibrate and va...

  5. A spatial scaling relationship for soil moisture in a semiarid landscape, using spatial scaling relationships for pedology

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.; Chen, M.; Cohen, S.; Saco, P. M.; Hancock, G. R.

    2013-12-01

    In humid areas it is generally considered that soil moisture scales spatially according to the wetness index of the landscape. This scaling arises from lateral flow downslope of ground water within the soil zone. However, in semi-arid and drier regions, this lateral flow is small and fluxes are dominated by vertical flows driven by infiltration and evapotranspiration. Thus, in the absence of runon processes, soil moisture at a location is more driven by local factors such as soil and vegetation properties at that location rather than upstream processes draining to that point. The 'apparent' spatial randomness of soil and vegetation properties generally suggests that soil moisture for semi-arid regions is spatially random. In this presentation a new analysis of neutron probe data during summer from the Tarrawarra site near Melbourne, Australia shows persistent spatial organisation of soil moisture over several years. This suggests a link between permanent features of the catchment (e.g. soil properties) and soil moisture distribution, even though the spatial pattern of soil moisture during the 4 summers monitored appears spatially random. This and other data establishes a prima facie case that soil variations drive spatial variation in soil moisture. Accordingly, we used a previously published spatial scaling relationship for soil properties derived using the mARM pedogenesis model to simulate the spatial variation of soil grading. This soil grading distribution was used in the Rosetta pedotransfer model to derive a spatial distribution of soil functional properties (e.g. saturated hydraulic conductivity, porosity). These functional properties were then input into the HYDRUS-1D soil moisture model and soil moisture simulated for 3 years at daily resolution. The HYDRUS model used had previously been calibrated to field observed soil moisture data at our SASMAS field site. The scaling behaviour of soil moisture derived from this modelling will be discussed and

  6. Spatial pattern and heterogeneity of soil moisture along a transect in a small catchment on the Loess Plateau

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Dou, Yanxing; Liu, Dong; An, Shaoshan

    2017-07-01

    Spatial pattern and heterogeneity of soil moisture is important for the hydrological process on the Loess Plateau. This study combined the classical and geospatial statistical techniques to examine the spatial pattern and heterogeneity of soil moisture along a transect scale (e.g. land use types and topographical attributes) on the Loess Plateau. The average values of soil moisture were on the order of farmland > orchard > grassland > abandoned land > shrubland > forestland. Vertical distribution characteristics of soil moisture (0-500 cm) were similar among land use types. Highly significant (p < 0.01) negative correlations were found between soil moisture and elevation (h) except for shrubland (p > 0.05), whereas no significant correlations were found between soil moisture and plan curvature (Kh), stream power index (SPI), compound topographic index (CTI) (p > 0.05), indicating that topographical attributes (mainly h) have a negative effect on the soil moisture spatial heterogeneity. Besides, soil moisture spatial heterogeneity decreased from forestland to grassland and farmland, accompanied by a decline from 15° to 1° alongside upper to lower slope position. This study highlights the importance of land use types and topographical attributes on the soil moisture spatial heterogeneity from a combined analysis of the structural equation model (SEM) and generalized additive models (GAMs), and the relative contribution of land use types to the soil moisture spatial heterogeneity was higher than that of topographical attributes, which provides insights for researches focusing on soil moisture varitions on the Loess Plateau.

  7. Downscaling SMAP Radiometer Soil Moisture over the CONUS using Soil-Climate Information and Ensemble Learning

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, P.; Moradkhani, H.

    2017-12-01

    Soil moisture contributes significantly towards the improvement of weather and climate forecast and understanding terrestrial ecosystem processes. It is known as a key hydrologic variable in the agricultural drought monitoring, flood modeling and irrigation management. While satellite retrievals can provide an unprecedented information on soil moisture at global-scale, the products are generally at coarse spatial resolutions (25-50 km2). This often hampers their use in regional or local studies, which normally require a finer resolution of the data set. This work presents a new framework based on an ensemble learning method while using soil-climate information derived from remote-sensing and ground-based observations to downscale the level 3 daily composite version (L3_SM_P) of SMAP radiometer soil moisture over the Continental U.S. (CONUS) at 1 km spatial resolution. In the proposed method, a suite of remotely sensed and in situ data sets in addition to soil texture information and topography data among others were used. The downscaled product was validated against in situ soil moisture measurements collected from a limited number of core validation sites and several hundred sparse soil moisture networks throughout the CONUS. The obtained results indicated a great potential of the proposed methodology to derive the fine resolution soil moisture information applicable for fine resolution hydrologic modeling, data assimilation and other regional studies.

  8. Soil moisture remote sensing: State of the science

    USDA-ARS?s Scientific Manuscript database

    Satellites (e.g., SMAP, SMOS) using passive microwave techniques, in particular at L band frequency, have shown good promise for global mapping of near-surface (0-5 cm) soil moisture at a spatial resolution of 25-40 km and temporal resolution of 2-3 days. C- and X-band soil moisture records date bac...

  9. Soil Moisture Dynamics under Corn, Soybean, and Perennial Kura Clover

    NASA Astrophysics Data System (ADS)

    Ochsner, T.; Venterea, R. T.

    2009-12-01

    Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting these twin challenges. The objective of this research was to compare the temporal dynamics of soil moisture under contrasting cropping systems suited for the Midwestern region of the United States. Precipitation, infiltration, drainage, evapotranspiration, soil water storage, and freeze/thaw processes were measured hourly for three years in field plots of continuous corn (Zea mays L.), corn/soybean [Glycine max (L.) Merr.] rotation, and perennial kura clover (Trifolium ambiguum M. Bieb.) in southeastern Minnesota. The evapotranspiration from the perennial clover most closely followed the temporal dynamics of precipitation, resulting in deep drainage which was reduced up to 50% relative to the annual crops. Soil moisture utilization also continued later into the fall under the clover than under the annual crops. In the annual cropping systems, crop sequence influenced the soil moisture dynamics. Soybean following corn and continuous corn exhibited evapotranspiration which was 80 mm less than and deep drainage which was 80 mm greater than that of corn following soybean. These differences occurred primarily during the spring and were associated with differences in early season plant growth between the systems. In the summer, soil moisture depletion was up to 30 mm greater under corn than soybean. Crop residue also played an important role in the soil moisture dynamics. Higher amounts of residue were associated with reduced soil freezing. This presentation will highlight key aspects of the soil moisture dynamics for these contrasting cropping systems across temporal scales ranging from hours to years. The links between soil moisture dynamics, crop yields, and nutrient leaching

  10. Simulating soil moisture change in a semiarid rangeland watershed with a process-based water-balance model

    Treesearch

    Howard Evan Canfield; Vicente L. Lopes

    2000-01-01

    A process-based, simulation model for evaporation, soil water and streamflow (BROOK903) was used to estimate soil moisture change on a semiarid rangeland watershed in southeastern Arizona. A sensitivity analysis was performed to select parameters affecting ET and soil moisture for calibration. Automatic parameter calibration was performed using a procedure based on a...

  11. Trends in Soil Moisture Reflect More Than Slope Position: Soils on San Cristóbal Island, Galápagos as a Case Study

    NASA Astrophysics Data System (ADS)

    Percy, M.; Singha, K.; Benninger, L. K.; Riveros-Iregui, D. A.; Mirus, B. B.

    2015-12-01

    The spatial and temporal distribution of soil moisture in tropical critical zones depends upon a number of variables including topographic position, soil texture, overlying vegetation, and local microclimates. We investigate the influences on soil moisture on a tropical basaltic island (San Cristóbal, Galápagos) across a variety of microclimates during the transition from the wetter to the drier season. We used multiple approaches to characterize spatial and temporal patterns in soil moisture at four sites across microclimates ranging from arid to very humid. The microclimates on San Cristóbal vary with elevation, so our monitoring includes two sites in the transitional zone at lower elevations, one in the humid zone at moderate elevations, and one in the very humid zone in higher elevations. We made over 250 near-surface point measurements per site using a Hydrosense II probe, and estimated the lateral variability in soil moisture across each site with an EM-31 electrical conductivity meter. We also monitored continuous time-series of in-situ soil moisture dynamics using three nested TDR probes collocated with meteorological stations at each of the sites. Preliminary analysis indicates that soils in the very humid zone have lower electrical conductivities across all the hillslopes as compared to the humid and transitional zones, which suggests that additional factors beyond climate and slope position are important. While soil texture across the very humid site is fairly uniform, variations in vegetation have a strong control on soil moisture patterns. At the remaining sites the vegetation patterns also have a very strong local influence on soil moisture, but correlation between the depth to clay layers and soil moisture patterns suggests that mineralogy is also important. Our findings suggest that the microclimatic setting is a crucial consideration for understanding relations between vegetation, soil texture, and soil-moisture dynamics in tropical critical

  12. BOREAS HYD-6 Ground Gravimetric Soil Moisture Data

    NASA Technical Reports Server (NTRS)

    Carroll, Thomas; Knapp, David E. (Editor); Hall, Forrest G. (Editor); Peck, Eugene L.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-6 team collected several data sets related to the moisture content of soil and overlying humus layers. This data set contains percent soil moisture ground measurements. These data were collected on the ground along the various flight lines flown in the Southern Study Area (SSA) and Northern Study Area (NSA) during 1994 by the gamma ray instrument. The data are available in tabular ASCII files. The HYD-06 ground gravimetric soil moisture data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  13. Data Assimilation using observed streamflow and remotely-sensed soil moisture for improving sub-seasonal-to-seasonal forecasting

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Mazrooei, A.; Lakshmi, V.; Wood, A.

    2017-12-01

    Subseasonal-to-seasonal (S2S) forecasts of soil moisture and streamflow provides critical information for water and agricultural systems to support short-term planning and mangement. This study evaluates the role of observed streamflow and remotely-sensed soil moisture from SMAP (Soil Moisture Active Passive) mission in improving S2S streamflow and soil moisture forecasting using data assimilation (DA). We first show the ability to forecast soil moisture at monthly-to-seaasonal time scale by forcing climate forecasts with NASA's Land Information System and then compares the developed soil moisture forecast with the SMAP data over the Southeast US. Our analyses show significant skill in forecasting real-time soil moisture over 1-3 months using climate information. We also show that the developed soil moisture forecasts capture the observed severe drought conditions (2007-2008) over the Southeast US. Following that, we consider both SMAP data and observed streamflow for improving S2S streamflow and soil moisture forecasts for a pilot study area, Tar River basin, in NC. Towards this, we consider variational assimilation (VAR) of gauge-measured daily streamflow data in improving initial hydrologic conditions of Variable Infiltration Capacity (VIC) model. The utility of data assimilation is then assessed in improving S2S forecasts of streamflow and soil moisture through a retrospective analyses. Furthermore, the optimal frequency of data assimilation and optimal analysis window (number of past observations to use) are also assessed in order to achieve the maximum improvement in S2S forecasts of streamflow and soil moisture. Potential utility of updating initial conditions using DA and providing skillful forcings are also discussed.

  14. Estimating surface soil moisture from SMAP observations using a Neural Network technique.

    PubMed

    Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P

    2018-01-01

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.

  15. Soil moisture and properties estimation by assimilating soil temperatures using particle batch smoother: A new perspective for DTS

    NASA Astrophysics Data System (ADS)

    Dong, J.; Steele-Dunne, S. C.; Ochsner, T. E.; Van De Giesen, N.

    2015-12-01

    Soil moisture, hydraulic and thermal properties are critical for understanding the soil surface energy balance and hydrological processes. Here, we will discuss the potential of using soil temperature observations from Distributed Temperature Sensing (DTS) to investigate the spatial variability of soil moisture and soil properties. With DTS soil temperature can be measured with high resolution (spatial <1m, and temporal < 1min) in cables up to kilometers in length. Soil temperature evolution is primarily controlled by the soil thermal properties, and the energy balance at the soil surface. Hence, soil moisture, which affects both soil thermal properties and the energy that participates the evaporation process, is strongly correlated to the soil temperatures. In addition, the dynamics of the soil moisture is determined by the soil hydraulic properties.Here we will demonstrate that soil moisture, hydraulic and thermal properties can be estimated by assimilating observed soil temperature at shallow depths using the Particle Batch Smoother (PBS). The PBS can be considered as an extension of the particle filter, which allows us to infer soil moisture and soil properties using the dynamics of soil temperature within a batch window. Both synthetic and real field data will be used to demonstrate the robustness of this approach. We will show that the proposed method is shown to be able to handle different sources of uncertainties, which may provide a new view of using DTS observations to estimate sub-meter resolution soil moisture and properties for remote sensing product validation.

  16. Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale

    NASA Astrophysics Data System (ADS)

    Todisco, F.; Brocca, L.; Termite, L. F.; Wagner, W.

    2015-09-01

    The potential of coupling soil moisture and a Universal Soil Loss Equation-based (USLE-based) model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e., the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008-2013. The results showed that including soil moisture observations in the event rainfall-runoff erosivity factor of the USLE enhances the capability of the model to account for variations in event soil losses, the soil moisture being an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to ~ 0.35 and a root mean square error (RMSE) of ~ 2.8 Mg ha-1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.

  17. Combined radar-radiometer surface soil moisture and roughness estimation

    USDA-ARS?s Scientific Manuscript database

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution rad...

  18. Predicting Soil Salinity with Vis–NIR Spectra after Removing the Effects of Soil Moisture Using External Parameter Orthogonalization

    PubMed Central

    Liu, Ya; Pan, Xianzhang; Wang, Changkun; Li, Yanli; Shi, Rongjie

    2015-01-01

    Robust models for predicting soil salinity that use visible and near-infrared (vis–NIR) reflectance spectroscopy are needed to better quantify soil salinity in agricultural fields. Currently available models are not sufficiently robust for variable soil moisture contents. Thus, we used external parameter orthogonalization (EPO), which effectively projects spectra onto the subspace orthogonal to unwanted variation, to remove the variations caused by an external factor, e.g., the influences of soil moisture on spectral reflectance. In this study, 570 spectra between 380 and 2400 nm were obtained from soils with various soil moisture contents and salt concentrations in the laboratory; 3 soil types × 10 salt concentrations × 19 soil moisture levels were used. To examine the effectiveness of EPO, we compared the partial least squares regression (PLSR) results established from spectra with and without EPO correction. The EPO method effectively removed the effects of moisture, and the accuracy and robustness of the soil salt contents (SSCs) prediction model, which was built using the EPO-corrected spectra under various soil moisture conditions, were significantly improved relative to the spectra without EPO correction. This study contributes to the removal of soil moisture effects from soil salinity estimations when using vis–NIR reflectance spectroscopy and can assist others in quantifying soil salinity in the future. PMID:26468645

  19. Quantifying soil moisture impacts on light use efficiency across biomes.

    PubMed

    Stocker, Benjamin D; Zscheischler, Jakob; Keenan, Trevor F; Prentice, I Colin; Peñuelas, Josep; Seneviratne, Sonia I

    2018-06-01

    Terrestrial primary productivity and carbon cycle impacts of droughts are commonly quantified using vapour pressure deficit (VPD) data and remotely sensed greenness, without accounting for soil moisture. However, soil moisture limitation is known to strongly affect plant physiology. Here, we investigate light use efficiency, the ratio of gross primary productivity (GPP) to absorbed light. We derive its fractional reduction due to soil moisture (fLUE), separated from VPD and greenness changes, using artificial neural networks trained on eddy covariance data, multiple soil moisture datasets and remotely sensed greenness. This reveals substantial impacts of soil moisture alone that reduce GPP by up to 40% at sites located in sub-humid, semi-arid or arid regions. For sites in relatively moist climates, we find, paradoxically, a muted fLUE response to drying soil, but reduced fLUE under wet conditions. fLUE identifies substantial drought impacts that are not captured when relying solely on VPD and greenness changes and, when seasonally recurring, are missed by traditional, anomaly-based drought indices. Counter to common assumptions, fLUE reductions are largest in drought-deciduous vegetation, including grasslands. Our results highlight the necessity to account for soil moisture limitation in terrestrial primary productivity data products, especially for drought-related assessments. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  20. Ecosystem-scale plant hydraulic strategies inferred from remotely-sensed soil moisture

    NASA Astrophysics Data System (ADS)

    Bassiouni, M.; Good, S. P.; Higgins, C. W.

    2017-12-01

    Characterizing plant hydraulic strategies at the ecosystem scale is important to improve estimates of evapotranspiration and to understand ecosystem productivity and resilience. However, quantifying plant hydraulic traits beyond the species level is a challenge. The probability density function of soil moisture observations provides key information about the soil moisture states at which evapotranspiration is reduced by water stress. Here, an inverse Bayesian approach is applied to a standard bucket model of soil column hydrology forced with stochastic precipitation inputs. Through this approach, we are able to determine the soil moisture thresholds at which stomata are open or closed that are most consistent with observed soil moisture probability density functions. This research utilizes remotely-sensed soil moisture data to explore global patterns of ecosystem-scale plant hydraulic strategies. Results are complementary to literature values of measured hydraulic traits of various species in different climates and previous estimates of ecosystem-scale plant isohydricity. The presented approach provides a novel relation between plant physiological behavior and soil-water dynamics.

  1. Representativeness of the ground observational sites and up-scaling of the point soil moisture measurements

    NASA Astrophysics Data System (ADS)

    Chen, Jinlei; Wen, Jun; Tian, Hui

    2016-02-01

    Soil moisture plays an increasingly important role in the cycle of energy-water exchange, climate change, and hydrologic processes. It is usually measured at a point site, but regional soil moisture is essential for validating remote sensing products and numerical modeling results. In the study reported in this paper, the minimal number of required sites (NRS) for establishing a research observational network and the representative single sites for regional soil moisture estimation are discussed using the soil moisture data derived from the ;Maqu soil moisture observational network; (101°40‧-102°40‧E, 33°30‧-35°45‧N), which is supported by Chinese Academy of Science. Furthermore, the best up-scaling method suitable for this network has been studied by evaluating four commonly used up-scaling methods. The results showed that (1) Under a given accuracy requirement R ⩾ 0.99, RMSD ⩽ 0.02 m3/m3, NRS at both 5 and 10 cm depth is 10. (2) Representativeness of the sites has been validated by time stability analysis (TSA), time sliding correlation analysis (TSCA) and optimal combination of sites (OCS). NST01 is the most representative site at 5 cm depth for the first two methods; NST07 and NST02 are the most representative sites at 10 cm depth. The optimum combination sites at 5 cm depth are NST01, NST02, and NST07. NST05, NST08, and NST13 are the best group at 10 cm depth. (3) Linear fitting, compared with other three methods, is the best up-scaling method for all types of representative sites obtained above, and linear regression equations between a single site and regional soil moisture are established hereafter. ;Single site; obtained by OCS has the greatest up-scaling effect, and TSCA takes the second place. (4) Linear fitting equations show good practicability in estimating the variation of regional soil moisture from July 3, 2013 to July 3, 2014, when a large number of observed soil moisture data are lost.

  2. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia

    NASA Astrophysics Data System (ADS)

    Poveda, GermáN.; Jaramillo, Alvaro; Gil, Marta MaríA.; Quiceno, Natalia; Mantilla, Ricardo I.

    2001-08-01

    An analysis of hydrologic variability in Colombia shows different seasonal effects associated with El Niño/Southern Oscillation (ENSO) phenomenon. Spectral and cross-correlation analyses are developed between climatic indices of the tropical Pacific Ocean and the annual cycle of Colombia's hydrology: precipitation, river flows, soil moisture, and the Normalized Difference Vegetation Index (NDVI). Our findings indicate stronger anomalies during December-February and weaker during March-May. The effects of ENSO are stronger for streamflow than for precipitation, owing to concomitant effects on soil moisture and evapotranspiration. We studied time variability of 10-day average volumetric soil moisture, collected at the tropical Andes of central Colombia at depths of 20 and 40 cm, in coffee growing areas characterized by shading vegetation ("shaded coffee"), forest, and sunlit coffee. The annual and interannual variability of soil moisture are highly intertwined for the period 1997-1999, during strong El Niño and La Niña events. Soil moisture exhibited greater negative anomalies during 1997-1998 El Niño, being strongest during the two dry seasons that normally occur in central Colombia. Soil moisture deficits were more drastic at zones covered by sunlit coffee than at those covered by forest and shaded coffee. Soil moisture responds to wetter than normal precipitation conditions during La Niña 1998-1999, reaching maximum levels throughout that period. The probability density function of soil moisture records is highly skewed and exhibits different kinds of multimodality depending upon land cover type. NDVI exhibits strong negative anomalies throughout the year during El Niños, in particular during September-November (year 0) and June-August (year 0). The strong negative relation between NDVI and El Niño has enormous implications for carbon, water, and energy budgets over the region, including the tropical Andes and Amazon River basin.

  3. Towards an improved soil moisture retrieval for organic-rich soils from SMOS passive microwave L-band observations

    NASA Astrophysics Data System (ADS)

    Bircher, Simone; Richaume, Philippe; Mahmoodi, Ali; Mialon, Arnaud; Fernandez-Moran, Roberto; Wigneron, Jean-Pierre; Demontoux, François; Jonard, François; Weihermüller, Lutz; Andreasen, Mie; Rautiainen, Kimmo; Ikonen, Jaakko; Schwank, Mike; Drusch, Mattias; Kerr, Yann H.

    2017-04-01

    From the passive L-band microwave radiometer onboard the Soil Moisture and Ocean Salinity (SMOS) space mission global surface soil moisture data is retrieved every 2 - 3 days. Thus far, the empirical L-band Microwave Emission of the Biosphere (L-MEB) radiative transfer model applied in the SMOS soil moisture retrieval algorithm is exclusively calibrated over test sites in dry and temperate climate zones. Furthermore, the included dielectric mixing model relating soil moisture to relative permittivity accounts only for mineral soils. However, soil moisture monitoring over the higher Northern latitudes is crucial since these regions are especially sensitive to climate change. A considerable positive feedback is expected if thawing of these extremely organic soils supports carbon decomposition and release to the atmosphere. Due to differing structural characteristics and thus varying bound water fractions, the relative permittivity of organic material is lower than that of the most mineral soils at a given water content. This assumption was verified by means of L-band relative permittivity laboratory measurements of organic and mineral substrates from various sites in Denmark, Finland, Scotland and Siberia using a resonant cavity. Based on these data, a simple empirical dielectric model for organic soils was derived and implemented in the SMOS Soil Moisture Level 2 Prototype Processor (SML2PP). Unfortunately, the current SMOS retrieved soil moisture product seems to show unrealistically low values compared to in situ soil moisture data collected from organic surface layers in North America, Europe and the Tibetan Plateau so that the impact of the dielectric model for organic soils cannot really be tested. A simplified SMOS processing scheme yielding higher soil moisture levels has recently been proposed and is presently under investigation. Furthermore, recalibration of the model parameters accounting for vegetation and roughness effects that were thus far only

  4. Variation in microbial activity in histosols and its relationship to soil moisture.

    PubMed

    Tate, R L; Terry, R E

    1980-08-01

    Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes.

  5. Improved Prediction of Quasi-Global Vegetation Conditions Using Remotely-Sensed Surface Soil Moisture

    NASA Technical Reports Server (NTRS)

    Bolten, John; Crow, Wade

    2012-01-01

    The added value of satellite-based surface soil moisture retrievals for agricultural drought monitoring is assessed by calculating the lagged rank correlation between remotely-sensed vegetation indices (VI) and soil moisture estimates obtained both before and after the assimilation of surface soil moisture retrievals derived from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) into a soil water balance model. Higher soil moisture/VI lag correlations imply an enhanced ability to predict future vegetation conditions using estimates of current soil moisture. Results demonstrate that the assimilation of AMSR-E surface soil moisture retrievals substantially improve the performance of a global drought monitoring system - particularly in sparsely-instrumented areas of the world where high-quality rainfall observations are unavailable.

  6. Using high-resolution soil moisture modelling to assess the uncertainty of microwave remotely sensed soil moisture products at the correct spatial and temporal support

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; Bierkens, M. F. P.; Van Dam, J. C.; De Jong, S. M.

    2012-04-01

    Soil moisture is a key variable in the hydrological cycle and important in hydrological modelling. When assimilating soil moisture into flood forecasting models, the improvement of forecasting skills depends on the ability to accurately estimate the spatial and temporal patterns of soil moisture content throughout the river basin. Space-borne remote sensing may provide this information with a high temporal and spatial resolution and with a global coverage. Currently three microwave soil moisture products are available: AMSR-E, ASCAT and SMOS. The quality of these satellite-based products is often assessed by comparing them with in-situ observations of soil moisture. This comparison is however hampered by the difference in spatial and temporal support (i.e., resolution, scale), because the spatial resolution of microwave satellites is rather low compared to in-situ field measurements. Thus, the aim of this study is to derive a method to assess the uncertainty of microwave satellite soil moisture products at the correct spatial support. To overcome the difference in support size between in-situ soil moisture observations and remote sensed soil moisture, we used a stochastic, distributed unsaturated zone model (SWAP, van Dam (2000)) that is upscaled to the support of different satellite products. A detailed assessment of the SWAP model uncertainty is included to ensure that the uncertainty in satellite soil moisture is not overestimated due to an underestimation of the model uncertainty. We simulated unsaturated water flow up to a depth of 1.5m with a vertical resolution of 1 to 10 cm and on a horizontal grid of 1 km2 for the period Jan 2010 - Jun 2011. The SWAP model was first calibrated and validated on in-situ data of the REMEDHUS soil moisture network (Spain). Next, to evaluate the satellite products, the model was run for areas in the proximity of 79 meteorological stations in Spain, where model results were aggregated to the correct support of the satellite

  7. NASA Soil Moisture Active Passive (SMAP) Mission Formulation

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni; ONeill, Peggy; Kellogg, Kent; Entin, Jared

    2011-01-01

    The Soil Moisture Active Passive (SMAP) Mission is one of the first Earth observation satellites being formulated by NASA in response to the 2007 National Research Council s Earth Science Decadal Survey [1]. SMAP s measurement objectives are high-resolution global measurements of near-surface soil moisture and its freeze-thaw state. These measurements would allow significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. The soil moisture control of these fluxes is a key factor in the performance of atmospheric models used for weather forecasts and climate projections. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. Knowledge gained from SMAP s planned observations can help mitigate these natural hazards, resulting in potentially great economic and societal benefits. SMAP measurements would also yield high resolution spatial and temporal mapping of the frozen or thawed condition of the surface soil and vegetation. Observations of soil moisture and freeze/thaw timing over the boreal latitudes will contribute to reducing a major uncertainty in quantifying the global carbon balance and help resolve an apparent missing carbon sink over land. The SMAP mission would utilize an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna (see Figure 1) [2]. The radar and radiometer instruments would be carried onboard a 3-axis stabilized spacecraft in a 680 km polar orbit with an 8-day repeating ground track. The instruments are planned to provide high-resolution and high-accuracy global maps of soil moisture at 10 km resolution and freeze/thaw at 3 km resolution, every two to three days (see Table 1 for a list of science data products). The mission is adopting a number of approaches to identify and mitigate potential terrestrial radio frequency interference (RFI). These approaches are being incorporated into the radiometer and radar flight hardware and

  8. Use of satellite and modelled soil moisture data for predicting event soil loss at plot scale

    NASA Astrophysics Data System (ADS)

    Todisco, F.; Brocca, L.; Termite, L. F.; Wagner, W.

    2015-03-01

    The potential of coupling soil moisture and a~USLE-based model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in Central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e. the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008-2013. The results showed that including soil moisture observations in the event rainfall-runoff erosivity factor of the RUSLE/USLE, enhances the capability of the model to account for variations in event soil losses, being the soil moisture an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to of ~ 0.35 and a root-mean-square error (RMSE) of ~ 2.8 Mg ha-1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.

  9. Estimating Soil Moisture from Satellite Microwave Observations

    NASA Technical Reports Server (NTRS)

    Owe, M.; VandeGriend, A. A.; deJeu, R.; deVries, J.; Seyhan, E.

    1998-01-01

    Cooperative research in microwave remote sensing between the Hydrological Sciences Branch of the NASA Goddard Space Flight Center and the Earth Sciences Faculty of the Vrije Universiteit Amsterdam began with the Botswana Water and Energy Balance Experiment and has continued through a series of highly successful International Research Programs. The collaboration between these two research institutions has resulted in significant scientific achievements, most notably in the area of satellite-based microwave remote sensing of soil moisture. The Botswana Program was the first joint research initiative between these two institutions, and provided a unique data base which included historical data sets of Scanning Multifrequency Microwave Radiometer (SN4NM) data, climate information, and extensive soil moisture measurements over several large experimental sites in southeast Botswana. These data were the basis for the development of new approaches in physically-based inverse modelling of soil moisture from satellite microwave observations. Among the results from this study were quantitative estimates of vegetation transmission properties at microwave frequencies. A single polarization modelling approach which used horizontally polarized microwave observations combined with monthly composites of Normalized Difference Vegetation Index was developed, and yielded good results. After more precise field experimentation with a ground-based radiometer system, a dual-polarization approach was subsequently developed. This new approach realized significant improvements in soil moisture estimation by satellite. Results from the Botswana study were subsequently applied to a desertification monitoring study for the country of Spain within the framework of the European Community science research programs EFEDA and RESMEDES. A dual frequency approach with only microwave data was used for this application. The Microwave Polarization Difference Index (MPDI) was calculated from 37 GHz data

  10. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems.

    PubMed

    Jensen, Daniel; Reager, John T; Zajic, Brittany; Rousseau, Nick; Rodell, Matthew; Hinkley, Everett

    2018-01-01

    It is generally accepted that year-to-year variability in moisture conditions and drought are linked with increased wildfire occurrence. However, quantifying the sensitivity of wildfire to surface moisture state at seasonal lead-times has been challenging due to the absence of a long soil moisture record with the appropriate coverage and spatial resolution for continental-scale analysis. Here we apply model simulations of surface soil moisture that numerically assimilate observations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission with the US Forest Service's historical Fire-Occurrence Database over the contiguous United States. We quantify the relationships between pre-fire-season soil moisture and subsequent-year wildfire occurrence by land-cover type and produce annual probable wildfire occurrence and burned area maps at 0.25-degree resolution. Cross-validated results generally indicate a higher occurrence of smaller fires when months preceding fire season are wet, while larger fires are more frequent when soils are dry. This result is consistent with the concept of increased fuel accumulation under wet conditions in the pre-season. These results demonstrate the fundamental strength of the relationship between soil moisture and fire activity at long lead-times and are indicative of that relationship's utility for the future development of national-scale predictive capability.

  11. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems

    NASA Astrophysics Data System (ADS)

    Jensen, Daniel; Reager, John T.; Zajic, Brittany; Rousseau, Nick; Rodell, Matthew; Hinkley, Everett

    2018-01-01

    It is generally accepted that year-to-year variability in moisture conditions and drought are linked with increased wildfire occurrence. However, quantifying the sensitivity of wildfire to surface moisture state at seasonal lead-times has been challenging due to the absence of a long soil moisture record with the appropriate coverage and spatial resolution for continental-scale analysis. Here we apply model simulations of surface soil moisture that numerically assimilate observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) mission with the USDA Forest Service’s historical Fire-Occurrence Database over the contiguous United States. We quantify the relationships between pre-fire-season soil moisture and subsequent-year wildfire occurrence by land-cover type and produce annual probable wildfire occurrence and burned area maps at 0.25 degree resolution. Cross-validated results generally indicate a higher occurrence of smaller fires when months preceding fire season are wet, while larger fires are more frequent when soils are dry. This is consistent with the concept of increased fuel accumulation under wet conditions in the pre-season. These results demonstrate the fundamental strength of the relationship between soil moisture and fire activity at long lead-times and are indicative of that relationship’s utility for the future development of national-scale predictive capability.

  12. A review of spatial downscaling of satellite remotely sensed soil moisture

    NASA Astrophysics Data System (ADS)

    Peng, Jian; Loew, Alexander; Merlin, Olivier; Verhoest, Niko E. C.

    2017-06-01

    Satellite remote sensing technology has been widely used to estimate surface soil moisture. Numerous efforts have been devoted to develop global soil moisture products. However, these global soil moisture products, normally retrieved from microwave remote sensing data, are typically not suitable for regional hydrological and agricultural applications such as irrigation management and flood predictions, due to their coarse spatial resolution. Therefore, various downscaling methods have been proposed to improve the coarse resolution soil moisture products. The purpose of this paper is to review existing methods for downscaling satellite remotely sensed soil moisture. These methods are assessed and compared in terms of their advantages and limitations. This review also provides the accuracy level of these methods based on published validation studies. In the final part, problems and future trends associated with these methods are analyzed.

