These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

REPRESENTATIVE SAMPLING AND ANALYSIS OF HETEROGENEOUS SOILS  

EPA Science Inventory

Standard sampling and analysis methods for hazardous substances in contaminated soils currently are available and routinely employed. Standard methods inherently assume a homogeneous soil matrix and contaminant distribution; therefore only small sample quantities typically are p...

2

Analysis of plutonium in soil samples  

PubMed

Procedures for analysis of plutonium in soil samples were developed using anion exchange as a purification technique. Special attention was paid to removing impurities of 228Th which interferes in 238Pu determination by alpha spectrometry. Two anion-exchange methods were compared. The determination of plutonium in soil involves the conversion of soil samples to acid-soluble form. Two methods for the extraction of plutonium from a natural reference soil were compared. The first method (a direct digestion in nitric acid) is suitable for the determination of plutonium in large amounts of sample. The second method involves microwave digestion of soil (5 g) with a mixture of HNO3, HCl and HF, and is suitable for saving time in routine determinations. Activities calculated with a reference soil matrix were in good agreement with the reference value. The microwave digestion method was applied in a study of different soil samples, and recoveries ranged between 20% and 50%. PMID:10879871

Rubio Montero MP; Martin Sanchez A; Crespo Vazquez MT; Gascon Murillo JL

2000-07-01

3

Analysis of large soil samples for actinides  

DOEpatents

A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

Maxwell, III; Sherrod L. (Aiken, SC)

2009-03-24

4

COMPOSITE SAMPLING FOR SOIL VOC ANALYSIS  

EPA Science Inventory

Data published by numerous researchers over the last decade demonstrate that there is a high degree of spatial variability in the measurement of volatile organic compounds (VOCs) in soil at contaminated waste sites. This phenomenon is confounded by the use of a small sample aliqu...

5

SOIL SAMPLE COLLECTION AND HANDLING FOR VOLATILE ORGANICS ANALYSIS  

EPA Science Inventory

The guidance document will detail the Region I EPA New England requirements for the collection of soil samples for volatile organics analysis by SW-846, Method 5035. The guidance will describe the project planning process for the collection of soil samples for volatile organics ...

6

INNOVATIONS IN SOIL SAMPLING AND DATA ANALYSIS  

EPA Science Inventory

Successful research outcomes from the VOC in soils work will provide the Agency with methods and techniques that provide the accurate VOC concentrations so that decisions related to a contaminated site can be made to optimize the protectiveness to the environment and human health...

7

Mercury Source Zone Identification using Soil Vapor Sampling and Analysis  

SciTech Connect

Development and demonstration of reliable measurement techniqes that can detect and help quantify the nature and extent of elemental mercury (Hg(0)) in the subsurface are needed to reduce certainties in the decision making process and increase the effectiveness of remedial actions. We conducted field tests at the Y-12 National Security Complex (NSC) in Oak Ridge, TN, to determine if sampling and analysis of Hg(0) vapors in the shallow subsurface (<0.3 m depth) can be used to as an indicator of the location and extent of Hg(0) releases in the subsurface. We constructed a rigid PVC pushprobe assembly, which was driven into the ground. Soil gas samples were collected through a sealed inner tube of the assembly and analyzed immediately in the field with a Lumex and/or Jerome Hg(0) analyzer. Time-series sampling showed that Hg vapor concentrations were fairly stable over time suggesting that the vapor phase Hg(0) was not being depleted and that sampling results were not dependent on the soil gas purge volume. Hg(0) vapor data collected at over 200 pushprobe locations at 3 different release sites correlated well to areas of known Hg(0) contamination. Vertical profiling of Hg(0) vapor concentrations conducted at 2 locations provided information on the vertical distribution of Hg(0) contamination in the subsurface. We concluded from our studies that soil gas sampling and analysis can be conducted rapidly and inexpensively at a large scale to help identify areas contaminated with Hg(0).

Watson, David B [ORNL] [ORNL; Miller, Carrie L [ORNL] [ORNL; Lester, Brian P [ORNL] [ORNL; Lowe, Kenneth Alan [ORNL] [ORNL; Southworth, George R [ORNL] [ORNL; Bogle, Mary Anna [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Pierce, Eric M [ORNL] [ORNL

2014-01-01

8

Soil Core Sampling  

NSDL National Science Digital Library

Students learn about one method used in environmental site assessments. They practice soil sampling by creating soil cores, studying soil profiles and characterizing soil profiles in borehole logs. They use their analysis to make predictions about what is going on in the soil and what it might mean to an engineer developing the area.

Integrated Teaching and Learning Program,

9

Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Soil Sampling and Analysis Plan  

SciTech Connect

This report describes the sampling and analysis PNNL will conduct on ALE to characterize concentrations of radionuclides present in soil and demonstrate compliance with DOE-EM approved Authorized Limits.

Fritz, Brad G.; Poston, Ted M.; Dirkes, Roger L.

2004-05-06

10

ANALYSIS OF SULFUR IN SOIL, PLANT AND SEDIMENT MATERIALS: SAMPLE HANDLING AND USE OF AN AUTOMATED ANALYZER  

EPA Science Inventory

Methods for analyzing soil, vegetation and sediment samples for total S and handling soil samples for analysis of S constituents were examined. ECO automated total S anelyzer (SC-132) was used for the analysis of vegetation, sediments and soil samples. esults from the LECO analyz...

11

Analysis of core soil and water samples from the Cactus Crater Disposal Site at Enewetak atoll  

SciTech Connect

Core soil samples and water samples were collected from the Cactus Crater Disposal Site at Enewetak for analysis of /sup 137/Cs, /sup 90/Sr, /sup 239 +240/Pu and /sup 241/Am by both gamma spectroscopy and, through a contractor laboratory, by wet chemistry procedures. The samples processing methods, the analytical methods and the analytical quality control are all procedures developed for the continuing Marshall Island radioecology and dose assessment work.

Robison, W.L.; Noshkin, V.E.

1981-02-18

12

Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples  

NASA Technical Reports Server (NTRS)

Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.

Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

2008-01-01

13

The use of Vacutainer tubes for collection of soil samples for helium analysis  

USGS Publications Warehouse

Measurements of the helium concentration of soil samples collected and stored in Vacutainer-brand evacuated glass tubes show that Vacutainers are reliable containers for soil collection. Within the limits of reproducibility, helium content of soils appears to be independent of variations in soil temperature, barometric pressure, and quantity of soil moisture present in the sample.

Hinkle, Margaret E.; Kilburn, James E.

1979-01-01

14

Soil sample collection and analysis for the Fugitive Dust Characterization Study  

NASA Astrophysics Data System (ADS)

A unique set of soil samples was collected as part of the Fugitive Dust Characterization Study. The study was carried out to establish whether or not source profiles could be constructed using novel analytical methods that could distinguish soil dust sources from each other. The soil sources sampled included fields planted in cotton, almond, tomato, grape, and safflower, dairy and feedlot facilities, paved and unpaved roads (both urban and rural), an agricultural staging area, disturbed land with salt buildup, and construction areas where the topsoil had been removed. The samples were collected using a systematic procedure designed to reduce sampling bias, and were stored frozen to preserve possible organic signatures. For this paper the samples were characterized by particle size (percent sand, silt, and clay), dry silt content (used in EPA-recommended fugitive dust emission factors), carbon and nitrogen content, and potential to emit both PM 10 and PM 2.5. These are not the "novel analytical methods" referred to above; rather, it was the basic characterization of the samples to use in comparing analytical methods by other scientists contracted to the California Air Resources Board. The purpose of this paper is to document the methods used to collect the samples, the collection locations, the analysis of soil type and potential to emit PM 10, and the sample variability, both within field and between fields of the same crop type.

Ashbaugh, Lowell L.; Carvacho, Omar F.; Brown, Michael S.; Chow, Judith C.; Watson, John G.; Magliano, Karen C.

15

Mass spectrometer-pyrolysis experiment for atmospheric and soil sample analysis on the surface of Mars  

NASA Technical Reports Server (NTRS)

Results from the Viking mission will form the foundation for future in-depth investigations of atmosphere-surface interactions on Mars. The two Viking landers carried impressive instrumentation to obtain and analyze soil samples: the sites were observed by cameras, and the collector head was located on a long boom and allowed the collection of large samples at various depths. A selection of grain sizes was possible and a distribution system supplied a number of experiments with soil material. Despite stationary vehicles, a wide sampling field was reachable. The GCMS system, responsible for atmospheric as well as surface soil analysis, worked well on both landers. Atmospheric measurements resulted in the determination of the abundance of noble gases as well as of other molecular species. Isotopic composition measurements included the important ratios of C-13/C-12, N-15/N-14, and Ar-36/Ar-40. To verify these past results and to advance detailed studies of noble gas isotope ratios and minor constituents, better instrument sensitivities, higher precision, and lower background contributions are required in future Mars missions. Soil analysis during the Viking mission concentrated on organic material. Heating cycles were performed to 500 C and only water and carbon dioxide were identified. Higher pyrolysis temperatures are of primary importance to advance our understanding of the mineralogy and gas loading of surface material and atmospheric exchange.

Mauersberger, Konrad; Mahaffy, Paul; Niemann, Hasso

1992-01-01

16

Soil sampling kit and a method of sampling therewith  

DOEpatents

A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

Thompson, Cyril V. (Knoxville, TN)

1991-01-01

17

Soil sampling kit and a method of sampling therewith  

DOEpatents

A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

Thompson, C.V.

1991-02-05

18

RESIDENTIAL SOIL SAMPLING PLAN: COMPARISON OF LABORATORY AND FIELD X-RAY FLUORESCENCE (XRF) ANALYSIS AND SAMPLE PREPARATION.  

EPA Science Inventory

In the past, Region 10 has relied exclusively on fixed-site laboratory analyses of soil samples for Remedial Investigation/Feasibility Studies and Risk Assessments. The objectives of this sampling effort included soil analyses for removal and remedial actions as well as collecti...

19

Sampling and Analysis Instruction for Evaluation of Residual Chromium Contamination in the Subsurface Soil at 100-C-7  

SciTech Connect

This sampling and analysis instruction (SAI) provides the requirements for sample collection and laboratory analysis to evaluate the extent of hexavalent chromium contamination present in the soil below the 100-C-7 and 100-C-7:1 remedial action waste site excavations.

W. S. Thompson

2007-02-15

20

Static headspace analysis of volatile organic compounds in soil and vegetation samples for site characterization  

Microsoft Academic Search

Traditional methodologies for the characterization of volatile organic compounds (VOCs) in subsurface soil are expensive, time-consuming processes that are often conducted on samples collected at random. The determination of VOCs in near-surface soils and vegetation is the foundation for a more efficient sampling strategy to characterize subsurface soil and improve understanding of environmental problems.In the absence of a standard methodology

Jorge S Alvarado; Candace Rose

2004-01-01

21

IN SITU NON-INVASIVE SOIL CARBON ANALYSIS: SAMPLE SIZE AND GEOSTATISTICAL CONSIDERATIONS.  

SciTech Connect

I discuss a new approach for quantitative carbon analysis in soil based on INS. Although this INS method is not simple, it offers critical advantages not available with other newly emerging modalities. The key advantages of the INS system include the following: (1) It is a non-destructive method, i.e., no samples of any kind are taken. A neutron generator placed above the ground irradiates the soil, stimulating carbon characteristic gamma-ray emission that is counted by a detection system also placed above the ground. (2) The INS system can undertake multielemental analysis, so expanding its usefulness. (3) It can be used either in static or scanning modes. (4) The volume sampled by the INS method is large with a large footprint; when operating in a scanning mode, the sampled volume is continuous. (5) Except for a moderate initial cost of about $100,000 for the system, no additional expenses are required for its operation over two to three years after which a NG has to be replenished with a new tube at an approximate cost of $10,000, this regardless of the number of sites analyzed. In light of these characteristics, the INS system appears invaluable for monitoring changes in the carbon content in the field. For this purpose no calibration is required; by establishing a carbon index, changes in carbon yield can be followed with time in exactly the same location, thus giving a percent change. On the other hand, with calibration, it can be used to determine the carbon stock in the ground, thus estimating the soil's carbon inventory. However, this requires revising the standard practices for deciding upon the number of sites required to attain a given confidence level, in particular for the purposes of upward scaling. Then, geostatistical considerations should be incorporated in considering properly the averaging effects of the large volumes sampled by the INS system that would require revising standard practices in the field for determining the number of spots to be sampled. It is highly desirable to assess properly the sampled volume for reporting the absolute value of the measured carbon. At the same time, increasing the number of detectors surrounding the NG can reduce error propagation. In the present work, only the volume irradiated by the neutrons was estimated. It should be pointed that the carbon yield is also affected by the neutron energy spectrum that changes with depth. Thus, all these considerations must be considered carefully when evaluating the detectors' configuration and the resulting counting efficiency. In summary, INS system is a novel approach for non-destructive carbon analysis in soil with very unique features. It should contribute in assessing soil carbon inventories and assist in understanding belowground carbon processes. The complexity of carbon distribution in soil requires a special attention when calibrating the INS system, and a consensus developed on the most favorable way to report carbon abundance. Clearly, this will affect the calibration procedures.

WIELOPOLSKI, L.

2005-04-01

22

Laboratory analysis of soil hydraulic properties of G-5 soil samples  

SciTech Connect

The Hydrologic Testing Laboratory at DBS&A has completed laboratory tests on TA-54 samples from well G5 as specified by Daniel James and summarized in Table 1. Tables 2 through 8 give the results of the specified analyses. Raw laboratory data and graphical plots of data (where appropriate) are contained in Appendices A through G. Appendix H lists the methods used in these analyses. A detailed description of each method is available upon request. Several sample-specific observations are important for data interpretation. Sample G-5 @ 21.5 was a short core and showed indications of preferential flow. Sample G-5 @ 92.5 developed a visually apparent crack during drying which correlates with the higher air permeabilities observed at lower water contents. Several samples yielded negative estimates of extrapolated intrinsic permeability while measured apparent permeabilities were reasonable. For consistency, however, only intrinsic values are presented. While our defined task is to provide data for interpretation, the following comments are offered as a context for some of the common parameter extraction issues. Further details and a more comprehensive summary of TA-54 data can be found in Unsaturated hydraulic characteristics of the Bandelier tuff at TA-54 dated November 17, 1994.

NONE

1995-01-01

23

Curiosity analyzes Martian soil samples  

NASA Astrophysics Data System (ADS)

NASA's Mars Curiosity rover has conducted its first analysis of Martian soil samples using multiple instruments, the agency announced at a 3 December news briefing at the AGU Fall Meeting in San Francisco. “These results are an unprecedented look at the chemical diversity in the area,” said NASA's Michael Meyer, program scientist for Curiosity.

Showstack, Randy; Balcerak, Ernie

2012-12-01

24

ANALYSIS OF SOIL AND DUST SAMPLES FOR POLYCHLORINATED BIPHENYLS BY ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA)  

EPA Science Inventory

An inhibition enzyme-linked immunosorbent assay (ELISA) was used to determine polychlorinated biphenyls (PCBs) in house dust and soil. Soil and house dust samples were analyzed for PCB by both gas chromatography/electron capture detection (GC/ECD) and ELISA methods. A correlati...

25

Express method of gamma-ray analysis of the soil blocks which have been sampled without a disturbance of the turf layer  

E-print Network

This paper presents method of gamma-analysis of the soil patterns sampled soon after of nuclear accident. The method does not require of sample preparation and intends for analysis of the soil samples with a non-homogeneous distribution of activity at the depth. Technique of calibration of the detector efficiency is considered, that have been used when soil blocks sampling by means of the non-disturbance method (by rings) after Chernobyl accident were measured.

E. G. Tertyshnik; S. M. Vakulovsky

2012-03-05

26

STATISTICAL SAMPLING AND DATA ANALYSIS  

EPA Science Inventory

Research is being conducted to develop approaches to improve soil and sediment sampling techniques, measurement design and geostatistics, and data analysis via chemometric, environmetric, and robust statistical methods. Improvements in sampling contaminated soil and other hetero...

27

EMERGING MODALITIES FOR SOIL CARBON ANALYSIS: SAMPLING STATISTICS AND ECONOMICS WORKSHOP.  

SciTech Connect

The workshop's main objectives are (1) to present the emerging modalities for analyzing carbon in soil, (2) to assess their error propagation, (3) to recommend new protocols and sampling strategies for the new instrumentation, and, (4) to compare the costs of the new methods with traditional chemical ones.

WIELOPOLSKI, L.

2006-04-01

28

Analysis of polychlorinated biphenyls in concurrently sampled Chinese air and surface soil.  

PubMed

Polychlorinated biphenyl (PCB) concentrations were measured in a concurrent air and surface soil sampling program across China. Passive air samples were collected for approximately 3 months from mid-July to mid-October, 2005 using polyurethane foam (PUF) disk type samplers at 97 sites and surface soil samples were collected in a subset of 51 sites in the same year. As expected, the air concentrations (pg m(-3)) were highest at urban sites (mean of 350 +/- 218) followed by rural (230 +/- 180) and background sites (77 +/- 50). The PCB homologue composition was similar across China, with no distinction among site types, and reflected the profile of Chinese transformer oil with a greater proportion of lower molecular weight (LMW) congeners, particularly the tri-PCBs. This differs from the profile in Chinese soil that was shifted toward the higher molecular weight (HMW) congeners and likely attributed to numerous years of deposition and accumulation in this reservoir. The PCB profile in surface soil also reflects an "urban fractionation effect" with preferential deposition of HMW congeners near sources. The profile of PCBs in Chinese air was shown to be different than reported for Europe and for the Great Lakes Area (GLA) in North America. European and GLA air samples show a distinction between urban and rural/V background sites, with urban sites dominated by tetra- and penta-PCBs, whereas rural and background sites are shifted toward LMW congeners. European and GLA samples also exhibit much higher PCB concentrations at urban sites. This may be attributed to the use of PCBs in building materials in European and North American cities. In China, the difference between urban and rural/background sites is less pronounced. Strong soil-air correlations were found for the LMW PCBs at the background and rural sites, and for the HMW PCBs at the urban sites, a strong evidence of the urban fractionation effect. To our knowledge, this is the first national-scale study in China investigating PCBs in both air and surface soil samples. PMID:18800523

Zhang, Zhi; Liu, Liyan; Li, Yi-Fan; Wang, Degao; Jia, Hongliang; Harner, Tom; Sverko, Ed; Wan, Xinnan; Xu, Diandou; Ren, Nanqi; Ma, Jianmin; Pozo, Karla

2008-09-01

29

Homeowner Soil Sample Information Form  

E-print Network

Money Order Make Checks Payable to: Soil Testing Laboratory Tell us about your soil samples My Sample ID Square feet of sampled area Last Time Fertilized I previously used fertilizers/organics Credit Card-See back page I am growing (see below)* Example... payment with the sample. Please note that the price is per sample. Send check or money order made out to Soil Testing Laboratory. DO NOT SEND CASH. For credit card payment, complete form below. ? Place the plastic sample bag, completed submittal form...

Provin, Tony

2007-04-11

30

Total elemental composition analysis of soil samples using the PIXE technique  

NASA Astrophysics Data System (ADS)

The determination of major and trace element contents in soils was developed by acid digestion method combined with particle-induced X-ray emission spectrometry (PIXE). The digestion of soils was achieved by using nitric acid (HNO 3), hydrochloric acid HCl and hydrogen peroxide (H 2O 2) with repeated additions. A 20 ?L aliquot from the digested samples was evaporated on the Nuclepore Track-Etch Membrane and irradiated by the 2.5 MeV proton beam from the single-end type Van de Graaff accelerator. The accuracy of this methodology was estimated based on series of measurements done for a reference material of soil CRM 023-050. The proposed experimental procedure was shown to have good reproducibility of the experimental results. The corresponding limits of detection (LODs) for Na, Mg, Al, P, S, Cl, K, Cr, Mn, Fe, Ni, Cu, Zn, As, Sr, Mo and Cd were estimated. Other soil characteristics such as total carbon (TC) and nitrogen (TN) content, pH and electrical conductivity (EC) were also measured.

Bolormaa, Oyuntsetseg; Baasansuren, Jamsranjav; Kawasaki, Katsunori; Watanabe, Makiko; Hattroi, Toshiyuki

2007-09-01

31

Performance evaluation soil samples utilizing encapsulation technology  

DOEpatents

Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration. 1 fig.

Dahlgran, J.R.

1999-08-17

32

Performance evaluation soil samples utilizing encapsulation technology  

DOEpatents

Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

Dahlgran, James R. (Idaho Falls, ID)

1999-01-01

33

Compost Analysis Samples provided by the Soil, Water and Forage Testing Laboratory at Texas A&M, 2003  

E-print Network

Compost Analysis Samples provided by the Soil, Water and Forage Testing Laboratory at Texas A ppm ppm % % dS/m Dairy Manure Compost 0.6171 .2680 1.4345 3.5041 .2737 .4371 319.7 249.1 33.53 173.1 30.0 16.02 9.3 1.280 Dairy Manure Compost 1.0704 .3866 2.4949 6.7455 .5472 .7320 155.6 381.5 47

Mukhtar, Saqib

34

MARS-IRMA: in-situ infrared microscope analysis of Martian soil and rock samples  

Microsoft Academic Search

IRMA (the acronym stands for InfraRed Microscope Analysis) is a hyperspectral imaging spectrometer which is capable, in its present design, to achieve a spatial resolution of 38 ?m in the 0.8–5 ?m infrared spectral range. IRMA has the goal to first ever quantitatively characterize the mineralogy and the microphysical structure of the materials of the Martian soils and rocks down

F. Capaccioni; G. Bellucci; R. Orosei; S. Amici; R. Bianchi; M. Blecka; M. T. Capria; A. Coradini; S. Erard; S. Fonti; V. Formisano; O. Forni; J. Mustard; G. Piccioni; C. Pieters; M. Poscolieri; E. Battistelli; A. Romoli; M. Digiampietro; S. Espinasse; M. Magnani; C. Pasqui

2001-01-01

35

Performance evaluation soil samples utilizing encapsulation technology  

Microsoft Academic Search

Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules.

Dahlgran; James R

1999-01-01

36

Performance evaluation soil samples utilizing encapsulation technology  

Microsoft Academic Search

Performance evaluation soil samples and method of their preparation are described using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to

Dahlgran; James R

1997-01-01

37

Performance evaluation soil samples utilizing encapsulation technology  

Microsoft Academic Search

Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules.

Dahlgran

1999-01-01

38

COST ASSESSMENT OF STANDARD SOIL SAMPLING  

Technology Transfer Automated Retrieval System (TEKTRAN)

Recently, there has been increased interest in determining the potential for C sequestration with changes in land management. This paper will discuss the potential cost of standard soil sampling for this purpose. To determine the potential cost of soil C analysis on a field scale, many of the meth...

39

Selective solid-phase extraction using molecularly imprinted polymer for analysis of methamidophos in water and soil samples.  

PubMed

An analytical methodology for the analysis of methamidophos in water and soil samples incorporating a molecularly imprinted solid-phase extraction process using methamidophos-imprinted polymer was developed. Binding study demonstrated that the polymer exhibited excellent affinity and high selectivity to the methamidophos. Evidence was also found by FT-IR analysis that hydrogen bonding between the CO(2)H in the polymer cavities and the NH(2) and P=O of the template was the origin of methamidophos recognition. The use of molecularly imprinted solid-phase extraction improved the accuracy and precision of the GC method and lowered the limit of detection. The recovery of methamidophos extracted from a 10.0 g soil sample at the 100 ng/g spike level was 95.4%. The limit of detection was 3.8 ng/g. The recovery of methamidophos extracted from 100 mL tap and river water at 1 ng/mL spike level was 96.1% and 95.8%, and the limits of detection were 10 and 13 ng/L respectively. These molecularly imprinted solid-phase extraction procedures enabled selective extraction of polar methamidophos successfully from water and soil samples, demonstrating the potential of molecularly imprinted solid-phase extraction for rapid, selective, and cost-effective sample pretreatment. PMID:21389628

Shen, Zhong-Lan; Yuan, Dong; Su, Qing-De; Zhang, Hui; Wang, Jun; Zhu, Jian-Hua; Liu, Yan-Ming

2011-01-01

40

Development of a procedure for the multiresidue analysis of pesticides in vineyard soils and its application to real samples.  

PubMed

A procedure for multiresidue analysis was developed for the extraction and determination of 17 pesticides, including herbicides, fungicides, and insecticides, as well as certain degradation products, in vineyard soils from La Rioja region (Spain). Different solvents and mixtures were tested in spiked pesticide-free soils, and pesticides were comparatively evaluated by gas chromatography with mass spectrometry and liquid chromatography with mass spectrometry. Recoveries >70%, with relative standard deviations <9%, were obtained when a mixture of methanol/acetone or a mixture of methanol/CaCl2 0.01 M for the most polar compounds was selected as the extraction solvent. Method validation was accomplished with acceptable linearity (r(2) ? 0.987) within the concentration range of 0.005-1 ?g/mL corresponding to 1.667-333.4 ?g/kg and 0.835-167.1 ?g/kg for liquid chromatography with mass spectrometry and gas chromatography with mass spectrometry, respectively, and detection limits <0.4 ?g/kg for the compounds were studied. The extraction method was applied to 17 real vineyard soil samples, and terbuthylazine and its metabolite desethylterbuthylazine were the most ubiquitous compounds, as they were detected in the 100% of the soils analyzed. The presence of fungicides was also high, and the presence of insecticides was lower than other pesticides. The results confirm the usefulness of the optimized procedure for monitoring residues in vineyard soils. PMID:24910322

Pose-Juan, Eva; Herrero-Hernández, Eliseo; Álvarez-Martín, Alba; Sánchez-Martín, María J; Rodríguez-Cruz, M Sonia

2014-08-01

41

Sampling Soil for Characterization and Site Description  

NASA Technical Reports Server (NTRS)

The sampling scheme for soil characterization within the GLOBE program is uniquely different from the sampling methods of the other protocols. The strategy is based on an understanding of the 5 soil forming factors (parent material, climate, biota, topography, and time) at each study site, and how each of these interact to produce a soil profile with unique characteristics and unique input and control into the atmospheric, biological, and hydrological systems. Soil profile characteristics, as opposed to soil moisture and temperature, vegetative growth, and atmospheric and hydrologic conditions, change very slowly, depending on the parameter being measured, ranging from seasonally to many thousands of years. Thus, soil information, including profile description and lab analysis, is collected only one time for each profile at a site. These data serve two purposes: 1) to supplement existing spatial information about soil profile characteristics across the landscape at local, regional, and global scales, and 2) to provide specific information within a given area about the basic substrate to which elements within the other protocols are linked. Because of the intimate link between soil properties and these other environmental elements, the static soil properties at a given site are needed to accurately interpret and understand the continually changing dynamics of soil moisture and temperature, vegetation growth and phenology, atmospheric conditions, and chemistry and turbidity in surface waters. Both the spatial and specific soil information can be used for modeling purposes to assess and make predictions about global change.

Levine, Elissa

1999-01-01

42

Soil and sediment sample analysis for the sequential determination of natural and anthropogenic radionuclides.  

PubMed

A new sequential method for the determination of both natural (U, Th) and anthropogenic (Sr, Cs, Pu, Am) radionuclides has been developed for application to soil and sediment samples. The procedure was optimised using a reference sediment (IAEA-368) and reference soils (IAEA-375 and IAEA-326). Reference materials were first digested using acids (leaching), 'total' acids on hot plate, and acids in microwave in order to compare the different digestion technique. Then, the separation and purification were made by anion exchange resin and selective extraction chromatography: transuranic (TRU) and strontium (SR) resins. Natural and anthropogenic alpha radionuclides were separated by uranium and tetravalent actinide (UTEVA) resin, considering different acid elution medium. Finally, alpha and gamma semiconductor spectrometer and liquid scintillation spectrometer were used to measure radionuclide activities. The results obtained for strontium-90, cesium-137, thorium-232, uranium-238, plutonium-239+240 and americium-241 isotopes by the proposed method for the reference materials provided excellent agreement with the recommended values and good chemical recoveries. Plutonium isotopes in alpha spectrometry planchet deposits could be also analysed by ICPMS. PMID:18371813

Michel, H; Levent, D; Barci, V; Barci-Funel, G; Hurel, C

2008-02-15

43

Soil Core Sample #2  

USGS Multimedia Gallery

Soil core obtained from existing goose grazing lawn along the Smith River in the Teshekpuk Lake Special Area of the National Petroleum Reserve - Alaska.  Buried peat layer broken open.  Closer examination of the buried peat layer demonstrates that non-salt-tolerant vegetation from the past...

44

Soil Core Sample #1  

USGS Multimedia Gallery

Soil core obtained from existing goose grazing lawn along the Smith River in the Teshekpuk Lake Special Area of the National Petroleum Reserve - Alaska.  The buried layer of peat beneath goose grazing lawn demonstrates that vegetation change has occurred in this area....

45

EMERGING MODALITES FOR SOIL CARBON ANALYSIS: SAMPLING STATISTICS AND ECONOMICS WORKSHOP  

Technology Transfer Automated Retrieval System (TEKTRAN)

Carbon is an integral part of the global C cycle and plays an important role in soil quality and productivity. In the last 20-30 years detailed knowledge of C balances and transport in the soil, on local, regional, and global scales emerged as being critically important for quantification of soil C ...

46

Application of a series of artificial neural networks to on-site quantitative analysis of lead into real soil samples by laser induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

Artificial neural networks were applied to process data from on-site LIBS analysis of soil samples. A first artificial neural network allowed retrieving the relative amounts of silicate, calcareous and ores matrices into soils. As a consequence, each soil sample was correctly located inside the ternary diagram characterized by these three matrices, as verified by ICP-AES. Then a series of artificial neural networks were applied to quantify lead into soil samples. More precisely, two models were designed for classification purpose according to both the type of matrix and the range of lead concentrations. Then, three quantitative models were locally applied to three data subsets. This complete approach allowed reaching a relative error of prediction close to 20%, considered as satisfying in the case of on-site analysis.

El Haddad, J.; Bruyère, D.; Ismaël, A.; Gallou, G.; Laperche, V.; Michel, K.; Canioni, L.; Bousquet, B.

2014-07-01

47

Gas-chromatographic analysis of Mars soil samples at Rocknest site with the SAM instrument onboard Curiosity  

NASA Astrophysics Data System (ADS)

Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal/chemical treatment of any soil sample collected by the Curiosity rover. The first soil samples analyzed with SAM were composed of sand collected at the Rocknest site. For their analysis, these samples were submitted to a pyrolysis at temperatures reaching about 900°C. For SAM-GC and GCMS analyses, different fractions of pyrolysates were collected at different temperature in the ambient-900°C range in order to discriminate potential different volatile fractions present in the solid sample. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was used as it was designed for the separation of a wide range of volatile organic molecules. This channel is also equipped with a thermal conductivity detector (TCD) capable to detect the most abundant species (with abundances down to approximately 10-10 mol). It is thus complementary to the mass spectrometer detection for quantification of such species as this last instrument has not a linear response in this domain of high abundance, whereas it is significantly more sensitive than the TCD. The results obtained with this instrument for the analysis of Rocknest soil first show that the performances of SAM-GC are representative of those obtained during calibrations of the instrument in laboratory, as well as they are repeatable. Hence, the instrument performs nominally, making it the first GCMS running successfully on Mars since the Viking missions. Moreover, the complementarity of GC towards MS is also shown, either by allowing the quantification of the major species detected (as water), or by providing a chromatographic signal well resolved temporally which can be used to improve the QMS signal treatment. In the frame of research of organics, the SAM-GC analyses contribute to the identification of several methyl-chlorohydrocarbons [2,3], and of HCN in the gases evolved from the solid sample [4]. These detections strongly support the presence of perchlorates in the Rocknest soil. Since perchlorates have been detected with Phoenix lander [5] and then recently with Curiosity [6,2,3], the re-interpretation of the Viking data have to be seen under a new angle [7]. The non-detection of PAHs is also interesting to notice, when it is known that micrometeorites containing PAHs still bring this organic material to the Mars surface today. This lack of detection defines an upper limit on the content of PAHs in the martian soil at the Curiosity site, but it could also be indicative of the presence of chemical mechanisms that process this type of material at the surface. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), LPSC. [3] Eigenbrode, J. et al. (2013), LPSC. [4] Stern, J. et al. (2013), LPSC. [5] Hecht, M. H. et al. (2009), Science, 32, 64-67. [6] Sutter, B. et al., (2013) LPSC. [7] Navarro-Gonzalez, R. (2010), J. Geophys. Res. 115, E12010. Acknowledgements: SAM-GC team acknowledges support from the French Space Agency (CNES), French National Programme of Planetology (PNP), National French Council (CNRS), Pierre Simon Laplace Institute, Institut Universitaire de France (IUF) and ESEP Labex.

Cabane, Michel; Coll, Patrice; Szopa, Cyril; Coscia, David; Buch, Aranaud; Teinturier, Samuel; Navarro-gonzalez, Rafael; Gaboriaud, Alain; Mahaffy, Paul; MSL science Team

2013-04-01

48

Soil Sampling Near Uranium Mine  

USGS Multimedia Gallery

USGS Scientists Sarah Davis, Taylor Mills, and David Naftz collect soil samples near the Pinenut uranium mine. Mine features visible in the background include the gray ore stockpile at the far left, the head frame used to access the underground mine workings at mid left, and the detention pond conta...

49

Estimation of uncertainty in the sampling and analysis of polychlorinated biphenyls and polycyclic aromatic hydrocarbons from contaminated soil in Brighton, UK.  

PubMed

The heterogeneity of environmental samples is increasingly recognised, yet rarely examined in organic contamination investigations. In this study soil samples from an ex-landfill site in Brighton, UK were analysed for polychlorinated biphenyl (PCB) and polycyclic aromatic hydrocarbon (PAH) contamination by using a balanced sampling protocol. The analytical technique of gas chromatography-mass spectrometry was found to be fit for purpose by the use of duplicate samples and the statistical analysis of variances, as well as of certified reference materials. The sampling uncertainty was found to significantly overweigh the analytical uncertainty, by a factor of 3 and 6 for PCBs and PAHs, respectively. The soil samples showed a general trend of PCB concentration that was under the recommended target level of 20 ng/g dry weight. It is possible that one site alongside the main road may exceed the 20 ng/g target level, after taking into consideration the overall measurement uncertainty (70.8%). The PAH contamination was more severe, with seven sites potentially exceeding the effect-range medium concentrations. The soil samples with relatively high PCB and PAH concentrations were all taken from the grass verge, which also had the highest soil organic carbon content. The measurement uncertainty which was largely due to sampling can be reduced by sampling at a high resolution spacing of 17 m, which is recommended in future field investigations of soil organic contamination. PMID:25128886

Zhou, John L; Siddiqui, Ertan; Ngo, Huu Hao; Guo, Wenshan

2014-11-01

50

Analysis of Mars Analogue Soil Samples Using Solid-Phase Microextraction, Organic Solvent Extraction and Gas Chromatography/Mass Spectrometry  

NASA Technical Reports Server (NTRS)

Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g(sup -1). The texture of soils is mostly sandy loam with few samples being 100% silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.

Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.

2011-01-01

51

Analysis of Mars analogue soil samples using solid-phase microextraction, organic solvent extraction and gas chromatography/mass spectrometry  

NASA Astrophysics Data System (ADS)

Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g-1. The texture of soils is mostly sandy loam with few samples being 100 % silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.

Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.

2011-07-01

52

Soils âField Characterization, Collection, and Laboratory Analysis  

NSDL National Science Digital Library

Field characterization of soil profiles in coniferous and deciduous settings; sample collection of soils from different horizons; laboratory analysis of soil moisture, soil organic carbon (by loss on ignition), and grain size distribution (by sieving)

Abir Biswas

53

DIRECT/DELAYED RESPONSE PROJECT: QUALITY ASSURANCE PLAN FOR SOIL SAMPLING, PREPARATION, AND ANALYSIS  

EPA Science Inventory

The Direct/Delayed Response Project (DDRP) focuses on regions of the United States that have been identified as potentially sensitive to surface water acidification. The Northeastern Soil Survey includes the New England states of Maine, New Hampshire, Vermont, Massachusetts, Conn...

54

Gas-Chromatographic analysis of Mars soil samples with the SAM instrument onboard Curiosity - the 359 first sols  

NASA Astrophysics Data System (ADS)

Amongst the SAM suite of instruments, SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal/chemical treatment of any soil sample collected by the Curiosity rover. The first soil samples analyzed with SAM were composed of windblown dust and sand collected at the Rocknest site, while the second site analyzed was a basin called “Yellowknife Bay” where two holes were drilled (John Klein & Cumberland) and analysis showed these sites to be a fluvio-lacustrine sediment.. For their analysis, these samples were subjected to a pyrolysis at temperatures reaching about 850°C. For SAM-GC and GCMS analyses, different fractions of pyrolysates were collected at different temperature in the ambient-900°C range in order to discriminate potential different volatile fractions present in the solid sample. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of a thermal-desorption injector and a MXT-CLP chromatographic column was used as it was designed for the separation of a wide range of volatile organic molecules. This channel is also equipped with a thermal conductivity detector (TCD) capable to detect the most abundant species (with abundances down to approximately 10-10mol). His channel is thus complementary to the mass spectrometer detection for quantification of such species, as this last instrument does not have linear response in this domain of high abundance, whereas it is significantly more sensitive than the TCD. The results obtained with this instrument first show that the performances of SAM-GC is representative of those obtained during calibrations of the instrument in laboratory, and also that results are repeatable. Hence, the instrument performs nominally, making it the first GCMS running successfully on Mars since the Viking missions (middle of the 70’s). Moreover, the complementarity of GC towards MS is also shown, both by allowing the quantification of the major species detected (as water), and by providing a chromatographic signal, that is well resolved temporally which can be used to improve the QMS signal treatment. In the frame of research of organics, the SAM-GC analyses contribute to the identification of several compounds even at trace levels, giving clues on the chemical content of both loose surface and rock materials. These detections are of course linked to the question of preservation and evolution of organic material in the Mars environment, and this will be discussed in further details.

Szopa, Cyril; Navarro-Gonzalez, Rafael; Mahaffy, Paul; Buch, Arnaud; Goutail, Jean Pierre; Cabane, Michel; Glavin, Daniel; Correia, Jean-Jacques; Coll, Patrice; Freissinet, Caroline; Meftah, Mustapha; Coscia, David; Teinturier, Samuel; Brunner, Anna; Bonnet, Jean-Yves; Millan, Maeva; Pascalin

55

Field Book for Describing and Sampling Soils  

NSDL National Science Digital Library

This field guide is useful for making or reading soil and site descriptions. The major sections address soil profile description, geomorphology, geology, soil taxonomy, soil map symbols, and field sampling strategies. Rock charts and timescales are provided to help with soil identification.

56

MCNP ESTIMATE OF THE SAMPLED VOLUME IN A NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS.  

SciTech Connect

Global warming, promoted by anthropogenic CO{sub 2} emission into the atmosphere, is partially mitigated by the photosynthesis processes of the terrestrial echo systems that act as atmospheric CO{sub 2} scrubbers and sequester carbon in soil. Switching from till to no till soils management practices in agriculture further augments this process. Carbon sequestration is also advanced by putting forward a carbon ''credit'' system whereby these can be traded between CO{sub 2} producers and sequesters. Implementation of carbon ''credit'' trade will be further promulgated by recent development of a non-destructive in situ carbon monitoring system based on inelastic neutron scattering (INS). Volumes and depth distributions defined by the 0.1, 1.0, 10, 50, and 90 percent neutron isofluxes, from a point source located at either 5 or 30 cm above the surface, were estimated using Monte Carlo calculations.

WIELOPOLSKI, L.; DIOSZEGI, I.; MITRA, S.

2004-05-03

57

Validation of a New Soil VOC Sampler: Revision of ASTM Practice D 6418, Standard Practice for Using the Disposable En Core Sampler for Sampling and Storing Soil for Volatile Organic Analysis, and Development of a Subsurface Sampling/Storage Device for VOC Analysis  

SciTech Connect

Soil sampling and storage practices for volatile organic analysis must be designed to minimize loss of volatile organic compounds (VOCs) from samples. The En Core{reg_sign} sampler is designed to collect and store soil samples in a manner that minimizes loss of contaminants due to volatilization and/or biodegradation. An American Society for Testing and Materials (ASTM) standard practice, D 6418, Standard Practice for Using the Disposable En Core Sampler for Sampling and Storing Soil for Volatile Organic Analysis, describes use of the En Core sampler to collect and store a soil sample of approximately 5 grams or 25 grams for volatile organic analysis. To support the ASTM practice, a study was performed to estimate the precision of the performance of the 5-gram and 25-gram En Core samplers to store soil samples spiked with low concentrations of VOCs. This report discusses revision of ASTM Practice D 6418 to include information on the precision of the En Core devices and to reference an ASTM research report on the precision study. This report also discusses revision of the ASTM practice to list storage at -12 {+-} 2 C for up to 14 days and at 4 {+-} 2 C for up to 48 hours followed by storage at -12 {+-} 2C for up to 5 days as acceptable conditions for samples stored in the En Core devices. Data supporting use of these storage conditions are given in an appendix to the practice and are presented in the research report referenced for the precision study. Prior to this revision, storage in the device was specified at 4 {+-} 2 C for up to 48 hours. The En Core sampler is designed to collect soil samples for VOC analysis at the soil surface. To date, a sampling tool for collecting and storing subsurface soil samples for VOC analysis does not exist. Development of a subsurface VOC sampling/storage device was initiated in 1999. This device, which is called the Accu Core sampler, is designed so that a soil sample can be collected below the surface using a penetrometer and transported to the laboratory for analysis in the same container. During the past year, prototype devices have been tested for their performance in storing soil samples containing low concentrations of VOCs. The Accu Core sampler testing is also described in this report.

Susan S. Sorini; John F. Schabron; Joseph F. Rovani

2003-09-15

58

NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR ANALYSIS OF SOIL OR HOUSE DUST SAMPLES USING CHLORPYRIFOS ELISA SAMPLES (BCO-L-1.0)  

EPA Science Inventory

This abstract is included for completeness of documentation, but this SOP was not used in the study. The purpose of this SOP is to describe the procedures for analyzing both Stage II and Stage III soil and vacuum-cleaner collected house dust samples, and Stage III air samples u...

59

Development testing of the chemical analysis automation polychlorinated biphenyl standard analysis method during surface soils sampling at the David Witherspoon 1630 site  

SciTech Connect

The Chemical Analysis Automation (CAA) project is developing standardized, software-driven, site-deployable robotic laboratory systems with the objective of lowering the per-sample analysis cost, decreasing sample turnaround time, and minimizing human exposure to hazardous and radioactive materials associated with DOE remediation projects. The first integrated system developed by the CAA project is designed to determine polychlorinated biphenyls (PCB) content in soil matrices. A demonstration and development testing of this system was conducted in conjuction with surface soil characterization activities at the David Witherspoon 1630 Site in Knoxville, Tennessee. The PCB system consists of five hardware standard laboratory modules (SLMs), one software SLM, the task sequence controller (TSC), and the human-computer interface (HCI). Four of the hardware SLMs included a four-channel Soxhlet extractor, a high-volume concentrator, a column cleanup, and a gas chromatograph. These SLMs performed the sample preparation and measurement steps within the total analysis protocol. The fifth hardware module was a robot that transports samples between the SLMs and the required consumable supplies to the SLMs. The software SLM is an automated data interpretation module that receives raw data from the gas chromatograph SLM and analyzes the data to yield the analyte information. The TSC is a software system that provides the scheduling, management of system resources, and the coordination of all SLM activities. The HCI is a graphical user interface that presents the automated laboratory to the analyst in terms of the analytical procedures and methods. Human control of the automated laboratory is accomplished via the HCI. Sample information required for processing by the automated laboratory is entered through the HCI. Information related to the sample and the system status is presented to the analyst via graphical icons.

Hunt, M.A.; Klatt, L.N.; Thompson, D.H. [and others

1998-02-01

60

Microbiological Detection Systems for Molecular Analysis of Environmental Water and Soil Samples  

EPA Science Inventory

Multiple detection systems are being targeted to track various species and genotypes of pathogens found in environmental samples with the overreaching goal of developing analytical separation and detection techniques for Salmonella enterica Serovars Typhi, Cryptosporidium parvum,...

61

Analysis of some lunar soil and rocks samples in terms of photon interaction and photon energy absorption  

NASA Astrophysics Data System (ADS)

Understanding the space radiation environment is critical to future manned lunar missions, and this includes photons. In this paper, the attenuation properties of gamma rays in 20 lunar soil and rocks, found at landing site during the Apollo 17, are investigated. Effective atomic numbers Zeff for photon interaction and photon energy absorption for a wide range of photon energies are determined. The results indicate that within the wide compositional range of the Apollo 17 samples, three categories, each one have broadly similar attenuation properties. As well as the results showed that the Zeff has been successfully characterize and correlate the different soil samples with mixing of prevalent local rocks.

El-Khayatt, A. M.; Al-Rajhi, M. A.

2015-04-01

62

Geochemistry - Soils Analysis  

NSDL National Science Digital Library

Students conduct a geochemical analysis of a soil. Each group chooses one of the following analyses: conductivity buffer solution, conductivity, acidity, mineralogy, grain size, or loss on ignition. As this lab falls somewhere between the middle and end of the course, students are versed in various chemical methods. This lab reinforces those skills while forcing students to organize their time and be patient with each other while conducting careful lab science. The samples used for this lab were from a Bronze-Age archaeological site in Kazakhstan, but any samples could be substituted. To encourage free-thinking concerning their representations (and interpretations in the follow-up lab), as little background information as possible was given.

Cynthia Fadem

63

COLLECTING REPRESENTATIVE SOIL SAMPLES FOR N AND P FERTILIZER RECOMMENDATIONS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Soil fertilizer recommendations in modern crop production rely on laboratory analysis of representative soil samples. Regardless on where the samples were collected (grid points, management zones, or whole fields) the accuracy and precision of the fertilizer recommendation can be improved by consid...

64

PREPARATION OF SOIL SAMPLING PROTOCOLS: SAMPLING TECHNIQUES AND STRATEGIES  

EPA Science Inventory

The document serves as a companion document to the Soil Sampling Quality Assurance User's Guide, Second Edition. he two documents together provide methods, techniques, and procedures for designing a variety of soil measurement programs and associated Quality Assurance Program Pla...

65

Selective solid-phase extraction using molecularly imprinted polymer for the analysis of polar organophosphorus pesticides in water and soil samples.  

