Sample records for soil sample analysis

  1. REPRESENTATIVE SAMPLING AND ANALYSIS OF HETEROGENEOUS SOILS

    EPA Science Inventory

    Standard sampling and analysis methods for hazardous substances in contaminated soils currently are available and routinely employed. Standard methods inherently assume a homogeneous soil matrix and contaminant distribution; therefore only small sample quantities typically are p...

  2. Analysis of plutonium in soil samples

    Microsoft Academic Search

    M. P. Rubio Montero; A. Mart??n Sánchez; M. T. Crespo Vázquez; J. L. Gascón Murillo

    2000-01-01

    Procedures for analysis of plutonium in soil samples were developed using anion exchange as a purification technique. Special attention was paid to removing impurities of 228Th which interferes in 238Pu determination by alpha spectrometry. Two anion-exchange methods were compared. The determination of plutonium in soil involves the conversion of soil samples to acid-soluble form. Two methods for the extraction of

  3. Adaptive sampling and analysis programs for soils contaminated soils.

    SciTech Connect

    Johnson, R.; Quinn, J.; Durham, L.; Williams, G.; Robbat, A., Jr.; Environmental Assessment; Tufts Univ.

    1997-07-01

    Adaptive sampling and analysis programs (ASAPs) provide a cost-effective alternative to traditional sampling program designs. ASAPs are based on field analytical methods for rapid sample turnaround and field-based decision support for guiding the progress of the sampling program. One common objective of ASAPs is to delineate contamination present in soils, either to support feasibility studies or remedial action designs. An ASAP based on portable gas chromatograph/ mass spectrograph (GC/MS) technologies developed at Tufts University combined with decision support tools created at Argonne National Laboratory was used to delineate explosives contamination in soils at Joliet Army Ammunition Plant, Joliet, Illinois. Tufts' GC/MS technologies provided contaminant-specific identification and quantification with rapid sample turnaround and high sample throughput. Argonne's decision support tools estimated contamination extent, determined the uncertainty associated with those estimates, and indicated where sampling should continue to minimize uncertainty. In the case of Joliet, per sample analytical costs were reduced by 75 percent as compared to the cost of off-site laboratory analyses for explosives. The use of an ASAP resulted in a much more accurate identification and delineation of contaminated areas than a traditional sampling program would have with the same number of samples collected on a regular grid. While targeting explosives contamination in soils at Joliet, the ASAP technologies used in this demonstration have much broader application.

  4. Analysis of large soil samples for actinides

    DOEpatents

    Maxwell, III; Sherrod L. (Aiken, SC)

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  5. COMPOSITE SAMPLING FOR SOIL VOC ANALYSIS

    EPA Science Inventory

    Data published by numerous researchers over the last decade demonstrate that there is a high degree of spatial variability in the measurement of volatile organic compounds (VOCs) in soil at contaminated waste sites. This phenomenon is confounded by the use of a small sample aliqu...

  6. INNOVATIONS IN SOIL SAMPLING AND DATA ANALYSIS

    EPA Science Inventory

    Successful research outcomes from the VOC in soils work will provide the Agency with methods and techniques that provide the accurate VOC concentrations so that decisions related to a contaminated site can be made to optimize the protectiveness to the environment and human health...

  7. Mercury Source Zone Identification using Soil Vapor Sampling and Analysis

    SciTech Connect

    Watson, David B [ORNL] [ORNL; Miller, Carrie L [ORNL] [ORNL; Lester, Brian P [ORNL] [ORNL; Lowe, Kenneth Alan [ORNL] [ORNL; Southworth, George R [ORNL] [ORNL; Bogle, Mary Anna [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Pierce, Eric M [ORNL] [ORNL

    2014-01-01

    Development and demonstration of reliable measurement techniqes that can detect and help quantify the nature and extent of elemental mercury (Hg(0)) in the subsurface are needed to reduce certainties in the decision making process and increase the effectiveness of remedial actions. We conducted field tests at the Y-12 National Security Complex (NSC) in Oak Ridge, TN, to determine if sampling and analysis of Hg(0) vapors in the shallow subsurface (<0.3 m depth) can be used to as an indicator of the location and extent of Hg(0) releases in the subsurface. We constructed a rigid PVC pushprobe assembly, which was driven into the ground. Soil gas samples were collected through a sealed inner tube of the assembly and analyzed immediately in the field with a Lumex and/or Jerome Hg(0) analyzer. Time-series sampling showed that Hg vapor concentrations were fairly stable over time suggesting that the vapor phase Hg(0) was not being depleted and that sampling results were not dependent on the soil gas purge volume. Hg(0) vapor data collected at over 200 pushprobe locations at 3 different release sites correlated well to areas of known Hg(0) contamination. Vertical profiling of Hg(0) vapor concentrations conducted at 2 locations provided information on the vertical distribution of Hg(0) contamination in the subsurface. We concluded from our studies that soil gas sampling and analysis can be conducted rapidly and inexpensively at a large scale to help identify areas contaminated with Hg(0).

  8. Determining Bulk Density of Different Soil Samples and Data Analysis

    NSDL National Science Digital Library

    Leslie Kreller, Warroad High School, Warroad, MN, based on an activity from the MnSTEP Summer Chemistry Institute (2007).

    This activity combines field exercise soil collection with lab analysis of soil bulk density. Students develop a lab procedure to measure density and analyze data using Microsoft Excel computer software.

  9. Soil sampling kit and a method of sampling therewith

    Microsoft Academic Search

    Thompson

    1991-01-01

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two

  10. Analysis of primisulfuron and triasulfuron in water and soil samples by micellar electrokinetic capillary chromatography

    Microsoft Academic Search

    Kumar V Penmetsa; Ross B Leidy; Damian Shea

    1997-01-01

    A capillary electrophoresis (CE) method was developed to separate and determine residues of two sulfonylurea herbicides (primisulfuron and triasulfuron) in water and soil samples. Fortified water samples were extracted by solvent partitioning with methylene chloride and analysis by CE. Fortified soil samples were extracted by shaking in methanol–phosphate buffer (1:1) followed by partitioning of the residues into methylene chloride and

  11. Prediction of soil properties at farm-scale using factor analysis and model-based soil-sampling schemes

    NASA Astrophysics Data System (ADS)

    Castro Franco, Mauricio; Costa, Jose Luis; Aparicio, Virginia

    2015-04-01

    Digital soil mapping techniques can be used for improve soil information at field-scale. The aim of this study were develop a RF model to soil organic matter (SOM) and clay content in top soil at farm-scale combining predictors reduction and model-based soil-sampling techniques. We combine predictors reduce by factor analysis and model-based soil-sampling schemes by Conditioned Latin hypercube sampling (cLHS) and Fuzzy c-means sampling (FCMS). In general, 11 of 18 predictors were selected. Factor analysis provided an efficient quantitative method to determine the number of predictors. The combination of cLHS and predictors reduction with factor analysis was effective to predict SOM and clay content. Factors related with vegetation cover and yield map were the most important predictors to predict SOM and clay content, whereas factors related with topography were the less important. A dataset minimum of 50 soil samples were necessary to demonstrate the efficacy of the combination Factor Analysis-cLHS-RF model. The accuracy of the RF models to predict SOM and clay content can be maximized by increasing the number of samples. In this study, we demonstrated that the combination Factor Analysis-cLHS could reduce the time and financial resources need to improve the predictive capacity of RF models to predict soil properties.

  12. Analysis of core samples from jet grouted soil

    SciTech Connect

    Allan, M.L.; Kukacka, L.E.

    1995-10-01

    Superplasticized cementitious grouts were tested for constructing subsurface containment barriers using jet grouting in July, 1994. The grouts were developed in the Department of Applied Science at Brookhaven National Laboratory. The test site was located close to the Chemical Waste Landfill at Sandia National Laboratories, Albuquerque, NM. Sandia was responsible for the placement contract. The jet grouted soil was exposed to the service environment for one year and core samples were extracted to evaluate selected properties. The cores were tested for strength, density, permeability (hydraulic conductivity) and cementitious content. The tests provided an opportunity to determine the performance of the grouts and grout-treated soil. Several recommendations arise from the results of the core tests. These are: (1) grout of the same mix proportions as the final grout should be used as a drilling fluid in order to preserve the original mix design and utilize the benefits of superplasticizers; (2) a high shear mixer should be used for preparation of the grout; (3) the permeability under unsaturated conditions requires consideration when subsurface barriers are used in the vadose zone; and (4) suitable methods for characterizing the permeability of barriers in-situ should be applied.

  13. Sampling error associated with collection and analysis of soil samples at TNT-contaminated sites

    Microsoft Academic Search

    T. F. Jenkins; C. L. Grant; G. S. Brar; P. G. Thorne; P. W. Schumacher; T. A. Ranney

    1997-01-01

    This study assessed short-range spatial het- erogeneity of TNT concentrations in surface soils at ex- plosives-contaminated sites. Discrete and composite samples were analyzed by both on-site calorimetric techniques and standard laboratory protocols. Three lo- cations were sampled at each of three installations, and the results were used to estimate the relative contribu- tions of analytical error and sampling error. The

  14. ANALYSIS OF SULFUR IN SOIL, PLANT AND SEDIMENT MATERIALS: SAMPLE HANDLING AND USE OF AN AUTOMATED ANALYZER

    EPA Science Inventory

    Methods for analyzing soil, vegetation and sediment samples for total S and handling soil samples for analysis of S constituents were examined. ECO automated total S anelyzer (SC-132) was used for the analysis of vegetation, sediments and soil samples. esults from the LECO analyz...

  15. Analysis of core samples from jet grouted soil

    Microsoft Academic Search

    M. L. Allan; L. E. Kukacka

    1995-01-01

    Superplasticized cementitious grouts were tested for constructing subsurface containment barriers using jet grouting in July, 1994. The grouts were developed in the Department of Applied Science at Brookhaven National Laboratory. The test site was located close to the Chemical Waste Landfill at Sandia National Laboratories, Albuquerque, NM. Sandia was responsible for the placement contract. The jet grouted soil was exposed

  16. PIXE Analysis of Aerosol and Soil Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Ali, Salina; Nadareski, Benjamin; Labrake, Scott; Vineyard, Michael

    2014-09-01

    We have performed an elemental analysis of aerosol and soil samples collected at Piseco Lake in Upstate New York using proton induced X-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the aerosol samples near Piseco Lake and distribute the particulate matter onto Kapton foils by particle size. The soil samples were also collected at Piseco Lake and pressed into cylindrical pellets for experimentation. PIXE analysis of the aerosol and soil samples were performed with 2.2-MeV proton beams from the 1.1-MV Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. There are higher concentrations of sulfur at smaller particle sizes (0.25-1 ?m), suggesting that it could be suspended in the air for days and originate from sources very far away. Other elements with significant concentrations peak at larger particle sizes (1-4 ?m) and are found in the soil samples, suggesting that these elements could originate in the soil. The PIXE analysis will be described and the resulting data will be presented.

  17. Laboratory analysis of soil hydraulic properties of TA-49 soil samples. Volume I: Report summary

    SciTech Connect

    NONE

    1995-04-01

    The Hydrologic Testing Laboratory at Daniel B. Stephens & Associates, Inc. (DBS&A) has completed laboratory tests on TA-49 soil samples as specified by Mr. Daniel A. James and summarized in Table 1. Tables 2 through 12 give the results of the specified analyses. Raw laboratory data and graphical plots of data (where appropriate) are contained in Appendices A through K. Appendix L lists the methods used in these analyses. A detailed description of each method is available upon request. Thermal properties were calculated using methods reviewed by Campbell and covered in more detail in Appendix K. Typically, soil thermal conductivities are determined using empirical fitting parameters (five in this case), Some assumptions are also made in the equations used to reduce the raw data. In addition to the requested thermal property measurements, calculated values are also presented as the best available internal check on data quality. For both thermal conductivities and specific heats, calculated and measured values are consistent and the functions often cross. Interestingly, measured thermal conductivities tend to be higher than calculated thermal conductivities around typically encountered in situ moisture contents ({plus_minus}5 percent). While we do not venture an explanation of the difference, sensitivity testing of any problem requiring nonisothermal modeling across this range is in order.