  13. Rainfall estimation over-land using SMOS soil moisture observations: SM2RAIN, LMAA and SMART algorithms

    NASA Astrophysics Data System (ADS)

    Massari, Christian; Brocca, Luca; Pellarin, Thierry; Kerr, Yann; Crow, Wade; Cascon, Carlos; Ciabatta, Luca

    2016-04-01

    Recent advancements in the measurement of precipitation from space have provided estimates at scales that are commensurate with the needs of the hydrological and land-surface model communities. However, as demonstrated in a number of studies (Ebert et al. 2007, Tian et al. 2007, Stampoulis et al. 2012) satellite rainfall estimates are characterized by low accuracy in certain conditions and still suffer from a number of issues (e.g., bias) that may limit their utility in over-land applications (Serrat-Capdevila et al. 2014). In recent years many studies have demonstrated that soil moisture observations from ground and satellite sensors can be used for correcting satellite precipitation estimates (e.g. Crow et al., 2011; Pellarin et al., 2013), or directly estimating rainfall (SM2RAIN, Brocca et al., 2014). In this study, we carried out a detailed scientific analysis in which these three different methods are used for: i) estimating rainfall through satellite soil moisture observations (SM2RAIN, Brocca et al., 2014); ii) correcting rainfall through a Land surface Model Assimilation Algorithm (LMAA) (an improvement of a previous work of Crow et al. 2011 and Pellarin et al. 2013) and through the Soil Moisture Analysis Rainfall Tool (SMART, Crow et al. 2011). The analysis is carried within the ESA project "SMOS plus Rainfall" and involves 9 sites in Europe, Australia, Africa and USA containing high-quality hydrometeorological and soil moisture observations. Satellite soil moisture data from Soil Moisture and Ocean Salinity (SMOS) mission are employed for testing their potential in deriving a cumulated rainfall product at different temporal resolutions. The applicability and accuracy of the three algorithms is investigated also as a function of climatic and soil/land use conditions. A particular attention is paid to assess the expected limitations soil moisture based rainfall estimates such as soil saturation, freezing/snow conditions, SMOS RFI, irrigated areas

  14. Effects of Soil Temperature and Moisture on Soil Respiration on the Tibetan Plateau

    PubMed Central

    Chang, Xiaofeng; Wang, Shiping; Xu, Burenbayin; Luo, Caiyun; Zhang, Zhenhua; Wang, Qi; Rui, Yichao; Cui, Xiaoying

    2016-01-01

    Understanding of effects of soil temperature and soil moisture on soil respiration (Rs) under future warming is critical to reduce uncertainty in predictions of feedbacks to atmospheric CO2 concentrations from grassland soil carbon. Intact cores with roots taken from a full factorial, 5-year alpine meadow warming and grazing experiment in the field were incubated at three different temperatures (i.e. 5, 15 and 25°C) with two soil moistures (i.e. 30 and 60% water holding capacity (WHC)) in our study. Another experiment of glucose-induced respiration (GIR) with 4 h of incubation was conducted to determine substrate limitation. Our results showed that high temperature increased Rs and low soil moisture limited the response of Rs to temperature only at high incubation temperature (i.e. 25°C). Temperature sensitivity (Q10) did not significantly decrease over the incubation period, suggesting that substrate depletion did not limit Rs. Meanwhile, the carbon availability index (CAI) was higher at 5°C compared with 15 and 25°C incubation, but GIR increased with increasing temperature. Therefore, our findings suggest that warming-induced decrease in Rs in the field over time may result from a decrease in soil moisture rather than from soil substrate depletion, because warming increased root biomass in the alpine meadow. PMID:27798671

  15. Investigating local controls on soil moisture temporal stability using an inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Bogena, Heye; Qu, Wei; Huisman, Sander; Vereecken, Harry

    2013-04-01

    A better understanding of the temporal stability of soil moisture and its relation to local and nonlocal controls is a major challenge in modern hydrology. Both local controls, such as soil and vegetation properties, and non-local controls, such as topography and climate variability, affect soil moisture dynamics. Wireless sensor networks are becoming more readily available, which opens up opportunities to investigate spatial and temporal variability of soil moisture with unprecedented resolution. In this study, we employed the wireless sensor network SoilNet developed by the Forschungszentrum Jülich to investigate soil moisture variability of a grassland headwater catchment in Western Germany within the framework of the TERENO initiative. In particular, we investigated the effect of soil hydraulic parameters on the temporal stability of soil moisture. For this, the HYDRUS-1D code coupled with a global optimizer (DREAM) was used to inversely estimate Mualem-van Genuchten parameters from soil moisture observations at three depths under natural (transient) boundary conditions for 83 locations in the headwater catchment. On the basis of the optimized parameter sets, we then evaluated to which extent the variability in soil hydraulic conductivity, pore size distribution, air entry suction and soil depth between these 83 locations controlled the temporal stability of soil moisture, which was independently determined from the observed soil moisture data. It was found that the saturated hydraulic conductivity (Ks) was the most significant attribute to explain temporal stability of soil moisture as expressed by the mean relative difference (MRD).

  16. ESA's Soil Moisture dnd Ocean Salinity Mission - Contributing to Water Resource Management

    NASA Astrophysics Data System (ADS)

    Mecklenburg, S.; Kerr, Y. H.

    2015-12-01

    The Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009, is the European Space Agency's (ESA) second Earth Explorer Opportunity mission. The scientific objectives of the SMOS mission directly respond to the need for global observations of soil moisture and ocean salinity, two key variables used in predictive hydrological, oceanographic and atmospheric models. SMOS observations also provide information on the characterisation of ice and snow covered surfaces and the sea ice effect on ocean-atmosphere heat fluxes and dynamics, which affects large-scale processes of the Earth's climate system. The focus of this paper will be on SMOS's contribution to support water resource management: SMOS surface soil moisture provides the input to derive root-zone soil moisture, which in turn provides the input for the drought index, an important monitoring prediction tool for plant available water. In addition to surface soil moisture, SMOS also provides observations on vegetation optical depth. Both parameters aid agricultural applications such as crop growth, yield forecasting and drought monitoring, and provide input for carbon and land surface modelling. SMOS data products are used in data assimilation and forecasting systems. Over land, assimilating SMOS derived information has shown to have a positive impact on applications such as NWP, stream flow forecasting and the analysis of net ecosystem exchange. Over ocean, both sea surface salinity and severe wind speed have the potential to increase the predictive skill on the seasonal and short- to medium-range forecast range. Operational users in particular in Numerical Weather Prediction and operational hydrology have put forward a requirement for soil moisture data to be available in near-real time (NRT). This has been addressed by developing a fast retrieval for a NRT level 2 soil moisture product based on Neural Networks, which will be available by autumn 2015. This paper will focus on presenting the

  17. Global Soil Moisture from the Aquarius/SAC-D Satellite: Description and Initial Assessment

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas; Cosh, Michael; Zhao, Tianjie; O'Neil, Peggy

    2015-01-01

    Aquarius satellite observations over land offer a new resource for measuring soil moisture from space. Although Aquarius was designed for ocean salinity mapping, our objective in this investigation is to exploit the large amount of land observations that Aquarius acquires and extend the mission scope to include the retrieval of surface soil moisture. The soil moisture retrieval algorithm development focused on using only the radiometer data because of the extensive heritage of passive microwave retrieval of soil moisture. The single channel algorithm (SCA) was implemented using the Aquarius observations to estimate surface soil moisture. Aquarius radiometer observations from three beams (after bias/gain modification) along with the National Centers for Environmental Prediction model forecast surface temperatures were then used to retrieve soil moisture. Ancillary data inputs required for using the SCA are vegetation water content, land surface temperature, and several soil and vegetation parameters based on land cover classes. The resulting global spatial patterns of soil moisture were consistent with the precipitation climatology and with soil moisture from other satellite missions (Advanced Microwave Scanning Radiometer for the Earth Observing System and Soil Moisture Ocean Salinity). Initial assessments were performed using in situ observations from the U.S. Department of Agriculture Little Washita and Little River watershed soil moisture networks. Results showed good performance by the algorithm for these land surface conditions for the period of August 2011-June 2013 (rmse = 0.031 m(exp 3)/m(exp 3), Bias = -0.007 m(exp 3)/m(exp 3), and R = 0.855). This radiometer-only soil moisture product will serve as a baseline for continuing research on both active and combined passive-active soil moisture algorithms. The products are routinely available through the National Aeronautics and Space Administration data archive at the National Snow and Ice Data Center.

  18. Measuring Soil Moisture using the Signal Strength of Buried Bluetooth Devices.

    NASA Astrophysics Data System (ADS)

    Hut, R.; Campbell, C. S.

    2015-12-01

    A low power bluetooth Low Energy (BLE) device is burried 20cm into the soil and a smartphone is placed on top of the soil to test if bluetooth signal strength can be related to soil moisture. The smartphone continuesly records and stores bluetooth signal strength of the device. The soil is artifcially wetted and drained. Results show a relation between BLE signal strength and soil moisture that could be used to measure soil moisture using these off-the-shelf consumer electronics. This opens the possibily to develop sensors that can be buried into the soil, possibly below the plow-line. These sensors can measure local parameters such as electric conductivity, ph, pressure, etc. Readings would be uploaded to a device on the surface using BLE. The signal strength of this BLE would be an (additional) measurement of soil moisture.

  19. Assimilation of SMOS Retrieved Soil Moisture into the Land Information System

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Case, Jonathan; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) instrument are assimilated into the Noah land surface model (LSM) within the NASA Land Information System (LIS). Before assimilation, SMOS retrievals are bias-corrected to match the model climatological distribution using a Cumulative Distribution Function (CDF) matching approach. Data assimilation is done via the Ensemble Kalman Filter. The goal is to improve the representation of soil moisture within the LSM, and ultimately to improve numerical weather forecasts through better land surface initialization. We present a case study showing a large area of irrigation in the lower Mississippi River Valley, in an area with extensive rice agriculture. High soil moisture value in this region are observed by SMOS, but not captured in the forcing data. After assimilation, the model fields reflect the observed geographic patterns of soil moisture. Plans for a modeling experiment and operational use of the data are given. This work helps prepare for the assimilation of Soil Moisture Active/Passive (SMAP) retrievals in the near future.

  20. A study of the influence of soil moisture on future precipitation

    NASA Technical Reports Server (NTRS)

    Fennessy, M. J.; Sud, Y. C.

    1983-01-01

    Forty years of precipitation and surface temperature data observed over 261 Local Climatic Data (LCD) stations in the Continental United States was utilized in a ground hydrology model to yield soil moisture time series at each station. A month-by-month soil moisture dataset was constructed for each year. The monthly precipitation was correlated with antecedent monthly precipitation, soil moisture and vapotranspiration separately. The maximum positive correlation is found to be in the drought prone western Great Plains region during the latter part of summer. There is also some negative correlation in coastal regions. The correlations between soil moisture and precipitation particularly in the latter part of summer, suggest that large scale droughts over extended periods may be partially maintained by the feedback influence of soil moisture on rainfall. In many other regions the lack of positive correlation shows that there is no simple answer such as higher land-surface evapotranspiration leads to more precipitation, and points out the complexity of the influence of soil moisture on the ensuring precipitation.

  1. Assessment of Version 4 of the SMAP Passive Soil Moisture Standard Product

    NASA Technical Reports Server (NTRS)

    O'neill, P. O.; Chan, S.; Bindlish, R.; Jackson, T.; Colliander, A.; Dunbar, R.; Chen, F.; Piepmeier, Jeffrey R.; Yueh, S.; Entekhabi, D.; hide

    2017-01-01

    NASAs Soil Moisture Active Passive (SMAP) mission launched on January 31, 2015 into a sun-synchronous 6 am6 pm orbit with an objective to produce global mapping of high-resolution soil moisture and freeze-thaw state every 2-3 days. The SMAP radiometer began acquiring routine science data on March 31, 2015 and continues to operate nominally. SMAPs radiometer-derived standard soil moisture product (L2SMP) provides soil moisture estimates posted on a 36-km fixed Earth grid using brightness temperature observations and ancillary data. A beta quality version of L2SMP was released to the public in October, 2015, Version 3 validated L2SMP soil moisture data were released in May, 2016, and Version 4 L2SMP data were released in December, 2016. Version 4 data are processed using the same soil moisture retrieval algorithms as previous versions, but now include retrieved soil moisture from both the 6 am descending orbits and the 6 pm ascending orbits. Validation of 19 months of the standard L2SMP product was done for both AM and PM retrievals using in situ measurements from global core calval sites. Accuracy of the soil moisture retrievals averaged over the core sites showed that SMAP accuracy requirements are being met.

  2. Relation Between the Rainfall and Soil Moisture During Different Phases of Indian Monsoon

    NASA Astrophysics Data System (ADS)

    Varikoden, Hamza; Revadekar, J. V.

    2018-03-01

    Soil moisture is a key parameter in the prediction of southwest monsoon rainfall, hydrological modelling, and many other environmental studies. The studies on relationship between the soil moisture and rainfall in the Indian subcontinent are very limited; hence, the present study focuses the association between rainfall and soil moisture during different monsoon seasons. The soil moisture data used for this study are the ESA (European Space Agency) merged product derived from four passive and two active microwave sensors spanning over the period 1979-2013. The rainfall data used are India Meteorological Department gridded daily data. Both of these data sets are having a spatial resolution of 0.25° latitude-longitude grid. The study revealed that the soil moisture is higher during the southwest monsoon period similar to rainfall and during the pre-monsoon period, the soil moisture is lower. The annual cycle of both the soil moisture and rainfall has the similitude of monomodal variation with a peak during the month of August. The interannual variability of soil moisture and rainfall shows that they are linearly related with each other, even though they are not matched exactly for individual years. The study of extremes also exhibits the surplus amount of soil moisture during wet monsoon years and also the regions of surplus soil moisture are well coherent with the areas of high rainfall.

  3. Assessment of Multi-frequency Electromagnetic Induction for Determining Soil Moisture Patterns at the Hillslope Scale

    NASA Astrophysics Data System (ADS)

    Tromp-van Meerveld, I.; McDonnell, J.

    2009-05-01

    We present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the Panola (GA, USA) hillslope. We address the following questions regarding the applicability of EM measurements for hillslope hydrological investigations: (1) Can EM be used for soil moisture measurements in areas with shallow soils?; (2) Can EM represent the temporal and spatial patterns of soil moisture throughout the year?; and (3) can multiple frequencies be used to extract additional information content from the EM approach and explain the depth profile of soil moisture? We found that the apparent conductivity measured with the multi-frequency GEM-300 was linearly related to soil moisture measured with an Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7290, 9090, 11250, and 14010 Hz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition, the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the Aqua

  4. Surface Soil Moisture Memory Estimated from Models and SMAP Observations

    NASA Astrophysics Data System (ADS)

    He, Q.; Mccoll, K. A.; Li, C.; Lu, H.; Akbar, R.; Pan, M.; Entekhabi, D.

    2017-12-01

    Soil moisture memory(SMM), which is loosely defined as the time taken by soil to forget an anomaly, has been proved to be important in land-atmosphere interaction. There are many metrics to calculate the SMM timescale, for example, the timescale based on the time-series autocorrelation, the timescale ignoring the soil moisture time series and the timescale which only considers soil moisture increment. Recently, a new timescale based on `Water Cycle Fraction' (Kaighin et al., 2017), in which the impact of precipitation on soil moisture memory is considered, has been put up but not been fully evaluated in global. In this study, we compared the surface SMM derived from SMAP observations with that from land surface model simulations (i.e., the SMAP Nature Run (NR) provided by the Goddard Earth Observing System, version 5) (Rolf et al., 2014). Three timescale metrics were used to quantify the surface SMM as: T0 based on the soil moisture time series autocorrelation, deT0 based on the detrending soil moisture time series autocorrelation, and tHalf based on the Water Cycle Fraction. The comparisons indicate that: (1) there are big gaps between the T0 derived from SMAP and that from NR (2) the gaps get small for deT0 case, in which the seasonality of surface soil moisture was removed with a moving average filter; (3) the tHalf estimated from SMAP is much closer to that from NR. The results demonstrate that surface SMM can vary dramatically among different metrics, while the memory derived from land surface model differs from the one from SMAP observation. tHalf, with considering the impact of precipitation, may be a good choice to quantify surface SMM and have high potential in studies related to land atmosphere interactions. References McColl. K.A., S.H. Alemohammad, R. Akbar, A.G. Konings, S. Yueh, D. Entekhabi. The Global Distribution and Dynamics of Surface Soil Moisture, Nature Geoscience, 2017 Reichle. R., L. Qing, D.L. Gabrielle, A. Joe. The "SMAP_Nature_v03" Data

  5. Challenges in Interpreting and Validating Satellite Soil Moisture Information

    USDA-ARS?s Scientific Manuscript database

    Global soil moisture products are now being generated routinely using microwave-based satellite observing systems. These include the NASA Soil Moisture Active Passive (SMAP) mission. In order to fully exploit these observations they must be integrated with both in situ measurements and model-based e...

  6. Remote Sensing of Soil Moisture Using Airborne Hyperspectral Data

    DTIC Science & Technology

    2011-01-01

    the relationship between reflec- tance and soil moisture where there is ground cover and ascertain the Normalized Difference Vegetation Index ( NDVI ...in those areas. This could establish a minimum NDVI for ground cover that would allow for estimation of soil moisture. Alternatively, they could

  7. Local Versus Remote Contributions of Soil Moisture to Near-Surface Temperature Variability

    NASA Technical Reports Server (NTRS)

    Koster, R.; Schubert, S.; Wang, H.; Chang, Y.

    2018-01-01

    Soil moisture variations have a straightforward impact on overlying air temperatures, wetter soils can induce higher evaporative cooling of the soil and thus, locally, cooler temperatures overall. Not known, however, is the degree to which soil moisture variations can affect remote air temperatures through their impact on the atmospheric circulation. In this talk we describe a two-pronged analysis that addresses this question. In the first segment, an extensive ensemble of NASA/GSFC GEOS-5 atmospheric model simulations is analyzed statistically to isolate and quantify the contributions of various soil moisture states, both local and remote, to the variability of air temperature at a given local site. In the second segment, the relevance of the derived statistical relationships is evaluated by applying them to observations-based data. Results from the second segment suggest that the GEOS-5-based relationships do, at least to first order, hold in nature and thus may provide some skill to forecasts of air temperature at subseasonal time scales, at least in certain regions.

  8. Uncertain soil moisture feedbacks in model projections of Sahel precipitation

    NASA Astrophysics Data System (ADS)