PubMed

An analytical methodology for the analysis of four polar organophophorus pesticides (monocrotophos, mevinphos, phosphamidon, omethoate) in water and soil samples incorporating a molecularly imprinted solid-phase extraction (MISPE) process using a monocrotophos-imprinted polymer was developed. Binding study demonstrated that the polymer showed excellent affinity and high selectivity to monocrotophos. The MISPE procedure including the clean-up step to remove any interferences was optimized. The accuracy and selectivity of the MISPE process developed were verified using a non-imprinted (blank) polymer and a classical ENVI-18 cartridge as the SPE matrix during control experiments. The use of MISPE improved the accuracy and precision of the GC method and lowered the limit of detection. The recoveries of four polar organophosphorus pesticides (OPPs) extracted from 1 L of river water at a 100 ng/L spike level were in the range of 77.5-99.1%. The recoveries of organophosphorus pesticides extracted from a 5-g soil sample at the 100 microg/kg level were in the range of 79.3-93.5%. The limit of detection varied from 10 to 32 ng/L in water and from 12 to 34 microg/kg in soil samples. The molecularly imprinted polymer (MIP) enabled the selective extraction of four organophosphorus pesticides successfully from water and soil samples, demonstrating the potential of molecularly imprinted solid-phase extraction for rapid, selective, and cost-effective sample pretreatment. PMID:16199222

Zhu, Xiaolan; Yang, Jun; Su, Qingde; Cai, Jibao; Gao, Yun

2005-10-28

66

EXTRACTION OF BERYLLIUM-10 FROM SOIL BY FUSION This method is used to separate Be from soil and sediment samples, for AMS analysis. After adding  

E-print Network

, clay lumps, rock fragments, etc., all have different 10 Be concentrations. Grinding homogenises for the analysis. If the sample is wet, you will need to dry it before grinding. Initial sample drying Samples. Record the dry weight. Tare four clean platinum crucibles on the 4-figure balance. Record the crucible

Stone, John

67

Tree Fertilization Soil Analysis  

E-print Network

Tree Fertilization #12;Soil Analysis vs. Foliar Analysis #12;Macronutrients N P K Mg S Ca Micronutrients Fe Mn Zn Mo Cu Cl B #12;Complete fertilizer N P K #12;Fertilizer Analysis Percentages of N P K #12;ANSI A-300 Fertilizer Standard Standards are used to develop contract specifications. Fertilize

68

Selective solid-phase extraction using molecularly imprinted polymer for the analysis of polar organophosphorus pesticides in water and soil samples  

Microsoft Academic Search

An analytical methodology for the analysis of four polar organophophorus pesticides (monocrotophos, mevinphos, phosphamidon, omethoate) in water and soil samples incorporating a molecularly imprinted solid-phase extraction (MISPE) process using a monocrotophos-imprinted polymer was developed. Binding study demonstrated that the polymer showed excellent affinity and high selectivity to monocrotophos. The MISPE procedure including the clean-up step to remove any interferences was

Xiaolan Zhu; Jun Yang; Qingde Su; Jibao Cai; Yun Gao

2005-01-01

69

Alternative Sample Preparation of Soils for Gamma Spectroscopy  

SciTech Connect

Standard laboratory procedures for preparation of soil samples for analysis by gamma spectroscopy typically utilize drying and grinding. Drying of soil samples can be accomplished using an oven for 8 to 16 hours or by air for several days or weeks. Dried samples are then sieved and / or ground to facilitate homogenization. The sample preparation process for soils adds significant time for analysis by gamma spectroscopy as the actual analysis is normally on the order of 1 hour or less. An alternative approach has been developed that significantly reduces sample preparation time for soil samples and that provides comparable results to those obtained by the standard method. The alternative approach utilizes a moisture analyzer to determine the percent moisture in each individual sample, which takes 15 to 45 minutes for each sample. The actual weight of the sample is then corrected by the percent moisture in order to report the results on the equivalent dry weight. This is especially important for samples that are for decision making associated with field activities where time is of the essence. This alternative sample preparation approach provides fast and efficient sample preparation of soils for gamma spectroscopy without reducing data quality or imparting bias. (authors)

Downey, H.T. [MACTEC, Portland, ME (United States); Jung, P.; Scarborough, R. [Sevenson Environmental Services, Niagara Falls, NY (United States)

2008-07-01

70

Comparative analysis of black carbon in soils  

Microsoft Academic Search

Black carbon (BC), produced by incomplete combustion of fossil fuels and vegetation, occurs ubiquitously in soils and sediments. BC exists as a continuum from partly charred material to highly graphitized soot particles, with no general agreement on clear-cut boundaries of definition or analysis. In a comparative analysis, we measured BC forms in eight soil samples by six established methods. All

Michael W. I. Schmidt; Jan O. Skjemstad; Claudia I. Czimczik; Bruno Glaser; Ken M. Prentice; Yves Gelinas; Thomas A. J. Kuhlbusch

2001-01-01

71

Geochemical analysis of soils and sediments, Coeur d'Alene drainage basin, Idaho: sampling, analytical methods, and results  

USGS Publications Warehouse

(Fe), manganese (Mn), arsenic (As), and cadmium (Cd). In general inter-laboratory correlations are better for samples within the compositional range of the Standard Reference Materials (SRMs) from the National Institute of Standards and Technology (NIST). Analyses by EWU are the most accurate relative to the NIST standards (mean recoveries within 1% for Pb, Fe, Mn, and As, 3% for Zn and 5% for Cd) and are the most precise (within 7% of the mean at the 95% confidence interval). USGS-EDXRF is similarly accurate for Pb and Zn. XRAL and ACZ are relatively accurate for Pb (within 5-8% of certified NIST values), but were considerably less accurate for the other 5 elements of concern (10-25% of NIST values). However, analyses of sample splits by more than one laboratory reveal that, for some elements, XRAL (Pb, Mn, Cd) and ACZ (Pb, Mn, Zn, Fe) analyses were comparable to EWU analyses of the same samples (when values are within the range of NIST SRMs). These results suggest that, for some elements, XRAL and ACZ dissolutions are more effective on the matrix of the CdA samples than on the matrix of the NIST samples (obtained from soils around Butte, Montana). Splits of CdA samples analyzed by CHEMEX were the least accurate, yielding values 10-25% less than those of EWU.

Box, Stephen E.; Bookstrom, Arthur A.; Ikramuddin, Mohammed; Lindsay, James

2001-01-01

72

Sonochemical Digestion of Soil and Sediment Samples  

SciTech Connect

This work was performed as part of a broader effort to automate analytical methods for determination of plutonium and other radioisotopes in environmental samples. The work described here represented a screening study to determine the potential for applying ultrasonic irradiation to sample digestion. Two standard reference materials (SRMs) were used in this study: Columbia River Sediment and Rocky Flats Soil. The key experiments performed are listed below along with a summary of the results. The action of nitric acid, regardless of its concentration and liquid-to-solid ratio, did not achieve dissolution efficiency better that 20%. The major fraction of natural organic matter (NOM) remained undissolved by this treatment. Sonication did not result in improved dissolution for the SRMs tested. The action of hydrofluoric acid at concentrations of 8 M and higher achieved much more pronounced dissolution (up to 97% dissolved for the Rocky Flats soil sample and up to 78% dissolved for the Columbia River Sediment sample). Dissolution efficiency remains constant for solid-to-liquid ratios of up to 0.05 to 1 and decreases for the higher loadings of the solid phase. Sonication produced no measurable effect in improving the dissolution of the samples compared with the control digestion experiments. Combined treatment of the SRM by mixtures of HNO3 and HF showed inferior performance compared with the HF alone. An adverse effect of sonication was found for the Rocky Flats soil material, which became more noticeable at higher HF concentrations. Sonication of the Columbia River sediment samples had no positive effect in the mixed acid treatment. The results indicate that applying ultrasound in an isolated cup horn configuration does not offer any advantage over conventional ''heat and mix'' treatment for dissolution of the soil and sediment based on the SRM examined here. This conclusion, however, is based on an approach that uses gravimetric analysis to determine gross dissolution efficiency. This approach does not allow any conclusion regarding the possible advantage of sonication in selective dissolution of plutonium traces incorporated into an inorganic or organic fraction of the samples.

Sinkov, Sergei I.; Lumetta, Gregg J.

2006-10-12

73

Simultaneous speciation of arsenic, selenium, and chromium: species, stability, sample preservation, and analysis of ash and soil leachates  

USGS Publications Warehouse

An analytical method using high-performance liquid chromatography separation with inductively coupled plasma mass spectrometry (ICP-MS) detection previously developed for the determination of Cr(III) and Cr(VI) has been adapted to allow the determination of As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI) under the same chromatographic conditions. Using this method, all six inorganic species can be determined in less than 3 min. A dynamic reaction cell (DRC)-ICP-MS system was used to detect the species eluted from the chromatographic column in order to reduce interferences. A variety of reaction cell gases and conditions may be utilized with the DRC-ICP-MS, and final selection of conditions is determined by data quality objectives. Results indicated all starting standards, reagents, and sample vials should be thoroughly tested for contamination. Tests on species stability indicated that refrigeration at 10° C was preferential to freezing for most species, particularly when all species were present, and that sample solutions and extracts should be analyzed as soon as possible to eliminate species instability and interconversion effects. A variety of environmental and geological samples, including waters and deionized water [leachates] and simulated biological leachates from soils and wildfire ashes have been analyzed using this method. Analytical spikes performed on each sample were used to evaluate data quality. Speciation analyses were conducted on deionized water leachates and simulated lung fluid leachates of ash and soils impacted by wildfires. These results show that, for leachates containing high levels of total Cr, the majority of the chromium was present in the hexavalent Cr(VI) form. In general, total and hexavalent chromium levels for samples taken from burned residential areas were higher than those obtained from non-residential forested areas. Arsenic, when found, was generally in the more oxidized As(V) form. Selenium (IV) and (VI) were present, but typically at low levels.

Wolf, Ruth E.; Morman, Suzette A.; Hageman, Philip L.; Hoefen, Todd M.; Plumlee, Geoffrey S.

2011-01-01

74

Simultaneous speciation of arsenic, selenium, and chromium: Species stability, sample preservation, and analysis of ash and soil leachates  

USGS Publications Warehouse

An analytical method using high-performance liquid chromatography separation with inductively coupled plasma mass spectrometry (ICP-MS) detection previously developed for the determination of Cr(III) and Cr(VI) has been adapted to allow the determination of As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI) under the same chromatographic conditions. Using this method, all six inorganic species can be determined in less than 3 min. A dynamic reaction cell (DRC)-ICP-MS system was used to detect the species eluted from the chromatographic column in order to reduce interferences. A variety of reaction cell gases and conditions may be utilized with the DRC-ICP-MS, and final selection of conditions is determined by data quality objectives. Results indicated all starting standards, reagents, and sample vials should be thoroughly tested for contamination. Tests on species stability indicated that refrigeration at 10 ??C was preferential to freezing for most species, particularly when all species were present, and that sample solutions and extracts should be analyzed as soon as possible to eliminate species instability and interconversion effects. A variety of environmental and geological samples, including waters and deionized water [leachates] and simulated biological leachates from soils and wildfire ashes have been analyzed using this method. Analytical spikes performed on each sample were used to evaluate data quality. Speciation analyses were conducted on deionized water leachates and simulated lung fluid leachates of ash and soils impacted by wildfires. These results show that, for leachates containing high levels of total Cr, the majority of the chromium was present in the hexavalent Cr(VI) form. In general, total and hexavalent chromium levels for samples taken from burned residential areas were higher than those obtained from non-residential forested areas. Arsenic, when found, was generally in the more oxidized As(V) form. Selenium (IV) and (VI) were present, but typically at low levels. ?? 2011 Springer-Verlag (outside the USA).

Wolf, R.E.; Morman, S.A.; Hageman, P.L.; Hoefen, T.M.; Plumlee, G.S.

2011-01-01

75

Sampling Irrigated Soils for Salinity Appraisal.  

E-print Network

. 1986a). The salinity at the soil surface can reach that of sea water in a matter of several weeks, and this surface salt crust can 3 become the cause for hypocotyl and seedling mortality (Miyamoto et al. 1985, Miyamoto et al. 1986a). The pat tern... moisture, crusting, bed cultivation practice, and salinity of water need to be examined. Sampling Tools and Sample Handling Most sampling tools and equipment used for general soil sampling purposes are adaptable to saline and/or sodic soils. Tube...

Miyamoto, S.

1988-01-01

76

Simple pretreatment procedure combined with gas chromatography/multiphoton ionization/mass spectrometry for the analysis of dioxins in soil samples obtained after the T?hoku earthquake.  

PubMed

A simple pretreatment procedure was developed for the analysis of dioxins in soil samples using gas chromatography/multiphoton ionization/time-of-flight mass spectrometry. The sample was subjected to a pressurized liquid extraction procedure, followed by separation using a pair of Sulfoxide and Ag-ION columns for cleanup. Due to the high selectivity of laser ionization, the procedure was simplified and the time required for an analysis was decreased to 3 h. The sample collected after the earthquake and tsunami contained relatively high concentrations of PCBs and PCDD/Fs. This simple and rapid pretreatment procedure can be useful for monitoring the environment to prevent unexpected exposure of toxic dioxins for the workers who have to process more than 20 million tons of the wastes in a few years. PMID:23199015

Chang, Yu-Ching; Imasaka, Totaro

2013-01-01

77

Carbon and Sulfur Isotopic Composition of Rocknest Soil as Determined with the Sample Analysis at Mars(SAM) Quadrupole Mass Spectrometer  

NASA Technical Reports Server (NTRS)

The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover got its first taste of solid Mars in the form of loose, unconsolidated materials (soil) acquired from an aeolian bedform designated Rocknest. Evolved gas analysis (EGA) revealed the presence of H2O as well as O-, C- and S-bearing phases in these samples. CheMin did not detect crystalline phases containing these gaseous species but did detect the presence of X-ray amorphous materials. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can provide clues to the nature and/or mineralogy of volatile-bearing phases through examination of temperatures at which gases are evolved from solid samples. In addition, the isotopic composition of these gases, particularly when multiple sources contribute to a given EGA curve, may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from Rocknest soil samples as measured with SAM's quadrupole mass spectrometer (QMS).

Franz, H. B.; McAdam, C.; Stern, J. C.; Archer, P. D., Jr.; Sutter, B.; Grotzinger, J. P.; Jones, J. H.; Leshin, L. A.; Mahaffy, P. R.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Owen, T. C.; Raaen, E.; Steele, A.; Webster, C. R.

2013-01-01

78

Groundwater Sampling and Soil Gas Data Analysis, Distler Brickyard Superfund Site, Hardin County, Kentucky -- June - August 2000  

SciTech Connect

This report describes the results of groundwater and soil gas sampling conducted at the Distler Brickyard Site, Hardin County, Kentucky, June-August, 2000. The purpose of the sampling activities was to address remaining data gaps regarding the feasibility of monitored natural attenuation (MNA) for remediation of chloroethene/ane contamination. Specifically, data gaps fall into four categories: 1) effect of seasonal recharge on contaminant concentrations, 2) geochemical conditions in the Fine Grained Alluvium (FGA), 3) conditions along the flowpath between Wells GW-11 and MW-3, and 4) the extent of aerobic degradation in the Coarse Grained Alluvium (CGA). A data collection strategy composed of both groundwater sampling and passive soil vapor sampling devices (Gore-Sorbers?) was used. The Gore-Sorber? technology was used to collect data from the FGA, which because of its low hydraulic conductivity and variable saturation makes collection of groundwater samples problematic. Gore-Sorbers were deployed in 15 wells, most of them being in the FGA, and groundwater samples were collected in 17 wells, which were mostly in the CGA. Both sampling methods were utilized in a subset of wells (7) in order to determine the general comparability of results obtained from each method. Results indicate that water levels in both the FGA and CGA were higher in June-August 2000 than in October 1999, likely due to increased infiltration of precipitation through the FGA during the wetter months. Redox conditions in the FGA and downgradient CGA were iron-reducing, less reducing than in October-1999. In general, concentrations of chloroethenes/anes were higher in June-August 2000 than October 1999. Trichloroethene (TCE) was present at concentrations as high as 65 µg/L in the FGA and 19 µg/L in the CGA. This is substantially higher than the maximum concentration in October 1999 of 11 µg/L. The following conclusions were drawn from these data collection activities: 1) two potential contaminant source areas remain at the site, 2) redox conditions are less reducing than October 1999, 3) anaerobic reductive dechlorination (ARD) continues to take place in the FGA, and 4) seasonal fluctuations in recharge affect water levels, redox conditions, contaminant concentrations, and ARD reactions. Possible final remedial response actions include 1) monitored natural attenuation, 2) monitored natural attenuation with physical source removal, or 3) monitored natural attenuation with source removal via enhanced ARD. All of these remedies will require the collection of additional data in three areas: 1) the nature and extent of the GW-3/UDBW-11 source area and the flux rate and fate of contaminants from it, 2) the magnitude and timing of recharge fluctuations, and 3) the local hydraulic gradient and groundwater flow directions. Each remedy may also have specific additional data collection requirements. This document will serve as the basis for the selection of the appropriate remedy by the state and federal regulators.

Martin, Jennifer Pauline; Peterson, Lance Nutting; Taylor, C. J.

2000-11-01

79

GEOSTATISTICAL STRATEGY FOR SOIL SAMPLING: THE SURVEY AND THE CENSUS  

EPA Science Inventory

This article develops a soil sampling strategy for spatially correlated variables using the tools of geostatistical analysis. With a minimum of equations, the logic of geostatistical analysis is traced from the modeling of a semi-variogram to the output isomaps of pollution estim...

80

Collecting Representative Soil Samples for N and P Fertilizer Recommendations  

Microsoft Academic Search

Abstract Soil fertilizer recommendations,in modern,crop production,rely on laboratory analysis,of representative soil samples.,Regardless,on how,soil samples,are collected (grid points, management zones, or whole fields) the accuracy and precision,of the fertilizer recommendation,can,be improved,by considering,the factors influencing nutrient variability. As producer’s crop enterprise varies, it is recommended,that producers,select approaches,that are suited for their operation.,The objectives,of this guide,are to discuss,how,management,influences nutrient,variability,and,to provide,insight,into designing,soil sampling,protocols that,provide,accurate,and,precise,fertilizer

D. E. Clay; N. Kitchen; C. G. Carlson; J. L. Kleinjan; W. A. Tjentland

2002-01-01

81

SOIL AND SEDIMENT SAMPLING METHODS  

EPA Science Inventory

The EPA Office of Solid Waste and Emergency Response's (OSWER) Office of Superfund Remediation and Technology Innovation (OSRTI) needs innovative methods and techniques to solve new and difficult sampling and analytical problems found at the numerous Superfund sites throughout th...

82

Sampling for Chemical Analysis.  

ERIC Educational Resources Information Center

This review, designed to make analysts aware of uncertainties introduced into analytical measurements during sampling, is organized under these headings: general considerations; theory; standards; and applications related to mineralogy, soils, sediments, metallurgy, atmosphere, water, biology, agriculture and food, medical and clinical areas, oil…

Kratochvil, Byron; And Others

1984-01-01

83

The Impact of Soil Sampling Errors on Variable Rate Fertilization  

SciTech Connect

Variable rate fertilization of an agricultural field is done taking into account spatial variability in the soil’s characteristics. Most often, spatial variability in the soil’s fertility is the primary characteristic used to determine the differences in fertilizers applied from one point to the next. For several years the Idaho National Engineering and Environmental Laboratory (INEEL) has been developing a Decision Support System for Agriculture (DSS4Ag) to determine the economically optimum recipe of various fertilizers to apply at each site in a field, based on existing soil fertility at the site, predicted yield of the crop that would result (and a predicted harvest-time market price), and the current costs and compositions of the fertilizers to be applied. Typically, soil is sampled at selected points within a field, the soil samples are analyzed in a lab, and the lab-measured soil fertility of the point samples is used for spatial interpolation, in some statistical manner, to determine the soil fertility at all other points in the field. Then a decision tool determines the fertilizers to apply at each point. Our research was conducted to measure the impact on the variable rate fertilization recipe caused by variability in the measurement of the soil’s fertility at the sampling points. The variability could be laboratory analytical errors or errors from variation in the sample collection method. The results show that for many of the fertility parameters, laboratory measurement error variance exceeds the estimated variability of the fertility measure across grid locations. These errors resulted in DSS4Ag fertilizer recipe recommended application rates that differed by up to 138 pounds of urea per acre, with half the field differing by more than 57 pounds of urea per acre. For potash the difference in application rate was up to 895 pounds per acre and over half the field differed by more than 242 pounds of potash per acre. Urea and potash differences accounted for almost 87% of the cost difference. The sum of these differences could result in a $34 per acre cost difference for the fertilization. Because of these differences, better analysis or better sampling methods may need to be done, or more samples collected, to ensure that the soil measurements are truly representative of the field’s spatial variability.

R. L. Hoskinson; R C. Rope; L G. Blackwood; R D. Lee; R K. Fink

2004-07-01

84

Optimal sampling and sample preparation for NIR-based prediction of field scale soil properties  

NASA Astrophysics Data System (ADS)

The representation of local soil variability with acceptable accuracy and precision is dependent on the spatial sampling strategy and can vary with a soil property. Therefore, soil mapping can be expensive when conventional soil analyses are involved. Visible near infrared spectroscopy (vis-NIR) is considered a cost-effective method due to labour savings and relative accuracy. However, savings may be offset by the costs associated with number of samples and sample preparation. The objective of this study was to find the most optimal way to predict field scale total organic carbon (TOC) and texture. To optimize the vis-NIR calibrations the effects of sample preparation and number of samples on the predictive ability of models with regard to the spatial distribution of TOC and texture were investigated. Conditioned Latin hypercube sampling (cLHs) method was used to select 125 sampling locations from an agricultural field in Denmark, using electromagnetic induction (EMI) and digital elevation model (DEM) data. The soil samples were scanned in three states (field moist, air dried and sieved to 2 mm) with a vis-NIR spectrophotometer (LabSpec 5100, ASD Inc., USA). The Kennard-Stone algorithm was applied to select 50 representative soil spectra for the laboratory analysis of TOC and texture. In order to investigate how to minimize the costs of reference analysis, additional smaller subsets (15, 30 and 40) of samples were selected for calibration. The performance of field calibrations using spectra of soils at the three states as well as using different numbers of calibration samples was compared. Final models were then used to predict the remaining 75 samples. Maps of predicted soil properties where generated with Empirical Bayesian Kriging. The results demonstrated that regardless the state of the scanned soil, the regression models and the final prediction maps were similar for most of the soil properties. Nevertheless, as expected, models based on spectra from field moist soils showed the lowest predictive ability with root mean square error of cross-validation (RMSECV): 0.62%, 1.51%, 1.08%, 2.4% for TOC, clay, silt and sand respectively, resulting also in less detailed maps. The best calibration models for TOC, clay and silt were obtained from air dried soils (RMSECV: 0.43%, 1.18%, 0.99%, 2.55%, respectively). Sieving improved the results of sand calibration only (RMSECV=2.13%). Despite the positive effect of drying the soils, very little improvement was gained and on average accounted for a 19% decrease in RMSECV, with the highest decrease in RMSECV reported for TOC (30%). In general, no substantial effect of sampling intensity on the predictive ability of calibration models was found. The only significant differences were recorded for sand calibrations between models based on 50 and 15 moist soil samples and for silt between models based on 50 and 15 sieved soil samples. The results from this study show that one can produce acceptable vis-NIR predictions without the necessity of sieving or even drying the soils and using as few as 15 samples for field calibrations. Nevertheless, the selection of sample preparation and number of samples is dependent on soil properties and should be adjusted to the precision needed.

Knadel, Maria; Peng, Yi; Schelde, Kirsten; Thomsen, Anton; Deng, Fan; Humlekrog Greve, Mogens

2013-04-01

85

Automatic Collection of Rock and Soil Samples  

NASA Technical Reports Server (NTRS)

Proposed machine would sample rock or soil automatically. Mounted on a wheeled or tracked vehicle, machine positions drill for cut at any angle from horizontal to vertical, moves power head to drive drill into cut, and stores drilled core in a container. New concept may also be useful in terrestrial agricultural and geologic surveys.

Kyrias, G. M.

1982-01-01

86

How Well Does Zone Sampling Based On Soil Electrical Conductivity Maps Represent Soil Variability  

Technology Transfer Automated Retrieval System (TEKTRAN)

How Well Does Zone Sampling Based On Soil Electrical Conductivity Maps Represent Soil Variability. Dale L. Shaner A study was conducted determined if ECa-directed zone sampling could predict soil texture and soil organic matter (SOM) patterns of samples taken by a more intensive grid sample method...

87

GICHD Mine Dog Testing Project - Soil Sample Results No.3  

SciTech Connect

A mine dog evaluation project initiated by the Geneva International Center for Humanitarian Demining is evaluating the capability and reliability of mine detection dogs. The performance of field-operational mine detection dogs will be measured in test minefields in Afghanistan and Bosnia containing actual, but unfused landmines. Repeated performance testing over two years through various seasonal weather conditions will provide data simulating near real world conditions. Soil samples will be obtained adjacent to the buried targets repeatedly over the course of the test. Chemical analysis results from these soil samples will be used to evaluate correlations between mine dog detection performance and seasonal weather conditions. This report documents the analytical chemical methods and results from the third batch of soils received. This batch contained samples from Kharga, Afghanistan collected in October 2002.

PHELAN, JAMES M.; BARNETT, JAMES L.; BENDER, SUSAN FAE ANN; ARCHULETA, LUISA M.

2003-03-01

88

GICHD mine dog testing project : soil sample results #5.  

SciTech Connect

A mine dog evaluation project initiated by the Geneva International Center for Humanitarian Demining is evaluating the capability and reliability of mine detection dogs. The performance of field-operational mine detection dogs will be measured in test minefields in Afghanistan containing actual, but unfused landmines. Repeated performance testing over two years through various seasonal weather conditions will provide data simulating near real world conditions. Soil samples will be obtained adjacent to the buried targets repeatedly over the course of the test. Chemical analysis results from these soil samples will be used to evaluate correlations between mine dog detection performance and seasonal weather conditions. This report documents the analytical chemical methods and results from the fifth batch of soils received. This batch contained samples from Kharga, Afghanistan collected in June 2003.

Barnett, James L.; Phelan, James M.; Archuleta, Luisa M.; Donovan, Kelly L.; Bender, Susan Fae Ann

2004-01-01

89

GICHD mine dog testing project - soil sample results #4.  

SciTech Connect

A mine dog evaluation project initiated by the Geneva International Center for Humanitarian Demining is evaluating the capability and reliability of mine detection dogs. The performance of field-operational mine detection dogs will be measured in test minefields in Afghanistan and Bosnia containing actual, but unfused landmines. Repeated performance testing over two years through various seasonal weather conditions will provide data simulating near real world conditions. Soil samples will be obtained adjacent to the buried targets repeatedly over the course of the test. Chemical analysis results from these soil samples will be used to evaluate correlations between mine dog detection performance and seasonal weather conditions. This report documents the analytical chemical methods and results from the fourth batch of soils received. This batch contained samples from Kharga, Afghanistan collected in April 2003 and Sarajevo, Bosnia collected in May 2003.

Barnett, James L.; Phelan, James M.; Archuleta, Luisa M.; Wood, Tyson B.; Donovan, Kelly L.; Bender, Susan Fae Ann

2003-08-01

90

Soils as samples for the split Hopkinson bar  

SciTech Connect

Soils frequently exhibit one or more of the following characteristics which complicadte analysis of data from split Hopkinson bar tests or make test setup and execution difficult: low wave speed, high attenuation of acoustic energy, or insignificant structural strength. Low wave speed invalidates the assumption that the sample is deformed uniformly by the load at early times; but, use of a Lagrangian wave propagation analysis permits derivation of useful information from the standard suite of data. Use of gauges within the sample would facilitate this technique. High attenuation requires thin samples, which restricts the strain paths which can be achieved. The weakness of noncohesive soils presents difficulties in preparation, handling and control of boundary conditions. One simple solution is to support the sample in a rigid sleeve; this results in a uniaxial strain experiment so that the results are directly comparable to shock wave data. 10 references, 7 figures.

Gaffney, E.S.; Brown, J.A.; Felice, C.W.

1985-01-01

91

NHEXAS PHASE I MARYLAND STUDY--STANDARD OPERATING PROCEDURE FOR COLLECTION, STORAGE, AND SHIPMENT OF SOIL SAMPLES FOR METAL, PESTICIDE, AND PAH ANALYSIS (F05)  

EPA Science Inventory

The purpose of this SOP is to outline the necessary steps for sampling soil from the yard, the food garden, and the foundation of the respondent's home. Composite samples were sent to Southwest Research Institute (SwRI) to be sieved and divided. One fraction was analyzed for me...

92

Simultaneous Analysis of Multiple Classes of Antibiotics in Water and Soil Samples via Solid Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry  

Microsoft Academic Search

The analytical protocols were developed and tested for simultaneous determining three groups of antibiotics including four fluoroquinolones (FQs), three tetracyclines (TCs) and eleven sulfonamides (SAs), in water and soil samples. Solid phase extraction (SPE) was used to enrich and to clean up the aqueous samples. The potassium phosphate buffer and acetonitrile mixture solutions were used to extract the compounds from

Wei Hu; Changsheng Guo; Lili Ma; Yuqiu Wang

2010-01-01

93

Analytical results, database management and quality assurance for analysis of soil and groundwater samples collected by cone penetrometer from the F and H Area seepage basins  

SciTech Connect

The Quantification of Soil Source Terms and Determination of the Geochemistry Controlling Distribution Coefficients (K{sub d} values) of Contaminants at the F- and H-Area Seepage Basins (FHSB) study was designed to generate site-specific contaminant transport factors for contaminated groundwater downgradient of the Basins. The experimental approach employed in this study was to collect soil and its associated porewater from contaminated areas downgradient of the FHSB. Samples were collected over a wide range of geochemical conditions (e.g., pH, conductivity, and contaminant concentration) and were used to describe the partitioning of contaminants between the aqueous phase and soil surfaces at the site. The partitioning behavior may be used to develop site-specific transport factors. This report summarizes the analytical procedures and results for both soil and porewater samples collected as part of this study and the database management of these data.

Boltz, D.R.; Johnson, W.H.; Serkiz, S.M.

1994-10-01

94

FIELD-SCALE STUDIES: HOW DOES SOIL SAMPLE PRETREATMENT AFFECT REPRESENTATIVENESS?  

EPA Science Inventory

Samples from field-scale studies are very heterogeneous and can contain large soil and rock particles. Oversize materials are often removed before chemical analysis of the soil samples because it is not practical to include these materials. Is the extracted sample representativ...

95

FIELD-SCALE STUDIES: HOW DOES SOIL SAMPLE PRETREATMENT AFFECT REPRESENTATIVENESS ? (ABSTRACT)  

EPA Science Inventory

Samples from field-scale studies are very heterogeneous and can contain large soil and rock particles. Oversize materials are often removed before chemical analysis of the soil samples because it is not practical to include these materials. Is the extracted sample representativ...

96

ASEPTIC SAMPLING OF UNCONSOLIDATED HEAVING SOILS IN SATURATED ZONES  

EPA Science Inventory

Collecting undisturbed subsurface soil samples in noncohesive, heaving sandy environments below the water table has been extremely difficult using conventional soil sampling equipment. everal modifications of the conventional hollow-stem auger coring procedures were adapted, whic...

97

Improved cryogenic coring device for sampling wetland soils  

SciTech Connect

This paper is the third in a series on the design and construction (Knaus 1986) and improvements (Knaus and Cahoon 1990) of a cryogenic soil-coring device (cryocorer). Freezing wetland soils in place during sampling eliminates compaction, dewatering, and loss of flocculent material at the water-sediment interface. The cryocorer is suitable for sampling soils of emergent marsh and mangrove forests as well as shallow water bottoms, although it has been used primarily for the former. A small-diameter frozen soil core minimizes disruption of the surface, can be evaluated immediately for overall quality, and can be used to measure soil profiles and subsample for further analysis. The cryocorer continues to be used in studies of wetland accretion and soil bulk density throughout the US. Concomitant with the increased use of the device, improvements in cryocorer design and application have occurred. Reported here are improvements in design that have been made since 1992 with references to wetland research in which the cryocorer has been used extensively.

Cahoon, D.R.; Lynch, J.C. [National Biological Service, Lafayette, LA (United States); Knaus, R.M. [Louisiana State Univ., Baton Rouge, LA (United States)

1996-09-01

98

VALIDATION OF A NEW SOIL VOC SAMPLER: PERFORMANCE OF THE EN CORE SAMPLER AT -7 C AND -21 C AND DEVELOPMENT OF THE ACCU CORE SUBSURFACE SAMPLING/STORAGE DEVICE FOR VOC ANALYSIS  

SciTech Connect

Soil sampling and storage practices for volatile organic analysis must be designed to minimize loss of volatile organic compounds (VOCs) from samples. The En Core{reg_sign} sampler is designed to collect and store soil samples in a manner that minimizes loss of contaminants due to volatilization and/or biodegradation. An ASTM International (ASTM) standard practice, D 6418, Standard Practice for Using the Disposable En Core Sampler for Sampling and Storing Soil for Volatile Organic Analysis, describes use of the En Core sampler to collect and store a soil sample of approximately five grams or 25 grams for volatile organic analysis. Prior to the study described in this report, D 6418 specified sample storage in the En Core sampler at 4 {+-} 2 C for up to 48 hours; at -12 {+-} 2 C for up to 14 days; or at 4 {+-} 2 C for up to 48 hours followed by storage at -12 {+-} 2 C for up to five days to minimize loss of volatile compounds due to volatilization and/or biodegradation. The study described in this report was conducted to evaluate the performance of the disposable En Core sampler to store low concentrations of VOCs in soil at -7 {+-} 1 C and -21 {+-} 2 C. In the study, data on the performance of the En Core sampler to store soils spiked with low-level concentrations of VOCs at 4 {+-} 2 C for 48 hours followed by storage at -7 {+-} 1 C for five days, at -7 {+-} 1 C for 14 days, at 4 {+-} 2 C for 48 hours followed by storage at -21 {+-} 2 C for five days, and at -21 {+-} 2 C for 14 days were generated. Based on these data, a new revision of D 6418 was prepared and balloted in ASTM. The new revision, which was approved on February 1, 2004, now specifies sample storage in the En Core sampler at 4 {+-} 2 C for up to 48 hours; -7 to -21 C for up to 14 days; or 4 {+-} 2 C for up to 48 hours followed by storage at -7 to -21 C for up to five days. The En Core sampler is designed to collect soil samples for VOC analysis at the soil surface. To date, a sampling tool for collecting and storing subsurface soil samples for VOC analysis does not exist. Development of a subsurface VOC sampling/storage device was initiated in 1999. This device, which is called the Accu Core sampler, is designed so that a soil sample can be collected below the surface using a dual-tube penetrometer and transported to the laboratory for analysis in the same container. During the past year, prototype devices have been tested for their performance in storing soil samples containing low concentrations of VOCs. Evaluation of the various Accu Core prototypes and the design selected for additional validation testing are described in this report.

Susan S. Sorini; John F. Schabron; Joseph F. Rovani Jr.

2004-05-01

99

NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF SOIL AND HOUSE DUST SAMPLES FOR GC/MS ANALYSIS OF PESTICIDE AND PAH (BCO-L-28.0)  

EPA Science Inventory

The purpose of this SOP is to describe procedures for extracting and preparing a dust or soil sample for gas chromatography mass spectrometry (GC/MS) analysis of pesticides and polyaromatic hydrocarbons (PAHs). This procedure was followed to ensure consistent data retrieval durin...

100

NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF METALS FROM SOIL, DUST, AIR FILTER, AND SURFACE AND DERMAL SAMPLES FOR AA (GRAPHITE FURNACE OR FLAME) OR ICP-AES ANALYSIS (BCO-L-3.1)  

EPA Science Inventory

The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...

101

Minimum property dataset and sampling requirement tool for soil change studies in soil survey  

Technology Transfer Automated Retrieval System (TEKTRAN)

Dynamic soil properties (DSP) are those properties that change over human time scales. The new sampling guide “Soil and Resource Inventory Guide for Dynamic Soil Properties and Soil Change” includes a minimum DSP dataset and an interactive tool to determine sampling requirements. The minimum dataset...

102

Geographic sampling of urban soils for contaminant mapping: how many samples and from where.  

PubMed

Properly sampling soils and mapping soil contamination in urban environments requires that impacts of spatial autocorrelation be taken into account. As spatial autocorrelation increases in an urban landscape, the amount of duplicate information contained in georeferenced data also increases, whether an entire population or some type of random sample drawn from that population is being analyzed, resulting in conventional power and sample size calculation formulae yielding incorrect sample size numbers vis-à-vis model-based inference. Griffith (in Annals, Association of American Geographers, 95, 740-760, 2005) exploits spatial statistical model specifications to formulate equations for estimating the necessary sample size needed to obtain some predetermined level of precision for an analysis of georeferenced data when implementing a tessellation stratified random sampling design, labeling this approach model-informed, since a model of latent spatial autocorrelation is required. This paper addresses issues of efficiency associated with these model-based results. It summarizes findings from a data collection exercise (soil samples collected from across Syracuse, NY), as well as from a set of resampling and from a set of simulation experiments following experimental design principles spelled out by Overton and Stehman (in Communications in Statistics: Theory and Methods, 22, 2641-2660). Guidelines are suggested concerning appropriate sample size (i.e., how many) and sampling network (i.e., where). PMID:18566894

Griffith, Daniel A

2008-12-01

103

SAMPLING AND ANALYSIS PROTOCOLS  

SciTech Connect

Radiological sampling and analyses are performed to collect data for a variety of specific reasons covering a wide range of projects. These activities include: Effluent monitoring; Environmental surveillance; Emergency response; Routine ambient monitoring; Background assessments; Nuclear license termination; Remediation; Deactivation and decommissioning (D&D); and Waste management. In this chapter, effluent monitoring and environmental surveillance programs at nuclear operating facilities and radiological sampling and analysis plans for remediation and D&D activities will be discussed.

Jannik, T; P Fledderman, P

2007-02-09

104

Testing Your Soil: How to Collect and Send Samples  

E-print Network

Soil tests can be used to estimate the kinds and amounts of soil nutrients available to plants and as aids in determining fertilizer needs. This publication covers the three-step procedure for obtaining sample bags and instructions, collecting...

Provin, Tony; Pitt, John L.

2002-06-26

105

Sample analysis at Mars  

NASA Astrophysics Data System (ADS)

The next landed missions to Mars, such as the planned Mars Science Laboratory and ExoMars, will require sample analysis capabilities refined well beyond what has been flown to date. A key science objective driving this requirement is the determination of the carbon inventory of Mars, and particularly the detection of organic compounds. The Sample Analysis at Mars (SAM) suite consists of a group of tightly-integrated experiments that would analyze samples delivered directly from a coring drill or by a facility sample processing and delivery (SPAD) mechanism. SAM consists of an advanced GC/MS system and a laser desorption mass spectrometer (LDMS). The combined capabilities of these techniques can address Mars science objectives with much improved sensitivity, resolution, and analytical breadth over what has been previously possible in situ. The GC/MS system analyzes the bulk composition (both molecular and isotopic) of solid-phase and atmospheric samples. Solid samples are introduced with a highly flexible chemical derivatization/pyrolysis subsystem (Pyr/GC/MS) that is significantly more capable than the mass spectrometers on Viking. The LDMS analyzes local elemental and molecular composition in solid samples vaporized and ionized with a pulsed laser. We will describe how each of these capabilities has particular strengths that can achieve key measurement objectives at Mars. In addition, the close codevelopment of the GC/MS and LDMS along with a sample manipulation system enables the the sharing of resources, the correlation of results, and the utilization of certain approaches that would not be possible with separate instruments. For instance, the same samples could be analyzed with more than one technique, increasing efficiency and providing cross-checks for quantification. There is also the possibility of combining methods, such as by permitting TOF-MS analyses of evolved gas (Pyr/EI-TOF-MS) or GC/MS analyses of laser evaporated gas (LD-GC/MS).

Coll, P.; Cabane, M.; Mahaffy, P. R.; Brinckerhoff, W. B.; Sam Team

106

Lunar sample analysis  

NASA Technical Reports Server (NTRS)

A wide variety of lunar sample and meteorite studies were performed. Abstracts of the most recent reports are also attached. Experimental techniques employed have included scanning electron microscopy, transmission electron microscopy, Mossbauer spectroscopy, atomic absorption analysis and a variety of simulation studies.

Housley, R. M.

1986-01-01

107

Study on a pattern classification method of soil quality based on simplified learning sample dataset  

USGS Publications Warehouse

Based on the massive soil information in current soil quality grade evaluation, this paper constructed an intelligent classification approach of soil quality grade depending on classical sampling techniques and disordered multiclassification Logistic regression model. As a case study to determine the learning sample capacity under certain confidence level and estimation accuracy, and use c-means algorithm to automatically extract the simplified learning sample dataset from the cultivated soil quality grade evaluation database for the study area, Long chuan county in Guangdong province, a disordered Logistic classifier model was then built and the calculation analysis steps of soil quality grade intelligent classification were given. The result indicated that the soil quality grade can be effectively learned and predicted by the extracted simplified dataset through this method, which changed the traditional method for soil quality grade evaluation. ?? 2011 IEEE.

Zhang, J.; Liu, S.; Hu, Y.; Tian, Y.

2011-01-01

108

Collection and preparation of soil samples for the federal soil survey laboratory program  

SciTech Connect

Field observations are employed in the soil survey process to develop concepts of representative soils within the mapped area. At least one site is selected to represent each soil component of each soil map unit. Time and budget constraints usually dictate that only a few sites may be sampled. Each soil horizon at a sampling site is described and sampled. The samples include bulk soil material and specimens of natural fabric. The method used to process the sample in the laboratory depends upon properties of the soil and upon the requested analyses. Rock fragments >20 mm in diameter are determined in the field, and rock fragments <20 mm are measured in the laboratory. The fine earth material is homogenized and saved for chemical, physical, and mineralogical analyses. The laboratory data are used to classify and characterize the soil.

Brown, L.E.; Reinsch, T.G. [Dept. of Agriculture, Lincoln, NE (United States). Soil Conservation Service

1993-12-01

109

A concise method for mine soils analysis  

SciTech Connect

A large number of abandoned hard rock mines exist in Colorado and other mountain west states, many on public property. Public pressure and resulting policy changes have become a driving force in the reclamation of these sites. Two of the key reclamation issues for these sites in the occurrence of acid forming materials (AFMs) in mine soils, and acid mine drainage (AMD) issuing from mine audits. An AMD treatment system design project for the Forest Queen mine in Colorado's San Juan mountains raised the need for a simple, useable method for analysis of mine land soils, both for suitability as a construction material, and to determine the AFM content and potential for acid release. The authors have developed a simple, stepwise, go - no go test for the analysis of mine soils. Samples were collected from a variety of sites in the Silverton, CO area, and subjected to three tiers of tests including: paste pH, Eh, and 10% HCl fizz test; then total digestion in HNO{sub 3}/HCl, neutralization potential, exposure to meteoric water, and toxicity content leaching procedure (TCLP). All elemental analyses were performed with an inductively-coupled plasma (ICP) spectrometer. Elimination of samples via the first two testing tiers left two remaining samples, which were subsequently subjected to column and sequential batch tests, with further elemental analysis by ICP. Based on these tests, one sample was chosen for suitability as a constructing material for the Forest Queen treatment system basins. Further simplification, and testing on two pairs of independent soil samples, has resulted in a final analytical method suitable for general use.

Winkler, S.; Wildeman, T.; Robinson, R.; Herron, J.

1999-07-01

110

Planning Considerations Related to Collecting and Analyzing Samples of the Martian Soils  

NASA Technical Reports Server (NTRS)

The Mars Sample Return (MSR) End-to-End International Science Analysis Group (E2E-iSAG [1]) established scientific objectives associ-ated with Mars returned-sample science that require the return and investigation of one or more soil samples. Soil is defined here as loose, unconsolidated materials with no implication for the presence or absence of or-ganic components. The proposed Mars 2020 (M-2020) rover is likely to collect and cache soil in addition to rock samples [2], which could be followed by future sample retrieval and return missions. Here we discuss key scientific consid-erations for sampling and caching soil samples on the proposed M-2020 rover, as well as the state in which samples would need to be preserved when received by analysts on Earth. We are seeking feedback on these draft plans as input to mission requirement formulation. A related planning exercise on rocks is reported in an accompanying abstract [3].

Liu, Yang; Mellon, Mike T.; Ming, Douglas W.; Morris, Richard V.; Noble, Sarah K.; Sullivan, Robert J.; Taylor, Lawrence A.; Beaty, David W.

2014-01-01

111

Germanium-76 Sample Analysis  

SciTech Connect

The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). The DEMONSTRATOR will utilize 76Ge from Russia, and the first one gram sample was received from the supplier for analysis on April 24, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of this first analysis are reported here.

Kouzes, Richard T.; Engelhard, Mark H.; Zhu, Zihua

2011-04-01

112

Soil separator and sampler and method of sampling  

DOEpatents

A soil sampler includes a fluidized bed for receiving a soil sample. The fluidized bed may be in communication with a vacuum for drawing air through the fluidized bed and suspending particulate matter of the soil sample in the air. In a method of sampling, the air may be drawn across a filter, separating the particulate matter. Optionally, a baffle or a cyclone may be included within the fluidized bed for disentrainment, or dedusting, so only the finest particulate matter, including asbestos, will be trapped on the filter. The filter may be removable, and may be tested to determine the content of asbestos and other hazardous particulate matter in the soil sample.

O'Brien, Barry H. (Idaho Falls, ID) [Idaho Falls, ID; Ritter, Paul D. (Idaho Falls, ID) [Idaho Falls, ID

2010-02-16

113

NID Copper Sample Analysis  

SciTech Connect

The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

Kouzes, Richard T.; Zhu, Zihua

2011-09-12

114

Mobility, bioavailability, and toxic effects of cadmium in soil samples  

Microsoft Academic Search

Total concentration is not a reliable indicator of metal mobility or bioavailability in soils. The physicochemical form determines the behavior of metals in soils and hence the toxicity toward terrestrial biota. The main objectives of this study were the application and comparison of three approaches for the evaluation of cadmium behavior in soil samples. The mobility and bioavailability of cadmium

Z. Prokop; P Cupr; V Zlevorova-Zlamalikova; J Komarek; L Dusek; I Holoubek

2003-01-01

115

Nutrient Management Module No. 1 Soil Sampling and  

E-print Network

fertilizer costs, and low commodity prices, it is very important to apply the correct amount of fertilizer Background Soil sampling and testing provide an inventory of nutrients in the soil. Soil testing for nitrogen) and micronutri- ents (boron, chlorine, copper, iron, manga- nese, molybdenum, nickel and zinc) are sometimes

Lawrence, Rick L.

116

TEGA Sample Delivery and Analysis (Animation)  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site] Click on image for animation

This animation shows NASA's Phoenix Lander's Robotic Arm scoop delivering a sample to the Thermal and Evolved-Gas Analyzer (TEGA) and how samples are analyzed within the instrument.

TEGA has eight tiny ovens for measuring constituents in the atmosphere and in the soil, including possible organic constituents and the melting point of ice.

The scoop drops soil onto a fine mesh screen between TEGA's open doors. Some soil passes through the screen, which vibrates, into the throat of a funnel, where a spinning device called the 'whirligig' aids delivery into one half of a tiny oven. The soil sample is represented here by the white chip. The filled oven half then rotates and mates with the other oven half, closing the complete oven so sample heating can begin. The purple coil in this animation is the spring that moves the oven halves together.

Heating occurs at successively higher temperatures over several days. The energy required to heat the sample is measured to discover its thermal properties. Gases driven off during sample heating pass through tubing to the mass spectrometer for analysis.

Note that the exterior doors above the screen never close after sample delivery.

The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASAaE(TM)s Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

2008-01-01

117

Animation of TEGA Sample Delivery and Analysis  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site] Click on image to view the animation

This animation shows NASA's Phoenix Lander's Robotic Arm scoop delivering a sample to the Thermal and Evolved-Gas Analyzer (TEGA) and how samples are analyzed within the instrument.

TEGA has eight tiny ovens for measuring constituents in the atmosphere and in the soil, including possible organic constituents and the melting point of ice.

The scoop drops soil onto a fine mesh screen between TEGA's open doors. Some soil passes through the screen, which vibrates, into the throat of a funnel, where a spinning device called the 'whirligig' aids delivery into one half of a tiny oven. The soil sample is represented here by the white chip. The filled oven half then rotates and mates with the other oven half, closing the complete oven so sample heating can begin. The purple coil in this animation is the spring that moves the oven halves together.

Heating occurs at successively higher temperatures over several days. The energy required to heat the sample is measured to discover its thermal properties. Gases driven off during sample heating pass through tubing to the mass spectrometer for analysis.

Note that the exterior doors above the screen never close after sample delivery.

The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

2008-01-01

118

Comparison of soil solution sampling techniques to assess metal fluxes from contaminated soil to groundwater.  

PubMed

The unsaturated zone plays a major role in elemental fluxes in terrestrial ecosystems. A representative chemical analysis of soil pore water is required for the interpretation of soil chemical phenomena and particularly to assess Trace Elements (TEs) mobility. This requires an optimal sampling system to avoid modification of the extracted soil water chemistry and allow for an accurate estimation of solute fluxes. In this paper, the chemical composition of soil solutions sampled by Rhizon® samplers connected to a standard syringe was compared to two other types of suction probes (Rhizon®?+?vacuum tube and Rhizon®?+?diverted flow system). We investigated the effects of different vacuum application procedures on concentrations of spiked elements (Cr, As, Zn) mixed as powder into the first 20 cm of 100-cm columns and non-spiked elements (Ca, Na, Mg) concentrations in two types of columns (SiO2 sand and a mixture of kaolinite?+?SiO2 sand substrates). Rhizon® was installed at different depths. The metals concentrations showed that (i) in sand, peak concentrations cannot be correctly sampled, thus the flux cannot be estimated, and the errors can easily reach a factor 2; (ii) in sand?+?clay columns, peak concentrations were larger, indicating that they could be sampled but, due to sorption on clay, it was not possible to compare fluxes at different depths. The different samplers tested were not able to reflect the elemental flux to groundwater and, although the Rhizon®?+?syringe device was more accurate, the best solution remains to be the use of a lysimeter, whose bottom is kept continuously at a suction close to the one existing in the soil. PMID:25277861

Coutelot, F; Sappin-Didier, V; Keller, C; Atteia, O

2014-12-01

119

GEOSTATISTICAL ANALYSIS OF PALMERTON SOIL SURVEY DATA  

EPA Science Inventory

The paper describes statistical and geostatistical analyses of data from a soil sampling survey. Soil sampling was performed, in October and November 1985, to obtain information on the level, extent, and spatial structure of metal pollution of the soil in and around the Palmerton...