  18. Instrumental photon activation analysis of soil samples using the internal standard method coupled with the standard addition method

    Microsoft Academic Search

    K. Masumoto; M. Yagi

    1987-01-01

    Multielement determinations in the certified reference materials of soils (IAEA soil-5 and 7) have been studied fundamentally by instrumental photon activation analysis using the internal standard method coupled with the standard addition method. For the soil-5 sample, in the first place, the qualities of the comparative standards prepared by two processing methods were compared with each other. As a result,

  19. Statistical evaluation of the influence of several sample pretreatment methods on the mercury content detectable by chemical analysis of contaminated soil samples under practical conditions

    Microsoft Academic Search

    W. Rasemann; U. Seltmann; M. Hempel

    1995-01-01

    The estimation of the environmental risk of contaminated sites caused by hazardous components may be obtained, for instance, by means of a soil survey. There unavoidable errors by sampling, sample preparation and chemical analysis occur. Furthermore, in case of mercury contaminations, the mercury content detectable by chemical analysis can be falsified, if between sampling, on the one hand, and sample

  20. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, C.V.

    1991-02-05

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

  1. Development of radiochemical analysis of uranium isotopes in highly contaminated soil samples

    Microsoft Academic Search

    M. H. Lee; C. W. Lee

    2001-01-01

    An accurate and reliable analytical technique of uranium isotopes in highly contaminated soil samples was developed and applied to the IAEA reference samples. The conventional TBP method of uranium isotopes is insufficient to completely purify uranium from actinides such as plutonium and americium isotopes in highly contaminated soil samples. For overcoming the demerits of the conventional TBP extraction method, sample

  2. Tank farms backlog soil sample and analysis results supporting a contained-in determination

    SciTech Connect

    Jackson, C.L., Fluor Daniel Hanford

    1997-02-27

    Soil waste is generated from Tank Farms and associated Tank Farms facilities operations. The soil is a mixed waste because it is an environmental media which contains tank waste, a listed mixed waste. The soil is designated with the listed waste codes (FOO1 through F005) which have been applied to all tank wastes. The scope of this report includes Tank Farms soil managed under the Backlog program. The Backlog Tank Farm soil in storage consists of drums and 5 boxes (originally 828 drums). The Backlog Waste Program dealt with 2276 containers of solid waste generated by Tank Farms operations during the time period from 1989 through early 1993. The containers were mismanaged by being left in the field for an extended period of time without being placed into permitted storage. As a corrective action for this situation, these containers were placed in interim storage at the Central Waste Complex (CWC) pending additional characterization. The Backlog Waste Analysis Plan (BWAP) (RL 1993) was written to define how Backlog wastes would be evaluated for proper designation and storage. The BWAP was approved in August 1993 and all work required by the BWAP was completed by July 1994. This document presents results of testing performed in 1992 & 1996 that supports the attainment of a Contained-In Determination for Tank Farm Backlog soils. The analytical data contained in this report is evaluated against a prescribed decision rule. If the decision rule is satisfied then the Washington State Department of ecology (Ecology) may grant a Contained-In Determination. A Contained-In Determination for disposal to an unlined burial trench will be requested from Ecology . The decision rule and testing requirements provided by Ecology are described in the Tank Farms Backlog Soil Sample Analysis Plan (SAP) (WHC 1996).

  3. RESIDENTIAL SOIL SAMPLING PLAN: COMPARISON OF LABORATORY AND FIELD X-RAY FLUORESCENCE (XRF) ANALYSIS AND SAMPLE PREPARATION.

    EPA Science Inventory

    In the past, Region 10 has relied exclusively on fixed-site laboratory analyses of soil samples for Remedial Investigation/Feasibility Studies and Risk Assessments. The objectives of this sampling effort included soil analyses for removal and remedial actions as well as collecti...

  4. The Importance of Sample Processing in Analysis of Asbestos Content in Rocks and Soils

    NASA Astrophysics Data System (ADS)

    Neumann, R. D.; Wright, J.

    2012-12-01

    Analysis of asbestos content in rocks and soils using Air Resources Board (ARB) Test Method 435 (M435) involves the processing of samples for subsequent analysis by polarized light microscopy (PLM). The use of different equipment and procedures by commercial laboratories to pulverize rock and soil samples could result in different particle size distributions. It has long been theorized that asbestos-containing samples can be over-pulverized to the point where the particle dimensions of the asbestos no longer meet the required 3:1 length-to-width aspect ratio or the particles become so small that they no longer can be tested for optical characteristics using PLM where maximum PLM magnification is typically 400X. Recent work has shed some light on this issue. ARB staff conducted an interlaboratory study to investigate variability in preparation and analytical procedures used by laboratories performing M435 analysis. With regard to sample processing, ARB staff found that different pulverization equipment and processing procedures produced powders that have varying particle size distributions. PLM analysis of the finest powders produced by one laboratory showed all but one of the 12 samples were non-detect or below the PLM reporting limit; in contrast to the other 36 coarser samples from the same field sample and processed by three other laboratories where 21 samples were above the reporting limit. The set of 12, exceptionally fine powder samples produced by the same laboratory was re-analyzed by transmission electron microscopy (TEM) and results showed that these samples contained asbestos above the TEM reporting limit. However, the use of TEM as a stand-alone analytical procedure, usually performed at magnifications between 3,000 to 20,000X, also has its drawbacks because of the miniscule mass of sample that this method examines. The small amount of powder analyzed by TEM may not be representative of the field sample. The actual mass of the sample powder analyzed by PLM is about six orders of magnitude greater than that analyzed by TEM and, thus, more likely to be representative of the field sample. TEM results do not always match those of PLM from the same sample because TEM examines smaller fibers/particles than PLM, analyzes less subsample mass, and has results typically expressed in different units (e.g., percent by weight, visual estimate, or point count). Paired PLM and TEM analyses of field samples taken by the California Department of Toxic Substances Control (DTSC) illustrate this point. Processing quality control (QC) checks could be implemented to limit the number of artificial PLM non-detects. Example QC processing checks include properly calibrating processing equipment and periodic particle size analysis, such as dry sieving of the powdered samples. In addition, some government agencies use a combination of analytical techniques when analyzing for asbestos. For instance, the State of New York prescribes the use of PLM but requires TEM to verify non-detects by PLM for non-friable organically bound materials. Homogenization after sample pulverization is another appropriate processing element that should garner more attention. Homogenization equipment currently exist that, when used properly, could greatly improve the accuracy, precision, and representativeness of sample results.

  5. Sampling and Analysis Instruction for Evaluation of Residual Chromium Contamination in the Subsurface Soil at 100-C-7

    SciTech Connect

    W. S. Thompson

    2007-02-15

    This sampling and analysis instruction (SAI) provides the requirements for sample collection and laboratory analysis to evaluate the extent of hexavalent chromium contamination present in the soil below the 100-C-7 and 100-C-7:1 remedial action waste site excavations.

  6. IN SITU NON-INVASIVE SOIL CARBON ANALYSIS: SAMPLE SIZE AND GEOSTATISTICAL CONSIDERATIONS.

    SciTech Connect

    WIELOPOLSKI, L.

    2005-04-01

    I discuss a new approach for quantitative carbon analysis in soil based on INS. Although this INS method is not simple, it offers critical advantages not available with other newly emerging modalities. The key advantages of the INS system include the following: (1) It is a non-destructive method, i.e., no samples of any kind are taken. A neutron generator placed above the ground irradiates the soil, stimulating carbon characteristic gamma-ray emission that is counted by a detection system also placed above the ground. (2) The INS system can undertake multielemental analysis, so expanding its usefulness. (3) It can be used either in static or scanning modes. (4) The volume sampled by the INS method is large with a large footprint; when operating in a scanning mode, the sampled volume is continuous. (5) Except for a moderate initial cost of about $100,000 for the system, no additional expenses are required for its operation over two to three years after which a NG has to be replenished with a new tube at an approximate cost of $10,000, this regardless of the number of sites analyzed. In light of these characteristics, the INS system appears invaluable for monitoring changes in the carbon content in the field. For this purpose no calibration is required; by establishing a carbon index, changes in carbon yield can be followed with time in exactly the same location, thus giving a percent change. On the other hand, with calibration, it can be used to determine the carbon stock in the ground, thus estimating the soil's carbon inventory. However, this requires revising the standard practices for deciding upon the number of sites required to attain a given confidence level, in particular for the purposes of upward scaling. Then, geostatistical considerations should be incorporated in considering properly the averaging effects of the large volumes sampled by the INS system that would require revising standard practices in the field for determining the number of spots to be sampled. It is highly desirable to assess properly the sampled volume for reporting the absolute value of the measured carbon. At the same time, increasing the number of detectors surrounding the NG can reduce error propagation. In the present work, only the volume irradiated by the neutrons was estimated. It should be pointed that the carbon yield is also affected by the neutron energy spectrum that changes with depth. Thus, all these considerations must be considered carefully when evaluating the detectors' configuration and the resulting counting efficiency. In summary, INS system is a novel approach for non-destructive carbon analysis in soil with very unique features. It should contribute in assessing soil carbon inventories and assist in understanding belowground carbon processes. The complexity of carbon distribution in soil requires a special attention when calibrating the INS system, and a consensus developed on the most favorable way to report carbon abundance. Clearly, this will affect the calibration procedures.

  7. Radiochemical analysis of uranium isotopes in soil and sediment samples with extraction chromatography

    Microsoft Academic Search

    M. H. Lee; C. W. Lee

    2001-01-01

    An accurate and simple analytical technique for uranium isotopes in highly contaminated soil samples was developed and validated by application to IAEA-Reference samples and environmental samples. For overcoming the demerits of the TBP extraction method, sample materials were decomposited with HNO3 and HF and uranium isotopes were purified with an anion exchange resin and a TRU Spec resin. With the

  8. A Comparison of in Situ Gamma Soil Analysis and Soil Sampling Data for Mapping 241Am and 239Pu Soil Concentrations at the Nevada Test Site

    Microsoft Academic Search

    John A. Kirby; Lynn R. Anspaugh; Paul L. Phelps; George W. Huckabay; Frank Markwell; M. Barnes

    1977-01-01

    Soil sampling and in situ 241Am-gamma counting with an array of four high purity, planar, Ge detectors are compared as means of determining soil concentration contours of plutonium and their associated uncertainities. Results of this survey, which covered an area of approximately 300,000 m2, indicate that with one-third the number of sampling locations, the in situ gamma survey provided soil

  9. Analysis of uranium in the insoluble residues after decomposition of soil samples by various techniques.

    PubMed

    Jure?i?, S; Benedik, L; Planinšek, P; Ne?emer, M; Kump, P; Pihlar, B

    2014-05-01

    A comparison of different dissolution techniques for determination of uranium in soil samples was made. Conventional wet dissolution with mixtures of HNO3, HClO4 and HF acids, microwave dissolution using HNO3 and HF, and alkaline fusion with Na2CO3 and Na2O2 were evaluated. For testing the effectiveness of the dissolution procedures, two reference materials and six soil samples from the surroundings of a former uranium mine were investigated. It was observed that the content of uranium in the residues determined by INAA represents a significant contribution to its total concentration in the sample, especially in the case of microwave dissolution. PMID:24359791

  10. STATISTICAL SAMPLING AND DATA ANALYSIS

    EPA Science Inventory

    Research is being conducted to develop approaches to improve soil and sediment sampling techniques, measurement design and geostatistics, and data analysis via chemometric, environmetric, and robust statistical methods. Improvements in sampling contaminated soil and other hetero...