    Berg, Alexis; Lintner, Benjamin R.; Findell, Kirsten; Giannini, Alessandra

    2017-06-01

    Given the uncertainties in climate model projections of Sahel precipitation, at the northern edge of the West African Monsoon, understanding the factors governing projected precipitation changes in this semiarid region is crucial. This study investigates how long-term soil moisture changes projected under climate change may feedback on projected changes of Sahel rainfall, using simulations with and without soil moisture change from five climate models participating in the Global Land Atmosphere Coupling Experiment-Coupled Model Intercomparison Project phase 5 experiment. In four out of five models analyzed, soil moisture feedbacks significantly influence the projected West African precipitation response to warming; however, the sign of these feedbacks differs across the models. These results demonstrate that reducing uncertainties across model projections of the West African Monsoon requires, among other factors, improved mechanistic understanding and constraint of simulated land-atmosphere feedbacks, even at the large spatial scales considered here.Plain Language SummaryClimate model projections of Sahel rainfall remain notoriously uncertain; understanding the physical processes responsible for this uncertainty is thus crucial. Our study focuses on analyzing the feedbacks of <span class="hlt">soil</span> <span class="hlt">moisture</span> changes on model projections of the West African Monsoon under global warming. <span class="hlt">Soil</span> <span class="hlt">moisture</span>-atmosphere interactions have been shown in prior studies to play an important role in this region, but the potential feedbacks of long-term <span class="hlt">soil</span> <span class="hlt">moisture</span> changes on projected precipitation changes have not been investigated specifically. To isolate these feedbacks, we use targeted simulations from five climate models, with and without <span class="hlt">soil</span> <span class="hlt">moisture</span> change. Importantly, we find that climate models exhibit <span class="hlt">soil</span> <span class="hlt">moisture</span>-precipitation feedbacks of different sign in this region: in some models <span class="hlt">soil</span> <span class="hlt">moisture</span> changes amplify precipitation changes</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916118V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916118V"><span><span class="hlt">Soil</span> <span class="hlt">moisture</span> controlled runoff mechanisms in a small agricultural catchment in Austria.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vreugdenhil, Mariette; Szeles, Borbala; Silasari, Rasmiaditya; Hogan, Patrick; Oismueller, Markus; Strauss, Peter; Wagner, Wolfgang; Bloeschl, Guenter</p> <p>2017-04-01</p> <p>Understanding runoff generation mechanisms is pivotal for improved estimation of floods in small catchments. However, this requires in situ measurements with a high spatial and temporal resolution of different land surface parameters, which are rarely available distributed over the catchment scale and for a long period. The Hydrological Open Air Laboratory (HOAL) is a hydrological observatory which comprises a complex agricultural catchment, covering 66 ha. Due to the agricultural land use and low permeability of the <span class="hlt">soil</span> part of the catchment was tile drained in the 1940s. The HOAL is equipped with an extensive <span class="hlt">soil</span> <span class="hlt">moisture</span> network measuring at 31 locations, 4 rain gauges and 12 stream gauges. By measuring with so many sensors in a complex catchment, the collected data enables the investigation of multiple runoff mechanisms which can be observed simultaneously in different parts of the catchment. The aim of this study is to identify and characterize different runoff mechanisms and the control <span class="hlt">soil</span> <span class="hlt">moisture</span> dynamics exert on them. As a first step 72 rainfall events were identified within the period 2014-2015. By analyzing event discharge response, measured at the different stream gauges, and root zone <span class="hlt">soil</span> <span class="hlt">moisture</span>, four different runoff mechanisms are identified. The four mechanisms exhibit contrasting <span class="hlt">soil</span> <span class="hlt">moisture</span>-discharge relationships. In the presented study we characterize the runoff response types by curve-fitting the discharge response to the <span class="hlt">soil</span> <span class="hlt">moisture</span> state. The <span class="hlt">analysis</span> provides insights in the main runoff processes occurring in agricultural catchments. The results of this study a can be of assistance in other catchments to identify catchment hydrologic response.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760017595','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760017595"><span>Results of <span class="hlt">soil</span> <span class="hlt">moisture</span> flights during April 1974</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schmugge, T. J.; Blanchard, B. J.; Burke, W. J.; Paris, J. F.; Swang, J. R.</p> <p>1976-01-01</p> <p>The results presented here are derived from measurements made during the April 5 and 6, 1974 flights of the NASA P-3A aircraft over the Phoenix, Arizona agricultural test site. The purpose of the mission was to study the use of microwave techniques for the remote sensing of <span class="hlt">soil</span> <span class="hlt">moisture</span>. These results include infrared (10-to 12 micrometers) 2.8-cm and 21-cm brightness temperatures for approximately 90 bare fields. These brightness temperatures are compared with surface measurements of the <span class="hlt">soil</span> <span class="hlt">moisture</span> made at the time of the overflights. These data indicate that the combination of the sum and difference of the vertically and the horizontally polarized brightness temperatures yield information on both the <span class="hlt">soil</span> <span class="hlt">moisture</span> and surface roughness conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950027395','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950027395"><span>Application of IEM model on <span class="hlt">soil</span> <span class="hlt">moisture</span> and surface roughness estimation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shi, Jiancheng; Wang, J. R.; Oneill, P. E.; Hsu, A. Y.; Engman, E. T.</p> <p>1995-01-01</p> <p>Monitoring spatial and temporal changes of <span class="hlt">soil</span> <span class="hlt">moisture</span> are of importance to hydrology, meteorology, and agriculture. This paper reports a result on study of using L-band SAR imagery to estimate <span class="hlt">soil</span> <span class="hlt">moisture</span> and surface roughness for bare fields. Due to limitations of the Small Perturbation Model, it is difficult to apply this model on estimation of <span class="hlt">soil</span> <span class="hlt">moisture</span> and surface roughness directly. In this study, we show a simplified model derived from the Integral Equation Model for estimation of <span class="hlt">soil</span> <span class="hlt">moisture</span> and surface roughness. We show a test of this model using JPL L-band AIRSAR data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H44D..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H44D..03B"><span>Validation of SMAP Root Zone <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Estimates with Improved Cosmic-Ray Neutron Probe Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babaeian, E.; Tuller, M.; Sadeghi, M.; Franz, T.; Jones, S. B.</p> <p>2017-12-01</p> <p><span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) <span class="hlt">soil</span> <span class="hlt">moisture</span> products are commonly validated based on point-scale reference measurements, despite the exorbitant spatial scale disparity. The difference between the measurement depth of point-scale sensors and the penetration depth of SMAP further complicates evaluation efforts. Cosmic-ray neutron probes (CRNP) with an approximately 500-m radius footprint provide an appealing alternative for SMAP validation. This study is focused on the validation of SMAP level-4 root zone <span class="hlt">soil</span> <span class="hlt">moisture</span> products with 9-km spatial resolution based on CRNP observations at twenty U.S. reference sites with climatic conditions ranging from semiarid to humid. The CRNP measurements are often biased by additional hydrogen sources such as surface water, atmospheric vapor, or mineral lattice water, which sometimes yield unrealistic <span class="hlt">moisture</span> values in excess of the <span class="hlt">soil</span> water storage capacity. These effects were removed during CRNP data <span class="hlt">analysis</span>. Comparison of SMAP data with corrected CRNP observations revealed a very high correlation for most of the investigated sites, which opens new avenues for validation of current and future satellite <span class="hlt">soil</span> <span class="hlt">moisture</span> products.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22303673','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22303673"><span>[Simulation of cropland <span class="hlt">soil</span> <span class="hlt">moisture</span> based on an ensemble Kalman filter].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Zhao; Zhou, Yan-Lian; Ju, Wei-Min; Gao, Ping</p> <p>2011-11-01</p> <p>By using an ensemble Kalman filter (EnKF) to assimilate the observed <span class="hlt">soil</span> <span class="hlt">moisture</span> data, the modified boreal ecosystem productivity simulator (BEPS) model was adopted to simulate the dynamics of <span class="hlt">soil</span> <span class="hlt">moisture</span> in winter wheat root zones at Xuzhou Agro-meteorological Station, Jiangsu Province of China during the growth seasons in 2000-2004. After the assimilation of observed data, the determination coefficient, root mean square error, and average absolute error of simulated <span class="hlt">soil</span> <span class="hlt">moisture</span> were in the ranges of 0.626-0.943, 0.018-0.042, and 0.021-0.041, respectively, with the simulation precision improved significantly, as compared with that before assimilation, indicating the applicability of data assimilation in improving the simulation of <span class="hlt">soil</span> <span class="hlt">moisture</span>. The experimental results at single point showed that the errors in the forcing data and observations and the frequency and <span class="hlt">soil</span> depth of the assimilation of observed data all had obvious effects on the simulated <span class="hlt">soil</span> <span class="hlt">moisture</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3960259','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3960259"><span>Effects of <span class="hlt">Soil</span> <span class="hlt">Moisture</span> on the Temperature Sensitivity of <span class="hlt">Soil</span> Heterotrophic Respiration: A Laboratory Incubation Study</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhou, Weiping; Hui, Dafeng; Shen, Weijun</p> <p>2014-01-01</p> <p>The temperature sensitivity (Q10) of <span class="hlt">soil</span> heterotrophic respiration (Rh) is an important ecological model parameter and may vary with temperature and <span class="hlt">moisture</span>. While Q10 generally decreases with increasing temperature, the <span class="hlt">moisture</span> effects on Q10 have been controversial. To address this, we conducted a 90-day laboratory incubation experiment using a subtropical forest <span class="hlt">soil</span> with a full factorial combination of five <span class="hlt">moisture</span> levels (20%, 40%, 60%, 80%, and 100% water holding capacity - WHC) and five temperature levels (10, 17, 24, 31, and 38°C). Under each <span class="hlt">moisture</span> treatment, Rh was measured several times for each temperature treatment to derive Q10 based on the exponential relationships between Rh and temperature. Microbial biomass carbon (MBC), microbial community structure and <span class="hlt">soil</span> nutrients were also measured several times to detect their potential contributions to the <span class="hlt">moisture</span>-induced Q10 variation. We found that Q10 was significantly lower at lower <span class="hlt">moisture</span> levels (60%, 40% and 20% WHC) than at higher <span class="hlt">moisture</span> level (80% WHC) during the early stage of the incubation, but became significantly higher at 20%WHC than at 60% WHC and not significantly different from the other three <span class="hlt">moisture</span> levels during the late stage of incubation. In contrast, <span class="hlt">soil</span> Rh had the highest value at 60% WHC and the lowest at 20% WHC throughout the whole incubation period. Variations of Q10 were significantly associated with MBC during the early stages of incubation, but with the fungi-to-bacteria ratio during the later stages, suggesting that changes in microbial biomass and community structure are related to the <span class="hlt">moisture</span>-induced Q10 changes. This study implies that global warming’s impacts on <span class="hlt">soil</span> CO2 emission may depend upon <span class="hlt">soil</span> <span class="hlt">moisture</span> conditions. With the same temperature rise, wetter <span class="hlt">soils</span> may emit more CO2 into the atmosphere via heterotrophic respiration. PMID:24647610</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790008163&hterms=Soil+sampling+radiation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSoil%2Bsampling%2Bradiation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790008163&hterms=Soil+sampling+radiation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSoil%2Bsampling%2Bradiation"><span><span class="hlt">Soil</span> <span class="hlt">moisture</span> estimation using reflected solar and emitted thermal infrared radiation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.</p> <p>1978-01-01</p> <p>Classical methods of measuring <span class="hlt">soil</span> <span class="hlt">moisture</span> such as gravimetric sampling and the use of neutron <span class="hlt">moisture</span> probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of <span class="hlt">soil</span> <span class="hlt">moisture</span> over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate <span class="hlt">soil</span> <span class="hlt">moisture</span> is examined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.2932K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.2932K"><span>Inter-Comparison of Retrieved and Modelled <span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Coherency of Remotely Sensed Hydrology Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kolassa, Jana; Aires, Filipe</p> <p>2013-04-01</p> <p>A neural network algorithm has been developed for the retrieval of <span class="hlt">Soil</span> <span class="hlt">Moisture</span> (SM) from global satellite observations. The algorithm estimates <span class="hlt">soil</span> <span class="hlt">moisture</span> from a synergy of passive and active microwave, infrared and visible satellite observations in order to capture the different SM variabilities that the individual sensors are sensitive to. The advantages and drawbacks of each satellite observation have been analysed and the information type and content carried by each observation have been determined. A global data set of monthly mean <span class="hlt">soil</span> <span class="hlt">moisture</span> for the 1993-2000 period has been computed with the neural network algorithm (Kolassa et al., in press, 2012). The resulting <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval product has then been used in an inter-comparison study including <span class="hlt">soil</span> <span class="hlt">moisture</span> from (1) the HTESSEL model (Balsamo et al., 2009), (2) the WACMOS satellite product (Liu et al., 2011), and (3) in situ measurements from the International <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Network (Dorigo et al., 2011). The <span class="hlt">analysis</span> showed that the satellite remote sensing products are well-suited to capture the spatial variability of the in situ data and even show the potential to improve the modelled <span class="hlt">soil</span> <span class="hlt">moisture</span>. Both satellite retrievals also display a good agreement with the temporal structures of the in situ data, however, HTESSEL appears to be more suitable for capturing the temporal variability (Kolassa et al., in press, 2012). The use of this type of neural network approach is currently being investigated as a retrieval option for the SMOS mission. Our <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval product has also been used in a coherence study with precipitation data from GPCP (Adler et al., 2003) and inundation estimates from GIEMS (Prigent et al., 2007). It was investigated on a global scale whether the three observation-based datasets are coherent with each other and show the expected behaviour. For most regions of the Earth, the datasets were consistent and the behaviour observed could be explained with the known</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........24F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........24F"><span>Disaggregation Of Passive Microwave <span class="hlt">Soil</span> <span class="hlt">Moisture</span> For Use In Watershed Hydrology Applications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fang, Bin</p> <p></p> <p>In recent years the passive microwave remote sensing has been providing <span class="hlt">soil</span> <span class="hlt">moisture</span> products using instruments on board satellite/airborne platforms. Spatial resolution has been restricted by the diameter of antenna which is inversely proportional to resolution. As a result, typical products have a spatial resolution of tens of kilometers, which is not compatible for some hydrological research applications. For this reason, the dissertation explores three disaggregation algorithms that estimate L-band passive microwave <span class="hlt">soil</span> <span class="hlt">moisture</span> at the subpixel level by using high spatial resolution remote sensing products from other optical and radar instruments were proposed and implemented in this investigation. The first technique utilized a thermal inertia theory to establish a relationship between daily temperature change and average <span class="hlt">soil</span> <span class="hlt">moisture</span> modulated by the vegetation condition was developed by using NLDAS, AVHRR, SPOT and MODIS data were applied to disaggregate the 25 km AMSR-E <span class="hlt">soil</span> <span class="hlt">moisture</span> to 1 km in Oklahoma. The second algorithm was built on semi empirical physical models (NP89 and LP92) derived from numerical experiments between <span class="hlt">soil</span> evaporation efficiency and <span class="hlt">soil</span> <span class="hlt">moisture</span> over the surface skin sensing depth (a few millimeters) by using simulated <span class="hlt">soil</span> temperature derived from MODIS and NLDAS as well as AMSR-E <span class="hlt">soil</span> <span class="hlt">moisture</span> at 25 km to disaggregate the coarse resolution <span class="hlt">soil</span> <span class="hlt">moisture</span> to 1 km in Oklahoma. The third algorithm modeled the relationship between the change in co-polarized radar backscatter and the remotely sensed microwave change in <span class="hlt">soil</span> <span class="hlt">moisture</span> retrievals and assumed that change in <span class="hlt">soil</span> <span class="hlt">moisture</span> was a function of only the canopy opacity. The change detection algorithm was implemented using aircraft based the remote sensing data from PALS and UAVSAR that were collected in SMPAVEX12 in southern Manitoba, Canada. The PALS L-band h-polarization radiometer <span class="hlt">soil</span> <span class="hlt">moisture</span> retrievals were disaggregated by combining them with the PALS and UAVSAR L</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840050551&hterms=watershed&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dwatershed','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840050551&hterms=watershed&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dwatershed"><span>Aircraft scatterometer observations of <span class="hlt">soil</span> <span class="hlt">moisture</span> on rangeland watersheds</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jackson, T. J.; Oneill, P. E.</p> <p>1983-01-01</p> <p>Extensive studies conducted by several researchers using truck-mounted active microwave sensors have shown the sensitivity of these sensors to <span class="hlt">soil</span> <span class="hlt">moisture</span> variations. The logical extension of these results is the evaluation of similar systems at lower resolutions typical of operational systems. Data collected during a series of aircraft flights in 1978 and 1980 over four rangeland watersheds located near Chickasha, Oklahoma, were analyzed in this study. These data included scatterometer measurements made at 1.6 and 4.75 GHz using a NASA aircraft and ground observations of <span class="hlt">soil</span> <span class="hlt">moisture</span> for a wide range of <span class="hlt">moisture</span> conditions. Data were analyzed for consistency and compared to previous truck and aircraft results. Results indicate that the sensor system is capable of providing consistent estimates of <span class="hlt">soil</span> <span class="hlt">moisture</span> under the conditions tested.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatCC...8..421S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatCC...8..421S"><span>Anthropogenic warming exacerbates European <span class="hlt">soil</span> <span class="hlt">moisture</span> droughts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E. F.; Marx, A.</p> <p>2018-05-01</p> <p>Anthropogenic warming is anticipated to increase <span class="hlt">soil</span> <span class="hlt">moisture</span> drought in the future. However, projections are accompanied by large uncertainty due to varying estimates of future warming. Here, using an ensemble of hydrological and land-surface models, forced with bias-corrected downscaled general circulation model output, we estimate the impacts of 1-3 K global mean temperature increases on <span class="hlt">soil</span> <span class="hlt">moisture</span> droughts in Europe. Compared to the 1.5 K Paris target, an increase of 3 K—which represents current projected temperature change—is found to increase drought area by 40% (±24%), affecting up to 42% (±22%) more of the population. Furthermore, an event similar to the 2003 drought is shown to become twice as frequent; thus, due to their increased occurrence, events of this magnitude will no longer be classified as extreme. In the absence of effective mitigation, Europe will therefore face unprecedented increases in <span class="hlt">soil</span> <span class="hlt">moisture</span> drought, presenting new challenges for adaptation across the continent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdWR..113...23L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdWR..113...23L"><span>The impact of fog on <span class="hlt">soil</span> <span class="hlt">moisture</span> dynamics in the Namib Desert</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Vogt, Roland; Li, Lin; Seely, Mary K.</p> <p>2018-03-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> is a crucial component supporting vegetation dynamics in drylands. Despite increasing attention on fog in dryland ecosystems, the statistical characterization of fog distribution and how fog affects <span class="hlt">soil</span> <span class="hlt">moisture</span> dynamics have not been seen in literature. To this end, daily fog records over two years (Dec 1, 2014-Nov 1, 2016) from three sites within the Namib Desert were used to characterize fog distribution. Two sites were located within the Gobabeb Research and Training Center vicinity, the gravel plains and the sand dunes. The third site was located at the gravel plains, Kleinberg. A subset of the fog data during rainless period was used to investigate the effect of fog on <span class="hlt">soil</span> <span class="hlt">moisture</span>. A stochastic modeling framework was used to simulate the effect of fog on <span class="hlt">soil</span> <span class="hlt">moisture</span> dynamics. Our results showed that fog distribution can be characterized by a Poisson process with two parameters (arrival rate λ and average depth α (mm)). Fog and <span class="hlt">soil</span> <span class="hlt">moisture</span> observations from eighty (Aug 19, 2015-Nov 6, 2015) rainless days indicated a moderate positive relationship between <span class="hlt">soil</span> <span class="hlt">moisture</span> and fog in the Gobabeb gravel plains, a weaker relationship in the Gobabeb sand dunes while no relationship was observed at the Kleinberg site. The modeling results suggested that mean and major peaks of <span class="hlt">soil</span> <span class="hlt">moisture</span> dynamics can be captured by the fog modeling. Our field observations demonstrated the effects of fog on <span class="hlt">soil</span> <span class="hlt">moisture</span> dynamics during rainless periods at some locations, which has important implications on <span class="hlt">soil</span> biogeochemical processes. The statistical characterization and modeling of fog distribution are of great value to predict fog distribution and investigate the effects of potential changes in fog distribution on <span class="hlt">soil</span> <span class="hlt">moisture</span> dynamics.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=318185','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=318185"><span>Potential of bias correction for downscaling passive microwave and <span class="hlt">soil</span> <span class="hlt">moisture</span> data</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Passive microwave satellites such as SMOS (<span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Ocean Salinity) or SMAP (<span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive) observe brightness temperature (TB) and retrieve <span class="hlt">soil</span> <span class="hlt">moisture</span> at a spatial resolution greater than most hydrological processes. Bias correction is proposed as a simple method to disag...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H21I1588H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H21I1588H"><span>An <span class="hlt">analysis</span> of <span class="hlt">soil</span> <span class="hlt">moisture</span> and vegetation conditions during a period of rapid subseasonal oscillations between drought and pluvials over Texas during 2015</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hunt, E. D.; Otkin, J.; Zhong, Y.</p> <p>2017-12-01</p> <p>Flash drought, characterized by the rapid onset of abnormally warm and dry weather conditions that leads to the rapid depletion of <span class="hlt">soil</span> <span class="hlt">moisture</span> and rapid deteriorations in vegetation health. Flash recovery, on the other hand, is characterized by a period(s) of intense precipitation where drought conditions are quickly eradicated and may be replaced by saturated <span class="hlt">soils</span> and flooding. Both flash drought and flash recovery are closely tied to the rapid depletion or recharge of root zone <span class="hlt">soil</span> <span class="hlt">moisture</span>; therefore, <span class="hlt">soil</span> <span class="hlt">moisture</span> observations are very useful for monitoring their evolution. However, in-situ <span class="hlt">soil</span> <span class="hlt">moisture</span> observations tend to be concentrated over small regions and thus other methods are needed to provide a spatially continuous depiction of <span class="hlt">soil</span> <span class="hlt">moisture</span> conditions. One option is to use top <span class="hlt">soil</span> <span class="hlt">moisture</span> retrievals from the <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) sensor. SMAP provides routine coverage of surface <span class="hlt">soil</span> <span class="hlt">moisture</span> (0-5 cm) over most of the globe, including the timespan (2015) and region of interest (Texas) that are the focus of our study. This region had an unusual sequence of flash recovery-flash drought-flash recovery during an six-month period during 2015 that provides a valuable case study of rapid transitions between extreme <span class="hlt">soil</span> <span class="hlt">moisture</span> conditions. During this project, SMAP <span class="hlt">soil</span> <span class="hlt">moisture</span> retrievals are being used in combination with in-situ <span class="hlt">soil</span> <span class="hlt">moisture</span> observations and assimilated into the Land Information System (LIS) to provide information about <span class="hlt">soil</span> <span class="hlt">moisture</span> content. LIS also provides greenness vegetation fraction data over large regions. The relationship between <span class="hlt">soil</span> <span class="hlt">moisture</span> and vegetation conditions and the response of the vegetation to the rapidly changing conditions are also assessed using the satellite thermal infrared based Evaporative Stress Index (ESI) that depicts anomalies in evapotranspiration, along with other vegetation datasets (leaf area index, greenness fraction) derived using MODIS observations. Preliminary results with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdWR..112..124B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdWR..112..124B"><span>Hydrologic responses to restored wildfire regimes revealed by <span class="hlt">soil</span> <span class="hlt">moisture</span>-vegetation relationships</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boisramé, Gabrielle; Thompson, Sally; Stephens, Scott</p> <p>2018-02-01</p> <p>Many forested mountain watersheds worldwide evolved with frequent fire, which Twentieth Century fire suppression activities eliminated, resulting in unnaturally dense forests with high water demand. Restoration of pre-suppression forest composition and structure through a variety of management activities could improve forest resilience and water yields. This study explores the potential for "managed wildfire", whereby naturally ignited fires are allowed to burn, to alter the water balance. Interest in this type of managed wildfire is increasing, yet its long-term effects on water balance are uncertain. We use <span class="hlt">soil</span> <span class="hlt">moisture</span> as a spatially-distributed hydrologic indicator to assess the influence of vegetation, fire history and landscape position on water availability in the Illilouette Creek Basin in Yosemite National Park. Over 6000 manual surface <span class="hlt">soil</span> <span class="hlt">moisture</span> measurements were made over a period of three years, and supplemented with continuous <span class="hlt">soil</span> <span class="hlt">moisture</span> measurements over the top 1m of <span class="hlt">soil</span> in three sites. Random forest and linear mixed effects models showed a dominant effect of vegetation type and history of vegetation change on measured <span class="hlt">soil</span> <span class="hlt">moisture</span>. Contemporary and historical vegetation maps were used to upscale the <span class="hlt">soil</span> <span class="hlt">moisture</span> observations to the basin and infer <span class="hlt">soil</span> <span class="hlt">moisture</span> under fire-suppressed conditions. Little change in basin-averaged <span class="hlt">soil</span> <span class="hlt">moisture</span> was inferred due to managed wildfire, but the results indicated that large localized increases in <span class="hlt">soil</span> <span class="hlt">moisture</span> had occurred, which could have important impacts on local ecology or downstream flows.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JHyd..368...56T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JHyd..368...56T"><span>Assessment of multi-frequency electromagnetic induction for determining <span class="hlt">soil</span> <span class="hlt">moisture</span> patterns at the hillslope scale</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tromp-van Meerveld, H. J.; McDonnell, J. J.</p> <p>2009-04-01</p> <p>SummaryHillslopes are fundamental landscape units, yet represent a difficult scale for measurements as they are well-beyond our traditional point-scale techniques. Here we present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map <span class="hlt">soil</span> <span class="hlt">moisture</span> patterns at the hillslope scale. We test the new multi-frequency GEM-300 for spatially distributed <span class="hlt">soil</span> <span class="hlt">moisture</span> measurements at the well-instrumented Panola hillslope. EM-based apparent conductivity measurements were linearly related to <span class="hlt">soil</span> <span class="hlt">moisture</span> measured with the Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in <span class="hlt">soil</span> <span class="hlt">moisture</span> well. During spring rainfall events that wetted only the surface <span class="hlt">soil</span> layers the apparent conductivity measurements explained the <span class="hlt">soil</span> <span class="hlt">moisture</span> dynamics at depth better than the surface <span class="hlt">soil</span> <span class="hlt">moisture</span> dynamics. All four EM frequencies (7.290, 9.090, 11.250, and 14.010 kHz) were highly correlated and linearly related to each other and could be used to predict <span class="hlt">soil</span> <span class="hlt">moisture</span>. This limited our ability to use the four different EM frequencies to obtain a <span class="hlt">soil</span> <span class="hlt">moisture</span> profile with depth. The apparent conductivity patterns represented the observed spatial <span class="hlt">soil</span> <span class="hlt">moisture</span> patterns well when the individually fitted relationships between measured <span class="hlt">soil</span> <span class="hlt">moisture</span> and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the <span class="hlt">soil</span> <span class="hlt">moisture</span> patterns were smoothed and did not resemble the observed <span class="hlt">soil</span> <span class="hlt">moisture</span> patterns very well. In addition the range in calculated <span class="hlt">soil</span> <span class="hlt">moisture</span> values was reduced compared to observed <span class="hlt">soil</span> <span class="hlt">moisture</span>. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the <span class="hlt">soil</span> <span class="hlt">moisture</span> measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/52378','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/52378"><span>Persistence and memory timescales in root-zone <span class="hlt">soil</span> <span class="hlt">moisture</span> dynamics</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Khaled Ghannam; Taro Nakai; Athanasios Paschalis; Andrew C. Oishi; Ayumi Kotani; Yasunori Igarashi; Tomo' omi Kumagai; Gabriel G. Katul</p> <p>2016-01-01</p> <p>The memory timescale that characterizes root-zone <span class="hlt">soil</span> <span class="hlt">moisture</span> remains the dominant measure in seasonal forecasts of land-climate interactions. This memory is a quasi-deterministic timescale associated with the losses (e.g., evapotranspiration) from the <span class="hlt">soil</span> column and is often interpreted as persistence in <span class="hlt">soil</span> <span class="hlt">moisture</span> states. Persistence, however,...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H51H1600S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H51H1600S"><span>Enhancing a Remote-Sensing Method for <span class="hlt">Soil</span> <span class="hlt">Moisture</span> by Accounting for Regional <span class="hlt">Soil</span>, Vegetation, and Climatic Characteristics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sahaar, A. S.; Niemann, J. D.</p> <p>2016-12-01</p> <p>Accurate knowledge of root-zone <span class="hlt">soil</span> <span class="hlt">moisture</span> is critical for understanding the perpetuation of droughts and managing agricultural water systems. A remote-sensing method based on optical and thermal satellite imagery has been previously proposed to estimate fine-resolution (30 m) root-zone <span class="hlt">soil</span> <span class="hlt">moisture</span> over large regions. This method uses Landsat imagery to calculate all the components of the surface energy balance and then calculates the evaporative fraction (Λ) as the ratio of the latent heat flux to the sum of the sensible and latent heat fluxes. Root-zone <span class="hlt">soil</span> <span class="hlt">moisture</span> (θ) is then estimated from an empirical relationship with Λ. A similar approach has also been proposed to estimate the degree of saturation. Previous testing of this method for a semiarid region of southeastern Colorado has shown that a single relationship between θ and Λ does not apply universally. The primary objective of this study is to evaluate the impact of regional <span class="hlt">soil</span>, vegetation, and climatic conditions on the form and strength of the Λ- θ relationship. To accomplish this goal, a global sensitivity <span class="hlt">analysis</span> is performed using the Extended Fourier Amplitude Sensitivity Test (FAST) and a physically-based model (Hydrus-1D) that simulates both the land-surface energy balance and <span class="hlt">soil</span> <span class="hlt">moisture</span> dynamics. The modeling results show that, within a given climatic region, <span class="hlt">soil</span> characteristics are very important in determining the shape of the Λ-θ relationship, while vegetation characteristics have the largest effect on the strength of the relationship. The modeling results also indicate that the annual average rainfall, which helps determine the climatic region, has a strong effect on both the form and strength of the relationship. From this <span class="hlt">analysis</span>, the constants that define the Λ-θ relationships are estimated using regional characteristics. This approach allows the remote-sensing method to be adapted to local conditions and has the potential to greatly improve its performance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8426H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8426H"><span>Where did my wifi go? Measuring <span class="hlt">soil</span> <span class="hlt">moisture</span> using wifi signal strength</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hut, Rolf; de Jeu, Richard</p> <p>2015-04-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> is tricky to measure. Currently <span class="hlt">soil</span> <span class="hlt">moisture</span> is measured at small footprints using probes and other field devices, or at large footprints using satellites. Promising developments in measuring <span class="hlt">soil</span> <span class="hlt">moisture</span> are using fiber optic cables for measurements along a line, or using cosmos rays for field scale measurements. In this demonstration we present a low cost alternative to measure <span class="hlt">soil</span> <span class="hlt">moisture</span> at footprints of a few square meters. We use a wifi hotspot and a wifi dongle, both mounted in a cantenna for beam forming. We aim the hotspot on a piece of <span class="hlt">soil</span> and put the dongle in the path of the reflection. By logging the signal strength of the wifi netwerk, we have a proxy for <span class="hlt">soil</span> <span class="hlt">moisture</span>. A first proof of concept is presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000038126&hterms=watershed&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dwatershed','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000038126&hterms=watershed&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dwatershed"><span>The Impact of Microwave-Derived Surface <span class="hlt">Soil</span> <span class="hlt">Moisture</span> on Watershed Hydrological Modeling</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>ONeill, P. E.; Hsu, A. Y.; Jackson, T. J.; Wood, E. F.; Zion, M.</p> <p>1997-01-01</p> <p>The usefulness of incorporating microwave-derived <span class="hlt">soil</span> <span class="hlt">moisture</span> information in a semi-distributed hydrological model was demonstrated for the Washita '92 experiment in the Little Washita River watershed in Oklahoma. Initializing the hydrological model with surface <span class="hlt">soil</span> <span class="hlt">moisture</span> fields from the ESTAR airborne L-band microwave radiometer on a single wet day at the start of the study period produced more accurate model predictions of <span class="hlt">soil</span> <span class="hlt">moisture</span> than a standard hydrological initialization with streamflow data over an eight-day <span class="hlt">soil</span> <span class="hlt">moisture</span> drydown.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.H42D..07Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.H42D..07Y"><span>Distributed <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Estimation in a Mountainous Semiarid Basin: Constraining <span class="hlt">Soil</span> Parameter Uncertainty through Field Studies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yatheendradas, S.; Vivoni, E.</p> <p>2007-12-01</p> <p>A common practice in distributed hydrological modeling is to assign <span class="hlt">soil</span> hydraulic properties based on coarse textural datasets. For semiarid regions with poor <span class="hlt">soil</span> information, the performance of a model can be severely constrained due to the high model sensitivity to near-surface <span class="hlt">soil</span> characteristics. Neglecting the uncertainty in <span class="hlt">soil</span> hydraulic properties, their spatial variation and their naturally-occurring horizonation can potentially affect the modeled hydrological response. In this study, we investigate such effects using the TIN-based Real-time Integrated Basin Simulator (tRIBS) applied to the mid-sized (100 km2) Sierra Los Locos watershed in northern Sonora, Mexico. The Sierra Los Locos basin is characterized by complex mountainous terrain leading to topographic organization of <span class="hlt">soil</span> characteristics and ecosystem distributions. We focus on simulations during the 2004 North American Monsoon Experiment (NAME) when intensive <span class="hlt">soil</span> <span class="hlt">moisture</span> measurements and aircraft- based <span class="hlt">soil</span> <span class="hlt">moisture</span> retrievals are available in the basin. Our experiments focus on <span class="hlt">soil</span> <span class="hlt">moisture</span> comparisons at the point, topographic transect and basin scales using a range of different <span class="hlt">soil</span> characterizations. We compare the distributed <span class="hlt">soil</span> <span class="hlt">moisture</span> estimates obtained using (1) a deterministic simulation based on <span class="hlt">soil</span> texture from coarse <span class="hlt">soil</span> maps, (2) a set of ensemble simulations that capture <span class="hlt">soil</span> parameter uncertainty and their spatial distribution, and (3) a set of simulations that conditions the ensemble on recent <span class="hlt">soil</span> profile measurements. Uncertainties considered in near-surface <span class="hlt">soil</span> characterization provide insights into their influence on the modeled uncertainty, into the value of <span class="hlt">soil</span> profile observations, and into effective use of on-going field observations for constraining the <span class="hlt">soil</span> <span class="hlt">moisture</span> response uncertainty.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916217M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916217M"><span>A Mulitivariate Statistical Model Describing the Compound Nature of <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Drought</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manning, Colin; Widmann, Martin; Bevacqua, Emanuele; Maraun, Douglas; Van Loon, Anne; Vrac, Mathieu</p> <p>2017-04-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> in Europe acts to partition incoming energy into sensible and latent heat fluxes, thereby exerting a large influence on temperature variability. <span class="hlt">Soil</span> <span class="hlt">moisture</span> is predominantly controlled by precipitation and evapotranspiration. When these meteorological variables are accumulated over different timescales, their joint multivariate distribution and dependence structure can be used to provide information of <span class="hlt">soil</span> <span class="hlt">moisture</span>. We therefore consider <span class="hlt">soil</span> <span class="hlt">moisture</span> drought as a compound event of meteorological drought (deficits of precipitation) and heat waves, or more specifically, periods of high Potential Evapotraspiration (PET). We present here a statistical model of <span class="hlt">soil</span> <span class="hlt">moisture</span> based on Pair Copula Constructions (PCC) that can describe the dependence amongst <span class="hlt">soil</span> <span class="hlt">moisture</span> and its contributing meteorological variables. The model is designed in such a way that it can account for concurrences of meteorological drought and heat waves and describe the dependence between these conditions at a local level. The model is composed of four variables; daily <span class="hlt">soil</span> <span class="hlt">moisture</span> (h); a short term and a long term accumulated precipitation variable (Y1 and Y_2) that account for the propagation of meteorological drought to <span class="hlt">soil</span> <span class="hlt">moisture</span> drought; and accumulated PET (Y_3), calculated using the Penman Monteith equation, which can represent the effect of a heat wave on <span class="hlt">soil</span> conditions. Copula are multivariate distribution functions that allow one to model the dependence structure of given variables separately from their marginal behaviour. PCCs then allow in theory for the formulation of a multivariate distribution of any dimension where the multivariate distribution is decomposed into a product of marginal probability density functions and two-dimensional copula, of which some are conditional. We apply PCC here in such a way that allows us to provide estimates of h and their uncertainty through conditioning on the Y in the form h=h|y_1,y_2,y_3 (1) Applying the model to various</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3697171','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3697171"><span>On the <span class="hlt">Soil</span> Roughness Parameterization Problem in <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Retrieval of Bare Surfaces from Synthetic Aperture Radar</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Verhoest, Niko E.C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M. Susan; Mattia, Francesco</p> <p>2008-01-01</p> <p>Synthetic Aperture Radar has shown its large potential for retrieving <span class="hlt">soil</span> <span class="hlt">moisture</span> maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of <span class="hlt">soil</span> <span class="hlt">moisture</span> is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving <span class="hlt">soil</span> <span class="hlt">moisture</span> from radar backscatter usually provides inaccurate estimates. The characterization of <span class="hlt">soil</span> roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing <span class="hlt">soil</span> roughness as well as the reported impact of the errors made on the retrieved <span class="hlt">soil</span> <span class="hlt">moisture</span>. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval accuracy and scale. PMID:27879932</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4014F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4014F"><span>Spatiotemporal characterization of <span class="hlt">soil</span> <span class="hlt">moisture</span> fields in agricultural areas using cosmic-ray neutron probes and data fusion</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Franz, Trenton; Wang, Tiejun</p> <p>2015-04-01</p> <p>Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of <span class="hlt">soil</span> <span class="hlt">moisture</span> at the field-scale (~500 m) using the newly developed cosmic-ray neutron rover near Waco, NE USA. Here we mapped <span class="hlt">soil</span> <span class="hlt">moisture</span> of 144 quarter section fields (a mix of maize, soybean, and natural areas) each week during the 2014 growing season (May to September). The 12 by 12 km study domain also contained three stationary cosmic-ray neutron probes for independent validation of the rover surveys. Basic statistical <span class="hlt">analysis</span> of the domain indicated a strong relationship between the mean and variance of <span class="hlt">soil</span> <span class="hlt">moisture</span> at several averaging scales. The relationships between the mean and higher order moments were not significant. Scaling <span class="hlt">analysis</span> indicated strong power law behavior between the variance of <span class="hlt">soil</span> <span class="hlt">moisture</span> and averaging area with minimal dependence of mean <span class="hlt">soil</span> <span class="hlt">moisture</span> on the slope of the power law function. In addition, we combined the data from the three stationary cosmic-ray neutron probes and mobile surveys using linear regression to derive a daily <span class="hlt">soil</span> <span class="hlt">moisture</span> product at 1, 3, and 12 km spatial resolutions for the entire growing season. The statistical relationships derived from the rover dataset offer a novel set of observations that will be useful in: 1) calibrating and validating land surface models, 2) calibrating and validating crop models, 3) <span class="hlt">soil</span> <span class="hlt">moisture</span> covariance estimates for statistical downscaling of remote sensing products such as SMOS and SMAP, and 4) provide daily center-pivot scale mean <span class="hlt">soil</span> <span class="hlt">moisture</span> data for optimal irrigation timing and volume amounts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.H11B1259F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.H11B1259F"><span>Modification of <span class="hlt">Soil</span> Temperature and <span class="hlt">Moisture</span> Budgets by Snow Processes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, X.; Houser, P.</p> <p>2006-12-01</p> <p>Snow cover significantly influences the land surface energy and surface <span class="hlt">moisture</span> budgets. Snow thermally insulates the <span class="hlt">soil</span> column from large and rapid temperature fluctuations, and snow melting provides an important source for surface runoff and <span class="hlt">soil</span> <span class="hlt">moisture</span>. Therefore, it is important to accurately understand and predict the energy and <span class="hlt">moisture</span> exchange between surface and subsurface associated with snow accumulation and ablation. The objective of this study is to understand the impact of land surface model <span class="hlt">soil</span> layering treatment on the realistic simulation of <span class="hlt">soil</span> temperature and <span class="hlt">soil</span> <span class="hlt">moisture</span>. We seek to understand how many <span class="hlt">soil</span> layers are required to fully take into account <span class="hlt">soil</span> thermodynamic properties and hydrological process while also honoring efficient calculation and inexpensive computation? This work attempts to address this question using field measurements from the Cold Land Processes Field Experiment (CLPX). In addition, to gain a better understanding of surface heat and surface <span class="hlt">moisture</span> transfer process between land surface and deep <span class="hlt">soil</span> involved in snow processes, numerical simulations were performed at several Meso-Cell Study Areas (MSAs) of CLPX using the Center for Ocean-Land-Atmosphere (COLA) Simplified Version of the Simple Biosphere Model (SSiB). Measurements of <span class="hlt">soil</span> temperature and <span class="hlt">soil</span> <span class="hlt">moisture</span> were analyzed at several CLPX sites with different vegetation and <span class="hlt">soil</span> features. The monthly mean vertical profile of <span class="hlt">soil</span> temperature during October 2002 to July 2003 at North Park Illinois River exhibits a large near surface variation (<5 cm), reveals a significant transition zone from 5 cm to 25 cm, and becomes uniform beyond 25cm. This result shows us that three <span class="hlt">soil</span> layers are reasonable in solving the vertical variation of <span class="hlt">soil</span> temperature at these study sites. With 6 <span class="hlt">soil</span> layers, SSiB also captures the vertical variation of <span class="hlt">soil</span> temperature during entire winter season, featuring with six <span class="hlt">soil</span> layers, but the bare <span class="hlt">soil</span> temperature is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=244275','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=244275"><span>Remote sensing of an agricultural <span class="hlt">soil</span> <span class="hlt">moisture</span> network in Walnut Creek, Iowa</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The calibration and validation of <span class="hlt">soil</span> <span class="hlt">moisture</span> remote sensing products is complicated by the logistics of installing a <span class="hlt">soil</span> <span class="hlt">moisture</span> network for a long term period in an active landscape. Usually <span class="hlt">soil</span> <span class="hlt">moisture</span> sensors are added to existing precipitation networks which have as a singular requiremen...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.H53H..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.H53H..04S"><span>Pathways of <span class="hlt">soil</span> <span class="hlt">moisture</span> controls on boundary layer dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siqueira, M.; Katul, G.; Porporato, A.</p> <p>2007-12-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> controls on precipitation are now receiving significant attention in climate systems because the memory of their variability is much slower than the memory of the fast atmospheric processes. We propose a new model that integrates <span class="hlt">soil</span> water dynamics, plant hydraulics and stomatal responses to water availability to estimate root water uptake and available energy partitioning, as well as feedbacks to boundary layer dynamics (in terms of water vapor and heat input to the atmospheric system). Using a simplified homogenization technique, the model solves the intrinsically 3-D <span class="hlt">soil</span> water movement equations by two 1-D coupled Richards' equations. The first resolves the radial water flow from bulk <span class="hlt">soil</span> to <span class="hlt">soil</span>-root interface to estimate root uptake (assuming the vertical gradients in <span class="hlt">moisture</span> persist during the rapid lateral flow), and then it solves vertical water movement through the <span class="hlt">soil</span> following the radial <span class="hlt">moisture</span> adjustments. The coupling between these two equations is obtained by area averaging the <span class="hlt">soil</span> <span class="hlt">moisture</span> in the radial domain (i.e. homogenization) to calculate the vertical fluxes. For each vertical layer, the domain is discretized in axi-symmetrical grid with constant <span class="hlt">soil</span> properties. This is deemed to be appropriate given the fact that the root uptake occurs on much shorter time scales closely following diurnal cycles, while the vertical water movement is more relevant to the inter-storm time scale. We show that this approach was able to explicitly simulate known features of root uptake such as diurnal hysteresis of canopy conductance, water redistribution by roots (hydraulic lift) and downward shift of root uptake during drying cycles. The model is then coupled with an atmospheric boundary layer (ABL) growth model thereby permitting us to explore low-dimensional elements of the interaction between <span class="hlt">soil</span> <span class="hlt">moisture</span> and ABL states commensurate with the lifting condensation level.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030715','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030715"><span>Dependence of <span class="hlt">soil</span> respiration on <span class="hlt">soil</span> temperature and <span class="hlt">soil</span> <span class="hlt">moisture</span> in successional forests in Southern China</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, Ji; Zhou, C.-Y.</p> <p>2006-01-01</p> <p>The spatial and temporal variations in <span class="hlt">soil</span> respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, <span class="hlt">soil</span> respiration rates, <span class="hlt">soil</span> temperature, and <span class="hlt">soil</span> <span class="hlt">moisture</span> were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of <span class="hlt">soil</span> respiration and its biophysical dependence in these forests. The relationships between biophysical factors and <span class="hlt">soil</span> respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of <span class="hlt">soil</span> respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). <span class="hlt">Soil</span> respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (±SD) <span class="hlt">soil</span> respiration rate in the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm2 per year in advanced successional forests. <span class="hlt">Soil</span> respiration was correlated with both <span class="hlt">soil</span> temperature and <span class="hlt">moisture</span>. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of <span class="hlt">soil</span> respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, <span class="hlt">moisture</span> increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more <span class="hlt">soil</span> <span class="hlt">moisture</span> is needed to maintain their activities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730017711','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730017711"><span>Remote monitoring of <span class="hlt">soil</span> <span class="hlt">moisture</span> using airborne microwave radiometers</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kroll, C. L.</p> <p>1973-01-01</p> <p>The current status of microwave radiometry is provided. The fundamentals of the microwave radiometer are reviewed with particular reference to airborne operations, and the interpretative procedures normally used for the modeling of the apparent temperature are presented. Airborne microwave radiometer measurements were made over selected flight lines in Chickasha, Oklahoma and Weslaco, Texas. Extensive ground measurements of <span class="hlt">soil</span> <span class="hlt">moisture</span> were made in support of the aircraft mission over the two locations. In addition, laboratory determination of the complex permittivities of <span class="hlt">soil</span> samples taken from the flight lines were made with varying <span class="hlt">moisture</span> contents. The data were analyzed to determine the degree of correlation between measured apparent temperatures and <span class="hlt">soil</span> <span class="hlt">moisture</span> content.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915197R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915197R"><span>Assimilation of neural network <span class="hlt">soil</span> <span class="hlt">moisture</span> in land surface models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodriguez-Fernandez, Nemesio; de Rosnay, Patricia; Albergel, Clement; Aires, Filipe; Prigent, Catherine; Kerr, Yann; Richaume, Philippe; Muñoz-Sabater, Joaquin; Drusch, Matthias</p> <p>2017-04-01</p> <p>In this study a set of land surface data assimilation (DA) experiments making use of satellite derived <span class="hlt">soil</span> <span class="hlt">moisture</span> (SM) are presented. These experiments have two objectives: (1) to test the information content of satellite remote sensing of <span class="hlt">soil</span> <span class="hlt">moisture</span> for numerical weather prediction (NWP) models, and (2) to test a simplified assimilation of these data through the use of a Neural Network (NN) retrieval. Advanced Scatterometer (ASCAT) and <span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Ocean Salinity (SMOS) data were used. The SMOS <span class="hlt">soil</span> <span class="hlt">moisture</span> dataset was obtained specifically for this project training a NN using SMOS brightness temperatures as input and using as reference for the training European Centre for Medium-Range Weather Forecasts (ECMWF) H-TESSEL SM fields. In this way, the SMOS NN SM dataset has a similar climatology to that of the model and it does not present a global bias with respect to the model. The DA experiments are computed using a surface-only Land Data Assimilation System (so-LDAS) based on the HTESSEL land surface model. This system is very computationally efficient and allows to perform long surface assimilation experiments (one whole year, 2012). SMOS NN SM DA experiments are compared to ASCAT SM DA experiments. In both cases, experiments with and without 2 m air temperature and relative humidity DA are discussed using different observation errors for the ASCAT and SMOS datasets. Seasonal, geographical and <span class="hlt">soil</span>-depth-related differences between the results of those experiments are presented and discussed. The different SM analysed fields are evaluated against a large number of in situ measurements of SM. On average, the SM <span class="hlt">analysis</span> gives in general similar results to the model open loop with no assimilation even if significant differences can be seen for specific sites with in situ measurements. The sensitivity to observation errors to the SM dataset slightly differs depending on the networks of in situ measurements, however it is relatively low for the tests</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H11D1202Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H11D1202Y"><span>Aspect-related Vegetation Differences Amplify <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Variability in Semiarid Landscapes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yetemen, O.; Srivastava, A.; Kumari, N.; Saco, P. M.</p> <p>2017-12-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> variability (SMV) in semiarid landscapes is affected by vegetation, <span class="hlt">soil</span> texture, climate, aspect, and topography. The heterogeneity in vegetation cover that results from the effects of microclimate, terrain attributes (slope gradient, aspect, drainage area etc.), <span class="hlt">soil</span> properties, and spatial variability in precipitation have been reported to act as the dominant factors modulating SMV in semiarid ecosystems. However, the role of hillslope aspect in SMV, though reported in many field studies, has not received the same degree of attention probably due to the lack of extensive large datasets. Numerical simulations can then be used to elucidate the contribution of aspect-driven vegetation patterns to this variability. In this work, we perform a sensitivity <span class="hlt">analysis</span> to study on variables driving SMV using the CHILD landscape evolution model equipped with a spatially-distributed solar-radiation component that couples vegetation dynamics and surface hydrology. To explore how aspect-driven vegetation heterogeneity contributes to the SMV, CHILD was run using a range of parameters selected to reflect different scenarios (from uniform to heterogeneous vegetation cover). Throughout the simulations, the spatial distribution of <span class="hlt">soil</span> <span class="hlt">moisture</span> and vegetation cover are computed to estimate the corresponding coefficients of variation. Under the uniform spatial precipitation forcing and uniform <span class="hlt">soil</span> properties, the factors affecting the spatial distribution of solar insolation are found to play a key role in the SMV through the emergence of aspect-driven vegetation patterns. Hence, factors such as catchment gradient, aspect, and latitude, define water stress and vegetation growth, and in turn affect the available <span class="hlt">soil</span> <span class="hlt">moisture</span> content. Interestingly, changes in <span class="hlt">soil</span> properties (porosity, root depth, and pore-size distribution) over the domain are not as effective as the other factors. These findings show that the factors associated to aspect-related vegetation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=344556','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=344556"><span>Inference of <span class="hlt">soil</span> hydrologic parameters from electronic <span class="hlt">soil</span> <span class="hlt">moisture</span> records</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> is an important control on hydrologic function, as it governs vertical fluxes from and to the atmosphere, groundwater recharge, and lateral fluxes through the <span class="hlt">soil</span>. Historically, the traditional model parameters of saturation, field capacity, and permanent wilting point have been deter...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H51R..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H51R..02L"><span>Four Decades of Microwave Satellite <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Observations: Product validation and inter-satellite comparisons</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lanka, K.; Pan, M.; Wanders, N.; Kumar, D. N.; Wood, E. F.</p> <p>2017-12-01</p> <p>The satellite based passive and active microwave sensors enhanced our ability to retrieve <span class="hlt">soil</span> <span class="hlt">moisture</span> at global scales. It has been almost four decades since the first passive microwave satellite sensor was launched in 1978. Since then <span class="hlt">soil</span> <span class="hlt">moisture</span> has gained considerable attention in hydro-meteorological, climate, and agricultural research resulting in the deployment of two dedicated missions in the last decade, SMOS and SMAP. Signifying the four decades of microwave remote sensing of <span class="hlt">soil</span> <span class="hlt">moisture</span>, this work aims to present an overview of how our knowledge in this field has improved in terms of the design of sensors and their accuracy of retrieving <span class="hlt">soil</span> <span class="hlt">moisture</span>. We considered daily coverage, temporal performance, and spatial performance to assess the accuracy of products corresponding to eight passive sensors (SMMR, SSM/I, TMI, AMSR-E, WindSAT, AMSR2, SMOS and SMAP), two active sensors (ERS-Scatterometer, MetOp-ASCAT), and one active/passive merged <span class="hlt">soil</span> <span class="hlt">moisture</span> product (ESA-CCI combined product), using 1058 ISMN in-situ stations and the VIC LSM <span class="hlt">soil</span> <span class="hlt">moisture</span> simulations (VICSM) over the CONUS. Our <span class="hlt">analysis</span> indicated that the daily coverage has increased from 30 % during 1980s to 85 % (during non-winter months) with the launch of dedicated <span class="hlt">soil</span> <span class="hlt">moisture</span> missions SMOS and SMAP. The temporal validation of passive and active <span class="hlt">soil</span> <span class="hlt">moisture</span> products with the ISMN data place the range of median RMSE as 0.06-0.10 m3/m3 and median correlation as 0.20-0.68. When TMI, AMSR-E and WindSAT are evaluated, the AMSR-E sensor is found to have produced the brightness temperatures with better quality, given that these sensors are paired with same retrieval algorithm (LPRM). The ASCAT product shows a significant improvement during the temporal validation of retrievals compared to its predecessor ERS, thanks to enhanced sensor configuration. The SMAP mission, through its improved sensor design and RFI handling, shows a high retrieval accuracy under all-topography conditions</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000032232&hterms=pH+effects+soil&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DpH%2Beffects%2Bsoil','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000032232&hterms=pH+effects+soil&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DpH%2Beffects%2Bsoil"><span>Effect of land-use practice on <span class="hlt">soil</span> <span class="hlt">moisture</span> variability for <span class="hlt">soils</span> covered with dense forest vegetation of Puerto Rico</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsegaye, T.; Coleman, T.; Senwo, Z.; Shaffer, D.; Zou, X.</p> <p>1998-01-01</p> <p>Little is known about the landuse management effect on <span class="hlt">soil</span> <span class="hlt">moisture</span> and <span class="hlt">soil</span> pH distribution on a landscape covered with dense tropical forest vegetation. This study was conducted at three locations where the history of the landuse management is different. <span class="hlt">Soil</span> <span class="hlt">moisture</span> was measured using a 6-cm three-rod Time Domain Reflectometery (TDR) probe. Disturbed <span class="hlt">soil</span> samples were taken from the top 5-cm at the up, mid, and foothill landscape position from the same spots where <span class="hlt">soil</span> <span class="hlt">moisture</span> was measured. The results showed that <span class="hlt">soil</span> <span class="hlt">moisture</span> varies with landscape position and depth at all three locations. <span class="hlt">Soil</span> pH and <span class="hlt">moisture</span> variability were found to be affected by the change in landuse management and landscape position. <span class="hlt">Soil</span> <span class="hlt">moisture</span> distribution usually expected to be relatively higher in the foothill (P3) area of these forests than the uphill (P1) position. However, our results indicated that in the Luquillo and Guanica site the surface <span class="hlt">soil</span> <span class="hlt">moisture</span> was significantly higher for P1 than P3 position. These suggest that the surface and subsurface drainage in these two sites may have been poor due to the nature of <span class="hlt">soil</span> formation and type.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820016659','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820016659"><span><span class="hlt">Soil</span> <span class="hlt">moisture</span> variation patterns observed in Hand County, South Dakota</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jones, E. B.; Owe, M.; Schmugge, T. J. (Principal Investigator)</p> <p>1981-01-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> data were taken during 1976 (April, June, October), 1977 (April, May, June), and 1978 (May, June, July) Hand County, South Dakota as part of the ground truth used in NASA's aircraft experiments to study the use of microwave radiometers for the remote sensing of <span class="hlt">soil</span> <span class="hlt">moisture</span>. The spatial variability observed on the ground during each of the sampling events was studied. The data reported are the mean gravimetric <span class="hlt">soil</span> <span class="hlt">moisture</span> contained in three surface horizon depths: 0 to 2.5, 0 to 5 and 0 to 10 cm. The overall <span class="hlt">moisture</span> levels ranged from extremely dry conditions in June 1976 to very wet in May 1978, with a relatively even distribution of values within that range. It is indicated that well drained sites have to be partitioned from imperfectly drained areas when attempting to characterize the general <span class="hlt">moisture</span> profile throughout an area of varying <span class="hlt">soil</span> and cover type conditions. It is also found that the variability in <span class="hlt">moisture</span> content is greatest in the 0 to 2.5 cm measurements and decreases as the measurements are integrated over a greater depth. It is also determined that the sampling intensity of 10 measurements per km is adequate to estimate the mean <span class="hlt">moisture</span> with an uncertainty of + or - 3 percent under average <span class="hlt">moisture</span> conditions in areas of moderate to good drainage.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NHESS..18..889P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NHESS..18..889P"><span>The effect of <span class="hlt">soil</span> <span class="hlt">moisture</span> anomalies on maize yield in Germany</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peichl, Michael; Thober, Stephan; Meyer, Volker; Samaniego, Luis</p> <p>2018-03-01</p> <p>Crop models routinely use meteorological variations to estimate crop yield. <span class="hlt">Soil</span> <span class="hlt">moisture</span>, however, is the primary source of water for plant growth. The aim of this study is to investigate the intraseasonal predictability of <span class="hlt">soil</span> <span class="hlt">moisture</span> to estimate silage maize yield in Germany. We also evaluate how approaches considering <span class="hlt">soil</span> <span class="hlt">moisture</span> perform compare to those using only meteorological variables. Silage maize is one of the most widely cultivated crops in Germany because it is used as a main biomass supplier for energy production in the course of the German Energiewende (energy transition). Reduced form fixed effect panel models are employed to investigate the relationships in this study. These models are estimated for each month of the growing season to gain insights into the time-varying effects of <span class="hlt">soil</span> <span class="hlt">moisture</span> and meteorological variables. Temperature, precipitation, and potential evapotranspiration are used as meteorological variables. <span class="hlt">Soil</span> <span class="hlt">moisture</span> is transformed into anomalies which provide a measure for the interannual variation within each month. The main result of this study is that <span class="hlt">soil</span> <span class="hlt">moisture</span> anomalies have predictive skills which vary in magnitude and direction depending on the month. For instance, dry <span class="hlt">soil</span> <span class="hlt">moisture</span> anomalies in August and September reduce silage maize yield more than 10 %, other factors being equal. In contrast, dry anomalies in May increase crop yield up to 7 % because absolute <span class="hlt">soil</span> water content is higher in May compared to August due to its seasonality. With respect to the meteorological terms, models using both temperature and precipitation have higher predictability than models using only one meteorological variable. Also, models employing only temperature exhibit elevated effects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IJAEO..48..146M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IJAEO..48..146M"><span>Improving terrestrial evaporation estimates over continental Australia through assimilation of SMOS <span class="hlt">soil</span> <span class="hlt">moisture</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martens, B.; Miralles, D.; Lievens, H.; Fernández-Prieto, D.; Verhoest, N. E. C.</p> <p>2016-06-01</p> <p>Terrestrial evaporation is an essential variable in the climate system that links the water, energy and carbon cycles over land. Despite this crucial importance, it remains one of the most uncertain components of the hydrological cycle, mainly due to known difficulties to model the constraints imposed by land water availability on terrestrial evaporation. The main objective of this study is to assimilate satellite <span class="hlt">soil</span> <span class="hlt">moisture</span> observations from the <span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Ocean Salinity (SMOS) mission into an existing evaporation model. Our over-arching goal is to find an optimal use of satellite <span class="hlt">soil</span> <span class="hlt">moisture</span> that can help to improve our understanding of evaporation at continental scales. To this end, the Global Land Evaporation Amsterdam Model (GLEAM) is used to simulate evaporation fields over continental Australia for the period September 2010-December 2013. SMOS <span class="hlt">soil</span> <span class="hlt">moisture</span> observations are assimilated using a Newtonian Nudging algorithm in a series of experiments. Model estimates of surface <span class="hlt">soil</span> <span class="hlt">moisture</span> and evaporation are validated against <span class="hlt">soil</span> <span class="hlt">moisture</span> probe and eddy-covariance measurements, respectively. Finally, an analogous experiment in which Advanced Microwave Scanning Radiometer (AMSR-E) <span class="hlt">soil</span> <span class="hlt">moisture</span> is assimilated (instead of SMOS) allows to perform a relative assessment of the quality of both satellite <span class="hlt">soil</span> <span class="hlt">moisture</span> products. Results indicate that the modelled <span class="hlt">soil</span> <span class="hlt">moisture</span> from GLEAM can be improved through the assimilation of SMOS <span class="hlt">soil</span> <span class="hlt">moisture</span>: the average correlation coefficient between in situ measurements and the modelled <span class="hlt">soil</span> <span class="hlt">moisture</span> over the complete sample of stations increased from 0.68 to 0.71 and a statistical significant increase in the correlations is achieved for 17 out of the 25 individual stations. Our results also suggest a higher accuracy of the ascending SMOS data compared to the descending data, and overall higher quality of SMOS compared to AMSR-E retrievals over Australia. On the other hand, the effect of <span class="hlt">soil</span> <span class="hlt">moisture</span> data</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150004647&hterms=analysis+content&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Danalysis%2Bcontent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150004647&hterms=analysis+content&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Danalysis%2Bcontent"><span>Monte Carlo <span class="hlt">Analysis</span> of the Commissioning Phase Maneuvers of the <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) Mission</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Williams, Jessica L.; Bhat, Ramachandra S.; You, Tung-Han</p> <p>2012-01-01</p> <p>The <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) mission will perform <span class="hlt">soil</span> <span class="hlt">moisture</span> content and freeze/thaw state observations from a low-Earth orbit. The observatory is scheduled to launch in October 2014 and will perform observations from a near-polar, frozen, and sun-synchronous Science Orbit for a 3-year data collection mission. At launch, the observatory is delivered to an Injection Orbit that is biased below the Science Orbit; the spacecraft will maneuver to the Science Orbit during the mission Commissioning Phase. The delta V needed to maneuver from the Injection Orbit to the Science Orbit is computed statistically via a Monte Carlo simulation; the 99th percentile delta V (delta V99) is carried as a line item in the mission delta V budget. This paper details the simulation and <span class="hlt">analysis</span> performed to compute this figure and the delta V99 computed per current mission parameters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9998E..1OA','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9998E..1OA"><span>Continuous data assimilation for downscaling large-footprint <span class="hlt">soil</span> <span class="hlt">moisture</span> retrievals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Altaf, Muhammad U.; Jana, Raghavendra B.; Hoteit, Ibrahim; McCabe, Matthew F.</p> <p>2016-10-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> is a key component of the hydrologic cycle, influencing processes leading to runoff generation, infiltration and groundwater recharge, evaporation and transpiration. Generally, the measurement scale for <span class="hlt">soil</span> <span class="hlt">moisture</span> is found to be different from the modeling scales for these processes. Reducing this mismatch between observation and model scales in necessary for improved hydrological modeling. An innovative approach to downscaling coarse resolution <span class="hlt">soil</span> <span class="hlt">moisture</span> data by combining continuous data assimilation and physically based modeling is presented. In this approach, we exploit the features of Continuous Data Assimilation (CDA) which was initially designed for general dissipative dynamical systems and later tested numerically on the incompressible Navier-Stokes equation, and the Benard equation. A nudging term, estimated as the misfit between interpolants of the assimilated coarse grid measurements and the fine grid model solution, is added to the model equations to constrain the model's large scale variability by available measurements. <span class="hlt">Soil</span> <span class="hlt">moisture</span> fields generated at a fine resolution by a physically-based vadose zone model (HYDRUS) are subjected to data assimilation conditioned upon coarse resolution observations. This enables nudging of the model outputs towards values that honor the coarse resolution dynamics while still being generated at the fine scale. Results show that the approach is feasible to generate fine scale <span class="hlt">soil</span> <span class="hlt">moisture</span> fields across large extents, based on coarse scale observations. Application of this approach is likely in generating fine and intermediate resolution <span class="hlt">soil</span> <span class="hlt">moisture</span> fields conditioned on the radiometerbased, coarse resolution products from remote sensing satellites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170002445','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170002445"><span>Precipitation Estimation Using L-Band and C-Band <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Retrievals</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koster, Randal D.; Brocca, Luca; Crow, Wade T.; Burgin, Mariko S.; De Lannoy, Gabrielle J. M.</p> <p>2016-01-01</p> <p>An established methodology for estimating precipitation amounts from satellite-based <span class="hlt">soil</span> <span class="hlt">moisture</span> retrievals is applied to L-band products from the <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) and <span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterometer (ASCAT) mission. The precipitation estimates so obtained are evaluated against in situ (gauge-based) precipitation observations from across the globe. The precipitation estimation skill achieved using the L-band SMAP and SMOS data sets is higher than that obtained with the C-band product, as might be expected given that L-band is sensitive to a thicker layer of <span class="hlt">soil</span> and thereby provides more information on the response of <span class="hlt">soil</span> <span class="hlt">moisture</span> to precipitation. The square of the correlation coefficient between the SMAP-based precipitation estimates and the observations (for aggregations to approximately100 km and 5 days) is on average about 0.6 in areas of high rain gauge density. Satellite missions specifically designed to monitor <span class="hlt">soil</span> <span class="hlt">moisture</span> thus do provide significant information on precipitation variability, information that could contribute to efforts in global precipitation estimation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150008333&hterms=Soil+science&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DSoil%2Bscience','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150008333&hterms=Soil+science&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DSoil%2Bscience"><span>The <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active and Passive Mission (SMAP): Science and Applications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni</p> <p>2009-01-01</p> <p>The <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active and Passive mission (SMAP) will provide global maps of <span class="hlt">soil</span> <span class="hlt">moisture</span> content and surface freeze/thaw state. Global measurements of these variables are critical for terrestrial water and carbon cycle applications. The SMAP observatory consists of two multipolarization L-band sensors, a radar and radiometer, that share a deployable-mesh reflector antenna. The combined observations from the two sensors will allow accurate estimation of <span class="hlt">soil</span> <span class="hlt">moisture</span> at hydrometeorological (10 km) and hydroclimatological (40 km) spatial scales. The rotating antenna configuration provides conical scans of the Earth surface at a constant look angle. The wide-swath (1000 km) measurements will allow global mapping of <span class="hlt">soil</span> <span class="hlt">moisture</span> and its freeze/thaw state with 2-3 days revisit. Freeze/thaw in boreal latitudes will be mapped using the radar at 3 km resolution with 1-2 days revisit. The synergy of active and passive observations enables measurements of <span class="hlt">soil</span> <span class="hlt">moisture</span> and freeze/thaw state with unprecedented resolution, sensitivity, area coverage and revisit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820003640','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820003640"><span>An evaluation of the spatial resolution of <span class="hlt">soil</span> <span class="hlt">moisture</span> information</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hardy, K. R.; Cohen, S. H.; Rogers, L. K.; Burke, H. H. K.; Leupold, R. C.; Smallwood, M. D.</p> <p>1981-01-01</p> <p>Rainfall-amount patterns in the central regions of the U.S. were assessed. The spatial scales of surface features and their corresponding microwave responses in the mid western U.S. were investigated. The usefulness for U.S. government agencies of <span class="hlt">soil</span> <span class="hlt">moisture</span> information at scales of 10 km and 1 km. was ascertained. From an investigation of 494 storms, it was found that the rainfall resulting from the passage of most types of storms produces patterns which can be resolved on a 10 km scale. The land features causing the greatest problem in the sensing of <span class="hlt">soil</span> <span class="hlt">moisture</span> over large agricultural areas with a radiometer are bodies of water. Over the mid-western portions of the U.S., water occupies less than 2% of the total area, the consequently, the water bodies will not have a significant impact on the mapping of <span class="hlt">soil</span> <span class="hlt">moisture</span>. Over most of the areas, measurements at a 10-km resolution would adequately define the distribution of <span class="hlt">soil</span> <span class="hlt">moisture</span>. Crop yield models and hydrological models would give improved results if <span class="hlt">soil</span> <span class="hlt">moisture</span> information at scales of 10 km was available.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP41C0921A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP41C0921A"><span>Downscaling Coarse Scale Microwave <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Product using Machine Learning</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abbaszadeh, P.; Moradkhani, H.; Yan, H.</p> <p>2016-12-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> (SM) is a key variable in partitioning and examining the global water-energy cycle, agricultural planning, and water resource management. It is also strongly coupled with climate change, playing an important role in weather forecasting and drought monitoring and prediction, flood modeling and irrigation management. Although satellite retrievals can provide an unprecedented information of <span class="hlt">soil</span> <span class="hlt">moisture</span> at a global-scale, the products might be inadequate for basin scale study or regional assessment. To improve the spatial resolution of SM, this work presents a novel approach based on Machine Learning (ML) technique that allows for downscaling of the satellite <span class="hlt">soil</span> <span class="hlt">moisture</span> to fine resolution. For this purpose, the SMAP L-band radiometer SM products were used and conditioned on the Variable Infiltration Capacity (VIC) model prediction to describe the relationship between the coarse and fine scale <span class="hlt">soil</span> <span class="hlt">moisture</span> data. The proposed downscaling approach was applied to a western US basin and the products were compared against the available SM data from in-situ gauge stations. The obtained results indicated a great potential of the machine learning technique to derive the fine resolution <span class="hlt">soil</span> <span class="hlt">moisture</span> information that is currently used for land data assimilation applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/958854-soil-moisture-surpasses-elevated-co2-temperature-control-soil-carbon-dynamics-multi-factor-climate-change-experiment','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/958854-soil-moisture-surpasses-elevated-co2-temperature-control-soil-carbon-dynamics-multi-factor-climate-change-experiment"><span><span class="hlt">Soil</span> <span class="hlt">moisture</span> surpasses elevated CO2 and temperature as a control on <span class="hlt">soil</span> carbon dynamics in a multi-factor climate change experiment</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Garten Jr, Charles T; Classen, Aimee T; Norby, Richard J</p> <p>2009-01-01</p> <p>Some single-factor experiments suggest that elevated CO2 concentrations can increase <span class="hlt">soil</span> carbon, but few experiments have examined the effects of interacting environmental factors on <span class="hlt">soil</span> carbon dynamics. We undertook studies of <span class="hlt">soil</span> carbon and nitrogen in a multi-factor (CO2 x temperature x <span class="hlt">soil</span> <span class="hlt">moisture</span>) climate change experiment on a constructed old-field ecosystem. After four growing seasons, elevated CO2 had no measurable effect on carbon and nitrogen concentrations in whole <span class="hlt">soil</span>, particulate organic matter (POM), and mineral-associated organic matter (MOM). <span class="hlt">Analysis</span> of stable carbon isotopes, under elevated CO2, indicated between 14 and 19% new <span class="hlt">soil</span> carbon under two different watering treatmentsmore » with as much as 48% new carbon in POM. Despite significant belowground inputs of new organic matter, <span class="hlt">soil</span> carbon concentrations and stocks in POM declined over four years under <span class="hlt">soil</span> <span class="hlt">moisture</span> conditions that corresponded to prevailing precipitation inputs (1,300 mm yr-1). Changes over time in <span class="hlt">soil</span> carbon and nitrogen under a drought treatment (approximately 20% lower <span class="hlt">soil</span> water content) were not statistically significant. Reduced <span class="hlt">soil</span> <span class="hlt">moisture</span> lowered <span class="hlt">soil</span> CO2 efflux and slowed <span class="hlt">soil</span> carbon cycling in the POM pool. In this experiment, <span class="hlt">soil</span> <span class="hlt">moisture</span> (produced by different watering treatments) was more important than elevated CO2 and temperature as a control on <span class="hlt">soil</span> carbon dynamics.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=291573','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=291573"><span>Variation in Microbial Activity in Histosols and Its Relationship to <span class="hlt">Soil</span> <span class="hlt">Moisture</span> †</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tate, Robert L.; Terry, Richard E.</p> <p>1980-01-01</p> <p>Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in <span class="hlt">soil</span> cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped <span class="hlt">soil</span>, whereas biomass ranged from equivalence in the two <span class="hlt">soils</span> to a threefold stimulation in the cropped <span class="hlt">soil</span>. Biomass in <span class="hlt">soil</span> cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane <span class="hlt">soil</span> were nearly equivalent to those of the fallow <span class="hlt">soil</span>. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with <span class="hlt">soil</span> <span class="hlt">moisture</span> levels. These data indicate that within the <span class="hlt">moisture</span> ranges detected in the surface <span class="hlt">soils</span>, increased <span class="hlt">moisture</span> stimulated microbial activity, whereas within the <span class="hlt">soil</span> profile where <span class="hlt">moisture</span> ranges reached saturation, increased <span class="hlt">moisture</span> inhibited aerobic activities and stimulated anaerobic processes. PMID:16345610</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-201501080004HQ.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-201501080004HQ.html"><span><span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) Media Briefing</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-01-09</p> <p>Dara Entekhabi, SMAP science team lead, Massachusetts Institute of Technology, center, speaks during a briefing about the upcoming launch of the <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of <span class="hlt">soil</span> <span class="hlt">moisture</span> ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-201501080006HQ.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-201501080006HQ.html"><span><span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) Media Briefing</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-01-09</p> <p>Dara Entekhabi, SMAP science team lead, Massachusetts Institute of Technology, speaks during a briefing about the upcoming launch of the <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of <span class="hlt">soil</span> <span class="hlt">moisture</span> ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27594213','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27594213"><span>The sensitivity of <span class="hlt">soil</span> respiration to <span class="hlt">soil</span> temperature, <span class="hlt">moisture</span>, and carbon supply at the global scale.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hursh, Andrew; Ballantyne, Ashley; Cooper, Leila; Maneta, Marco; Kimball, John; Watts, Jennifer</p> <p>2017-05-01</p> <p><span class="hlt">Soil</span> respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While temperature, <span class="hlt">moisture</span>, carbon supply, and other site characteristics are known to regulate <span class="hlt">soil</span> respiration rates at plot scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across different biomes and at the global scale require tests of the relationships between field estimates and global climatic data. This study evaluates the factors driving Rs at the global scale by linking global datasets of <span class="hlt">soil</span> <span class="hlt">moisture</span>, <span class="hlt">soil</span> temperature, primary productivity, and <span class="hlt">soil</span> carbon estimates with observations of annual Rs from the Global <span class="hlt">Soil</span> Respiration Database (SRDB). We find that calibrating models with parabolic <span class="hlt">soil</span> <span class="hlt">moisture</span> functions can improve predictive power over similar models with asymptotic functions of mean annual precipitation. <span class="hlt">Soil</span> temperature is comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver of Rs in global models; however, within certain biomes <span class="hlt">soil</span> <span class="hlt">moisture</span> and <span class="hlt">soil</span> carbon emerge as dominant predictors of Rs. We identify regions where typical temperature-driven responses are further mediated by <span class="hlt">soil</span> <span class="hlt">moisture</span>, precipitation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain due to limited field data. Because <span class="hlt">soil</span> <span class="hlt">moisture</span> integrates temperature and precipitation dynamics, it can more directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity by aggregating factors that increase <span class="hlt">moisture</span> variability within and across biomes. We compare statistical and mechanistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr -1 , but also highlight regions of uncertainty</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...620018R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...620018R"><span>Experimental evidence for drought induced alternative stable states of <span class="hlt">soil</span> <span class="hlt">moisture</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, David. A.; Jones, Scott B.; Lebron, Inma; Reinsch, Sabine; Domínguez, María T.; Smith, Andrew R.; Jones, Davey L.; Marshall, Miles R.; Emmett, Bridget A.