120

Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples  

NASA Astrophysics Data System (ADS)

Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ˜0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds.

Fujishiro, F.; Ishii, K.; Matsuyama, S.; Arai, H.; Ishizaki, A.; Osada, N.; Sugai, H.; Kusano, K.; Nozawa, Y.; Yamauchi, S.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Koshio, S.; Watanabe, K.; Suzuki, Y.

2014-01-01

121

NID Copper Sample Analysis  

SciTech Connect

The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

Kouzes, Richard T.; Zhu, Zihua

2011-02-01

122

A computer program integrating a multichannel analyzer with gamma analysis for the estimation of {sup 226} Ra concentration in soil samples  

SciTech Connect

A new hardware/software system has been implemented using the existing three-regions-of-interest method for determining the concentration of {sup 226}Ra in soil samples for the Pollutant Assessment Group of the Oak Ridge National Laboratory. Consisting of a personal computer containing a multichannel analyzer, the system utilizes a new program combining the multichannel analyzer with a program analyzing gamma-radiation spectra for {sup 226}Ra concentrations. This program uses a menu interface to minimize and simplify the tasks of system operation.

Wilson, J. E.

1992-08-01

123

A computer program integrating a multichannel analyzer with gamma analysis for the estimation of sup 226 Ra concentration in soil samples  

SciTech Connect

A new hardware/software system has been implemented using the existing three-regions-of-interest method for determining the concentration of {sup 226}Ra in soil samples for the Pollutant Assessment Group of the Oak Ridge National Laboratory. Consisting of a personal computer containing a multichannel analyzer, the system utilizes a new program combining the multichannel analyzer with a program analyzing gamma-radiation spectra for {sup 226}Ra concentrations. This program uses a menu interface to minimize and simplify the tasks of system operation.

Wilson, J. E.

1992-08-01

124

Sample Analysis At Mars  

NASA Technical Reports Server (NTRS)

The next landed missions to Mars, such as the planned Mars Science Laboratory and ExoMars, will require sample analysis capabilities refined well beyond what has been flown to date. A key science objective driving this requirement is the determination of the carbon inventory of Mars, and particularly the detection of organic compounds. While the gas chromatograph mass spectrometers (GCMS) on the Viking landers did not detect any indigenous organics in near surface fines, it is possible that these measurements were not representative of Mars on the whole. That is, those compounds to which the GC/MS was sensitive would likely not have survived the strong oxidative decomposition in the regolith at the landing sites in question. The near surface fines could very well contain a significant quantity of refractory compounds that would not have been volatilized in the sample ovens on Viking. It is also possible that volatile organics exist on Mars in sedimentary, subsurface, or polar niches.

Brinckerhoff, W. B.; Mahaffy, P. R.; Cabane, M.; Atreya, S. K.; Coll, P.; Cornish, T. J.; Harpold, D. N.; Israel, G.; Niemann, H. B.; Owen, T.

2003-01-01

125

Sample Analysis at Mars  

NASA Technical Reports Server (NTRS)

The next landed missions to Mars, such as the planned Mars Science Laboratory and ExoMars, will require sample analysis capabilities refined well beyond what has been flown to date. A key science objective driving this requirement is the determination of the carbon inventory of Mars, and particularly the detection of organic compounds. While the gas chromatograph mass spectrometers (GC/MS) on the Viking landers did not detect any indigenous organics in near surface fines, it is possible that these measurements were not representative of Mars on the whole. That is, those compounds to which the GC/MS was sensitive would likely not have survived the strong oxidative decomposition in the regolith at the landing sites in question. The near surface fines could very well contain a significant quantity of refractory compounds that would not have been volatilized in the sample ovens on Viking. It is also possible that volatile organics exist on Mars in sedimentary, subsurface, or polar niches.

Brinckerhoff, W. B.; Mahaffy, P. R.; Cabane, M.; Atreya, S. K.; Coll, P.; Cornish, T. J.; Harpold, D. N.; Israel, G.; Niemann, H. B.; Owen, T.

2003-01-01

126

Method of soil sampling following subsurface banding of solid manure  

Technology Transfer Automated Retrieval System (TEKTRAN)

Soil sampling guidelines do not exist for fields fertilized with solid manures applied in bands. The objective of this work was to describe the distribution of mineral nutrients and total C and propose a method of taking soil samples that reflects the fertility level of a field following manure app...

127

Vertical ionic migration: mechanisms, soil anomalies, and sampling depth for mineral exploration  

Microsoft Academic Search

Field studies, in particular mobile metal ion analysis of soil samples taken over mineralization, suggest that subtle geochemical anomalies exist above mineral deposits which are demonstrably covered by allochthonous material such as glacial till. Empirical observations suggest that the anomalies are preferentially located 10 to 25 cm below the soil interface, comprise elements contained in ore, and are located directly

A. W. Mann; R. D. Birrell; M. A. F. Fedikow; H. A. F. de Souza

2005-01-01

128

High throughput phospholipid fatty acid analysis of soils  

Technology Transfer Automated Retrieval System (TEKTRAN)

Phospholipid fatty acid (PLFA) analysis is widely used to characterize microbial communities in soil and other types of environmental samples. The analysis involves many steps and, as typically performed, 1.5 to 2 days are required to prepare a batch of approximately 20 samples, depending on the exa...

129

How Well Does Zone Sampling Based On Soil Electrical Conductivity Maps Represent Soil Variability  

Technology Transfer Automated Retrieval System (TEKTRAN)

Zone soil sampling is a method in which a field sampling is based on identifying homogenous areas using an easy to measure ancillary attribute such as apparent soil electrical conductivity (ECa). This study determined if ECa-directed zone sampling in two fields in northeastern Colorado could correc...

130

Poly-Use Multi-Level Sampling Rod to Measure Soil-Gas Exchange in Glacier Forefield Soils  

NASA Astrophysics Data System (ADS)

The forefields of receding glaciers provide unique opportunities to investigate initial microbial processes in the vadose zone and their role in soil formation. Various studies revealed a surprising diversity of microbes and of their strategies to cope with the extreme conditions in this C- and N-limited environment. In the forefield of receding glaciers as well as in developed soils microorganisms are the driving force for the exchange of greenhouse gases between soil and atmosphere. However, in young and developing soils, little is known about soil-gas exchange and the activities of the involved microorganisms. Knowledge of soil-gas composition and gas diffusion at various depths in a soil profile allows for the precise calculation of gas fluxes among different depths within the vadose zone and at the soil-atmosphere boundary. The acquisition of undisturbed soil-gas samples at a high depth-resolution is difficult, and the estimation of soil-gas diffusion coefficients requires knowledge of volumetric water content at the exact location of gas sampling. By using conventional techniques, e.g. the burial of permanent probes, these tasks are virtually impossible to accomplish in a remote glacier forefield dominated by rocks and boulders. We developed a novel poly-use multi-level sampling rod (PULSAR) primarily consisting of two devices: a newly-designed multi-level sampler (MLS) for soil-gas sampling, and a commercially available profile probe (PR2) for non-invasive multi-level water content measurements. These devices fit into the same access tubes (ATs) of 1.1m length, which need to be pre-installed into the soil with the help of a steel rod. We modified the ATs to feature eight 1mm diameter holes each at 20 sampling depths in intervals of 5cm. Our MLS can be inserted into the ATs and allows for the selective extraction of soil-gas from each sampling depth. The interspaces between the sampling depths are sealed by inflatable rubber membranes for the time of sampling. Once soil-gas has been extracted, soil water content can be measured with the PR2 probe at each sampled depth. After gas concentration analysis, knowledge of water content and soil-gas composition at 20 different depths allows for the quantification of depth-resolved soil-gas fluxes and calculation of microbial production and degradation rates in situ with minimal disturbance. The PULSAR concept was applied to investigate greenhouse gas fluxes in the forefields of two receding glaciers on calcareous and siliceous bedrock in the Swiss Alps. We installed a total of 33 ATs distributed among three soil-age groups of approx. 10, 40 and 70 years. Soil-gas sampling and water content measurements were performed twice during the snow-free season. In between sampling, the ATs were sealed with inflatable rubber tubes featuring iButton® temperature loggers. The resulting data will provide valuable insights into the development of gas exchange of these young soils, while illustrating the feasibility of the PULSAR in soils with high skeleton contents.

Nauer, P. A.; Schroth, M. H.; Zeyer, J. A.

2012-12-01

131

Characterization of Apollo Bulk Soil Samples Under Simulated Lunar Conditions  

NASA Astrophysics Data System (ADS)

Remote observations provide key insights into the composition and evolution of planetary surfaces. A fundamentally important component to any remote compositional analysis of planetary surfaces is laboratory measurements of well-characterized samples measured under the appropriate environmental conditions. The vacuum environment of airless bodies like the Moon creates a steep thermal gradient in the upper hundreds of microns of regolith. Lab studies of particulate rocks and minerals as well as selected lunar soils under vacuum and lunar-like conditions have identified significant effects of this thermal gradient on thermal infrared (TIR) spectral measurements [e.g. Logan et al. 1973, Salisbury and Walter 1989, Thomas et al. 2012, Donaldson Hanna et al. 2012]. Such lab studies demonstrate the high sensitivity of TIR emissivity spectra to environmental conditions under which they are measured. To best understand the effects of the near surface-environment of the Moon, a consortium of four institutions with the capabilities of characterizing lunar samples was created. The goal of the Thermal Infrared Emission Studies of Lunar Surface Compositions Consortium (TIRES-LSCC) is to characterize Apollo bulk soil samples with a range of compositions and maturities in simulated lunar conditions to provide better context for the spectral effects due to varying compositions and soil maturity as well as for the interpretation of data obtained by the LRO Diviner Lunar Radiometer and future lunar and airless body thermal emission spectrometers. An initial set of thermal infrared emissivity measurements of the bulk lunar soil samples will be made in three of the laboratories included in the TIRES-LSCC: the Asteroid and Lunar Environment Chamber (ALEC) in RELAB at Brown University, the Simulated Lunar Environment chamber in the Planetary Spectroscopy Facility (PSF) at the University of Oxford, and the Simulated Airless Body Emission Laboratory (SABEL) at the Jet Propulsion Laboratory (JPL). While the design and workings of each chamber are slightly different, the chambers are functionally similar. In each chamber, we simulate the lunar environment by: (1) pumping the chambers to vacuum pressures (<10-3 mbar), which is sufficient to simulate lunar heat transport processes within the sample, (2) cooling the chambers with liquid nitrogen to simulate the cold space environment that the Moon radiates into, and (3) heating the samples from below, above, or both to set-up thermal gradients similar to those experienced in the upper hundreds of microns at the lunar surface. Each laboratory and chamber has its own strengths and collaborating amongst multiple laboratories will provide us the unique opportunity to do a rigorous characterization of the lunar samples as well as cross-laboratory calibrations. Laboratory measurements of bulk lunar soil samples are compared with Diviner data to understand: (1) how to accurately simulate conditions of the near-surface environment of the Moon in the lab and (2) the difference between returned samples and undisturbed lunar soils in their native setting. Both are integral for constraining thermally derived compositions and properties of the lunar surface from current (Diviner) and future TIR datasets.

Donaldson Hanna, K. L.; Pieters, C. M.; Thomas, I.; Bowles, N. E.; Greenhagen, B. T.

2013-12-01

132

EFFICIENCY OF SOIL CORE AND SOIL-PORE WATER SAMPLING SYSTEMS  

EPA Science Inventory

A laboratory column and field lysimeter study were conducted to evaluate the efficiency of soil core and soil-pore water samples to detect the migration of the organic components of land treated wastes through soil. In the laboratory, column leaching studies were performed by pac...

133

Revisiting sample entropy analysis  

NASA Astrophysics Data System (ADS)

We modify the definition of sample entropy (SaEn) by incorporating a time delay between the components of the block (from which the densities are estimated) and show that the modified method characterizes the complexity of the system better than the original version. We apply the modified SaEn to the standard deterministic systems and stochastic processes (uncorrelated and long range correlated (LRC) processes) and show that the underlying complexity of the system is better quantified by the modified method. We extend this analysis to the RR intervals of the normal and congestive heart failure (CHF) subjects (available via www.physionet.org) and show that there is a good degree of separation between the two groups.

Govindan, R. B.; Wilson, J. D.; Eswaran, H.; Lowery, C. L.; Preißl, H.

2007-03-01

134

Extraction and determination of sulfonylurea herbicides in water and soil samples by using ultrasound-assisted surfactant-enhanced emulsification microextraction and analysis by high-performance liquid chromatography.  

PubMed

An ultrasound-assisted surfactant-enhanced emulsification microextraction (UASEME) with low-density extraction solvents was developed for the extraction of sulfonylurea herbicides from water and soil samples prior to high-performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). In this technique, a surfactant was used as emulsifier which could enhance the dispersion of water-immiscible extraction solvent into aqueous phase and was favorable for the mass-transfer of the analytes from aqueous phase to organic phase. The target analytes were extracted into an extraction phase (Aliquat-336 in 1-octanol) and dispersed in an aqueous solution. After extraction and phase separation, the organic solvent on top of the solution was withdrawn into a syringe and 20 µL of it was injected into a HPLC instrument for analysis. Influential factors in extraction were investigated and optimized. Under optimum experimental conditions, calibration curve was linear in the concentration range from 1 to 100 µg/L, with coefficients of estimation (R(2) values) varying from 0.9928 to 0.9952, and satisfactory repeatabilities (4.7soil samples, was studied. The obtained results indicated that the proposed method is efficient, fast and inexpensive for extraction and determination of sulfonylurea herbicides in environmental aqueous and soil samples. PMID:25463855

Ghobadi, Masoomeh; Yamini, Yadollah; Ebrahimpour, Behnam

2015-02-01

135

Relationship of soil test phosphorus and sampling depth to runoff phosphorus in calcareous and noncalcareous soils.  

PubMed

A study was initiated to investigate the relationship between soil test P and depth of soil sampling with runoff losses of dissolved molybdate reactive phosphorus (DMRP). Rainfall simulations were conducted on two noncalcareous soils, a Windthorst sandy loam (fine, mixed, thermic Udic Paleustalf) and a Blanket clay loam (fine, mixed, thermic Pachic Argiustoll), and two calcareous soils, a Purves clay (clayey, smectitic, thermic Lithic Calciustoll) and a Houston Black clay (fine, smectitic, thermic Udic Haplustert). Soil (0- to 2.5-, 0- to 5-, and 0- to 15-cm depths) and runoff samples were collected from each of the four soils in permanent pasture exhibiting a wide range in soil test P levels (as determined by Mehlich III and distilled water extraction) due to prior manure applications. Simulated rain was used to produce runoff, which was collected for 30 min. Good regression equations were derived relating soil test P level to runoff DMRP for all four soil types, as indicated by relatively high r2 values (0.715 to 0.961, 0- to 5-cm depth). Differences were observed for the depth of sampling, with the most consistent results observed with the 0- to 5-cm sampling depth. Runoff DMRP losses as a function of the concentration of P in soil were lower in calcareous soils (maximum of 0.74 mg L(-1)) compared with noncalcareous soils (maximum of 1.73 mg L(-1)). The results indicate that a soil test for environmental P could be developed, but it would require establishing different soil test P level criteria for different soils or classes of soils. PMID:12175059

Torbert, H A; Daniel, T C; Lemunyon, J L; Jones, R M

2002-01-01

136

Numerical analysis of granular soil fabrics  

NASA Astrophysics Data System (ADS)

Soil stability strongly depends on the material strength that is in general influenced by deformation processes and vice versa. Hence, investigation of material strength is of great interest in many geoscientific studies where soil deformations occur, e.g. the destabilization of slopes or the evolution of fault gouges. Particularly in the former case, slope failure occurs if the applied forces exceed the shear strength of slope material. Hence, the soil resistance or respectively the material strength acts contrary to deformation processes. Besides, geotechnical experiments, e.g. direct shear or ring shear tests, suggest that shear resistance mainly depends on properties of soil structure, texture and fabric. Although laboratory tests enable investigations of soil structure and texture during shear, detailed observations inside the sheared specimen during the failure processes as well as fabric effects are very limited. So, high-resolution information in space and time regarding texture evolution and/or grain behavior during shear is refused. However, such data is essential to gain a deeper insight into the key role of soil structure, texture, etc. on material strength and the physical processes occurring during material deformation on a micro-scaled level. Additionally, laboratory tests are not completely reproducible enabling a detailed statistical investigation of fabric during shear. So, almost identical setups to run methodical tests investigating the impact of fabric on soil resistance are hard to archive under laboratory conditions. Hence, we used numerical shear test experiments utilizing the Discrete Element Method to quantify the impact of different material fabrics on the shear resistance of soil as this granular model approach enables to investigate failure processes on a grain-scaled level. Our numerical setup adapts general settings from laboratory tests while the model characteristics are fixed except for the soil structure particularly the used grain shapes. So, ideal round or stick- and plate-shaped grains were utilized to represent natural silts or clays to test two end-members. To quantify texture influences on soil strength, physical parameters, e.g. soil resistance, were calculated during deformation process. Furthermore, fabric analysis during shear reveals new information on detailed pore space regarding distribution and shape of voids. For this, a three-dimensional visualization of pore space is realized with the Visualization Toolkit (VTK) that allows the volume calculation and hence a quantification of single voids with progressive deformation. As a result, imaging of particle contact distribution and particle orientations within samples show significant changes with ongoing strain such as strong variations in material fabric and particle re-organization and therewith significant structural changes. These findings confirm that in general grain shape and its factor of soil fabric is not negligible for soil resistance and hence soil strength. This is notably affected by the deformation behavior of granular matter. With the broad investigation of the three most important factors that specify fabric behavior, this study attains a comprehensive view evaluating the impact of fabric on soil strength.

Torbahn, L.; Huhn, K.

2012-04-01

137

ASTM sampling methods and analytical validation for lead in paint, dust, soil, and air  

SciTech Connect

ASTM Subcommittee E06.23 on Abatement/Mitigation of Lead Hazards has developed a number of standards that are concerned with the sampling of leas in environmental media, namely paint, dust, soil and airborne particulate. An ASTM practice for the collection of airborne particulate lead in the workplace has been published. New ASTM standards for the collection of dry paint film samples, surface soil samples, and surface dust wipe samples for subsequent lead analysis have also been promulgated. Other draft standards pertinent to lead sampling are under development. The ASTM standards concerned with lead sample collection are accompanied by separate sample preparation standard practices and a standard analysis method. Sample preparation and analytical methods have been evaluated by interlaboratory testing; such analyses may be used to assess the efficacy of sampling protocols.

Ashley, K.; Schlecht, P.C. [Dept. of Health and Human Services, Cincinnati, OH (United States); Song, R.; Feng, A. [Computer Sciences Corp., Cincinnati, OH (United States); DeWalt, G. [QuanTech, Rosslyn, VA (United States); McKnight, M.E. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1996-12-31

138

Determining the relative importance of soil sample locations to predict risk of child lead exposure.  

PubMed

Soil lead in urban neighborhoods is a known predictor of child blood lead levels. In this paper, we address the question where one ought to concentrate soil sample collection efforts to efficiently predict children at-risk for soil Pb exposure. Two extensive data sets are combined, including 5467 surface soil samples collected from 286 census tracts, and geo-referenced blood Pb data for 55,551 children in metropolitan New Orleans, USA. Random intercept least squares, random intercept logistic, and quantile regression results indicate that soils collected within 1m adjacent to residential streets most reliably predict child blood Pb outcomes in child blood Pb levels. Regression decomposition results show that residential street soils account for 39.7% of between-neighborhood explained variation, followed by busy street soils (21.97%), open space soils (20.25%), and home foundation soils (18.71%). Just as the age of housing stock is used as a statistical shortcut for child risk of exposure to lead-based paint, our results indicate that one can shortcut the characterization of child risk of exposure to neighborhood soil Pb by concentrating sampling efforts within 1m and adjacent to residential and busy streets, while significantly reducing the total costs of collection and analysis. This efficiency gain can help advance proactive upstream, preventive methods of environmental Pb discovery. PMID:23973618

Zahran, Sammy; Mielke, Howard W; McElmurry, Shawn P; Filippelli, Gabriel M; Laidlaw, Mark A S; Taylor, Mark P

2013-10-01

139

In situ analysis of Mars soil sample with the sam gcms instrumentation onboard Curiosity : interpretation and comparison of measurements done at Rocknest and Yelloknife bay sites  

NASA Astrophysics Data System (ADS)

The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was chosen to achieve all the measurements done up today, as it was designed for the separation of a wide range of volatile organic molecules. Three solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, and two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013), Science, [4] Ming D. et al. (2013), Science, 32, 64-67. Acknowledgements: SAM-GC team acknowledges support from the French Space Agency (CNES), French National Programme of Planetology (PNP), National French Council (CNRS), Pierre Simon Laplace Institute, Institut Universitaire de France (IUF) and ESEP Labex.

Szopa, Cyril; Coll, Patrice; Cabane, Michel; Coscia, David; Buch, Arnaud; Francois, Pascaline; Millan, Maeva; Teinturier, Sammy; Navarro-Gonzales, Rafael; Glavin, Daniel; Freissinet, Caro; Steele, Andrew; Eigenbrode, Jen; Mahaffy, Paul

2014-05-01

140

Tracking quicksilver: estimation of mercury waste from consumer products and subsequent verification by analysis of soil, water, sediment, and plant samples from the Cebu City, Philippines, landfill.  

PubMed

Source attribution of mercury (Hg) is critical for policy development to minimize the impact of Hg in wastes. Mercury content of consumer products and its subsequent release into the waste stream of Cebu City, Philippines, is estimated through surveys that employed validated, enumerator-administered questionnaires. Initially, a citywide survey (n?=?1636) indicates that each household annually generates 1.07 ppm Hg (i.e., mg Hg/kg waste) and that linear and compact fluorescent lamps (17.2 %) and thermometers (52.1 %) are the major sources of Hg. A subsequent survey (n?=?372) in the vicinity of the city's municipal solid waste landfill shows that residents in the area annually generate 0.38 ppm Hg per household, which is less than the citywide mean; surprisingly though, less affluent respondents living closer to the landfill site reported more Hg from thermometers and sphygmomanometers. Analysis of collected soil (0.238 ppm), leachate water (6.5 ppb), sediment (0.109 ppm), and three plants (0.393 to 0.695 ppm) shows no significant variation throughout five stations in and around the landfill site, although the period of collection is significant for soil (P?=?0.001) and Cenchrus echinatus (P?=?0.016). Detected Hg in the landfill is considerably less than the annual estimated release, indicating that there is minimal accumulation of Hg in the soil or in plants. As a result of this project, a policy brief has been provided to the Cebu City council in aid of hazardous waste legislation. PMID:25712628

Buagas, Dale Jo B; Megraso, Cristi Cesar F; Namata, John Darwin O; Lim, Patrick John Y; Gatus, Karen P; Cañete, Aloysius M L

2015-03-01

141

The influence of sample drying procedures on mercury concentrations analyzed in soils.  

PubMed

Methods commonly used for soil sample preparation may be unsuitable for measuring Hg concentrations due to the possible loss of volatile Hg species when drying at higher temperatures. Here, the effects of freeze-drying, air drying at 25°C and oven-drying at 105°C on Hg concentrations in two soil types and three standard reference materials were tested. Two soils with different levels of Hg contamination and three reference materials were examined. A systematic decrease of Hg concentrations was observed in air-dried (24 %) and oven-dried (3 %) contaminated upland soils in comparison to freeze-dried control samples. The 105°C oven drying also led to loss of Hg from reference materials (5 %-8 % in comparison with the certified Hg concentration). Different results from the drying of sterilized reference materials and natural soils were probably related to the extent of microbiological activity, demonstrating the importance of this parameter in sample preparation for Hg analysis. PMID:25786366

Hojdová, Maria; Rohovec, Jan; Chrastný, Vladislav; Penížek, Vít; Navrátil, Tomáš

2015-05-01

142

Analyses and description of soil samples from Mountain Lake and Peters Mountain Wilderness Study areas, Virginia and West Virginia  

USGS Publications Warehouse

Semiquantitative emission spectrographic analyses for 30 elements and atomic absorption analysis for zinc on 98 soil samples are reported here in detail. Location for all samples are in Universal Transverse Mercator (UTM) coordinates. A few samples of soil developed on Lower Devonian sandstone and chert contain more barium and zinc than soils on other formations but do not suggest the occurrence of economic concentrations of either element.

Motooka, J.M.; Curtis, Craig A.; Lesure, Frank Gardner

1978-01-01

143

Quantitative passive soil vapor sampling for VOCs--part 3: field experiments.  

PubMed

Volatile organic compounds (VOCs) are commonly associated with contaminated land and may pose a risk to human health via subsurface vapor intrusion to indoor air. Soil vapor sampling is commonly used to assess the nature and extent of VOC contamination, but can be complicated because of the wide range of geologic material permeability and moisture content conditions that might be encountered, the wide variety of available sampling and analysis methods, and several potential causes of bias and variability, including leaks of atmospheric air, adsorption-desorption interactions, inconsistent sampling protocols and varying levels of experience among sampling personnel. Passive sampling onto adsorbent materials has been available as an alternative to conventional whole-gas sample collection for decades, but relationships between the mass sorbed with time and the soil vapor concentration have not been quantitatively established and the relative merits of various commercially available passive samplers for soil vapor concentration measurement is unknown. This paper presents the results of field experiments using several different passive samplers under a wide range of conditions. The results show that properly designed and deployed quantitative passive soil vapor samplers can be used to measure soil vapor concentrations with accuracy and precision comparable to conventional active soil vapor sampling (relative concentrations within a factor of 2 and RSD comparable to active sampling) where the uptake rate is low enough to minimize starvation and the exposure duration is not excessive for weakly retained compounds. PMID:24513784

McAlary, Todd; Groenevelt, Hester; Nicholson, Paul; Seethapathy, Suresh; Sacco, Paolo; Crump, Derrick; Tuday, Michael; Hayes, Heidi; Schumacher, Brian; Johnson, Paul; Górecki, Tadeusz; Rivera-Duarte, Ignacio

2014-03-01

144

Using Soil Apparent Electrical Conductivity to Optimize Sampling of Soil Penetration Resistance and to Improve the Estimations of Spatial Patterns of Soil Compaction  

PubMed Central

This study presents a combined application of an EM38DD for assessing soil apparent electrical conductivity (ECa) and a dual-sensor vertical penetrometer Veris-3000 for measuring soil electrical conductivity (ECveris) and soil resistance to penetration (PR). The measurements were made at a 6?ha field cropped with forage maize under no-tillage after sowing and located in Northwestern Spain. The objective was to use data from ECa for improving the estimation of soil PR. First, data of ECa were used to determine the optimized sampling scheme of the soil PR in 40 points. Then, correlation analysis showed a significant negative relationship between soil PR and ECa, ranging from ?0.36 to ?0.70 for the studied soil layers. The spatial dependence of soil PR was best described by spherical models in most soil layers. However, below 0.50?m the spatial pattern of soil PR showed pure nugget effect, which could be due to the limited number of PR data used in these layers as the values of this parameter often were above the range measured by our equipment (5.5?MPa). The use of ECa as secondary variable slightly improved the estimation of PR by universal cokriging, when compared with kriging. PMID:25610899

Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Bueno Lema, Javier; Valcárcel Armesto, Montserrat; Silva, Ênio Farias França e

2014-01-01

145

Soil Sampling Plan for the transuranic storage area soil overburden and final report: Soil overburden sampling at the RWMC transuranic storage area  

SciTech Connect

This Soil Sampling Plan (SSP) has been developed to provide detailed procedural guidance for field sampling and chemical and radionuclide analysis of selected areas of soil covering waste stored at the Transuranic Storage Area (TSA) at the Idaho National Engineering Laboratory`s (INEL) Radioactive Waste Management Complex (RWMC). The format and content of this SSP represents a complimentary hybrid of INEL Waste Management--Environmental Restoration Program, and Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Remedial Investigation/Feasibility Study (RI/FS) sampling guidance documentation. This sampling plan also functions as a Quality Assurance Project Plan (QAPP). The QAPP as a controlling mechanism during sampling to ensure that all data collected are valid, reliabile, and defensible. This document outlines organization, objectives and quality assurance/quality control (QA/QC) activities to achieve the desired data quality goals. The QA/QC requirements for this project are outlined in the Data Collection Quality Assurance Plan (DCQAP) for the Buried Waste Program. The DCQAP is a program plan and does not outline the site specific requirements for the scope of work covered by this SSP.

Stanisich, S.N.

1994-12-01

146

Mercury speciation in contaminated soils by thermal release analysis  

Microsoft Academic Search

Thermal release analysis of mercury species in contaminated soils was performed by temperature controlled continuous heating of the samples in a furnace coupled to an Atomic Absorption Spectrophotometer (AAS). It was shown that this method allows the identification of different redox states of Hg-species through their characteristic releasing temperature ranges. The method was applied to Hg-contaminated samples from an inactive

Cláudia Carvalhinho Windmöller; Rolf-Dieter Wilken; Wilson De Figueiredo Jardim

1996-01-01

147

Quantitative passive soil vapor sampling for VOCs--part 1: theory.  

PubMed

Volatile organic compounds are the primary chemicals of concern at many contaminated sites and soil vapor sampling and analysis is a valuable tool for assessing the nature and extent of contamination. Soil gas samples are typically collected by applying vacuum to a probe in order to collect a whole-gas sample, or by drawing gas through a tube filled with an adsorbent (active sampling). There are challenges associated with flow and vacuum levels in low permeability materials, and leak prevention and detection during active sample collection can be cumbersome. Passive sampling has been available as an alternative to conventional gas sample collection for decades, but quantitative relationships between the mass of chemicals sorbed, the soil vapor concentrations, and the sampling time have not been established. This paper presents transient and steady-state mathematical models of radial vapor diffusion to a drilled hole and considerations for passive sampler sensitivity and practical sampling durations. The results indicate that uptake rates in the range of 0.1 to 1 mL min(-1) will minimize the starvation effect for most soil moisture conditions and provide adequate sensitivity for human health risk assessment with a practical sampling duration. This new knowledge provides a basis for improved passive soil vapour sampler design. PMID:24469235

McAlary, Todd; Wang, Xiaomin; Unger, Andre; Groenevelt, Hester; Górecki, Tadeusz

2014-03-01

148

EG & G Mount Plant, December 1990 and January 1991, D & D soil box sampling  

SciTech Connect

Six hundred eighty-two (682) containers of soil were generated at Mound Plant between April 1 and October 31, 1990 as a result of the excavation of soils containing plutonium-238 at two ongoing Decontamination and Decommissioning (D&D) Program sites; these areas are known as Area 14, the waste transfer system (WTS) hillside, and Area 17, the Special Metallurgical (SM) Building Area. The soils from these areas are part of the Mound Plant waste stream number AMDM-000000010, Contaminated Soil, and are proposed for shipment to the Nevada Test Site (NTS) for disposal as low-level radioactive waste. These containers of soil are currently in storage at Mound Plant. The purpose of this sampling and analysis was to demonstrate that the D&D soils comply with the waste acceptance requirements of the NTS, as presented In Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements (DOE 1988). The sealed waste packages, constructed of wood or metal, are currently being stored In Building 31 and at other locations throughout the Mound Plant. For additional historical information concerning the D&D soils, Including waste stream evaluations and past sampling data see the Sampling and Analysis Plan for Mound Plant D&D Soils Packages (EG&G 1991).

NONE

1991-04-01

149

Improving the Way You Soil Sample Soil sampling is generally not practiced often enough by Texas producers, and the usual  

E-print Network

. However, since phosphorus fertilizer is often band-applied, it is important that all positions. Dryland farms should be sampled for nitrogen every 2-3 years. Soil sampling and testing for phosphorus sampling can result in incorrect fertilizer applications, loss of production and profits, as well

Mukhtar, Saqib

150

Sampling and Analysis Instruction for Borehole Sampling at 118-B-1 Burial Ground  

SciTech Connect

The Washington Closure Hanford (WCH) Field Remediation Project has removed all of the disposed materials and contaminated soil from the 118-B-1 Burial Ground with the exception of tritium-contaminated soil that is believed to extend from the bottom of the present excavation to groundwater and is believed to contribute to tritium contamination observed at down-gradient monitoring Well 199-B8-6. This sampling and analysis instruction (SAI) provides the requirements for sample collection and laboratory analysis for characterization of the vertical distribution of tritium contamination in the vadose zone soil below the 118-B-1 Burial Ground remedial action excavation.

W. S. Thompson

2007-04-02

151

General Sample Taking Information Specific directions for collecting soil samples are given on the individual Soil Test Information Forms.  

E-print Network

cup of dry soil in a clean zip-lock bag, labeled with a name unique to that sample. (e.g., Front lawn efficiently. · A good sample is dry, and does not contain leaves, grass, roots, moss, rocks or worms. · The form and check should NOT be put directly in the bag with wet soil. · There is no need to staple

New Hampshire, University of

152

COMPOST ANALYSIS Analysis provided by the Soil Control Laboratory (Watsonville, CA) 2005  

E-print Network

COMPOST ANALYSIS Analysis provided by the Soil Control Laboratory (Watsonville, CA) 2005 Total N.1 Ash % 58.8 80.3 56.9 81.4 60 80.2 62.2 83.6 59.7 82.7 C:N Ratio ratio 13 13 11 11 13 13 12 12 12 12 STA Sample 3 #12;COMPOST ANALYSIS Analysis provided by the Soil Control Laboratory (Watsonville, CA

Mukhtar, Saqib

153

Technical change to the work plan for the remedial investigation of the Salmon Site, Lamar County, Mississippi: Sampling and analysis plan background soil and groundwater study  

SciTech Connect

The Salmon Site, formerly known as the Tatum Dome Test Site, is located in south-central Mississippi, southwest of the city of Hattiesburg, in Lamar County. Between 1964 and 1970, two nuclear and two non-nuclear gas explosions were conducted deep underground in the Tatum Salt Dome beneath the site. The tests were performed as part of the former US Atomic Energy Commission`s Vela Uniform Program which was conducted to improve the United States` capability to detect underground nuclear explosions. This document details technical changes to the existing work plan for the remedial investigation of the Salmon Site. A previously conducted Remedial Investigation for the Salmon Site involved the preparation of ecological and human health risk assessments. These risk assessments, which are incorporated into the Remedial Investigation Report, identified several constituents of potential concern (COPC) that could potentially have a negative impact on ecological and human health. These COPC are the primary risk drivers for the Salmon Site; they include arsenic and naturally occurring, gamma-emitting radionuclides. If it can be demonstrated that similar concentrations of these COPCs occur naturally in surrounding areas, they can be removed from consideration in the risk assessments. The purpose of this sampling effort is to collect enough data to prove that the COPCs are naturally occurring and are not a result of the explosives testing activities conducted at the site. This will be accomplished by collecting enough soil samples to have a statistically valid population that can be used to produce defensible comparisons that prove the concentrations identified on site are the same as the background concentrations in surrounding areas.

NONE

1998-04-01

154

Sample preparation and characterization for a study of environmentally acceptable endpoints for hydrocarbon-contaminated soil  

SciTech Connect

In the past, the interdisciplinary research effort required to investigate the acceptable cleanup endpoints for hydrocarbon-impacted soils has been limited by the lack of standardized soils for testing. To support the efforts of the various researchers participating in the EAE research initiative, soil samples were collected from ten sites representing hydrocarbon-impacted soils typical of exploration/production, refinery, and bulk storage terminal operations. The hydrocarbons in the standard soils include crude oil, mixed refinery products, diesel, gasoline, and jet fuel. Physical characterization included analysis of soil texture, water retention, particle density, nanoporosity, pH, electrical conductivity, cation exchange capacity, buffer capacity, organic carbon, sodium adsorption ratio, and clay mineralogy. Chemical characterization included analysis of total recoverable petroleum hydrocarbons, total volatile and semivolatile organic compounds and metals, and TCLP for metals and organics. An analysis of the aliphatic and aromatic hydrocarbon fractions was performed on each soil to support the use of various models for assessing soil toxicity. Screening-level toxicity tests were conducted using Microtox{trademark}, plant seed germination and growth, and earthworm mortality and growth. Biodegradability screening tests were performed in slurry shake flasks to estimate the availability of hydrocarbon fractions to soil microorganisms.

Kreitinger, J.P.; Finn, J.T. [Remediation Technologies, Inc., Ithaca, NY (United States)

1995-12-31

155

Soil organic carbon covariance with soil water content; a geostatistical analysis in cropland fields  

NASA Astrophysics Data System (ADS)

Soil texture has traditionally represented the rate of soil water drainage influencing soil water content (WC) in the soil characteristic curves, hydrological models and remote sensing field studies. Although soil organic carbon (OC) has been shown to significantly increase the water holding capacity of soil in individual field studies, evidence is required to consider soil OC as a significant factor in soil WC variability at the scale of a remote sensing footprint (25 km2). The relationship of soil OC to soil WC was evaluated over 50 fields during the Soil Moisture Active Passive (SMAP) soil WC field sampling campaign over southern Manitoba, Canada. On each field, soil WC was measured at 16 sample points, at 100 m spacing to 5 cm depth with Stevens hydra probe sensors on 16 sampling dates from June 7 to July 19, 2012. Soil cores were also taken at sampling sites on each field, each sampling day, to determine gravimetric moisture, bulk density and particle size distribution. On 4 of the sampling dates, soil OC was also determined by loss on ignition on the dried soil samples from all fields. Semivariograms were created from the field mean soil OC and field mean surface soil WC sampled at midrow, over all cropland fields and averaged over all sampling dates. The semivariogram models explained a distinct relationship of both soil OC and WC within the soil over a range of 5 km with a Gaussian curve. The variance in soil that soil OC and WC have in common was a similar Gaussian curve in the cross variogram. Following spatial interpolation with Kriging, the spatial maps of soil OC and WC were also very similar with high covariance over the majority of the sampling area. The close correlation between soil OC and WC suggests they are structurally related in the soil. Soil carbon could thus assist in improving downscaling methods for remotely sensed soil WC and act as a surrogate for interpolation of soil WC.

Manns, H. R.; Berg, A. A.; von Bertoldi, P.

2013-12-01

156

SAMPLING AND CALIBRATION REQUIREMENTS FOR OPTICAL REFLECTANCE SOIL PROPERTY SENSORS FOR KOREAN PADDY SOILS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Optical diffuse reflectance sensing has potential for rapid and reliable on-site estimation of soil properties. For good results, proper calibration to measured soil properties is required. One issue is whether it is necessary to develop calibrations using samples from the specific area or areas (e....

157

Data summary report for Area D soil-gas sampling and analysis, McClellan Air Force base. Volume 2. Data. Final report  

SciTech Connect

A Close Support Laboratory for the analysis of landfill gas samples by EPA Method TO 14 using full scan GC/MS was established at the McClellan Air Force Base for use by CH2M Hill. The laboratory was designed to analyze approximately 180 landfill samples collected over a one month period. The samples were collected in 800 m1 SUMMA canisters provided by the Oregon Graduate Institute (OGI). Section 1 describes the quality assurance program and the analytical methods for the CSL laboratory, and Section 2 contains all of the analytical report sheets by day analyzed. The Laboratory used a HP 5809 GC with a HP 5971 MSD leased for the project from US Analytical Instruments. The GC/MS system was connected to the HP Vectra MS/DOS Chemstation, and the reports were generated by the computer and automatically printed in the form of Excell Spreadsheets. The daily QA/QC reports were generated on a second IBC Compatible computer using LOTUS 123 software.

Not Available

1992-01-14

158

Sampling spatial and temporal variation in soil nitrogen availability  

Microsoft Academic Search

There are few studies in natural ecosystems on how spatial maps of soil attributes change within a growing season. In part,\\u000a this is due to methodological difficulties associated with sampling the same spatial locations repeatedly over time. We describe\\u000a the use of ion exchange membrane spikes, a relatively nondestructive way to measure how soil resources at a given point in

Michael L. Cain; Scott Subler; Jonathan P. Evans; Marie-Josée Fortin

1999-01-01

159

Natural radioactivity measurements in soil samples of central Kutahya (Turkey).  

PubMed

Measurement of the natural radioactivity of surface soils at 20 locations in central Kutahya has been made using gamma ray spectroscopy. Natural gamma ray radioactivity of the terrestrial nuclides in soil samples and the absorbed gamma ray dose rates of these radionuclides in the air have been calculated throughout different areas of central Kutahya. The average annual effective dose equivalent for a person living in central Kutahya was found to be approximately 57 microSv. PMID:18801755

Sahin, Latife; Cavas, Mustafa

2008-01-01

160

Metaproteomic analysis of ratoon sugarcane rhizospheric soil  

PubMed Central

Background The current study was undertaken to elucidate the mechanism of yield decline in ratoon sugarcane using soil metaproteomics combined with community level physiological profiles (CLPP) analysis. Results The available stalk number, stalk diameter, single stalk weight and theoretical yield of ratoon cane (RS) were found to be significantly lower than those of plant cane (NS). The activities of several carbon, nitrogen and phosphorus processing enzymes, including invertase, peroxidase, urease and phosphomonoesterase were found to be significantly lower in RS soil than in NS soil. BIOLOG analysis indicated a significant decline in average well-color development (AWCD), Shannon’s diversity and evenness indices in RS soil as compared to NS soil. To profile the rhizospheric metaproteome, 109 soil protein spots with high resolution and repeatability were successfully identified. These proteins were found to be involved in carbohydrate/energy, amino acid, protein, nucleotide, auxin and secondary metabolisms, membrane transport, signal transduction and resistance, etc. Comparative metaproteomics analysis revealed that 38 proteins were differentially expressed in the RS soil as compared to the control soil or NS soil. Among these, most of the plant proteins related to carbohydrate and amino acid metabolism and stress response were up-regulated in RS soil. Furthermore, several microbial proteins related to membrane transport and signal transduction were up-regulated in RS soil. These proteins were speculated to function in root colonization by microbes. Conclusions Our experiments revealed that sugarcane ratooning practice induced significant changes in the soil enzyme activities, the catabolic diversity of microbial community, and the expression level of soil proteins. They influenced the biochemical processes in the rhizosphere ecosystem and mediated the interactions between plants and soil microbes. PMID:23773576

2013-01-01

161

Stability of volatile organics in environmental soil samples. Final report  

SciTech Connect

This report focuses on data generated for the purpose of establishing the stability of 19 volatile organic compounds in environmental soil samples. The study was carried out over a 56 day (for two soils) and a 111 day (for one reference soil) time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; and 2) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times.

Maskarinec, M.P.; Bayne, C.K.; Jenkins, R.A.; Johnson, L.H.; Holladay, S.K.

1992-11-01

162

Stability of volatile organics in environmental soil samples  

SciTech Connect

This report focuses on data generated for the purpose of establishing the stability of 19 volatile organic compounds in environmental soil samples. The study was carried out over a 56 day (for two soils) and a 111 day (for one reference soil) time frame and took into account as many variables as possible within the constraints of budget and time. The objectives of the study were: 1) to provide a data base which could be used to provide guidance on pre-analytical holding times for regulatory purposes; and 2) to provide a basis for the evaluation of data which is generated outside of the currently allowable holding times.

Maskarinec, M.P.; Bayne, C.K.; Jenkins, R.A.; Johnson, L.H.; Holladay, S.K.

1992-11-01

163

Geographic sampling of urban soils for contaminant mapping: how many samples and from where  

Microsoft Academic Search

Properly sampling soils and mapping soil contamination in urban environments requires that impacts of spatial autocorrelation\\u000a be taken into account. As spatial autocorrelation increases in an urban landscape, the amount of duplicate information contained\\u000a in georeferenced data also increases, whether an entire population or some type of random sample drawn from that population\\u000a is being analyzed, resulting in conventional power

Daniel A. Griffith

2008-01-01

164

Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil  

PubMed Central

Although microorganisms play crucial roles in ecosystems, metagenomic analyses of soil samples are quite scarce, especially in the Southern Hemisphere. In this work, the microbial diversity of soil samples from an Atlantic Forest and Caatinga was analyzed using a metagenomic approach. Proteobacteria and Actinobacteria were the dominant phyla in both samples. Among which, a significant proportion of stress-resistant bacteria associated to organic matter degradation was found. Sequences related to metabolism of amino acids, nitrogen, and DNA and stress resistance were more frequent in Caatinga soil, while the forest sample showed the highest occurrence of hits annotated in phosphorous metabolism, defense mechanisms, and aromatic compound degradation subsystems. The principal component analysis (PCA) showed that our samples are close to the desert metagenomes in relation to taxonomy, but are more similar to rhizosphere microbiota in relation to the functional profiles. The data indicate that soil characteristics affect the taxonomic and functional distribution; these characteristics include low nutrient content, high drainage (both are sandy soils), vegetation, and exposure to stress. In both samples, a rapid turnover of organic matter with low greenhouse gas emission was suggested by the functional profiles obtained, reinforcing the importance of preserving natural areas. PMID:24706600

Pacchioni, Ralfo G; Carvalho, Fabíola M; Thompson, Claudia E; Faustino, André L F; Nicolini, Fernanda; Pereira, Tatiana S; Silva, Rita C B; Cantão, Mauricio E; Gerber, Alexandra; Vasconcelos, Ana T R; Agnez-Lima, Lucymara F

2014-01-01

165

Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil.  

PubMed

Although microorganisms play crucial roles in ecosystems, metagenomic analyses of soil samples are quite scarce, especially in the Southern Hemisphere. In this work, the microbial diversity of soil samples from an Atlantic Forest and Caatinga was analyzed using a metagenomic approach. Proteobacteria and Actinobacteria were the dominant phyla in both samples. Among which, a significant proportion of stress-resistant bacteria associated to organic matter degradation was found. Sequences related to metabolism of amino acids, nitrogen, and DNA and stress resistance were more frequent in Caatinga soil, while the forest sample showed the highest occurrence of hits annotated in phosphorous metabolism, defense mechanisms, and aromatic compound degradation subsystems. The principal component analysis (PCA) showed that our samples are close to the desert metagenomes in relation to taxonomy, but are more similar to rhizosphere microbiota in relation to the functional profiles. The data indicate that soil characteristics affect the taxonomic and functional distribution; these characteristics include low nutrient content, high drainage (both are sandy soils), vegetation, and exposure to stress. In both samples, a rapid turnover of organic matter with low greenhouse gas emission was suggested by the functional profiles obtained, reinforcing the importance of preserving natural areas. PMID:24706600

Pacchioni, Ralfo G; Carvalho, Fabíola M; Thompson, Claudia E; Faustino, André L F; Nicolini, Fernanda; Pereira, Tatiana S; Silva, Rita C B; Cantão, Mauricio E; Gerber, Alexandra; Vasconcelos, Ana T R; Agnez-Lima, Lucymara F

2014-06-01

166

Rapid Determination Of Radiostrontium In Large Soil Samples  

SciTech Connect

A new method for the determination of radiostrontium in large soil samples has been developed at the Savannah River Environmental Laboratory (Aiken, SC, USA) that allows rapid preconcentration and separation of strontium in large soil samples for the measurement of strontium isotopes by gas flow proportional counting. The need for rapid analyses in the event of a Radiological Dispersive Device (RDD) or Improvised Nuclear Device (IND) event is well-known. In addition, the recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid analyses for radionuclides in environmental samples in the event of a nuclear accident. The method employs a novel pre-concentration step that utilizes an iron hydroxide precipitation (enhanced with calcium phosphate) followed by a final calcium fluoride precipitation to remove silicates and other matrix components. The pre-concentration steps, in combination with a rapid Sr Resin separation using vacuum box technology, allow very large soil samples to be analyzed for {sup 89,90}Sr using gas flow proportional counting with a lower method detection limit. The calcium fluoride precipitation eliminates column flow problems typically associated with large amounts of silicates in large soil samples.