  11. Express method of gamma-ray analysis of the soil blocks which have been sampled without a disturbance of the turf layer

    E-print Network

    E. G. Tertyshnik; S. M. Vakulovsky

    2012-03-05

    This paper presents method of gamma-analysis of the soil patterns sampled soon after of nuclear accident. The method does not require of sample preparation and intends for analysis of the soil samples with a non-homogeneous distribution of activity at the depth. Technique of calibration of the detector efficiency is considered, that have been used when soil blocks sampling by means of the non-disturbance method (by rings) after Chernobyl accident were measured.

  12. Express method of gamma-ray analysis of the soil blocks which have been sampled without a disturbance of the turf layer

    E-print Network

    Tertyshnik, E G

    2012-01-01

    This paper presents method of gamma-analysis of the soil patterns sampled soon after of nuclear accident. The method does not require of sample preparation and intends for analysis of the soil samples with a non-homogeneous distribution of activity at the depth. Technique of calibration of the detector efficiency is considered, that have been used when soil blocks sampling by means of the non-disturbance method (by rings) after Chernobyl accident were measured.

  13. Balamuthia mandrillaris from soil samples.

    PubMed

    Dunnebacke, Thelma H; Schuster, Frederick L; Yagi, Shigeo; Booton, Gregory C

    2004-09-01

    Balamuthia mandrillaris amoebas are recognized as a causative agent of granulomatous amoebic encephalitis, a disease that is usually fatal. They were first recognized when isolated from the brain of a mandrill baboon that died in the San Diego Zoo Wild Life Animal Park. Subsequently, the amoebas have been found in a variety of animals, including humans (young and old, immunocompromised and immunocompetent persons), in countries around the world. Until recently, the amoebas had not been recovered from the environment and their free-living status was in question. The recovery of a Balamuthia amoeba from a soil sample taken from a plant at the home of a child from California, USA, who died of Balamuthia amoebic encephalitis, was reported previously. In a continued investigation, a second amoeba was isolated from soil that was obtained from an outdoor potted plant in a spatially unrelated location. A comparison of these two environmental amoebas that were isolated from different soils with the amoeba that was obtained from the child's clinical specimen is reported here. Included are the isolation procedure for the amoebas, their growth requirements, their immunological response to anti-Balamuthia serum, their sensitivity to a selection of antimicrobials and sequence analysis of their 16S rRNA gene. The evidence is consistent that the amoebas isolated from both soil samples and the clinical isolate obtained from the Californian child are B. mandrillaris. PMID:15347743

  14. Elemental analysis of agricultural soil samples by particle induced X-ray emission (PIXE) technique

    Microsoft Academic Search

    Paulo E. Cruvinel; Robert G. Flocchini; Paulo Artaxo; Silvio Crestana; Paulo S. P. Herrmann Jr.

    1999-01-01

    In agriculture, elements essential to vital processes are also called nutrients. A suitable and reliable particle induced X-ray emission (PIXE) methodology for content determination of essential nutrients in soil samples was developed and its effectiveness proved. The PIXE method is applied to intermediate thickness samples, whose mass per area unit are smaller than 1 ?g\\/cm2. Precision and accuracy of the

  15. EMERGING MODALITIES FOR SOIL CARBON ANALYSIS: SAMPLING STATISTICS AND ECONOMICS WORKSHOP.

    SciTech Connect

    WIELOPOLSKI, L.

    2006-04-01

    The workshop's main objectives are (1) to present the emerging modalities for analyzing carbon in soil, (2) to assess their error propagation, (3) to recommend new protocols and sampling strategies for the new instrumentation, and, (4) to compare the costs of the new methods with traditional chemical ones.

  16. Quantitative soil vapor as an alternative to traditional soil sampling for VOCs: Characterization and remediation

    Microsoft Academic Search

    L. M. Preslo; T. Estes; M. C. Kraemer

    1993-01-01

    This paper will present the results of a Soil Vapor Demonstration Project that compared pairs of soils and adjacent soil vapor samples. This study was conducted at the Aerojet General Corporation site in Rancho Cordova, CA. The author will describe the use of soil vapor sampling as a better alternative to traditional soil sampling and analysis for volatile organic compounds,

  17. EXTRACTION OF BERYLLIUM-10 FROM SOIL BY FUSION This method is used to separate Be from soil and sediment samples, for AMS analysis. After adding

    E-print Network

    Stone, John

    EXTRACTION OF BERYLLIUM-10 FROM SOIL BY FUSION Summary This method is used to separate Be from soil this method, please cite: Stone, J.O.H. (1998). A rapid fusion method for the extraction of Be-10 from soils. After adding carrier to all the samples, return the samples to the soils oven and dry for 1-2 hours

  18. Ground-Water Issue: Soil sampling and analysis for volatile organic compounds

    Microsoft Academic Search

    T. E. Lewis; A. B. Crockett; R. L. Siegrist; K. Zarrabi

    1991-01-01

    The Regional Superfund Ground Water Forum is a group of ground-water scientists that represents EPA's Regional Superfund Offices. The forum was organized to exchange up-to-date information related to groundwater remediation at Superfund sites. Sampling of soils for volatile organic compounds (VOCs) is an issue identified by the Ground Water Forum as a concern of Superfund decision makers. Concerns over data

  19. Radiochemical analysis of uranium isotopes in soil and sediment samples with extraction chromatography.

    PubMed

    Lee, M H; Lee, C W

    2001-03-30

    An accurate and simple analytical technique for uranium isotopes in highly contaminated soil samples was developed and validated by application to IAEA-Reference samples and environmental samples. For overcoming the demerits of the TBP extraction method, sample materials were decomposited with HNO(3) and HF and uranium isotopes were purified with an anion exchange resin and a TRU Spec resin. With the extraction chromatography method, hindrance elements were completely removed from the uranium fraction. The chemical yields with the extraction chromatography method were <10% higher than those with the TBP extraction method. The concentrations of uranium isotopes using the extraction chromatography method were consistent with the reference values reported by the IAEA. PMID:18968240

  20. Compost Analysis Samples provided by the Soil, Water and Forage Testing Laboratory at Texas A&M, 2003

    E-print Network

    Mukhtar, Saqib

    Compost Analysis Samples provided by the Soil, Water and Forage Testing Laboratory at Texas A ppm ppm % % dS/m Dairy Manure Compost 0.6171 .2680 1.4345 3.5041 .2737 .4371 319.7 249.1 33.53 173.1 30.0 16.02 9.3 1.280 Dairy Manure Compost 1.0704 .3866 2.4949 6.7455 .5472 .7320 155.6 381.5 47

  1. Soil and Groundwater Sampling

    USGS Multimedia Gallery

    USGS Hydrologist David Bender using a photoionization detector on a split soil core from 15 to 20 feet for well EAFB FAC MW14_06, Fuels Area C, Ellsworth Air Force Base, South Dakota. The photoionization detector measures volatile organic compounds and other gases. In fall of 2013, the U.S. Geologic...

  2. Soil Core Sample #2

    USGS Multimedia Gallery

    Soil core obtained from existing goose grazing lawn along the Smith River in the Teshekpuk Lake Special Area of the National Petroleum Reserve - Alaska.  Buried peat layer broken open.  Closer examination of the buried peat layer demonstrates that non-salt-tolerant vegetation from the past...

  3. Soil Core Sample #1

    USGS Multimedia Gallery

    Soil core obtained from existing goose grazing lawn along the Smith River in the Teshekpuk Lake Special Area of the National Petroleum Reserve - Alaska.  The buried layer of peat beneath goose grazing lawn demonstrates that vegetation change has occurred in this area....

  4. Sampling Soil for Characterization and Site Description

    NASA Technical Reports Server (NTRS)

    Levine, Elissa

    1999-01-01

    The sampling scheme for soil characterization within the GLOBE program is uniquely different from the sampling methods of the other protocols. The strategy is based on an understanding of the 5 soil forming factors (parent material, climate, biota, topography, and time) at each study site, and how each of these interact to produce a soil profile with unique characteristics and unique input and control into the atmospheric, biological, and hydrological systems. Soil profile characteristics, as opposed to soil moisture and temperature, vegetative growth, and atmospheric and hydrologic conditions, change very slowly, depending on the parameter being measured, ranging from seasonally to many thousands of years. Thus, soil information, including profile description and lab analysis, is collected only one time for each profile at a site. These data serve two purposes: 1) to supplement existing spatial information about soil profile characteristics across the landscape at local, regional, and global scales, and 2) to provide specific information within a given area about the basic substrate to which elements within the other protocols are linked. Because of the intimate link between soil properties and these other environmental elements, the static soil properties at a given site are needed to accurately interpret and understand the continually changing dynamics of soil moisture and temperature, vegetation growth and phenology, atmospheric conditions, and chemistry and turbidity in surface waters. Both the spatial and specific soil information can be used for modeling purposes to assess and make predictions about global change.

  5. Procedures for sampling radium-contaminated soils

    SciTech Connect

    Fleischhauer, H.L.

    1985-10-01

    Two procedures for sampling the surface layer (0 to 15 centimeters) of radium-contaminated soil are recommended for use in remedial action projects. Both procedures adhere to the philosophy that soil samples should have constant geometry and constant volume in order to ensure uniformity. In the first procedure, a ''cookie cutter'' fashioned from pipe or steel plate, is driven to the desired depth by means of a slide hammer, and the sample extracted as a core or plug. The second procedure requires use of a template to outline the sampling area, from which the sample is obtained using a trowel or spoon. Sampling to the desired depth must then be performed incrementally. Selection of one procedure over the other is governed primarily by soil conditions, the cookie cutter being effective in nongravelly soils, and the template procedure appropriate for use in both gravelly and nongravelly soils. In any event, a minimum sample volume of 1000 cubic centimeters is recommended. The step-by-step procedures are accompanied by a description of the minimum requirements for sample documentation. Transport of the soil samples from the field is then addressed in a discussion of the federal regulations for shipping radioactive materials. Interpretation of those regulations, particularly in light of their application to remedial action soil-sampling programs, is provided in the form of guidance and suggested procedures. Due to the complex nature of the regulations, however, there is no guarantee that our interpretations of them are complete or entirely accurate. Preparation of soil samples for radium-226 analysis by means of gamma-ray spectroscopy is described.

  6. Development of a procedure for the multiresidue analysis of pesticides in vineyard soils and its application to real samples.

    PubMed

    Pose-Juan, Eva; Herrero-Hernández, Eliseo; Álvarez-Martín, Alba; Sánchez-Martín, María J; Rodríguez-Cruz, M Sonia

    2014-08-01

    A procedure for multiresidue analysis was developed for the extraction and determination of 17 pesticides, including herbicides, fungicides, and insecticides, as well as certain degradation products, in vineyard soils from La Rioja region (Spain). Different solvents and mixtures were tested in spiked pesticide-free soils, and pesticides were comparatively evaluated by gas chromatography with mass spectrometry and liquid chromatography with mass spectrometry. Recoveries >70%, with relative standard deviations <9%, were obtained when a mixture of methanol/acetone or a mixture of methanol/CaCl2 0.01 M for the most polar compounds was selected as the extraction solvent. Method validation was accomplished with acceptable linearity (r(2) ? 0.987) within the concentration range of 0.005-1 ?g/mL corresponding to 1.667-333.4 ?g/kg and 0.835-167.1 ?g/kg for liquid chromatography with mass spectrometry and gas chromatography with mass spectrometry, respectively, and detection limits <0.4 ?g/kg for the compounds were studied. The extraction method was applied to 17 real vineyard soil samples, and terbuthylazine and its metabolite desethylterbuthylazine were the most ubiquitous compounds, as they were detected in the 100% of the soils analyzed. The presence of fungicides was also high, and the presence of insecticides was lower than other pesticides. The results confirm the usefulness of the optimized procedure for monitoring residues in vineyard soils. PMID:24910322

  7. The sorption of sulfamethazine on soil samples: isotherms and error analysis.

    PubMed

    Mutavdži? Pavlovi?, Dragana; ?urkovi?, Lidija; Blažek, Dijana; Župan, Josip

    2014-11-01

    In this paper, batch sorption of sulfamethazine on eight soil samples (six from Croatia and two from Bosnia and Hercegovina) with different organic matter contents ranging from 1.52 to 12.8% was investigated. The effects of various parameters such as agitation time, initial concentration, and ionic strength on the sulfamethazine sorption were studied. The experimental data were analysed using a one-parameter model, Linear isotherm, and two two-parameter models, the Freundlich and Dubinin-Radushkevich isotherms. The goodness of fit was measured using the linear regression and the determination coefficient (R(2)) value. Also, the equilibrium data of the two-parameter models were analysed using the residual root mean square error (RMSE), the sum of squares of errors (ERRSQ), and a composite fractional error function (HYBRID). Non-linear regression has better characteristics for analysing experimental data. The obtained sorption coefficients Kd (from 0.25 to 8.10 mL/g) and the Freundlich sorption coefficients KF (from 1.16 to 7.99 (?g/g)(mL/?g)(1/n)) exhibited quite low values, which indicated that sulfamethazine is weakly adsorbed on the evaluated soils, is highly mobile, and has a great potential to penetrate and pollute the ground water. The Dubinin-Radushkevich isotherm was used to estimate the apparent free energy of sorption. PMID:25163651

  8. Homeowner Soil Sample Information Form 

    E-print Network

    Provin, Tony

    2007-04-11

    College Station, TX. 77843-2474 (979) 845-4816 Payments (979) 862-3797 CREDIT CARD AUTHORIZATION FORM Payment by credit card must be completed by filling out below or contacting our office by phone for each transaction. Indicate the type of card... Money Order Make Checks Payable to: Soil Testing Laboratory Tell us about your soil samples My Sample ID Square feet of sampled area Last Time Fertilized I previously used fertilizers/organics Credit Card-See back page I am growing (see below)* Example...