</p> <p>2016-01-01</p> <p>Ecosystems may exhibit alternative stable states (ASS) in response to environmental change. Modelling and observational data broadly support the theory of ASS, however evidence from manipulation experiments supporting this theory is limited. Here, we provide long-term manipulation and observation data supporting the existence of drought induced alternative stable <span class="hlt">soil</span> <span class="hlt">moisture</span> states (irreversible <span class="hlt">soil</span> wetting) in upland Atlantic heath, dominated by Calluna vulgaris (L.) Hull. Manipulated repeated moderate summer drought, and intense natural summer drought both lowered resilience resulting in shifts in <span class="hlt">soil</span> <span class="hlt">moisture</span> dynamics. The repeated moderate summer drought decreased winter <span class="hlt">soil</span> <span class="hlt">moisture</span> retention by ~10%. However, intense summer drought, superimposed on the experiment, that began in 2003 and peaked in 2005 caused an unexpected erosion of resilience and a shift to an ASS; both for the experimental drought manipulation and control plots, impairing the <span class="hlt">soil</span> from rewetting in winter. Measurements outside plots, with vegetation removal, showed no evidence of <span class="hlt">moisture</span> shifts. Further independent evidence supports our findings from historical <span class="hlt">soil</span> <span class="hlt">moisture</span> monitoring at a long-term upland hydrological observatory. The results herald the need for a new paradigm regarding our understanding of <span class="hlt">soil</span> structure, hydraulics and climate interaction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4726285','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4726285"><span>Experimental evidence for drought induced alternative stable states of <span class="hlt">soil</span> <span class="hlt">moisture</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Robinson, David. A.; Jones, Scott B.; Lebron, Inma; Reinsch, Sabine; Domínguez, María T.; Smith, Andrew R.; Jones, Davey L.; Marshall, Miles R.; Emmett, Bridget A.</p> <p>2016-01-01</p> <p>Ecosystems may exhibit alternative stable states (ASS) in response to environmental change. Modelling and observational data broadly support the theory of ASS, however evidence from manipulation experiments supporting this theory is limited. Here, we provide long-term manipulation and observation data supporting the existence of drought induced alternative stable <span class="hlt">soil</span> <span class="hlt">moisture</span> states (irreversible <span class="hlt">soil</span> wetting) in upland Atlantic heath, dominated by Calluna vulgaris (L.) Hull. Manipulated repeated moderate summer drought, and intense natural summer drought both lowered resilience resulting in shifts in <span class="hlt">soil</span> <span class="hlt">moisture</span> dynamics. The repeated moderate summer drought decreased winter <span class="hlt">soil</span> <span class="hlt">moisture</span> retention by ~10%. However, intense summer drought, superimposed on the experiment, that began in 2003 and peaked in 2005 caused an unexpected erosion of resilience and a shift to an ASS; both for the experimental drought manipulation and control plots, impairing the <span class="hlt">soil</span> from rewetting in winter. Measurements outside plots, with vegetation removal, showed no evidence of <span class="hlt">moisture</span> shifts. Further independent evidence supports our findings from historical <span class="hlt">soil</span> <span class="hlt">moisture</span> monitoring at a long-term upland hydrological observatory. The results herald the need for a new paradigm regarding our understanding of <span class="hlt">soil</span> structure, hydraulics and climate interaction. PMID:26804897</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/47251','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/47251"><span>Long-term <span class="hlt">soil</span> <span class="hlt">moisture</span> patterns in a northern Minnesota forest</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Salli F. Dymond; Randall K. Kolka; Paul V. Bolstad; Stephen D. Sebestyen</p> <p>2014-01-01</p> <p>Forest hydrological and biogeochemical processes are highly dependent on <span class="hlt">soil</span> water. At the Marcell Experimental Forest, seasonal patterns of <span class="hlt">soil</span> <span class="hlt">moisture</span> have been monitored at three forested locations since 1966. This unique, long-term data set was used to analyze seasonal trends in <span class="hlt">soil</span> <span class="hlt">moisture</span> as well as the influence of time-lagged precipitation and modified...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015963','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015963"><span>Effect of <span class="hlt">soil</span> <span class="hlt">moisture</span> on the sorption of trichloroethene vapor to vadose-zone <span class="hlt">soil</span> at picatinny arsenal, New Jersey</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smith, J.A.; Chiou, C.T.; Kammer, J.A.; Kile, D.E.</p> <p>1990-01-01</p> <p>This report presents data on the sorption of trichloroethene (TCE) vapor to vadose-zone <span class="hlt">soil</span> above a contaminated water-table aquifer at Picatinny Arsenal in Morris County, NJ. To assess the impact of <span class="hlt">moisture</span> on TCE sorption, batch experiments on the sorption of TCE vapor by the field <span class="hlt">soil</span> were carried out as a function of relative humidity. The TCE sorption decreases as <span class="hlt">soil</span> <span class="hlt">moisture</span> content increases from zero to saturation <span class="hlt">soil</span> <span class="hlt">moisture</span> content (the <span class="hlt">soil</span> <span class="hlt">moisture</span> content in equilibrium with 100% relative humidity). The <span class="hlt">moisture</span> content of <span class="hlt">soil</span> samples collected from the vadose zone was found to be greater than the saturation <span class="hlt">soil-moisture</span> content, suggesting that adsorption of TCE by the mineral fraction of the vadose-zone <span class="hlt">soil</span> should be minimal relative to the partition uptake by <span class="hlt">soil</span> organic matter. Analyses of <span class="hlt">soil</span> and <span class="hlt">soil</span>-gas samples collected from the field indicate that the ratio of the concentration of TCE on the vadose-zone <span class="hlt">soil</span> to its concentration in the <span class="hlt">soil</span> gas is 1-3 orders of magnitude greater than the ratio predicted by using an assumption of equilibrium conditions. This apparent disequilibrium presumably results from the slow desorption of TCE from the organic matter of the vadose-zone <span class="hlt">soil</span> relative to the dissipation of TCE vapor from the <span class="hlt">soil</span> gas.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160014922&hterms=soil&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsoil','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160014922&hterms=soil&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsoil"><span>Assimilation of SMOS Brightness Temperatures or <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Retrievals into a Land Surface Model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>De Lannoy, Gabrielle J. M.; Reichle, Rolf H.</p> <p>2016-01-01</p> <p>Three different data products from the <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone <span class="hlt">soil</span> <span class="hlt">moisture</span>. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40 degree incidence angle from the <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface <span class="hlt">soil</span> <span class="hlt">moisture</span> (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the <span class="hlt">soil</span> <span class="hlt">moisture</span> estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface <span class="hlt">soil</span> <span class="hlt">moisture</span>, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface <span class="hlt">soil</span> <span class="hlt">moisture</span>. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and <span class="hlt">analysis</span> increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2802917','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2802917"><span>Sensitivity of Polygonum aviculare Seeds to Light as Affected by <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Conditions</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Batlla, Diego; Nicoletta, Marcelo; Benech-Arnold, Roberto</p> <p>2007-01-01</p> <p>Background and Aims It has been hypothesized that <span class="hlt">soil</span> <span class="hlt">moisture</span> conditions could affect the dormancy status of buried weed seeds, and, consequently, their sensitivity to light stimuli. In this study, an investigation is made of the effect of different <span class="hlt">soil</span> <span class="hlt">moisture</span> conditions during cold-induced dormancy loss on changes in the sensitivity of Polygonum aviculare seeds to light. Methods Seeds buried in pots were stored under different constant and fluctuating <span class="hlt">soil</span> <span class="hlt">moisture</span> environments at dormancy-releasing temperatures. Seeds were exhumed at regular intervals during storage and were exposed to different light treatments. Changes in the germination response of seeds to light treatments during storage under the different <span class="hlt">moisture</span> environments were compared in order to determine the effect of <span class="hlt">soil</span> <span class="hlt">moisture</span> on the sensitivity to light of P. aviculare seeds. Key Results Seed acquisition of low-fluence responses during dormancy release was not affected by either <span class="hlt">soil</span> <span class="hlt">moisture</span> fluctuations or different constant <span class="hlt">soil</span> <span class="hlt">moisture</span> contents. On the contrary, different <span class="hlt">soil</span> <span class="hlt">moisture</span> environments affected seed acquisition of very low fluence responses and the capacity of seeds to germinate in the dark. Conclusions The results indicate that under field conditions, the sensitivity to light of buried weed seeds could be affected by the <span class="hlt">soil</span> <span class="hlt">moisture</span> environment experienced during the dormancy release season, and this could affect their emergence pattern. PMID:17430979</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2361S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2361S"><span>Passive Microwave <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Retrieval through Combined Radar/Radiometer Ground Based Simulator with Special Reference to Dielectric Schemes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Srivastava, Prashant K., ,, Dr.; O'Neill, Peggy, ,, Dr.</p> <p>2014-05-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> is an important element for weather and climate prediction, hydrological sciences, and applications. Hence, measurements of this hydrologic variable are required to improve our understanding of hydrological processes, ecosystem functions, and the linkages between the Earth's water, energy, and carbon cycles (Srivastava et al. 2013). The retrieval of <span class="hlt">soil</span> <span class="hlt">moisture</span> depends not only on parameterizations in the retrieval algorithm but also on the <span class="hlt">soil</span> dielectric mixing models used (Behari 2005). Although a number of <span class="hlt">soil</span> dielectric mixing models have been developed, testing these models for <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval has still not been fully explored, especially with SMAP-like simulators. The main objective of this work focuses on testing different dielectric models for <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval using the Combined Radar/Radiometer (ComRAD) ground-based L-band simulator developed jointly by NASA/GSFC and George Washington University (O'Neill et al., 2006). The ComRAD system was deployed during a field experiment in 2012 in order to provide long active/passive measurements of two crops under controlled conditions during an entire growing season. L-band passive data were acquired at a look angle of 40 degree from nadir at both horizontal & vertical polarization. Currently, there are many dielectric models available for <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval; however, four dielectric models (Mironov, Dobson, Wang & Schmugge and Hallikainen) were tested here and found to be promising for <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval (some with higher performances). All the above-mentioned dielectric models were integrated with Single Channel Algorithms using H (SCA-H) and V (SCA-V) polarizations for the <span class="hlt">soil</span> <span class="hlt">moisture</span> retrievals. All the ground-based observations were collected from test site-United States Department of Agriculture (USDA) OPE3, located a few miles away from NASA GSFC. Ground truth data were collected using a theta probe and in situ sensors which were then used for validation. <span class="hlt">Analysis</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4411860L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4411860L"><span>Irrigation Signals Detected From SMAP <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Retrievals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lawston, Patricia M.; Santanello, Joseph A.; Kumar, Sujay V.</p> <p>2017-12-01</p> <p>Irrigation can influence weather and climate, but the magnitude, timing, and spatial extent of irrigation are poorly represented in models, as are the resulting impacts of irrigation on the coupled land-atmosphere system. One way to improve irrigation representation in models is to assimilate <span class="hlt">soil</span> <span class="hlt">moisture</span> observations that reflect an irrigation signal to improve model states. Satellite remote sensing is a promising avenue for obtaining these needed observations on a routine basis, but to date, irrigation detection in passive microwave satellites has proven difficult. In this study, results show that the new enhanced <span class="hlt">soil</span> <span class="hlt">moisture</span> product from the <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive satellite is able to capture irrigation signals over three semiarid regions in the western United States. This marks an advancement in Earth-observing satellite skill and the ability to monitor human impacts on the water cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr42W4..133K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr42W4..133K"><span>Estimating <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Using Polsar Data: a Machine Learning Approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khedri, E.; Hasanlou, M.; Tabatabaeenejad, A.</p> <p>2017-09-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> is an important parameter that affects several environmental processes. This parameter has many important functions in numerous sciences including agriculture, hydrology, aerology, flood prediction, and drought occurrence. However, field procedures for <span class="hlt">moisture</span> calculations are not feasible in a vast agricultural region territory. This is due to the difficulty in calculating <span class="hlt">soil</span> <span class="hlt">moisture</span> in vast territories and high-cost nature as well as spatial and local variability of <span class="hlt">soil</span> <span class="hlt">moisture</span>. Polarimetric synthetic aperture radar (PolSAR) imaging is a powerful tool for estimating <span class="hlt">soil</span> <span class="hlt">moisture</span>. These images provide a wide field of view and high spatial resolution. For estimating <span class="hlt">soil</span> <span class="hlt">moisture</span>, in this study, a model of support vector regression (SVR) is proposed based on obtained data from AIRSAR in 2003 in C, L, and P channels. In this endeavor, sequential forward selection (SFS) and sequential backward selection (SBS) are evaluated to select suitable features of polarized image dataset for high efficient modeling. We compare the obtained data with in-situ data. Output results show that the SBS-SVR method results in higher modeling accuracy compared to SFS-SVR model. Statistical parameters obtained from this method show an R2 of 97% and an RMSE of lower than 0.00041 (m3/m3) for P, L, and C channels, which has provided better accuracy compared to other feature selection algorithms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140013012','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140013012"><span>Inferring <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Memory from Streamflow Observations Using a Simple Water Balance Model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Orth, Rene; Koster, Randal Dean; Seneviratne, Sonia I.</p> <p>2013-01-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> is known for its integrative behavior and resulting memory characteristics. <span class="hlt">Soil</span> <span class="hlt">moisture</span> anomalies can persist for weeks or even months into the future, making initial <span class="hlt">soil</span> <span class="hlt">moisture</span> a potentially important contributor to skill in weather forecasting. A major difficulty when investigating <span class="hlt">soil</span> <span class="hlt">moisture</span> and its memory using observations is the sparse availability of long-term measurements and their limited spatial representativeness. In contrast, there is an abundance of long-term streamflow measurements for catchments of various sizes across the world. We investigate in this study whether such streamflow measurements can be used to infer and characterize <span class="hlt">soil</span> <span class="hlt">moisture</span> memory in respective catchments. Our approach uses a simple water balance model in which evapotranspiration and runoff ratios are expressed as simple functions of <span class="hlt">soil</span> <span class="hlt">moisture</span>; optimized functions for the model are determined using streamflow observations, and the optimized model in turn provides information on <span class="hlt">soil</span> <span class="hlt">moisture</span> memory on the catchment scale. The validity of the approach is demonstrated with data from three heavily monitored catchments. The approach is then applied to streamflow data in several small catchments across Switzerland to obtain a spatially distributed description of <span class="hlt">soil</span> <span class="hlt">moisture</span> memory and to show how memory varies, for example, with altitude and topography.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP41C0926K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP41C0926K"><span>Disaggregation of remotely sensed <span class="hlt">soil</span> <span class="hlt">moisture</span> under all sky condition using machine learning approach in Northeast Asia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, S.; Kim, H.; Choi, M.; Kim, K.</p> <p>2016-12-01</p> <p>Estimating spatiotemporal variation of <span class="hlt">soil</span> <span class="hlt">moisture</span> is crucial to hydrological applications such as flood, drought, and near real-time climate forecasting. Recent advances in space-based passive microwave measurements allow the frequent monitoring of the surface <span class="hlt">soil</span> <span class="hlt">moisture</span> at a global scale and downscaling approaches have been applied to improve the spatial resolution of passive microwave products available at local scale applications. However, most downscaling methods using optical and thermal dataset, are valid only in cloud-free conditions; thus renewed downscaling method under all sky condition is necessary for the establishment of spatiotemporal continuity of datasets at fine resolution. In present study Support Vector Machine (SVM) technique was utilized to downscale a satellite-based <span class="hlt">soil</span> <span class="hlt">moisture</span> retrievals. The 0.1 and 0.25-degree resolution of daily Land Parameter Retrieval Model (LPRM) L3 <span class="hlt">soil</span> <span class="hlt">moisture</span> datasets from Advanced Microwave Scanning Radiometer 2 (AMSR2) were disaggregated over Northeast Asia in 2015. Optically derived estimates of surface temperature (LST), normalized difference vegetation index (NDVI), and its cloud products were obtained from MODerate Resolution Imaging Spectroradiometer (MODIS) for the purpose of downscaling <span class="hlt">soil</span> <span class="hlt">moisture</span> in finer resolution under all sky condition. Furthermore, a comparison <span class="hlt">analysis</span> between in situ and downscaled <span class="hlt">soil</span> <span class="hlt">moisture</span> products was also conducted for quantitatively assessing its accuracy. Results showed that downscaled <span class="hlt">soil</span> <span class="hlt">moisture</span> under all sky condition not only preserves the quality of AMSR2 LPRM <span class="hlt">soil</span> <span class="hlt">moisture</span> at 1km resolution, but also attains higher spatial data coverage. From this research we expect that time continuous monitoring of <span class="hlt">soil</span> <span class="hlt">moisture</span> at fine scale regardless of weather conditions would be available.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711531F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711531F"><span>Effects of biotic and abiotic indices on long term <span class="hlt">soil</span> <span class="hlt">moisture</span> data in a grassland biodiversity experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fischer, Christine; Hohenbrink, Tobias; Leimer, Sophia; Roscher, Christiane; Ravenek, Janneke; de Kroon, Hans; Kreutziger, Yvonne; Wirth, Christian; Eisenhauer, Nico; Gleixner, Gerd; Weigelt, Alexandra; Mommer, Liesje; Beßler, Holger; Schröder, Boris; Hildebrandt, Anke</p> <p>2015-04-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> is the dynamic link between climate, <span class="hlt">soil</span> and vegetation and the dynamics and variation are affected by several often interrelated factors such as <span class="hlt">soil</span> texture, <span class="hlt">soil</span> structural parameters (<span class="hlt">soil</span> organic carbon) and vegetation parameters (belowground- and aboveground biomass). For the characterization and estimation of <span class="hlt">soil</span> <span class="hlt">moisture</span> and its variability and the resulting water fluxes and solute transports, the knowledge of the relative importance of these factors is of major challenge for hydrology and bioclimatology. Because of the heterogeneity of these factors, <span class="hlt">soil</span> <span class="hlt">moisture</span> varies strongly over time and space. Our objective was to assess the spatio-temporal variability of <span class="hlt">soil</span> <span class="hlt">moisture</span> and factors which could explain that variability, like <span class="hlt">soil</span> properties and vegetation cover, in in a long term biodiversity experiment (Jena Experiment). The Jena Experiment consist 86 plots on which plant species richness (0, 1, 2, 4, 8, 16, and 60) and functional groups (legumes, grasses, tall herbs, and small herbs) were manipulated in a factorial design <span class="hlt">Soil</span> <span class="hlt">moisture</span> measurements were performed weekly April to September 2003-2005 and 2008-2013 using Delta T theta probe. Measurements were integrated to three depth intervals: 0.0 - 0.20, 0.20 - 0.40 and 0.40 - 0.70 m. We analyze the spatio-temporal patterns of <span class="hlt">soil</span> water content on (i) the normalized time series and (ii) the first components obtained from a principal component <span class="hlt">analysis</span> (PCA). Both were correlated with the design variables of the Jena Experiment (plant species richness and plant functional groups) and other influencing factors such as <span class="hlt">soil</span> texture, <span class="hlt">soil</span> structural variables and vegetation parameters. For the time stability of <span class="hlt">soil</span> water content, the <span class="hlt">analysis</span> showed that plots containing grasses was consistently drier than average at the <span class="hlt">soil</span> surface in all observed years while plots containing legumes comparatively moister, but only up to the year 2008. In 0.40 - 0.70 m <span class="hlt">soil</span> deep plots presence of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810486A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810486A"><span>A New Approach in Downscaling Microwave <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Product using Machine Learning</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abbaszadeh, Peyman; Yan, Hongxiang; Moradkhani, Hamid</p> <p>2016-04-01</p> <p>Understating the <span class="hlt">soil</span> <span class="hlt">moisture</span> pattern has significant impact on flood modeling, drought monitoring, and irrigation management. Although satellite retrievals can provide an unprecedented spatial and temporal resolution of <span class="hlt">soil</span> <span class="hlt">moisture</span> at a global-scale, their <span class="hlt">soil</span> <span class="hlt">moisture</span> products (with a spatial resolution of 25-50 km) are inadequate for regional study, where a resolution of 1-10 km is needed. In this study, a downscaling approach using Genetic Programming (GP), a specialized version of Genetic Algorithm (GA), is proposed to improve the spatial resolution of satellite <span class="hlt">soil</span> <span class="hlt">moisture</span> products. The GP approach was applied over a test watershed in United States using the coarse resolution satellite data (25 km) from Advanced Microwave Scanning Radiometer - EOS (AMSR-E) <span class="hlt">soil</span> <span class="hlt">moisture</span> products, the fine resolution data (1 km) from Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index, and ground based data including land surface temperature, vegetation and other potential physical variables. The results indicated the great potential of this approach to derive the fine resolution <span class="hlt">soil</span> <span class="hlt">moisture</span> information applicable for data assimilation and other regional studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/13714','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/13714"><span><span class="hlt">Soil</span> <span class="hlt">moisture</span> patterns in a northern coniferous forest</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Thomas F. McLintock</p> <p>1959-01-01</p> <p>The trend of <span class="hlt">soil</span> <span class="hlt">moisture</span> during the growing season, the alternate wetting from rainfall and drying during clear weather, determines the amount of <span class="hlt">moisture</span> available for tree growth and also fixes, in part, the environment for root growth. In much of the northern coniferous region both <span class="hlt">moisture</span> content and root environment are in turn affected by the hummock-and-...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BoLMe.159..521H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BoLMe.159..521H"><span>Playa <span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Evaporation Dynamics During the MATERHORN Field Program</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hang, Chaoxun; Nadeau, Daniel F.; Jensen, Derek D.; Hoch, Sebastian W.; Pardyjak, Eric R.</p> <p>2016-06-01</p> <p>We present an <span class="hlt">analysis</span> of field data collected over a desert playa in western Utah, USA in May 2013, the most synoptically active month of the year, as part of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. The results show that decreasing surface albedo, decreasing Bowen ratio and increasing net radiation with increasing <span class="hlt">soil</span> <span class="hlt">moisture</span> sustained a powerful positive feedback mechanism promoting large evaporation rates immediately following rain events. Additionally, it was found that, while nocturnal evaporation was negligible during dry periods, it was quite significant (up to 30 % of the daily cumulative flux) during nights following rain events. Our results further show that the highest spatial variability in surface <span class="hlt">soil</span> <span class="hlt">moisture</span> is found under dry conditions. Finally, we report strong spatial heterogeneities in evaporation rates following a rain event. The cumulative evaporation for the different sampling sites over a five-day period varied from ≈ 0.1 to ≈ 6.6 mm. Overall, this study allows us to better understand the mechanisms underlying <span class="hlt">soil</span> <span class="hlt">moisture</span> dynamics of desert playas as well as evaporation following occasional rain events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970014647','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970014647"><span>Retrieval of <span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Roughness from the Polarimetric Radar Response</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sarabandi, Kamal; Ulaby, Fawwaz T.</p> <p>1997-01-01</p> <p>The main objective of this investigation was the characterization of <span class="hlt">soil</span> <span class="hlt">moisture</span> using imaging radars. In order to accomplish this task, a number of intermediate steps had to be undertaken. In this proposal, the theoretical, numerical, and experimental aspects of electromagnetic scattering from natural surfaces was considered with emphasis on remote sensing of <span class="hlt">soil</span> <span class="hlt">moisture</span>. In the general case, the microwave backscatter from natural surfaces is mainly influenced by three major factors: (1) the roughness statistics of the <span class="hlt">soil</span> surface, (2) <span class="hlt">soil</span> <span class="hlt">moisture</span> content, and (3) <span class="hlt">soil</span> surface cover. First the scattering problem from bare-<span class="hlt">soil</span> surfaces was considered and a hybrid model that relates the radar backscattering coefficient to <span class="hlt">soil</span> <span class="hlt">moisture</span> and surface roughness was developed. This model is based on extensive experimental measurements of the radar polarimetric backscatter response of bare <span class="hlt">soil</span> surfaces at microwave frequencies over a wide range of <span class="hlt">moisture</span> conditions and roughness scales in conjunction with existing theoretical surface scattering models in limiting cases (small perturbation, physical optics, and geometrical optics models). Also a simple inversion algorithm capable of providing accurate estimates of <span class="hlt">soil</span> <span class="hlt">moisture</span> content and surface rms height from single-frequency multi-polarization radar observations was developed. The accuracy of the model and its inversion algorithm is demonstrated using independent data sets. Next the hybrid model for bare-<span class="hlt">soil</span> surfaces is made fully polarimetric by incorporating the parameters of the co- and cross-polarized phase difference into the model. Experimental data in conjunction with numerical simulations are used to relate the <span class="hlt">soil</span> <span class="hlt">moisture</span> content and surface roughness to the phase difference statistics. For this purpose, a novel numerical scattering simulation for inhomogeneous dielectric random surfaces was developed. Finally the scattering problem of short vegetation cover above a rough <span class="hlt">soil</span> surface was</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016072','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016072"><span>Two Topics in Seasonal Streamflow Forecasting: <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Initialization Error and Precipitation Downscaling</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koster, Randal; Walker, Greg; Mahanama, Sarith; Reichle, Rolf</p> <p>2012-01-01</p> <p>Continental-scale offline simulations with a land surface model are used to address two important issues in the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in <span class="hlt">soil</span> <span class="hlt">moisture</span> initialization degrade streamflow forecasts, and (ii) the extent to which the downscaling of seasonal precipitation forecasts, if it could be done accurately, would improve streamflow forecasts. The reduction in streamflow forecast skill (with forecasted streamflow measured against observations) associated with adding noise to a <span class="hlt">soil</span> <span class="hlt">moisture</span> field is found to be, to first order, proportional to the average reduction in the accuracy of the <span class="hlt">soil</span> <span class="hlt">moisture</span> field itself. This result has implications for streamflow forecast improvement under satellite-based <span class="hlt">soil</span> <span class="hlt">moisture</span> measurement programs. In the second and more idealized ("perfect model") <span class="hlt">analysis</span>, precipitation downscaling is found to have an impact on large-scale streamflow forecasts only if two conditions are met: (i) evaporation variance is significant relative to the precipitation variance, and (ii) the subgrid spatial variance of precipitation is adequately large. In the large-scale continental region studied (the conterminous United States), these two conditions are met in only a somewhat limited area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=344643','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=344643"><span>Spatially enhanced passive microwave derived <span class="hlt">soil</span> <span class="hlt">moisture</span>: capabilities and opportunities</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Low frequency passive microwave remote sensing is a proven technique for <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval, but its coarse resolution restricts the range of applications. Downscaling, otherwise known as disaggregation, has been proposed as the solution to spatially enhance these coarse resolution <span class="hlt">soil</span> <span class="hlt">moistur</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.1780M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.1780M"><span>Assimilating satellite <span class="hlt">soil</span> <span class="hlt">moisture</span> into rainfall-runoff modelling: towards a systematic study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Massari, Christian; Tarpanelli, Angelica; Brocca, Luca; Moramarco, Tommaso</p> <p>2015-04-01</p> <p>Distribuito in continuo") continuous hydrological model is used for flood simulation. The Ensemble Kalman Filter (EnKF) is employed as data assimilation technique for its flexibility and good performance in a number of previous applications. Different components are involved in the developed data assimilation procedure. For the correction of the bias between satellite and modelled <span class="hlt">soil</span> <span class="hlt">moisture</span> data three different techniques are considered: mean-variance matching, Cumulative Density Function (CDF) matching and least square linear regression. For properly generating the ensembles of model states, required in the application of EnKF technique, an exhaustive search of the model error parameterization and structure is carried out, differentiated for each study catchments. A number of scores and statistics are employed for the evaluation the reliability of the ensemble. Similarly, different configurations for the observation error are investigated. Results show that for four out six catchments the assimilation of the ASCAT <span class="hlt">soil</span> <span class="hlt">moisture</span> product improves discharge simulation in the validation period 2010-2013, mainly during flood events. The two catchments in which the assimilation does not improve the results are located in the mountainous part of the region where both MISDc and satellite data perform worse. The <span class="hlt">analysis</span> on the data assimilation choices highlights that the selection of the observation error seems to have the largest influence on discharge simulation. Finally, the bias correction approaches have a lower effect and the selection of linear techniques is preferable. The assessment of all the components involved in the data assimilation procedure provides a clear understanding of results and it is advised to follow a similar procedure in this kind of studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011HESSD...8.5427D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011HESSD...8.5427D"><span>Assimilation of ASCAT near-surface <span class="hlt">soil</span> <span class="hlt">moisture</span> into the French SIM hydrological model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.</p> <p>2011-06-01</p> <p>The impact of assimilating near-surface <span class="hlt">soil</span> <span class="hlt">moisture</span> into the SAFRAN-ISBA-MODCOU (SIM) hydrological model over France is examined. Specifically, the root-zone <span class="hlt">soil</span> <span class="hlt">moisture</span> in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN <span class="hlt">analysis</span>, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN <span class="hlt">analysis</span>. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone <span class="hlt">soil</span> <span class="hlt">moisture</span> bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved <span class="hlt">soil</span> <span class="hlt">moisture</span> in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively). When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface <span class="hlt">soil</span> <span class="hlt">moisture</span> observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT........51N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT........51N"><span>High resolution change estimation of <span class="hlt">soil</span> <span class="hlt">moisture</span> and its assimilation into a land surface model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Narayan, Ujjwal</p> <p></p> <p>Near surface <span class="hlt">soil</span> <span class="hlt">moisture</span> plays an important role in hydrological processes including infiltration, evapotranspiration and runoff. These processes depend non-linearly on <span class="hlt">soil</span> <span class="hlt">moisture</span> and hence sub-pixel scale <span class="hlt">soil</span> <span class="hlt">moisture</span> variability characterization is important for accurate modeling of water and energy fluxes at the pixel scale. Microwave remote sensing has evolved as an attractive technique for global monitoring of near surface <span class="hlt">soil</span> <span class="hlt">moisture</span>. A radiative transfer model has been tested and validated for <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval from passive microwave remote sensing data under a full range of vegetation water content conditions. It was demonstrated that <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval errors of approximately 0.04 g/g gravimetric <span class="hlt">soil</span> <span class="hlt">moisture</span> are attainable with vegetation water content as high as 5 kg/m2. Recognizing the limitation of low spatial resolution associated with passive sensors, an algorithm that uses low resolution passive microwave (radiometer) and high resolution active microwave (radar) data to estimate <span class="hlt">soil</span> <span class="hlt">moisture</span> change at the spatial resolution of radar operation has been developed and applied to coincident Passive and Active L and S band (PALS) and Airborne Synthetic Aperture Radar (AIRSAR) datasets acquired during the <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Experiments in 2002 (SMEX02) campaign with root mean square error of 10% and a 4 times enhancement in spatial resolution. The change estimation algorithm has also been used to estimate <span class="hlt">soil</span> <span class="hlt">moisture</span> change at 5 km resolution using AMSR-E <span class="hlt">soil</span> <span class="hlt">moisture</span> product (50 km) in conjunction with the TRMM-PR data (5 km) for a 3 month period demonstrating the possibility of high resolution <span class="hlt">soil</span> <span class="hlt">moisture</span> change estimation using satellite based data. <span class="hlt">Soil</span> <span class="hlt">moisture</span> change is closely related to precipitation and <span class="hlt">soil</span> hydraulic properties. A simple assimilation framework has been implemented to investigate whether assimilation of surface layer <span class="hlt">soil</span> <span class="hlt">moisture</span> change observations into a hydrologic model will potentially improve it</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19879.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19879.html"><span>NASA SMAPVEX 15 Field Campaign Measures <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Over Arizona</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-09-09</p> <p>NASA's SMAP (<span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive) satellite observatory conducted a field experiment as part of its <span class="hlt">soil</span> <span class="hlt">moisture</span> data product validation program in southern Arizona on Aug. 2-18, 2015. The images here represent the distribution of <span class="hlt">soil</span> <span class="hlt">moisture</span> over the SMAPVEX15 (SMAP Validation Experiment 2015) experiment domain, as measured by the Passive Active L-band System (PALS) developed by NASA's Jet Propulsion Laboratory, Pasadena, California, which was installed onboard a DC-3 aircraft operated by Airborne Imaging, Inc. Blue and green colors denote wet conditions and dry conditions are marked by red and orange. The black lines show the nominal flight path of PALS. The measurements show that on the first day, the domain surface was wet overall, but had mostly dried down by the second measurement day. On the third day, there was a mix of <span class="hlt">soil</span> wetness. The heterogeneous <span class="hlt">soil</span> <span class="hlt">moisture</span> distribution over the domain is typical for the area during the North American Monsoon season and provides excellent conditions for SMAP <span class="hlt">soil</span> <span class="hlt">moisture</span> product validation and algorithm enhancement. The images are based on brightness temperature measured by the PALS instrument gridded on a grid with 0.6-mile (1-kilometer) pixel size. They do not yet compensate for surface characteristics, such as vegetation and topography. That work is currently in progress. http://photojournal.jpl.nasa.gov/catalog/PIA19879</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..845M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..845M"><span>Temporal changes of spatial <span class="hlt">soil</span> <span class="hlt">moisture</span> patterns: controlling factors explained with a multidisciplinary approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen</p> <p>2016-04-01</p> <p>Characterizing the spatial patterns of <span class="hlt">soil</span> <span class="hlt">moisture</span> is critical for hydrological and meteorological models, as <span class="hlt">soil</span> <span class="hlt">moisture</span> is a key variable that controls matter and energy fluxes and <span class="hlt">soil</span>-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local <span class="hlt">soil</span> <span class="hlt">moisture</span> dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of <span class="hlt">soil</span> <span class="hlt">moisture</span> and its controlling factors. Recent advances in wireless sensor technology allow monitoring of <span class="hlt">soil</span> <span class="hlt">moisture</span> dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping <span class="hlt">soil</span> water content at the field scale with high spatial resolution, as being related to <span class="hlt">soil</span> apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of <span class="hlt">soil</span> <span class="hlt">moisture</span> at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined <span class="hlt">soil</span> hydrological and pedological expertise with geophysical measurements and methods from digital <span class="hlt">soil</span> mapping for designing a wireless <span class="hlt">soil</span> <span class="hlt">moisture</span> monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), <span class="hlt">soil</span> water dynamics were observed during 14 months, and <span class="hlt">soil</span> ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of <span class="hlt">soil</span> <span class="hlt">moisture</span> as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of <span class="hlt">soil</span> <span class="hlt">moisture</span> under</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760009508','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760009508"><span>Ground truth report 1975 Phoenix microwave experiment. [Joint <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Experiment</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blanchard, B. J.</p> <p>1975-01-01</p> <p>Direct measurements of <span class="hlt">soil</span> <span class="hlt">moisture</span> obtained in conjunction with aircraft data flights near Phoenix, Arizona in March, 1975 are summarized. The data were collected for the Joint <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Experiment.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT.......280B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT.......280B"><span>Generation of an empirical <span class="hlt">soil</span> <span class="hlt">moisture</span> initialization and its potential impact on subseasonal forecasting skill of continental precipitation and air temperature</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boisserie, Marie</p> <p></p> <p>The goal of this dissertation research is to produce empirical <span class="hlt">soil</span> <span class="hlt">moisture</span> initial conditions (<span class="hlt">soil</span> <span class="hlt">moisture</span> <span class="hlt">analysis</span>) and investigate its impact on the short-term (2 weeks) to subseasonal (2 months) forecasting skill of 2-m air temperature and precipitation. Because of <span class="hlt">soil</span> <span class="hlt">moisture</span> has a long memory and plays a role in controlling the surface water and energy budget, an accurate <span class="hlt">soil</span> <span class="hlt">moisture</span> <span class="hlt">analysis</span> is today widely recognized as having the potential to increase summertime climate forecasting skill. However, because of a lack of global observations of <span class="hlt">soil</span> <span class="hlt">moisture</span>, there has been no scientific consensus on the importance of the contribution of a <span class="hlt">soil</span> <span class="hlt">moisture</span> initialization as close to the truth as possible to climate forecasting skill. In this study, the initial conditions are generated using a Precipitation Assimilation Reanalysis (PAR) technique to produce a <span class="hlt">soil</span> <span class="hlt">moisture</span> <span class="hlt">analysis</span>. This technique consists mainly of nudging precipitation in the atmosphere component of a land-atmosphere model by adjusting the vertical air humidity profile based on the difference between the rate of the model-derived precipitation rate and the observed rate. The unique aspects of the PAR technique are the following: (1) based on the PAR technique, the <span class="hlt">soil</span> <span class="hlt">moisture</span> <span class="hlt">analysis</span> is generated using a coupled land-atmosphere forecast model; therefore, no bias between the initial conditions and the forecast model (spinup problem) is encountered; and (2) the PAR technique is physically consistent; the surface and radiative fluxes remains in conjunction with the <span class="hlt">soil</span> <span class="hlt">moisture</span> <span class="hlt">analysis</span>. To our knowledge, there has been no attempt to use a physically consistent <span class="hlt">soil</span> <span class="hlt">moisture</span> land assimilation system into a land-atmosphere model in a coupled mode. The effect of the PAR technique on the model <span class="hlt">soil</span> <span class="hlt">moisture</span> estimates is evaluated using the Global <span class="hlt">Soil</span> Wetness Project Phase 2 (GSWP-2) multimodel <span class="hlt">analysis</span> product (used as a proxy for global <span class="hlt">soil</span> <span class="hlt">moisture</span> observations) and actual in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1828R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1828R"><span>Experimental evidence and modelling of drought induced alternative stable <span class="hlt">soil</span> <span class="hlt">moisture</span> states</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, David; Jones, Scott; Lebron, Inma; Reinsch, Sabine; Dominguez, Maria; Smith, Andrew; Marshal, Miles; Emmett, Bridget</p> <p>2017-04-01</p> <p>The theory of alternative stable states in ecosystems is well established in ecology; however, evidence from manipulation experiments supporting the theory is limited. Developing the evidence base is important because it has profound implications for ecosystem management. Here we show evidence of the existence of alternative stable <span class="hlt">soil</span> <span class="hlt">moisture</span> states induced by drought in an upland wet heath. We used a long-term (15 yrs) climate change manipulation experiment with moderate sustained drought, which reduced the ability of the <span class="hlt">soil</span> to retain <span class="hlt">soil</span> <span class="hlt">moisture</span> by degrading the <span class="hlt">soil</span> structure, reducing <span class="hlt">moisture</span> retention. Moreover, natural intense droughts superimposed themselves on the experiment, causing an unexpected additional alternative <span class="hlt">soil</span> <span class="hlt">moisture</span> state to develop, both for the drought manipulation and control plots; this impaired the <span class="hlt">soil</span> from rewetting in winter. Our results show the coexistence of three stable states. Using modelling with the Hydrus 1D software package we are able to show the circumstances under which shifts in <span class="hlt">soil</span> <span class="hlt">moisture</span> states are likely to occur. Given the new understanding it presents a challenge of how to incorporate feedbacks, particularly related to <span class="hlt">soil</span> structure, into <span class="hlt">soil</span> flow and transport models?