Maxwell, Sherrod L.; Culligan, Brian K.; Shaw, Patrick J.

2012-05-24

167

Phase chemistry of Apollo 14 soil sample 14259  

NASA Technical Reports Server (NTRS)

0.26 gm of Apollo 14 soil sample 14259 has been investigated by optical, X-ray diffraction and electron microprobe techniques. The mineral abundances in the soil are 45% plagioclase, 41% pyroxene, 7% olivine, 3% oxides, 2% K-feldspar, 1% nickel-iron and less than 1% troilite. Eleven percent of the glasses have compositions like those of mare basalts or mare soils and are believed to be mare-derived. Eighty-six percent of the glasses are equivalent in composition to basalts that have higher Al, and lower Ca/Al and Fe/Mg ratios than mare basalts. The most abundant compositional type is named Fra Mauro basaltic glass and is subdivided into three related types. The other major glass type in the soil corresponds in composition to anorthositic gabbro.

1974-01-01

168

RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY SOIL SAMPLES  

SciTech Connect

A new rapid method for the determination of actinides in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for samples up to 2 grams in emergency response situations. The actinides in soil method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride soil matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha sources are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency soil samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinides in soil results were reported within 4-5 hours with excellent quality.

Maxwell, S.; Culligan, B.; Noyes, G.

2009-11-09

169

Pattern geomorphologic analysis for soil erosion study  

Microsoft Academic Search

The geologist try to understand relationship between soil erosion observed and natural landscape structure. Erosion can effectively appears in the vicinity of linear or planar structures of soil (lines, faults or materials change). Once eroded areas are mapped, an inventory of relief linear shapes is done. The crossing geomorphological analysis with other environmental parameters allows to predict the becoming eroded

Nazha Selmaoui; Isabelle Rouet; Mélanie Mahot

2009-01-01

170

SOIL CARBON ANALYSIS IN LARGE FIELDS USING A SCANNING SYSTEM  

Technology Transfer Automated Retrieval System (TEKTRAN)

One of the issues hindering the implementation of carbon-credits trading protocols and a limiting factor in the comprehensive evaluation of large fields for carbon is the need for analyzing soil core samples in a laboratory. The procedures for careful analysis are labor-intensive, involving many ste...

171

Sample handling strategies for accurate lead-in-soil measurements in the field and laboratory  

SciTech Connect

The inhomogenous lead-in-soil matrix can present serious obstacles to accurate sample collection and handling. In typical lead-in-soil measurement, particle size related errors in sampling and sample handling often exceed all other sources of error. The magnitude of error can vary widely depending on the particulate nature of the lead contaminant and the effectiveness of control measures. Large particle contaminants, such as lead bearing paint chips, pose a much greater challenge to accurate sample handling than do small particle contaminants, such as air dispersed industrial emissions. A sample handling protocol demonstrated to give reliable, valid data in small particle situations may prove entirely inadequate for large particle cases. This paper focuses on the importance of fundamental error, a statistical consequence of particulate sampling. We discuss in quantitative terms the significance of fundamental error on the measurement of paint chip contaminated soils near a 400 ppm action level. On the basis of error estimates, we recommend that sample handling protocols control particle related errors by ensuring adequate sample size and sample definition, and by accomplishing sufficient particle size reduction and homogenization y before subsampling. We discuss particle related errors and their effect on laboratory, field, and in-situ analytical methods. We recommend that quality assurance protocols aim to determine the overall measurement quality by evaluating error at all stages from sampling and sample handling through analysis.

Shefsky, S. [NITON Corp., Bedford, MA (United States)

1997-12-31

172

Mapping Soil Salinity with ECa-Directed Soil Sampling: History, Protocols, Guidelines, Applications, and Future Research Trends  

NASA Astrophysics Data System (ADS)

Soil salinity is a spatially complex and dynamic property of soil that influences crop yields when the threshold salinity level is exceeded. Mapping soil salinity is necessary for soil classification, reclamation, crop selection, and site-specific irrigation management of salt-affected soils in the arid and semi-arid agricultural regions of the world. Because of its spatial and temporal heterogeneity soil salinity is difficult to map and monitor at field scales. There are various methods for characterizing soil salinity variability, but none of these approaches has been as extensively investigated and is as reliable and cost effective as apparent soil electrical conductivity (ECa) directed soil sampling. Geospatial measurements of ECa are well-suited for characterizing soil salinity spatial distribution because they are reliable, quick, and easy to take with GPS-based mobilized ECa measurement equipment. However, ECa is influenced by a variety of soil properties, which makes the measurement of soil salinity at field scale problematic. It is the goal of this presentation to provide an overview of the field-scale characterization of soil salinity distribution using ECa-directed soil sampling. A historical perspective, protocols and guidelines, strengths and limitations, applications, and future trends are presented for characterizing spatial and temporal variation in soil salinity using ECa-directed soil sampling. Land resource managers, farmers, extension specialists, soil classification specialists, and Natural Resource Conservation Service field staff are the beneficiaries of field-scale maps of soil salinity.

Corwin, Dennis

2014-05-01

173

A quantitative method to detect explosives and selected semivolatiles in soil samples by Fourier transform infrared spectroscopy  

SciTech Connect

This paper describes a novel Fourier transform infrared (FTIR) spectroscopic method that can be used to rapidly screen soil samples from potentially hazardous waste sites. Samples are heated in a thermal desorption unit and the resultant vapors are collected and analyzed in a long-path gas cell mounted in a FTIR. Laboratory analysis of a soil sample by FTIR takes approximately 10 minutes. This method has been developed to identify and quantify microgram concentrations of explosives in soil samples and is directly applicable to the detection of selected volatile organics, semivolatile organics, and pesticides.

Clapper-Gowdy, M.; Dermirgian, J. [Argonne National Lab., IL (United States); Robitaille, G. [Army Environmental Center, Aberdeen Proving Ground, MD (United States)

1995-06-01

174

Precise Determination of C\\/C and CO2 Concentration in Minute Samples of Soil Air by Mass Spectrometry  

Microsoft Academic Search

In October 1987 we made preliminary studies of concentration of soil-CO2 and its isotopic composition. The sample-size of soil air was about 100 cm only, which is significantly reduced in comparison with other studies so far. The isotope analysis of such minute CO2 samples were performed by a dynamic flow mass spectrometer. The air samples were taken from the depth

S. Halas; A. Dudziak

1989-01-01

175

Noninvasive investigation of fluid dynamics on undisturbed soil samples  

NASA Astrophysics Data System (ADS)

Magnetic resonance (MR) imaging and MR relaxometry measurement techniques were used to study the process of infiltration in two undisturbed soil samples of coarse sandy loam and loamy sand taken into the plexiglas cylinders (dia. 6.0 cm × h. 12 cm). For coarse sandy loam sample the repeated ponded infiltration (RPI) experiment was carried out, the first infiltration was conducted into a relatively dry sample and the repeated infiltration into the gravitationally drained sample. The RPI method for this sample was performed in order to assess the changes in entrapped air distribution and its impact on steady state flow rates. A single infiltration run was carried out for loamy sand. An automatic setup continuously monitoring fluxes and pressure head in one tensiometer was constructed for these experiments. The main stages of each experiment run - wetting, steady state flow, drainaige - were monitored by multi-echo multi-slice (MEMS) MR sequence. Multiple vertical slices at a spatial resolution of 0.53×2×5 mm covered the whole soil core to obtain 3D image. During steady state flow, axial slices at spatial resolution of 1×1×5 mm of T1 maps were acquired. Later the nickel nitrate pulse was injected with the aim to visualise the solute breakthrough. Effluent from the sample was collected into a fraction collector and breakthrough curve of the nitrate was developed. Soil samples were scanned with computed tomography (CT) at a spatial resolution of 0.2×0.2×0.6 mm. The CT images were obtained before and after magnetic resonance investigation. The novelty of this approach is the 3D monitoring of infiltration process in natural soil samples. It reveals its potential to study the complex flow dynamics. The research has been supported by GA?R 103/08/1552 and SP/2E7/229/07.

Jelinkova, Vladimira; Snehota, Michal; Pohlmeier, Andreas; van Dusschoten, Dagmar; Cislerova, Milena

2010-05-01

176

SOIL SAMPLING QUALITY ASSURANCE USER'S GUIDE--SECOND EDITION  

EPA Science Inventory

Use of the first edition of the "Soil Sampling Quality Assurance User's Guide" as a text in a series of seminars conducted at various U.S. EPA Regional Offices elicited many constructive comments for improvements from seminar attendees. Many of these suggested improvements have b...

177

A CONCEPTUAL UNDERSTANDING OF LEAKAGE DURING SOIL-GAS SAMPLING  

EPA Science Inventory

A heuristic model is developed to develop a conceptual understanding of leakage during soil-gas sampling. Leakage is shown to be simply a function of the permeability contrast between the formation and borehole and geometric factors. As the ratio of formation to borehole permea...

178

An expert sample analysis planner  

SciTech Connect

Analytical chemists are faced with the problem of choosing an appropriate analytical technique for a particular sample and weighing the options as they affect precision, time, and cost. This paper describes a computer technique to assist managers in reviewing the alternatives and to match needs with the resources available. This paper proposes an expert system, knowledgeable of analytical chemistry techniques, to create sample plans. Sample planning is an appropriate topic for expert systems because scarce human expertise is required to complete sample plans. A sample plan is the description of how samples received at the Savannah River Laboratory are handled, controlled, measured, and dispositioned. Sample planning is difficult because multiple experts are needed, planning is not a static function, and planning is time consuming. An Expert Sample Analyses Planner (XSAP) is proposed to create sample plans for laboratory managers. XSAP supplements the scarce knowledge of analytical techniques creating sample plans based on analysis constraints, methods available, and time requirements. XSAP interacts with the chemist to suggest sample plans. XSAP considers equipment available locally, at other Savannah River laboratories, at other Department of Energy facilities, and at other commercial laboratories. XSAP allows options on scheduling: best solution, cheapest solution, best local solution, and fastest solution. 26 refs.

Spencer, W.A.; Parks, W.S.

1990-01-01

179

Metatranscriptomic Analysis of Arctic Peat Soil Microbiota  

PubMed Central

Recent advances in meta-omics and particularly metatranscriptomic approaches have enabled detailed studies of the structure and function of microbial communities in many ecosystems. Molecular analyses of peat soils, ecosystems important to the global carbon balance, are still challenging due to the presence of coextracted substances that inhibit enzymes used in downstream applications. We sampled layers at different depths from two high-Arctic peat soils in Svalbard for metatranscriptome preparation. Here we show that enzyme inhibition in the preparation of metatranscriptomic libraries can be circumvented by linear amplification of diluted template RNA. A comparative analysis of mRNA-enriched and nonenriched metatranscriptomes showed that mRNA enrichment resulted in a 2-fold increase in the relative abundance of mRNA but biased the relative distribution of mRNA. The relative abundance of transcripts for cellulose degradation decreased with depth, while the transcripts for hemicellulose debranching increased, indicating that the polysaccharide composition of the peat was different in the deeper and older layers. Taxonomic annotation revealed that Actinobacteria and Bacteroidetes were the dominating polysaccharide decomposers. The relative abundances of 16S rRNA and mRNA transcripts of methanogenic Archaea increased substantially with depth. Acetoclastic methanogenesis was the dominating pathway, followed by methanogenesis from formate. The relative abundances of 16S rRNA and mRNA assigned to the methanotrophic Methylococcaceae, primarily Methylobacter, increased with depth. In conclusion, linear amplification of total RNA and deep sequencing constituted the preferred method for metatranscriptomic preparation to enable high-resolution functional and taxonomic analyses of the active microbiota in Arctic peat soil. PMID:25015892

Tveit, Alexander T.

2014-01-01

180

Metatranscriptomic analysis of arctic peat soil microbiota.  

PubMed

Recent advances in meta-omics and particularly metatranscriptomic approaches have enabled detailed studies of the structure and function of microbial communities in many ecosystems. Molecular analyses of peat soils, ecosystems important to the global carbon balance, are still challenging due to the presence of coextracted substances that inhibit enzymes used in downstream applications. We sampled layers at different depths from two high-Arctic peat soils in Svalbard for metatranscriptome preparation. Here we show that enzyme inhibition in the preparation of metatranscriptomic libraries can be circumvented by linear amplification of diluted template RNA. A comparative analysis of mRNA-enriched and nonenriched metatranscriptomes showed that mRNA enrichment resulted in a 2-fold increase in the relative abundance of mRNA but biased the relative distribution of mRNA. The relative abundance of transcripts for cellulose degradation decreased with depth, while the transcripts for hemicellulose debranching increased, indicating that the polysaccharide composition of the peat was different in the deeper and older layers. Taxonomic annotation revealed that Actinobacteria and Bacteroidetes were the dominating polysaccharide decomposers. The relative abundances of 16S rRNA and mRNA transcripts of methanogenic Archaea increased substantially with depth. Acetoclastic methanogenesis was the dominating pathway, followed by methanogenesis from formate. The relative abundances of 16S rRNA and mRNA assigned to the methanotrophic Methylococcaceae, primarily Methylobacter, increased with depth. In conclusion, linear amplification of total RNA and deep sequencing constituted the preferred method for metatranscriptomic preparation to enable high-resolution functional and taxonomic analyses of the active microbiota in Arctic peat soil. PMID:25015892

Tveit, Alexander T; Urich, Tim; Svenning, Mette M

2014-09-01

181

Pragmatic soil survey design using flexible Latin hypercube sampling  

NASA Astrophysics Data System (ADS)

We review and give a practical example of Latin hypercube sampling in soil science using an approach we call flexible Latin hypercube sampling. Recent studies of soil properties in large and remote regions have highlighted problems with the conventional Latin hypercube sampling approach. It is often impractical to travel far from tracks and roads to collect samples, and survey planning should recognise this fact. Another problem is how to handle target sites that, for whatever reason, are impractical to sample - should one just move on to the next target or choose something in the locality that is accessible? Working within a Latin hypercube that spans the covariate space, selecting an alternative site is hard to do optimally. We propose flexible Latin hypercube sampling as a means of avoiding these problems. Flexible Latin hypercube sampling involves simulated annealing for optimally selecting accessible sites from a region. The sampling protocol also produces an ordered list of alternative sites close to the primary target site, should the primary target site prove inaccessible. We highlight the use of this design through a broad-scale sampling exercise in the Burdekin catchment of north Queensland, Australia. We highlight the robustness of our design through a simulation study where up to 50% of target sites may be inaccessible.

Clifford, David; Payne, James E.; Pringle, M. J.; Searle, Ross; Butler, Nathan

2014-06-01

182

Thermal analysis of whole soils and sediment.  

PubMed

Thermal analysis techniques were utilized to investigate the thermal properties of two soils and a lignite coal obtained from the International Humic Substances Society (IHSS), and sediment obtained from The Netherlands. Differential scanning calorimetry (DSC) revealed glass transition behavior of each sample at temperatures ranging from 52 degrees C for Pahokee peat (euic, hyperthermic Lithic Medisaprists), 55 degrees C for a Netherlands (B8) sediment, 64 degrees C for Elliott loam (fine, illitic, mesic Aquic Arguidolls), to 70 degrees C for Gascoyne leonardite. Temperature-modulated differential scanning calorimetry (TMDSC) revealed glass transition behavior at similar temperatures, and quantified constant-pressure specific heat capacity (Cp) at 0 degrees C from 0.6 J g(-1) degrees C(-1) for Elliott loam and 0.8 J g(-1) degrees C(-1) for the leonardite, to 1.0 J g(-1) degrees C(-1) for the peat and the sediment. Glass transition behavior showed no distinct correlation to elemental composition, although Gascoyne Leonardite and Pahokee peat each demonstrated glass transition behavior similar to that reported for humic acids derived from these materials. Thermomechanical analysis (TMA) revealed a large thermal expansion followed by a matrix collapse for each sample between 20 and 30 degrees C, suggesting the occurrence of transition behavior of unknown origin. Thermal transitions occurring at higher temperatures more representative of glass transition behavior were revealed for the sediment and the peat. PMID:14964387

DeLapp, Rossane C; LeBoeuf, Eugene J

2004-01-01

183

Statistical sample size for construction of soil liners  

SciTech Connect

A method is described for selecting the number of samples (i.e., the sample size) to be collected and tested during construction quality control of compacted soil liners. The sample size is selected to ensure that enough data are collected so the probability of excessive equivalent hydraulic conductivity (i.e., overall hydraulic conductivity) is greater than or equal to a predefined maximum value is below a specified value. The method requires computations that can be performed using a spreadsheet program. Charts are provided to select the sample size based on these computations. The sample size depends on the properties of the soil, their spatial variability, and the number of lifts in the liner. Regression models are used to relate spatial variability of construction-quality-control measurements (such as compaction data, Atterberg limits, and particle-size measurements) to variations in hydraulic conductivity at point scale. A three-dimensional stochastic model is then used to estimate the equivalent hydraulic conductivity of the soil liner for statistical parameters describing spatial variability of point-scale hydraulic conductivity. An asymptotic method is used to determine the precision of the estimate of equivalent hydraulic conductivity and the probability of excessive equivalent hydraulic conductivity.

Benson, C.H.; Zhai, H.; Rashad, S.M. (Univ. of Wisconsin, Madison, WI (United States). Dept. of Civil and Environmental Engineering)

1994-10-01

184

Polycyclic aromatic hydrocarbons in soil and air: statistical analysis and classification by the SIMCA method  

Microsoft Academic Search

Soil samples from 12 locations in Norway have been analyzed for 9 polycyclic aromatic hydrocarbons (PAH). The same unsubstituted PAH have been determined in air samples collected near an aluminum reduction plant. Analysis by high-resolution gas chromatography-mass spectroscopy in the selected ion mode showed concentrations in soil ranging from less than 1 ppb (detection limit) to 993 ppb for individual

Nils B. Vogt; Frode Brakstad; Karin Thrane; Svein Nordenson; Jostein Krane; Eli Aamot; Knut Kolset; Kim Esbensen; Eiliv Steinnes

1987-01-01

185

Using microtomography, image analysis and flow simulations to characterize soil surface seals  

NASA Astrophysics Data System (ADS)

Raindrops that impact on soil surface affect the pore structure and form compact soil surface seals. Damaged pore structure reduces water infiltration which can lead to increased soil erosion. We introduce here methods to characterize the properties of surface seals in a detailed manner. These methods include rainfall simulations, x-ray microtomography, image analysis and pore-scale flow simulations. Methods were tested using clay soil samples, and the results indicate that the sealing process changes several properties of the pore structure.

Hyväluoma, Jari; Thapaliya, Mahesh; Alaraudanjoki, Jarno; Sirén, Taisto; Mattila, Keijo; Timonen, Jussi; Turtola, Eila

2012-11-01

186

Trace element analysis of fly ash samples by EDXRF technique  

Microsoft Academic Search

Trace element analysis of some fly ash samples and soil samples have been carried out by Energy Dispersive X-Ray Fluorescence\\u000a technique. Fourteen elements namely K, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Se, Rb, Sr and Pb have been quantified in the fly\\u000a ash samples by this technique. It was found that there is no huge concentration difference

T. R. Rautray; B. Behera; T. Badapanda; V. Vijayan; S. Panigrahi

2009-01-01

187

DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS  

SciTech Connect

Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected VOC soil gas concentrations during ASVE. Five (5) SVE wells that were located closest to the air injection wells were used as monitoring points during the air sparging tests. The air sparging tests lasted 48 hours. Soil gas sample results indicate that sparging did not affect VOC concentrations in four of the five sparging wells, while results from one test did show an increase in soil gas concentrations.

Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

2012-09-20

188

Opportunities to utilize the USDA-ARS Northern Great Plains Research Laboratory soil sample archive  

Technology Transfer Automated Retrieval System (TEKTRAN)

Archived soil samples are an important resource for quantifying changes in soil attributes over decadal time scales. Herein, we describe a soil archive at the USDA-ARS Northern Great Plains Research Laboratory (NGPRL) near Mandan, ND. Over 4500 samples are included in the NGPRL soil archive, rangi...

189

Phase chemistry of Apollo 14 soil sample 14259  

NASA Technical Reports Server (NTRS)

Optical, X-ray-diffraction and electron-microprobe techniques were used to investigate 0.26 gm of Apollo 14 soil sample 14259. Major element microprobe analyses were made of 470 mineral grains and 388 glass grains. The mineral abundances in the soil are 45% plagioclase, 41% pyroxene, 7% olivine, 3% oxides, 2% K-feldspar; 1% nickel-iron, and less than 1% troilite. The glasses have a wide range of compositions but preferred values are evident and are interpreted as representative of rock types contributing to the soil at the Fra Mauro site. Eleven per cent of the glasses have compositions like those of mare basalts or mare soils and are believed to be mare-derived. Eighty-six per cent of the glasses are equivalent in composition to basalts that have higher Al, and lower Ca/Al and Fe/Mg ratios than mare basalts. The most abundant compositional type is named Fra Mauro basaltic glass and is subdivided into three related types. The other major glass type in the soil corresponds in composition to anorthositic gabbro.

Aitken, F. K.; Anderson, D. H.; Bass, M. N.; Brown, R. W.; Butler, P., Jr.; Heiken, G.; Jakes, P.; Reid, A. M.; Ridley, W. I.; Takeda, H.

1974-01-01

190

GY SAMPLING THEORY IN ENVIRONMENTAL STUDIES 1: ASSESSING SOIL SPLITTING PROTOCOLS  

EPA Science Inventory

Five soil sample splitting methods (riffle splitting, paper cone riffle splitting, fractional shoveling, coning and quartering, and grab sampling) were evaluated with synthetic samples to verify Pierre Gy sampling theory expectations. Individually prepared samples consisting of l...

191

Sampling design optimization for multivariate soil mapping, case study from Hungary  

NASA Astrophysics Data System (ADS)

Direct observations of the soil are important for two main reasons in Digital Soil Mapping (DSM). First, they are used to characterize the relationship between the soil property of interest and the auxiliary information. Second, they are used to improve the predictions based on the auxiliary information. Hence there is a strong necessity to elaborate a well-established soil sampling strategy based on geostatistical tools, prior knowledge and available resources before the samples are actually collected from the area of interest. Fieldwork and laboratory analyses are the most expensive and labor-intensive part of DSM, meanwhile the collected samples and the measured data have a remarkable influence on the spatial predictions and their uncertainty. Numerous sampling strategy optimization techniques developed in the past decades. One of these optimization techniques is Spatial Simulated Annealing (SSA) that has been frequently used in soil surveys to minimize the average universal kriging variance. The benefit of the technique is, that the surveyor can optimize the sampling design for fixed number of observations taking auxiliary information, previously collected samples and inaccessible areas into account. The requirements are the known form of the regression model and the spatial structure of the residuals of the model. Another restriction is, that the technique is able to optimize the sampling design for just one target soil variable. However, in practice a soil survey usually aims to describe the spatial distribution of not just one but several pedological variables. In the recent paper we present a procedure developed in R-code to simultaneously optimize the sampling design by SSA for two soil variables using spatially averaged universal kriging variance as optimization criterion. Soil Organic Matter (SOM) content and rooting depth were chosen for this purpose. The methodology is illustrated with a legacy data set from a study area in Central Hungary. Legacy soil data were collected in the end of the 1980s in the framework of the National Land Evaluation Programme. The auxiliary data were derived from the digital elevation model and from the land-use-map of the study area. Soil data were used to characterize the relationship among the soil variables and the auxiliary information and model the spatial structures of the residuals of the regression models. The known form of the regression models and semivariogram models were used through SSA to optimize a completely new sampling design for 120 soil observations. The optimization process was done twice. First separately for SOM content and rooting depth and second for both soil variables simultaneously based on the combined form of regression models and spatial structures of the residuals. The optimized sampling designs were compared and evaluated by various statistical, geostatistical and spatial statistical (point pattern analysis) tools to examine how they depend on the regression models and semivariogram models and how they cover the geographical and feature space. In the near future, we want to extend the methodology for more than two pedological variables. Acknowledgement: Our work has been supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).

Szatmári, Gábor; Pásztor, László; Barta, Károly

2014-05-01

192

Sampling of soil moisture fields and related errors: implications to the optimal sampling design  

NASA Astrophysics Data System (ADS)

Adequate knowledge of soil moisture storage as well as evaporation and transpiration at the land surface is essential to the understanding and prediction of the reciprocal influences between land surface processes and weather and climate. Traditional techniques for soil moisture measurements are ground-based, but space-based sampling is becoming available due to recent improvement of remote sensing techniques. A fundamental question regarding the soil moisture observation is to estimate the sampling error for a given sampling scheme [G.R. North, S. Nakamoto, J Atmos. Ocean Tech. 6 (1989) 985-992; G. Kim, J.B. Valdes, G.R. North, C. Yoo, J. Hydrol., submitted]. In this study we provide the formalism for estimating the sampling errors for the cases of ground-based sensors and space-based sensors used both separately and together. For the study a model for soil moisture dynamics by D. Entekhabi, I. Rodriguez-Iturbe [Adv. Water Res. 17 (1994) 35-45] is introduced and an example application is given to the Little Washita basin using the Washita '92 soil moisture data. As a result of the study we found that the ground-based sensor network is ineffective for large or continental scale observation, but should be limited to a small-scale intensive observation such as for a preliminary study.

Yoo, Chulsang

193

Improved extraction of atrazine and metolachlor in field soil samples.  

PubMed

A method was developed for extraction of weathered residues of atrazine and metolachlor from field soils; soils had last been treated with commercial formulations of the herbicides 8-15 months prior to sample collection. Maximum yields were obtained by batch extraction at 75 degrees C for 2-16 h with methanol-water (80 + 20) in a sealed vial. Hydrolysis or other decomposition reactions were minor or negligible, depending on the extraction time. This method is an improvement over published methods that are validated by spike recoveries; the proposed method gives 1.7-1.8 times higher yields compared to shaking for 2 h at room temperature, and 1.3-1.8 times higher yields compared to Soxhiet extraction. The reproducibility of the method was better than 12%. The results underscore the impact of nonequilibrium sorption of organic compounds on analytical methodology and emphasize the need to validate extraction methods with field samples. PMID:2376550

Huang, L Q; Pignatello, J J

1990-01-01

194

Evaluation of PLS, LS-SVM, and LWR for quantitative spectroscopic analysis of soils  

Technology Transfer Automated Retrieval System (TEKTRAN)

Soil testing requires the analysis of large numbers of samples in laboratory that are often time consuming and expensive. Mid-infrared spectroscopy (mid-IR) and near-infrared spectroscopy (NIRS) are fast, non-destructive, and inexpensive analytical methods that have been used for soil analysis, in l...

195

Multivariate analysis of soil heavy metal pollution and landscape pattern in Changhua county in Taiwan  

Microsoft Academic Search

This study applied factor analysis and landscape indices of 55 sampling sites in Changhua county in Taiwan to characterize the factor patterns of eight soil heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) and the interrelation patterns of these soil heavy metals, landscape and human activities. The landscape analysis results indicated that landscape indices can elucidate spatial

Yu-Pin Lin; Tung-Po Teng; Tsun-Kuo Chang

2002-01-01

196

Rapid and sensitive determination of tellurium in soil and plant samples by sector-field inductively coupled plasma mass spectrometry.  

PubMed

In this work, we report a rapid and highly sensitive analytical method for the determination of tellurium in soil and plant samples using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). Soil and plant samples were digested using Aqua regia. After appropriate dilution, Te in soil and plant samples was directly analyzed without any separation and preconcentration. This simple sample preparation approach avoided to a maximum extent any contamination and loss of Te prior to the analysis. The developed analytical method was validated by the analysis of soil/sediment and plant reference materials. Satisfactory detection limits of 0.17 ng g(-1) for soil and 0.02 ng g(-1) for plant samples were achieved, which meant that the developed method was applicable to studying the soil-to-plant transfer factor of Te. Our work represents for the first time that data on the soil-to-plant transfer factor of Te were obtained for Japanese samples which can be used for the estimation of internal radiation dose of radioactive tellurium due to the Fukushima Daiichi Nuclear Power Plant accident. PMID:24148390

Yang, Guosheng; Zheng, Jian; Tagami, Keiko; Uchida, Shigeo

2013-11-15

197

U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF METALS FROM SOIL, DUST, AIR FILTER, AND SURFACE AND DERMAL WIPE SAMPLES FOR AA (GRAPHITE FURNACE OR FLAME) OR ICP-AES ANALYSIS (BCO-L-3.1)  

EPA Science Inventory

The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...

198

340 representative sampling verification tank sampling and analysis plan  

SciTech Connect

This Sampling and Analysis Plan contains requirements for characterizing the 340 vault tank 1. The objective of the sampling and characterization is to determine if the tank is homogeneous when agitated and which sampling method provides the most representative sample. A secondary objective is to collect and characterize solid samples.

Halgren, D.L., Westinghouse Hanford

1996-09-09

199

340 Representative sampling verification tank sampling and analysis plan  

SciTech Connect

This Sampling and Analysis Plan contains requirements for characterizing the 340 vault tank 1. The objective of the sampling and characterization is to determine if the tank is homogeneous when agitated and which sampling method provides the most representative sample. A secondary objective is to collect and characterize solid samples.

Olander, A.R., Westinghouse Hanford

1996-08-07

200

340 Representative sampling verification tank sampling and analysis plan  

SciTech Connect

This Sampling and Analysis Plan contains requirements for characterizing the 340 vault tank 1. The objective of the sampling and characterization is to determine if the tank is homogeneous when agitated and which sampling method provides the most representative sample. A secondary objective is to collect and characterize solid samples.

Olander, A.R., Westinghouse Hanford

1996-08-21

201

Experimental analysis of municipal solid waste samples  

E-print Network

scale devices were tested: the standard device used for consolidation in soils and a large-scale device constructed for the present investigation. A municipal solid waste sample was obtained from a pit dug in the College Station, Texas landfill...

Mendoza Sanchez, Itza

2002-01-01

202

Soil CO2 respiration: Comparison of chemical titration, CO2 IRGA analysis and the Solvita gel system  

Technology Transfer Automated Retrieval System (TEKTRAN)

The purpose of this research is to compare the results of measured soil CO2 respiration using three methods: (1) titration method; (2) Infrared gas analysis (IRGA); and (3) the Solvita gel system for soil CO2 analysis. We acquired 36 soil samples from across the USA for comparison which ranged in pH...

203

Rapid methods for classification and quantitative assessment of petroleum hydrocarbons pollution in soil samples using reflectance spectroscopy.  

NASA Astrophysics Data System (ADS)

Petroleum hydrocarbons (PHC) are one of the most significant environmental polluter (for both soil and water) mainly due to its mass production and use (13.26 million cubic meters of crude oil per day). The commonly used method for PHC determination in soil samples is by PHC extraction from the soil sample using 1,1,2-Trichlorotrifluoroethane (Freon 113) and afterwards determining the total PHC (TPH) by FTIR. This method is expensive and time consuming; in addition the use of Freon 113 was recently prohibited by the EPA. Therefore, there is a great need for alternative methods which are environmental friendly and can rapidly detect low concentrations of petroleum hydrocarbon in soils. The adoption of this approach to evaluate PHC contamination in soils is obvious and a few works have partially demonstrated this application. This study focused on using defused spectral analysis across the VNIR-SWIR region (400-2500 nm) to directly determine PHC in soil samples especially at low concentrations. We used artificially contaminated soil samples (diesel and fuel) that were analyzed by both the common method (extraction with Freon 113) and spectrally. Several statistical models were tested for predicting TPH in soils for a large concentration range (100 - 10000 ppm). More than one hundred field contaminated soil samples have been collected and analyzed in the same manner. Preliminary combined generic models are being tested, for in situ use for quantifying TPH in soils at high precisions levels, as well as identifying fuel type in the soil medium with great success. Our results show that PHC contamination in soils can be evaluated generically in situ, rapidly, accurately, and cost effectively.

Schwartz, G.; Eshel, G.; Ben-Haim, M.; Ben-Dor, E.

2009-04-01

204

Sample Preparation and Prediction of Soil Organic Matter Properties by Near Infrared Reflectance Spectroscopy  

Microsoft Academic Search

Near infra-red reflectance spectroscopy (NIRS) offers the potential for rapid and cost-effective soil analysis. Unfortunately, soil NIRS calibrations have not performed well across soil types, and this is believed to be due to the differences in soil particle size and, or, soil mineralogy. In this study we evaluated the influence of grinding, removal of organic matter, removal of mineral component,

C. A. Russell

2003-01-01

205

Analysis of foundations on reinforced soil  

NASA Astrophysics Data System (ADS)

A finite element model of reinforced earth is used to investigate the increase in bearing capacity and stiffness of a foundation due to the placement of reinforcement in the soil. The analysis is used to examine the effect of reinforcement on the load settlement behavior of a strip foundation founded on a c-theta soil. It is shown that the improvement in foundation performance depends on both the number of reinforcing layers and on the concentration (surface area per unit width of footing) of the reinforcement. The case of a footing on a reinforced soil mass overlying a cavity or a very soft zone is also analyzed, and the reinforced soil is shown to result in a significant improvement in footing performance.

Brown, B. S.; Poulos, H. G.

1980-10-01

206

Determination of polycyclic aromatic hydrocarbons in contaminated water and soil samples by immunological and chromatographic methods  

SciTech Connect

An immunoassay was developed that can be used for the detection of polycyclic aromatic hydrocarbons (PAHs) in water, landfill leachate, and soil. As test format an indirect competitive microtiter plate ELISA (enzyme-linked immunosorbent assay) was applied. While groundwater samples from a former manufactured gas plant site could be analyzed directly, soil and landfill leachate had to be extracted and required at least a 100-fold dilution prior to immunochemical measurement. PAHs could be recovered from fortified reference soils as well as aged field samples with high yield using 1-h ultrasonication with acetonitrile. Extraction efficiency was comparable to Soxhlet extraction and ultrasonication with tetrahydrogurane. Recovery was lower with agitation but would still be acceptable for use in an on-site field test to provide rapid, semiquantitative, and reliable test results for making environmental decisions such as identifying hot spots, site mapping, monitoring of remediation processes, and selecting site samples for laboratory analysis. Classification of ELISA data showed that it was possible to estimate the PAH contamination in soils with about 5% false positive and 5% false negative results that may have arisen from heterogeneity of samples, cross-reactivity of compounds with a similar structure, humic acids, or unknown interferences.

Knopp, D.; Seifert, M.; Vaeaenaenen, V.; Niessner, R.

2000-05-15

207

New approach to measure soil particulate organic matter in intact samples using X-ray computed micro-tomography  

NASA Astrophysics Data System (ADS)

Particulate soil organic matter (POM) is biologically and chemically active fraction of soil organic matter. It is a source of many agricultural and ecological benefits, among which are POM's contribution to C sequestration. Most of conventional research methods for studying organic matter dynamics involve measurements conducted on pre-processed i.e., ground and sieved soil samples. Unfortunately, grinding and sieving completely destroys soil structure, the component crucial for soil functioning and C protection. Importance of a better understanding of the role of soil structure and of the physical protection that it provides to soil C cannot be overstated; and analysis of quantities, characteristics, and decomposition rates of POM in soil samples with intact structure is among the key elements of gaining such understanding. However, a marked difficulty hindering the progress in such analyses is a lack of tools for identification and quantitative analysis of POM in intact soil samples. Recent advancement in applications of X-ray computed micro-tomography (?-CT) to soil science has given an opportunity to conduct such analyses. The objective of the current study is to develop a procedure for identification and quantitative characterization of POM within intact soil samples using X-ray ?-CT images and to test performance of the proposed procedure on a set of multiple intact soil macro-aggregates. We used 16 4-6 mm soil aggregates collected at 0-15 cm depth from a Typic Hapludalf soil at multiple field sites with diverse agricultural management history. The aggregates have been scanned at SIMBIOS Centre, Dundee, Scotland at 10 micron resolution. POM was determined from the aggregate images using the developed procedure. The procedure was based on combining image pre-processing steps with discriminant analysis classification. The first component of the procedure consisted of image pre-processing steps based on the range of gray values (GV) along with shape and size of POM pieces. That was followed by discriminant analysis conducted using statistical and geostatistical characteristics of POM pieces. POM identified in the intact individual soil aggregates using the proposed procedure was in good agreement with POM measured in the studied aggregates using conventional lab method (R2=0.75). Of particular importance for accurate identification of POM in the images was the information on spatial characteristics of POM's GVs. Since this is the first attempt of POM determination, future work will be needed to explore how the proposed procedure performs under a variety of potentially influential factors, such as POM's origin and decomposition stage, X-ray scanning settings, image filtering and segmentation methods.

Kravchenko, Alexandra; Negassa, Wakene; Guber, Andrey; Schmidt, Sonja

2014-05-01

208

Environmental Immunoassays: Alternative Techniques for Soil and Water Analysis  

USGS Publications Warehouse

Analysis of soil and water samples for environmental studies and compliance testing can be formidable, time consuming, and costly. As a consequence, immunochemical techniques have become popular for environmental analysis because they are reliable, rapid, and cost effective. During the past 5 years, the use of immunoassays for environmental monitoring has increased substantially, and their use as an integral analytical tool in many environmental laboratories is now commonplace. This chapter will present the basic concept of immunoassays, recent advances in the development of immunochemical methods, and examples of successful applications of immunoassays in environmental analysis.

Aga, D.S.; Thurman, E.M.

1996-01-01

209

Soil development and sampling strategies for the returned Martian surface samples  

NASA Technical Reports Server (NTRS)

Sampling of the Martian surface materials should be based on the experience gained from the study of soils and rocks collected in cold, dry environments, i.e., dry valleys of Antarctica. Previous studies have suggested that some of our best terrestrial analogs of the Martian soils are represented by those found in the polar deserts of Antarctica. Special sampling considerations must be taken into account when obtaining these samples because they represent at least five distinct types of materials. Weathering of planetary regolith materials occurs from both chemical and physical interactions of the planet's surface materials with the atmosphere and, if present, the hydrosphere and biosphere along with extraplanetary objects which may produce the original surface materials and produce secondary materials that are product of equilibrium between the atmosphere and study weathering processes and regolith development occurring on Martian-like surfaces, simulation studies must be carried out in materials in the field.

Gibson, Everett K.

1988-01-01

210

Differential thermal analysis of lunar soil simulant  

NASA Astrophysics Data System (ADS)

Differential thermal analysis of a lunar soil simulant, 'Minnesota Lunar Simulant-1' (MLS-1) was performed. The MLS-1 was tested in as-received form (in glass form) and with another silica. The silica addition was seen to depress nucleation events which lead to a better glass former.

Tucker, D.; Setzer, A.

1991-12-01

211

Differential thermal analysis of lunar soil simulant  

NASA Technical Reports Server (NTRS)

Differential thermal analysis of a lunar soil simulant, 'Minnesota Lunar Simulant-1' (MLS-1) was performed. The MLS-1 was tested in as-received form (in glass form) and with another silica. The silica addition was seen to depress nucleation events which lead to a better glass former.

Tucker, D.; Setzer, A.

1991-01-01

212

Comparison of model- and design-based sampling strategies for characterizing spatial variablity with ECa-directed soil sampling  

Technology Transfer Automated Retrieval System (TEKTRAN)

Spatial variability has a profound influence on solute transport in the vadose zone, soil quality assessment, and site-specific crop management. Directed soil sampling based on geospatial measurements of apparent soil electrical conductivity (ECa) is a potential means of characterizing the spatial ...

213

Sample Collection of Ash and Burned Soils from the October 2007 Southern California Wildfires  

USGS Publications Warehouse

Between November 2 through 9, 2007 scientists from the U.S. Geological Survey (USGS) collected samples of ash and burned soils from 28 sites in six areas burned as a result of the Southern California wildfires of October 2007, including the Harris, Witch, Santiago, Ammo, Canyon, and Grass Valley Fires. The primary goal of this sampling and analysis effort was to understand how differences in ash and burned soil composition relate to vegetation type, underlying bedrock geology, burn intensity, and residential versus wildland. Sampling sites were chosen with the input of local experts from the USGS Water Resources and Biological Resources Disciplines to help understand possible effects of the fires on water supplies, ecosystems, and endangered species. The sampling was also carried out in conjunction with detailed field analysis of the spectral reflectance characteristics of the ash, so that chemical and mineralogical characteristics of the field samples could be used to help interpret data collected as part of an airborne, hyperspectral remote-sensing survey of several of the burned areas in mid-late November, 2007. This report presents an overview of the field sampling methodologies used to collect the samples, includes representative photos of the sites sampled, and summarizes important characteristics of each of the collection sites. In this report we use the term 'ash' to refer collectively to white mineral ash, which results from full combustion of vegetation and black charred organic matter from partial combustion of vegetation or other materials. These materials were found to be intermingled as a deposited residue on the soil surface following the Southern California fires of 2007.

Hoefen, Todd M.; Kokaly, Raymond F.; Martin, Deborah A.; Rochester, Carlton; Plumlee, Geoffrey S.; Mendez, Greg; Reichard, Eric G.; Fisher, Robert N.

2009-01-01

214

A comparison of rock and soil samples for geochemical mapping of two porphyry-metal systems in Colorado  

USGS Publications Warehouse

Paired rock and soil samples were collected at widely spaced locations in large segments of the porphyry-metal systems of the Montezuma district in central Colorado and of a northwestward extension of the Summitville district into Crater Creek in southern Colorado. The paired samples do not covary closely enough for one sample medium to proxy for the other. However, the areal distributions of elements in both rocks and soils in these two districts conform to alteration zoning as defined by mineralogy. Differing geochemical patterns of rocks and soils reflect species-dependent responses to weathering. Soils appear to be statistically enriched in ore elements and depleted in rock elements as compared to the matching rocks. These differences are largely artificial s owing to different methods of sample preparation and chemical analysis for rocks and for soils. The distributions of metals in soils delineate the occurrence of ore-metal minerals mostly from vein deposits whereas the distributions of metals in rocks conform to zones of pervasive hydrothermal alteration and to the distribution of varied mineral deposits among these zones. Rock and soil samples are equally useful s of comparable map resolution and complement one another as a basis for geochemically mapping these porphyry-metal systems.

Neuerburg, George J.; Barton, H.N.; Watterson, J.R.; Welsch, E.P.

1978-01-01

215

A new generator for mineral dust aerosol production from soil samples in the laboratory: GAMEL  

NASA Astrophysics Data System (ADS)

A generator has been developed for producing mineral dust from small samples of desert soils. The objective is to perform a thorough characterization of this new tool and show that it is adapted to the future laboratory studies of the relationship between aerosols and their parent soils. This work describes the principles and operating protocol of the so-called GAMEL generator. A first series of detailed measurements was performed with a Niger soil. During these tests the aerosol size-distribution was monitored in real time with an optical counter and the particles collected on filters submitted to XRF analysis. This allowed characterizing the emission in terms of time evolution of the aerosol production, repeatability of the experiment, and assessing the influence of such generation parameters as the mass of soil and the frequency and duration of the shaking. For this sandy Niger soil, the optimal generation parameters were found to be 1 g of soil agitated 9 min at the frequency of 500 cycles/min, but the effect of modifications of these recommended values have also been quantified. In terms of size-distribution as well as of elemental composition, the generated aerosol is found to compare well to the one collected in natural conditions during local events. For testing the capability of the GAMEL to produce aerosols from different soils, tests were also performed with 3 other soils from arid and semi-arid areas. Results showed that the GAMEL is able to produce aerosols whose characteristics encompass the regional variability of naturally produced mineral aerosols.

Lafon, Sandra; Alfaro, Stéphane C.; Chevaillier, Servanne; Rajot, Jean Louis

2014-12-01

216

A Multivariate Analysis of Soil Yeasts Isolated from a Latitudinal Gradient  

Microsoft Academic Search

Yeast isolates from soil samples collected from a latitudinal gradient (>77°S to >64°N) were subjected to multivariate analysis to produce a statistical foundation for observed relationships between habitat characteristics and the distribution of yeast taxa (at various systematic levels) in soil microbial communities. Combinations of temperature, rainfall (highly correlated with net primary productivity), and electrical conductivity (EC) could explain up

Helen S. Vishniac

2006-01-01

217

Multiple nitrogen components in lunar soil sample 12023  

NASA Technical Reports Server (NTRS)

Nitrogen is one of the enigmatic elements in lunar soils and breccias. The large range in (delta)N-15 values found within lunar soils was initially attributed to a secular increase in the N-15/N-14 ratio of 50 percent within the solar corona, and hence in the implanted nitrogen within the lunar regolith. However, more recent explanations have proposed a two (or many) component mixing model of solar wind nitrogen with some hypothetical non-solar components. Such components could include indigenous lunar nitrogen, nitrogen contained in interstellar grains in primitive meteorites, and magnetospheric nitrogen from the terrestrial atmosphere. To understand the makeup of multi-component mixtures it is advantageous to have carbon and noble gas data measured simultaneously, particularly in the case of lunar soils, where the solar wind is a likely fundamental contributor of nitrogen. To this end, a new nitrogen instrument was adapted to give some of the desired data in parallel. Conjoint measurements of N abundance and (delta)N-15 together with N/Ar-36 and Ar-36/Ar-38 ratios obtained during a stepped combustion of lunar soil 12023. The results are preliminary to a much more comprehensive investigation of well characterized fractions of the sample which we still have available from a previous study. Stepped combustion of a sample of 12023,7 yielded 94 ppm nitrogen with a (delta)N-15 = +22.2 percent, as well as the characteristic heavy-light-heavy pattern observed for lunar samples. The low temperature maximum was +75.1 percent at 550 C, the minimum at 800 C with (delta)N-15 = -16.7 percent and the high temperature (delta)N-15 peak is +90.6 percent at 1250 C. The major releases of nitrogen occurred between 650 C - 800 C in the form of a double peak; a third, substantial release occurred at 1150 C yielding 14.2 ppm of nitrogen coinciding with a small but recognizable drop in (delta)N-15 against a regularly increasing trend.

Brilliant, D. R.; Franchi, I. A.; Pillinger, C. T.

1993-01-01

218

QA/QC requirements for physical properties sampling and analysis  

SciTech Connect

This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories also measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.

Innis, B.E.

1993-07-21

219

An investigation of arsenic contamination in Peninsular Malaysia based on Centella asiatica and soil samples.  