  9. Soil and Groundwater Sampling

    USGS Multimedia Gallery

    Groundwater sampling setup at EAFB FAC MW14_04 Fuels Area C, Ellsworth Air Force Base, South Dakota. In fall of 2013, the U.S. Geological Survey began a study in cooperation with the U.S. Air Force, Ellsworth Air Force Base, to estimate groundwater-flow direction, select locations for permanent moni...

  10. Soil and Groundwater Sampling

    USGS Multimedia Gallery

    USGS Hydrologic Technician Brian Engle taking field measurments during groundwater sampling at EAFB FAC MW14_02 Fuels Area C, Ellsworth Air Force Base, South Dakota.In fall of 2013, the U.S. Geological Survey began a study in cooperation with the U.S. Air Force, Ellsworth Air Force Base, to estimate...

  11. Soil and Groundwater Sampling

    USGS Multimedia Gallery

    USGS Hydrologic Technician Brian Engle preparing to collect groundwater samples at EAFB FAC MW14_06 Fuels Area C, Ellsworth Air Force Base, South Dakota. In fall of 2013, the U.S. Geological Survey began a study in cooperation with the U.S. Air Force, Ellsworth Air Force Base, to estimate groundwate...

  12. EMERGING MODALITES FOR SOIL CARBON ANALYSIS: SAMPLING STATISTICS AND ECONOMICS WORKSHOP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon is an integral part of the global C cycle and plays an important role in soil quality and productivity. In the last 20-30 years detailed knowledge of C balances and transport in the soil, on local, regional, and global scales emerged as being critically important for quantification of soil C ...

  13. Laboratory analysis of soil hydraulic properties of CDBM 2 and CDBM 3 samples

    SciTech Connect

    NONE

    1992-12-01

    Daniel B. Stephens & Associates, Inc. (DBS&A) was requested by Dr. Alan Stoker of Los Alamos National Laboratory to perform laboratory analysis for properties of CDBM 2 and CDBM 3 samples, as outlined in Subcontract No. 9-XTI-027EE-1. The scope of work included conducting tests for the following properties: Initial moisture content, dry bulk density, and calculated porosity; Saturated hydraulic conductivity; Moisture characteristics; Unsaturated hydraulic properties (calculated); and Transient outflow.

  14. Gas-chromatographic analysis of Mars soil samples at Rocknest site with the SAM instrument onboard Curiosity

    NASA Astrophysics Data System (ADS)

    Cabane, Michel; Coll, Patrice; Szopa, Cyril; Coscia, David; Buch, Aranaud; Teinturier, Samuel; Navarro-gonzalez, Rafael; Gaboriaud, Alain; Mahaffy, Paul; MSL science Team

    2013-04-01

    Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal/chemical treatment of any soil sample collected by the Curiosity rover. The first soil samples analyzed with SAM were composed of sand collected at the Rocknest site. For their analysis, these samples were submitted to a pyrolysis at temperatures reaching about 900°C. For SAM-GC and GCMS analyses, different fractions of pyrolysates were collected at different temperature in the ambient-900°C range in order to discriminate potential different volatile fractions present in the solid sample. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was used as it was designed for the separation of a wide range of volatile organic molecules. This channel is also equipped with a thermal conductivity detector (TCD) capable to detect the most abundant species (with abundances down to approximately 10-10 mol). It is thus complementary to the mass spectrometer detection for quantification of such species as this last instrument has not a linear response in this domain of high abundance, whereas it is significantly more sensitive than the TCD. The results obtained with this instrument for the analysis of Rocknest soil first show that the performances of SAM-GC are representative of those obtained during calibrations of the instrument in laboratory, as well as they are repeatable. Hence, the instrument performs nominally, making it the first GCMS running successfully on Mars since the Viking missions. Moreover, the complementarity of GC towards MS is also shown, either by allowing the quantification of the major species detected (as water), or by providing a chromatographic signal well resolved temporally which can be used to improve the QMS signal treatment. In the frame of research of organics, the SAM-GC analyses contribute to the identification of several methyl-chlorohydrocarbons [2,3], and of HCN in the gases evolved from the solid sample [4]. These detections strongly support the presence of perchlorates in the Rocknest soil. Since perchlorates have been detected with Phoenix lander [5] and then recently with Curiosity [6,2,3], the re-interpretation of the Viking data have to be seen under a new angle [7]. The non-detection of PAHs is also interesting to notice, when it is known that micrometeorites containing PAHs still bring this organic material to the Mars surface today. This lack of detection defines an upper limit on the content of PAHs in the martian soil at the Curiosity site, but it could also be indicative of the presence of chemical mechanisms that process this type of material at the surface. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), LPSC. [3] Eigenbrode, J. et al. (2013), LPSC. [4] Stern, J. et al. (2013), LPSC. [5] Hecht, M. H. et al. (2009), Science, 32, 64-67. [6] Sutter, B. et al., (2013) LPSC. [7] Navarro-Gonzalez, R. (2010), J. Geophys. Res. 115, E12010. Acknowledgements: SAM-GC team acknowledges support from the French Space Agency (CNES), French National Programme of Planetology (PNP), National French Council (CNRS), Pierre Simon Laplace Institute, Institut Universitaire de France (IUF) and ESEP Labex.

  15. Application of a series of artificial neural networks to on-site quantitative analysis of lead into real soil samples by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    El Haddad, J.; Bruyère, D.; Ismaël, A.; Gallou, G.; Laperche, V.; Michel, K.; Canioni, L.; Bousquet, B.

    2014-07-01

    Artificial neural networks were applied to process data from on-site LIBS analysis of soil samples. A first artificial neural network allowed retrieving the relative amounts of silicate, calcareous and ores matrices into soils. As a consequence, each soil sample was correctly located inside the ternary diagram characterized by these three matrices, as verified by ICP-AES. Then a series of artificial neural networks were applied to quantify lead into soil samples. More precisely, two models were designed for classification purpose according to both the type of matrix and the range of lead concentrations. Then, three quantitative models were locally applied to three data subsets. This complete approach allowed reaching a relative error of prediction close to 20%, considered as satisfying in the case of on-site analysis.

  16. Field Book for Describing and Sampling Soils

    NSDL National Science Digital Library

    This field guide is useful for making or reading soil and site descriptions. The major sections address soil profile description, geomorphology, geology, soil taxonomy, soil map symbols, and field sampling strategies. Rock charts and timescales are provided to help with soil identification.

  17. AMS analysis of 129I in Japanese soil samples collected from background areas far from nuclear facilities

    Microsoft Academic Search

    Yasuyuki Muramatsu; Yukari Takada; Hiroyuki Matsuzaki; Satoshi Yoshida

    2008-01-01

    Analytical procedures in the determination of iodine-129 (half-life: 1.6×107 y) have been studied using accelerator mass spectrometry (AMS), with special references to the separation procedures of iodine from soil samples for the AMS measurement. Iodine was successfully volatilized from soil samples by pyrohydrolysis at 1000°C and collected in a trap solution. Iodine was purified from the matrix by solvent extraction.

  18. Determination of 2,4-dichlorophenoxyacetic acid and its major transformation product in soil samples by liquid chromatographic analysis

    Microsoft Academic Search

    O. P. de Amarante; N. M. Brito; T. C. R. dos Santos; G. S. Nunes; M. L. Ribeiro

    2003-01-01

    The 2,4-dichlorophenoxyacetic acid (2,4-D) is one of the most applied herbicides around the world to control broad leave herbs in many crops. In this study, a method was developed for simultaneous extraction and determination of 2,4-D and its major transformation product, i.e., the 2,4-dichlorophenol (2,4-DCP), in soil samples. The herbicide and its degradation product were extracted twice from soil samples,

  19. EC 628 Reprinted April 2003 Soil Sampling

    E-print Network

    Tullos, Desiree

    residue on tools or hands, for instance, can cause serious contamination of the soil sample. · Do not useEC 628 · Reprinted April 2003 Soil Sampling for Home Gardens and Small Acreages TH IS PU BLIC ATIO aboratory soil tests will help you develop and maintain more productive soil and increase crop production

  20. DIRECT/DELAYED RESPONSE PROJECT: QUALITY ASSURANCE PLAN FOR SOIL SAMPLING, PREPARATION, AND ANALYSIS

    EPA Science Inventory

    The Direct/Delayed Response Project (DDRP) focuses on regions of the United States that have been identified as potentially sensitive to surface water acidification. The Northeastern Soil Survey includes the New England states of Maine, New Hampshire, Vermont, Massachusetts, Conn...

  1. Estimation of uncertainty in the sampling and analysis of polychlorinated biphenyls and polycyclic aromatic hydrocarbons from contaminated soil in Brighton, UK.

    PubMed

    Zhou, John L; Siddiqui, Ertan; Ngo, Huu Hao; Guo, Wenshan

    2014-11-01

    The heterogeneity of environmental samples is increasingly recognised, yet rarely examined in organic contamination investigations. In this study soil samples from an ex-landfill site in Brighton, UK were analysed for polychlorinated biphenyl (PCB) and polycyclic aromatic hydrocarbon (PAH) contamination by using a balanced sampling protocol. The analytical technique of gas chromatography-mass spectrometry was found to be fit for purpose by the use of duplicate samples and the statistical analysis of variances, as well as of certified reference materials. The sampling uncertainty was found to significantly overweigh the analytical uncertainty, by a factor of 3 and 6 for PCBs and PAHs, respectively. The soil samples showed a general trend of PCB concentration that was under the recommended target level of 20 ng/g dry weight. It is possible that one site alongside the main road may exceed the 20 ng/g target level, after taking into consideration the overall measurement uncertainty (70.8%). The PAH contamination was more severe, with seven sites potentially exceeding the effect-range medium concentrations. The soil samples with relatively high PCB and PAH concentrations were all taken from the grass verge, which also had the highest soil organic carbon content. The measurement uncertainty which was largely due to sampling can be reduced by sampling at a high resolution spacing of 17 m, which is recommended in future field investigations of soil organic contamination. PMID:25128886

  2. Analysis of Mars Analogue Soil Samples Using Solid-Phase Microextraction, Organic Solvent Extraction and Gas Chromatography/Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g(sup -1). The texture of soils is mostly sandy loam with few samples being 100% silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.