</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=254033','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=254033"><span>Evaluating Remotely-Sensed <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Retrievals Using Triple Collocation Techniques</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The validation is footprint-scale (~40 km) surface <span class="hlt">soil</span> <span class="hlt">moisture</span> retrievals from space is complicated by a lack of ground-based <span class="hlt">soil</span> <span class="hlt">moisture</span> instrumentation and challenges associated with up-scaling point-scale measurements from such instrumentation. Recent work has demonstrated the potential of e...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=271413','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=271413"><span>Long term observation and validation of windsat <span class="hlt">soil</span> <span class="hlt">moisture</span> data</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The surface <span class="hlt">soil</span> <span class="hlt">moisture</span> controls surface energy budget. It is a key environmental variable in the coupled atmospheric and hydrological processes that are related to drought, heat waves and monsoon formation. Satellite remote sensing of <span class="hlt">soil</span> <span class="hlt">moisture</span> provides information that can contribute to unde...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=314491','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=314491"><span>Comparing AMSR-E <span class="hlt">soil</span> <span class="hlt">moisture</span> estimates to the extended record of the U.S. Climate Reference Network (USCRN)</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> plays an integral role in various aspects ranging from multi-scale hydrologic modeling to agricultural decision <span class="hlt">analysis</span> to multi-scale hydrologic modeling, from climate change assessments to drought prediction and prevention. The broad availability of <span class="hlt">soil</span> <span class="hlt">moisture</span> estimates has only...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28794995','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28794995"><span>A method for <span class="hlt">soil</span> <span class="hlt">moisture</span> probes calibration and validation of satellite estimates.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Holzman, Mauro; Rivas, Raúl; Carmona, Facundo; Niclòs, Raquel</p> <p>2017-01-01</p> <p>Optimization of field techniques is crucial to ensure high quality <span class="hlt">soil</span> <span class="hlt">moisture</span> data. The aim of the work is to present a sampling method for undisturbed <span class="hlt">soil</span> and <span class="hlt">soil</span> water content to calibrated <span class="hlt">soil</span> <span class="hlt">moisture</span> probes, in a context of the SMOS (<span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Ocean Salinity) mission MIRAS Level 2 <span class="hlt">soil</span> <span class="hlt">moisture</span> product validation in Pampean Region of Argentina. The method avoids <span class="hlt">soil</span> alteration and is recommended to calibrated probes based on <span class="hlt">soil</span> type under a freely drying process at ambient temperature. A detailed explanation of field and laboratory procedures to obtain reference <span class="hlt">soil</span> <span class="hlt">moisture</span> is shown. The calibration results reflected accurate operation for the Delta-T thetaProbe ML2x probes in most of analyzed cases (RMSE and bias ≤ 0.05 m 3 /m 3 ). Post-calibration results indicated that the accuracy improves significantly applying the adjustments of the calibration based on <span class="hlt">soil</span> types (RMSE ≤ 0.022 m 3 /m 3 , bias ≤ -0.010 m 3 /m 3 ). •A sampling method that provides high quality data of <span class="hlt">soil</span> water content for calibration of probes is described.•Importance of calibration based on <span class="hlt">soil</span> types.•A calibration process for similar <span class="hlt">soil</span> types could be suitable in practical terms, depending on the required accuracy level.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29507383','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29507383"><span>Negative <span class="hlt">soil</span> <span class="hlt">moisture</span>-precipitation feedback in dry and wet regions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Lingbin; Sun, Guoqing; Zhi, Lu; Zhao, Jianjun</p> <p>2018-03-05</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span>-precipitation (SM-P) feedback significantly influences the terrestrial water and energy cycles. However, the sign of the feedback and the associated physical mechanism have been debated, leaving a research gap regarding global water and climate changes. Based on Koster's framework, we estimate SM-P feedback using satellite remote sensing and ground observation data sets. Methodologically, the sign of the feedback is identified by the correlation between monthly <span class="hlt">soil</span> <span class="hlt">moisture</span> and next-month precipitation. The physical mechanism is investigated through coupling precipitation and <span class="hlt">soil</span> <span class="hlt">moisture</span> (P-SM), <span class="hlt">soil</span> <span class="hlt">moisture</span> ad evapotranspiration (SM-E) and evapotranspiration and precipitation (E-P) correlations. Our results demonstrate that although positive SM-P feedback is predominant over land, non-negligible negative feedback occurs in dry and wet regions. Specifically, 43.75% and 40.16% of the negative feedback occurs in the arid and humid climate zones. Physically, negative SM-P feedback depends on the SM-E correlation. In dry regions, evapotranspiration change is <span class="hlt">soil</span> <span class="hlt">moisture</span> limited. In wet regions, evapotranspiration change is energy limited. We conclude that the complex SM-E correlation results in negative SM-P feedback in dry and wet regions, and the cause varies based on the environmental and climatic conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H13I1518M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H13I1518M"><span>Compact polarimetric synthetic aperture radar for monitoring <span class="hlt">soil</span> <span class="hlt">moisture</span> condition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Merzouki, A.; McNairn, H.; Powers, J.; Friesen, M.</p> <p>2017-12-01</p> <p>Coarse resolution <span class="hlt">soil</span> <span class="hlt">moisture</span> maps are currently operationally delivered by ESA's SMOS and NASA's SMAP passive microwaves sensors. Despite this evolution, operational <span class="hlt">soil</span> <span class="hlt">moisture</span> monitoring at the field scale remains challenging. A number of factors contribute to this challenge including the complexity of the retrieval that requires advanced SAR systems with enhanced temporal revisit capabilities. Since the launch of RADARSAT-2 in 2007, Agriculture and Agri-Food Canada (AAFC) has been evaluating the accuracy of these data for estimating surface <span class="hlt">soil</span> <span class="hlt">moisture</span>. Thus, a hybrid (multi-angle/multi-polarization) retrieval approach was found well suited for the planned RADARSAT Constellation Mission (RCM) considering the more frequent relook expected with the three satellite configuration. The purpose of this study is to evaluate the capability of C-band CP data to estimate <span class="hlt">soil</span> <span class="hlt">moisture</span> over agricultural fields, in anticipation of the launch of RCM. In this research we introduce a new CP approach based on the IEM and simulated RCM CP mode intensities from RADARSAT-2 images acquired at different dates. The accuracy of <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval from the proposed multi-polarization and hybrid methods will be contrasted with that from a more conventional quad-pol approach, and validated against in situ measurements by pooling data collected over AAFC test sites in Ontario, Manitoba and Saskatchewan, Canada.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=304546','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=304546"><span>Evaluation of SMOS <span class="hlt">soil</span> <span class="hlt">moisture</span> products over the CanEx-SM10 area</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The <span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Ocean Salinity (SMOS) Earth observation satellite was launched in November 2009 to provide global <span class="hlt">soil</span> <span class="hlt">moisture</span> and ocean salinity measurements based on L-Band passive microwave measurements. Since its launch, different versions of SMOS <span class="hlt">soil</span> <span class="hlt">moisture</span> products processors have be...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=335031','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=335031"><span>Evaluating <span class="hlt">soil</span> <span class="hlt">moisture</span> retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Two satellites are currently monitoring surface <span class="hlt">soil</span> <span class="hlt">moisture</span> (SM) from L-band observations: SMOS (<span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Ocean Salinity), a European Space Agency (ESA) satellite that was launched on November 2, 2009 and SMAP (<span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive), a National Aeronautics and Space Administration...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=241335&keyword=square&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=241335&keyword=square&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Identification of optimal <span class="hlt">soil</span> hydraulic functions and parameters for predicting <span class="hlt">soil</span> <span class="hlt">moisture</span></span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>We examined the accuracy of several commonly used <span class="hlt">soil</span> hydraulic functions and associated parameters for predicting observed <span class="hlt">soil</span> <span class="hlt">moisture</span> data. We used six combined methods formed by three commonly used <span class="hlt">soil</span> hydraulic functions – i.e., Brooks and Corey (1964) (BC), Campbell (19...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-201501080005HQ.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-201501080005HQ.html"><span><span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) Media Briefing</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-01-09</p> <p>Brad Doorn, SMAP applications lead, Science Mission Directorate’s Applied Sciences Program at NASA Headquarters speaks during a briefing about the upcoming launch of the <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of <span class="hlt">soil</span> <span class="hlt">moisture</span> ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-201501080007HQ.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-201501080007HQ.html"><span><span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) Media Briefing</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-01-09</p> <p>Christine Bonniksen, SMAP program executive with the Science Mission Directorate’s Earth Science Division at NASA Headquarters speaks during a briefing about the upcoming launch of the <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of <span class="hlt">soil</span> <span class="hlt">moisture</span> ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-201501080008HQ.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-201501080008HQ.html"><span><span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) Media Briefing</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-01-09</p> <p>Kent Kellogg, SMAP project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, CA, speaks during a briefing about the upcoming launch of the <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of <span class="hlt">soil</span> <span class="hlt">moisture</span> ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140012456','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140012456"><span>Assimilation of SMOS Retrieved <span class="hlt">Soil</span> <span class="hlt">Moisture</span> into the Land Information System</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.</p> <p>2014-01-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> is a crucial variable for weather prediction because of its influence on evaporation and surface heat fluxes. It is also of critical importance for drought and flood monitoring and prediction and for public health applications such as monitoring vector-borne diseases. Land surface modeling benefits greatly from regular updates with <span class="hlt">soil</span> <span class="hlt">moisture</span> observations via data assimilation. Satellite remote sensing is the only practical observation type for this purpose in most areas due to its worldwide coverage. The newest operational satellite sensor for <span class="hlt">soil</span> <span class="hlt">moisture</span> is the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) instrument aboard the <span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Ocean Salinity (SMOS) satellite. The NASA Short-term Prediction Research and Transition Center (SPoRT) has implemented the assimilation of SMOS <span class="hlt">soil</span> <span class="hlt">moisture</span> observations into the NASA Land Information System (LIS), an integrated modeling and data assimilation software platform. We present results from assimilating SMOS observations into the Noah 3.2 land surface model within LIS. The SMOS MIRAS is an L-band radiometer launched by the European Space Agency in 2009, from which we assimilate Level 2 retrievals [1] into LIS-Noah. The measurements are sensitive to <span class="hlt">soil</span> <span class="hlt">moisture</span> concentration in roughly the top 2.5 cm of <span class="hlt">soil</span>. The retrievals have a target volumetric accuracy of 4% at a resolution of 35-50 km. Sensitivity is reduced where precipitation, snowcover, frozen <span class="hlt">soil</span>, or dense vegetation is present. Due to the satellite's polar orbit, the instrument achieves global coverage twice daily at most mid- and low-latitude locations, with only small gaps between swaths.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.H41D0909Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.H41D0909Z"><span>COSMOS: COsmic-ray <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Observing System planned for the United States</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zweck, C.; Zreda, M.; Shuttleworth, J.; Zeng, X.</p> <p>2008-12-01</p> <p>Because <span class="hlt">soil</span> water exerts a critical control on weather, climate, ecosystem, and water cycle, understanding <span class="hlt">soil</span> <span class="hlt">moisture</span> changes in time and space is crucial for many fields within natural sciences. A serious handicap in <span class="hlt">soil</span> <span class="hlt">moisture</span> measurements is the mismatch between limited point measurements using contact methods and remote sensing estimates over large areas. We present a novel method to measure <span class="hlt">soil</span> <span class="hlt">moisture</span> non- invasively at an intermediate spatial scale that will alleviate this problem. The method takes advantage of the dependence of cosmic-ray neutron intensity on the hydrogen content of <span class="hlt">soils</span> (Zreda et al., Geophysical Research Letters, accepted). Low-energy cosmic-ray neutrons are produced and moderated in the <span class="hlt">soil</span>, transported from the <span class="hlt">soil</span> into the atmosphere where they are measured with a cosmic-ray neutron probe to provide integrated <span class="hlt">soil</span> <span class="hlt">moisture</span> content over a footprint of several hundred meters and a depth of a few decimeters. The method and the instrument are intended for deployment in the continental-scale COSMOS network that is designed to cover the contiguous region of the USA. Fully deployed, the COSMOS network will consist of up to 500 probes, and will provide continuous <span class="hlt">soil</span> <span class="hlt">moisture</span> content (together with atmospheric pressure, temperature and relative humidity) measured and reported hourly. These data will be used for initialization and assimilation of <span class="hlt">soil</span> <span class="hlt">moisture</span> conditions in weather and short-term (seasonal) climate forecasting, and for other land-surface applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H53G1738D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H53G1738D"><span>L-band <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Mapping using Small UnManned Aerial Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dai, E.</p> <p>2015-12-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, and impacts water resource management, agriculture, and flood runoff prediction. The launch of NASA's <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active/Passive (SMAP) mission in 2015 promises to provide global measurements of <span class="hlt">soil</span> <span class="hlt">moisture</span> and surface freeze/thaw state at fixed crossing times and spatial resolutions as low as 5 km for some products. However, there exists a need for measurements of <span class="hlt">soil</span> <span class="hlt">moisture</span> on smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping <span class="hlt">soil</span> <span class="hlt">moisture</span> on spatial scales as small as several meters (i.e., the height of the platform) .Compared with various other proposed methods of validation based on either situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed (~km scale) coverage at very high spatial resolution (~15 m) suitable for scaling scale studies, and at comparatively low operator cost. The LDCR on Tempest unit can supply the <span class="hlt">soil</span> <span class="hlt">moisture</span> mapping with different resolution which is of order the Tempest altitude.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H53H1804A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H53H1804A"><span>From Sub-basin to Grid Scale <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Disaggregation in SMART, A Semi-distributed Hydrologic Modeling Framework</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ajami, H.; Sharma, A.</p> <p>2016-12-01</p> <p>A computationally efficient, semi-distributed hydrologic modeling framework is developed to simulate water balance at a catchment scale. The <span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Runoff simulation Toolkit (SMART) is based upon the delineation of contiguous and topologically connected Hydrologic Response Units (HRUs). In SMART, HRUs are delineated using thresholds obtained from topographic and geomorphic <span class="hlt">analysis</span> of a catchment, and simulation elements are distributed cross sections or equivalent cross sections (ECS) delineated in first order sub-basins. ECSs are formulated by aggregating topographic and physiographic properties of the part or entire first order sub-basins to further reduce computational time in SMART. Previous investigations using SMART have shown that temporal dynamics of <span class="hlt">soil</span> <span class="hlt">moisture</span> are well captured at a HRU level using the ECS delineation approach. However, spatial variability of <span class="hlt">soil</span> <span class="hlt">moisture</span> within a given HRU is ignored. Here, we examined a number of disaggregation schemes for <span class="hlt">soil</span> <span class="hlt">moisture</span> distribution in each HRU. The disaggregation schemes are either based on topographic based indices or a covariance matrix obtained from distributed <span class="hlt">soil</span> <span class="hlt">moisture</span> simulations. To assess the performance of the disaggregation schemes, <span class="hlt">soil</span> <span class="hlt">moisture</span> simulations from an integrated land surface-groundwater model, ParFlow.CLM in Baldry sub-catchment, Australia are used. ParFlow is a variably saturated sub-surface flow model that is coupled to the Common Land Model (CLM). Our results illustrate that the statistical disaggregation scheme performs better than the methods based on topographic data in approximating <span class="hlt">soil</span> <span class="hlt">moisture</span> distribution at a 60m scale. Moreover, the statistical disaggregation scheme maintains temporal correlation of simulated daily <span class="hlt">soil</span> <span class="hlt">moisture</span> while preserves the mean sub-basin <span class="hlt">soil</span> <span class="hlt">moisture</span>. Future work is focused on assessing the performance of this scheme in catchments with various topographic and climate settings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/5151','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/5151"><span>Using <span class="hlt">soil</span> temperature and <span class="hlt">moisture</span> to predict forest <span class="hlt">soil</span> nitrogen mineralization</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jennifer D. Knoepp; Wayne T. Swank</p> <p>2002-01-01</p> <p>Due to the importance of N in forest productivity ecosystem and nutrient cycling research often includes measurement of <span class="hlt">soil</span> N transformation rates as indices of potential availability and ecosystem losses of N. We examined the feasibility of using <span class="hlt">soil</span> temperature and <span class="hlt">moisture</span> content to predict <span class="hlt">soil</span> N mineralization rates (Nmin) at the Coweeta Hydrologic Laboratory...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP41C0924C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP41C0924C"><span>Estimating <span class="hlt">soil</span> <span class="hlt">moisture</span> exceedance probability from antecedent rainfall</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cronkite-Ratcliff, C.; Kalansky, J.; Stock, J. D.; Collins, B. D.</p> <p>2016-12-01</p> <p>The first storms of the rainy season in coastal California, USA, add <span class="hlt">moisture</span> to <span class="hlt">soils</span> but rarely trigger landslides. Previous workers proposed that antecedent rainfall, the cumulative seasonal rain from October 1 onwards, had to exceed specific amounts in order to trigger landsliding. Recent monitoring of <span class="hlt">soil</span> <span class="hlt">moisture</span> upslope of historic landslides in the San Francisco Bay Area shows that storms can cause positive pressure heads once <span class="hlt">soil</span> <span class="hlt">moisture</span> values exceed a threshold of volumetric water content (VWC). We propose that antecedent rainfall could be used to estimate the probability that VWC exceeds this threshold. A major challenge to estimating the probability of exceedance is that rain gauge records are frequently incomplete. We developed a stochastic model to impute (infill) missing hourly precipitation data. This model uses nearest neighbor-based conditional resampling of the gauge record using data from nearby rain gauges. Using co-located VWC measurements, imputed data can be used to estimate the probability that VWC exceeds a specific threshold for a given antecedent rainfall. The stochastic imputation model can also provide an estimate of uncertainty in the exceedance probability curve. Here we demonstrate the method using <span class="hlt">soil</span> <span class="hlt">moisture</span> and precipitation data from several sites located throughout Northern California. Results show a significant variability between sites in the sensitivity of VWC exceedance probability to antecedent rainfall.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913082Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913082Y"><span>Improved Assimilation of Streamflow and Satellite <span class="hlt">Soil</span> <span class="hlt">Moisture</span> with the Evolutionary Particle Filter and Geostatistical Modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, Hongxiang; Moradkhani, Hamid; Abbaszadeh, Peyman</p> <p>2017-04-01</p> <p>Assimilation of satellite <span class="hlt">soil</span> <span class="hlt">moisture</span> and streamflow data into hydrologic models using has received increasing attention over the past few years. Currently, these observations are increasingly used to improve the model streamflow and <span class="hlt">soil</span> <span class="hlt">moisture</span> predictions. However, the performance of this land data assimilation (DA) system still suffers from two limitations: 1) satellite data scarcity and quality; and 2) particle weight degeneration. In order to overcome these two limitations, we propose two possible solutions in this study. First, the general Gaussian geostatistical approach is proposed to overcome the limitation in the space/time resolution of satellite <span class="hlt">soil</span> <span class="hlt">moisture</span> products thus improving their accuracy at uncovered/biased grid cells. Secondly, an evolutionary PF approach based on Genetic Algorithm (GA) and Markov Chain Monte Carlo (MCMC), the so-called EPF-MCMC, is developed to further reduce weight degeneration and improve the robustness of the land DA system. This study provides a detailed <span class="hlt">analysis</span> of the joint and separate assimilation of streamflow and satellite <span class="hlt">soil</span> <span class="hlt">moisture</span> into a distributed Sacramento <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Accounting (SAC-SMA) model, with the use of recently developed EPF-MCMC and the general Gaussian geostatistical approach. Performance is assessed over several basins in the USA selected from Model Parameter Estimation Experiment (MOPEX) and located in different climate regions. The results indicate that: 1) the general Gaussian approach can predict the <span class="hlt">soil</span> <span class="hlt">moisture</span> at uncovered grid cells within the expected satellite data quality threshold; 2) assimilation of satellite <span class="hlt">soil</span> <span class="hlt">moisture</span> inferred from the general Gaussian model can significantly improve the <span class="hlt">soil</span> <span class="hlt">moisture</span> predictions; and 3) in terms of both deterministic and probabilistic measures, the EPF-MCMC can achieve better streamflow predictions. These results recommend that the geostatistical model is a helpful tool to aid the remote sensing technique and the EPF-MCMC is a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3990H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3990H"><span><span class="hlt">Soil</span> frost-induced <span class="hlt">soil</span> <span class="hlt">moisture</span> precipitation feedback and effects on atmospheric states</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hagemann, Stefan; Blome, Tanja; Ekici, Altug; Beer, Christian</p> <p>2016-04-01</p> <p>Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. As it is a thermal phenomenon, its characteristics are highly dependent on climatic factors. The impact of the currently observed warming, which is projected to persist during the coming decades due to anthropogenic CO2 input, certainly has effects for the vast permafrost areas of the high northern latitudes. The quantification of these effects, however, is scientifically still an open question. This is partly due to the complexity of the system, where several feedbacks are interacting between land and atmosphere, sometimes counterbalancing each other. Moreover, until recently, many global circulation models (GCMs) and Earth system models (ESMs) lacked the sufficient representation of permafrost physics in their land surface schemes. Within the European Union FP7 project PAGE21, the land surface scheme JSBACH of the Max-Planck-Institute for Meteorology ESM (MPI-ESM) has been equipped with the representation of relevant physical processes for permafrost studies. These processes include the effects of freezing and thawing of <span class="hlt">soil</span> water for both energy and water cycles, thermal properties depending on <span class="hlt">soil</span> water and ice contents, and <span class="hlt">soil</span> <span class="hlt">moisture</span> movement being influenced by the presence of <span class="hlt">soil</span> ice. In the present study, it will be analysed how these permafrost relevant processes impact large-scale hydrology and climate over northern hemisphere high latitude land areas. For this <span class="hlt">analysis</span>, the atmosphere-land part of MPI-ESM, ECHAM6-JSBACH, is driven by prescribed observed SST and sea ice in an AMIP2-type setup with and without the newly implemented permafrost processes. Results show a large improvement in the simulated discharge. On one hand this is related to an improved snowmelt peak of runoff due to frozen <span class="hlt">soil</span> in spring. On the other hand a subsequent reduction of <span class="hlt">soil</span> <span class="hlt">moisture</span> leads to a positive</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.6413H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.6413H"><span>Assessing the uncertainty of <span class="hlt">soil</span> <span class="hlt">moisture</span> impacts on convective precipitation using a new ensemble approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Henneberg, Olga; Ament, Felix; Grützun, Verena</p> <p>2018-05-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> amount and distribution control evapotranspiration and thus impact the occurrence of convective precipitation. Many recent model studies demonstrate that changes in initial <span class="hlt">soil</span> <span class="hlt">moisture</span> content result in modified convective precipitation. However, to quantify the resulting precipitation changes, the chaotic behavior of the atmospheric system needs to be considered. Slight changes in the simulation setup, such as the chosen model domain, also result in modifications to the simulated precipitation field. This causes an uncertainty due to stochastic variability, which can be large compared to effects caused by <span class="hlt">soil</span> <span class="hlt">moisture</span> variations. By shifting the model domain, we estimate the uncertainty of the model results. Our novel uncertainty estimate includes 10 simulations with shifted model boundaries and is compared to the effects on precipitation caused by variations in <span class="hlt">soil</span> <span class="hlt">moisture</span> amount and local distribution. With this approach, the influence of <span class="hlt">soil</span> <span class="hlt">moisture</span> amount and distribution on convective precipitation is quantified. Deviations in simulated precipitation can only be attributed to <span class="hlt">soil</span> <span class="hlt">moisture</span> impacts if the systematic effects of <span class="hlt">soil</span> <span class="hlt">moisture</span> modifications are larger than the inherent simulation uncertainty at the convection-resolving scale. We performed seven experiments with modified <span class="hlt">soil</span> <span class="hlt">moisture</span> amount or distribution to address the effect of <span class="hlt">soil</span> <span class="hlt">moisture</span> on precipitation. Each of the experiments consists of 10 ensemble members using the deep convection-resolving COSMO model with a grid spacing of 2.8 km. Only in experiments with very strong modification in <span class="hlt">soil</span> <span class="hlt">moisture</span> do precipitation changes exceed the model spread in amplitude, location or structure. These changes are caused by a 50 % <span class="hlt">soil</span> <span class="hlt">moisture</span> increase in either the whole or part of the model domain or by drying the whole model domain. Increasing or decreasing <span class="hlt">soil</span> <span class="hlt">moisture</span> both predominantly results in reduced precipitation rates. Replacing the <span class="hlt">soil</span> <span class="hlt">moisture</span> with realistic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170007422','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170007422"><span><span class="hlt">Soil</span> <span class="hlt">Moisture</span> Retrieval with Airborne PALS Instrument over Agricultural Areas in SMAPVEX16</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Colliander, Andreas; Jackson, Thomas J.; Cosh, Mike; Misra, Sidharth; Bindlish, Rajat; Powers, Jarrett; McNairn, Heather; Bullock, P.; Berg, A.; Magagi, A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170007422'); toggleEditAbsImage('author_20170007422_show'); toggleEditAbsImage('author_20170007422_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170007422_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170007422_hide"></p> <p>2017-01-01</p> <p>NASA's SMAP (<span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive) calibration and validation program revealed that the <span class="hlt">soil</span> <span class="hlt">moisture</span> products are experiencing difficulties in meeting the mission requirements in certain agricultural areas. Therefore, the mission organized airborne field experiments at two core validation sites to investigate these anomalies. The SMAP Validation Experiment 2016 included airborne observations with the PALS (Passive Active L-band Sensor) instrument and intensive ground sampling. The goal of the PALS measurements are to investigate the <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval algorithm formulation and parameterization under the varying (spatially and temporally) conditions of the agricultural domains and to obtain high resolution <span class="hlt">soil</span> <span class="hlt">moisture</span> maps within the SMAP pixels. In this paper the <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval using the PALS brightness temperature observations in SMAPVEX16 is presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.epa.gov/watersense/watersense-soil-moisture-based-control-technologies-notice-intent-noi','PESTICIDES'); return false;" href="https://www.epa.gov/watersense/watersense-soil-moisture-based-control-technologies-notice-intent-noi"><span>WaterSense <span class="hlt">Soil</span> <span class="hlt">Moisture</span>-Based Control Technologies Notice of Intent (NOI)</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>By directly measuring the amount of <span class="hlt">moisture</span> in the <span class="hlt">soil</span>, <span class="hlt">soil</span> <span class="hlt">moisture</span>-based control technologies tailor irrigation schedules to meet landscape water needs based on seasonal patterns, as well as prevailing conditions in the landscape.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H13C1121A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H13C1121A"><span>Inter-Annual Variability of <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Stress Function in the Wheat Field</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akuraju, V. R.; Ryu, D.; George, B.; Ryu, Y.; Dassanayake, K. B.</p> <p>2014-12-01</p> <p>Root-zone <span class="hlt">soil</span> <span class="hlt">moisture</span> content is a key variable that controls the exchange of water and energy fluxes between land and atmosphere. In the <span class="hlt">soil</span>-vegetation-atmosphere transfer (SVAT) schemes, the influence of root-zone <span class="hlt">soil</span> <span class="hlt">moisture</span> on evapotranspiration (ET) is parameterized by the <span class="hlt">soil</span> <span class="hlt">moisture</span> stress function (SSF). Dependence of actual ET: potential ET (fPET) or evaporative fraction to the root-zone <span class="hlt">soil</span> <span class="hlt">moisture</span> via SSF can also be used inversely to estimate root-zone <span class="hlt">soil</span> <span class="hlt">moisture</span> when fPET is estimated by remotely sensed land surface states. In this work we present fPET versus available <span class="hlt">soil</span> water (ASW) in the root zone observed in the experimental farm sites in Victoria, Australia in 2012-2013. In the wheat field site, fPET vs ASW exhibited distinct features for different <span class="hlt">soil</span> depth, net radiation, and crop growth stages. Interestingly, SSF in the wheat field presented contrasting shapes for two cropping years of 2012 and 2013. We argue that different temporal patterns of rainfall (and resulting <span class="hlt">soil</span> <span class="hlt">moisture</span>) during the growing seasons in 2012 and 2013 are responsible for the distinctive SSFs. SSF of the wheat field was simulated by the Agricultural Production Systems sIMulator (APSIM). The APSIM was able to reproduce the observed fPET vs. ASW. We discuss implications of our findings for existing modeling and (inverse) remote sensing approaches relying on SSF and alternative growth-stage-dependent SSFs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27473773','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27473773"><span>Impact of climate change on <span class="hlt">soil</span> thermal and <span class="hlt">moisture</span> regimes in Serbia: An <span class="hlt">analysis</span> with data from regional climate simulations under SRES-A1B.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mihailović, D T; Drešković, N; Arsenić, I; Ćirić, V; Djurdjević, V; Mimić, G; Pap, I; Balaž, I</p> <p>2016-11-15</p> <p>We considered temporal and spatial variations to the thermal and <span class="hlt">moisture</span> regimes of the most common RSGs (Reference <span class="hlt">Soil</span> Groups) in Serbia under the A1B scenario for the 2021-2050 and 2071-2100 periods, with respect to the 1961-1990 period. We utilized dynamically downscaled global climate simulations from the ECHAM5 model using the coupled regional climate model EBU-POM (Eta Belgrade University-Princeton Ocean Model). We analysed the <span class="hlt">soil</span> temperature and <span class="hlt">moisture</span> time series using simple statistics and a Kolmogorov complexity (KC) <span class="hlt">analysis</span>. The corresponding metrics were calculated for 150 sites. In the future, warmer and drier regimes can be expected for all RSGs in Serbia. The calculated <span class="hlt">soil</span> temperature and <span class="hlt">moisture</span> variations include increases in the mean annual <span class="hlt">soil</span> temperature (up to 3.8°C) and decreases in the mean annual <span class="hlt">soil</span> <span class="hlt">moisture</span> (up to 11.3%). Based on the KC values, the <span class="hlt">soils</span> in Serbia are classified with respect to climate change impacts as (1) less sensitive (Vertisols, Umbrisols and Dystric Cambisols) or (2) more sensitive (Chernozems, Eutric Cambisols and Planosols). Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..551..203K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..551..203K"><span>Automated general temperature correction method for dielectric <span class="hlt">soil</span> <span class="hlt">moisture</span> sensors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao</p> <p>2017-08-01</p> <p>An effective temperature correction method for dielectric sensors is important to ensure the accuracy of <span class="hlt">soil</span> water content (SWC) measurements of local to regional-scale <span class="hlt">soil</span> <span class="hlt">moisture</span> monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at <span class="hlt">soil</span> <span class="hlt">moisture</span> monitoring networks with different sensor setups and those that cover diverse climatic conditions and <span class="hlt">soil</span> types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and <span class="hlt">soil</span> type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Monitoring Network and another nine stations from a local <span class="hlt">soil</span> <span class="hlt">moisture</span> monitoring network in Mongolia. <span class="hlt">Soil</span> <span class="hlt">moisture</span> monitoring networks used in this study cover four major climates and six major <span class="hlt">soil</span> types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26098548','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26098548"><span><span class="hlt">Soil</span> Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, <span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Nitrogen Status.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming</p> <p>2015-01-01</p> <p>The spatial distribution of the root system through the <span class="hlt">soil</span> profile has an impact on <span class="hlt">moisture</span> and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, <span class="hlt">soil</span> <span class="hlt">moisture</span>, and fertility are affected by tillage practices. The combination of high <span class="hlt">soil</span> density and the presence of a <span class="hlt">soil</span> plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, <span class="hlt">soil</span> <span class="hlt">moisture</span>, and N status in response to different <span class="hlt">soil</span> tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal <span class="hlt">soil</span> tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced <span class="hlt">soil</span> bulk density in the top 0-20 cm layer of the <span class="hlt">soil</span> profile, while SS significantly decreased <span class="hlt">soil</span> bulk density in the 20-30 cm layer. <span class="hlt">Soil</span> <span class="hlt">moisture</span> in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher <span class="hlt">soil</span> <span class="hlt">moisture</span> than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as <span class="hlt">soil</span> depth increased. <span class="hlt">Soil</span> <span class="hlt">moisture</span> was reduced in the <span class="hlt">soil</span> profile where root concentration was high. SS had greater <span class="hlt">soil</span> <span class="hlt">moisture</span> depletion and a more concentration root system than RT and NT in deep <span class="hlt">soil</span>. Our results suggest that the SS treatment improved the spatial distribution of root density, <span class="hlt">soil</span> <span class="hlt">moisture</span> and N states, thereby promoting the absorption of <span class="hlt">soil</span> <span class="hlt">moisture</span> and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the <span class="hlt">soil</span> profile, played a pivotal role in plants' ability to access nutrients and water. An optimal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4476672','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4476672"><span><span class="hlt">Soil</span> Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, <span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Nitrogen Status</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming</p> <p>2015-01-01</p> <p>The spatial distribution of the root system through the <span class="hlt">soil</span> profile has an impact on <span class="hlt">moisture</span> and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, <span class="hlt">soil</span> <span class="hlt">moisture</span>, and fertility are affected by tillage practices. The combination of high <span class="hlt">soil</span> density and the presence of a <span class="hlt">soil</span> plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, <span class="hlt">soil</span> <span class="hlt">moisture</span>, and N status in response to different <span class="hlt">soil</span> tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal <span class="hlt">soil</span> tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced <span class="hlt">soil</span> bulk density in the top 0–20 cm layer of the <span class="hlt">soil</span> profile, while SS significantly decreased <span class="hlt">soil</span> bulk density in the 20–30 cm layer. <span class="hlt">Soil</span> <span class="hlt">moisture</span> in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher <span class="hlt">soil</span> <span class="hlt">moisture</span> than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as <span class="hlt">soil</span> depth increased. <span class="hlt">Soil</span> <span class="hlt">moisture</span> was reduced in the <span class="hlt">soil</span> profile where root concentration was high. SS had greater <span class="hlt">soil</span> <span class="hlt">moisture</span> depletion and a more concentration root system than RT and NT in deep <span class="hlt">soil</span>. Our results suggest that the SS treatment improved the spatial distribution of root density, <span class="hlt">soil</span> <span class="hlt">moisture</span> and N states, thereby promoting the absorption of <span class="hlt">soil</span> <span class="hlt">moisture</span> and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the <span class="hlt">soil</span> profile, played a pivotal role in plants’ ability to access nutrients and water. An</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817481V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817481V"><span>Can the normalized <span class="hlt">soil</span> <span class="hlt">moisture</span> index improve the prediction of <span class="hlt">soil</span> organic carbon based on hyperspectral remote sensing data?