PubMed

The first objective of this study was to provide data of arsenic (As) levels in Peninsular Malaysia based on soil samples and accumulation of As in Centella asiatica collected from 12 sampling sites in Peninsular Malaysia. The second objective was to assess the accumulation of As in transplanted C. asiatica between control and semi-polluted or polluted sites. Four sites were selected which were UPM (clean site), Balakong (semi-polluted site), Seri Kembangan (semi-polluted site) and Juru (polluted site). The As concentrations of plant and soil samples were determined by Instrumental Neutron Activation Analysis. The As levels ranged from 9.38 to 57.05 ?g/g dw in soils, 0.21 to 4.33 ?g/g dw in leaves, 0.18 to 1.83 ?g/g dw in stems and 1.32-20.76 ?g/g dw in roots. All sampling sites had As levels exceeding the CCME guideline (12 ?g/g dw) except for Kelantan, P. Pauh, and Senawang with P. Klang having the highest As in soil (57.05 ?g/g dw). In C. asiatica, As accumulation was highest in roots followed by leaves and stems. When the As level in soils were higher, the uptake of As in plants would also be increased. After the transplantation of plants to semi-polluted and polluted sites for 3 weeks, all concentration factors were greater than 50 % of the initial As level. The elimination factor was around 39 % when the plants were transplanted back to the clean sites for 3 weeks. The findings of the present study indicated that the leaves, stems and roots of C. asiatica are ideal biomonitors of As contamination. The present data results the most comprehensive data obtained on As levels in Malaysia. PMID:22821327

Ong, G H; Yap, C K; Maziah, M; Suhaimi, H; Tan, S G

2013-04-01

220

Analysis of flow patterns and flow mechanisms in soils  

E-print Network

Analysis of flow patterns and flow mechanisms in soils Dissertation Co-directed by the University mechanism or changing soil physical properties (stratification). Thus, in stratified soil, we restricted was prepared at the Department of Soil Physics, University of Bayreuth, and at the Hydrogeological Laboratory

Avignon et des Pays de Vaucluse, Université de

221

Variability of Soil Analysis in Commercial Laboratories: Implications for Lime and Fertilizer Recommendations  

Microsoft Academic Search

Data of soil analysis of 20 samples of 84 commercial laboratories were used to estimate discrepancies among results and analyze the implications for fertilizer recommendations. More than 90% of the laboratories had all results of basic routine analysis of individual samples within the confidence interval (CI). Laboratories with the best performance in the proficiency test (grade A) had only 2.9

Heitor Cantarella; José A. Quaggio; Bernardo van Raij; Mônica F. de Abreu

2006-01-01

222

Studying soil properties using visible and near infrared spectral analysis  

NASA Astrophysics Data System (ADS)

This research is carried out inside the DIGISOIL Project, whose purposes are the integration and improvement of in situ and proximal measurement technologies, for the assessment of soil properties and soil degradation indicators, going form the sensing technologies to their integration and their application in digital soil mapping. The study area is located in the Virginio river basin, about 30 km south of Firenze, in the Chianti area, where soils with agricultural suitability have a high economic value connected to the production of internationally famous wines and olive oils. The most common soil threats, such as erosion and landslide, may determine huge economic losses, which must be considered in farming management practices. This basin has a length of about 23 km for a basin area of around 60,3 Km2. Geological formations outcropping in the area are Pliocene to Pleistocene marine and lacustrine sediments in beds with almost horizontal bedding. Vineyards, olive groves and annual crops are the main types of land use. A typical Mediterranean climate prevails with a dry summer followed by intense and sometimes prolonged rainfall in autumn, decreasing in winter. In this study, three types of VNIR and SWIR techniques, operating at different scales and in different environments (laboratory spectroscopy, portable field spectroscopy) are integrated to rapidly quantify various soil characteristics, in order to acquire data for assessing the risk of occurrence for typically agricultural practice-related soil threats (swelling, compaction, erosion, landslides, organic matter decline, ect.) and to collect ground data in order to build up a spectral library to be used in image analysis from air-borne and satellite sensors. Difficulties encountered in imaging spectroscopy, such as influence of measurements conditions, atmospheric attenuation, scene dependency and sampling representation are investigated and mathematical pre-treatments, using proper algorithms, are applied and tested. Data on detection limits of ground-based, airborne and satellite sensors are also provided. The problem of the influence of soil moisture and soil roughness on reflectance is also examined. Spectral indexes, derived from absorption features, are related to laboratory results on clay minerals, carbonate and iron content, soil moisture and organic matter amount, in order to investigate the potential of hyperspectral sensors to estimate soil properties, using empirical prediction models.

Moretti, S.; Garfagnoli, F.; Innocenti, L.; Chiarantini, L.

2009-04-01

223

Radionuclide Activities in Contaminated Soils: Effects of Sampling Bias on Remediation of Coarse-Grained Soils in Hanford Formation  

SciTech Connect

Only a limited set of particle size-contaminant concentration data is available for soils from the Hanford Site. These data are based on bench-scale tests on single soil samples from one waste site each in operable units 100-BC-1, 100-DR-1, and 100-FR-1, and three samples from the North Pond 300-FF-1 operable unit. The objective of this study was to 1) examine available particle size-contaminant of concern activity and concentration data for 100 and 300 Area soils, 2) assess the effects of sampling bias, 3) suggest sampling protocols, and 4) formulate a method to determine the contaminant of concern activities and concentrations of the whole soil based on the measurements conducted on a finer size fraction of the whole soil.

Mattigod, Shas V.; Martin, Wayne J.

2001-08-28

224

Metallic phases in the Luna 24 soil samples  

NASA Technical Reports Server (NTRS)

The metal and sulfide phases in the Luna 24 soil samples were studied with the optical microscope and the electron microprobe. The compositions of the metal particles fall into three groups based on their Ni and Co contents: (1) Samples of meteoritic composition which have undergone metamorphism on the lunar surface. (2) Samples of submeteoritic, low Ni and low Co contents, including most of the metal particles observed. These particles are contained in glass and agglutinate particles and were probably formed by the mixing of meteoritic metal with lunar metal produced by the reduction of silicates during shock-impact. (3) Samples of high-CO content probably formed by mixing of meteoritic material with high-Co metal from the mare basalt or by fractional crystallization from a metal silicate melt. The sulfide minerals were also studied. These are almost pure FeS, and crystallized from a late stage liquid in the mare basalt. Three high-Ni sulfides were also found in the glass phase of agglutinates.

Friel, J. J.; Goldstein, J. I.

1977-01-01

225

Temporal changes of soil physic-chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance.  

PubMed

Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg(-1)·year(-1) for SOM, 438.9 mg·g(-1)·year(-1) for C:P, 5.3 mg·g(-1)·year(-1) for C:K, and -3.23 mg·cm(-3)·year(-1) for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0-80-cm soil profile (P: -4.10 mg·kg(-1)·year(-1); pH: -0.0061 unit·year(-1); C:N: 167.1 mg·g(-1)·year(-1); K:P: 371.5 mg·g(-1) year(-1); N:K: -0.242 mg·g(-1)·year(-1); EC: 0.169 ?S·cm(-1)·year(-1)), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance. PMID:24772281

Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang

2014-04-01

226

Temporal changes of soil physic-chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance  

PubMed Central

Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg?1·year?1 for SOM, 438.9 mg·g?1·year?1 for C:P, 5.3 mg·g?1·year?1 for C:K, and ?3.23 mg·cm?3·year?1 for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0–80-cm soil profile (P: ?4.10 mg·kg?1·year?1; pH: ?0.0061 unit·year?1; C:N: 167.1 mg·g?1·year?1; K:P: 371.5 mg·g?1 year?1; N:K: ?0.242 mg·g?1·year?1; EC: 0.169 ?S·cm?1·year?1), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance. PMID:24772281

Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang

2014-01-01

227

Pyrosequencing of environmental soil samples reveals biodiversity of the Phytophthora resident community in chestnut forests.  

PubMed

Pyrosequencing analysis was performed on soils from Italian chestnut groves to evaluate the diversity of the resident Phytophthora community. Sequences analysed with a custom database discriminated 15 pathogenic Phytophthoras including species common to chestnut soils, while a total of nine species were detected with baiting. The two sites studied differed in Phytophthora diversity and the presence of specific taxa responded to specific ecological traits of the sites. Furthermore, some species not previously recorded were represented by a discrete number of reads; among these species, Phytophthora ramorum was detected at both sites. Pyrosequencing was demonstrated to be a very sensitive technique to describe the Phytophthora community in soil and was able to detect species not easy to be isolated from soil with standard baiting techniques. In particular, pyrosequencing is an highly efficient tool for investigating the colonization of new environments by alien species, and for ecological and adaptive studies coupled with biological detection methods. This study represents the first application of pyrosequencing for describing Phytophthoras in environmental soil samples. PMID:23560715

Vannini, Andrea; Bruni, Natalia; Tomassini, Alessia; Franceschini, Selma; Vettraino, Anna Maria

2013-09-01

228

Collecting cometary soil samples? Development of the ROSETTA sample acquisition system  

NASA Technical Reports Server (NTRS)

In the reference scenario of the ROSETTA CNRS mission, the Sample Acquisition System is mounted on the Comet Lander. Its tasks are to acquire three kinds of cometary samples and to transfer them to the Earth Return Capsule. Operations are to be performed in vacuum and microgravity, on a probably rough and dusty surface, in a largely unknown material, at temperatures in the order of 100 K. The concept and operation of the Sample Acquisition System are presented. The design of the prototype corer and surface sampling tool, and of the equipment for testing them at cryogenic temperatures in ambient conditions and in vacuum in various materials representing cometary soil, are described. Results of recent preliminary tests performed in low temperature thermal vacuum in a cometary analog ice-dust mixture are provided.

Coste, P. A.; Fenzi, M.; Eiden, Michael

1993-01-01

229

Environmental study of two significant solid samples: gravitation dust sediment and soil.  

PubMed

In this work are presented results of the complex study of two significant solid environmental samples: gravitation dust sediments (industrial pollutants, potential source of risk elements input to soils) and soils (component of the environment, potential source of risk elements input to food web). The first phase of this study was focused on the study of the significant chemical properties (phase composition, content of organic and inorganic carbon) of the dust and soil samples. In the second phase, the fractionation analysis was used on the evaluation of the mobility of chosen risk elements (Cu, Ni, Pb, Zn) in the studied samples. The single-step extractions were applied in the order of the isolation of the element forms (fractions), with different mobilities during defined ecological conditions by utilization of the following reagents: 1 mol dm(-3) NH(4)NO(3) for isolation of the "mobile" fraction, 0.05 mol dm(-3) ethylenediaminetetraacetic acid and 0.43 mol dm(-3) CH(3)COOH for isolation of the "mobilizable" fraction, and 2 mol dm(-3) HNO(3) for isolation of all releasable forms. On the basis of the results obtained in this study, it is possible to state that different origins and positions of solid environmental samples in the environment reflect in different chemical properties of their matrix. The different properties of the sample matrix result in different mobilities of risk elements in these kinds of samples. The fractionation analysis with single-step extraction for isolation element fractions is the method most suitable for easy checking of environmental pollution and for evaluation of risk elements cycle in the environment. PMID:21625924

Remeteiová, Dagmar; Rusnák, Radoslav; Kucanová, Eva; Fióová, Beáta; Ruži?ková, Silvia; Fekete, Ilona; Horváth, Márk; Dirner, Vojtech

2012-01-01

230

Sample Drying Effects on Lead Bioaccessibility in Reduced Soil  

Microsoft Academic Search

Risk-assessment tests of contaminated wetland soils often use ex- perimental protocols that artificially oxidize the soils. Oxidation may impact bioavailability of contaminants from the soils, creating erro- neous results and leading to improper management and remediation. The goal of this study was to determine if oxygenation of reduced sediments and soils influences Pb bioaccessibility measurements. The study site is located

Olha Furman; Daniel G. Strawn; Steve McGeehan

2007-01-01

231

Sampling Argentine stem weevil, Listronotus bonariensis (Kuschel), populations in pasture: The soil-dwelling stages  

Microsoft Academic Search

Previously described sampling systems for the soil-dwelling stages of the Argentine stem weevil, Listronotus bonariensis (Kuschel), are briefly reviewed. Sampling and extraction techniques developed and extensively tested by the authors are described. A manually operated 75 mm diam. soil corer was used for field sampling. A mechanical method was used for the rapid and large-scale extraction of adult, pupal. and

P. J. Addison

1989-01-01

232

Soil temperature calculation for burial site analysis.  

PubMed

The effect of air and water temperature upon the decomposition of human remains and upon biological activity has been extensively studied. However, less attention has been devoted to the temperature of the soil surrounding burials, despite its potential influence upon chemical reactions involved in the decomposition of human remains, drugs and toxins, as well as upon microbial and insect activity. A soil temperature calculation equation usually employed in civil engineering was used to calculate soil temperature at various depths in a cemetery located in Brisbane, Australia, in order to explain the extensive degradation of human remains and funerary objects observed at exhumation. The results showed that for the 160 years of the site's history, ground temperature at burial level had been sufficiently high for biological activity and chemical degradation reactions to continue right up until the time of exhumation. The equation used has potential in the analysis of both cemetery and clandestine burials, since it allows ground temperature to be calculated from ambient air temperature figures, for a variety of depths, soil types and vegetation conditions. PMID:19656646

Prangnell, Jonathan; McGowan, Glenys

2009-10-30

233

Sampling soils for testingSampling soils for testing J.B. Peters, K. A.J.B. Peters, K. A. KellingKelling and L.G. Bundyand L.G. Bundy  

E-print Network

onImpact of sample depth on measured soil pH levelsmeasured soil pH levels 0 1 2 3 4 5 6 7 soilpH 0Sampling soils for testingSampling soils for testing J.B. Peters, K. A.J.B. Peters, K. A. KellingKelling and L.G. Bundyand L.G. Bundy Soil Science DepartmentSoil Science Department University of Wisconsin

Balser, Teri C.

234

Small-Scale DNA Sample Preparation Method for Field PCR Detection of Microbial Cells and Spores in Soil  

PubMed Central

Efficient, nonselective methods to obtain DNA from the environment are needed for rapid and thorough analysis of introduced microorganisms in environmental samples and for analysis of microbial community diversity in soil. A small-scale procedure to rapidly extract and purify DNA from soils was developed for in-the-field use. Amounts of DNA released from bacterial vegetative cells, bacterial endospores, and fungal conidia were compared by using hot-detergent treatment, freeze-thaw cycles, and bead mill homogenization. Combining a hot-detergent treatment with bead mill homogenization gave the highest DNA yields from all three microbial cell types and provided DNA from the broadest range of microbial groups in a natural soil community. Only the bead mill homogenization step was effective for DNA extraction from Bacillus globigii (B. subtilis subsp. niger) endospores or Fusarium moniliforme conidia. The hot-detergent–bead mill procedure was simplified and miniaturized. By using this procedure and small-scale, field-adapted purification and quantification procedures, DNA was prepared from four different soils seeded with Pseudomonas putida cells or B. globigii spores. In a New Mexico soil, seeded bacterial targets were detected with the same sensitivity as when assaying pure bacterial DNA (2 to 20 target gene copies in a PCR mixture). The detection limit of P. putida cells and B. globigii spores in different soils was affected by the amount of background DNA in the soil samples, the physical condition of the DNA, and the amount of DNA template used in the PCR. PMID:9647816

Kuske, Cheryl R.; Banton, Kaysie L.; Adorada, Dante L.; Stark, Peter C.; Hill, Karen K.; Jackson, Paul J.

1998-01-01

235

RAPID METHOD FOR PLUTONIUM, AMERICIUM AND CURIUM IN VERY LARGE SOIL SAMPLES  

SciTech Connect

The analysis of actinides in environmental soil and sediment samples is very important for environmental monitoring. There is a need to measure actinide isotopes with very low detection limits. A new, rapid actinide separation method has been developed and implemented that allows the measurement of plutonium, americium and curium isotopes in very large soil samples (100-200 g) with high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resin{reg_sign}, TRU Resin{reg_sign} and DGA-Resin{reg_sign} cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), americium (Am), and curium (Cm) using a single multistage column combined with alpha spectrometry. The method combines an acid leach step and innovative matrix removal using cerium fluoride precipitation to remove the difficult soil matrix. This method is unique in that it provides high tracer recoveries and effective removal of interferences with small extraction chromatography columns instead of large ion exchange resin columns that generate large amounts of acid waste. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.

Maxwell, S

2007-01-08

236

Air-Drying, Cooling and Freezing for Soil Sample Storage Affects the Activity and the Microbial Communities from Two Mediterranean Soils  

Microsoft Academic Search

The selection of soil storage conditions must take into account the diversity of soils and their environmental characteristics, because different soil types may vary in their physical and chemical characteristics and microbial populations. As a result, identical storage conditions can produce different effects on different soil samples, and understanding the influence of soil storage in respect to the microbial community

Esther Martí; Joan Càliz; Genoveva Montserrat; M. Antonia Garau; Robert Cruañas; Xavier Vila; Jordi Sierra

2012-01-01

237

Inter-laboratory evaluation of the ISO standard 11063 "Soil quality - Method to directly extract DNA from soil samples".  

PubMed

Extracting DNA directly from micro-organisms living in soil is a crucial step for the molecular analysis of soil microbial communities. However, the use of a plethora of different soil DNA extraction protocols, each with its own bias, makes accurate data comparison difficult. To overcome this problem, a method for soil DNA extraction was proposed to the International Organization for Standardization (ISO) in 2006. This method was evaluated by 13 independent European laboratories actively participating in national and international ring tests. The reproducibility of the standardized method for molecular analyses was evaluated by comparing the amount of DNA extracted, as well as the abundance and genetic structure of the total bacterial community in the DNA extracted from 12 different soils by the 13 laboratories. High quality DNA was successfully extracted from all 12 soils, despite different physical and chemical characteristics and a range of origins from arable soils, through forests to industrial sites. Quantification of the 16S rRNA gene abundances by real time PCR and analysis of the total bacterial community structure by automated ribosomal intergenic spacer analysis (A-RISA) showed acceptable to good levels of reproducibility. Based on the results of both ring-tests, the method was unanimously approved by the ISO as an international standard method and the normative protocol will now be disseminated within the scientific community. Standardization of a soil DNA extraction method will improve data comparison, facilitating our understanding of soil microbial diversity and soil quality monitoring. PMID:21256879

Petric, I; Philippot, L; Abbate, C; Bispo, A; Chesnot, T; Hallin, S; Laval, K; Lebeau, T; Lemanceau, P; Leyval, C; Lindström, K; Pandard, P; Romero, E; Sarr, A; Schloter, M; Simonet, P; Smalla, K; Wilke, B-M; Martin-Laurent, F

2011-03-01

238

The Contained Sample Handling and Analysis System  

Microsoft Academic Search

The contained sample handling and analysis system (CSHAS) system supports the handling and analysis of Mars returned samples in a sample receiving facility (SRF). CSHAS builds upon prior efforts for spaceborne cell culturing systems, incorporating new technologies from related fields such as biomedical devices and semiconductor manufacturing. The CSHAS system uses the NASA Cell Culture Unit (CCU) as the basis

Joe C. Parrish; Christopher P. Krebs; Marco Serra; Liping Sun

2008-01-01

239

Performance evaluation soil samples for volatile organic compounds utilizing solvent encapsulation technology  

Microsoft Academic Search

A mixture of volatile organic compounds (VOCs) was encapsulated and mixed with a soil to produce a product suitable for use as a double blind source of VOCs in a soil performance evaluation sample. Two independent laboratories analyzed the standard encapsulated VOC\\/soil mixture for benzene, toluene, ethylbenzene, and xylene by using US EPA SW-846 Method 5035 in conjunction with SW-846

James Dahlgran; Curt Thies

1999-01-01

240

CORRECTION OF BULK DENSITY AND SAMPLING METHOD BIASES USING SOIL MASS PER UNIT AREA  

Technology Transfer Automated Retrieval System (TEKTRAN)

It is becoming increasingly clear that both quantitative and concentration soil constituent comparisons are confounded with soil bulk density if samples are collected based on depth from the surface. Our first experiment made direct comparisons of linear depth and soil mass per unit area for water c...

241

A Simple Centrifugation Method for obtaining Small Samples of Soil Solution  

Microsoft Academic Search

DURING the course of some investigations of seasonal variations in the available cation content of soils in Denbighshire (North Wales), samples of the soil solution were needed. The soils are classed as loams and silty loams, and moisture contents ranged from 30 to 47 per cent.

Brian E. Davies; R. I. Davies

1963-01-01

242

SoilEngineering: A Microsoft Excel ® spreadsheet © program for geotechnical and geophysical analysis of soils  

NASA Astrophysics Data System (ADS)

SoilEngineering is a user-friendly, interactive Microsoft Excel ® spreadsheet program for the geotechnical and geophysical analysis of soils. The influence of soil behavior on earthquake characteristics and/or structural design is one of the major elements in investigating earthquake forces, and thus the structural response with static and dynamic loads. With its interactive nature, the program provides the user with an opportunity to undertake soil static and dynamic load analysis. The program is formed by three main options: (1) Data Preparation, (2) Derived Parameters and (3) Analysis of Soil Problems (with Static and Dynamic Loads). The Data Preparation option is divided into four modules: Seismic Refraction Data, Geoelectrical Data, Borehole and SPT ( N) Data and Laboratory Data. The Derived Parameters option is divided into two modules: Geotechnical Parameters Derived from Geophysical Data and Relationships between Vs and SPT ( N) Values. The Analysis of Soil Problems (with Static and Dynamic Loads) option is divided into nine modules: Bearing Capacity for Shallow and Deep Foundations, Settlement Analysis (Static and Dynamic Loads), Estimation of Subgrade Reaction Coefficient, Slope Stability Analysis, Seismic Hazard Analysis, Strong Motion Attenuation Relationships, Acceleration/Velocity/Displacement Spectra, Soil Amplification Analysis and Soil Liquefaction Analysis. Soil engineering also permits plotting geophysical and geotechnical data with analysis.

Ozcep, Ferhat

2010-10-01

243

Evaluation of plant availability of rare earth elements in soils by chemical fractionation and multiple regression analysis  

Microsoft Academic Search

This case field study describes the distribution of rare earth elements (REEs) in different soil fractions obtained by a sequential extraction procedure and plant availability with single correlation and multiple regression analysis. Soil and plant samples were collected from a rural region of Beijing, China. Plant samples (corn, rice) were segmented into grain, stem, leaf and root. The results indicated

Fuliang Li; Xiaoquan Shan; Tianhong Zhang; Shuzhen Zhang

1998-01-01

244

Psychrotrophic lipase producers from Arctic soil and sediment samples.  

PubMed

Culturable microorganisms were successfully isolated from soil and sediment samples collected in 2011 on the northern coast of Hornsund, West Spitsbergen. A total of 63 single colony isolates from three sampling sites obtained were subjected to temperature dependence study to assess whether they are obligate psychrophilic or psychrotrophic strains. From initial temperature screening, only 53 psychrotrophic isolates were selected that are capable of growing between 4-28 degrees C. The rest that were capable of tolerating higher temperatures up to 37 degrees C were not included in this study. These isolates were chosen for lipase enzyme screening confirmation with the standard plate assay of olive oil and fluorescent dye Rhodamine B. Six lipase positive isolates were also subjected for subsequent lipase enzyme plate screening on tributyrin, triolein, olive oil and palm oil agar. Lipase production by these six isolates was further assayed by using colorimetric method with palm oil and olive oil as the substrate. These isolates with promising lipase activity ranging from 20 U/ml up to 160 U/ml on palm oil and olive oil substrate were successfully identified. Molecular identification by using 16S rRNA revealed that five out of six isolates were Gram-negative Proteobacteria and the other one was a Gram-positive Actinobacteria. PMID:25033666

Rasol, R; Rashidah, A R; Nazuha, R Siti Nur; Smykla, J; Maznah, W O Wan; Alias, S A

2014-01-01

245

Phosphatase activity in Antarctica soil samples as a biosignature of extant life  

NASA Astrophysics Data System (ADS)

Microbial activities have been detected in such extreme terrestrial environments as deep lithosphere, a submarine hydrothermal systems, stratosphere, and Antarctica. Microorganisms have adapted to such harsh environments by evolving their biomolecules. Some of these biomolecules such as enzymes might have different characteristics from those of organisms in ordinary environments. Many biosignatures (or biomarkers) have been proposed to detect microbial activities in such extreme environments. A number of techniques are proposed to evaluate biological activities in extreme environments including cultivation methods, assay of metabolism, and analysis of bioorganic compounds like amino acids and DNA. Enzyme activities are useful signature of extant life in extreme environments. Among many enzymes, phosphatase could be a good indicator of biological activities, since phosphate esters are essential for all the living terrestrial organisms. In addition, alkaline phosphatase is known as a typical zinc-containing metalloenzyme and quite stable in environments. We analyzed phosphatase activities in Antarctica soil samples to see whether they can be used as biosignatures for extant life. In addition, we characterized phosphatases extracted from the Antarctica soil samples, and compared with those obtained from other types of environments. Antarctica surface environments are quite severe environments for life since it is extremely cold and dry and exposed to strong UV and cosmic rays. We tried to evaluate biological activities in Antarctica by measuring phosphatase activities. Surface soil samples are obtained at the Sites 1-8 near Showa Base in Antarctica during the 47th Japan Antarctic exploration mission in 2005-6. Activities of acid phosphatase (ACP) and alkaline phosphatase (ALP) are measured spectrophotometrically after mixing the powdered sample and p-nitrophenyl phosphate solution (pH 6.5 for ACP, pH 8.0 for ALP). ALP was characterized after extraction from soils with Tris-HCl buffer (pH 9.0), where the activity was measured fluorometrically with 4-methylumbelliferyl phosphate (pH 8.0) as a substance. The soil of Site 8 (near a penguin rookery) showed almost the same level of ACP and ALP activities as usual surface soil sampled in YNU campus, while the soil of Sites 1-7 showed much less activities. ALP in the extract from the soil of Site 8 was characterized. It showed the maximal at 338 K, while ALP from the campus soil showed the maximal at 358 K. Gel filtration chromatography showed that the ALP activity was found only in the fraction whose molecular weights were over 60000. The ALP activity was diminished with EDTA and was recovered with addition of zinc ion. The present results showed that zinc-containing metalloenzymes, which had lower optimum temperature than those in usual environments, are present in Antarctica soil. It was suggested that phosphatases are good bio-signatures for extant life in extreme environments.

Sato, Shuji; Itoh, Yuki; Takano, Yoshinori; Fukui, Manabu; Kaneko, Takeo; Kobayashi, Kensei

246

Polychlorinated biphenyls in contaminated soil samples evaluated by GC-ECD with dual-column and GC-HRMS.  

PubMed

We present and compare results obtained from the analysis of polychlorinated biphenyls (PCBs) of a limited number of contaminated soil samples collected in three areas of Basilicata region (south of Italy). The levels of PCBs were evaluated by using two analytical methods: (i) parallel dual-column gas-chromatography with dual electron capture detectors (GC-ECD) and (ii) gas-chromatography coupled to high-resolution mass spectrometry (GC-HRMS) via electron impact ionization (EI) in the multiple ion monitoring mode (MIM, two ions per compound). Two extraction methods prior to sample cleanup were also examined: microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE). The MAE was the extraction procedure adopted using acetone/n-hexane (1:1, v/v) as it is mainly characterized by higher sample throughput and allowed reduced consumption of organic solvents. While extraction and analysis of spiked soil samples showed the applicability of both methods, systematic differences between the results were obtained for the sum of PCBs as a result of some non-detected congeners by GC-ECD compared with GC-HRMS. Indeed, high resolution MS using EI mode (electron energy 40eV) with a resolving power of 10,000 provides additional information about the contamination pattern. The GC-ECD screening of 11 soil samples led to just one sample non-compliant to as it was close to the guide value for soils fixed by the Italian legislation (i.e., 60ppb for private or urban soil). Using GC-HRMS, the amount of all PCBs found ranged from 5.4 to 127ppb with five soil samples non-compliant to the guide value. The number of identified congeners ranged from 1 to 9 and 9 to 18 using dual-column GC-ECD and GC-HRMS, respectively. PMID:18556044

Bianco, Giuliana; Novario, Giuseppe; Bochicchio, Dominga; Anzilotta, Giuseppe; Palma, Achille; Cataldi, Tommaso R I

2008-08-01

247

IMPACT OF SAMPLING FREQUENCY ON SOIL CO2 FLUX ESTIMATION  

Technology Transfer Automated Retrieval System (TEKTRAN)

Carbon dioxide flux from soil is a key indicator of soil organic C decomposition, and field estimates of CO2 fluxes are a critical component in soil C budget calculations. Often cumulative CO2-C flux is computed from weekly or biweekly measurements; however the consequences of this procedure, speci...

248

Analysis of the bacterial community changes in soil for septic tank effluent treatment in response to bio-clogging.  

PubMed

Soil columns were set up to survey the bacterial community in the soil for septic tank effluent treatment. When bio-clogging occurred in the soil columns, the effluent from the columns was in poorer quality. To evaluate changes of the soil bacterial community in response to bio-clogging, the bacterial community was characterized by DNA gene sequences from soil samples after polymerase chain reaction coupled with denaturing gradient gel electrophoresis process. Correspondence analysis showed that Proteobacteria related bacteria were the main bacteria within the soil when treating septic tank effluent. However, Betaproteobacteria related bacteria were the dominant microorganisms in the normal soil, whereas Alphaproteobacteria related bacteria were more abundant in the clogged soil. This study provided insight into changes of the soil bacterial community in response to bio-clogging. The results can supply some useful information for the design and management of soil infiltration systems. PMID:21508544

Nie, J Y; Zhu, N W; Zhao, K; Wu, L; Hu, Y H

2011-01-01

249

SAMPLING AND ANALYSIS OF ATMOSPHERIC AEROSOLS  

EPA Science Inventory

Sampling and analysis requirements for the characterization of ambient particles are reviewed. The choice of sampling equipment and characterization procedures for ambient particles are often dictated by the objectives of the experiment. The paper describes the procedures and the...

250

Emerging techniques for soil analysis via mid-infrared spectroscopy  

NASA Astrophysics Data System (ADS)

Transmittance and diffuse reflectance (DRIFT) spectroscopy in the mid-IR range are well-established methods for soil analysis. Over the last five years, additional mid-IR techniques have been investigated, and in particular: 1. Attenuated total reflectance (ATR) Attenuated total reflectance is commonly used for analysis of liquids and powders for which simple transmittance measurements are not possible. The method relies on a crystal with a high refractive index, which is in contact with the sample and serves as a waveguide for the IR radiation. The radiation beam is directed in such a way that it hits the crystal/sample interface several times, each time penetrating a few microns into the sample. Since the penetration depth is limited to a few microns, very good contact between the sample and the crystal must be ensured, which can be achieved by working with samples close to water saturation. However, the strong absorbance of water in the mid-infrared range as well as the absorbance of some soil constituents (e.g., calcium carbonate) interfere with some of the absorbance bands of interest. This has led to the development of several post-processing methods for analysis of the spectra. The FTIR-ATR technique has been successfully applied to soil classification as well as to determination of nitrate concentration [1, 6-8, 10]. Furthermore, Shaviv et al. [12] demonstrated the possibility of using fiber optics as an ATR devise for direct determination of nitrate concentration in soil extracts. Recently, Du et al. [5] showed that it is possible to differentiate between 14N and 15N in such spectra, which opens very promising opportunities for developing FTIR-ATR based methods for investigating nitrogen transformation in soils by tracing changes in N-isotopic species. 2. Photo-acoustic spectroscopy Photoacoustic spectroscopy (PAS) is based on absorption-induced heating of the sample, which produces pressure fluctuations in a surrounding gas. These fluctuations are recorded by a microphone and constitute the PAS signal. The major advantage of this method is that it is suitable for highly absorbing solid samples such as soils without any special pretreatment. This method has been applied successfully to soil classification and to quantitative determination of soil properties such as available nitrogen, phosphorus and potassium, organic matter or calcium carbonate content [2-4]. 3. FTIR-based determination of ion concentration using ion-exchange membranes In addition to the previous direct methods, mid-infrared spectroscopy can also be used to estimate nutrient availability or ion availability indirectly by combining FTIR with ion-exchange membranes. Such membranes are commonly used in studies dealing with nutrient availability, in which standard chemical methods are used to determine the amount of nutrients sorbed onto the membranes. Chemical analysis can be replaced by mid-IR spectroscopy of the loaded membrane, using either the transmittance or photo-acoustic technique depending on the type of membrane [9, 11]. The present work reviews these techniques and the chemometrics tools required for accurate interpretation of the spectra and discusses the potentials and limitations of each method. References 1. Borenstein A., R. Linker, I. Shmulevich and A. Shaviv (2006). Determination of soil nitrate and water content using attenuated total reflectance spectroscopy. Applied Spectroscopy, 60: 1267-1272. 2. Du, C., R. Linker and A. Shaviv (2007). Characterization of soils using photoacoustic mid-infrared spectroscopy. Applied Spectroscopy, 61: 1063-1067. 3. Du, C., R. Linker and A. Shaviv (2008). Identification of agricultural Mediterranean soils using mid-infrared photoacoustic spectroscopy. Geoderma, 143: 85-90. 4. Du, C., J. Zhou, H. Wang, X. Chen, A. Zhu and J. Zhang (2008). Determiantion of soil properties using Fourier transform mid-infrared photoacoustic spectroscopy. Vibrational Spectroscopy (In press). 5. Du, C., R. Linker, A. Shaviv and Z. Jianmin. In situ evaluation of net nitrification rate in Terra rossa soil using FTIR-ATR

Linker, R.; Shaviv, A.

2009-04-01

251

[Determination of trace mercury species in water and soil samples with atomic fluorescence spectrometry].  

PubMed

With hydride generation-cold atomic fluorescence spectrometry (HG-AFS), the method of determining trace mercury species in water and soil samples in Jimei, Xiamen city, China was established. The content of inorganic mercury in water was measured by sample direct injection, while the total mercury was measured after digestion with the reagents of KBrO3-KBr. The soil samples were digested with microwave for total mercury measurement. Sequential extraction procedure was carried out for determining different mercuric species in soil samples. The results indicated that the mercury concentration of wastewater from chemical laboratory exceeded the limit of the integrated wastewater discharge standard of China (GB 8978-1996). It is one of the serious pollution sources of mercury in environment. The mercury contents from soil samples including the sideward soil of highway, the sea sediment and the garden soil were under the limits of relative national standards of China. However, attention should be paid to the accumulation of mercury in garden soil due to the artificial pollution. Meanwhile, the average recoveries for water and soil samples tested with adding standards were 93.7% and 93.8%, respectively. Meanwhile, the detection limits estimated with 3-fold standard deviation were 0.000 8 microg x L(-1) for water and 0.072 3 microg x kg(-1) for soil, respectively. The results indicated that the established method, with the merits of high sensitivity and precision, was suitable for the measurement of trace mercury species in environmental samples. PMID:18260432

Huang, Zhi-Yong; Huang, Zhi-Tao; Zhang, Qiang; Zhuang, Zhi-Xia

2007-11-01

252

IWTU Process Sample Analysis Report  

SciTech Connect

CH2M-WG Idaho (CWI) requested that Battelle Energy Alliance (BEA) analyze various samples collected during June – August 2012 at the Integrated Waste Treatment Facility (IWTU). Samples of IWTU process materials were collected from various locations in the process. None of these samples were radioactive. These samples were collected and analyzed to provide more understanding of the compositions of various materials in the process during the time of the process shutdown that occurred on June 16, 2012, while the IWTU was in the process of nonradioactive startup.

Nick Soelberg

2013-04-01

253

Unexpectedly High Bacterial Diversity in Arctic Tundra Relative to Boreal Forest Soils, Revealed by Serial Analysis of Ribosomal Sequence Tags  

PubMed Central

Arctic tundra and boreal forest soils have globally relevant functions that affect atmospheric chemistry and climate, yet the bacterial composition and diversity of these soils have received little study. Serial analysis of ribosomal sequence tags (SARST) and denaturing gradient gel electrophoresis (DGGE) were used to compare composite soil samples taken from boreal and arctic biomes. This study comprises an extensive comparison of geographically distant soil bacterial communities, involving the analysis of 12,850 ribosomal sequence tags from six composite soil samples. Bacterial diversity estimates were greater for undisturbed arctic tundra soil samples than for boreal forest soil samples, with the highest diversity associated with a sample from an extreme northern location (82oN). The lowest diversity estimate was obtained from an arctic soil sample that was disturbed by compaction and sampled from a greater depth. Since samples from the two biomes did not form distinct clusters on the basis of SARST data and DGGE fingerprints, factors other than latitude likely influenced the phylogenetic compositions of these communities. The high number of ribosomal sequences analyzed enabled the identification of possible cosmopolitan and endemic bacterial distributions in particular soils. PMID:16204479

Neufeld, Josh D.; Mohn, William W.

2005-01-01

254

Identifying sampling locations for field-scale soil moisture estimation using K-means clustering  

NASA Astrophysics Data System (ADS)

Identifying and understanding the impact of field-scale soil moisture patterns is currently limited by the time and resources required to do sufficient monitoring. This study uses K-means clustering to find critical sampling points to estimate field-scale near-surface soil moisture. Points within the field are clustered based upon topographic and soils data and the points representing the center of those clusters are identified as the critical sampling points. Soil moisture observations at 42 sites across the growing seasons of 4 years were collected several times per week. Using soil moisture observations at the critical sampling points and the number of points within each cluster, a weighted average is found and used as the estimated mean field-scale soil moisture. Field-scale soil moisture estimations from this method are compared to the rank stability approach (RSA) to find optimal sampling locations based upon temporal soil moisture data. The clustering approach on soil and topography data resulted in field-scale average moisture estimates that were as good or better than RSA, but without the need for exhaustive presampling of soil moisture. Using an electromagnetic inductance map as a proxy for soils data significantly improved the estimates over those obtained based on topography alone.

Van Arkel, Zach; Kaleita, Amy L.

2014-08-01

255

Assessment of natural radioactivity levels and associated dose rates in soil samples from Northern Rajasthan, India.  

PubMed

The analysis of naturally occurring radionuclides ((226)Ra, (232)Th and (40)K) has been carried out in 40 soil samples collected from four districts of the Northern Rajasthan, India using gamma-ray spectrometry with an NaI(Tl) detector. The activity concentrations of the samples range from 38±9 to 65±11 Bq kg(-1) with a mean value of 52 Bq kg(-1) for (226)Ra, from 8±8 to 32±9 Bq kg(-1) with a mean value of 19 Bq kg(-1) for (232)Th and from 929±185 to 1894±249 Bq kg(-1) with a mean value of 1627 Bq kg(-1) for (40)K. The measured activity concentration of (226)Ra and (40)K in soil was higher and for (232)Th was lower than the worldwide range. Radium equivalent activities were calculated for the soil samples to assess the radiation hazards arising due to the use of these soils in the construction of buildings. The calculated average radium equivalent activity was 205±20 Bq kg(-1), which is less than the recommended limit of 370 Bq kg(-1) by the Organization for Economic Cooperation and Development. The total absorbed dose rate calculated from the activity concentration of (226)Ra, (232)Th and (40)K ranges from 77 to 123 nGy h(-1) with an average value of 103 nGy h(-1). The mean external (Hex) and internal hazard indices (Hin) for the area under study were determined to be 0.55 and 0.69, respectively. The corresponding average annual effective dose was found to be 0.63 mSv. PMID:23943368

Duggal, Vikas; Rani, Asha; Mehra, Rohit; Ramola, R C

2014-01-01

256

Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples.  

PubMed

The application of ultrasound-assisted extraction (UAE) to the sample preparation of environmental and food samples has increased in the last years. This technique has been used in the development of methods for the analysis of numerous contaminants, including organic compounds (pesticides, pharmaceuticals, polycyclic aromatic hydrocarbons, polyhalogenated flame retardants, etc.) and heavy metals. The aim of this work is to review the application of this extraction procedure to the analysis of contaminants in food and soil and the comparison of its use with other well-established extraction procedures. The advantages and disadvantages of this technique together with the possibility of coupling UAE with other analytical techniques will be also discussed. PMID:20005520

Tadeo, José L; Sánchez-Brunete, Consuelo; Albero, Beatriz; García-Valcárcel, Ana I

2010-04-16

257

Characterization of mineral phases of agricultural soil samples of Colombian coffee using Mössbauer spectroscopy and X-ray diffraction  

NASA Astrophysics Data System (ADS)

Soil chemical analysis, X-ray diffraction (XRD) and Mössbauer spectrometry (MS) of 57Fe were used to characterize mineral phases of samples taken from the productive layer (horizon A) of agricultural coffee soil from Tolima (Colombia). Chemical analysis shows the chemical and textural parameters of samples from two different regions of Tolima, i.e., Ibagué and Santa Isabel. By XRD phases like illite (I), andesine (A) and quartz (Q) in both samples were identified. The quantity of these phases is different for the two samples. The MS spectra taken at room temperature were adjusted by using five doublets, three of them associated to Fe + 3 type sites and the other two to Fe + 2 type sites. According to their isomer shift and quadrupole splitting the presence of phases like illite (detected by DRX), nontronite and biotite (not detected by XRD) can be postulated.

Rodríguez, Humberto Bustos; Lozano, Dagoberto Oyola; Martínez, Yebrayl Antonio Rojas; Pinilla, Marlene Rivera; Alcázar, German Antonio Pérez

2012-03-01

258

Sampling dynamic soil properties and vegetation for soil survey and ecological site descriptions  

Technology Transfer Automated Retrieval System (TEKTRAN)

Dynamic soil property data can be collected during soil survey updates to add value to soil survey products and meet users needs for ecological site descriptions. Producers and land managers need information about soil and ecosystem change in order to plan for long-term productivity, conduct monito...

259

Erosion Modeling in Central China - Soil Data Acquisition by Conditioned Latin Hypercube Sampling and Incorporation of Legacy Data  

NASA Astrophysics Data System (ADS)

The Three Gorges Dam at the Yangtze River in Central China outlines a prominent example of human-induced environmental impacts. Throughout one year the water table at the main river fluctuates about 30m due to impoundment and drainage activities. The dynamic water table implicates a range of georisks such as soil erosion, mass movements, sediment transport and diffuse matter inputs into the reservoir. Within the framework of the joint Sino-German project YANGTZE GEO, the subproject "Soil Erosion" deals with soil erosion risks and sediment transport pathways into the reservoir. The study site is a small catchment (4.8 km²) in Badong, approximately 100 km upstream the dam. It is characterized by scattered plots of agricultural landuse and resettlements in a largely wooded, steep sloping and mountainous area. Our research is focused on data acquisition and processing to develop a process-oriented erosion model. Hereby, area-covering knowledge of specific soil properties in the catchment is an intrinsic input parameter. This will be acquired by means of digital soil mapping (DSM). Thereby, soil properties are estimated by covariates. The functions are calibrated by soil property samples. The DSM approach is based on an appropriate sample design, which reflects the heterogeneity of the catchment, regarding the covariates with influence on the relevant soil properties. In this approach the covariates, processed by a digital terrain analysis, are outlined by the slope, altitude, profile curvature, plane curvature, and the aspect. For the development of the sample design, we chose the Conditioned Latin Hypercube Sampling (cLHS) procedure (Minasny and McBratney, 2006). It provides an efficient method of sampling variables from their multivariate distribution. Thereby, a sample size n from multiple variables is drawn such that for each variable the sample is marginally maximally stratified. The method ensures the maximal stratification by two features: First, number of strata equals the sample size n and secondly, the probability of falling in each of the strata is n-¹ (McKay et al., 1979). We extended the classical cLHS with extremes (Schmidt et al., 2012) approach by incorporating legacy data of previous field campaigns. Instead of identifying precise sample locations by CLHS, we demarcate the multivariate attribute space of the samples based on the histogram borders of each stratum. This widens the spatial scope of the actual CLHS sample locations and allows the incorporation of legacy data lying within that scope. Furthermore, this approach provides an extended potential regarding the accessibility of sample sites in the field.

Stumpf, Felix; Schönbrodt-Stitt, Sarah; Schmidt, Karsten; Behrens, Thorsten; Scholten, Thomas

2013-04-01

260

FIELD SAMPLING PROTOCOLS AND ANALYSIS  

EPA Science Inventory

I have been asked to speak again to the environmental science class regarding actual research scenarios related to my work at Kerr Lab. I plan to discuss sampling protocols along with various field analyses performed during sampling activities. Many of the students have never see...

261

Geochemical soil sampling for deeply-buried mineralized breccia pipes, northwestern Arizona  

USGS Publications Warehouse

Thousands of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northwestern Arizona; some host high-grade uranium deposits. The mineralized pipes are enriched in Ag, As, Ba, Co, Cu, Mo, Ni, Pb, Sb, Se, V and Zn. These breccia pipes formed as sedimentary strata collapsed into solution caverns within the underlying Mississippian Redwall Limestone. A typical pipe is approximately 100 m (300 ft) in diameter and extends upward from the Redwall Limestone as much as 1000 m (3000 ft). Unmineralized gypsum and limestone collapses rooted in the Lower Permian Kaibab Limestone or Toroweap Formation also occur throughout this area. Hence, development of geochemical tools that can distinguish these unmineralized collapse structures, as well as unmineralized breccia pipes, from mineralized breccia pipes could significantly reduce drilling costs for these orebodies commonly buried 300-360 m (1000-1200 ft) below the plateau surface. Design and interpretation of soil sampling surveys over breccia pipes are plagued with several complications. (1) The plateau-capping Kaibab Limestone and Moenkopi Formation are made up of diverse lithologies. Thus, because different breccia pipes are capped by different lithologies, each pipe needs to be treated as a separate geochemical survey with its own background samples. (2) Ascertaining true background is difficult because of uncertainties in locations of poorly-exposed collapse cones and ring fracture zones that surround the pipes. Soil geochemical surveys were completed on 50 collapse structures, three of which are known mineralized breccia pipes. Each collapse structure was treated as an independent geochemical survey. Geochemical data from each collapse feature were plotted on single-element geochemical maps and processed by multivariate factor analysis. To contrast the results between geochemical surveys (collapse structures), a means of quantifying the anomalousness of elements at each site was developed. This degree of anomalousness, named the "correlation value", was used to rank collapse features by their potential to overlie a deeply-buried mineralized breccia pipe. Soil geochemical results from the three mineralized breccia pipes (the only three of the 50 that had previously been drilled) show that: (1) Soils above the SBF pipe contain significant enrichment of Ag, Al, As, Ba, Ga, K, La, Mo, Nd, Ni, Pb, Sc, Th, U and Zn, and depletion in Ca, Mg and Sr, in contrast to soils outside the topographic and structural rim; (2) Soils over the inner treeless zone of the Canyon pipe show Mo and Pb enrichment anf As and Ga depletion, in contrast to soils from the surrounding forest; and (3) The soil survey of the Mohawk Canyon pipe was a failure because of the rocky terrane and lack of a B soil horizon, or because the pipe plunges. At least 11 of the 47 other collapse structures studied contain anomalous soil enrichments similar to the SBF uranium ore-bearing pipe, and thus have good potential as exploration targets for uranium. One of these 11, #1102, does contain surface mineralized rock. These surveys suggest that soil geochemical sampling is a useful tool for the recognition of many collapse structures with underlying ore-bearing breccia pipes. ?? 1994.

Wenrich, K.J.; Aumente-Modreski, R. M.

1994-01-01

262

FRESHWATER ASSAY USING SOIL ELUATES AS SAMPLE MATERIAL (SINGLE LABORATORY EVALUATION)  

EPA Science Inventory

The Chlorophyta assay, which uses soil as sample material, has been a useful bioassessment technique for screening hazardous waste site problems. n eluate is prepared from a 125-gram soil sample and then diluted into three separate concentrations prior to being tested using Selen...

263

A 60-year history of California soil quality using paired samples  

Microsoft Academic Search

How has soil quality changed in California over the past 60 years? Using the known locations of archived samples collected by the soil survey staff in the 1940s and 1950s, we resampled 125 locations in California from the Imperial Valley in the south to Tehama county in the north and analyzed samples for properties important to plant production. We collected

Fabrice De Clerck; Michael J. Singer; Peter Lindert

2003-01-01

264

DESIGNING A CONTAMINATED SOIL SAMPLING STRATEGY FOR HUMAN HEALTH RISK ASSESSMENT  

E-print Network

2001-88 DESIGNING A CONTAMINATED SOIL SAMPLING STRATEGY FOR HUMAN HEALTH RISK ASSESSMENT L : + 33 (0)3 44 55 68 99, E-mail : laure.malherbe@ineris.fr 1 Introduction - Human health risk assessment : stakes of a relevant soil sampling strategy ? Human health risk assessment is a site-based approach which

Paris-Sud XI, Université de

265

Leachate Geochemical Results for Ash and Burned Soil Samples from the October 2007 Southern California Wildfires  

USGS Publications Warehouse

This report is the second release of leachate geochemical data included as part of a multidisciplinary study of ash and burned soil samples from the October 2007 wildfires in southern California. Geochemical data for the first set of samples were released in an Open-File Report (Plumlee and others, 2007). This study is a continuation of that work. The objectives of this leaching study are to aid in understanding the interactions of ash and burned soil with rainfall. For this study, 12 samples collected in early November 2007 were leached using the U.S. Geological Survey (USGS) Field Leach Test (FLT). Following leaching, sub-samples of the leachate were analyzed for pH and specific conductance. The leachate was then filtered, and aliquots were preserved for geochemical analysis. This report presents leachate geochemical data for pH, specific conductance, alkalinity, anions using ion chromatography (I.C.), cations using inductively coupled plasma?atomic mass spectrometry (ICP-MS), and mercury by continuous flow injection?cold vapor?atomic fluorescence (CVAFS).

Hageman, Philip L.; Plumlee, Geoffrey S.; Martin, Deborah A.; Hoefen, Todd M.; Meeker, Gregory P.; Adams, Monique; Lamothe, Paul J.; Anthony, Michael W.