  3. Analysis of Mars analogue soil samples using solid-phase microextraction, organic solvent extraction and gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.

    2011-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g-1. The texture of soils is mostly sandy loam with few samples being 100 % silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.

  4. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR ANALYSIS OF SOIL OR HOUSE DUST SAMPLES USING CHLORPYRIFOS ELISA SAMPLES (BCO-L-1.0)

    EPA Science Inventory

    This abstract is included for completeness of documentation, but this SOP was not used in the study. The purpose of this SOP is to describe the procedures for analyzing both Stage II and Stage III soil and vacuum-cleaner collected house dust samples, and Stage III air samples u...

  5. Quantitative soil vapor as an alternative to traditional soil sampling for VOCs: Characterization and remediation

    SciTech Connect

    Preslo, L.M.; Estes, T. (ICF Kaiser Engineers, Inc., Rancho Cordova, CA (United States)); Kraemer, M.C.

    1993-10-01

    This paper will present the results of a Soil Vapor Demonstration Project that compared pairs of soils and adjacent soil vapor samples. This study was conducted at the Aerojet General Corporation site in Rancho Cordova, CA. The author will describe the use of soil vapor sampling as a better alternative to traditional soil sampling and analysis for volatile organic compounds, and as a tool to locate possible DNAPL. The paper will present how the Demonstration Project was performed to substantiate to the U.S. EPA and state agencies that soil vapor is a viable and quantitative sampling methodology. This approach utilized various soil properties including measured soil partitioning coefficients, to calculate VOC mass in soils based on soil vapor data and equilibrium conditions. The results showed that traditional soil samples underestimated the mass of VOCs present in over 90 percent of the soil/soil vapor pairs. The paper also will include observations of other physical parameters which were monitored during the program to assess the effect on the soil vapor concentrations. In addition, the flexibility, speed, and cost-effectiveness of sampling allowed for more comprehensive characterization with a higher level of confidence. The data collected demonstrated that the soil vapor technique provides a more comprehensive evaluation of VOC distribution in the vadose zone than traditional soil sampling.

  6. Geotechnical analysis of soil samples from test trench at Western New York Nuclear Service Center, West Valley, New York

    Microsoft Academic Search

    R. H. Fickies; R. H. Fakundiny; E. T. Mosley

    1979-01-01

    In July 1977, a deep research trench was excavated and soil samples collected at the Western New York Nuclear Services Center, West Valley, NY. The glacial till horizons sampled are considered to be representative of the till serving as a burial medium at the nearby low-level radioactive waste burial ground. A series of laboratory tests were conducted consisting of unit

  7. Gas-Chromatographic analysis of Mars soil samples with the SAM instrument onboard Curiosity - the 180 first sols

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Cabane, M.; Coll, P.; Coscia, D.; Buch, A.; Teinturier, S.; Navarro-Gonzalez, R.; Goutail, J.-P.; Montaron, C.; Rigal, J.-B.; Poinsignon, P.; Guerrini, V.; Clerc, M.-S.; Meftah, M.; Soldani, L.; Mettetal, F.; Jerôme, M.; Philippon, C.; Galic, A.; Sablairolles, J.; Triqueneaux, S.; Chazot, D.; Toffolo, B.; Rakoto, F. Y.; Gaboriaud, A.; Mahaffy, P.

    2013-09-01

    Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal/chemical treatment of any soil sample collected by the Curiosity rover. The first soil samples analyzed with SAM were composed of sand collected at the Rocknest site, when the second site analyzed was a basin called "Yellowkive Bay". For their analysis, these samples were submitted to a pyrolysis at temperatures reaching about 900°C. For SAM-GC and GCMS analyses, different fractions of pyrolysates were collected at different temperature in the ambient-900°C range in order to discriminate potential different volatile fractions present in the solid sample. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was used as it was designed for the separation of a wide range of volatile organic molecules. This channel is also equipped with a thermal conductivity detector (TCD) capable to detect the most abundant species (with abundances down to approximately 10-10 mol). It is thus complementary to the mass spectrometer detection for quantification of such species as this last instrument has not a linear response in this domain of high abundance, whereas it is significantly more sensitive than the TCD. The results obtained with this instrument first show that the performances of SAM-GC are representative of those obtained during calibrations of the instrument in laboratory, as well as they are repeatable. Hence, the instrument performs nominally, making it the first GCMS running successfully on Mars since the Viking missions. Moreover, the complementarity of GC towards MS is also shown, either by allowing the quantification ofthe major species detected (as water), or by providing a chromatographic signal well resolved temporally which can be used to improve the QMS signal treatment. In the frame of research of organics, the SAM-GC analyses contribute to the identification of several methyl-chlorohydrocarbons, and of HCN in the gases evolved from the solid sample. These detections strongly support the presence of perchlorates in the Rocknest soil. Since perchlorates have been detected with Phoenix lander [2] and then recently with Curiosity, the re-interpretation of the Viking data have to be seen under a new angle [3]. The nondetection of PAHs is also interesting to notice, when it is known that micrometeorites containing PAHs still bring this organic material to the Mars surface today. This lack of detection defines an upper limit on the content of PAHs in the martian soil at the sites studied by Curiosity, but it could also be indicative of the presence of chemical mechanisms that process this type of material at the surface.

  8. Inter-laboratory variation in the chemical analysis of acidic forest soil reference samples from eastern North America

    USGS Publications Warehouse

    Ross, Donald S.; Bailiey, Scott W; Briggs, Russell D; Curry, Johanna; Fernandez, Ivan J.; Fredriksen, Guinevere; Goodale, Christine L.; Hazlett, Paul W.; Heine, Paul R; Johnson, Chris E.; Larson, John T; Lawrence, Gregory B.; Kolka, Randy K; Ouimet, Rock; Pare, D; Richter, Daniel D.; Shirmer, Charles D; Warby, Richard A.F.

    2015-01-01

    Long-term forest soil monitoring and research often requires a comparison of laboratory data generated at different times and in different laboratories. Quantifying the uncertainty associated with these analyses is necessary to assess temporal changes in soil properties. Forest soil chemical properties, and methods to measure these properties, often differ from agronomic and horticultural soils. Soil proficiency programs do not generally include forest soil samples that are highly acidic, high in extractable Al, low in extractable Ca and often high in carbon. To determine the uncertainty associated with specific analytical methods for forest soils, we collected and distributed samples from two soil horizons (Oa and Bs) to 15 laboratories in the eastern United States and Canada. Soil properties measured included total organic carbon and nitrogen, pH and exchangeable cations. Overall, results were consistent despite some differences in methodology. We calculated the median absolute deviation (MAD) for each measurement and considered the acceptable range to be the median 6 2.5 3 MAD. Variability among laboratories was usually as low as the typical variability within a laboratory. A few areas of concern include a lack of consistency in the measurement and expression of results on a dry weight basis, relatively high variability in the C/N ratio in the Bs horizon, challenges associated with determining exchangeable cations at concentrations near the lower reporting range of some laboratories and the operationally defined nature of aluminum extractability. Recommendations include a continuation of reference forest soil exchange programs to quantify the uncertainty associated with these analyses in conjunction with ongoing efforts to review and standardize laboratory methods.

  9. Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis

    Microsoft Academic Search

    E. STACK; BRANIYr W. LIESACX; B. M. GOEBEL

    In order to investigate the genetic diver- sity of streptomycetes in an acid forested soil sample from Mt. Coot-tha, Brisbane, Australia, cells were mechani- cally lysed within the soil matrix and genomic DNA was isolated and purified. 16S ribosomal (r)DNA was am- plified by the polymerase chain reaction (PCR) method using one primer conserved for members of the domain Bacteria

  10. Microbiological Detection Systems for Molecular Analysis of Environmental Water and Soil Samples

    EPA Science Inventory

    Multiple detection systems are being targeted to track various species and genotypes of pathogens found in environmental samples with the overreaching goal of developing analytical separation and detection techniques for Salmonella enterica Serovars Typhi, Cryptosporidium parvum,...

  11. PREPARATION OF SOIL SAMPLING PROTOCOLS: SAMPLING TECHNIQUES AND STRATEGIES

    EPA Science Inventory

    The document serves as a companion document to the Soil Sampling Quality Assurance User's Guide, Second Edition. he two documents together provide methods, techniques, and procedures for designing a variety of soil measurement programs and associated Quality Assurance Program Pla...

  12. A new mechanical soil sampling method

    Microsoft Academic Search

    J. Iváncsics

    1980-01-01

    In order to determine the nutrient level and other characteristics of the soil a new mechanical soil sampling machine has been constructed. The machine ellimates the errors caused by taking the samples manually and It speeds the sampling procedure as well. The sampling machine equipped with discs drawn by a tractor with hydraulics can work continuously. Specially designed spoons on

  13. Analysis of field-sampled, in-situ network, and PALS airborne soil moisture observations over SMAPVEX12

    NASA Astrophysics Data System (ADS)

    Adams, J. R.; Berg, A. A.; McNairn, H.; Cosh, M. H.

    2014-12-01

    The Soil Moisture Active Passive Validation Experiment in 2012 (SMAPVEX12) was conducted over an agricultural domain in southern Manitoba, Canada. The purpose of the campaign was to develop ground and airborne datasets for pre-launch validation of SMAP satellite soil moisture retrieval algorithms. Three key soil moisture datasets were collected in support of the campaign objectives: 1) intensive field sampling over (up to) 55 agricultural fields on 17 sampling days; 2) a continuously operated temporary in-situ network (> 30 stations) distributed over the domain; and 3) L-band microwave data from NASA's Passive Active L-band Sensor (PALS) onboard a Twin-Otter aircraft. This presentation addresses whether dense temporary in-situ networks can supplant intensive field-sampling during pre-/post-launch validation campaigns. SMAPVEX12 datasets are examined at the field and aircraft pixel (~800 m) scale, and at the domain scale. Preliminary results demonstrate that, at the field-scale, there is generally limited agreement between a single station and sampled data over its field. Over the duration of the campaign, the majority of temporary soil moisture stations have > 0.04 m3m-3 RMSE with sampled field data, suggesting that a single station has limited representativeness of an agricultural field. Furthermore, the in-situ stations and field-sampled data are compared with PALS generated soil moisture to assess differences in daily RMSE. For wet-periods, both ground datasets provide a comparable RMSE for the PALS estimate. Although for dry-periods, the difference in RMSE between the ground datasets becomes more significant (> 0.04 m3m-3). This is because the field-sampled data exhibit a sharper dry-down than the in-situ station measurements. However, at the domain scale there is strong agreement between the soil moisture datasets. Additional results describe the sources of variability affecting these soil moisture datasets and the statistical number of stations needed to represent the SMAPVEX12 domain. This research is of importance for the efficient allocation of ground resources during remote sensing validation campaigns for soil moisture.

  14. Development testing of the chemical analysis automation polychlorinated biphenyl standard analysis method during surface soils sampling at the David Witherspoon 1630 site

    SciTech Connect

    Hunt, M.A.; Klatt, L.N.; Thompson, D.H. [and others

    1998-02-01

    The Chemical Analysis Automation (CAA) project is developing standardized, software-driven, site-deployable robotic laboratory systems with the objective of lowering the per-sample analysis cost, decreasing sample turnaround time, and minimizing human exposure to hazardous and radioactive materials associated with DOE remediation projects. The first integrated system developed by the CAA project is designed to determine polychlorinated biphenyls (PCB) content in soil matrices. A demonstration and development testing of this system was conducted in conjuction with surface soil characterization activities at the David Witherspoon 1630 Site in Knoxville, Tennessee. The PCB system consists of five hardware standard laboratory modules (SLMs), one software SLM, the task sequence controller (TSC), and the human-computer interface (HCI). Four of the hardware SLMs included a four-channel Soxhlet extractor, a high-volume concentrator, a column cleanup, and a gas chromatograph. These SLMs performed the sample preparation and measurement steps within the total analysis protocol. The fifth hardware module was a robot that transports samples between the SLMs and the required consumable supplies to the SLMs. The software SLM is an automated data interpretation module that receives raw data from the gas chromatograph SLM and analyzes the data to yield the analyte information. The TSC is a software system that provides the scheduling, management of system resources, and the coordination of all SLM activities. The HCI is a graphical user interface that presents the automated laboratory to the analyst in terms of the analytical procedures and methods. Human control of the automated laboratory is accomplished via the HCI. Sample information required for processing by the automated laboratory is entered through the HCI. Information related to the sample and the system status is presented to the analyst via graphical icons.