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Wesemael, Bas; Nocita, Marco</p> <p>2016-04-01</p> <p>One of the problems for mapping of <span class="hlt">soil</span> organic carbon (SOC) at large-scale based on visible - near and short wave infrared (VIS-NIR-SWIR) remote sensing techniques is the spatial variation of topsoil <span class="hlt">moisture</span> when the images are collected. <span class="hlt">Soil</span> <span class="hlt">moisture</span> is certainly an aspect causing biased SOC estimations, due to the problems in discriminating reflectance differences due to either variations in organic matter or <span class="hlt">soil</span> <span class="hlt">moisture</span>, or their combination. In addition, the difficult validation procedures make the accurate estimation of <span class="hlt">soil</span> <span class="hlt">moisture</span> from optical airborne a major challenge. After all, the first millimeters of the <span class="hlt">soil</span> surface reflect the signal to the airborne sensor and show a large spatial, vertical and temporal variation in <span class="hlt">soil</span> <span class="hlt">moisture</span>. Hence, the difficulty of assessing the <span class="hlt">soil</span> <span class="hlt">moisture</span> of this thin layer at the same moment of the flight. The creation of a <span class="hlt">soil</span> <span class="hlt">moisture</span> proxy, directly retrievable from the hyperspectral data is a priority to improve the large-scale prediction of SOC. This paper aims to verify if the application of the normalized <span class="hlt">soil</span> <span class="hlt">moisture</span> index (NSMI) to Airborne Prima Experiment (APEX) hyperspectral images could improve the prediction of SOC. The study area was located in the loam region of Wallonia, Belgium. About 40 samples were collected from bare fields covered by the flight lines, and analyzed in the laboratory. <span class="hlt">Soil</span> spectra, corresponding to the sample locations, were extracted from the images. Once the NSMI was calculated for the bare fields' pixels, spatial patterns, presumably related to within field <span class="hlt">soil</span> <span class="hlt">moisture</span> variations, were revealed. SOC prediction models, built using raw and pre-treated spectra, were generated from either the full dataset (general model), or pixels belonging to one of the two classes of NSMI values (NSMI models). The best result, with a RMSE after validation of 1.24 g C kg-1, was achieved with a NSMI model, compared to the best general model, characterized by a RMSE of 2.11 g C kg-1. These</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=244712','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=244712"><span><span class="hlt">Soil</span> <span class="hlt">Moisture</span> Retrieval from Aquarius</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Aquarius observations over land offer an unprecedented opportunity to provide a value-added product, land surface <span class="hlt">soil</span> <span class="hlt">moisture</span>, which will contribute to a better understanding of the Earth’s climate and water cycle. Additionally, Aquarius will provide the first spaceborne data that can be used to a...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930053193&hterms=watershed+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwatershed%2Banalysis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930053193&hterms=watershed+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwatershed%2Banalysis"><span>Microwave <span class="hlt">soil</span> <span class="hlt">moisture</span> estimation in humid and semiarid watersheds</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>O'Neill, P. E.; Jackson, T. J.; Chauhan, N. S.; Seyfried, M. S.</p> <p>1993-01-01</p> <p>Land surface hydrologic-atmospheric interactions in humid and semi-arid watersheds were investigated. Active and passive microwave sensors were used to estimate the spatial and temporal distribution of <span class="hlt">soil</span> <span class="hlt">moisture</span> at the catchment scale in four areas. Results are presented and discussed. The eventual use of this information in the <span class="hlt">analysis</span> and prediction of associated hydrologic processes is examined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JHyd..515..330D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JHyd..515..330D"><span>Assessing artificial neural networks and statistical methods for infilling missing <span class="hlt">soil</span> <span class="hlt">moisture</span> records</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dumedah, Gift; Walker, Jeffrey P.; Chik, Li</p> <p>2014-07-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> information is critically important for water management operations including flood forecasting, drought monitoring, and groundwater recharge estimation. While an accurate and continuous record of <span class="hlt">soil</span> <span class="hlt">moisture</span> is required for these applications, the available <span class="hlt">soil</span> <span class="hlt">moisture</span> data, in practice, is typically fraught with missing values. There are a wide range of methods available to infilling hydrologic variables, but a thorough inter-comparison between statistical methods and artificial neural networks has not been made. This study examines 5 statistical methods including monthly averages, weighted Pearson correlation coefficient, a method based on temporal stability of <span class="hlt">soil</span> <span class="hlt">moisture</span>, and a weighted merging of the three methods, together with a method based on the concept of rough sets. Additionally, 9 artificial neural networks are examined, broadly categorized into feedforward, dynamic, and radial basis networks. These 14 infilling methods were used to estimate missing <span class="hlt">soil</span> <span class="hlt">moisture</span> records and subsequently validated against known values for 13 <span class="hlt">soil</span> <span class="hlt">moisture</span> monitoring stations for three different <span class="hlt">soil</span> layer depths in the Yanco region in southeast Australia. The evaluation results show that the top three highest performing methods are the nonlinear autoregressive neural network, rough sets method, and monthly replacement. A high estimation accuracy (root mean square error (RMSE) of about 0.03 m/m) was found in the nonlinear autoregressive network, due to its regression based dynamic network which allows feedback connections through discrete-time estimation. An equally high accuracy (0.05 m/m RMSE) in the rough sets procedure illustrates the important role of temporal persistence of <span class="hlt">soil</span> <span class="hlt">moisture</span>, with the capability to account for different <span class="hlt">soil</span> <span class="hlt">moisture</span> conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=324624','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=324624"><span>Assessment of the SMAP level 2 passive <span class="hlt">soil</span> <span class="hlt">moisture</span> product</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The NASA <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) satellite mission was launched on Jan 31, 2015. The observatory was developed to provide global mapping of high-resolution <span class="hlt">soil</span> <span class="hlt">moisture</span> and freeze-thaw state every 2–3 days using an L-band (active) radar and an L-band (passive) radiometer. SMAP provides ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/19797','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/19797"><span>A comparison of <span class="hlt">soil-moisture</span> loss from forested and clearcut areas in West Virginia</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Charles A. Troendle</p> <p>1970-01-01</p> <p><span class="hlt">Soil-moisture</span> losses from forested and clearcut areas were compared on the Fernow Experimental Forest. As expected, hardwood forest <span class="hlt">soils</span> lost most <span class="hlt">moisture</span> while revegetated clearcuttings, clearcuttings, and barren areas lost less, in that order. <span class="hlt">Soil-moisture</span> losses from forested <span class="hlt">soils</span> also correlated well with evapotranspiration and streamflow.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43B1646Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43B1646Z"><span>Spatial Distribution of the Relationship Between <span class="hlt">Soil</span> <span class="hlt">Moisture</span> and <span class="hlt">Soil</span> Particle Size in Typical Plots on Loess Plateau</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, X.; Zhao, W.; Liu, Y.; Fang, X.</p> <p>2017-12-01</p> <p><span class="hlt">Soil</span> water overconsumption is threatening the sustainability of regional vegetation rehabilitation in the Loess Plateau of China. The use of fractal geometry theory in describing <span class="hlt">soil</span> quality improves the accuracy of the relevant research. Typical grasslands, shrublands, forests, cropland and orchards under different precipitation regimes were selected, and in this study, the spatial distribution of the relationship between <span class="hlt">soil</span> <span class="hlt">moisture</span> and <span class="hlt">soil</span> particle size in typical slopes on Loess Plateau were investigated to provide support for the predict of <span class="hlt">soil</span> <span class="hlt">moisture</span> by using <span class="hlt">soil</span> physical characteristics in the Loess Plateau. During the sampling year, the mean annual precipitation gradients were divided at an interval of 70 mm from 370mm to 650mm. Grasslands with Medicago sativa L. or Stipa bungeana Trin., shrublands with Caragana Korshinskii Kom. or Hippophae rhamnoides L., forests with Robinia pseudoacacia Linn., orchards with apple trees and croplands with corn or potatoes were chosen to represent the natural grassland. A <span class="hlt">soil</span> auger with a diameter of 5 cm was used to obtain <span class="hlt">soil</span> samples at depths of 0-5 m at intervals of 20 cm.The Van Genuchten model, fractal theory and redundancy <span class="hlt">analysis</span> (RDA) were used to estimate and analyze the <span class="hlt">soil</span> water characteristic curve, <span class="hlt">soil</span> particle size distribution, and fractal dimension and the correlations between the relevant parameters. The results showed that (1) the change of the singular fractal dimension is positively correlated with <span class="hlt">soil</span> water content, while D0 (capacity dimension) is negatively correlated with <span class="hlt">soil</span> water content as the depth increases; (2) the relationship between <span class="hlt">soil</span> <span class="hlt">moisture</span> and <span class="hlt">soil</span> particle size shows differences under different plants and precipitation gradient.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120013141&hterms=kellogg&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dkellogg','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120013141&hterms=kellogg&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dkellogg"><span>The NASA <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) Mission Formulation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Entekhabi, Dara; Njoku, Eni; ONeill, Peggy; Kellogg, Kent; Entin, Jared</p> <p>2011-01-01</p> <p>The <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) mission is one of the first-tier projects recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission is in formulation phase and it is scheduled for launch in 2014. The SMAP mission is designed to produce high-resolution and accurate global mapping of <span class="hlt">soil</span> <span class="hlt">moisture</span> and its freeze/thaw state using an instrument architecture that incorporates an L-band (1.26 GHz) radar and an L-band (1.41 GHz) radiometer. The simultaneous radar and radiometer measurements will be combined to derive global <span class="hlt">soil</span> <span class="hlt">moisture</span> mapping at 9 [km] resolution with a 2 to 3 days revisit and 0.04 [cm3 cm-3] (1 sigma) <span class="hlt">soil</span> water content accuracy. The radar measurements also allow the binary detection of surface freeze/thaw state. The project science goals address in water, energy and carbon cycle science as well as provide improved capabilities in natural hazards applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC53C1300F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC53C1300F"><span>Developing a <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Index for California Grasslands from Airborne Hyperspectral Imagery</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flamme, H. E.; Roberts, D. A.; Miller, D. L.</p> <p>2016-12-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> is a key environmental factor controlling vegetation diversity and productivity, evaporation, transpiration, and rainfall runoff. Despite the contribution of <span class="hlt">soil</span> <span class="hlt">moisture</span> to ecological productivity, the hydrologic cycle, and erosion, it is currently not being monitored as accurately or as frequently as other environmental factors. Traditional <span class="hlt">soil</span> <span class="hlt">moisture</span> monitoring techniques rely on in situ measurements, which become costly when evaluating areas of unevenly distributed <span class="hlt">soil</span> characteristics and varying topography. Alternatively, satellite remote sensing, such as passive microwave from SMAP, can provide <span class="hlt">soil</span> <span class="hlt">moisture</span> but only at very coarse spatial resolutions. Imagery from the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) has the potential to allow better spatial and temporal monitoring of <span class="hlt">soil</span> <span class="hlt">moisture</span>. This study established a relationship between plant available water and hyperspectral reflectance via linear regressions of data from 2013-2015 for two grassland field sites: 1) near Santa Barbara, California, at Coal Oil Point Reserve (COPR) and 2) Airstrip station (AIRS) at UC Santa Barbara's Sedgwick Reserve near Santa Ynez, California. Volumetric <span class="hlt">soil</span> <span class="hlt">moisture</span> measurements at 10 cm and 20 cm depths were provided by meteorological stations situated in COPR and AIRS while reflectance data were extracted from AVIRIS. We found strong correlations between plant available water and bands centered at wavelengths 704 nm and 831 nm, which we used to create Hyperspectral <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Index (HSMI): 0.38((ρ831-ρ704)/(ρ831+ρ704))-0.02. HSMI demonstrated a coefficient of determination (R2) of 0.71 for linear regressions of reflectance versus plant available water with a lag time of 28 days. We applied HSMI to the AIRS and COPR grasslands for 2011 AVIRIS scenes. Plant available water values predicted by HSMI were 0.039 higher at AIRS and 0.048 higher at COPR than the field measurements at the sites. Differences in grass species, <span class="hlt">soil</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3..583H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3..583H"><span><span class="hlt">Soil</span> <span class="hlt">Moisture</span> Retrieval Using Convolutional Neural Networks: Application to Passive Microwave Remote Sensing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Z.; Xu, L.; Yu, B.</p> <p>2018-04-01</p> <p>A empirical model is established to analyse the daily retrieval of <span class="hlt">soil</span> <span class="hlt">moisture</span> from passive microwave remote sensing using convolutional neural networks (CNN). <span class="hlt">Soil</span> <span class="hlt">moisture</span> plays an important role in the water cycle. However, with the rapidly increasing of the acquiring technology for remotely sensed data, it's a hard task for remote sensing practitioners to find a fast and convenient model to deal with the massive data. In this paper, the AMSR-E brightness temperatures are used to train CNN for the prediction of the European centre for medium-range weather forecasts (ECMWF) model. Compared with the classical inversion methods, the deep learning-based method is more suitable for global <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval. It is very well supported by graphics processing unit (GPU) acceleration, which can meet the demand of massive data inversion. Once the model trained, a global <span class="hlt">soil</span> <span class="hlt">moisture</span> map can be predicted in less than 10 seconds. What's more, the method of <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval based on deep learning can learn the complex texture features from the big remote sensing data. In this experiment, the results demonstrates that the CNN deployed to retrieve global <span class="hlt">soil</span> <span class="hlt">moisture</span> can achieve a better performance than the support vector regression (SVR) for <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150023285','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150023285"><span>An Overview of Production and Validation of the SMAP Passive <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Product</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chan, S.; O'Neill, P.; Njoku, E.; Jackson, T.; Bindlish, R.</p> <p>2015-01-01</p> <p>The <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) mission is an L-band mission scheduled for launch in Jan. 2015. The SMAP instruments consist of a radar and a radiometer to obtain complementary information from space for <span class="hlt">soil</span> <span class="hlt">moisture</span> and freeze/thaw state research and applications. By utilizing novel designs in antenna construction, retrieval algorithms, and acquisition hardware, SMAP provides a capability for global mapping of <span class="hlt">soil</span> <span class="hlt">moisture</span> and freeze/thaw state with unprecedented accuracy, resolution, and coverage. This improvement in hydrosphere state measurement is expected to advance our understanding of the processes that link the terrestrial water, energy and carbon cycles, improve our capability in flood prediction and drought monitoring, and enhance our skills in weather and climate forecast. For swath-based <span class="hlt">soil</span> <span class="hlt">moisture</span> measurement, SMAP generates three operational geophysical data products: (1) the radiometer-only <span class="hlt">soil</span> <span class="hlt">moisture</span> product (L2_SM_P) posted at 36-kilometer resolution, (2) the radar-only <span class="hlt">soil</span> <span class="hlt">moisture</span> product (L2_SM_A) posted at 3-kilometers resolution, and (3) the radar-radiometer combined <span class="hlt">soil</span> <span class="hlt">moisture</span> product (L2_SM_AP) posted at 9-kilometers resolution. Each product draws on the strengths of the underlying sensor(s) and plays a unique role in hydroclimatological and hydrometeorological applications. A full suite of SMAP data products is given in Table 1.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRD..12111516K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRD..12111516K"><span>A novel approach to validate satellite <span class="hlt">soil</span> <span class="hlt">moisture</span> retrievals using precipitation data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karthikeyan, L.; Kumar, D. Nagesh</p> <p>2016-10-01</p> <p>A novel approach is proposed that attempts to validate passive microwave <span class="hlt">soil</span> <span class="hlt">moisture</span> retrievals using precipitation data (applied over India). It is based on the concept that the expectation of precipitation conditioned on <span class="hlt">soil</span> <span class="hlt">moisture</span> follows a sigmoidal convex-concave-shaped curve, the characteristic of which was recently shown to be represented by mutual information estimated between <span class="hlt">soil</span> <span class="hlt">moisture</span> and precipitation. On this basis, with an emphasis over distribution-free nonparametric computations, a new measure called Copula-Kernel Density Estimator based Mutual Information (CKDEMI) is introduced. The validation approach is generic in nature and utilizes CKDEMI in tandem with a couple of proposed bootstrap strategies, to check accuracy of any two <span class="hlt">soil</span> <span class="hlt">moisture</span> products (here Advanced Microwave Scanning Radiometer-EOS sensor's Vrije Universiteit Amsterdam-NASA (VUAN) and University of Montana (MONT) products) using precipitation (India Meteorological Department) data. The proposed technique yields a "best choice <span class="hlt">soil</span> <span class="hlt">moisture</span> product" map which contains locations where any one of the two/none of the two/both the products have produced accurate retrievals. The results indicated that in general, VUA-NASA product has performed well over University of Montana's product for India. The best choice <span class="hlt">soil</span> <span class="hlt">moisture</span> map is then integrated with land use land cover and elevation information using a novel probability density function-based procedure to gain insight on conditions under which each of the products has performed well. Finally, the impact of using a different precipitation (Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources) data set over the best choice <span class="hlt">soil</span> <span class="hlt">moisture</span> product map is also analyzed. The proposed methodology assists researchers and practitioners in selecting the appropriate <span class="hlt">soil</span> <span class="hlt">moisture</span> product for various assimilation strategies at both basin and continental scales.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413603X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413603X"><span>The advanced qualtiy control techniques planned for the Internation <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Network</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xaver, A.; Gruber, A.; Hegiova, A.; Sanchis-Dufau, A. D.; Dorigo, W. A.</p> <p>2012-04-01</p> <p>In situ <span class="hlt">soil</span> <span class="hlt">moisture</span> observations are essential to evaluate and calibrate modeled and remotely sensed <span class="hlt">soil</span> <span class="hlt">moisture</span> products. Although a number of meteorological networks and field campaigns measuring <span class="hlt">soil</span> <span class="hlt">moisture</span> exist on a global and long-term scale, their observations are not easily accessible and lack standardization of both technique and protocol. Thus, handling and especially comparing these datasets with satellite products or land surface models is a demanding issue. To overcome these limitations the International <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Network (ISMN; http://www.ipf.tuwien.ac.at/insitu/) has been initiated to act as a centralized data hosting facility. One advantage of the ISMN is that users are able to access the harmonized datasets easily through a web portal. Another advantage is the fully automated processing chain including the data harmonization in terms of units and sampling interval, but even more important is the advanced quality control system each measurement has to run through. The quality of in situ <span class="hlt">soil</span> <span class="hlt">moisture</span> measurements is crucial for the validation of satellite- and model-based <span class="hlt">soil</span> <span class="hlt">moisture</span> retrievals; therefore a sophisticated quality control system was developed. After a check for plausibility and geophysical limits a quality flag is added to each measurement. An enhanced flagging mechanism was recently defined using a spectrum based approach to detect spurious spikes, jumps and plateaus. The International <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Network has already evolved to one of the most important distribution platforms for in situ <span class="hlt">soil</span> <span class="hlt">moisture</span> observations and is still growing. Currently, data from 27 networks in total covering more than 800 stations in Europe, North America, Australia, Asia and Africa is hosted by the ISMN. Available datasets also include historical datasets as well as near real-time measurements. The improved quality control system will provide important information for satellite-based as well as land surface model-based validation studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..758D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..758D"><span>The Error Structure of the SMAP Single and Dual Channel <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Retrievals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dong, Jianzhi; Crow, Wade T.; Bindlish, Rajat</p> <p>2018-01-01</p> <p>Knowledge of the temporal error structure for remotely sensed surface <span class="hlt">soil</span> <span class="hlt">moisture</span> retrievals can improve our ability to exploit them for hydrologic and climate studies. This study employs a triple collocation <span class="hlt">analysis</span> to investigate both the total variance and temporal autocorrelation of errors in <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active and Passive (SMAP) products generated from two separate <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval algorithms, the vertically polarized brightness temperature-based single-channel algorithm (SCA-V, the current baseline SMAP algorithm) and the dual-channel algorithm (DCA). A key assumption made in SCA-V is that real-time vegetation opacity can be accurately captured using only a climatology for vegetation opacity. Results demonstrate that while SCA-V generally outperforms DCA, SCA-V can produce larger total errors when this assumption is significantly violated by interannual variability in vegetation health and biomass. Furthermore, larger autocorrelated errors in SCA-V retrievals are found in areas with relatively large vegetation opacity deviations from climatological expectations. This implies that a significant portion of the autocorrelated error in SCA-V is attributable to the violation of its vegetation opacity climatology assumption and suggests that utilizing a real (as opposed to climatological) vegetation opacity time series in the SCA-V algorithm would reduce the magnitude of autocorrelated <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval errors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011346','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011346"><span>NASAs <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) Mission and Opportunities For Applications Users</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brown, Molly E.; Escobar, Vanessa; Moran, Susan; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni G.; Doorn, Brad; Entin, Jared K.</p> <p>2013-01-01</p> <p>Water in the <span class="hlt">soil</span>, both its amount (<span class="hlt">soil</span> <span class="hlt">moisture</span>) and its state (freeze/thaw), plays a key role in water and energy cycles, in weather and climate, and in the carbon cycle. Additionally, <span class="hlt">soil</span> <span class="hlt">moisture</span> touches upon human lives in a number of ways from the ravages of flooding to the needs for monitoring agricultural and hydrologic droughts. Because of their relevance to weather, climate, science, and society, accurate and timely measurements of <span class="hlt">soil</span> <span class="hlt">moisture</span> and freeze/thaw state with global coverage are critically important.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......181S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......181S"><span>Terrestrial precipitation and <span class="hlt">soil</span> <span class="hlt">moisture</span>: A case study over southern Arizona and data development</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stillman, Susan</p> <p></p> <p>Quantifying climatological precipitation and <span class="hlt">soil</span> <span class="hlt">moisture</span> as well as interannual variability and trends requires extensive observation. This work focuses on the <span class="hlt">analysis</span> of available precipitation and <span class="hlt">soil</span> <span class="hlt">moisture</span> data and the development of new ways to estimate these quantities. Precipitation and <span class="hlt">soil</span> <span class="hlt">moisture</span> characteristics are highly dependent on the spatial and temporal scales. We begin at the point scale, examining hourly precipitation and <span class="hlt">soil</span> <span class="hlt">moisture</span> at individual gauges. First, we focus on the Walnut Gulch Experimental Watershed (WGEW), a 150 km2 area in southern Arizona. The watershed has been measuring rainfall since 1956 with a very high density network of approximately 0.6 gauges per km2. Additionally, there are 19 <span class="hlt">soil</span> <span class="hlt">moisture</span> probes at 5 cm depth with data starting in 2002. In order to extend the measurement period, we have developed a water balance model which estimates monsoon season (Jul-Sep) <span class="hlt">soil</span> <span class="hlt">moisture</span> using only precipitation for input, and calibrated so that the modeled <span class="hlt">soil</span> <span class="hlt">moisture</span> fits best with the <span class="hlt">soil</span> <span class="hlt">moisture</span> measured by each of the 19 probes from 2002-2012. This observationally constrained <span class="hlt">soil</span> <span class="hlt">moisture</span> is highly correlated with the collocated probes (R=0.88), and extends the measurement period from 10 to 56 years and the number of gauges from 19 to 88. Then, we focus on the spatiotemporal variability within the watershed and the ability to estimate area averaged quantities. Spatially averaged precipitation and observationally constrained <span class="hlt">soil</span> <span class="hlt">moisture</span> from the 88 gauges is then used to evaluate various gridded datasets. We find that gauge-based precipitation products perform best followed by reanalyses and then satellite-based products. Coupled Model Intercomparison Project Phase 5 (CMIP5) models perform the worst and overestimate cold season precipitation while offsetting the monsoon peak precipitation forward or backward by a month. Satellite-based <span class="hlt">soil</span> <span class="hlt">moisture</span> is the best followed by land data assimilation systems and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9335J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9335J"><span>Station for spatially distributed measurements of <span class="hlt">soil</span> <span class="hlt">moisture</span> and ambient temperature</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jankovec, Jakub; Šanda, Martin; Haase, Tomáš; Sněhota, Michal; Wild, Jan</p> <p>2013-04-01</p> <p>Third generation of combined thermal and <span class="hlt">soil</span> <span class="hlt">moisture</span> standalone field station coded TMS3 with wireless communication is presented. The device combines three thermometers (MAXIM/DALLAS Semiconductor DS7505U with -55 to +125°C range and 0.0625°C resolution, 0.5°C precision in 0 to +70°C range and 2°C precision out of this range). <span class="hlt">Soil</span> <span class="hlt">moisture</span> measurement is performed based on time domain transmission (TDT) principle for the full range of <span class="hlt">soil</span> <span class="hlt">moisture</span> with 0.025% resolution within the full possible <span class="hlt">soil</span> <span class="hlt">moisture</span> span for the most typical conditions of dry to saturated <span class="hlt">soils</span> with safe margins to enable measurements in freezing, hot or saline <span class="hlt">soils</span>. Principal compact version is designed for temperature measurements approximately at heights -10, 0 and +15 cm relative to <span class="hlt">soil</span> surface when installed vertically and <span class="hlt">soil</span> <span class="hlt">moisture</span> measurements between 0 and 12 cm below surface. Set of buriable/subsurface stations each with 2.2 meter extension cord with <span class="hlt">soil</span> and surface temperature measurement provides possibility to scan vertical <span class="hlt">soil</span> profile for <span class="hlt">soil</span> <span class="hlt">moisture</span> and temperature at desired depths. USB equipped station is designed for streamed direct data acquisition in laboratory use in 1s interval. Station is also equipped with the shock sensor indicating the manipulation. Presented version incorporates life time permanent data storage (0.5 million logs). Current sensor design aims towards improved durability in harsh outdoor environment with reliable functioning in wet conditions withstanding mechanical or electric shock destruction. Insertion into the <span class="hlt">soil</span> is possible by pressing with the use of a simple plastic cover. Data are retrieved by contact portable pocket collector (second generation) or by RFID wireless communication for hundreds meter distance (third generation) in either star pattern of GSM hub to stations or lined up GSM to station to another station both in comprised data packets. This option will allow online data harvesting and real time process</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160008959','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160008959"><span>Evaluation of the Validated <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Product from the SMAP Radiometer</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>O'Neill, P.; Chan, S.; Colliander, A.; Dunbar, S.; Njoku, E.; Bindlish, R.; Chen, F.; Jackson, T.; Burgin, M.; Piepmeier, J.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160008959'); toggleEditAbsImage('author_20160008959_show'); toggleEditAbsImage('author_20160008959_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160008959_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160008959_hide"></p> <p>2016-01-01</p> <p>NASA's <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) mission launched on January 31, 2015 into a sun-synchronous 6 am/6 pm orbit with an objective to produce global mapping of high-resolution <span class="hlt">soil</span> <span class="hlt">moisture</span> and freeze-thaw state every 2-3 days using an L-band (active) radar and an L-band (passive) radiometer. The SMAP radiometer began acquiring routine science data on March 31, 2015 and continues to operate nominally. SMAP's radiometer-derived <span class="hlt">soil</span> <span class="hlt">moisture</span> product (L2_SM_P) provides <span class="hlt">soil</span> <span class="hlt">moisture</span> estimates posted on a 36 km fixed Earth grid using brightness temperature observations from descending (6 am) passes and ancillary data. A beta quality version of L2_SM_P was released to the public in September, 2015, with the fully validated L2_SM_P <span class="hlt">soil</span> <span class="hlt">moisture</span> data expected to be released in May, 2016. Additional improvements (including optimization of retrieval algorithm parameters and upscaling approaches) and methodology expansions (including increasing the number of core sites, model-based intercomparisons, and results from several intensive field campaigns) are anticipated in moving from accuracy assessment of the beta quality data to an evaluation of the fully validated L2_SM_P data product.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..846T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..846T"><span>Use of modeled and satelite <span class="hlt">soil</span> <span class="hlt">moisture</span> to estimate <span class="hlt">soil</span> erosion in central and southern Italy.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Termite, Loris Francesco; Massari, Christian; Todisco, Francesca; Brocca, Luca; Ferro, Vito; Bagarello, Vincenzo; Pampalone, Vincenzo; Wagner, Wolfgang</p> <p>2016-04-01</p> <p>This study presents an accurate comparison between two different approaches aimed to enhance accuracy of the Universal <span class="hlt">Soil</span> Loss Equation (USLE) in estimating the <span class="hlt">soil</span> loss at the single event time scale. Indeed it is well known that including the observed event runoff in the USLE improves its <span class="hlt">soil</span> loss estimation ability at the event scale. In particular, the USLE-M and USLE-MM models use the observed runoff coefficient to correct the rainfall erosivity factor. In the first case, the <span class="hlt">soil</span> loss is linearly dependent on rainfall erosivity, in the second case <span class="hlt">soil</span> loss and erosivity are related by a power law. However, the measurement of the event runoff is not straightforward or, in some cases, possible. For this reason, the first approach used in this study is the use of <span class="hlt">Soil</span> <span class="hlt">Moisture</span> For Erosion (SM4E), a recent USLE-derived model in which the event runoff is replaced by the antecedent <span class="hlt">soil</span> <span class="hlt">moisture</span>. Three kinds of <span class="hlt">soil</span> <span class="hlt">moisture</span> datasets have been separately used: the ERA-Interim/Land reanalysis data of the European Centre for Medium-range Weather Forecasts (ECMWF); satellite retrievals from the European Space Agency - Climate Change Initiative (ESA-CCI); modeled data using a <span class="hlt">Soil</span> Water Balance Model (SWBM). The second approach is the use of an estimated runoff rather than the observed. Specifically, the Simplified Continuous Rainfall-Runoff Model (SCRRM) is used to derive the runoff estimates. SCRMM requires <span class="hlt">soil</span> <span class="hlt">moisture</span> data as input and at this aim the same three <span class="hlt">soil</span> <span class="hlt">moisture</span> datasets used for the SM4E have been separately used. All the examined models have been calibrated and tested at the plot scale, using data from the experimental stations for the monitoring of the erosive processes "Masse" (Central Italy) and "Sparacia" (Southern Italy). Climatic data and runoff and <span class="hlt">soil</span> loss measures at the event time scale are available for the period 2008-2013 at Masse and for the period 2002-2013 at Sparacia. The results show that both the approaches can provide</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24222253','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24222253"><span>Relationship between genetic parameters in maize (Zea mays) with seedling growth parameters under 40-100% <span class="hlt">soil</span> <span class="hlt">moisture</span> conditions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Muhammad, R W; Qayyum, A</p> <p>2013-10-18</p> <p>We estimated the association of genetic parameters with production characters in 64 maize (Zea mays) genotypes in a green house in <span class="hlt">soil</span> with 40-100% <span class="hlt">moisture</span> levels (percent of <span class="hlt">soil</span> <span class="hlt">moisture</span> capacity). To identify the major parameters that account for variation among the genotypes, we used single linkage cluster <span class="hlt">analysis</span> and principle component <span class="hlt">analysis</span>. Ten plant characters were measured. The first two, four, three, and again three components, with eigen values > 1 contributed 75.05, 80.11, 68.67, and 75.87% of the variability among the genotypes under the different <span class="hlt">moisture</span> levels, i.e., 40, 60, 80, and 100%, respectively. Other principal components (3-10, 5-10, and 4-10) had eigen values less than 1. The highest estimates of heritability were found for root fresh weight, root volume (0.99), and shoot fresh weight (0.995) in 40% <span class="hlt">soil</span> <span class="hlt">moisture</span>. Values of genetic advance ranged from 23.4024 for SR at 40% <span class="hlt">soil</span> <span class="hlt">moisture</span> to 0.2538 for shoot dry weight in 60% <span class="hlt">soil</span> <span class="hlt">moisture</span>. The high magnitude of broad sense heritability provides evidence that these plant characters are under the control of additive genetic effects. This indicates that selection should lead to fast genetic improvement of the material. The superior agronomic types that we identified may be exploited for genetic potential to improve yield potential of the maize crop.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=336447','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=336447"><span>A review of the applications of ASCAT <span class="hlt">soil</span> <span class="hlt">moisture</span> products</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Remote sensing of <span class="hlt">soil</span> <span class="hlt">moisture</span> has reached a level of good maturity and accuracy for which the retrieved products are ready to use in real-world applications. Due to the importance of <span class="hlt">soil</span> <span class="hlt">moisture</span> in the partitioning of the water and energy fluxes between the land surface and the atmosphere, a wid...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H51R..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H51R..04B"><span>Empirical <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Estimation with Spaceborne L-band Polarimetric Radars: Aquarius, SMAP, and PALSAR-2</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burgin, M. S.; van Zyl, J. J.</p> <p>2017-12-01</p> <p>Traditionally, substantial ancillary data is needed to parametrize complex electromagnetic models to estimate <span class="hlt">soil</span> <span class="hlt">moisture</span> from polarimetric radar data. The <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) baseline radar <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval algorithm uses a data cube approach, where a cube of radar backscatter values is calculated using sophisticated models. In this work, we utilize the empirical approach by Kim and van Zyl (2009) which is an optional SMAP radar <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval algorithm; it expresses radar backscatter of a vegetated scene as a linear function of <span class="hlt">soil</span> <span class="hlt">moisture</span>, hence eliminating the need for ancillary data. We use 2.5 years of L-band Aquarius radar and radiometer derived <span class="hlt">soil</span> <span class="hlt">moisture</span> data to determine two coefficients of a linear model function on a global scale. These coefficients are used to estimate <span class="hlt">soil</span> <span class="hlt">moisture</span> with 2.5 months of L-band SMAP and L-band PALSAR-2 data. The estimated <span class="hlt">soil</span> <span class="hlt">moisture</span> is compared with the SMAP Level 2 radiometer-only <span class="hlt">soil</span> <span class="hlt">moisture</span> product; the global unbiased RMSE of the SMAP derived <span class="hlt">soil</span> <span class="hlt">moisture</span> corresponds to 0.06-0.07 cm3/cm3. In this study, we leverage the three diverse L-band radar data sets to investigate the impact of pixel size and pixel heterogeneity on <span class="hlt">soil</span> <span class="hlt">moisture</span> estimation performance. Pixel sizes range from 100 km for Aquarius, over 3, 9, 36 km for SMAP, to 10m for PALSAR-2. Furthermore, we observe seasonal variation in the radar sensitivity to <span class="hlt">soil</span> <span class="hlt">moisture</span> which allows the identification and quantification of seasonally changing vegetation. Utilizing this information, we further improve the estimation performance. The research described in this paper is supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014WRR....50.4038S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014WRR....50.4038S"><span>Quantifying the influence of deep <span class="hlt">soil</span> <span class="hlt">moisture</span> on ecosystem albedo: The role of vegetation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanchez-Mejia, Zulia Mayari; Papuga, Shirley Anne; Swetish, Jessica Blaine; van Leeuwen, Willem Jan Dirk; Szutu, Daphne; Hartfield, Kyle</p> <p>2014-05-01</p> <p>As changes in precipitation dynamics continue to alter the water availability in dryland ecosystems, understanding the feedbacks between the vegetation and the hydrologic cycle and their influence on the climate system is critically important. We designed a field campaign to examine the influence of two-layer <span class="hlt">soil</span> <span class="hlt">moisture</span> control on bare and canopy albedo dynamics in a semiarid shrubland ecosystem. We conducted this campaign during 2011 and 2012 within the tower footprint of the Santa Rita Creosote Ameriflux site. Albedo field measurements fell into one of four Cases within a two-layer <span class="hlt">soil</span> <span class="hlt">moisture</span> framework based on permutations of whether the shallow and deep <span class="hlt">soil</span> layers were wet or dry. Using these Cases, we identified differences in how shallow and deep <span class="hlt">soil</span> <span class="hlt">moisture</span> influence canopy and bare albedo. Then, by varying the number of canopy and bare patches within a gridded framework, we explore the influence of vegetation and <span class="hlt">soil</span> <span class="hlt">moisture</span> on ecosystem albedo. Our results highlight the importance of deep <span class="hlt">soil</span> <span class="hlt">moisture</span> in land surface-atmosphere interactions through its influence on aboveground vegetation characteristics. For instance, we show how green-up of the vegetation is triggered by deep <span class="hlt">soil</span> <span class="hlt">moisture</span>, and link deep <span class="hlt">soil</span> <span class="hlt">moisture</span> to a decrease in canopy albedo. Understanding relationships between vegetation and deep <span class="hlt">soil</span> <span class="hlt">moisture</span> will provide important insights into feedbacks between the hydrologic cycle and the climate system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016918','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016918"><span>Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a <span class="hlt">Soil</span> <span class="hlt">Moisture</span> <span class="hlt">Analysis</span> System</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reichle, Rolf H.; De Lannoy, Gabrielle J. M.</p> <p>2012-01-01</p> <p>The <span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to <span class="hlt">moisture</span> and temperature conditions in the top few centimeters of the <span class="hlt">soil</span>. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone <span class="hlt">soil</span> <span class="hlt">moisture</span> estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including <span class="hlt">soil</span> <span class="hlt">moisture</span> and <span class="hlt">soil</span> temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological <span class="hlt">soil</span> <span class="hlt">moisture</span> conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, <span class="hlt">soil</span> <span class="hlt">moisture</span> and brightness temperature biases are addressed in three stages. First, the global <span class="hlt">soil</span> properties and <span class="hlt">soil</span> hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled <span class="hlt">soil</span> <span class="hlt">moisture</span>, as verified against available in situ <span class="hlt">soil</span> <span class="hlt">moisture</span> measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include <span class="hlt">soil</span> roughness parameters, vegetation structure parameters</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ISPAr.XL8..111R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ISPAr.XL8..111R"><span>Automated system for generation of <span class="hlt">soil</span> <span class="hlt">moisture</span> products for agricultural drought assessment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raja Shekhar, S. S.; Chandrasekar, K.; Sesha Sai, M. V. R.; Diwakar, P. G.; Dadhwal, V. K.</p> <p>2014-11-01</p> <p> download requisite input parameters like rainfall, Potential Evapotranspiration (PET) from respective servers. It can import file formats like .grd, .hdf, .img, generic binary etc, perform geometric correction and re-project the files to native projection system. The software takes into account the weather, crop and <span class="hlt">soil</span> parameters to run the designed <span class="hlt">soil</span> water balance model. The software also has additional features like time compositing of outputs to generate weekly, fortnightly profiles for further <span class="hlt">analysis</span>. Other tools to generate "Area Favorable for Crop Sowing" using the daily <span class="hlt">soil</span> <span class="hlt">moisture</span> with highly customizable parameters interface has been provided. A whole India <span class="hlt">analysis</span> would now take a mere 20 seconds for generation of <span class="hlt">soil</span> <span class="hlt">moisture</span> products which would normally take one hour per day using commercial software.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.4049C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.4049C"><span><span class="hlt">Soil</span> <span class="hlt">Moisture</span> Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP <span class="hlt">Soil</span> <span class="hlt">Moisture</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chew, C. C.; Small, E. E.