2008-01-01

266

Analysis of flow patterns and flow mechanisms in soils  

E-print Network

Analysis of flow patterns and flow mechanisms in soils Dissertation Co-directed by the University of paths, varying flow mechanism or changing soil physical properties (stratification). Thus, in stratified-28Jan2010 #12;This doctoral thesis was prepared at the Department of Soil Physics, University

Paris-Sud XI, Université de

267

137Cs re-sampling as a method for soil erosion assessment in Alpine grasslands  

NASA Astrophysics Data System (ADS)

Over the past decades, radioactive fallout 137Cs has been used as a tracer to provide information on soil erosion and sedimentation rates. However, the method may produce relatively large uncertainties in Alpine grasslands. The latter difficulties are caused by a combination of (i) the heterogeneous distribution of atmospheric 137Cs Chernobyl fallout, (ii) the partly snow covered ground in Alpine areas during the fallout event in April 1986, which results in inhomogeneous 137Cs distribution during snow melt and (iii) uncertainties in finding undisturbed references sites in the geomorphological and anthropogenic highly active slopes of the Alps. To overcome these difficulties, our aim is to replace the classical 137Cs approach, where an undisturbed reference site is compared to erosional sites, with a re-sampling approach, where we re-sample sites which have already been measured for 137Cs inventories in the past. Thus, we use temporal instead of spatial reference. The study area is located in the Central Swiss Alps in the Urseren Valley. Potential erosional sites have been sampled in 2007 and re-sampled in 2012. Two different grassland types were investigated: hayfield (2 sites) and pasture without dwarf shrubs (3 sites). For each site, 4 to 9 sampling points have been defined, and at each point two soil samples have been collected. To reduce the random error, the two soil samples were bulked prior to gamma-analysis. 137Cs inventories of the two sampling years were calculated and used to assess recent soil erosion in the experimental sites. Our results show that within the 5 years measurable soil erosion and deposition processes have occurred within the sites, as indicated by the relevant difference between the 137Cs inventories of 2007 and 2012. 64% of the sites exhibit a decrease in 137Cs inventories, 20% of the sites an increase, and the remaining 16% no significant difference. In particular, hayfield sites have been affected by erosion processes, mostly due to high snow glide and avalanche dynamic, whereas pasture inventories indicate both deposition and erosion. Resulting re-sampling erosion rates for the period of 2007-2012 indicate high erosion rates of >20 t ha-1 yr-1, which confirm previous studies. The 137Cs re-sampling method has also been successfully tested to verify the appropriateness of reference sites. Reference sites in the study area, defined and sampled in 2010, have been re-sampled in 2013. Sites which did not show a considerable difference in 137Cs inventories, may subsequently be used to apply the classical 137Cs approach. The 137Cs re-sampling approach represents an effective and reliable method to assess short term erosion in Alpine grasslands, and a useful addition for the 137Cs classical approach, in validating the suitability of reference sites.

Arata, Laura; Meusburger, Katrin; Bissig, Nicole; Mabit, Lionel; Alewell, Christine

2014-05-01

268

Elemental Analysis of Soils by Laser Induced Breakdown Spectroscopy  

NASA Astrophysics Data System (ADS)

The chemical and elemental composition of soil is very complex as it contains many constituents like minerals, organic matters, living organisms, fossils, air and water. Considering the diversity of soil contents, quality and usability, a systematic scientific study on the elemental and chemical composition of soil is very important. In order to study the chemical composition of soil, Laser induced breakdown spectroscopy (LIBS) has been applied recently. The important features of LIBS system and its applications for the measurement of nutrients in green house soil, on-line monitoring of remediation process of chromium polluted soil, determination of trace elements in volcanic erupted soil samples collected from ancient cenozoic lava eruption sites and detection of toxic metals in Gulf war oil spill contaminated soil using LIBS are described in this chapter.

Gondal, Mohammed Ashraf; Dastageer, Mohamed A.

269

Analysis of soils - Part I: Soil dynamics and climatic change  

SciTech Connect

The reaction of soil characteristics to vegetative alterations as a simulation of the effects of a climatic change are investigated, because the organic matter of soils reflects the condition of nature. The search for suitable acreages is a basic condition, since the stage of being fallow, i.e. the time since the last agricultural use, is supposed to be the only variable. That is why a test area has to fulfil different criteria, as e.g. altitude, sub-soil, slope, exposition, evapotranspiration, amount, intensity and duration of rainfall, amount of sunshine, humidity, temperature, definability and an only extensive use. Six soils with different ages of fallow land fulfil all the postulated criteria and are dated with the aid of maps, aerial photographs and dendrochonology.

Howald, M.; Schuerch, S.; Schlunegger, U.P. [Univ. of Berne (Switzerland)

1995-12-31

270

Multiscale analysis of soil transect data  

Technology Transfer Automated Retrieval System (TEKTRAN)

A deeper understanding of spatial variability of soil properties and the relationship between them is needed to scale up measured soil properties and to model soil processes. The object of this study was to characterize the spatial scaling properties of a set of soil physical properties measured on...

271

Letter Report for Analytical Results for Two Soil Samples Associated with the Westinghouse Hematite Decommisioning Project in Hematite Missouri  

SciTech Connect

Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, received two soil samples on September 26, 2013 from the Westinghouse Hetnatite Decomminsioning project in Hematite, Missouri. The samples were analyzed for thorium-232, radium-226, uranium-235, and uranium-238 by gamma spectrometry and technetium-99 by liquid scintillation analysis. The samples were received in good condition. The sample collection data and identification numbers are tabulated. Also presented are the gamma spectrometry and technetium-99 data, respectively. The pertinent procedure references are included with the data tables.

Ivey, Wade

2013-10-30

272

Maximum possible age of a petrel breeding colony near Punakaiki (South Island, New Zealand) from radiocarbon and stable isotope analysis of soil  

Microsoft Academic Search

The lifetime of individual petrel colonies is poorly known. This study used radiocarbon, C, and N analysis of soil to determine the maximum possible age of a colony presently occupied by Westland petrels. A sample of Ap horizon soil in lithic contact was selected for analysis, as soil least likely to have been redistributed by petrel burrowing. Chemical removal of

David J. Hawke

2004-01-01

273

Sample processor for chemical analysis  

NASA Technical Reports Server (NTRS)

An apparatus is provided which can process numerous samples that must be chemically analyzed by the application of fluids such as liquid reagents, solvents and purge gases, as well as the application of dumps for receiving the applied fluid after they pass across the sample, in a manner that permits numerous samples to be processed in a relatively short time and with minimal manpower. The processor includes a rotor which can hold numerous cartridges containing inert or adsorbent material for holding samples, and a pair of stators on opposite sides of the rotor. The stators form stations spaced along the path of the cartridges which lie in the rotor, and each station can include an aperture in one stator through which a fluid can be applied to a cartridge resting at that station, and an aperture in the other stator which can receive the fluid which has passed through the cartridge. The stators are sealed to the ends of the cartridges lying on the rotor, to thereby isolate the stations from one another.

Boettger, Heinz G. (Inventor)

1980-01-01

274

Quantitative Field Testing Heterodera glycines from Metagenomic DNA Samples Isolated Directly from Soil under Agronomic Production  

PubMed Central

A quantitative PCR procedure targeting the Heterodera glycines ortholog of the Caenorhabditis elegans uncoordinated-78 gene was developed. The procedure estimated the quantity of H. glycines from metagenomic DNA samples isolated directly from field soil under agronomic production. The estimation of H. glycines quantity was determined in soil samples having other soil dwelling plant parasitic nematodes including Hoplolaimus, predatory nematodes including Mononchus, free-living nematodes and biomass. The methodology provides a framework for molecular diagnostics of nematodes from metagenomic DNA isolated directly from field soil. PMID:24587100

Li, Yan; Lawrence, Gary W.; Lu, Shien; Balbalian, Clarissa; Klink, Vincent P.

2014-01-01

275

Grey Incidence Analysis (gia): a New Local Method for Modelling Chinese Soil Vis-Nir Spectral Library to Predict Soil Total Nitrogen Content  

NASA Astrophysics Data System (ADS)

This paper introduces a new approach called grey incidence analysis(GIA), by which high accuracy prediction model can be established combined with partial least squares regression(PLSR) to deal with Chinese soil vis-NIR spectral library and estimate soil total nitrogen content in local area. Using spectral matching algorithm such as Mahalanobis distance, spectral angle model (SAM) and spectral correlation fitting(SCF), fuzzy k-means clustering method only based on the spectral data without considering soil total nitrogen content in the library. Soil total nitrogen content have grey uncertainty relationship with each vis-NIR spectral band(400-2500nm). This method combine the soil total nitrogen value with spectrum data when performing spectral matching. In this study, 1661 soil samples in the library were collected from 13 provinces in China, which include Tibet, Xinjiang, Heilongjiang, and Hainan. The samples represent 17 soil groups of the Chinese Soil (Genetic) Classification System. After air-drying and sieving, the diffuse reflectance spectra of the samples were measured under laboratory conditions in the range between 400 and 2500 nm using a portable vis-NIR spectrometer. Hyperspectral inversion model was built based on 104 paddy soil samples in Zhejiang province to predict the soil total nitrogen content. The results show that the GIA-PLSR method presents great potential for predicting soil total nitrogen content in large soil vis-NIR library. The prediction accuracy: R2 = 0.897, RMSEP = 0.028, RPDP = 3.151. This study also show that soil vis-NIR spectroscopy combined with TN value can be used to further improve the prediction performance of spectral models.

Wang, Qianlong

2014-06-01

276

Determination of polycyclic aromatic hydrocarbons in soil samples using flotation-assisted homogeneous liquid-liquid microextraction.  

PubMed

In this study, flotation-assisted homogeneous liquid-liquid microextraction (FA-HLLME) was developed as a fast, simple, and efficient method for extraction of four polycyclic aromatic hydrocarbons (PAHs) in soil samples followed by gas chromatography-flame ionization detector (GC-FID) analysis. A special home-made extraction cell was designed to facilitate collection of the low-density extraction solvent without a need for centrifugation. In this method, PAHs were extracted from soil samples into methanol and water (1:1, v/v) using ultrasound in two steps followed by filtration as a clean-up step. The filtrate was added into the home-made extraction cell contained mixture of 1.0 mL methanol (homogenous solvent) and 150.0 ?L toluene (extraction solvent). Using N(2) flotation, the dispersed extraction solvent was transferred to the surface of the mixture and was collected by means of a micro-syringe. Then, 2 ?L of the collected organic solvent was injected into the GC-FID for subsequent analysis. Under optimal conditions, linearity of the method was in the range of 40-1000 ?g kg(-1) soil (dry weight). The relative standard deviations in real samples varied from 5.9 to 15.2% (n=4). The proposed method was successfully applied to analyze the target PAHs in soil samples, and satisfactory results were obtained. PMID:23084825

Hosseini, Majid Haji; Rezaee, Mohammad; Mashayekhi, Hossein Ali; Akbarian, Saeid; Mizani, Farhang; Pourjavid, Mohammad Reza

2012-11-23

277

Field analysis of mercury in water, sediment and soil using static headspace analysis  

SciTech Connect

We developed a field screening method for rapid analysis of Hg in water, soil, and sediment, which can be applied cost-effectively at Hg-contaminated sites. Samples are chemically pretreated in ordinary containers, followed by analysis of the sample headspace Hg vapor using a portable commercial analyzer. Hg in water samples is reduced directly by the addition of stannous chloride, while solids are first digested with aqua regia or piranha solution to liberate the Hg from the solids. Aided by vigorous agitation after adding the reductant, the elemental Hg partitions between solution and headspace according to Henry`s Law. The method requires about 2 and 15 minutes to complete for water and solids, respectively. The method provides very useful detection limits for water (0.1 {mu}g/L) and solids (2-3{mu}g/g). Intercomparisons with laboratory-analyzed environmental samples show good agreement.

Kriger, A.A. [Lockwood Greene Technologies, Oak Ridge, TN (United States); Turner, R.R. [Oak Ridge National Lab., TN (United States)

1994-12-31

278

Soil Property Mapping Over Large Areas Using Sparse Ad-hoc Samples  

NASA Astrophysics Data System (ADS)

Information on spatial variation of soil properties over large areas is a critical input for environmental modeling at the regional to continental scales. Yet, quality information on soil spatial variation over large areas is rather difficult to obtain due to the large number of field samples needed and the required global representation on field samples by existing mapping techniques. Due to the constraints of field conditions and project budget and the complexity of spatial variation of soil properties the collected samples are often sparse and ad-hoc (poor global representation) in nature. As a result field sampling can rarely meet these requirements (both the number of samples and the sound global representation). The soil property maps derived based on these samples using existing mapping techniques are not only at low quality but also lack the information on the uncertainty introduced by samples’ poor global representation. The lack of uncertainty information in the derived soil property maps also prevents proper uncertainty assessment of model outputs when the derived soil information is used as the input to environmental models. This paper presents a new approach to map soil properties and quantify uncertainty in the derived soil property maps over large areas using sparse and ad-hoc samples. The underlying assumption of this new approach is the soil-landscape concept which stipulates that the more similar the environment conditions between two locations the more similar the soil property values are between the two sites. Under this assumption each sample can be considered as a representative over areas of similar environmental conditions. The level of representation by an individual sample to an unsampled location can be approximated by the similarity between their respective environmental conditions. Based on this “individual representation” concept and with a Case-based Reasoning (CBR) approach soil property values at unsampled locations can be predicted based on their environmental similarity to individual samples. Furthermore, the uncertainty associated with each prediction is related to the similarity and can thus be quantified. A case study over the Illy Region, a 50,000 km2 area in Xinjiang, Northwest China, has demonstrated that the predicted spatial variation of soil organic matter of top layer is of good quality and the quantified uncertainty is positively correlated with prediction residuals. This suggests that the approach can be an effective alternative for mapping soil property and quantifying uncertainty over large areas with sparse and ad-hoc samples.

Zhu, A.; Liu, J.; Qin, C.; Zhang, S.; Chen, Y.; Ma, X.; Solim Group

2010-12-01

279

Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota  

NASA Astrophysics Data System (ADS)

Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

2015-02-01

280

Selenium speciation in acidic environmental samples: application to acid rain-soil interaction at Mount Etna volcano.  

PubMed

Speciation plays a crucial role in elemental mobility. However, trace level selenium (Se) speciation analyses in aqueous samples from acidic environments are hampered due to adsorption of the analytes (i.e. selenate, selenite) on precipitates. Such solid phases can form during pH adaptation up till now necessary for chromatographic separation. Thermodynamic calculations in this study predicted that a pH<4 is needed to prevent precipitation of Al and Fe phases. Therefore, a speciation method with a low pH eluent that matches the natural sample pH of acid rain-soil interaction samples from Etna volcano was developed. With a mobile phase containing 20mM ammonium citrate at pH 3, selenate and selenite could be separated in different acidic media (spiked water, rain, soil leachates) in <10 min with a LOQ of 0.2 ?g L(-1) using (78)Se for detection. Applying this speciation analysis to study acid rain-soil interaction using synthetic rain based on H(2)SO(4) and soil samples collected at the flanks of Etna volcano demonstrated the dominance of selenate over selenite in leachates from samples collected close to the volcanic craters. This suggests that competitive behavior with sulfate present in acid rain might be a key factor in Se mobilization. The developed speciation method can significantly contribute to understand Se cycling in acidic, Al/Fe rich environments. PMID:21621241

Floor, Geerke H; Iglesías, Mònica; Román-Ross, Gabriela; Corvini, Philippe F X; Lenz, Markus

2011-09-01

281

Integrated sampling procedure for metabolome analysis.  

PubMed

Metabolome analysis, the analysis of large sets of intracellular metabolites, has become an important systems analysis method in biotechnological and pharmaceutical research. In metabolic engineering, the integration of metabolome data with fluxome and proteome data into large-scale mathematical models promises to foster rational strategies for strain and cell line improvement. However, the development of reproducible sampling procedures for quantitative analysis of intracellular metabolite concentrations represents a major challenge, accomplishing (i) fast transfer of sample, (ii) efficient quenching of metabolism, (iii) quantitative metabolite extraction, and (iv) optimum sample conditioning for subsequent quantitative analysis. In addressing these requirements, we propose an integrated sampling procedure. Simultaneous quenching and quantitative extraction of intracellular metabolites were realized by short-time exposure of cells to temperatures < or =95 degrees C, where intracellular metabolites are released quantitatively. Based on these findings, we combined principles of heat transfer with knowledge on physiology, for example, turnover rates of energy metabolites, to develop an optimized sampling procedure based on a coiled single tube heat exchanger. As a result, this sampling procedure enables reliable and reproducible measurements through (i) the integration of three unit operations into a one unit operation, (ii) the avoidance of any alteration of the sample due to chemical reagents in quenching and extraction, and (iii) automation. A sampling frequency of 5 s(-)(1) and an overall individual sample processing time faster than 30 s allow observing responses of intracellular metabolite concentrations to extracellular stimuli on a subsecond time scale. Recovery and reliability of the unit operations were analyzed. Impact of sample conditioning on subsequent IC-MS analysis of metabolites was examined as well. The integrated sampling procedure was validated through consistent results from steady-state metabolite analysis of Escherichia coli cultivated in a chemostat at D = 0.1 h(-)(1). PMID:17022684

Schaub, Jochen; Schiesling, Carola; Reuss, Matthias; Dauner, Michael

2006-01-01

282

A global analysis of soil acidification caused by nitrogen addition  

NASA Astrophysics Data System (ADS)

Nitrogen (N) deposition-induced soil acidification has become a global problem. However, the response patterns of soil acidification to N addition and the underlying mechanisms remain far from clear. Here, we conducted a meta-analysis of 106 studies to reveal global patterns of soil acidification in responses to N addition. We found that N addition significantly reduced soil pH by 0.26 on average globally. However, the responses of soil pH varied with ecosystem types, N addition rate, N fertilization forms, and experimental durations. Soil pH decreased most in grassland, whereas boreal forest was not observed a decrease to N addition in soil acidification. Soil pH decreased linearly with N addition rates. Addition of urea and NH4NO3 contributed more to soil acidification than NH4-form fertilizer. When experimental duration was longer than 20 years, N addition effects on soil acidification diminished. Environmental factors such as initial soil pH, soil carbon and nitrogen content, precipitation, and temperature all influenced the responses of soil pH. Base cations of Ca2+, Mg2+ and K+ were critical important in buffering against N-induced soil acidification at the early stage. However, N addition has shifted global soils into the Al3+ buffering phase. Overall, this study indicates that acidification in global soils is very sensitive to N deposition, which is greatly modified by biotic and abiotic factors. Global soils are now at a buffering transition from base cations (Ca2+, Mg2+ and K+) to non-base cations (Mn2+ and Al3+). This calls our attention to care about the limitation of base cations and the toxic impact of non-base cations for terrestrial ecosystems with N deposition.

Tian, Dashuan; Niu, Shuli

2015-02-01

283

[Heavy metal pollution characteristics and ecological risk analysis for soil around Haining electroplating industrial park].  

PubMed

The pollution status and potential ecological risks of heavy metal in soils around Haining electroplating industrial park were studied. Hakanson index approach was used to assess the ecological hazards of heavy metals in soils. Results showed that average concentrations of six heavy metals (Cu, Ni, Pb, Zn, Cd and Cr) in the soils were lower than the secondary criteria of environmental quality standard for soils, indicating limited harmful effects on the plants and the environment in general. Though the average soil concentrations were low, heavy metal concentrations in six sampling points located at the side of road still exceeded the criteria, with excessive rate of 13%. Statistic analysis showed that concentrations of Cu and Cd in roadside soils were significantly higher than those in non-roadside soils, indicating that the excessive heavy metal accumulations in the soil closely related with traffic transport. The average potential ecological hazard index of soils around Haining electroplating industrial park was 46.6, suggesting a slightly ecological harm. However, the potential ecological hazard index of soils with excessive heavy metals was 220-278, suggesting the medium ecological hazards. Cd was the most seriously ecological hazard factor. PMID:24946611

Li, Jiong-Hui; Weng, Shan; Fang, Jing; Huang, Jia-Lei; Lu, Fang-Hua; Lu, Yu-Hao; Zhang, Hong-Ming

2014-04-01

284

Isolation, Characterization and Selection of Avermectin-Producing Streptomyces avermitilis Strains From Soil Samples  

PubMed Central

Background: Streptomyces avermitilis, belonging to Actinomycetes, is specialized for production of avermectin, used as an anthelmintic and insecticidal agent. It is mostly found in soil and its isolation is very crucial for medically important avermectin production. Objectives: In the present study, 10 bacterial isolates lacking antimicrobial activities were isolated from the soil samples collected from different areas of Lahore, Pakistan. Materials and Methods: Three distinctive localities of Lahore were opted for soil assortment to isolate S. avermitilis. About 50 isolates of Streptomyces species were attained through selective prescreening procedures. All of these isolates were studied for production of the secondary metabolite, avermectin. Different test like soluble pigment color and melanin formation were used for identification. Biochemical characterizations of those isolates closely resembling the control in morphological characteristics, soluble pigment color and melanin formation tests were performed. Results: The 10 selected isolates were identified as the avermectin-producing strain by fermentation and characterized on ISP2 medium for aerial and reverse side mycelia color, soluble pigment color and melanin formation, in comparison with S. avermitilis DSM 41445. The best avermectin-producing isolate S1-C (10.15 mg/L) showed similar result as S. avermitilis DSM 41445, when subjected for culture characteristics analysis in different media along with biochemical characterization. Conclusions: From the results, it was concluded that agricultural lands around Pakistan Council of Scientific and Industrial Research (PCSIR) Campus Lahore were rich sources of industrially important Streptomyces, especially S. avermitilis. PMID:25371798

Siddique, Samia; Syed, Quratulain; Adnan, Ahmad; Qureshi, Fahim Ashraf

2014-01-01

285

Beth Brockett SOIL 502 Soil Quality Analysis -Chemistry Case Study  

E-print Network

://www.sustain.ubc.ca/) and the involvement of AGRO 402/ SOIL 502 partially fulfills its educational principle (Space2Place Phase 1 Report site would be expected to exhibit properties as outlined above, and in this case previous chemical for chemical fertilizers and pesticides, and use by vehicular traffic are all cons

286

Research Article Comprehensive feature analysis for sample  

E-print Network

Research Article Comprehensive feature analysis for sample classification with comprehensive two- dimensional LC Comprehensive two-dimensional LC (LC Â LC) is a powerful tool for analysis of complex information-rich, but complex, chromatograms, which require advanced data analysis to produce useful

Reichenbach, Stephen E.

287

Conceptual designs for in situ analysis of Mars soil  

NASA Technical Reports Server (NTRS)

A goal of this research is to develop conceptual designs for instrumentation to perform in situ measurements of the Martian soil in order to determine the existence and nature of any reactive chemicals. Our approach involves assessment and critical review of the Viking biology results which indicated the presence of a soil oxidant, an investigation of the possible application of standard soil science techniques to the analysis of Martian soil, and a preliminary consideration of non-standard methods that may be necessary for use in the highly oxidizing Martian soil. Based on our preliminary analysis, we have developed strawman concepts for standard soil analysis on Mars, including pH, suitable for use on a Mars rover mission. In addition, we have devised a method for the determination of the possible strong oxidants on Mars.

Mckay, C. P.; Zent, A. P.; Hartman, H.

1991-01-01

288

Statistical Analysis Techniques for Small Sample Sizes  

NASA Technical Reports Server (NTRS)

The small sample sizes problem which is encountered when dealing with analysis of space-flight data is examined. Because of such a amount of data available, careful analyses are essential to extract the maximum amount of information with acceptable accuracy. Statistical analysis of small samples is described. The background material necessary for understanding statistical hypothesis testing is outlined and the various tests which can be done on small samples are explained. Emphasis is on the underlying assumptions of each test and on considerations needed to choose the most appropriate test for a given type of analysis.

Navard, S. E.

1984-01-01

289

Northern Marshall Islands radiological survey: sampling and analysis summary  

SciTech Connect

A radiological survey was conducted in the Northern Marshall Islands to document reamining external gamma exposures from nuclear tests conducted at Enewetak and Bikini Atolls. An additional program was later included to obtain terrestrial and marine samples for radiological dose assessment for current or potential atoll inhabitants. This report is the first of a series summarizing the results from the terrestrial and marine surveys. The sample collection and processing procedures and the general survey methodology are discussed; a summary of the collected samples and radionuclide analyses is presented. Over 5400 samples were collected from the 12 atolls and 2 islands and prepared for analysis including 3093 soil, 961 vegetation, 153 animal, 965 fish composite samples (average of 30 fish per sample), 101 clam, 50 lagoon water, 15 cistern water, 17 groundwater, and 85 lagoon sediment samples. A complete breakdown by sample type, atoll, and island is given here. The total number of analyses by radionuclide are 8840 for /sup 241/Am, 6569 for /sup 137/Cs, 4535 for /sup 239 +240/Pu, 4431 for /sup 90/Sr, 1146 for /sup 238/Pu, 269 for /sup 241/Pu, and 114 each for /sup 239/Pu and /sup 240/Pu. A complete breakdown by sample category, atoll or island, and radionuclide is also included.

Robison, W.L.; Conrado, C.L.; Eagle, R.J.; Stuart, M.L.

1981-07-23

290

Central Colorado Assessment Project (CCAP)-Geochemical data for rock, sediment, soil, and concentrate sample media  

USGS Publications Warehouse

This database was initiated, designed, and populated to collect and integrate geochemical data from central Colorado in order to facilitate geologic mapping, petrologic studies, mineral resource assessment, definition of geochemical baseline values and statistics, environmental impact assessment, and medical geology. The Microsoft Access database serves as a geochemical data warehouse in support of the Central Colorado Assessment Project (CCAP) and contains data tables describing historical and new quantitative and qualitative geochemical analyses determined by 70 analytical laboratory and field methods for 47,478 rock, sediment, soil, and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed either in the analytical laboratories of the USGS or by contract with commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects. In addition, geochemical data from 7,470 sediment and soil samples collected and analyzed under the Atomic Energy Commission National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (henceforth called NURE) have been included in this database. In addition to data from 2,377 samples collected and analyzed under CCAP, this dataset includes archived geochemical data originally entered into the in-house Rock Analysis Storage System (RASS) database (used by the USGS from the mid-1960s through the late 1980s) and the in-house PLUTO database (used by the USGS from the mid-1970s through the mid-1990s). All of these data are maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB and from the NURE database were used to generate most of this dataset. In addition, USGS data that have been excluded previously from the NGDB because the data predate earliest USGS geochemical databases, or were once excluded for programmatic reasons, have been included in the CCAP Geochemical Database and are planned to be added to the NGDB.

Granitto, Matthew; DeWitt, Ed H.; Klein, Terry L.

2010-01-01

291

A meta-analysis of the publicly available bacterial and archaeal sequence diversity in saline soils.  

PubMed

An integrated view of bacterial and archaeal diversity in saline soil habitats is essential for understanding the biological and ecological processes and exploiting potential of microbial resources from such environments. This study examined the collective bacterial and archaeal diversity in saline soils using a meta-analysis approach. All available 16S rDNA sequences recovered from saline soils were retrieved from publicly available databases and subjected to phylogenetic and statistical analyses. A total of 9,043 bacterial and 1,039 archaeal sequences, each longer than 250 bp, were examined. The bacterial sequences were assigned into 5,784 operational taxonomic units (OTUs, based on ?97 % sequence identity), representing 24 known bacterial phyla, with Proteobacteria (44.9 %), Actinobacteria (12.3 %), Firmicutes (10.4 %), Acidobacteria (9.0 %), Bacteroidetes (6.8 %), and Chloroflexi (5.9 %) being predominant. Lysobacter (12.8 %) was the dominant bacterial genus in saline soils, followed by Sphingomonas (4.5 %), Halomonas (2.5 %), and Gemmatimonas (2.5 %). Archaeal sequences were assigned to 602 OTUs, primarily from the phyla Euryarchaeota (88.7 %) and Crenarchaeota (11.3 %). Halorubrum and Thermofilum were the dominant archaeal genera in saline soils. Rarefaction analysis indicated that less than 25 % of bacterial diversity, and approximately 50 % of archaeal diversity, in saline soil habitats has been sampled. This analysis of the global bacterial and archaeal diversity in saline soil habitats can guide future studies to further examine the microbial diversity of saline soils. PMID:23756871

Ma, Bin; Gong, Jun

2013-12-01

292

Soil Testing and Plant Analysis Relationships for Irrigated Chile Production  

Microsoft Academic Search

In a field study of irrigated chile (Capsicum annum L.) production in southeastern Arizona and southwestern New Mexico from 2008 through 2009, soil and tissue test samples were analyzed for a spectrum of plant nutrients at 16 different sites, including nitrogen (N), phosphorus (P), potassium (K), zinc (Zn), iron (Fe), and boron (B). The objectives were to evaluate soil and

E. L. Babcock; J. C. Silvertooth

2012-01-01

293

Soil Property Mapping Over Large Areas Using Sparse Ad-hoc Samples  

NASA Astrophysics Data System (ADS)

Information on spatial variation of soil properties over large areas is a critical input for environmental modeling at large scales. Yet, quality information on soil spatial variation over large areas is difficult to obtain due to the large number of field samples required. Existing samples are often sparse and ad-hoc. The soil property maps created from these samples using existing techniques are not only at low quality but also lack the uncertainty information. This paper presents a new approach to map soil properties and quantify uncertainty in the derived soil property maps over large areas using sparse and ad-hoc samples. The underlying assumption of this new approach is the soil-landscape concept which stipulates that the more similar the environment conditions between two locations the more similar the soil property values are between the two sites. Under this assumption each sample can be considered as a representative over areas of similar environmental conditions. The level of representation of an individual sample for an unsampled location can be approximated by the similarity between their respective environment conditions. Based on this "individual representation" concept and with a Case-based Reasoning (CBR) approach soil property values at unsampled locations can be predicted and the uncertainty associated with each prediction can also be quantified based on their environmental similarity to individual samples. A case study over the Illy Region, a 50,000 km2 area in Xinjiang, Northwest China, has demonstrated that the approach can be an effective alternative for mapping soil property and quantifying uncertainty over large areas with sparse and ad-hoc samples.

Zhu, A.; Liu, J.

2011-12-01

294

Microbial colonisation in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota  

NASA Astrophysics Data System (ADS)

Colonisation of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focusing on settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associate vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soils types on the surface of the island. Total viable bacterial counts were performed with plate count at 22, 30 and 37 °C for all soils samples and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms aerobic and anaerobic bacteria. The deep subsurface biosphere was investigated by collecting liquid subsurface samples from a 182 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between N deficits and the number of microorganisms in surface soils samples. The lowest number of bacteria (1 × 104-1 × 105 g-1) was detected in almost pure pumice but the count was significant higher (1 × 106-1 × 109 g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 m and 172 m depth at 80 °C and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

2014-09-01

295

[Analysis of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in soil and sediment].  

PubMed

This review presents methods for the analysis of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), called dioxins, in soil and sediment. These compounds are produced as by-products of different combustion processes, and because of their persistency and toxicity they present a threat for animal and human health. Due to their high organic matter content, soil and sediment can accumulate dioxins and have become important secondary emission sources. Determining dioxins in these samples is complex because dioxins are present in trace levels and have to be separated from interferences whereas other classes of organic contaminants are present in higher concentrations. After sampling, follows extraction of compounds with a suitable solvent, extract clean-up from unwanted compounds, and qualitative and quantitative analysis. At the end of this review, we gave levels of PCDD/PCDFs found in soil and sediment samples. PMID:19581217

Kozul, Darija; Romani?, Snjezana Herceg

2009-06-01

296

Subcritical water extractor for Mars analog soil analysis.  

PubMed

Abstract Technologies that enable rapid and efficient extraction of biomarker compounds from various solid matrices are a critical requirement for the successful implementation of in situ chemical analysis of the martian regolith. Here, we describe a portable subcritical water extractor that mimics multiple organic solvent polarities by tuning the dielectric constant of liquid water through adjustment of temperature and pressure. Soil samples, collected from the Yungay region of the Atacama Desert (martian regolith analogue) in the summer of 2005, were used to test the instrument's performance. The total organic carbon was extracted from the samples at concentrations of 0.2-55.4 parts per million. The extraction data were compared to the total organic carbon content in the bulk soil, which was determined via a standard analytical procedure. The instrument's performance was examined over the temperature range of 25-250 degrees C at a fixed pressure of 20.7 MPa. Under these conditions, water remains in a subcritical fluid state with a dielectric constant varying between approximately 80 (at 25 degrees C) and approximately 30 (at 250 degrees C). PMID:18680410

Amashukeli, Xenia; Grunthaner, Frank J; Patrick, Steven B; Yung, Pun To

2008-06-01

297

Operable Unit 3-13, Group 3, Other Surface Soils (Phase II) Field Sampling Plan  

SciTech Connect

This Field Sampling Plan describes the Operable Unit 3-13, Group 3, Other Surface Soils, Phase II remediation field sampling activities to be performed at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Sampling activities described in this plan support characterization sampling of new sites, real-time soil spectroscopy during excavation, and confirmation sampling that verifies that the remedial action objectives and remediation goals presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13 have been met.

G. L. Schwendiman

2006-07-27

298

NHEXAS PHASE I REGION 5 STUDY--STANDARD OPERATING PROCEDURE--ANALYSIS OF SOIL FOR ARSENIC (RTI/ACS-AP-209-123)  

EPA Science Inventory

The purpose of this protocol is to provide guidelines for the analysis of soil samples for arsenic. This method involves the extraction of the analyte from soil samples using a 50% ultra-pure nitric acid, and subsequent analysis by hydride generation atomic fluorescence spectrome...

299

Spatial distributions and seasonal variations of organochlorine pesticides in water and soil samples in Bolu, Turkey.  

PubMed

In this study, a total of 75 water samples (38 groundwater and 37 surface water samples) and 54 surface soil samples were collected from the five districts of Bolu, which is located in the Western Black Sea Region of Turkey in the summer season of 2009. In the autumn season, 17 water samples (surface water and groundwater samples) and 17 soil samples were collected within the city center to observe the seasonal changes of organochlorine pesticides (OCPs). Groundwater and surface water samples were extracted using solid phase extraction. Soil samples were extracted ultrasonically. Sixteen OCP compounds in the standard solution were detected by a gas chromatography-electron capture detector (GC-ECD). Therefore, the method validation was performed for those 16 OCP compounds. However, 13 OCP compounds could be observed in the samples. The concentrations of most OCPs were higher in samples collected in the summer than those in the autumn. The most frequently observed pesticides were endosulfan sulfate and 4,4'-dichlorodiphenyltrichloroethane (DDT) in groundwater samples, ?-HCH in surface water samples, and endosulfan sulfate in soil samples. The average concentration of endosulfan sulfate was the highest in water and soil samples. Compared to the literature values, the average concentrations in this study were lower values. Spatial distribution of OCPs was evaluated with the aid of contour maps for the five districts of Bolu. Generally, agricultural processes affected the water and soil quality in the region. However, non-agricultural areas were also affected by pesticides. The concentrations of pesticides were below the legal limits of European directives for each pesticide. PMID:25663404

Karadeniz, Hatice; Yenisoy-Karaka?, Serpil

2015-03-01

300

Continuum soil modeling in the static analysis of buried structures  

SciTech Connect

Soil loading traditionally has been modeled as a hydrostatic pressure, a practice acceptable for many design applications. In the analyses of buried structure with predictive goals, soil compliance and load redistribution in the presence of soil plasticity are important factors to consider in determining the appropriate response of the structure. In the analysis of existing buried waste-storage tanks at the US Department of Energy`s Hanford Site, three soil-tank interaction modeling considerations are addressed. First, the soil interacts with the tank as the tank expands and contracts during thermal cycles associated with changes in the heat generated by the waste material as a result of additions and subtractions of the waste. Second, the soil transfers loads from the surface to the tank and provides support by resisting radial displacement of the tank haunch. Third, conventional finite-element mesh development causes artificial stress concentrations in the soil associated with differential settlement.

Julyk, L.J.; Marlow, R.S.; Moore, C.J. [Westinghouse Hanford Co., Richland, WA (United States); Day, J.P.; Dyrness, A.D. [Advent Engineering Services, Inc., San Ramon, CA (United States)

1993-10-01

301

Sampling protocol recommendations for measuring soil organic carbon stocks in the tropics  

NASA Astrophysics Data System (ADS)

In the tropics, there is an urgent need for cost effective sampling approaches to quantify soil organic carbon (SOC) changes associated with land-use change given the lack of reliable data. The tropics are especially important considering the high deforestation rates, the huge belowground carbon pool and the fast soil carbon turnover rates. In the framework of a pan-tropic (Peru, Cameroon and Indonesia) land-use change study, some highly relevant recommendations on the SOC stocks sampling approaches have emerged. In this study, where we focused on deeply weathered mineral soils, we quantified changes in SOC stock following land-use change (deforestation and subsequent establishment of other land-uses). We used a space-for-time substitution sampling approach, measured SOC stocks in the top three meters of soil and compared recently converted land-uses with adjacent reference forest plots. In each respective region we investigated the most predominant land-use trajectories. In total 157 plots were established across the three countries, where soil samples were taken to a depth of three meters from a central soil pit and from the topsoil (to 0.5m) from 12 pooled composite samples. Finding 1 - soil depth: despite the fact that the majority of SOC stock from the three meter profile is found below one meter depth (50 to 60 percent of total SOC stock), the significant changes in SOC were only measured in the top meter of soil, while the subsoil carbon stock remained relatively unchanged by the land-use conversion. The only exception was for older (>50 yrs) cacao plantations in Cameroon where significant decreases were found below one meter. Finding 2 - pooled composite samples taken across the plot provided more spatially representative estimates of SOC stocks than samples taken from the central soil pit.

van Straaten, Oliver; Veldkamp, Edzo; Corre, Marife D.

2013-04-01

302

Impurity analysis of retinoic acid samples.  

PubMed

The structure of an impurity contained in samples of all trans-retinoic acid was established by means of NMR and MS spectra, and confirmed by X-ray diffraction analysis. The chemical structure of the impurity 2 was found to be strictly correlated to the synthetic procedure employed for the preparation of the retinoic acid samples. Single crystal analysis allowed us to characterise the molecular conformation and the crystal structure of 2. PMID:15963719

Allegrone, Gianna; Brenna, Elisabetta; Fronza, Giovanni; Fuganti, Claudio; Giovenzana, Tommaso; Malpezzi, Luciana; Barlocchi, Enrico; Pellegatta, Cesare

2005-08-01

303

Integrating legacy soil information in a Digital Soil Mapping approach based on a modified conditioned Latin Hypercube Sampling design  

NASA Astrophysics Data System (ADS)

One crucial component of a Digital Soil Mapping (DSM) framework is outlined by geo-referenced soil observations. Nevertheless, highly informative legacy soil information, acquired by traditional soil surveys, is often neglected due to lacking accordance with specific statistical DSM designs. The focus of this study is to integrate legacy data into a state-of-the-art DSM approach, based on a modified conditioned Latin Hypercube Sampling (cLHS) design and Random Forest. Furthermore, by means of the cLHS modification the scope of actually unique cLHS sampling locations is widened in order to compensate limited accessability in the field. As well, the maximally stratified cLHS design is not diluted by the modification. Exemplarily the target variables of the modelling are represented by sand and clay fractions. The study site is a small mountainous hydrological catchment of 4.2 km² in the reservoir of the Three Gorges Dam in Central China. The modification is accomplished by demarcating the histogram borders of each cLHS stratum, which are based on the multivariate cLHS feature space. Thereby, all potential sample locations per stratum are identified. This provides a possibility to integrate legacy data samples that match one of the newly created sample locations, and flexibility with respect to field accessibility. Consequently, six legacy data samples, taken from a total sample size of n = 30 were integrated into the sampling design and for all strata several potential sample locations are identified. The comparability of the modified and standard cLHS data sets is approved by (i) identifying their feature space coverage with respect to the cLHS stratifying variables, and (ii) by assessing the Random Forest accuracy estimates.

Stumpf, Felix; Schmidt, Karsten; Behrens, Thorsten; Schoenbrodt-Stitt, Sarah; Scholten, Thomas

2014-05-01

304

Organic vs. conventional grassland management: do (15)N and (13)C isotopic signatures of hay and soil samples differ?  

PubMed

Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the ?(15)N and ?(13)C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used ??(15)N (?(15)N plant - ?(15)N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in ?(13)C in hay and ?(15)N in both soil and hay between management types, but showed that ?(13)C abundances were significantly lower in soil of organic compared to conventional grasslands. ??(15)N values implied that management types did not substantially differ in nitrogen cycling. Only ?(13)C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice. PMID:24205126

Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

2013-01-01

305

Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?  

PubMed Central

Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the ?15N and ?13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used ??15N (?15N plant - ?15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in ?13C in hay and ?15N in both soil and hay between management types, but showed that ?13C abundances were significantly lower in soil of organic compared to conventional grasslands. ??15N values implied that management types did not substantially differ in nitrogen cycling. Only ?13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice. PMID:24205126

Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

2013-01-01

306

MACRO- MICRO-PURGE SOIL GAS SAMPLING METHODS FOR THE COLLECTION OF CONTAMINANT VAPORS  

EPA Science Inventory

Purging influence on soil gas concentrations for volatile organic compounds (VOCs), as affected by sampling tube inner diameter and sampling depth (i.e., dead-space purge volume), was evaluated at different field sites. A macro-purge sampling system consisted of a standard hollo...

307

Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery  

Microsoft Academic Search

Soil samples, and samples of leaves of Plantago major (great plantain) and grass (mixed species) were collected from the vicinity of an oil refinery in Zelzate, Belgium, and analysed for seven polycyclic aromatic hydrocarbons (PAHs). The samples from the site adjacent to the refinery (site 1) contained very high total PAH-concentrations: namely 300, 8 and 2 ?g\\/g dry wt. for

Martine I. Bakker; Berta Casado; Judith W. Koerselman; Johannes Tolls; Chris Kollöffel

2000-01-01

308

APPARATUS AND PROCEDURE FOR SAMPLING SOIL PROFILES FOR VOLATILE ORGANIC COMPOUNDS  

EPA Science Inventory

A conventional soil-solution sampler was modified to prevent loss of volatiles, which tend to escape from the liquid sample during sample collection. The sampler is connected to a purging chamber, which is in turn connected to a trap packed with Tenax resin. The sample is collect...

309

EVALUATION OF VAPOR EQUILIBRATION AND IMPACT OF PURGE VOLUME ON SOIL-GAS SAMPLING RESULTS  

EPA Science Inventory

Sequential sampling was utilized at the Raymark Superfund site to evaluate attainment of vapor equilibration and the impact of purge volume on soil-gas sample results. A simple mass-balance equation indicates that removal of three to five internal volumes of a sample system shou...

310

A probe for sampling interstitial waters of stream sediments and bog soils  

USGS Publications Warehouse

A probe for sampling interstitial waters of stream sediments and bog soils is described. Samples can be obtained within a stratigraphic interval of 2-3 cm, to a depth of 60-80 cm, and with little or no contamination of the samples by sediment or air. ?? 1974.

Nowlan, G.A.; Carollo, C.

1974-01-01

311

Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples  

NASA Astrophysics Data System (ADS)

Four different communities and one culture of autotrophic microbial assemblages were obtained by incubation of samples collected from high elevation snow in the Alps (Mt. Blanc area) and the Andes (Nevado Illimani summit, Bolivia), from Antarctic aerosol (French station Dumont d'Urville) and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas), in a minimal mineral (oligotrophic) media. Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. Phylogenetic comparison with the currently available rDNA database allowed sequences belonging to Proteobacteria Alpha-, Beta- and Gamma-proteobacteria), Actinobacteria and Bacteroidetes phyla to be identified. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified) and the marine Antarctic soil the poorest (only one). Snow samples from Col du Midi (Alps) and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones). These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteriaclone). The only microorganism identified in the Antarctica soil (Brevundimonas sp.) was also detected in the Antarctic aerosol. Most of the identified microorganisms had been detected previously in cold environments, marine sediments soils and rocks. Air current dispersal is the best model to explain the presence of very specific microorganisms, like those identified in this work, in environments very distant and very different from each other.

González-Toril, E.; Amils, R.; Delmas, R. J.; Petit, J.-R.; Komárek, J.; Elster, J.

2009-01-01

312

MICROBIOLOGICAL FIELD SAMPLING AND INSTRUMENTATION IN THE ASSESSMENT OF SOIL AND GROUND-WATER POLLUTION  

EPA Science Inventory

This chapter emphasizes the importance of microbiological sampling of soil and ground water with respect to human heath risks, laws and regulations dealing with safe drinking water, and more prevalent subsurface monitoring activities associated with chlorinated organic compounds,...

313

The Benefits of Sample Return: Connecting Apollo Soils and Diviner Lunar Radiometer Remote Sensing Data  

NASA Astrophysics Data System (ADS)

Here we present a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of Apollo soils, and correlate them with Diviner observations.

Greenhagen, B. T.; Donaldson Hanna, K. L.; Thomas, I. R.; Bowles, N. E.; Allen, C. C.; Pieters, C. M.; Paige, D. A.

2014-10-01

314

From Grid Soil Sampling to Management Zones in the Southern High Plains  

E-print Network

on the Southern High Plain of Texas as well. Grid- soil sampling has received much criticism as a practice not shown). In summary, prior knowledge by farmers can help delineate candidate management zones based

Mukhtar, Saqib

315

Sample Collection of Ash and Burned Soils from the October 2007 Southern California Wildfires  

E-print Network

Sample Collection of Ash and Burned Soils from the October 2007 Southern California Wildfires Wildfires: U.S. Geological Survey Open-File Report 2009­1038, 64 p. Any use of trade, product, or firm names

316

DEVELOPMENT IN THE SUPERCRITICAL FLUID EXTRACTION OF CHLOROPHENOXY ACID HERBICIDES FROM SOIL SAMPLES  

EPA Science Inventory

Extraction of chlorophenoxy acid herbicides from soil samples with supercritical carbon dioxide as extractand and tetrabutylammonium hydroxide and methyl iodide as derivatization agents was investigated by the U.S. EPA's Office of Research and Development. he extraction was carri...

317

Soil Heavy Metal Pollution along Subin River in Kumasi, Ghana; Using X-Ray Fluorescence (XRF) Analysis  

Microsoft Academic Search

This study is aimed to analyze and assess the existence of heavy metal pollution in the surface soils along Subin River in the Kumasi metropolis using X-Ray Fluorescence (XRF) analysis. Twenty (20) soil samples were collected along the River at regular interval of 5 m (covering entire area of about 100 m2), with the aid of a core sampler. The

K. Kodom; J. Wiafe-Akenten; D. Boamah

2010-01-01

318

Radioactivity Levels and Gamma-Ray Dose Rate in Soil Samples from Kohistan (Pakistan) Using Gamma-Ray Spectrometry  

NASA Astrophysics Data System (ADS)

The analysis of naturally occurring radionuclides (226Ra, 232Th and 40K) and an anthropogenic radionuclide 137Cs is carried out in some soil samples collected from Kohistan district of N.W.F.P. (Pakistan), using gamma-ray spectrometry. The gamma spectrometry is operated using a high purity Germanium (HPGe) detector coupled with a computer based high resolution multi channel analyzer. The specific activity in soil ranges from 24.72 to 78.48Bq·kg-1 for 226Ra, 21.73 to 75.28Bq·kg-1 for 232Th, 7.06 to 14.9Bq·kg-1 for 137Cs and 298.46 to 570.77Bq·kg-1 for 40K with the mean values of 42.11, 43.27, 9.5 and 418.27Bq·kg-1, respectively. The radium equivalent activity in all the soil samples is lower than the safe limit set in the OECD report (370Bq·kg-1). Man-made radionuclide 137Cs is also present in detectable amount in all soil samples. Presence of 137Cs indicates that the samples in this remote area also receive some fallout from nuclear accident in Chernobyl power plant in 1986. The internal and external hazard indices have the mean values of 0.48 and 0.37 respectively. Absorbed dose rates and effective dose equivalents are also determined for the samples. The concentration of radionuclides found in the soil samples during the present study is nominal and does not pose any potential health hazard to the general public.

Hasan, M. Khan; Ismail, M.; K., Khan; Akhter, P.

2011-01-01

319

Soil heavy metal contamination in an industrial area: analysis of the data collected during a decade.  