  15. Direct solid sample analysis of sediments, soils, rocks and advanced ceramics by ETV-ICP-AES and GF-AAS

    Microsoft Academic Search

    Werner Schrön; Alf Liebmann; Gerhard Nimmerfall

    2000-01-01

    Methods for the direct solid sample trace element determination in complex composed inorganic powder samples, e.g. sediments,\\u000a soils, rocks, minerals and similar technical materials, are systematically investigated by SS-ETV-ICP-AES and SS-GF-AAS. High-grade\\u000a homogeneity of the sample powder even at milligram and sub-milligram levels is required due to small sample weights. All the\\u000a investigations are carried out with CRMs and RMs.

  16. COLLECTING REPRESENTATIVE SOIL SAMPLES FOR N AND P FERTILIZER RECOMMENDATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil fertilizer recommendations in modern crop production rely on laboratory analysis of representative soil samples. Regardless on where the samples were collected (grid points, management zones, or whole fields) the accuracy and precision of the fertilizer recommendation can be improved by consid...

  17. Solidphase extraction of polycyclic aromatic hydrocarbons from soil samples

    Microsoft Academic Search

    P. R. Kootstra; M. H. C. Straub; G. H. Stil; E. G. van der Velde; W. Hesselink; C. C. J. Land

    1995-01-01

    A new solid-phase extraction (SPE) method was developed for the analysis of 16 polyaromatic hydrocarbons (PAHs) on the US Environmental Protection Agency priority list, in soil samples. Different types of SPE columns were tested and conditioning and elution steps were optimised. In the final procedure, soil samples are extracted with acetone and, after dilution with HPLC-grade water, loaded on a

  18. COLLECTING REPRESENTATIVE SOIL SAMPLES FOR N AND P FERTILIZER RECOMMENDATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil fertilizer recommendations in modern crop production rely on laboratory analysis of representative soil samples. Regardless of where the samples were collected (grid points, management zones, or whole fields), the accuracy and precision of the fertilizer recommendation can be improved by consi...

  19. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  20. Preparation of soil sampling protocols: Sampling techniques and strategies

    Microsoft Academic Search

    1992-01-01

    The document serves as a companion document to the Soil Sampling Quality Assurance User's Guide, Second Edition. The two documents together provide methods, techniques, and procedures for designing a variety of soil measurement programs and associated Quality Assurance Program Plans, implementing those programs and then analyzing, interpreting, and presenting resultant data. Properly designed sampling plans based upon the laws of

  1. Soils âField Characterization, Collection, and Laboratory Analysis

    NSDL National Science Digital Library

    Abir Biswas

    Field characterization of soil profiles in coniferous and deciduous settings; sample collection of soils from different horizons; laboratory analysis of soil moisture, soil organic carbon (by loss on ignition), and grain size distribution (by sieving)

  2. Routine analysis of vinicultural relevant fungicides, insecticides and herbicides in soil samples using enhanced solvent extraction (ESE)

    Microsoft Academic Search

    A. Rübel; Reinhard Bierl

    1999-01-01

    Parameters affecting the extraction efficiency of various pesticides from a native contaminated soil sample (Corg = 4.4%) using an enhanced solvent extraction (ESE) technique were investigated. The defined settings of temperature (50\\/150?°C),\\u000a pressure (180\\/240 MPa), static and dynamic extraction time (5\\/15 min and 0\\/5 min, respectively) yielded results which did\\u000a not differ significantly (RSD = 5.9–11.8%). In comparison to a

  3. Sonochemical Digestion of Soil and Sediment Samples

    SciTech Connect

    Sinkov, Sergei I.; Lumetta, Gregg J.

    2006-10-12

    This work was performed as part of a broader effort to automate analytical methods for determination of plutonium and other radioisotopes in environmental samples. The work described here represented a screening study to determine the potential for applying ultrasonic irradiation to sample digestion. Two standard reference materials (SRMs) were used in this study: Columbia River Sediment and Rocky Flats Soil. The key experiments performed are listed below along with a summary of the results. The action of nitric acid, regardless of its concentration and liquid-to-solid ratio, did not achieve dissolution efficiency better that 20%. The major fraction of natural organic matter (NOM) remained undissolved by this treatment. Sonication did not result in improved dissolution for the SRMs tested. The action of hydrofluoric acid at concentrations of 8 M and higher achieved much more pronounced dissolution (up to 97% dissolved for the Rocky Flats soil sample and up to 78% dissolved for the Columbia River Sediment sample). Dissolution efficiency remains constant for solid-to-liquid ratios of up to 0.05 to 1 and decreases for the higher loadings of the solid phase. Sonication produced no measurable effect in improving the dissolution of the samples compared with the control digestion experiments. Combined treatment of the SRM by mixtures of HNO3 and HF showed inferior performance compared with the HF alone. An adverse effect of sonication was found for the Rocky Flats soil material, which became more noticeable at higher HF concentrations. Sonication of the Columbia River sediment samples had no positive effect in the mixed acid treatment. The results indicate that applying ultrasound in an isolated cup horn configuration does not offer any advantage over conventional ''heat and mix'' treatment for dissolution of the soil and sediment based on the SRM examined here. This conclusion, however, is based on an approach that uses gravimetric analysis to determine gross dissolution efficiency. This approach does not allow any conclusion regarding the possible advantage of sonication in selective dissolution of plutonium traces incorporated into an inorganic or organic fraction of the samples.

  4. Alternative Sample Preparation of Soils for Gamma Spectroscopy

    SciTech Connect

    Downey, H.T. [MACTEC, Portland, ME (United States); Jung, P.; Scarborough, R. [Sevenson Environmental Services, Niagara Falls, NY (United States)

    2008-07-01

    Standard laboratory procedures for preparation of soil samples for analysis by gamma spectroscopy typically utilize drying and grinding. Drying of soil samples can be accomplished using an oven for 8 to 16 hours or by air for several days or weeks. Dried samples are then sieved and / or ground to facilitate homogenization. The sample preparation process for soils adds significant time for analysis by gamma spectroscopy as the actual analysis is normally on the order of 1 hour or less. An alternative approach has been developed that significantly reduces sample preparation time for soil samples and that provides comparable results to those obtained by the standard method. The alternative approach utilizes a moisture analyzer to determine the percent moisture in each individual sample, which takes 15 to 45 minutes for each sample. The actual weight of the sample is then corrected by the percent moisture in order to report the results on the equivalent dry weight. This is especially important for samples that are for decision making associated with field activities where time is of the essence. This alternative sample preparation approach provides fast and efficient sample preparation of soils for gamma spectroscopy without reducing data quality or imparting bias. (authors)

  5. Thermodynamic analysis of the effect of strongly swelling polymer hydrogels on the physical state of soil and sediment samples

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Sadovnikova, N. B.; Nikolaeva, E. I.

    2014-02-01

    The effect of five Russian and foreign hydrogels on the water retention curve (WRC) and the related physical parameters of soils and sediments differing in their genesis and degree of dispersion has been considered on the basis of a proprietary version of the equilibrium centrifugation method. The new version of the method with the use of a high-speed centrifuge has allowed obtaining WRC in a wide range of matric potentials from 0 to 3000 J/kg (pF = 4.5) with the experimental estimation of almost all the soil-hydrological constants. The first analysis of strongly swelling polymer hydrogels (SSPHs) on WRC and the structural curves of the pore size distribution in heavy-textured soils has been performed, and the possibility has been shown of increasing their water capacity at the swelling of SSPHs in the region near water saturation. The most efficient is the use of SSPHs in light soils, which allows their water retention to be brought to the level of native loamy sands and loams in the SSPH content range of 0.1-0.3% of the enclosing coarse material. The best characteristics were observed for the Russian hydrogel VUM developed by the Institute of Technical Chemistry of the Urals Branch of the Russian Academy of Sciences and produced by the Urals Plant for Chemical Reagents.

  6. Selective solid-phase extraction using molecularly imprinted polymer for the analysis of polar organophosphorus pesticides in water and soil samples

    Microsoft Academic Search

    Xiaolan Zhu; Jun Yang; Qingde Su; Jibao Cai; Yun Gao

    2005-01-01

    An analytical methodology for the analysis of four polar organophophorus pesticides (monocrotophos, mevinphos, phosphamidon, omethoate) in water and soil samples incorporating a molecularly imprinted solid-phase extraction (MISPE) process using a monocrotophos-imprinted polymer was developed. Binding study demonstrated that the polymer showed excellent affinity and high selectivity to monocrotophos. The MISPE procedure including the clean-up step to remove any interferences was

  7. Simultaneous speciation of arsenic, selenium, and chromium: Species stability, sample preservation, and analysis of ash and soil leachates

    USGS Publications Warehouse

    Wolf, R.E.; Morman, S.A.; Hageman, P.L.; Hoefen, T.M.; Plumlee, G.S.

    2011-01-01

    An analytical method using high-performance liquid chromatography separation with inductively coupled plasma mass spectrometry (ICP-MS) detection previously developed for the determination of Cr(III) and Cr(VI) has been adapted to allow the determination of As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI) under the same chromatographic conditions. Using this method, all six inorganic species can be determined in less than 3 min. A dynamic reaction cell (DRC)-ICP-MS system was used to detect the species eluted from the chromatographic column in order to reduce interferences. A variety of reaction cell gases and conditions may be utilized with the DRC-ICP-MS, and final selection of conditions is determined by data quality objectives. Results indicated all starting standards, reagents, and sample vials should be thoroughly tested for contamination. Tests on species stability indicated that refrigeration at 10 ??C was preferential to freezing for most species, particularly when all species were present, and that sample solutions and extracts should be analyzed as soon as possible to eliminate species instability and interconversion effects. A variety of environmental and geological samples, including waters and deionized water [leachates] and simulated biological leachates from soils and wildfire ashes have been analyzed using this method. Analytical spikes performed on each sample were used to evaluate data quality. Speciation analyses were conducted on deionized water leachates and simulated lung fluid leachates of ash and soils impacted by wildfires. These results show that, for leachates containing high levels of total Cr, the majority of the chromium was present in the hexavalent Cr(VI) form. In general, total and hexavalent chromium levels for samples taken from burned residential areas were higher than those obtained from non-residential forested areas. Arsenic, when found, was generally in the more oxidized As(V) form. Selenium (IV) and (VI) were present, but typically at low levels. ?? 2011 Springer-Verlag (outside the USA).

  8. Simultaneous speciation of arsenic, selenium, and chromium: species, stability, sample preservation, and analysis of ash and soil leachates

    USGS Publications Warehouse

    Wolf, Ruth E.; Morman, Suzette A.; Hageman, Philip L.; Hoefen, Todd M.; Plumlee, Geoffrey S.

    2011-01-01

    An analytical method using high-performance liquid chromatography separation with inductively coupled plasma mass spectrometry (ICP-MS) detection previously developed for the determination of Cr(III) and Cr(VI) has been adapted to allow the determination of As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI) under the same chromatographic conditions. Using this method, all six inorganic species can be determined in less than 3 min. A dynamic reaction cell (DRC)-ICP-MS system was used to detect the species eluted from the chromatographic column in order to reduce interferences. A variety of reaction cell gases and conditions may be utilized with the DRC-ICP-MS, and final selection of conditions is determined by data quality objectives. Results indicated all starting standards, reagents, and sample vials should be thoroughly tested for contamination. Tests on species stability indicated that refrigeration at 10° C was preferential to freezing for most species, particularly when all species were present, and that sample solutions and extracts should be analyzed as soon as possible to eliminate species instability and interconversion effects. A variety of environmental and geological samples, including waters and deionized water [leachates] and simulated biological leachates from soils and wildfire ashes have been analyzed using this method. Analytical spikes performed on each sample were used to evaluate data quality. Speciation analyses were conducted on deionized water leachates and simulated lung fluid leachates of ash and soils impacted by wildfires. These results show that, for leachates containing high levels of total Cr, the majority of the chromium was present in the hexavalent Cr(VI) form. In general, total and hexavalent chromium levels for samples taken from burned residential areas were higher than those obtained from non-residential forested areas. Arsenic, when found, was generally in the more oxidized As(V) form. Selenium (IV) and (VI) were present, but typically at low levels.