</p> <p>2018-05-01</p> <p>This paper quantifies the relationship between forward scattered L-band Global Navigation Satellite System (GNSS) signals, recorded by the Cyclone Global Navigation Satellite System (CYGNSS) constellation and <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) <span class="hlt">soil</span> <span class="hlt">moisture</span> (SM). Although designed for tropical ocean surface wind sensing, the CYGNSS receivers also record GNSS reflections over land. The CYGNSS observations of reflection power are compared to SMAP SM between March 2017 and February 2018. A strong, positive linear relationship exists between changes in CYGNSS reflectivity and changes in SMAP SM, but not between the absolute magnitudes of the two observations. The sensitivity of CYGNSS reflectivity to SM varies spatially and can be used to convert reflectivity to estimates of SM. The unbiased root-mean-square difference between daily averaged CYGNSS-derived SM and SMAP SM is 0.045 cm3/cm3 and is similarly low between CYGNSS and in situ SM. These results show that CYGNSS, and future GNSS reflection missions, could provide global SM observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8226P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8226P"><span>Optimizing operational water management with <span class="hlt">soil</span> <span class="hlt">moisture</span> data from Sentinel-1 satellites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pezij, Michiel; Augustijn, Denie; Hendriks, Dimmie; Hulscher, Suzanne</p> <p>2016-04-01</p> <p> operational water management in cooperation with users. As a first step, the current simulation of <span class="hlt">soil</span> <span class="hlt">moisture</span> processes within the NHI will be reviewed. We want to present the findings of this assessment as well as the research methodology. This PhD-research is part of the Optimizing Water Availability with Sentinel-1 Satellites (OWAS1S)-project in which two other PhD-students are participating. They are focussing on the translation of raw Sentinel-1 satellite data to surface <span class="hlt">soil</span> <span class="hlt">moisture</span> data and the application of the remotely sensed <span class="hlt">soil</span> <span class="hlt">moisture</span> data on crop water availability and trafficability on field scale. References: De Lange, W. J., Prinsen, G. F., Hoogewoud, J. C., Veldhuizen, A. A., Verkaik, J., Oude Essink, G. H. P., van Walsum, P. E. V., Delsman, J. R., Hunink, J. C., Massop, H. T. L., & Kroon, T. (2014). An operational, multi-scale, multi-model system for consensus-based, integrated water management and policy <span class="hlt">analysis</span>: The Netherlands Hydrological Instrument. Environmental Modelling & Software, 59, 98-108. doi: 10.1016/j.envsoft.2014.05.009 Wanders, N., Karssenberg, D., de Roo, A., de Jong, S. M., & Bierkens, M. F. P. (2014). The suitability of remotely sensed <span class="hlt">soil</span> <span class="hlt">moisture</span> for improving operational flood forecasting. Hydrology and Earth System Sciences, 18(6), 2343-2357. doi: 10.5194/hess-18-2343-2014</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H21I1600T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H21I1600T"><span>Estimating Surface <span class="hlt">Soil</span> <span class="hlt">Moisture</span> in a Mixed-Landscape using SMAP and MODIS/VIIRS Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, J.; Di, L.; Xiao, J.</p> <p>2017-12-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span>, a critical parameter of earth ecosystem linking land surface and atmosphere, has been widely applied in many application (Di, 1991; Njoku et al. 2003; Western 2002; Zhao et al. 2014; McColl et al. 2017) from regional to continental or even global scale. The advent of satellite-based remote sensing, particular in the last two decades, has proven successful for mapping the surface <span class="hlt">soil</span> <span class="hlt">moisture</span> (SSM) from space (Petropoulos et al. 2015; Kim et al. 2015; Molero et al. 2016). The current <span class="hlt">soil</span> <span class="hlt">moisture</span> products, however, is not able to fully characterize the spatial and temporal variability of <span class="hlt">soil</span> <span class="hlt">moisture</span> at mixed landscape types (Albergel et al. 2013; Zeng et al. 2015). In this research, we derived the SSM at 1-km spatial resolution by using sensor observation and high-level products from SMAP and MODIS/VIIRS as well as metrorological, landcover, and <span class="hlt">soil</span> data. Specifically, we proposed a practicable method to produce the originally planned SMAP L3_SM_A with comparable quality by downscaling the SMAP L3_SM_P product through a proved method, the geographically weighted regression method at mixed landscape in southern New Hampshire. This estimated SSM was validated using the <span class="hlt">Soil</span> Climate <span class="hlt">Analysis</span> Network (SCAN) from Natural Resources Conservation Service (NRCS) of United States Department of Agriculture (USDA).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120013516','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120013516"><span>Advances in Assimilation of Satellite-Based Passive Microwave Observations for <span class="hlt">Soil-Moisture</span> Estimation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>De Lannoy, Gabrielle J. M.; Pauwels, Valentijn; Reichle, Rolf H.; Draper, Clara; Koster, Randy; Liu, Qing</p> <p>2012-01-01</p> <p>Satellite-based microwave measurements have long shown potential to provide global information about <span class="hlt">soil</span> <span class="hlt">moisture</span>. The European Space Agency (ESA) <span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Ocean Salinity (SMOS, [1]) mission as well as the future National Aeronautics and Space Administration (NASA) <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active and Passive (SMAP, [2]) mission measure passive microwave emission at L-band frequencies, at a relatively coarse (40 km) spatial resolution. In addition, SMAP will measure active microwave signals at a higher spatial resolution (3 km). These new L-band missions have a greater sensing depth (of -5cm) compared with past and present C- and X-band microwave sensors. ESA currently also disseminates retrievals of SMOS surface <span class="hlt">soil</span> <span class="hlt">moisture</span> that are derived from SMOS brightness temperature observations and ancillary data. In this research, we address two major challenges with the assimilation of recent/future satellite-based microwave measurements: (i) assimilation of <span class="hlt">soil</span> <span class="hlt">moisture</span> retrievals versus brightness temperatures for surface and root-zone <span class="hlt">soil</span> <span class="hlt">moisture</span> estimation and (ii) scale-mismatches between satellite observations, models and in situ validation data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740011869','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740011869"><span>Use of visible, near-infrared, and thermal infrared remote sensing to study <span class="hlt">soil</span> <span class="hlt">moisture</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blanchard, M. B.; Greeley, R.; Goettelman, R.</p> <p>1974-01-01</p> <p>Two methods are described which are used to estimate <span class="hlt">soil</span> <span class="hlt">moisture</span> remotely using the 0.4- to 14.0 micron wavelength region: (1) measurement of spectral reflectance, and (2) measurement of <span class="hlt">soil</span> temperature. The reflectance method is based on observations which show that directional reflectance decreases as <span class="hlt">soil</span> <span class="hlt">moisture</span> increases for a given material. The <span class="hlt">soil</span> temperature method is based on observations which show that differences between daytime and nighttime <span class="hlt">soil</span> temperatures decrease as <span class="hlt">moisture</span> content increases for a given material. In some circumstances, separate reflectance or temperature measurements yield ambiguous data, in which case these two methods may be combined to obtain a valid <span class="hlt">soil</span> <span class="hlt">moisture</span> determination. In this combined approach, reflectance is used to estimate low <span class="hlt">moisture</span> levels; and thermal inertia (or thermal diffusivity) is used to estimate higher levels. The reflectance method appears promising for surface estimates of <span class="hlt">soil</span> <span class="hlt">moisture</span>, whereas the temperature method appears promising for estimates of near-subsurface (0 to 10 cm).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750033072&hterms=Soil+use&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DSoil%2Buse','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750033072&hterms=Soil+use&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DSoil%2Buse"><span>Use of visible, near-infrared, and thermal infrared remote sensing to study <span class="hlt">soil</span> <span class="hlt">moisture</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blanchard, M. B.; Greeley, R.; Goettelman, R.</p> <p>1974-01-01</p> <p>Two methods are used to estimate <span class="hlt">soil</span> <span class="hlt">moisture</span> remotely using the 0.4- to 14.0-micron wavelength region: (1) measurement of spectral reflectance, and (2) measurement of <span class="hlt">soil</span> temperature. The reflectance method is based on observations which show that directional reflectance decreases as <span class="hlt">soil</span> <span class="hlt">moisture</span> increases for a given material. The <span class="hlt">soil</span> temperature method is based on observations which show that differences between daytime and nighttime <span class="hlt">soil</span> temperatures decrease as <span class="hlt">moisture</span> content increases for a given material. In some circumstances, separate reflectance or temperature measurements yield ambiguous data, in which case these two methods may be combined to obtain a valid <span class="hlt">soil</span> <span class="hlt">moisture</span> determination. In this combined approach, reflectance is used to estimate low <span class="hlt">moisture</span> levels; and thermal inertia (or thermal diffusivity) is used to estimate higher levels. The reflectance method appears promising for surface estimates of <span class="hlt">soil</span> <span class="hlt">moisture</span>, whereas the temperature method appears promising for estimates of near-subsurface (0 to 10 cm).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......496M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......496M"><span>Estimating root-zone <span class="hlt">soil</span> <span class="hlt">moisture</span> in the West Africa Sahel using remotely sensed rainfall and vegetation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McNally, Amy L.</p> <p></p> <p>Agricultural drought is characterized by shortages in precipitation, large differences between actual and potential evapotranspiration, and <span class="hlt">soil</span> water deficits that impact crop growth and pasture productivity. Rainfall and other agrometeorological gauge networks in Sub-Saharan Africa are inadequate for drought early warning systems and hence, satellite-based estimates of rainfall and vegetation greenness provide the main sources of information. While a number of studies have described the empirical relationship between rainfall and vegetation greenness, these studies lack a process based approach that includes <span class="hlt">soil</span> <span class="hlt">moisture</span> storage. In Chapters I and II, I modeled <span class="hlt">soil</span> <span class="hlt">moisture</span> using satellite rainfall inputs and developed a new method for estimating <span class="hlt">soil</span> <span class="hlt">moisture</span> with NDVI calibrated to in situ and microwave <span class="hlt">soil</span> <span class="hlt">moisture</span> observations. By transforming both NDVI and rainfall into estimates of <span class="hlt">soil</span> <span class="hlt">moisture</span> I was able to easily compare these two datasets in a physically meaningful way. In Chapter II, I also show how the new NDVI derived <span class="hlt">soil</span> <span class="hlt">moisture</span> can be assimilated into a water balance model that calculates an index of crop water stress. Compared to the analogous rainfall derived estimates of <span class="hlt">soil</span> <span class="hlt">moisture</span> and crop stress the NDVI derived estimates were better correlated with millet yields. In Chapter III, I developed a metric for defining growing season drought events that negatively impact millet yields. This metric is based on the data and models used in the Chapters I and II. I then use this metric to evaluate the ability of a sophisticated land surface model to detect drought events. The <span class="hlt">analysis</span> showed that this particular land surface model's <span class="hlt">soil</span> <span class="hlt">moisture</span> estimates do have the potential to benefit the food security and drought early warning communities. With a focus on <span class="hlt">soil</span> <span class="hlt">moisture</span>, this dissertation introduced new methods that utilized a variety of data and models for agricultural drought monitoring applications. These new methods facilitate a more</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26592040','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26592040"><span>[Effects of <span class="hlt">Soil</span> <span class="hlt">Moisture</span> on Phytoremediation of As-Containinated <span class="hlt">Soils</span> Using As-Hyperaccumulator Pteris vittata L].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Qiu-xin; Yan, Xiu-lan; Liao, Xiao-yong; Lin, Long-yong; Yang, Jing</p> <p>2015-08-01</p> <p>A pot experiment was carried out to study the effects of <span class="hlt">soil</span> <span class="hlt">moisture</span> on the growth and arsenic uptake of As-hyperaccumulator Pteris vittata L. The results showed that the remediation efficiency of As was the highest when the <span class="hlt">soil</span> <span class="hlt">moisture</span> was between 35%-45%. P. vittata grew best under 45% water content, and its aboveground and underground plant dry weights were 2.95 g x plant(-1) and 11.95 g x plant(-1), respectively; the arsenic concentration in aboveground and roots was the highest under 35% water content, and 40% content was the best for accumulation of arsenic in P. vittata. Moreover, controlling the <span class="hlt">soil</span> <span class="hlt">moisture</span> to 35%-45% enhanced the conversion of As(V) to As(III) in aboveground plant, and promoted arsenic detoxification in P. vittata. These above results showed that <span class="hlt">soil</span> <span class="hlt">moisture</span> played an important role in the absorption and transport of arsenic by P. vittata. The results of this study can provide important guidance for the large-scale planting of P. vittata and the <span class="hlt">moisture</span> management measures in engineering application.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=215525&keyword=bond&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=215525&keyword=bond&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span><span class="hlt">Soil</span> <span class="hlt">moisture</span> effects on the carbon isotopic composition of <span class="hlt">soil</span> respiration</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The carbon isotopic composition ( 13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low <span class="hlt">soil</span> <span class="hlt">moisture</span> or by low atmospheric humidity. Air humidity has also been shown to correlate with the 13C of <span class="hlt">soil</span> respiration, which suggests indir...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000038138&hterms=modeling+hydrological+basins&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmodeling%2Bhydrological%2Bbasins','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000038138&hterms=modeling+hydrological+basins&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmodeling%2Bhydrological%2Bbasins"><span>Examination of <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Retrieval Using SIR-C Radar Data and a Distributed Hydrological Model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hsu, A. Y.; ONeill, P. E.; Wood, E. F.; Zion, M.</p> <p>1997-01-01</p> <p>A major objective of <span class="hlt">soil</span> <span class="hlt">moisture</span>-related hydrological-research during NASA's SIR-C/X-SAR mission was to determine and compare <span class="hlt">soil</span> <span class="hlt">moisture</span> patterns within humid watersheds using SAR data, ground-based measurements, and hydrologic modeling. Currently available <span class="hlt">soil</span> <span class="hlt">moisture</span>-inversion methods using active microwave data are only accurate when applied to bare and slightly vegetated surfaces. Moreover, as the surface dries down, the number of pixels that can provide estimated <span class="hlt">soil</span> <span class="hlt">moisture</span> by these radar inversion methods decreases, leading to less accuracy and, confidence in the retrieved <span class="hlt">soil</span> <span class="hlt">moisture</span> fields at the watershed scale. The impact of these errors in microwave- derived <span class="hlt">soil</span> <span class="hlt">moisture</span> on hydrological modeling of vegetated watersheds has yet to be addressed. In this study a coupled water and energy balance model operating within a topographic framework is used to predict surface <span class="hlt">soil</span> <span class="hlt">moisture</span> for both bare and vegetated areas. In the first model run, the hydrological model is initialized using a standard baseflow approach, while in the second model run, <span class="hlt">soil</span> <span class="hlt">moisture</span> values derived from SIR-C radar data are used for initialization. The results, which compare favorably with ground measurements, demonstrate the utility of combining radar-derived surface <span class="hlt">soil</span> <span class="hlt">moisture</span> information with basin-scale hydrological modeling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51G1897R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51G1897R"><span>Modelling of Space-Time <span class="hlt">Soil</span> <span class="hlt">Moisture</span> in Savannas and its Relation to Vegetation Patterns</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodriguez-Iturbe, I.; Mohanty, B.; Chen, Z.</p> <p>2017-12-01</p> <p>A physically derived space-time representation of the <span class="hlt">soil</span> <span class="hlt">moisture</span> field is presented. It includes the incorporation of a "jitter" process acting over the space-time <span class="hlt">soil</span> <span class="hlt">moisture</span> field and accounting for the short distance heterogeneities in topography, <span class="hlt">soil</span>, and vegetation characteristics. The modelling scheme allows for the representation of spatial random fluctuations of <span class="hlt">soil</span> <span class="hlt">moisture</span> at small spatial scales and reproduces quite well the space-time correlation structure of <span class="hlt">soil</span> <span class="hlt">moisture</span> from a field study in Oklahoma. It is shown that the islands of <span class="hlt">soil</span> <span class="hlt">moisture</span> above different thresholds have sizes which follow power distributions over an extended range of scales. A discussion is provided about the possible links of this feature with the observed power law distributions of the clusters of trees in savannas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915682R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915682R"><span>Can we quantify the variability of <span class="hlt">soil</span> <span class="hlt">moisture</span> across scales using Electromagnetic Induction ?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan</p> <p>2017-04-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> is a key variable in many natural processes. Therefore, technological and methodological advancements are of primary importance to provide accurate measurements of spatial and temporal variability of <span class="hlt">soil</span> <span class="hlt">moisture</span>. In that context, ElectroMagnetic Induction (EMI) instruments are often cited as a hydrogeophysical method with a large potential, through the measurement of the <span class="hlt">soil</span> apparent electrical conductivity (ECa). To our knowledge, no studies have evaluated the potential of EMI to characterize variability of <span class="hlt">soil</span> <span class="hlt">moisture</span> on both agricultural and forested land covers in a (sub-) tropical environment. These differences in land use could be critical as differences in temperature, transpiration and root water uptake can have significant effect, notably on the electrical conductivity of the pore water. In this study, we used an EMI instrument to carry out a first assessment of the impact of deforestation and agriculture on <span class="hlt">soil</span> <span class="hlt">moisture</span> in a subtropical region in the south of Brazil. We selected slopes of different topographies (gentle vs. steep) and contrasting land uses (natural forest vs. agriculture) within two nearby catchments. At selected locations on the slopes, we measured simultaneously ECa using EMI and a depth-weighted average of the <span class="hlt">soil</span> <span class="hlt">moisture</span> using TDR probes installed within <span class="hlt">soil</span> pits. We found that the temporal variability of the <span class="hlt">soil</span> <span class="hlt">moisture</span> could not be measured accurately with EMI, probably because of important temporal variations of the pore water electrical conductivity and the relatively small temporal variations in <span class="hlt">soil</span> <span class="hlt">moisture</span> content. However, we found that its spatial variability could be effectively quantified using a non-linear relationship, for both intra- and inter-slopes variations. Within slopes, the ECa could explained between 67 and 90% of the variability of the <span class="hlt">soil</span> <span class="hlt">moisture</span>, while a single non-linear model for all the slopes could explain 55% of the <span class="hlt">soil</span> <span class="hlt">moisture</span> variability. We eventually showed that combining</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27859221','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27859221"><span><span class="hlt">Soil</span> <span class="hlt">moisture</span> mediates alpine life form and community productivity responses to warming.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Winkler, Daniel E; Chapin, Kenneth J; Kueppers, Lara M</p> <p>2016-06-01</p> <p>Climate change is expected to alter primary production and community composition in alpine ecosystems, but the direction and magnitude of change is debated. Warmer, wetter growing seasons may increase productivity; however, in the absence of additional precipitation, increased temperatures may decrease <span class="hlt">soil</span> <span class="hlt">moisture</span>, thereby diminishing any positive effect of warming. Since plant species show individual responses to environmental change, responses may depend on community composition and vary across life form or functional groups. We warmed an alpine plant community at Niwot Ridge, Colorado continuously for four years to test whether warming increases or decreases productivity of life form groups and the whole community. We provided supplemental water to a subset of plots to alleviate the drying effect of warming. We measured annual above-ground productivity and <span class="hlt">soil</span> temperature and <span class="hlt">moisture</span>, from which we calculated <span class="hlt">soil</span> degree days and adequate <span class="hlt">soil</span> <span class="hlt">moisture</span> days. Using an information-theoretic approach, we observed that positive productivity responses to warming at the community level occur only when warming is combined with supplemental watering; otherwise we observed decreased productivity. Watering also increased community productivity in the absence of warming. Forbs accounted for the majority of the productivity at the site and drove the contingent community response to warming, while cushions drove the generally positive response to watering and graminoids muted the community response. Warming advanced snowmelt and increased <span class="hlt">soil</span> degree days, while watering increased adequate <span class="hlt">soil</span> <span class="hlt">moisture</span> days. Heated and watered plots had more adequate <span class="hlt">soil</span> <span class="hlt">moisture</span> days than heated plots. Overall, measured changes in <span class="hlt">soil</span> temperature and <span class="hlt">moisture</span> in response to treatments were consistent with expected productivity responses. We found that available <span class="hlt">soil</span> <span class="hlt">moisture</span> largely determines the responses of this forb-dominated alpine community to simulated climate warming. © 2016</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JHyd..533..250W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JHyd..533..250W"><span>Feasibility <span class="hlt">analysis</span> of using inverse modeling for estimating natural groundwater recharge from a large-scale <span class="hlt">soil</span> <span class="hlt">moisture</span> monitoring network</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Tiejun; Franz, Trenton E.; Yue, Weifeng; Szilagyi, Jozsef; Zlotnik, Vitaly A.; You, Jinsheng; Chen, Xunhong; Shulski, Martha D.; Young, Aaron</p> <p>2016-02-01</p> <p>Despite the importance of groundwater recharge (GR), its accurate estimation still remains one of the most challenging tasks in the field of hydrology. In this study, with the help of inverse modeling, long-term (6 years) <span class="hlt">soil</span> <span class="hlt">moisture</span> data at 34 sites from the Automated Weather Data Network (AWDN) were used to estimate the spatial distribution of GR across Nebraska, USA, where significant spatial variability exists in <span class="hlt">soil</span> properties and precipitation (P). To ensure the generality of this study and its potential broad applications, data from public domains and literature were used to parameterize the standard Hydrus-1D model. Although observed <span class="hlt">soil</span> <span class="hlt">moisture</span> differed significantly across the AWDN sites mainly due to the variations in P and <span class="hlt">soil</span> properties, the simulations were able to capture the dynamics of observed <span class="hlt">soil</span> <span class="hlt">moisture</span> under different climatic and <span class="hlt">soil</span> conditions. The inferred mean annual GR from the calibrated models varied over three orders of magnitude across the study area. To assess the uncertainties of the approach, estimates of GR and actual evapotranspiration (ETa) from the calibrated models were compared to the GR and ETa obtained from other techniques in the study area (e.g., remote sensing, tracers, and regional water balance). Comparison clearly demonstrated the feasibility of inverse modeling and large-scale (>104 km2) <span class="hlt">soil</span> <span class="hlt">moisture</span> monitoring networks for estimating GR. In addition, the model results were used to further examine the impacts of climate and <span class="hlt">soil</span> on GR. The data showed that both P and <span class="hlt">soil</span> properties had significant impacts on GR in the study area with coarser <span class="hlt">soils</span> generating higher GR; however, different relationships between GR and P emerged at the AWDN sites, defined by local climatic and <span class="hlt">soil</span> conditions. In general, positive correlations existed between annual GR and P for the sites with coarser-textured <span class="hlt">soils</span> or under wetter climatic conditions. With the rapidly expanding <span class="hlt">soil</span> <span class="hlt">moisture</span> monitoring networks around the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020072723&hterms=erickson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Derickson','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020072723&hterms=erickson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Derickson"><span><span class="hlt">Soil</span> <span class="hlt">Moisture</span> and Snow Cover: Active or Passive Elements of Climate</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oglesby, Robert J.; Marshall, Susan; Erickson, David J., III; Robertson, Franklin R.; Roads, John O.; Arnold, James E. (Technical Monitor)</p> <p>2002-01-01</p> <p>A key question is the extent to which surface effects such as <span class="hlt">soil</span> <span class="hlt">moisture</span> and snow cover are simply passive elements or whether they can affect the evolution of climate on seasonal and longer time scales. We have constructed ensembles of predictability studies using the NCAR CCM3 in which we compared the relative roles of initial surface and atmospheric conditions over the central and western U.S. in determining the subsequent evolution of <span class="hlt">soil</span> <span class="hlt">moisture</span> and of snow cover. Results from simulations with realistic <span class="hlt">soil</span> <span class="hlt">moisture</span> anomalies indicate that internal climate variability may be the strongest factor, with some indication that the initial atmospheric state is also important. Model runs with exaggerated <span class="hlt">soil</span> <span class="hlt">moisture</span> reductions (near-desert conditions) showed a much larger effect, with warmer surface temperatures, reduced precipitation, and lower surface pressures; the latter indicating a response of the atmospheric circulation. These results suggest the possibility of a threshold effect in <span class="hlt">soil</span> <span class="hlt">moisture</span>, whereby an anomaly must be of a sufficient size before it can have a significant impact on the atmospheric circulation and climate. Results from simulations with realistic snow cover anomalies indicate that the time of year can be crucial. When introduced in late winter, these anomalies strongly affected the subsequent evolution of snow cover. When introduced in early winter, however, little or no effect is seen on the subsequent snow cover. Runs with greatly exaggerated initial snow cover indicate that the high reflectivity of snow is the most important process by which snow cover can impact climate, through lower surface temperatures and increased surface pressures. The results to date were obtained for model runs with present-day conditions. We are currently analyzing runs made with projected forcings for the 21st century to see if these results are modified in any way under likely scenarios of future climate change. An intriguing new statistical technique</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H13I1517F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H13I1517F"><span>Remote Sensing of <span class="hlt">Soil</span> <span class="hlt">Moisture</span>: A Comparison of Optical and Thermal Methods</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foroughi, H.; Naseri, A. A.; Boroomandnasab, S.; Sadeghi, M.; Jones, S. B.; Tuller, M.; Babaeian, E.</p> <p>2017-12-01</p> <p>Recent technological advances in satellite and airborne remote sensing have provided new means for large-scale <span class="hlt">soil</span> <span class="hlt">moisture</span> monitoring. Traditional methods for <span class="hlt">soil</span> <span class="hlt">moisture</span> retrieval require thermal and optical RS observations. In this study we compared the traditional trapezoid model parameterized based on the land surface temperature - normalized difference vegetation index (LST-NDVI) space with the recently developed optical trapezoid model OPTRAM parameterized based on the shortwave infrared transformed reflectance (STR)-NDVI space for an extensive sugarcane field located in Southwestern Iran. Twelve Landsat-8 satellite images were acquired during the sugarcane growth season (April to October 2016). Reference in situ <span class="hlt">soil</span> <span class="hlt">moisture</span> data were obtained at 22 locations at different depths via core sampling and oven-drying. The obtained results indicate that the thermal/optical and optical prediction methods are comparable, both with volumetric <span class="hlt">moisture</span> content estimation errors of about 0.04 cm3 cm-3. However, the OPTRAM model is more efficient because it does not require thermal data and can be universally parameterized for a specific location, because unlike the LST-<span class="hlt">soil</span> <span class="hlt">moisture</span> relationship, the reflectance-<span class="hlt">soil</span> <span class="hlt">moisture</span> relationship does not significantly vary with environmental variables (e.g., air temperature, wind speed, etc.).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160008107','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160008107"><span><span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) Mission Level 4 Surface and Root Zone <span class="hlt">Soil</span> <span class="hlt">Moisture</span> (L4_SM) Product Specification Document</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.</p> <p>2015-01-01</p> <p>This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone <span class="hlt">Soil</span> <span class="hlt">Moisture</span> (L4_SM) data for the Science Data System (SDS) of the <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial <span class="hlt">soil</span> <span class="hlt">moisture</span> and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170002761','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170002761"><span>NASA <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive Mission Status and Science Performance</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yueh, Simon H.; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni; Entin, Jared K.</p> <p>2016-01-01</p> <p>The <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active Passive (SMAP) observatory was launched January 31, 2015, and its L-band radiometer and radar instruments became operational since mid-April 2015. The SMAP radiometer has been operating flawlessly, but the radar transmitter ceased operation on July 7. This paper provides a status summary of the calibration and validation of the SMAP instruments and the quality assessment of its <span class="hlt">soil</span> <span class="hlt">moisture</span> and freeze/thaw products. Since the loss of the radar in July, the SMAP project has been conducting two parallel activities to enhance the resolution of <span class="hlt">soil</span> <span class="hlt">moisture</span> products. One of them explores the Backus Gilbert optimum interpolation and de-convolution techniques based on the oversampling characteristics of the SMAP radiometer. The other investigates the disaggregation of the SMAP radiometer data using the European Space Agency's Sentinel-1 C-band synthetic radar data to obtain <span class="hlt">soil</span> <span class="hlt">moisture</span> products at about 1 to 3 kilometers resolution. In addition, SMAP's L-band data have found many new applications, including vegetation opacity, ocean surface salinity and hurricane ocean surface wind mapping. Highlights of these new applications will be provided.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050182714&hterms=gravimetric+methods&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dgravimetric%2Bmethods','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050182714&hterms=gravimetric+methods&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dgravimetric%2Bmethods"><span>A comparison of <span class="hlt">soil</span> <span class="hlt">moisture</span> sensors for space flight applications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Norikane, J. H.; Prenger, J. J.; Rouzan-Wheeldon, D. T.; Levine, H. G.</p> <p>2005-01-01</p> <p>Plants will be an important part of future long-term space missions. Automated plant growth systems require accurate and reliable methods of monitoring <span class="hlt">soil</span> <span class="hlt">moisture</span> levels. There are a number of different methods to accomplish this task. This study evaluated sensors using the capacitance method (ECH2O), the heat-pulse method (TMAS), and tensiometers, compared to <span class="hlt">soil</span> water loss measured gravimetrically in a side-by-side test. The experiment monitored evaporative losses from substrate compartments filled with 1- to 2-mm baked calcinated clay media. The ECH2O data correlated well with the gravimetric measurements, but over a limited range of <span class="hlt">soil</span> <span class="hlt">moisture</span>. The averaged TMAS sensor data overstated <span class="hlt">soil</span> <span class="hlt">moisture</span> content levels. The tensiometer data appeared to track evaporative losses in the 0.5- to 2.5-kPa range of matric potential that corresponds to the water content needed to grow plants. This small range is characteristic of large particle media, and thus high-resolution tensiometers are required to distinguish changing <span class="hlt">moisture</span> contents in this range.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6988M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6988M"><span>Groundwater influence on <span class="hlt">soil</span> <span class="hlt">moisture</span> memory and land-atmosphere interactions over the Iberian Peninsula</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martinez-de la Torre, Alberto; Miguez-Macho, Gonzalo</p> <p>2017-04-01</p> <p>We investigate the memory introduced in <span class="hlt">soil</span> <span class="hlt">moisture</span> fields by groundwater long timescales of variation in the semi-arid regions of the Iberian Peninsula with the LEAFHYDRO <span class="hlt">soil</span>-vegetation-hydrology model, which includes a dynamic water table fully coupled to <span class="hlt">soil</span> <span class="hlt">moisture</span> and river flow via 2-way fluxes. We select a 10-year period (1989-1998) with transitions from wet to dry to again wet long lasting conditions and we carry out simulations at 2.5 km spatial resolution forced by ERA-Interim and a high-resolution precipitation <span class="hlt">analysis</span> over Spain and Portugal. The model produces a realistic water table that we validate with hundreds of water table depth observation time series (ranging from 4 to 10 years) over the Iberian Peninsula. Modeled river flow is also compared to observations. Over shallow water table regions, results highlight the groundwater buffering effect on <span class="hlt">soil</span> <span class="hlt">moisture</span> fields over dry spells and long-term droughts, as well as the slow recovery of pre-drought <span class="hlt">soil</span> wetness once climatic conditions turn wetter. Groundwater sustains river flow during dry summer periods. The longer lasting wet conditions in the <span class="hlt">soil</span> when groundwater is considered increase summer evapotranspiration, that is mostly water-limited. Our results suggest that groundwater interaction with <span class="hlt">soil</span> <span class="hlt">moisture</span> should be considered for climate seasonal forecasting and climate studies in general over water-limited regions where shallow water tables are significantly present and connected to land surface hydrology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JARS...12a6030Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JARS...12a6030Z"><span>On the relationship between land surface infrared emissivity and <span class="hlt">soil</span> <span class="hlt">moisture</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Daniel K.; Larar, Allen M.; Liu, Xu</p> <p>2018-01-01</p> <p>The relationship between surface infrared (IR) emissivity and <span class="hlt">soil</span> <span class="hlt">moisture</span> content has been investigated based on satellite measurements. Surface <span class="hlt">soil</span> <span class="hlt">moisture</span> content can be estimated by IR remote sensing, namely using the surface parameters of IR emissivity, temperature, vegetation coverage, and <span class="hlt">soil</span> texture. It is possible to separate IR emissivity from other parameters affecting surface <span class="hlt">soil</span> <span class="hlt">moisture</span> estimation. The main objective of this paper is to examine the correlation between land surface IR emissivity and <span class="hlt">soil</span> <span class="hlt">moisture</span>. To this end, we have developed a simple yet effective scheme to estimate volumetric <span class="hlt">soil</span> <span class="hlt">moisture</span> (VSM) using IR land surface emissivity retrieved from satellite IR spectral radiance measurements, assuming those other parameters impacting the radiative transfer (e.g., temperature, vegetation coverage, and surface roughness) are known for an acceptable time and space reference location. This scheme is applied to a decade of global IR emissivity data retrieved from MetOp-A infrared atmospheric sounding interferometer measurements. The VSM estimated from these IR emissivity data (denoted as IR-VSM) is used to demonstrate its measurement-to-measurement variations. Representative 0.25-deg spatially-gridded monthly-mean IR-VSM global datasets are then assembled to compare with those routinely provided from satellite microwave (MW) multisensor measurements (denoted as MW-VSM), demonstrating VSM spatial variations as well as seasonal-cycles and interannual variability. Initial positive agreement is shown to exist between IR- and MW-VSM (i.e., R2 = 0.85). IR land surface emissivity contains surface water content information. So, when IR measurements are used to estimate <span class="hlt">soil</span> <span class="hlt">moisture</span>, this correlation produces results that correspond with those customarily achievable from MW measurements. A decade-long monthly-gridded emissivity atlas is used to estimate IR-VSM, to demonstrate its seasonal-cycle and interannual variation, which is spatially</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820016726','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820016726"><span>Evaluation of HCMM data for assessing <span class="hlt">soil</span> <span class="hlt">moisture</span> and water table depth. [South Dakota</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, D. G.; Heilman, J. L.; Tunheim, J. A.; Westin, F. C.; Heilman, W. E.; Beutler, G. A.; Ness, S. D. (Principal Investigator)</p> <p>1981-01-01</p> <p><span class="hlt">Soil</span> <span class="hlt">moisture</span> in the 0-cm to 4-cm layer could be estimated with 1-mm <span class="hlt">soil</span> temperatures throughout the growing season of a rainfed barley crop in eastern South Dakota. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the <span class="hlt">soil</span> temperature. Corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the <span class="hlt">soil</span> <span class="hlt">moisture</span>. The average difference between observed and measured <span class="hlt">soil</span> <span class="hlt">moisture</span> was 1.6% of field capacity. Shallow alluvial aquifers were located with HCMM predawn data. After correcting the data for vegetation differences, equations were developed for predicting water table depths within the aquifer. A finite difference code simulating <span class="hlt">soil</span> <span class="hlt">moisture</span> and <span class="hlt">soil</span> temperature shows that <span class="hlt">soils</span> with different <span class="hlt">moisture</span> profiles differed in <span class="hlt">soil</span> temperatures in a well defined functional manner. A significant surface thermal anomaly was found to be associated with shallow water tables.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..925R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..925R"><span>Mapping patterns of <span class="hlt">soil</span> properties and <span class="hlt">soil</span> <span class="hlt">moisture</span> using electromagnetic induction to investigate the impact of land use changes on <span class="hlt">soil</span> processes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan</p> <p>2016-04-01</p> <p>As highlighted by many authors, classical or geophysical techniques for measuring <span class="hlt">soil</span> <span class="hlt">moisture</span> such as destructive <span class="hlt">soil</span> sampling, neutron probes or Time Domain Reflectometry (TDR) have some major drawbacks. Among other things, they provide point scale information, are often intrusive and time-consuming. ElectroMagnetic Induction (EMI) instruments are often cited as a promising alternative hydrogeophysical methods providing more efficiently <span class="hlt">soil</span> <span class="hlt">moisture</span> measurements ranging from hillslope to catchment scale. The overall objective of our research project is to investigate whether a combination of geophysical techniques at various scales can be used to study the impact of land use change on temporal and spatial variations of <span class="hlt">soil</span> <span class="hlt">moisture</span> and <span class="hlt">soil</span> properties. In our work, apparent electrical conductivity (ECa) patterns are obtained with an EM multiconfiguration system. Depth profiles of ECa were subsequently inferred through a calibration-inversion procedure based on TDR data. The obtained spatial patterns of these profiles were linked to <span class="hlt">soil</span> profile and <span class="hlt">soil</span> water content distributions. Two catchments with contrasting land use (agriculture vs. natural forest) were selected in a subtropical region in the south of Brazil. On selected slopes within the catchments, combined EMI and TDR measurements were carried out simultaneously, under different atmospheric and <span class="hlt">soil</span> <span class="hlt">moisture</span> conditions. Ground-truth data for <span class="hlt">soil</span> properties were obtained through <span class="hlt">soil</span> sampling and auger profiles. The comparison of these data provided information about the potential of the EMI technique to deliver qualitative and quantitative information about the variability of <span class="hlt">soil</span> <span class="hlt">moisture</span> and <span class="hlt">soil</span> properties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H33K1729L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H33K1729L"><span>Impact of Tropical Cyclones on <span class="hlt">Soil</span> <span class="hlt">Moisture</span> over East Asia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liess, S.</p> <p>2016-12-01</p> <p>A simulation of a series of three strong typhoons (Frankie, Gloria, and Herb) during the 1996 typhoon season shows that the Weather Research and Forecasting (WRF) model is representing the general characteristics of each typhoon, including sharp right turns by Gloria and Herb over the Philippine Sea. These sharp right turns can be attributed to tropical easterly waves and they are responsible for landfall over Taiwan, instead of following the general direction toward the Philippines. A second simulation where the typhoon signal is removed before landfall over East Asia shows that both rainfall and <span class="hlt">soil</span> <span class="hlt">moisture</span> is increased by up to 30% in coastal regions after landfall, mostly to the north of the landfall region. However, despite the noisier signal in rainfall, significant increases in <span class="hlt">soil</span> <span class="hlt">moisture</span> related to the paths of the simulated typhoons occur as far west as western China and Myanmar. Strong winds associated with the typhoons can also increase local evaporation and thus locally reduce <span class="hlt">soil</span> <span class="hlt">moisture</span>, especially south of the landfall region. Detailed observations of hydrologic variables such as <span class="hlt">soil</span> <span class="hlt">moisture</span> are needed to evaluate these model studies not only over coastal regions but also further inland where typhoon signals are weaker but local <span class="hlt">moisture</span> availability is still influenced by increased rainfall and stronger winds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=247682','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=247682"><span>The <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active and Passive (SMAP) Mission</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The <span class="hlt">Soil</span> <span class="hlt">Moisture</span> Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council’s Decadal Survey. SMAP will make global measurements of the <span class="hlt">moisture</span> present at Earth's land surface and will distinguish frozen f...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>