PubMed

Soil contamination by heavy metals has become a serious problem mainly because, above certain concentrations, all metals have adverse effects on human health. In particular, the accumulation of heavy metals in agricultural soils leads to elevated uptake by crops and affects food quality and safety. In this paper, we present the results of a study carried out over a decade for evaluating the impact of a new industrial settlement in an area geared to agriculture and livestock and far from urban sites. We focus our study on the bioavailable fraction of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in soil samples. Heavy metal concentrations in soil are analysed with both univariate and multivariate statistical procedures. The main goal of this paper is the development of a statistical procedure, based on a mix of multivariate analysis, able to compare field surveys carried out during different years and to characterize spatial and temporal changes in soil heavy metals concentrations. PMID:23160720

D'Emilio, Mariagrazia; Caggiano, Rosa; Macchiato, Maria; Ragosta, Maria; Sabia, Serena

2013-07-01

320

Temperature dependence of carbon mineralisation: conclusions from a long-term incubation of subalpine soil samples  

Microsoft Academic Search

Carbon mineralisation from soil samples was analysed during a 104-day laboratory incubation at 5, 15 and 25°C. The samples were taken from the upper horizon of each of two topographically different micro-sites (gully: A-horizon; ridge: Oe\\/Oa-layer) at the Stillberg Alp close to Davos in the Swiss Central Alps. On both the soils, carbon mineralisation rates decreased substantially with incubation time

Markus Reichstein; Frank Bednorz; Gabriele Broll; Thomas Kätterer

2000-01-01

321

The effect of soil sample handling between collection and drying on nitrate concentration  

Microsoft Academic Search

The residual soil NO3?N concentration is used in determining the N fertilizer recommendation for many crops in the arid United States. Accurate representation of the field levels of residual NO3?N is complicated by the fact that the NO3 concentration in a soil sample can change significantly if the sample is not handled properly after collection. This will result in erroneous

D. G. Westfall; M. A. Henson; E. P. Evans

1978-01-01

322

The Role Fore Air Flow in Soil Slope Stability Analysis  

Microsoft Academic Search

In order to investigate the effect of the pore air flow in the soil slope stability analysis, a water-air two-phase flow model, based on the multi-phase flow theory, is proposed and with the model, the water-phase and air-phase seepages of the soil slope in the stable seepage and rainfall situations are simulated. The soil slope safety coefficients are obtained according

Xiao-yue ZHANG; Yue-ming ZHU; Chun-hui FANG

2009-01-01

323

Spatial Variation in Soil Properties among North American Ecosystems and Guidelines for Sampling Designs  

PubMed Central

Soils are highly variable at many spatial scales, which makes designing studies to accurately estimate the mean value of soil properties across space challenging. The spatial correlation structure is critical to develop robust sampling strategies (e.g., sample size and sample spacing). Current guidelines for designing studies recommend conducting preliminary investigation(s) to characterize this structure, but are rarely followed and sampling designs are often defined by logistics rather than quantitative considerations. The spatial variability of soils was assessed across ?1 ha at 60 sites. Sites were chosen to represent key US ecosystems as part of a scaling strategy deployed by the National Ecological Observatory Network. We measured soil temperature (Ts) and water content (SWC) because these properties mediate biological/biogeochemical processes below- and above-ground, and quantified spatial variability using semivariograms to estimate spatial correlation. We developed quantitative guidelines to inform sample size and sample spacing for future soil studies, e.g., 20 samples were sufficient to measure Ts to within 10% of the mean with 90% confidence at every temperate and sub-tropical site during the growing season, whereas an order of magnitude more samples were needed to meet this accuracy at some high-latitude sites. SWC was significantly more variable than Ts at most sites, resulting in at least 10× more SWC samples needed to meet the same accuracy requirement. Previous studies investigated the relationship between the mean and variability (i.e., sill) of SWC across space at individual sites across time and have often (but not always) observed the variance or standard deviation peaking at intermediate values of SWC and decreasing at low and high SWC. Finally, we quantified how far apart samples must be spaced to be statistically independent. Semivariance structures from 10 of the 12-dominant soil orders across the US were estimated, advancing our continental-scale understanding of soil behavior. PMID:24465377

Loescher, Henry; Ayres, Edward; Duffy, Paul; Luo, Hongyan; Brunke, Max

2014-01-01

324

Spatial variation in soil properties among North American ecosystems and guidelines for sampling designs.  

PubMed

Soils are highly variable at many spatial scales, which makes designing studies to accurately estimate the mean value of soil properties across space challenging. The spatial correlation structure is critical to develop robust sampling strategies (e.g., sample size and sample spacing). Current guidelines for designing studies recommend conducting preliminary investigation(s) to characterize this structure, but are rarely followed and sampling designs are often defined by logistics rather than quantitative considerations. The spatial variability of soils was assessed across ?1 ha at 60 sites. Sites were chosen to represent key US ecosystems as part of a scaling strategy deployed by the National Ecological Observatory Network. We measured soil temperature (Ts) and water content (SWC) because these properties mediate biological/biogeochemical processes below- and above-ground, and quantified spatial variability using semivariograms to estimate spatial correlation. We developed quantitative guidelines to inform sample size and sample spacing for future soil studies, e.g., 20 samples were sufficient to measure Ts to within 10% of the mean with 90% confidence at every temperate and sub-tropical site during the growing season, whereas an order of magnitude more samples were needed to meet this accuracy at some high-latitude sites. SWC was significantly more variable than Ts at most sites, resulting in at least 10× more SWC samples needed to meet the same accuracy requirement. Previous studies investigated the relationship between the mean and variability (i.e., sill) of SWC across space at individual sites across time and have often (but not always) observed the variance or standard deviation peaking at intermediate values of SWC and decreasing at low and high SWC. Finally, we quantified how far apart samples must be spaced to be statistically independent. Semivariance structures from 10 of the 12-dominant soil orders across the US were estimated, advancing our continental-scale understanding of soil behavior. PMID:24465377

Loescher, Henry; Ayres, Edward; Duffy, Paul; Luo, Hongyan; Brunke, Max

2014-01-01

325

Comparative analysis of soil DNA extraction methods to study various ammonium-oxidizing bacteria and archaea by PCR-DGGE  

Microsoft Academic Search

A comparative analysis of five methods of extraction and purification of soil DNA, including a modification of the authors,\\u000a was performed for the further molecular investigation of various ammonium-oxidizing bacteria and archaea in soils. Experiments\\u000a using soil samples from natural ecosystems and agroecosystems of the European area of Russia established that the amount of\\u000a DNA extracted by different methods depended

A. S. Cherobaeva; A. L. Stepanov; I. K. Kravchenko

2011-01-01

326

Influence of soil type and extraction conditions on perchlorate analysis by ion chromatography.  

PubMed

Perchlorate is a stable anion that has been introduced into the environment through activities related to its production and use as a solid rocket propellant. Perchlorate is thought to transport through soils without being adsorbed; thus, for determination of perchlorate in soil, samples are typically extracted with water prior to analysis. The completeness of extraction depends on perchlorate existing as a free ion within the soil matrix. In this study, perchlorate extraction efficiency was evaluated with five soil types under two different oxygen states. For each soil, 30% (w/w) slurries were prepared and equilibrated under either oxic or anoxic conditions prior to spiking with a stock solution of sodium perchlorate, and the slurries were then maintained for 1-week or 1-month. At the end of the exposure, slurries were centrifuged and separated into aqueous and soil phases. After phase separation, the soil was washed first with deionized water and then with 50mM NaOH, producing second and third aqueous phases, respectively. Perchlorate concentrations in the three aqueous phases were determined using ion chromatography. The results obtained from this study suggest that matrix interference and signal suppression due to high conductivity have greater effects upon observed perchlorate concentrations by ion chromatography than does perchlorate interaction with soil. Thus, a single water extraction is sufficient for quantitative determination of perchlorate in soil. PMID:17092539

MacMillan, Denise K; Dalton, Shana R; Bednar, Anthony J; Waisner, Scott A; Arora, Prem N

2007-02-01

327

An Improved Method for Soil Sampling at Small Increments  

Technology Transfer Automated Retrieval System (TEKTRAN)

Measurement of soil bulk density and volumetric water content in small depth increments is a tedious and time-consuming task, but very important in many research applications. We designed an electric sampler to improve accuracy and decrease labor requirements. The new method works even in loose, dry...

328

Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India - Spectroscopical approach  

NASA Astrophysics Data System (ADS)

Anthropogenic activities increase the accumulation of heavy metals in the soil environment. Soil pollution significantly reduces environmental quality and affects the human health. In the present study soil samples were collected at different locations of Yelagiri Hills, Tamilnadu, India for heavy metal analysis. The samples were analyzed for twelve selected heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn) using energy dispersive X-ray fluorescence (EDXRF) spectroscopy. Heavy metals concentration in soil were investigated using enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) to determine metal accumulation, distribution and its pollution status. Heavy metal toxicity risk was assessed using soil quality guidelines (SQGs) given by target and intervention values of Dutch soil standards. The concentration of Ni, Co, Zn, Cr, Mn, Fe, Ti, K, Al, Mg were mainly controlled by natural sources. Multivariate statistical methods such as correlation matrix, principal component analysis and cluster analysis were applied for the identification of heavy metal sources (anthropogenic/natural origin). Geo-statistical methods such as kirging identified hot spots of metal contamination in road areas influenced mainly by presence of natural rocks.

Chandrasekaran, A.; Ravisankar, R.; Harikrishnan, N.; Satapathy, K. K.; Prasad, M. V. R.; Kanagasabapathy, K. V.

2015-02-01

329

Multi-Elemental Nuclear Analysis of soil reference material  

NASA Astrophysics Data System (ADS)

The elements concentration in the soil reference material (IAEA/SOIL-7) was obtained using the parametric Neutron Activation Analysis technique in the IEA-R1 nuclear reactor at IPEN (CNEN-SP). The results obtained were in good agreement with the respective nominal values from this reference material suggesting the viability of using this parametric procedure for environmental investigations.

Metairon, S.; Zamboni, C. B.; Medeiros, I. M. M. Amaral; Menezes, M. À. B. C.

2011-08-01

330

Integration of a SAW Sensor System into Penetration Cones for In-Situ Soil Gas Analysis  

Microsoft Academic Search

In this work we present the first integration of a SAW sensor based sensor system (electronic nose) into a percussion driven penetration cone for in situ soil gas analysis. The new system includes an 8-fold SAW sensor array with different polymers as sensitive coatings, a sampling system with absorbent materials for enrichment of the analyte and de-richment of water vapour,

Aleksandr Skrypnik; A. Voigt; M. Rapp

2006-01-01

331

Continuous versus pulse neutron induced gamma spectroscopy for soil carbon analysis  

Technology Transfer Automated Retrieval System (TEKTRAN)

Neutron induced gamma spectra analysis (NGA) provides a means of measuring carbon in large soil volumes without destructive sampling. Calibration of the NGA system must account for system background and the interference of other nuclei on the carbon peak at 4.43 MeV. Accounting for these factors pro...

332

LABORATORY METHODS FOR SOIL AN FOLIAR ANALYSIS IN LONG-TERM ENVIRONMENTAL MONITORING PROGRAMS  

EPA Science Inventory

The principal objective of this methods manual is to present methods for the analysis of soil and plant tissue samples taken as part of a long-term environmental study to evaluate the effects of acid rain on terrestrial systems. hrough the use of these standardized methods, it is...

333

Soil microbial biomass and respiration measurements: An automated technique based on infra-red gas analysis  

Microsoft Academic Search

An automated system for continuous soil respiration and microbial biomass measurements based on Infra Red Gas Analysis was constructed. The switching device is computer controlled and allows hourly measurements of up to 24 samples when switching intervals of 2.5 min are selected. This allows the use of the substrate-induced respiration method for biomass determination. A software package to run the

O. Heinemeyer; H. Insam; E. A. Kaiser; G. Walenzik

1989-01-01

334

Fast low-pressure microwave assisted extraction and gas chromatographic determination of polychlorinated biphenyls in soil samples.  

PubMed

A new technology equipment for low-pressure microwave assisted extraction (usually employed for organic chemistry reactions), recently launched in the market, is used for the first time in environmental analysis for the extraction of commercial technical Aroclor mixtures from soil. Certified reference materials of Aroclor 1260, Aroclor 1254 and Aroclor 1242 in transformer oils were used to contaminate the soil samples and to optimize the extraction method as well as the subsequent gas chromatographic electron capture detection (GC-ECD) analytical method. The study was performed optimizing the extraction, the purification and the gas chromatographic separation conditions to enhance the resolution of difficult pairs of congeners (C28/31 and C141/179). After optimization, the recovery yields were included within the range 79-84%. The detection limits, evaluated for two different commercial polychlorinated biphenyl (PCB) mixtures (Aroclor 1260 and Aroclor 1242) were 0.056 ± 0.001 mg/kg and 0.290 ± 0.006 mg/kg, respectively. The method, validated with certified soil samples, was used to analyze a soil sample after an event of failure of a pole-mounted transformer which caused the dumping of PCB contaminated oil in soil. Moreover, the method provides simple sample handling, fast extraction with reduced amount of sample and solvents than usually required, and simple purification step involving the use of solvent (cyclohexane) volumes as low as 5 mL. Reliability and reproducibility of extraction conditions are ensured by direct and continuous monitoring of temperature and pressure conditions. PMID:23084486

Bruzzoniti, M C; Maina, R; Tumiatti, V; Sarzanini, C; Rivoira, L; De Carlo, R M

2012-11-23

335

Analytical Results for Agricultural Soils Samples from a Monitoring Program Near Deer Trail, Colorado (USA)  

USGS Publications Warehouse

Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District, MWRD), a large wastewater treatment plant in Denver, Colorado, has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colorado, USA. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring groundwater at part of this site. In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program has recently been extended through 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream bed sediment. Soils for this study were defined as the plow zone of the dry land agricultural fields - the top twelve inches of the soil column. This report presents analytical results for the soil samples collected at the Metro District farm land near Deer Trail, Colorado, during three separate sampling events during 1999, 2000, and 2002. Soil samples taken in 1999 were to be a representation of the original baseline of the agricultural soils prior to any biosolids application. The soil samples taken in 2000 represent the soils after one application of biosolids to the middle field at each site and those taken in 2002 represent the soils after two applications. There have been no biosolids applied to any of the four control fields. The next soil sampling is scheduled for the spring of 2010. Priority parameters for biosolids identified by the stakeholders and also regulated by Colorado when used as an agricultural soil amendment include the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross alpha and beta activity (Colorado Department of Public Health and Environment, Hazardous Materials and Waste Management Division, 1997; Colorado Department of Public Health and Environment,1998; U.S. Environmental Protection Agency, 1993). Since these were the identified priority parameters for the biosolids, the soils have the same set of priority parameters. Although the composite soils' priority analytes have been reported earlier to Metro District, the remaining elemental datasets for both the composite soils samples and selected fields' individual subsamples' data are presented here for the first time. More information about the other monitoring components is presented elsewhere in the literature (http://co.water.usgs.gov/projects/CO406/CO406.html). In general, the objective of each component of the study was to determine whether concentrations of priority parameters (1) were higher than regulatory limits, (2) were increasing with time, and(or) (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied. The method chosen for sampling the soils proved to be an efficient and reliable representation of the average composition of each field. This was shown by analyzing individual subsamples, averaging the resulting values, and then comparing the values to the composited samples' values. The soil chemistry shows distinct differences between the two sites, most likely due to the different underlying parent material. Biosolids data were used to compile an inorganic-chemical biosolids signature that can be contrasted with the geochemical signature of the agricultural soils for this site. The biosolids signature and an understanding of the geology and hydrology of the site can be used to separate biosolids effects from natural geochemical effects. Elements of particular interest for a biosolids signature after application in the soils include bismuth, copper, silver, mercury, and phosphorus. This signat

Crock, J.G.; Smith, D.B.; Yager, T.J.B.

2009-01-01

336

Heavy metal accumulation and source analysis in greenhouse soils of Wuwei District, Gansu Province, China.  

PubMed

Greenhouse soils and arable (wheat field) soil samples were collected to identify the effects of greenhouse cultivation on the accumulation of six heavy metals (Cd, Cu, Zn, Pb, Cr, and Ni) and to evaluate the likely sources responsible for heavy metal accumulation in the irrigated desert soils of Wuwei District, China. The results indicated that the mean concentrations of Cd, Cu, Zn, Pb, Cr, and Ni were 0.421, 33.85, 85.31, 20.76, 53.12, and 28.59 mg kg(-1), respectively. The concentrations of Cd, Cu, and Zn in greenhouse soils were 60, 23, and 14 % higher than those in arable soils and 263, 40, and 25 % higher than background concentrations of natural soils in the study area, respectively. These results indicated that Cd, Cu, and Zn accumulation occurred in the greenhouse soils, and Cd was the most problematically accumulated heavy metal, followed by Cu and Zn. There was a significant positive correlation between the concentrations of Cd, Cu, and Zn in greenhouse soils and the number of years under cultivation (P?analysis and principal component analysis suggested that the accumulation of Cd, Cu, and Zn in greenhouse soils resulted mainly from fertilizer applications. Our results indicated that the excessive and long-term use of fertilizers and livestock manures with high heavy metal levels leads to the accumulation of heavy metals in soils. Therefore, rational fertilization programs and reductions in the concentrations of heavy metals in both fertilizers and manure must be recommended to maintain a safe concentration of heavy metals in greenhouse soils. PMID:25430008

Bai, L Y; Zeng, X B; Su, S M; Duan, R; Wang, Y N; Gao, X

2015-04-01

337

RISK ANALYSIS OF TCDD CONTAMINATED SOIL  

EPA Science Inventory

This paper provides a methodology for estimating the human exposure and cancer risk associated with 2,3,7,8-TCDD contaminated soil. Five exposure pathways are addressed: dust inhalation, fish ingestion, dermal absorption, soil ingestion, and beef/dairy products ingestion. For eac...

338

Thermal analysis to derive energetic quality parameters of soil organic matter?  

NASA Astrophysics Data System (ADS)

Many studies have dealt with thermal analysis for characterisation of soil and soil organic matter. It is a versatile tool assessing various physicochemical properties of the sample during heating and/or cooling. Especially the combination of different detection methods is highly promising. In this contribution, we will discuss the combination of thermogravimetry (TGA) with differential scanning calorimetry (DSC) in one single thermal analysis device. TGA alone helps distinguishment of soil and soil organic matter fractions with respect to their resistance towards combustion and allows a quantitative assignment of thermolabile and recalcitrant OM fractions. Combination with DSC in the same device, allows determination of energy transformation during the combustion process. Therefore, it becomes possible to determine not only the calorific value of the organic matter, but also of its fractions. We will show the potential of using the calorific values of OM fractions as quality parameter - exemplified for the analysis of soils polluted with organic matter from the olive oil production. The pollution history of these samples is largely unknown. As expected, TGA indicated a relative enrichment of the labile carbon fraction in contaminated samples with respect to the controls. The calorific values of the thermolabile and the recalcitrant fractions differ from each other, and those of the recalcitrant fractions of the polluted samples were higher than of those of the unpolluted controls. Further analyses showed correlation of the calorific value of this fraction with soil water repellency and the carbon isotopic ratio. The synthesis of our current data suggests that the content of thermolabile fraction, the isotopic ratio and calorific value of the recalcitrant fraction are useful indicators for characterizing the degree of decomposition of OMW organic matter. In this contribution, we will further discuss the potential of using the energetic parameters a quality parameter for soil organic matter.

Peikert, Benjamin; Schaumann, Gabriele Ellen

2014-05-01

339

Results of analyses of fur samples from the San Joaquin Kit Fox and associated soil and water samples from the Naval Petroleum Reserve No. 1, Tupman, California  

SciTech Connect

The purpose of this study was to determine whether analysis of the elemental content of fur from San Joaquin kit foxes (Vulpes macrotis mutica) and of water and soil from kit fox habitats could be used to make inferences concerning the cause of an observed decline in the kit fox population on Naval Petroleum Reserve No. 1 (NPR-1). Fur samples that had been collected previously from NPR-1, another oil field (NPR-2), and two sites with no oil development were subjected to neutron activation analysis. In addition, soil samples were collected from the home ranges of individual foxes from undisturbed portions of major soil types on NPR-1 and from wastewater samples were collected from tanks and sumps and subjected to neutron activation analysis. Most elemental concentrations in fur were highest at Camp Roberts and lowest on the undeveloped portions of NPR-I. Fur concentrations were intermediate on the developed oil fields but were correlated with percent disturbance and with number of wells on NPR-1 and NPR-2. The fact that most elements covaried across the range of sites suggests that some pervasive source such as soil was responsible. However, fur concentrations were not correlated with soft concentrations. The kit foxes on the developed portion of NPR-1 did not have concentrations of elements in fur relative to other sites that would account for the population decline in the early 1980s. The oil-related elements As, Ba, and V were elevated in fox fur from oil fields, but only As was sufficiently elevated to suggest a risk of toxicity in individual foxes. However, arsenic concentrations suggestive of sublethal toxicity were found in only 0.56% of foxes from developed oil fields, too few to account for a population decline.

Suter, G.W. II; Rosen, A.E.; Beauchamp, J.J. [Oak Ridge National Lab., TN (United States); Kato, T.T. [EG and G Energy Measurements, Inc., Tupman, CA (United States)

1992-12-01

340

40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Chemical extraction and analysis of individual samples and composite samples. 761.292 ...6) § 761.292 Chemical extraction and analysis of individual samples and composite samples. Use...

2010-07-01

341

Detection of Toxoplasma gondii oocysts in environmental soil samples using molecular methods.  

PubMed

Infections caused by Toxoplasma gondii are prevalent in humans and animals throughout the world. So far, there is no sufficient information concerning T. gondii oocysts prevalence in the environment, especially in soil. Therefore, the aim of this study was to estimate occurrence of T. gondii oocysts in soil and determine the genotype of detected parasites. A total of 101 soil samples were taken from different sites (sand-pits, "farming ground", areas around rubbish dumps) located in the Tri-City (Poland). Oocysts were recovered using the flotation method. Then, PCR reactions targeting the B1 gene were performed for specific T. gondii detection. The positive samples were further confirmed by PCR amplification of a repetitive element (REP) sequence [GenBank accession number AF146527]. Toxoplasma DNA was found in 18 samples. Among them, seven samples were successfully genotyped at the SAG2 locus. They were classified as SAG2 type I (5 samples) and SAG2 type II (2 samples). This is one of the first investigations describing T. gondii oocyst detection in environmental soil samples with rapid molecular detection methods and genotyping. The results of our findings showed that soil contaminated with T. gondii oocysts may play a role in the epidemiology of human toxoplasmosis in Poland. PMID:19104853

Lass, A; Pietkiewicz, H; Modzelewska, E; Dumètre, A; Szostakowska, B; Myjak, P

2009-06-01

342

Effect of preservation method on the assessment of bacterial community structure in soil and water samples.  

PubMed

The methods used in sample preservation may affect the description of the microbial community structure by DNA-based techniques. This study aims at evaluating the effect of different storage conditions, including freezing, adding two liquid-based preservatives or simply storing samples with no preservative, on the structure of the microbial communities in aliquots of organic-rich soil and water samples as revealed by a terminal restriction fragment length polymorphisms. The results showed that the number of terminal restriction fragments (TRFs) detected in soil aliquots stored with LifeGuard(™) solution was significantly lower than that of samples analyzed immediately after sampling. Moreover, cluster and PCA analyses showed that soil aliquots stored using LifeGuard(™) clustered separately from those stored with the other methods. Conversely, soil and water aliquots stored with DMSO-EDTA-salt solution did not show either significant reduction in the number of TRFs or any change in the structure of the microbial community. Finally, the number of TRFs and the structure of microbial communities from soil aliquots stored with no preservative did not differ from those of aliquots analyzed immediately after sampling. Preservation methods should therefore be accurately evaluated before collecting samples that have to be stored for long time before DNA extraction. PMID:24840085

Tatangelo, Valeria; Franzetti, Andrea; Gandolfi, Isabella; Bestetti, Giuseppina; Ambrosini, Roberto

2014-07-01

343

Basaltic diversity at the Apollo 12 landing site: Inferences from petrologic examinations of the soil sample 12003  

NASA Astrophysics Data System (ADS)

A detailed petrologic survey has been made of 17 basaltic chips (sized between 1 and 10 mm) from the 12003 soil sample as part of an ongoing study of basaltic diversity at the Apollo 12 landing site. An attempt has been made to classify these samples according to the well-established grouping of olivine, pigeonite, ilmenite, and feldspathic basalts. Particular attention has been paid to variations in major, minor, and trace element mineral chemistry (determined by electron microprobe analysis and laser ablation ICP-MS), which may be indicative of particular basaltic suites and less susceptible to sampling bias than bulk sample characteristics. Examples of all three main (olivine, pigeonite, and ilmenite) basaltic suites have been identified within the 12003 soil. One sample is identified as a possible new addition to the feldspathic suite, which currently consists of only one other confirmed sample. Identification of additional feldspathic basalts strengthens the argument that they represent a poorly sampled basaltic flow local to the Apollo 12 site, rather than exotic material introduced to the site by impact mixing processes. Three samples are identified as representing members of one or two previously unrecognized basaltic suites.

Snape, Joshua F.; Joy, Katherine H.; Crawford, Ian A.; Alexander, Louise

2014-05-01

344

Analysis of remotely sensed data for detecting soil limitations  

NASA Technical Reports Server (NTRS)

During 1971 and 1972 a detailed study was conducted on a fallow field in the proposed Oahe Irrigation Project to determine the relationship between the tonal variation observed on aerial photographs and the properties of eroded soil. Correlation and regression analysis of digitized, multiemulsion, color infrared film (2443) data and detailed field data revealed a highly significant correlation between film transmittance and several soil properties indicative of the erosion limitation. Computer classification of the multiemulsion film data resulted in maps portraying the eroded soil and the normal soil. Both correlation and computer classification results were best using the reflectance data from the red spectral band. The results showed film transmittance was actually measuring the reflectivity of the soil surface which was increased by the incorporation of the light colored, calcareous parent material exposed by erosion or tillage on soils with thin surface horizons.

Benson, L. A.; Frazee, C. J.; Waltz, F. A.

1973-01-01

345

A quarantine protocol for analysis of returned extraterrestrial samples  

NASA Technical Reports Server (NTRS)

A protocol is presented for the analysis at an earth-orbiting quarantine facility of return samples of extraterrestrial material that might contain (nonterrestrial) life forms. The protocol consists of a series of tests designed to determine whether the sample, conceptualized as a 1-kg sample of Martian soil, is free from nonterrestrial biologically active agents and so may safely be sent to a terrestrial containment facility, or it exhibits biological activity requiring further (second-order) testing outside the biosphere. The first-order testing procedure seeks to detect the presence of any replicating organisms or toxic substances through a series of experiments including gas sampling, analysis of radioactivity, stereomicroscopic inspection, chemical analysis, microscopic examination, the search for metabolic products under growth conditions, microbiologicl assays, and the challenge of cultured cells with any agents found or with the extraterrestrial material as is. Detailed plans for the second-order testing would be developed in response to the actual data received from primary testing.

Bagby, J. R.; Sweet, H. C.; Devincenzi, D. L.

1983-01-01

346

Low-Frequency Dielectric Spectroscopy of Martian Soil Samples  

Microsoft Academic Search

Abstract—Investigation concentrates on Martian soil simulants and live cell suspensions using low-fre- quency dielectric spectroscopy and related techniques, such as nonlinear harmonic response. Such methods hold tremendous potential in the development of sensors that could test for subsurface micro­ bial life on Mars with numerous additional applications. In previous work, UH and NASA-JSC researchers measured the low-frequency dielectric properties of

John H. Miller; Jaroslaw Wosik; David S. McKay; David Warmflash

347

Measuring environmental change in forest ecosystems by repeated soil sampling: a North American perspective  

USGS Publications Warehouse

Environmental change is monitored in North America through repeated measurements of weather, stream and river flow, air and water quality, and most recently, soil properties. Some skepticism remains, however, about whether repeated soil sampling can effectively distinguish between temporal and spatial variability, and efforts to document soil change in forest ecosystems through repeated measurements are largely nascent and uncoordinated. In eastern North America, repeated soil sampling has begun to provide valuable information on environmental problems such as air pollution. This review synthesizes the current state of the science to further the development and use of soil resampling as an integral method for recording and understanding environmental change in forested settings. The origins of soil resampling reach back to the 19th century in England and Russia. The concepts and methodologies involved in forest soil resampling are reviewed and evaluated through a discussion of how temporal and spatial variability can be addressed with a variety of sampling approaches. Key resampling studies demonstrate the type of results that can be obtained through differing approaches. Ongoing, large-scale issues such as recovery from acidification, long-term N deposition, C sequestration, effects of climate change, impacts from invasive species, and the increasing intensification of soil management all warrant the use of soil resampling as an essential tool for environmental monitoring and assessment. Furthermore, with better awareness of the value of soil resampling, studies can be designed with a long-term perspective so that information can be efficiently obtained well into the future to address problems that have not yet surfaced.

Lawrence, Gregory B.; Fernandez, Ivan J.; Richter, Daniel D.; Ross, Donald S.; Hazlett, Paul W.; Bailey, Scott W.; Oiumet, Rock; Warby, Richard A.F.; Johnson, Arthur H.; Lin, Henry; Kaste, James M.; Lapenis, Andrew G.; Sullivan, Timothy J.

2013-01-01

348

Measuring environmental change in forest ecosystems by repeated soil sampling: a north american perspective.  

PubMed

Environmental change is monitored in North America through repeated measurements of weather, stream and river flow, air and water quality, and most recently, soil properties. Some skepticism remains, however, about whether repeated soil sampling can effectively distinguish between temporal and spatial variability, and efforts to document soil change in forest ecosystems through repeated measurements are largely nascent and uncoordinated. In eastern North America, repeated soil sampling has begun to provide valuable information on environmental problems such as air pollution. This review synthesizes the current state of the science to further the development and use of soil resampling as an integral method for recording and understanding environmental change in forested settings. The origins of soil resampling reach back to the 19th century in England and Russia. The concepts and methodologies involved in forest soil resampling are reviewed and evaluated through a discussion of how temporal and spatial variability can be addressed with a variety of sampling approaches. Key resampling studies demonstrate the type of results that can be obtained through differing approaches. Ongoing, large-scale issues such as recovery from acidification, long-term N deposition, C sequestration, effects of climate change, impacts from invasive species, and the increasing intensification of soil management all warrant the use of soil resampling as an essential tool for environmental monitoring and assessment. Furthermore, with better awareness of the value of soil resampling, studies can be designed with a long-term perspective so that information can be efficiently obtained well into the future to address problems that have not yet surfaced. PMID:23673928

Lawrence, Gregory B; Fernandez, Ivan J; Richter, Daniel D; Ross, Donald S; Hazlett, Paul W; Bailey, Scott W; Ouimet, Rock; Warby, Richard A F; Johnson, Arthur H; Lin, Henry; Kaste, James M; Lapenis, Andrew G; Sullivan, Timothy J

2013-01-01

349

Analysis of heavy metal sources in soil using kriging interpolation on principal components.  

PubMed

Anniston, Alabama has a long history of operation of foundries and other heavy industry. We assessed the extent of heavy metal contamination in soils by determining the concentrations of 11 heavy metals (Pb, As, Cd, Cr, Co, Cu, Mn, Hg, Ni, V, and Zn) based on 2046 soil samples collected from 595 industrial and residential sites. Principal Component Analysis (PCA) was adopted to characterize the distribution of heavy metals in soil in this region. In addition, a geostatistical technique (kriging) was used to create regional distribution maps for the interpolation of nonpoint sources of heavy metal contamination using geographical information system (GIS) techniques. There were significant differences found between sampling zones in the concentrations of heavy metals, with the exception of the levels of Ni. Three main components explaining the heavy metal variability in soils were identified. The results suggest that Pb, Cd, Cu, and Zn were associated with anthropogenic activities, such as the operations of some foundries and major railroads, which released these heavy metals, whereas the presence of Co, Mn, and V were controlled by natural sources, such as soil texture, pedogenesis, and soil hydrology. In general terms, the soil levels of heavy metals analyzed in this study were higher than those reported in previous studies in other industrial and residential communities. PMID:24693925

Ha, Hoehun; Olson, James R; Bian, Ling; Rogerson, Peter A

2014-05-01

350

Field sampling of soil pore water to evaluate trace element mobility and associated environmental risk.  

PubMed

Monitoring soil pollution is a key aspect in sustainable management of contaminated land but there is often debate over what should be monitored to assess ecological risk. Soil pore water, containing the most labile pollutant fraction in soils, can be easily collected in situ offering a routine way to monitor this risk. We present a compilation of data on concentration of trace elements (As, Cd, Cu, Pb, and Zn) in soil pore water collected in field conditions from a range of polluted and non-polluted soils in Spain and the UK during single and repeated monitoring, and propose a simple eco-toxicity test using this media. Sufficient pore water could be extracted for analysis both under semi-arid and temperate conditions, and eco-toxicity comparisons could be effectively made between polluted and non-polluted soils. We propose that in-situ pore water extraction could enhance the realism of risk assessment at some contaminated sites. PMID:21570165

Moreno-Jiménez, Eduardo; Beesley, Luke; Lepp, Nicholas W; Dickinson, Nicholas M; Hartley, William; Clemente, Rafael

2011-10-01

351

Analysis of soils contaminated with petroleum constituents  

SciTech Connect

This symposium was held in Atlanta, Georgia on June 24, 1993. The purpose of the symposium was to provide a forum for exchange of information on petroleum contaminated soils. When spilled on the ground, petroleum products can cause massive problems in the environment. In this Special Technical Publication (STP), papers were selected in two categories; the analytical procedures for soil contaminated with petroleum hydrocarbons and the behavior of hydrocarbon contaminated soils. Individual papers have been processed separately for inclusion in the appropriate data bases.

O'Shay, T.A. (ed.) (Gordon and Lawton Inc., Austin, TX (United States)); Hoddinott, K. (ed.) (Army Environmental Hygiene Agency, Aberdeen Proving Ground, MD (United States))

1994-01-01

352

A novel in situ method for sampling urban soil dust: particle size distribution, trace metal concentrations, and stable lead isotopes.  

PubMed

In this study, a novel in situ sampling method was utilized to investigate the concentrations of trace metals and Pb isotope compositions among different particle size fractions in soil dust, bulk surface soil, and corresponding road dust samples collected within an urban environment. The aim of the current study was to evaluate the feasibility of using soil dust samples to determine trace metal contamination and potential risks in urban areas in comparison with related bulk surface soil and road dust. The results of total metal loadings and Pb isotope ratios revealed that soil dust is more sensitive than bulk surface soil to anthropogenic contamination in urban areas. The new in situ method is effective at collecting different particle size fractions of soil dust from the surface of urban soils, and that soil dust is a critical indicator of anthropogenic contamination and potential human exposure in urban settings. PMID:23466731

Bi, Xiangyang; Liang, Siyuan; Li, Xiangdong

2013-06-01

353

Effect of sampling and diagnostic effort on the assessment of schistosomiasis and soil-transmitted helminthiasis and drug efficacy: a meta-analysis of six drug efficacy trials and one epidemiological survey.  

PubMed

It is generally recommended to perform multiple stool examinations in order to improve the diagnostic accuracy when assessing the impact of mass drug administration programmes to control human intestinal worm infections and determining efficacy of the drugs administered. However, the collection and diagnostic work-up of multiple stool samples increases costs and workload. It has been hypothesized that these increased efforts provide more accurate results when infection and drug efficacy are summarized by prevalence (proportion of subjects infected) and cure rate (CR, proportion of infected subjects that become egg-negative after drug administration), respectively, but not when these indicators are expressed in terms of infection intensity and egg reduction rate (ERR). We performed a meta-analysis of six drug efficacy trials and one epidemiological survey. We compared prevalence and intensity of infection, CR and ERR based on collection of one or two stool samples that were processed with single or duplicate Kato-Katz thick smears. We found that the accuracy of prevalence estimates and CR was lowest with the minimal sampling effort, but that this was not the case for estimating infection intensity and ERR. Hence, a single Kato-Katz thick smear is sufficient for reporting infection intensity and ERR following drug treatment. PMID:24725546

Levecke, Bruno; Brooker, Simon J; Knopp, Stefanie; Steinmann, Peter; Sousa-Figueiredo, Jose Carlos; Stothard, J Russell; Utzinger, Jürg; Vercruysse, Jozef

2014-12-01

354

Continuous versus pulse neutron induced gamma spectroscopy for soil carbon analysis.  

PubMed

Neutron induced gamma spectra analysis (NGA) provides a means of measuring carbon in large soil volumes without destructive sampling. Calibration of the NGA system must account for system background and the interference of other nuclei on the carbon peak at 4.43 MeV. Accounting for these factors produced measurements in agreement with theoretical considerations. The continuous NGA mode was twice as fast and just as accurate as the pulse mode, thus this mode was preferable for routine soil carbon analysis. PMID:25497322

Kavetskiy, A; Yakubova, G; Torbert, H A; Prior, S A

2015-02-01

355

MARS-IRMA: a multispectral imager for the characterization of Martian soil samples  

Microsoft Academic Search

The MARS-IRMA investigation has been proposed for inclusion in the payload of the Mars Sample Return Lander 1. Its goal is the quantitative characterization of the mineralogy and the microphysical structure of the materials in the Martian soils, down to the depth available to the sampling mechanism of the Lander. The instrument we intend to build is an infrared microscope

F. Capaccioni; G. Bellucci; S. Amici; R. Bianchi; M. T. Capria; A. Coradini; R. Orosei; G. Piccioni; M. Poscolieri; V. Formisano; S. Fonti; J. Mustard; C. M. Pieters; S. Erard; O. Forni; M. I. Blecka

1999-01-01

356

Effects of Offshore Sampling and Testing on Undrained Soil Shear Strength  

Microsoft Academic Search

The empirical procedures for offshore foundations design are directly influenced by the shear strength values selected for analyses. There is generally a large amount of scatter in measured undrained shear strength data from offshore borings because of various types of laboratory tests and sample disturbance. A comparison of strength data obtained on samples of cohesive soils from the Gulf of

A. G. Young; G. Quiros; C. Ehlers

1983-01-01

357

DESIGNING A CONTAMINATED SOIL SAMPLING STRATEGY FOR HUMAN HEALTH RISK ASSESSMENT  

E-print Network

DESIGNING A CONTAMINATED SOIL SAMPLING STRATEGY FOR HUMAN HEALTH RISK ASSESSMENT L. Malherbe INERIS, E-mail : laure.malherbe@ineris.fr Abstract Human health risk assessment is a site-based approach sampling strategy for human health risk assessment. On the contrary there are several approaches which can

Paris-Sud XI, Université de

358

Application of a Permethrin Immunosorbent Assay Method to Residential Soil and Dust Samples  

EPA Science Inventory

A low-cost, high throughput bioanalytical screening method was developed for monitoring cis/trans-permethrin in dust and soil samples. The method consisted of a simple sample preparation procedure [sonication with dichloromethane followed by a solvent exchange into methanol:wate...

359

ENVIRONMENTAL SAMPLING AND ANALYSIS - GETTING IT RIGHT  

SciTech Connect

The Department of Energy's Hanford Site in southeastern Washington State was established in the 1940s as part of the Manhattan Project. Hanford's role was to produce weapons-grade nuclear material for defense, and by 1989, when the Site's mission changed from operations to cleanup, Hanford had produced more than 60 percent of the nation's plutonium. The legacy of Hanford's production years is enormous in terms of nuclear and hazardous waste, especially the 270 billion gallons of contaminated groundwater and the 5 million cubic yards of contaminated soil. Managing the contaminated soil and groundwater are particularly important because the Columbia River, the lifeblood of the northwest and the nation's eighth largest river, bounds the Site. Fluor Hanford's Soil & Groundwater Remediation Project (S&GRP) integrates all of the activities that deal with remediating and monitoring the groundwater across the Site. The S&GRP uses a detailed series of steps to record, track, and verify information. The Sample and Data Management (SDM) Process consists of 10 integrated steps that start with the data quality objectives process that establishes the mechanism for collecting the right information with the right people. The process ends with data quality assessment, which is used to ensure that all quantitative data (e.g., field screening, fixed laboratory) are the right type, and of adequate quality to support the decision-making process. Steps 3 through 10 of the process are production steps and are integrated electronically. The detailed plans, procedures, and systems used day-to-day by the SDM process require a high degree of accuracy and reliability. Tools must be incorporated into the processes that minimize errors. This paper discusses all of the elements of the SDM process in detail.

CONNELL CW

2008-01-22

360

Balloon and core sampling for determining bulk density of alluvial desert soil  

USGS Publications Warehouse

Samples were collected from major strata in the upper 5 m of an alluvial soil profile in the Amargosa Desert of southern Nevada to compare rubber-balloon and drive-core bulk-density measurement methods. Outside the range of fine-soil texture, where soil consistency was either very loose or very hard, the core method appeared to sample inaccurately, resulting in bulk-density values less than those determined by the balloon method. Under the severe sampling conditions encountered, large decreases in the relative accuracy of the core method were not directly related to rock-fragment content, but were related to extremes in the cohesiveness of the strata sampled. -from Author

Andraski, B.J.

1991-01-01

361

Stochastic analysis of soil-structure interaction  

E-print Network

This study investigates the effect of soil structure interaction on the response of a building subjected to an earthquake motion. Spectra consisting of the auto and cross spectral densities of three components of free-field earthquake motion at all...

Chan, Charles Cheuk Lap

1994-01-01

362

Pilot studies for the North American Soil Geochemical Landscapes Project - Site selection, sampling protocols, analytical methods, and quality control protocols  

USGS Publications Warehouse

In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada sampled and chemically analyzed soils along two transects across Canada and the USA in preparation for a planned soil geochemical survey of North America. This effort was a pilot study to test and refine sampling protocols, analytical methods, quality control protocols, and field logistics for the continental survey. A total of 220 sample sites were selected at approximately 40-km intervals along the two transects. The ideal sampling protocol at each site called for a sample from a depth of 0-5 cm and a composite of each of the O, A, and C horizons. The <2-mm fraction of each sample was analyzed for Al, Ca, Fe, K, Mg, Na, S, Ti, Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Ga, In, La, Li, Mn, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Sn, Sr, Te, Th, Tl, U, V, W, Y, and Zn by inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry following a near-total digestion in a mixture of HCl, HNO3, HClO4, and HF. Separate methods were used for Hg, Se, total C, and carbonate-C on this same size fraction. Only Ag, In, and Te had a large percentage of concentrations below the detection limit. Quality control (QC) of the analyses was monitored at three levels: the laboratory performing the analysis, the USGS QC officer, and the principal investigator for the study. This level of review resulted in an average of one QC sample for every 20 field samples, which proved to be minimally adequate for such a large-scale survey. Additional QC samples should be added to monitor within-batch quality to the extent that no more than 10 samples are analyzed between a QC sample. Only Cr (77%), Y (82%), and Sb (80%) fell outside the acceptable limits of accuracy (% recovery between 85 and 115%) because of likely residence in mineral phases resistant to the acid digestion. A separate sample of 0-5-cm material was collected at each site for determination of organic compounds. A subset of 73 of these samples was analyzed for a suite of 19 organochlorine pesticides by gas chromatography. Only three of these samples had detectable pesticide concentrations. A separate sample of A-horizon soil was collected for microbial characterization by phospholipid fatty acid analysis (PLFA), soil enzyme assays, and determination of selected human and agricultural pathogens. Collection, preservation and analysis of samples for both organic compounds and microbial characterization add a great degree of complication to the sampling and preservation protocols and a significant increase to the cost for a continental-scale survey. Both these issues must be considered carefully prior to adopting these parameters as part of the soil geochemical survey of North America.

Smith, D.B.; Woodruff, L.G.; O'Leary, R. M.; Cannon, W.F.; Garrett, R.G.; Kilburn, J.E.; Goldhaber, M.B.

2009-01-01

363

Evaluation of soil damping techniques used in soil structure interaction analysis of a nuclear power plant  

SciTech Connect

A prediction of dynamic soil properties at the site of a nuclear power plant plays a very important role in the seismic analysis of the facility. Conventional modal analysis procedures can accommodate virtually any range of equivalent elastic soil stiffness which is used to characterize the site. However, high radiation damping associated with energy dissipation in the soil half-space is difficult to accommodate in an elastic modal solution to the dynamic problem. Several methods are available to combine the soil damping with the structural damping in a composite modal damping coefficient. However, even with this convenient representation, the resulting large fractions of critical damping can make modal solutions to the problems suspect. This paper is based on experience gained in this area during studies performed for the Nuclear Regulatory Commission involving seismic analyses of power plants.

Nelson, T.A.

1982-02-24

364

Accurately measuring volume of soil samples using low cost Kinect 3D scanner  

NASA Astrophysics Data System (ADS)

The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the 150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

van der Sterre, Boy-Santhos; Hut, Rolf; van de Giesen, Nick

2013-04-01

365

RESULTS FROM EPA FUNDED RESEARCH PROGRAMS ON THE IMPORTANCE OF PURGE VOLUME, SAMPLE VOLUME, SAMPLE FLOW RATE AND TEMPORAL VARIATIONS ON SOIL GAS CONCENTRATIONS  

EPA Science Inventory

Two research studies funded and overseen by EPA have been conducted since October 2006 on soil gas sampling methods and variations in shallow soil gas concentrations with the purpose of improving our understanding of soil gas methods and data for vapor intrusion applications. Al...

366

Tracer Analysis of Methanogenesis in Salt Marsh Soils  

PubMed Central

Differences in paths of carbon flow have been found in soils of the tall (TS) and short (SS) Spartina alterniflora marshes of Sapelo Island, Ga. Gaseous end products of [U-14C]glucose metabolism were 14CO2 and 14CH4 in the SS region and primarily 14CO2 in the TS region. Sulfate concentration did not demonstrably affect glucose catabolism or the distribution of end products in either zone. [U-14C]acetate was converted to 14CO2 and 14CH4 in the SS soils and almost exclusively to 14CO2 in the TS soils. Sulfate concentration did not affect acetate metabolism in the SS soils; however, a noticeable effect of sulfate dilution was seen in TS soils. Sulfate dilution in TS samples resulted in increased methane formation. Total glucose and acetate metabolism were similar in TS and SS soils despite differences in end products. A microbial community characterized by fermentative/sulfate-reducing processes has developed in TS soils as opposed to the fermentative/methanogenic/sulfate-reducing community found in SS soils. PMID:16345551

King, Gary M.; Wiebe, W. J.

1980-01-01

367

The influence of Alpine soil properties on shallow movement hazards, investigated through factor analysis  

NASA Astrophysics Data System (ADS)

Mountain watersheds are particularly vulnerable to extreme meteorological events, such as high intensity rainfall, and mountain soils often show pronounced fragility and low resilience due to severe environmental conditions. Alpine soil vulnerability is partly intrinsic but in part related to climate change (mainly precipitation regimes), and is enhanced by the abandonment of rural mountain areas that reduced the land maintenance actions traditionally carried out by farmers and local populations in the past. Soil hazards are related to different processes such as water erosion, loss of consistency, surface runoff and sediment transport, often occurring simultaneously and interacting with each other. Therefore, the overall effects on soil are not easy to quantify as they can be evaluated from different soil chemical and physical properties, referring to specific soil loss phenomena such as soil erosion, soil liquefaction, loss of consistency etc. In this study, we focus our attention on a mountain region in the NW Italian Alps (Valle d'Aosta), which suffered from diffuse soil instability phenomena in recent years, as a consequence of extreme rainfall events and general abandonment of the agricultural activities in marginal areas. The main effects were a large number of shallow landislides involving limited soil depths (less than 1 m), affecting considerable surfaces in the lower and middle part of the slopes. These events caused loss of human lives in the year 2000 and therefore raised the attention on land maintenance issues. Surface (topsoil: 0-20 cm) and subsurface (subsoil: 20-70 cm) samples were characterised chemically and physically (pH, carbon and nitrogen contents, cation exchange capacity, texture, aggregate stability, Atterberg limits etc.) and they showed very different soil properties. Topsoils were characterised by better stability, structure, and consistency. The differences between the two depths were potential trigger factors for shallow soil movements involving the upper soil horizons. We assessed a great number of soil properties that are known to be related to vulnerability to the main hazards present in the area. These properties were evaluated at the two depths and a factor analysis was performed to simplify the dataset interpretation, and to hypothesise the most decisive parameters that were potentially related to vulnerability. The factors (soil structure, aggregation, consistency, texture and parent material, cation exchange complex and other chemical properties) were a first step towards identifying soil quality indexes in the studied environment.