  9. Geochemistry - Soils Analysis

    NSDL National Science Digital Library

    Cynthia Fadem

    Students conduct a geochemical analysis of a soil. Each group chooses one of the following analyses: conductivity buffer solution, conductivity, acidity, mineralogy, grain size, or loss on ignition. As this lab falls somewhere between the middle and end of the course, students are versed in various chemical methods. This lab reinforces those skills while forcing students to organize their time and be patient with each other while conducting careful lab science. The samples used for this lab were from a Bronze-Age archaeological site in Kazakhstan, but any samples could be substituted. To encourage free-thinking concerning their representations (and interpretations in the follow-up lab), as little background information as possible was given.

  10. 2-Day Investigating Soil Samples: observing and identifying soils

    NSDL National Science Digital Library

    This activity is designed for a primary classroom (outdoors & indoors) investigation where students collect and investigate soil samples and describe the soils, looking for similarities and differences. Students develop a method of recording the data colleted and can present the information gathered.

  11. Wavelet-based image analysis system for soil texture analysis

    NASA Astrophysics Data System (ADS)

    Sun, Yun; Long, Zhiling; Jang, Ping-Rey; Plodinec, M. John

    2003-05-01

    Soil texture is defined as the relative proportion of clay, silt and sand found in a given soil sample. It is an important physical property of soil that affects such phenomena as plant growth and agricultural fertility. Traditional methods used to determine soil texture are either time consuming (hydrometer), or subjective and experience-demanding (field tactile evaluation). Considering that textural patterns observed at soil surfaces are uniquely associated with soil textures, we propose an innovative approach to soil texture analysis, in which wavelet frames-based features representing texture contents of soil images are extracted and categorized by applying a maximum likelihood criterion. The soil texture analysis system has been tested successfully with an accuracy of 91% in classifying soil samples into one of three general categories of soil textures. In comparison with the common methods, this wavelet-based image analysis approach is convenient, efficient, fast, and objective.

  12. SOIL AND SEDIMENT SAMPLING METHODS

    EPA Science Inventory

    The EPA Office of Solid Waste and Emergency Response's (OSWER) Office of Superfund Remediation and Technology Innovation (OSRTI) needs innovative methods and techniques to solve new and difficult sampling and analytical problems found at the numerous Superfund sites throughout th...

  13. Considerations for sampling contaminants in agricultural soils.

    PubMed

    Ramsey, Charles A

    2015-01-01

    Sampling agricultural soils for contaminants is relatively new. Existing standard sampling protocols used for the evaluation of soil nutrients are likely insufficient for contaminants. The main reasons are the very low analyte levels and differences in heterogeneity between nutrients and contaminants. To evaluate the adequacy of existing sampling protocols or to develop new protocols, a systematic scientific approach is needed. This approach begins with the development of the Sample Quality Criteria followed by a realistic understanding of the properties of the material to be sampled, most notably its heterogeneity. The Sample Quality Criteria and material properties are inputs into the Theory of Sampling. With these inputs, the Theory of Sampling can be used to determine the specifics of the sampling protocol (e.g., mass, number of increments, tool selection) that must be implemented to control error to reliably estimate the concentration of the analyte(s) of interest. Development of sampling protocols in this manner will ensure sample representativeness and therefore improve data equivalency among various parties involved. This is the only way to provide a sound technical basis for defensible decision making to ensure increased safety of food and feed, specifically with respect to contaminants in agricultural soils. PMID:25806859

  14. Non-destructive Analysis of Oil-Contaminated Soil Core Samples by X-ray Computed Tomography and Low-Field Nuclear Magnetic Resonance Relaxometry: a Case Study

    PubMed Central

    Mitsuhata, Yuji; Nishiwaki, Junko; Kawabe, Yoshishige; Utsuzawa, Shin; Jinguuji, Motoharu

    2010-01-01

    Non-destructive measurements of contaminated soil core samples are desirable prior to destructive measurements because they allow obtaining gross information from the core samples without touching harmful chemical species. Medical X-ray computed tomography (CT) and time-domain low-field nuclear magnetic resonance (NMR) relaxometry were applied to non-destructive measurements of sandy soil core samples from a real site contaminated with heavy oil. The medical CT visualized the spatial distribution of the bulk density averaged over the voxel of 0.31?×?0.31?×?2 mm3. The obtained CT images clearly showed an increase in the bulk density with increasing depth. Coupled analysis with in situ time-domain reflectometry logging suggests that this increase is derived from an increase in the water volume fraction of soils with depth (i.e., unsaturated to saturated transition). This was confirmed by supplementary analysis using high-resolution micro-focus X-ray CT at a resolution of ?10 ?m, which directly imaged the increase in pore water with depth. NMR transverse relaxation waveforms of protons were acquired non-destructively at 2.7 MHz by the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence. The nature of viscous petroleum molecules having short transverse relaxation times (T2) compared to water molecules enabled us to distinguish the water-saturated portion from the oil-contaminated portion in the core sample using an M0–T2 plot, where M0 is the initial amplitude of the CPMG signal. The present study demonstrates that non-destructive core measurements by medical X-ray CT and low-field NMR provide information on the groundwater saturation level and oil-contaminated intervals, which is useful for constructing an adequate plan for subsequent destructive laboratory measurements of cores. PMID:21258437

  15. GEOSTATISTICAL STRATEGY FOR SOIL SAMPLING: THE SURVEY AND THE CENSUS

    EPA Science Inventory

    This article develops a soil sampling strategy for spatially correlated variables using the tools of geostatistical analysis. With a minimum of equations, the logic of geostatistical analysis is traced from the modeling of a semi-variogram to the output isomaps of pollution estim...

  16. Soil sampling quality assurance user's guide

    Microsoft Academic Search

    D. S. Barth; B. J. Mason

    1984-01-01

    The inherent inseparability of a cost-effective Soil Sampling Quality Assurance\\/Quality Control (QA\\/QC) Plan from the objectives of a soil monitoring program is emphasized. Required precisions and confidence levels for the data cannot be defined until the decisions which will be made on the basis of the data are clearly stated and the consequences of making Type I (false positive) or

  17. Collecting Representative Soil Samples for N and P Fertilizer Recommendations

    Microsoft Academic Search

    D. E. Clay; N. Kitchen; C. G. Carlson; J. L. Kleinjan; W. A. Tjentland

    2002-01-01

    Abstract Soil fertilizer recommendations,in modern,crop production,rely on laboratory analysis,of representative soil samples.,Regardless,on how,soil samples,are collected (grid points, management zones, or whole fields) the accuracy and precision,of the fertilizer recommendation,can,be improved,by considering,the factors influencing nutrient variability. As producer’s crop enterprise varies, it is recommended,that producers,select approaches,that are suited for their operation.,The objectives,of this guide,are to discuss,how,management,influences nutrient,variability,and,to provide,insight,into designing,soil sampling,protocols that,provide,accurate,and,precise,fertilizer

  18. Soil phosphorus testing: 2. Assessment of a rotary blade soil sampler for collecting soil samples to measure soil test phosphorus

    Microsoft Academic Search

    M. D. A. Bolland; M. J. Baker; I. R. Wilson

    1994-01-01

    In Western Australia soil samples to measure soil?test phosphorus (P) are collected November to March when soils are usually dry. Most of the soils are hard?setting when dry and it is difficult to penetrate and collect soil samples to 10 cm using the traditional sampler, which is a 2.5 cm diameter tube that is pushed into the soil by foot.

  19. Soil Samplers: New Techniques for Subsurface Sampling for Volatile Organic Compounds

    SciTech Connect

    Susan Sorini; John Schabron; Joseph Rovani; Mark Sanderson

    2009-03-31

    Soil sampling techniques for volatile organic analysis must be designed to minimize loss of volatile organic compounds (VOCs) from the soil that is being sampled. Preventing VOC loss from soil cores that are collected from the subsurface and brought to the surface for subsampling is often difficult. Subsurface bulk sample retrieval systems are designed to obtain intact cylindrical cores of soil ranging anywhere from one to four inches in diameter, and one to several feet in length. The current technique that is used to subsample these soil cores for VOC analysis is to expose a horizontal section of the soil core to the atmosphere; screen the exposed soil using a photoionization detector (PID) or other appropriate device to locate contamination in the soil core; and use a hand-operated coring tool to collect samples from the exposed soil for analysis. Because the soil core can be exposed to the atmosphere for a considerable length of time during screening and sample collection, the current sub-sampling technique provides opportunity for VOCs to be lost from the soil. This report describes three alternative techniques from the current technique for screening and collecting soil samples from subsurface soil cores for VOC analysis and field testing that has been done to evaluate the techniques. Based on the results of the field testing, ASTM D4547, Standard Guide for Sampling Waste and Soils for Volatile Organic Compounds, was revised to include information about the new techniques.

  20. Tree Fertilization Soil Analysis

    E-print Network

    Tree Fertilization #12;Soil Analysis vs. Foliar Analysis #12;Macronutrients N P K Mg S Ca Micronutrients Fe Mn Zn Mo Cu Cl B #12;Complete fertilizer N P K #12;Fertilizer Analysis Percentages of N P K #12;ANSI A-300 Fertilizer Standard Standards are used to develop contract specifications. Fertilize

  1. Optimizing Soil Moisture Sampling Locations for Validation Networks for SMAP

    NASA Astrophysics Data System (ADS)

    Roshani, E.; Berg, A. A.; Lindsay, J.

    2013-12-01

    Soil Moisture Active Passive satellite (SMAP) is scheduled for launch on Oct 2014. Global efforts are underway for establishment of soil moisture monitoring networks for both the pre- and post-launch validation and calibration of the SMAP products. In 2012 the SMAP Validation Experiment, SMAPVEX12, took place near Carman Manitoba, Canada where nearly 60 fields were sampled continuously over a 6 week period for soil moisture and several other parameters simultaneous to remotely sensed images of the sampling region. The locations of these sampling sites were mainly selected on the basis of accessibility, soil texture, and vegetation cover. Although these criteria are necessary to consider during sampling site selection, they do not guarantee optimal site placement to provide the most efficient representation of the studied area. In this analysis a method for optimization of sampling locations is presented which combines the state-of-art multi-objective optimization engine (non-dominated sorting genetic algorithm, NSGA-II), with the kriging interpolation technique to minimize the number of sampling sites while simultaneously minimizing the differences between the soil moisture map resulted from the kriging interpolation and soil moisture map from radar imaging. The algorithm is implemented in Whitebox Geospatial Analysis Tools, which is a multi-platform open-source GIS. The optimization framework is subject to the following three constraints:. A) sampling sites should be accessible to the crew on the ground, B) the number of sites located in a specific soil texture should be greater than or equal to a minimum value, and finally C) the number of sampling sites with a specific vegetation cover should be greater than or equal to a minimum constraint. The first constraint is implemented into the proposed model to keep the practicality of the approach. The second and third constraints are considered to guarantee that the collected samples from each soil texture categories or vegetation cover types are statistically meaningful. The proposed model is applied to the radar images from the Passive Active L-band System (PALS) collected during (SMAPVEX12). SMAPVEX12 lasted for 47 days, during which soil moisture varied significantly. The proposed model was applied to all of the collected images (17 images) during this time span. Optimized sampling site characteristics will be analyzed with surface characteristics and the trade off between the number of samples and estimated sampling error examined.