Stanchi, S.; Freppaz, M.; Zanini, E.

2012-06-01

368

Ion beam analysis of radioactive samples  

NASA Astrophysics Data System (ADS)

The nuclear microprobe facility of the Pierre Süe Laboratory is fitted with two microbeam lines. One is dedicated to non-active samples. The other one, located in a controlled shielded area, offers the unique feature of being devoted to radioactive samples. Operational since 1998, it is strongly linked to nuclear research programs and has been dimensioned to accept radioactive but non-contaminant radioactive samples, including small quantities of UOX or MOX irradiated fuel. The samples, transported in a shipping cask, are unloaded and handled in hot cells with slaved arms. The analysis chamber, situated in a concrete cell, is equipped with charged particle detectors and a Si(Li) X-ray detector, shielded in order to reduce the radioactive noise produced by the sample, allowing ERDA, RBS, NRA and PIXE. After a description of the facility, including the sample handling in the hot cells and the analysis chamber, we will give an overview of the various experimental programs which have been performed, with an emphasis on the determination of the hydrogen distribution and local content in nuclear fuel cladding tubes.

Raepsaet, C.; Khodja, H.; Bossis, P.; Pipon, Y.; Roudil, D.

2009-06-01

369

Samples Undergo Liquid Chromatograph Column Analysis  

USGS Multimedia Gallery

On April 20, 2010, the Deepwater Horizon Drilling Platform exploded and sank, causing the largest oil spill yet recorded. Samples from the oil spill were collected by Louisiana USGS scientists Greg Swayze and Charlie Demas and sent for analysis in Menlo Park, CA. Following the dissolution of the sam...

370

Exploratory Factor Analysis With Small Sample Sizes  

Microsoft Academic Search

Exploratory factor analysis (EFA) is generally regarded as a technique for large sample sizes (N), with N = 50 as a reasonable absolute minimum. This study offers a comprehensive overview of the conditions in which EFA can yield good quality results for N below 50. Simulations were carried out to estimate the minimum required N for different levels of loadings

J. C. F. de Winter; D. Dodou; P. A. Wieringa

2009-01-01

371

COAL SAMPLING AND ANALYSIS: METHODS AND MODELS  

EPA Science Inventory

The report provides information on coal sampling and analysis (CSD) techniques and procedures and presents a statistical model for estimating SO2 emissions. (New Source Performance Standards for large coal-fired boilers and certain State Implementation Plans require operators to ...

372

Analysis of Picattiny Sample for Trace Explosives  

SciTech Connect

The sample received from Picatinny Arsenal was analyzed for trace amounts of high explosives (HE). A complete wash of the surface was performed, concentrated, and analyzed using two sensitive analysis techniques that are capable of detecting numerous types of explosives. No explosives were detected with either test.

Klunder, G; Whipple, R; Carman, L; Spackman, P E; Reynolds, J; Alcaraz, A

2008-05-23

373

Multilocus linkage analysis by blocked Gibbs sampling  

Microsoft Academic Search

The problem of multilocus linkage analysis is expressed as a graphical model, making explicit a previously implicit connection, and recent developments in the field are described in this context. A novel application of blocked Gibbs sampling for Bayesian networks is developed to generate inheritance matrices from an irreducible Markov chain. This is used as the basis for reconstruction of historical

Alun Thomas; Alexander Gutin; Victor Abkevich; Aruna Bansal

2000-01-01

374

BIOLOGIC SAMPLE COLLECTION AND ANALYSIS PLANS: Collection  

E-print Network

Appendix D BIOLOGIC SAMPLE COLLECTION AND ANALYSIS PLANS: Collection: URINE BLOOD BUCCAL CELLS County, Nevada: Protocol for Collecting Blood Specimens 1) Have the following items on hand and available: · Blue Absorbent Pad · Powder free gloves · Tourniquet · Alcohol disinfectant swabs (individually wrapped

375

TECHNICAL MANUAL FOR INORGANIC SAMPLING AND ANALYSIS  

EPA Science Inventory

The manual presents the state-of-the-art of inorganic sampling and analysis (ISA) procedures in a standardized format that makes the methodology readily available to professionals in the field. Because of the breadth of ISA, a system was developed to avoid burying specific method...

376

Microcomputer Analysis of Children's Language Samples.  

ERIC Educational Resources Information Center

The workshop paper examines the use of microcomputer packages to analyze spontaneous language samples of children with communication disorders. Advantages of computerized analysis are seen to include time saving, more efficient data management, and increased objectivity. To help consumers determine which programs to buy, four aspects are…

Rosenkoetter, Sharon E.; Rice, Mabel L.

377

Isolation and partial characterization of phosphate solubilizing bacteria isolated from soil and marine samples.  

PubMed

In the present study the potential of indigenous bacterial isolates from soil rhizosphere and marine environment to promote plant growth was determined. Eight bacterial strains isolated from soil and marine samples were characterized for the phosphate solubilizing activity. Qualitative and quantitative estimation of phosphate solubilization is done. MIC of antibiotic and heavy metals were checked for these strains. Strains show a diverse pattern of antibiotic and heavy metals resistance. PMID:25176242

Mujahid, Talat Yasmeen; Siddiqui, Khaizran; Ahmed, Rifat; Kazmi, Shahana U; Ahmed, Nuzhat

2014-09-01

378

[Near infrared spectral analysis and measuring system for primary nutrient of soil].  

PubMed

Soil is the foundation of agricultural production. Rapid analysis of soil nutrients, using near infrared spectral analysis technology, can guide process of agricultural production. Developing near-infrared measuring system with discrete wavelength will change the extensive operation situation of agricultural production. First, the spectra of 85 black soil samples of northeast China, collected by FOSS XDS near-infrared spectrometer were analyzed using the correlation spectra and successive projection algorithm. Then, the characteristic wavelengths of total nitrogen and organic matter were obtained. After that the authors collected the spectra of soil samples using the measuring system with high signal to noise ratio (SNR) that the authors developed. The calibration models for total nitrogen and organic matter were established. The root mean square error of prediction (RMSEP) of total nitrogen and organic matter is 0.019% and 0.36% respectively, and the correlation coefficient of prediction (R(P)) is 0.851 and 0.923, respectively. Experimental results indicate that the characteristic wavelengths for total nitrogen and organic matter can be obtained through the near infrared spectra analyses. The measuring system can be used for soil nutrient analysis and lays the foundation for the industrial applications. PMID:21800574

Gao, Hong-zhi; Lu, Qi-peng

2011-05-01

379

Extractability of dioxins from soil: II. Effects of acid or alkaline pretreatment on the extractability of dioxin homologues from soil samples  

Microsoft Academic Search

The effects of sample pretreatment on the extractability of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and coplanar polychlorinated biphenyls (CoPCBs) from three suburban soil samples were evaluated. The samples were treated with 0.1?M HCl or 0.1?M NaOH and extracted by pressurized liquid extraction (PLE) with toluene. In addition, untreated soil samples were subjected to PLE with acetone. The extractability values

Hiroaki Otaka; Miho Shinomiya; Takashi Amagai

2005-01-01

380

Adaptation and validation of QuEChERS method for the analysis of trifluralin in wind-eroded soil  

Microsoft Academic Search

This study was carried out to develop and validate a reliable analytical procedure for trifluralin analysis in wind-eroded sediments. Soil sediments trapped in BEST sediment traps were subjected to QuEChERS extraction method, incorporating a simple simultaneous cleanup step, followed by trifluralin analysis with GC-ECD. Results revealed that QuEChERS method offered a potential alternative technique for pesticide extraction from soil samples.

Cemile Temur; Osman Tiryaki; Oguzhan Uzun; Mustafa Basaran

2012-01-01

381

Aggregicoccus edonensis gen. nov., sp. nov., an unusually aggregating myxobacterium isolated from a soil sample.  

PubMed

A novel myxobacterium, MCy1366(T) (Ar1733), was isolated in 1981 from a soil sample collected from a region near Tokyo, Japan. It displayed general myxobacterial features like Gram-negative-staining, rod-shaped vegetative cells, gliding on solid surfaces, microbial lytic activity, fruiting-body-like aggregates and myxospore-like structures. The strain was mesophilic, aerobic and showed a chemoheterotrophic mode of nutrition. It was resistant to many antibiotics such as cephalosporin C, kanamycin, gentamicin, hygromycin B, polymyxin and bacitracin, and the key fatty acids of whole cell hydrolysates were iso-C15?:?0, iso-C17?:?0 and iso-C17?:?0 2-OH. The genomic DNA G+C content of the novel strain was 65.6 mol%. The 16S rRNA gene sequence showed highest similarity (97.60?%) to 'Stigmatella koreensis' strain KYC-1019 (GenBank accession no. EF112185). Phylogenetic analysis based on 16S rRNA gene sequences and MALDI-TOF MS data revealed a novel branch in the family Myxococcaceae. DNA-DNA hybridization showed only 28?% relatedness between the novel strain and the closest recognized species, Corallococcus exiguus DSM 14696(T) (97?% 16S rRNA gene sequence similarity). A recent isolate from a soil sample collected in Switzerland, MCy10622, displayed 99.9?% 16S rRNA gene sequence similarity with strain MCy1366(T) and showed almost the same characteristics. Since some morphological features like fruiting-body-like aggregates were barely reproducible in the type strain, the newly isolated strain, MCy10622, was also intensively studied. On the basis of a comprehensive taxonomic study, we propose a novel genus and species, Aggregicoccus edonensis gen. nov., sp. nov., for strains MCy1366(T) and MCy10622. The type strain of the type species is MCy1366(T) (?=?DSM 27872(T)?=?NCCB 100468(T)). PMID:24591423

Sood, Sakshi; Awal, Ram Prasad; Wink, Joachim; Mohr, Kathrin I; Rohde, Manfred; Stadler, Marc; Kämpfer, Peter; Glaeser, Stefanie P; Schumann, Peter; Garcia, Ronald; Müller, Rolf

2015-03-01

382

Sedimentation Time Measurements of Soil Particles by Light Scattering and Determination of Chromium, Lead, and Iron in Soil Samples via ICP  

ERIC Educational Resources Information Center

The study of soil samples, using light scattering and Inductively Coupled Plasma spectrometry (ICP) to determine colloid sedimentation rates and the quantity of chromium, lead, and iron in the sample is described. It shows the physical and chemical behavior of solid components in soil, and how such pollutant binding colloid surfaces directly…

Todebush, Patricia Metthe; Geiger, Franz M.

2005-01-01

383

Sulphate reducing activity detected in soil samples from Antarctica, Ecology Glacier Forefield, King George Island.  

PubMed

We determined sulphate-reducing activities in media inoculated with soils and with kettle lake sediments in order to investigate their potential in geomicrobiological processes in low-temperature, terrestrial maritime Antarctic habitats. Soil and sediment samples were collected in a glacier valley abandoned by Ecology Glacier during the last 30 years: from a new formed kettle lake sediment and forefield soil derived from ground moraine. Inoculated with these samples, liquid Postgate C and minimal media supplemented with various carbon sources as electron donors were incubated for 8 weeks at 4°C. High rates of sulphate reduction were observed only in media inoculated with soil. No sulphate reduction was detected in media inoculated with kettle lake sediments. In soil samples culture media calcite and elemental sulphur deposits were observed, demonstrating that sulphate-reducing activity is associated with a potential to mineral formation in cold environments. Cells observed on scanning microscopy (SEM) micrographs of post-culture-soil deposits could be responsible for sulphate-reducing activity. PMID:25804064

Wolicka, Dorota; Zdanowski, Marek K; ?muda-Baranowska, Magdalena J; Poszytek, Anna; Grzesiak, Jakub

2014-01-01

384

Diversity of bacteria producing pigmented colonies in aerosol, snow and soil samples from remote glacial areas (Antarctica, Alps and Andes)  

NASA Astrophysics Data System (ADS)

Four different communities and one culture of pigmented microbial assemblages were obtained by incubation in mineral medium of samples collected from high elevation snow in the Alps (Mt. Blanc area) and the Andes (Nevado Illimani summit, Bolivia), from Antarctic aerosol (French station Dumont d'Urville) and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas). Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. The phylogenetic comparison with the currently available rDNA database allowed the identification of sequences belonging to Proteobacteria (Alpha-, Beta- and Gamma-proteobacteria), Actinobacteria and Bacteroidetes phyla. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified) and the maritime Antarctic soil the poorest (only one). Snow samples from Col du midi (Alps) and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones). These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteria clone). The only microorganism identified in the maritime Antarctica soil (Brevundimonas sp.) was also detected in the Antarctic aerosol. The two snow samples from the Alps only shared one common microorganism. Most of the identified microorganisms have been detected previously in cold environments (Dietzia kujamenisi, Pseudonocardia Antarctica, Hydrogenophaga palleronii and Brebundimonas sp.), marine sediments (Aquiflexus balticus, Pseudomonas pseudoalkaligenes, Pseudomonas sp. and one uncultured Alphaproteobacteria), and soils and rocks (Pseudonocardia sp., Agrobactrium sp., Limnobacter sp. and two uncultured Alphaproteobacetria clones). Air current dispersal is the best model to explain the presence of very specific microorganisms, like those used in this work, in very distant environments. In addition these microorganisms have to be resistant to extreme conditions and able to grow in oligotrophic environments. Considering the habitats in which they have been identified, the presence of pigments must be related with their ability to resist high doses of radiation.

González-Toril, E.; Amils, R.; Delmas, R. J.; Petit, J.-R.; Komárek, J.; Elster, J.

2008-04-01

385

LRO Diviner Soil Composition Measurements - Lunar Sample Ground Truth  

NASA Technical Reports Server (NTRS)

The Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter [1,2] includes three thermal infrared channels spanning the wavelength ranges 7.55-8.05 microns 8.10-8.40 microns, and 8.38-8.68 microns. These "8 micron" bands were specifically selected to measure the "Christiansen feature". The wavelength location of this feature, referred to herein as CF, is particularly sensitive to silicate minerals including plagioclase, pyroxene, and olivine the major crystalline components of lunar rocks and soil. The general trend is that lower CF values are correlated with higher silica content and higher CF values are correlated with lower silica content. In a companion abstract, Greenhagen et al. [3] discuss the details of lunar mineral identification using Diviner data.

Allen, Carlton C.; Greenhagen, Benjamin T.; Paige, David A.

2010-01-01

386

Rapid assessment of soil and groundwater tritium by vegetation sampling  

SciTech Connect

A rapid and relatively inexpensive technique for defining the extent of groundwater contamination by tritium has been investigated. The technique uses existing vegetation to sample the groundwater. Water taken up by deep rooted trees is collected by enclosing tree branches in clear plastic bags. Water evaporated from the leaves condenses on the inner surface of the bag. The water is removed from the bag with a syringe. The bags can be sampled many times. Tritium in the water is detected by liquid scintillation counting. The water collected in the bags has no color and counts as well as distilled water reference samples. The technique was used in an area of known tritium contamination and proved to be useful in defining the extent of tritium contamination.

Murphy, C.E. Jr.

1995-09-01

387

OVERVIEW OF BERYLLIUM SAMPLING AND ANALYSIS  

SciTech Connect

Because of its unique properties as a lightweight metal with high tensile strength, beryllium is widely used in applications including cell phones, golf clubs, aerospace, and nuclear weapons. Beryllium is also encountered in industries such as aluminium manufacturing, and in environmental remediation projects. Workplace exposure to beryllium particulates is a growing concern, as exposure to minute quantities of anthropogenic forms of beryllium may lead to sensitization and to chronic beryllium disease, which can be fatal and for which no cure is currently known. Furthermore, there is no known exposure-response relationship with which to establish a 'safe' maximum level of beryllium exposure. As a result, the current trend is toward ever lower occupational exposure limits, which in turn make exposure assessment, both in terms of sampling and analysis, more challenging. The problems are exacerbated by difficulties in sample preparation for refractory forms of beryllium, such as beryllium oxide, and by indications that some beryllium forms may be more toxic than others. This chapter provides an overview of sources and uses of beryllium, health risks, and occupational exposure limits. It also provides a general overview of sampling, analysis, and data evaluation issues that will be explored in greater depth in the remaining chapters. The goal of this book is to provide a comprehensive resource to aid personnel in a wide variety of disciplines in selecting sampling and analysis methods that will facilitate informed decision-making in workplace and environmental settings.

Brisson, M

2009-04-01

388

Germanium-76 Sample Analysis: Revision 3  

SciTech Connect

The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0{nu}{beta}{beta}). The DEMONSTRATOR will utilize 76Ge from Russia. The first one-gram sample was received from the supplier for analysis on April 24, 2011. The second one-gram sample was received from the supplier for analysis on July 12, 2011. The third sample, which came from the first large shipment of germanium from the vendor, was received from Oak Ridge National Laboratory (ORNL) on September 13, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of these analyses are reported here. The isotopic composition of a sample of natural germanium was also measured twice. Differences in the result between these two measurements led to a re-measurement of the second 76Ge sample.

Kouzes, Richard T.; Zhu, Zihua; Engelhard, Mark H.

2011-09-19

389

Zinc sorption by iron oxides and soil samples  

E-print Network

is supposed to dissolve primarily poorly crystalline Fe oxide material. The samples for the x-ray diffraction (XRD) analyses were 13 suspended in acetone and pipetted onto glass slides. The XRD patterns of the +our material were obtained using a Philips... to the glass slides were prepared and air dried. A sample of Mg + saturated clay was also solvated with 10 ethylene glycol and this suspension was used for makina a slide. The xRD patterns were run (2 degrees per minute) using a Philips-Norelco goniometer...

Yli-Halla, Markku Juhani

1989-01-01

390

Comparative Analysis for Polluted Agricultural Soils with Arsenic, Lead, and Mercury in Mexico  

SciTech Connect

The use of mercury in Mexico has been associated with the mining industry of Zacatecas. This activity has polluted several areas currently used for agriculture. The main objective of this study was to investigate the heavy metal concentration (Hg, As and Pb) in soil of Guadalupe Zacatecas in order to justify a further environmental risk assessment in the site. A 2X3 km grid was used for the sampling process and 20 soil samples were taken. The analysis was developed using EPA SW 846: 3050B/6010B method for arsenic and metals and EPA SW 846: 7471A for total mercury. It was concluded that there are heavy metals in agricultural soils used for corn and bean farming. For this it is required to make an environmental risk assessment and a bioavailability study in order to determine if there's a risk for heavy metals bioaccumulation in animals or human beings or metal lixiviation to aquifers.

Yarto-Ramirez, Mario; Santos-Santos, Elvira; Gavilan-Garcia, Arturo; Castro-Diaz, Jose; Gavilan-Garcia, Irma Cruz; Rosiles, Rene; Suarez, Sara

2004-03-31

391

Sampling and Data Analysis for Environmental Microbiology  

SciTech Connect

A brief review of the literature indicates the importance of statistical analysis in applied and environmental microbiology. Sampling designs are particularly important for successful studies, and it is highly recommended that researchers review their sampling design before heading to the laboratory or the field. Most statisticians have numerous stories of scientists who approached them after their study was complete only to have to tell them that the data they gathered could not be used to test the hypothesis they wanted to address. Once the data are gathered, a large and complex body of statistical techniques are available for analysis of the data. Those methods include both numerical and graphical techniques for exploratory characterization of the data. Hypothesis testing and analysis of variance (ANOVA) are techniques that can be used to compare the mean and variance of two or more groups of samples. Regression can be used to examine the relationships between sets of variables and is often used to examine the dependence of microbiological populations on microbiological parameters. Multivariate statistics provides several methods that can be used for interpretation of datasets with a large number of variables and to partition samples into similar groups, a task that is very common in taxonomy, but also has applications in other fields of microbiology. Geostatistics and other techniques have been used to examine the spatial distribution of microorganisms. The objectives of this chapter are to provide a brief survey of some of the statistical techniques that can be used for sample design and data analysis of microbiological data in environmental studies, and to provide some examples of their use from the literature.

Murray, Christopher J.

2001-06-01

392

Occurrence and analysis of selected pharmaceutical compounds in soil from Spanish agricultural fields.  

PubMed

This work describes the analysis of 15 pharmaceutical compounds, belonging to different therapeutic classes (anti-inflammatory/analgesics, lipid regulators, antiepileptics, ?-blockers and antidepressants) and with diverse physical-chemical properties, in Spanish soils with different farmland uses. The studied compounds were extracted from soil by ultrasound-assisted extraction (UAE) and determined, after derivatization, by gas chromatography with mass spectrometric detection (GC-MS). The limits of detection (LODs) ranged from 0.14 ng g(-1) (naproxen) to 0.65 ng g(-1) (amitriptyline). At least two compounds where detected in all samples, being ibuprofen, salicylic acid, and paracetamol, the most frequently detected compounds. The highest levels found in soil were 47 ng g(-1) for allopurinol and 37 ng g(-1) for salicylic acid. The influence of the type of crop and the sampling area on the levels of pharmaceuticals in soil, as well as their relationship with soil physical-chemical properties, was studied. The frequent and widespread detection of some of these compounds in agricultural soils show a diffuse contamination, although the low levels found do not pose a risk to the environment or the human health. PMID:24363053

Aznar, Ramón; Sánchez-Brunete, Consuelo; Albero, Beatriz; Rodríguez, José Antonio; Tadeo, José L

2014-03-01

393

High dimensional reflectance analysis of soil organic matter  

NASA Technical Reports Server (NTRS)

Recent breakthroughs in remote-sensing technology have led to the development of high spectral resolution imaging sensors for observation of earth surface features. This research was conducted to evaluate the effects of organic matter content and composition on narrowband soil reflectance across the visible and reflective infrared spectral ranges. Organic matter from four Indiana agricultural soils, ranging in organic C content from 0.99 to 1.72 percent, was extracted, fractionated, and purified. Six components of each soil were isolated and prepared for spectral analysis. Reflectance was measured in 210 narrow bands in the 400- to 2500-nm wavelength range. Statistical analysis of reflectance values indicated the potential of high dimensional reflectance data in specific visible, near-infrared, and middle-infrared bands to provide information about soil organic C content, but not organic matter composition. These bands also responded significantly to Fe- and Mn-oxide content.

Henderson, T. L.; Baumgardner, M. F.; Franzmeier, D. P.; Stott, D. E.; Coster, D. C.

1992-01-01

394

Hayabusa Recovery, Curation and Preliminary Sample Analysis: Lessons Learned from Recent Sample Return Mission  

NASA Technical Reports Server (NTRS)

I describe lessons learned from my participation on the Hayabusa Mission, which returned regolith grains from asteroid Itokawa in 2010 [1], comparing this with the recently returned Stardust Spacecraft, which sampled the Jupiter Family comet Wild 2. Spacecraft Recovery Operations: The mission Science and Curation teams must actively participate in planning, testing and implementing spacecraft recovery operations. The crash of the Genesis spacecraft underscored the importance of thinking through multiple contingency scenarios and practicing field recovery for these potential circumstances. Having the contingency supplies on-hand was critical, and at least one full year of planning for Stardust and Hayabusa recovery operations was necessary. Care must be taken to coordinate recovery operations with local organizations and inform relevant government bodies well in advance. Recovery plans for both Stardust and Hayabusa had to be adjusted for unexpectedly wet landing site conditions. Documentation of every step of spacecraft recovery and deintegration was necessary, and collection and analysis of launch and landing site soils was critical. We found the operation of the Woomera Text Range (South Australia) to be excellent in the case of Hayabusa, and in many respects this site is superior to the Utah Test and Training Range (used for Stardust) in the USA. Recovery operations for all recovered spacecraft suffered from the lack of a hermetic seal for the samples. Mission engineers should be pushed to provide hermetic seals for returned samples. Sample Curation Issues: More than two full years were required to prepare curation facilities for Stardust and Hayabusa. Despite this seemingly adequate lead time, major changes to curation procedures were required once the actual state of the returned samples became apparent. Sample databases must be fully implemented before sample return for Stardust we did not adequately think through all of the possible sub sampling and analytical activities before settling on a database design - Hayabusa has done a better job of this. Also, analysis teams must not be permitted to devise their own sample naming schemes. The sample handling and storage facilities for Hayabusa are the finest that exist, and we are now modifying Stardust curation to take advantage of the Hayabusa facilities. Remote storage of a sample subset is desirable. Preliminary Examination (PE) of Samples: There must be some determination of the state and quantity of the returned samples, to provide a necessary guide to persons requesting samples and oversight committees tasked with sample curation oversight. Hayabusa s sample PE, which is called HASPET, was designed so that late additions to the analysis protocols were possible, as new analytical techniques became available. A small but representative number of recovered grains are being subjected to in-depth characterization. The bulk of the recovered samples are being left untouched, to limit contamination. The HASPET plan takes maximum advantage of the unique strengths of sample return missions

Zolensky, Michael E.

2011-01-01

395

Determination of herbicides in soil samples by gas chromatography: optimization by the simplex method.  

PubMed

An analytic method for the determination of phenoxy acid herbicides and 2,4-D esters in soil samples by GC-FID is described. The esterification reaction with MeOH and H(2)SO(4) as catalyst has been used, optimizing experimental variables by the 'Simplex method'. The recoveries in soil samples were between 76 and 97% with relative S.D.s between 4 and 7% (n=4) at level of concentration of 5 and 10 mug ml(-1) for phenoxy acids and 2,4-D esters, respectively. PMID:18968122

Santos-Delgado, M J; Crespo-Corral, E; Polo-Díez, L M

2000-11-01

396

Contamination of apple orchard soils and fruit trees with copper-based fungicides: sampling aspects.  

PubMed

Accumulations of copper in orchard soils and fruit trees due to the application of Cu-based fungicides have become research hotspots. However, information about the sampling strategies, which can affect the accuracy of the following research results, is lacking. This study aimed to determine some sampling considerations when Cu accumulations in the soils and fruit trees of apple orchards are studied. The study was conducted in three apple orchards from different sites. Each orchard included two different histories of Cu-based fungicides usage, varying from 3 to 28 years. Soil samples were collected from different locations varying with the distances from tree trunk to the canopy drip line. Fruits and leaves from the middle heights of tree canopy at two locations (outer canopy and inner canopy) were collected. The variation in total soil Cu concentrations between orchards was much greater than the variation within orchards. Total soil Cu concentrations had a tendency to increase with the increasing history of Cu-based fungicides usage. Moreover, total soil Cu concentrations had the lowest values at the canopy drip line, while the highest values were found at the half distances between the trunk and the canopy drip line. Additionally, Cu concentrations of leaves and fruits from the outer parts of the canopy were significantly higher than from the inner parts. Depending on the findings of this study, not only the between-orchard variation but also the within-orchard variation should be taken into consideration when conducting future soil and tree samplings in apple orchards. PMID:25407992

Wang, Quanying; Liu, Jingshuang; Liu, Qiang

2015-01-01

397

Microwave soil moisture measurements and analysis  

NASA Technical Reports Server (NTRS)

An effort to develop a model that simulates the distribution of water content and of temperature in bare soil is documented. The field experimental set up designed to acquire the data to test this model is described. The microwave signature acquisition system (MSAS) field measurements acquired in Colby, Kansas during the summer of 1978 are pesented.

Newton, R. W.; Howell, T. A.; Nieber, J. L.; Vanbavel, C. H. M. (principal investigators)

1980-01-01

398

Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods  

SciTech Connect

A large number of defense-related sites are contaminated with elevated levels of secondary explosives. Levels of contamination range from barely detectable to levels above 10% that need special handling due to the detonation potential. Characterization of explosives-contaminated sites is particularly difficult due to the very heterogeneous distribution of contamination in the environment and within samples. To improve site characterization, several options exist including collecting more samples, providing on-site analytical data to help direct the investigation, compositing samples, improving homogenization of samples, and extracting larger samples. On-site analytical methods are essential to more economical and improved characterization. On-site methods might suffer in terms of precision and accuracy, but this is more than offset by the increased number of samples that can be run. While verification using a standard analytical procedure should be part of any quality assurance program, reducing the number of samples analyzed by the more expensive methods can result in significantly reduced costs. Often 70 to 90% of the soil samples analyzed during an explosives site investigation do not contain detectable levels of contamination. Two basic types of on-site analytical methods are in wide use for explosives in soil, calorimetric and immunoassay. Calorimetric methods generally detect broad classes of compounds such as nitroaromatics or nitramines, while immunoassay methods are more compound specific. Since TNT or RDX is usually present in explosive-contaminated soils, the use of procedures designed to detect only these or similar compounds can be very effective.

Crockett, A.B. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Craig, H.D. [Environmental Protection Agency, Portland, OR (United States). Oregon Operations Office; Jenkins, T.F. [Army Cold Regions Research and Engineering Lab., Hanover, NH (United States); Sisk, W.E. [Army Environmental Center, Aberdeen Proving Grounds, MD (United States)

1996-09-01

399

Evaluation of soil fertility in the succession of karst rocky desertification using principal component analysis  

NASA Astrophysics Data System (ADS)

Expanding of karst rocky desertification (RD) area in southwestern China has led to destructed ecosystem and local economic development lagging behind. It is important to understand the soil fertility at RD regions for the sustainable management of karst lands. The effects of the succession of RD on soil fertility were studied by investigating the stands and analyzing the soil samples with different RD grades in the central Hunan province, China, using the principal component analysis method. The results showed that the succession of RD had different impacts on soil fertility indicators. The changing trend of total organic carbon (TOC), total nitrogen (TN), available phosphorous (AP), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN) out of 19 selected indicators in different RD regions was: potential RD (PRD) > light RD (LRD) > moderate RD (MRD) > intensive RD (IRD), whereas the changing trend of other indicators was not entirely consistent with the succession of RD. The degradation trend of soil fertility was basically parallel to the aggravation of RD, and the strength of integrated soil fertility was in the order of PRD > MRD > LRD > IRD. The TOC, total phosphorus (TP), cation exchange capacity (CEC), MBC, MBN, microbial mass phosphorous (MBP), and bulk density (BD) could be regarded as the key indicators to evaluate the soil fertility due to their close correlations to the integrated fertility.

Xie, L. W.; Zhong, J.; Cao, F. X.; Li, J. J.; Wu, L. C.

2014-12-01

400

Visible and Near-Infrared Spectroscopy Analysis of a Polycyclic Aromatic Hydrocarbon in Soils  

PubMed Central

Visible and near-infrared (VisNIR) spectroscopy is becoming recognised by soil scientists as a rapid and cost-effective measurement method for hydrocarbons in petroleum-contaminated soils. This study investigated the potential application of VisNIR spectroscopy (350–2500?nm) for the prediction of phenanthrene, a polycyclic aromatic hydrocarbon (PAH), in soils. A total of 150 diesel-contaminated soil samples were used in the investigation. Partial least-squares (PLS) regression analysis with full cross-validation was used to develop models to predict the PAH compound. Results showed that the PAH compound was predicted well with residual prediction deviation of 2.0–2.32, root-mean-square error of prediction of 0.21–0.25?mg?kg?1, and coefficient of determination (r2) of 0.75–0.83. The mechanism of prediction was attributed to covariation of the PAH with clay and soil organic carbon. Overall, the results demonstrated that the methodology may be used for predicting phenanthrene in soils utilizing the interrelationship between clay and soil organic carbon. PMID:24453798

Okparanma, Reuben N.; Mouazen, Abdul M.

2013-01-01

401

Multivariate analysis of soil moisture and runoff dynamics for better understanding of catchment moisture state  

NASA Astrophysics Data System (ADS)

Soil moisture is a key state that controls runoff formation, infiltration and portioning of radiation into latent and sensible heat flux. The experimental characterisation of near surface soil moisture patterns and their controls on runoff formation is, however, still largely untapped. Using an intelligent sampling strategy of two TDR clusters installed in the head water of the Wilde Weißeritz catchment (Eastern Ore Mountains, Germany), we investigated how well "the catchment state" may be characterised by means of distributed soil moisture data observed at the field scale. A grassland site and a forested site both located on gentle slopes were instrumented with two Spatial TDR clusters (STDR) that consist of 39 and 32 coated TDR probes of 60 cm length. The interplay of soil moisture and runoff formation was interrogated using discharge data from three nested catchments: the Becherbach with a size of 2 km², the Rehefeld catchment (17 km²) and the superordinate Ammelsdorf catchment (49 km²). Multiple regression analysis and information theory including observations of groundwater levels, soil moisture and rainfall intensity were employed to predict stream flow. On the small scale we found a strong correlation between the average soil moisture and the runoff coefficients of rainfall-runoff events, which almost explains as much variability as the pre-event runoff. There was, furthermore, a strong correlation between surface soil moisture and subsurface wetness. With increasing catchment size, the explanatory power of soil moisture reduced, but it was still in a good accordance to the former results. Combining those results with a recession analysis of soil moisture and discharge we derived a first conceptual model of the dominant runoff mechanisms operating in these catchments, namely subsurface flow, but also by groundwater. The multivariate analysis indicated that the proposed sampling strategy of clustering TDR probes in typical functional units is a promising technique to explore the soil moisture control on runoff generation and can be an important link between the scales. Long term monitoring of such sites could yield valuable information for flood warning and forecasting by identifying critical soil moisture conditions for the former and a better representation of the initial moisture conditions for the further.

Graeff, Thomas; Bronstert, Axel; Cunha Costa, Alexandre; Zehe, Erwin

2010-05-01

402

Soil pore-gas sampling by photoacoustic radiometry  

SciTech Connect

Concentrations of volatile organics in a soil pore-gas plume were measured using a commercially available multigas monitor. The monitor is a photoacoustic radiometer (PAR) controlled by an on-board, programmable microprocessor. The measurements determine the extent and location of the vapor plume in the subsurface. At least twelve wells surrounding the sources are measured quarterly. The sources are located in former liquid chemical waste disposal pits and shafts at Los Alamos National Laboratory. The primary constituents of the plume are 1,1,1 trichloroethane (TCA), trichloroethene (TCE), and tetrachloroethene or perchloroethene or perchloroethene (PCE). Four quarters of data are presented for TCA. All were used primarily as solvents and degreasers. Previously the composition of the vapor plume was determined by Gas Chromatography Mass Spectrometer GCMS methods. Photoacoustic radiometry and gas chromatography are discussed giving the advantages and disadvantages of each method, although in this program they are basically complementary. Gas chromatography is a more qualitative method to determine which analytes are present and the approximate concentration. Photoacoustic radiometry, to function well, requires foreknowledge of constituents and serves best to determine how much is present. Measurements are quicker and more direct with photoacoustic methods. Once the constituents to be measured are known, the cost to monitor is much less using photoacoustics, and the results are available more quickly.

Sollid, J.E.

1994-11-01

403

40 CFR 600.112-08 - Exhaust sample analysis.  

Code of Federal Regulations, 2010 CFR

... 2010-07-01 false Exhaust sample analysis. 600.112-08 Section...AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST...Procedures § 600.112-08 Exhaust sample analysis. The exhaust sample...

2010-07-01

404

40 CFR 600.112-78 - Exhaust sample analysis.  

Code of Federal Regulations, 2010 CFR

... 2010-07-01 false Exhaust sample analysis. 600.112-78 Section...AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST...Procedures § 600.112-78 Exhaust sample analysis. The exhaust sample...

2010-07-01

405

Neutron-Activation Soil Analysis in Ecological Investigations  

Microsoft Academic Search

The scientific-technical base and instrumentation for neutron-activation analysis has reached a level such that today such an analysis can be used to find more than 70 chemical elements in soil and other biological objects. The method is widely used in various fields of science and industry. At the same time, as noted in [1], unsolved methodological and metrological problems are

Sh. Khatamov; A. Zhumamuratov; B. Ibragimov; T. Tillaev

2000-01-01

406

Thermal analysis of soil treated with biochars from different raw materials  

NASA Astrophysics Data System (ADS)

Thermal analysis (DTA, DSC, TG and dTG) has been used for decades to characterize carbonaceous materials used as fuels (oil, coal). In the last years, these techniques has been used with soils in order to assess proportions of labile and recalcitrant organic matter and to study the evolution of organic matter in amended soils during laboratory incubations. Indeed, thermogravimetric behaviour of soils can be quantified as the weight loss of samples attributed to different temperature ranges: WL1 from 25 to 150ºC; WL2 from 200 to 350ºC and WL3 from 375 to 600ºC . WL2 and WL3 correspond to weight loss associated to organic matter combustion (Worg=WL2+WL3). It is established that first peak was associated with combustion of less humified organic matter, while the second one was related to the more humified. Also, the WL3/WL2 ratio, named thermostability index, was previously identified as a reliable parameter for evaluating the level of stability of organic matter in composts and other organic wastes that indicated the relative amount of the thermally more stable fraction of organic matter with respect to less stable one. These stability can be related with the soil CO2 emmisions after biochar application. The objective of this presentation is to show the application of thermal analysis to study the stability of soil organic matter in soils treated with different biochars.

Ana, Méndez; Paola, Cely; Gabriel, Gascó

2014-05-01

407

Impacts of heterogeneous organic matter on phenanthrene sorption: different soil and sediment samples.  

PubMed

Organic petrography has been proposed as a tool for characterizing the heterogeneous organic matter present in soil and sediment samples. A new simplified method is proposed as a quantitative means of interpreting observed sorption behavior for phenanthrene and different soils and sediments based on their organic petrographical characterization. This method is tested under singe solute conditions and at phenanthrene concentration of 1 microg/L. Since the opaque organic matter fraction dominates the sorption process, we propose that by quantifying this fraction one can interpret organic content normalized sorption distribution coefficient (Koc) values for a sample. While this method was developed and tested for various samples within the same aquifer, in the current study the method is validated for soil and sediment samples from different sites that cover a wide range of organic matter origin, age, and organic content. All 10 soil and sediment samples studied had log Koc values for the opaque particles between 5.6 and 6.8. This range of Koc values illustrates the heterogeneity of opaque particles between sites and geological formations and thus the need to characterize the opaque fraction of materials on a site-by-site basis. PMID:11770772

Karapanagioti, H K; Childs, J; Sabatini, D A

2001-12-01

408

Astrobiology Sample Analysis as a Design Driver  

NASA Astrophysics Data System (ADS)

This effort supports the Astrobiology Objective 8 the Search for LIFE ON MARS PAST AND PRESENT -(Astrobiology Program Office, 1998, p.7). The essential trade analysis is between returning very small samples to the Earth while protecting them versus in situ analysis on Mars. Developing these explicit parameters encompasses design, instrumentation, system integration, human factors and surface operations for both alternatives. This allocation of capability approach incorporates a "humans and machines in the loop" model that recognizes that every exploration system involves both humans and automated systems. The question is where in the loop they occur whether on Earth, in the Mars Base, in the rover or creeping over the Mars surface.

Cohen, Marc M.

2001-01-01

409

Determination of Natural Beryllium (Be) in Soil and Swipe Samples Utilizing Yttrium/Beryllium Ratio  

SciTech Connect

1. Objective: A method to determine whether beryllium (Be) components in surface swipe samples are from a natural source is needed. 2. Methods: Soil samples and surface swipes from area facilities were analyzed for marker elements to identify source pathways for beryllium (Be). To be useful, the natural marker element must be present at reasonably consistent levels across the site, must correlate with the Be concentration, and not have the potential to be present from non-natural sources. 3. Results: The research on marker elements used to identify source pathways for beryllium (Be) concentrations demonstrates a clear correlation between Be and yttrium (Y) in natural soils on the Nevada National Security Site. The Y/Be ratio is proposed as a method to characterize the source of Be in soil and surface swipe samples and to aid in recommendations for follow up actions. Swipe samples are analyzed using an ICP/MS method and compared with results from soil samples. Natural soil constituent levels and the Y/Be Ratio range is determined for the occupied and historical facilities and surrounding areas. Y/Be ratios within the statistical range established indicate the Be is from a natural source. Y/Be ratios lower than this range indicate the presence of another Be source, and may then be correlated to alloy, ceramic, or other operational sources by the ratios of copper, nickel, cobalt, uranium, and/or niobium. Example case studies of evaluations of buildings with historical operational beryllium usage, current ongoing technical processes, and heavy equipment used in large building demolitions are included demonstrating the value of the ratio approach. 4. Conclusions: This differentiation is valuable as there is no known correlation between natural beryllium in soil and beryllium disease.

None

2010-09-30

410

Long-term variations of solar corpuscular fluxes based on lunar soil samples  

NASA Astrophysics Data System (ADS)

We report the results of age determination of a lunar soil column, delivered by the Luna 16 mission in September 1970 from the Sea of Fertility. We elaborated and applied the soil age determination method using the kinetic parameter, the regolith accumulation rate. The age of the soil delivered by Luna 16 is about 90 Myr. The isotopic ratio of 3He/4He in the column is slightly higher than in the soil column delivered by the Luna 24 mission. The abundance of helium in the fine fraction of the soil (about 100 µm) is significantly higher and is close to the maximum abundance from the Luna 24 soil column. These differences are most likely associated with the variations of solar corpuscular fluxes. Based on the measurements of the helium isotope abundance in the samples of lunar soil columns, we have estimated the values of ancient solar fluxes of protons and helium and variations thereof in the time interval of up to 600 Myr. We demonstrate that during this epoch there were two strong bursts of the helium flux, about 80 and 470 Myr ago, respectively. The existence of the first peak was assumed earlier from the paleodendrochronological data.

Anufriev, G. S.

2013-07-01

411

Analysis of particulates on tape lift samples  

NASA Astrophysics Data System (ADS)

Particle counts on tape lift samples taken from a hardware surface exceeded threshold requirements in six successive tests despite repeated cleaning of the surface. Subsequent analysis of the particle size distributions of the failed tests revealed that the handling and processing of the tape lift samples may have played a role in the test failures. In order to explore plausible causes for the observed size distribution anomalies, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to perform chemical analysis on collected particulates. SEM/EDX identified Na and S containing particles on the hardware samples in a size range identified as being responsible for the test failures. ToF-SIMS was employed to further examine the Na and S containing particulates and identified the molecular signature of sodium alkylbenzene sulfonates, a common surfactant used in industrial detergent. The root cause investigation suggests that the tape lift test failures originated from detergent residue left behind on the glass slides used to mount and transport the tape following sampling and not from the hardware surface.

Moision, Robert M.; Chaney, John A.; Panetta, Chris J.; Liu, De-Ling

2014-09-01

412

Elemental Analysis and Comparison of Bulk Soil Using LA-ICP-MS and LIBS methods  

NASA Astrophysics Data System (ADS)

Elemental analysis methods utilizing Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) were developed and used in the characterization of soil samples from the US and Canada as part of a comprehensive forensic evaluation of soils. A LA-ICP-MS method was recently optimized for analysis and comparison between different soil samples in an environmental forensic application [1,2] and LIBS has recently attracted the interest of analytical chemists and forensic laboratories as a simpler, lower cost alternative to the more established analytical methods. In developing a LIBS method, there are many parameters to consider, including laser wavelength, spectral resolution, sensitivity, and matrix effects. The first LIBS method using a 266 nm laser for forensic soil analysis has also been recently reported by our group [3]. The results of an inter-laboratory comparison involving thirteen (13) laboratories conducting bulk elemental analysis by various methods are also reported. The aims of the inter-laboratory tests were: a) to evaluate the inter-laboratory performance of three methods (LA-ICP-MS, µXRF and LIBS) in terms of accuracy (bias), precision (relative standard deviation, RSD) and sensitivity using standard reference materials (SRMs); b) to evaluate the newly released NIST SRM 2710a, which supersedes 2710; and c) to evaluate the utility of LIBS as an alternative technique to LA-ICP-MS and µXRF for bulk analysis of soils. Each sample and standard was homogenized in a high-speed ball mill and pressed into pellets. Participants were instructed to measure the following elements: 7Li, 25Mg, 27Al, 42Ca, 45Sc, 47,49Ti, 51V, 55Mn, 88Sr, 137Ba, 206,207,208 Pb (LA-ICP-MS); Ti, Cr, Mn, Fe, Cu, Sr, Zr, Pb (µXRF); Ba, Cr, Cu, Fe, Li, Mg, Mn, Pb, Sr, Ti, Zr (LIBS). For both LIBS and µXRF, the choice of appropriate spectral lines was determined by the user, optimizing for linearity, sensitivity and precision. Results for both LA-ICP-MS and µXRF were generally consistent for most elements, resulting in good intra-laboratory precision (< 8 % RSD for LA-ICP-MS; < 20 % RSD for µXRF) and low bias (< 10% for LA-ICP-MS; < 35 % for µXRF), which are important characteristics for forensic comparison of soils. Linear calibration curves were also obtained for both µXRF and LIBS. Results for LIBS showed good precision (< 15 %) and bias (< 15 %) for most elements. Limits of detection for trace and minor elements were in the 0.01 - 1 ppm range for LA-ICP-MS and 1 to 200 ppm for LIBS. Finally, the results of a study comparing the bulk elemental composition from soil collected in different locations in Florida and in Canada for the purposes of providing forensic information as part of a broader forensic examination of soil samples are also reported. 1. L Arroyo, T Trejos, P.R. Gardinali, and J.R. Almirall, Optimization and Validation of a LA-ICP-MS Method for the Quantitative Analysis of Soils and Sediments, Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(1), 14-25. 2. L Arroyo, T Trejos, T Hosick, S Machemer, JR. Almirall, and PR Gardinali, Analysis of Soils and Sediments by Laser Ablation ICP-MS: An Innovative Tool for Environmental Forensics, J. of Environmental Forensics, 2010, 11(4), 315-327. 3. SC Jantzi and JR. Almirall, Characterization and forensic analysis of soil samples using Laser-Induced Breakdown Spectroscopy (LIBS), Analytical and Bioanalyt. Chem, 2011, 400(10) 3341-3351.

Almirall, J.

2012-04-01

413

Extensive Diversity of Ionizing-Radiation-Resistant Bacteria Recovered from Sonoran Desert Soil and Description of Nine New Species of the Genus Deinococcus Obtained from a Single Soil Sample  

PubMed Central

The ionizing-radiation-resistant fractions of two soil bacterial communities were investigated by exposing an arid soil from the Sonoran Desert and a nonarid soil from a Louisiana forest to various doses of ionizing radiation using a 60Co source. The numbers of surviving bacteria decreased as the dose of gamma radiation to which the soils were exposed increased. Bacterial isolates surviving doses of 30 kGy were recovered from the Sonoran Desert soil, while no isolates were recovered from the nonarid forest soil after exposure to doses greater than 13 kGy. The phylogenetic diversities of the surviving culturable bacteria were compared for the two soils using 16S rRNA gene sequence analysis. In addition to a bacterial population that was more resistant to higher doses of ionizing radiation, the diversity of the isolates was greater in the arid soil. The taxonomic diversity of the isolates recovered was found to decrease as the level of ionizing-radiation exposure increased. Bacterial isolates of the genera Deinococcus, Geodermatophilus, and Hymenobacter were still recovered from the arid soil after exposure to doses of 17 to 30 kGy. The recovery of large numbers of extremely ionizing-radiation-resistant bacteria from an arid soil and not from a nonarid soil provides further ecological support for the hypothesis that the ionizing-radiation resistance phenotype is a consequence of the evolution of other DNA repair systems that protect cells against commonly encountered environmental stressors, such as desiccation. The diverse group of bacterial strains isolated from the arid soil sample included 60 Deinococcus strains, the characterization of which revealed nine novel species of this genus. PMID:16151108

Rainey, Fred A.; Ray, Keren; Ferreira, Margarida; Gatz, Bridget Z.; Nobre, M. Fernanda; Bagaley, Danielle; Rash, Brian A.; Park, Mie-Jung; Earl, Ashlee M.; Shank, Nicole C.; Small, Alanna M.; Henk, Margaret C.; Battista, John R.; Kämpfer, Peter; da Costa, Milton S.

2005-01-01

414

Quantitative Soil Carbon Analysis with in Situ Laser-Induced Breakdown Spectroscopy by Multivariate Analysis  

NASA Astrophysics Data System (ADS)

The Earth's oceans, forests, agricultural lands and other natural areas absorb about half of the carbon dioxide emitted from anthropogenic sources. Terrestrial carbon sequestration strategies are im