  2. Comparative analysis of black carbon in soils

    Microsoft Academic Search

    Michael W. I. Schmidt; Jan O. Skjemstad; Claudia I. Czimczik; Bruno Glaser; Ken M. Prentice; Yves Gelinas; Thomas A. J. Kuhlbusch

    2001-01-01

    Black carbon (BC), produced by incomplete combustion of fossil fuels and vegetation, occurs ubiquitously in soils and sediments. BC exists as a continuum from partly charred material to highly graphitized soot particles, with no general agreement on clear-cut boundaries of definition or analysis. In a comparative analysis, we measured BC forms in eight soil samples by six established methods. All

  3. Soil Characterization Using CCSEM Analysis

    NASA Astrophysics Data System (ADS)

    Rogers, R.; Hunt, A.

    2014-12-01

    An investigation is underway to determine elemental compounds of African Soils. Soil samples were taken from four territories in the Sahel and Saharan region of Africa and analyzed using Computer Controlled Scanning Electron Microscopy (CCSEM). Optimized secondary electron detectors (SED) and back-scattered electron detectors (BSED) with adjustable quadrants was used with a light element Peltier-cooled energy dispersive x-ray spectrometer. A variable pressure system was used for the analysis of insulating materials, which eliminated the need for special specimen coating to dissipate charge and remove artifacts. Data from these samples are being used to address two primary questions: (1) Can CCSEM technology accurately describe elemental compounds derived from soil samples, and (2) is there a correlation between particle chemistry and size? The creation of a 29-point elemental classification system was used to separate and analyze each of the data points. Findings show large amounts of Fe, Si, and Al-rich minerals in all samples, but vary in percentages by amounts large enough to distinguish between sample regions. Other elemental constituents within the samples include varying amounts of Na, S, Ti, Ca, and K. An initial run of samples show a similarity in chemical composition, leading to the hypothesis that Aeolian processes are contributing to the mineral content of surface dusts, but are still distinguishable from region to region. Further research on the effects of these wind driven dusts is needed to assess the potential problematic deposited in the Atlantic Ocean, which can cause overpressures within the sediments on slopes.

  4. Automation and Standardisation of Site Specific Soil Sampling

    Microsoft Academic Search

    R. E. Lütticken

    2000-01-01

    The quality of soil sampling has a significant effect on the accuracy of site specific fertiliser application. Soil sampling depth, number of cores and their distribution within a field or field section are important criteria for achieving a high quality sample. Considering the increased number of soil samples required for site specific fertiliser application, the chosen method of sampling needs

  5. Comparison of Digestion Methods for ICP-OES Analysis of a Wide Range of Analytes in Heavy Metal Contaminated Soil Samples with Specific Reference to Arsenic and Antimony

    Microsoft Academic Search

    M. Tighe; P. Lockwood; S. Wilson; L. Lisle

    2004-01-01

    Recommended alternative digestion methods for elemental analysis of soil often omit arsenic (As) and antimony (Sb) as viable analytes. In addition, comparisons of these methods for analysis of a wide range of elements by ICP-OES are few, limiting the viability of recommended methods. Four methods for the digestion of soils (microwave aqua regia, open aqua regia, microwave nitric, and open

  6. Extraction parameters in the mutagenicity assay of soil samples

    Microsoft Academic Search

    Flavio Manoel Rodrigues da Silva Júnior; Jocelita Aparecida Vaz Rocha; Vera Maria Ferrão Vargas

    2009-01-01

    This study aimed at investigating parameters of chemical extraction associated with the detection of mutagenicity in soil samples extracts. In order to evaluate the extraction efficiency of inorganic mutagens, besides the chemical analysis of metals, the Salmonella\\/microsome assay was performed in the preincubation and microsuspension procedures, using two solvents, and using two extraction methodologies. The efficiency of two organic compound

  7. GICHD mine dog testing project - soil sample results #4.

    SciTech Connect

    Barnett, James L.; Phelan, James M.; Archuleta, Luisa M.; Wood, Tyson B.; Donovan, Kelly L.; Bender, Susan Fae Ann

    2003-08-01

    A mine dog evaluation project initiated by the Geneva International Center for Humanitarian Demining is evaluating the capability and reliability of mine detection dogs. The performance of field-operational mine detection dogs will be measured in test minefields in Afghanistan and Bosnia containing actual, but unfused landmines. Repeated performance testing over two years through various seasonal weather conditions will provide data simulating near real world conditions. Soil samples will be obtained adjacent to the buried targets repeatedly over the course of the test. Chemical analysis results from these soil samples will be used to evaluate correlations between mine dog detection performance and seasonal weather conditions. This report documents the analytical chemical methods and results from the fourth batch of soils received. This batch contained samples from Kharga, Afghanistan collected in April 2003 and Sarajevo, Bosnia collected in May 2003.

  8. GICHD Mine Dog Testing Project - Soil Sample Results No.3

    SciTech Connect

    PHELAN, JAMES M.; BARNETT, JAMES L.; BENDER, SUSAN FAE ANN; ARCHULETA, LUISA M.

    2003-03-01

    A mine dog evaluation project initiated by the Geneva International Center for Humanitarian Demining is evaluating the capability and reliability of mine detection dogs. The performance of field-operational mine detection dogs will be measured in test minefields in Afghanistan and Bosnia containing actual, but unfused landmines. Repeated performance testing over two years through various seasonal weather conditions will provide data simulating near real world conditions. Soil samples will be obtained adjacent to the buried targets repeatedly over the course of the test. Chemical analysis results from these soil samples will be used to evaluate correlations between mine dog detection performance and seasonal weather conditions. This report documents the analytical chemical methods and results from the third batch of soils received. This batch contained samples from Kharga, Afghanistan collected in October 2002.

  9. GICHD mine dog testing project : soil sample results #5.

    SciTech Connect

    Barnett, James L.; Phelan, James M.; Archuleta, Luisa M.; Donovan, Kelly L.; Bender, Susan Fae Ann

    2004-01-01

    A mine dog evaluation project initiated by the Geneva International Center for Humanitarian Demining is evaluating the capability and reliability of mine detection dogs. The performance of field-operational mine detection dogs will be measured in test minefields in Afghanistan containing actual, but unfused landmines. Repeated performance testing over two years through various seasonal weather conditions will provide data simulating near real world conditions. Soil samples will be obtained adjacent to the buried targets repeatedly over the course of the test. Chemical analysis results from these soil samples will be used to evaluate correlations between mine dog detection performance and seasonal weather conditions. This report documents the analytical chemical methods and results from the fifth batch of soils received. This batch contained samples from Kharga, Afghanistan collected in June 2003.

  10. Soils as samples for the split Hopkinson bar

    SciTech Connect

    Gaffney, E.S.; Brown, J.A.; Felice, C.W.

    1985-01-01

    Soils frequently exhibit one or more of the following characteristics which complicadte analysis of data from split Hopkinson bar tests or make test setup and execution difficult: low wave speed, high attenuation of acoustic energy, or insignificant structural strength. Low wave speed invalidates the assumption that the sample is deformed uniformly by the load at early times; but, use of a Lagrangian wave propagation analysis permits derivation of useful information from the standard suite of data. Use of gauges within the sample would facilitate this technique. High attenuation requires thin samples, which restricts the strain paths which can be achieved. The weakness of noncohesive soils presents difficulties in preparation, handling and control of boundary conditions. One simple solution is to support the sample in a rigid sleeve; this results in a uniaxial strain experiment so that the results are directly comparable to shock wave data. 10 references, 7 figures.

  11. Volatile organic compound (VOC) emissions from soil and litter samples

    Microsoft Academic Search

    Jonathan W. Leff; Noah Fierer

    2008-01-01

    The production of nonmethane volatile organic compounds (VOCs) by soil microbes is likely to have an important influence on soil ecology and terrestrial biogeochemistry. However, soil VOC production has received relatively little attention, and we do not know how the emissions of microbially-produced VOCs vary across soil and litter types. We collected 40 root-free soil and litter samples from a

  12. Method for Spiking Soil Samples with Organic Compounds

    Microsoft Academic Search

    Ulla C. Brinch; Flemming Ekelund; Carsten S. Jacobsen

    2002-01-01

    We examined the harmful side effects on indigenous soil microorganisms of two organic solvents, acetone and dichloromethane, that are normally used for spiking of soil with polycyclic aromatic hydrocarbons for experimental purposes. The solvents were applied in two contamination protocols to either the whole soil sample or 25% of the soil volume, which was subsequently mixed with 75% untreated soil.

  13. Shallow-Probe Soil-Gas Sampling for Indication of Ground-Water Contamination by Chloroform

    Microsoft Academic Search

    Henry B. Kerfoot

    1987-01-01

    Soil-gas sampling and analysis for indication of ground-water contamination by chloroform was field tested. The field testing included evaluation of: The repeatability of results, the correlation of results of soil-gas analyses with ground-water concentrations, the differences in results among closely spaced samples and the depth profile of chloroform concentrations in soil-gas samples. The sampling probe gave good repeatability, although leakage

  14. Soil Sampling Techniques for Alabama, USA Grain Fields

    Microsoft Academic Search

    A. N. Thompson; J. N. Shaw; P. L. Mask; J. T. Touchton; D. Rickman

    2004-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and

  15. Analysis of water and soil from the wetlands of Upper Three Runs Creek. Volume 2A, Analytical data packages September--October 1991 sampling

    SciTech Connect

    Haselow, L.A.; Rogers, V.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Riordan, C.J. [Metcalf and Eddy, Inc. (United States); Eidson, G.W.; Herring, M.K. [Normandeau Associates, Inc. (United States)

    1992-08-01

    Shallow water and soils along Upper Three Runs Creek (UTRC) and associated wetlands between SRS Road F and Cato Road were sampled for nonradioactive and radioactive constituents. The sampling program is associated with risk evaluations being performed for various regulatory documents in these areas of the Savannah River Site (SRS). WSRC selected fifty sampling sites bordering the Mixed Waste Management Facility (MWMF), F- and H-Area Seepage Basins (FHSB), and the Sanitary Landfill (SL). The analytical results from this study provided information on the water and soil quality in UTRC and its associated wetlands. The analytical results from this investigation indicated that the primary constituents and radiological indicators detected in the shallow water and soils were tritium, gross alpha, radium 226, total radium and strontium 90. This investigation involved the collection of shallow water samples during the Fall of 1991 and the Spring of 1992 at fifty (50) sampling locations. Sampling was performed during these periods to incorporate high and low water table periods. Samples were collected from three sections along UTRC denoted as Phase I (MWMF), Phase II (FHSB) and Phase III (SL). One vibracored soil sample was also collected in each phase during the Fall of 1991. This document is compiled solely of experimental data obtained from the sampling procedures.

  16. Simultaneous multi-element analysis of trace elements in soil samples by means of high-resolution inductively coupled plasma sector field mass spectrometry (SF-ICP-MS).

    PubMed

    Latkoczy, C; Prohaska, T; Stingeder, G; Wenzel, W W

    2000-01-01

    The potential of SF-ICP-MS for trace element analysis in complex environmental matrices such as soil solutions was investigated. Spectral interferences found in mass spectra of soil matrices are presented in detail. Furthermore, the influences of single components of the soil matrix on the signal intensity of selected elements were studied. Detection limits of different elements are presented with respect to the composition of the matrix. A fast and accurate method for quasi-simultaneous determination of Al, Si, P, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Sr, Mo, Cd, Sn, Hg and Pb in aqueous soil extracts was established. PMID:11220589

  17. Extraction parameters in the mutagenicity assay of soil samples.

    PubMed

    da Silva Júnior, Flavio Manoel Rodrigues; Vaz Rocha, Jocelita Aparecida; Vargas, Vera Maria Ferrão

    2009-11-15

    This study aimed at investigating parameters of chemical extraction associated with the detection of mutagenicity in soil samples extracts. In order to evaluate the extraction efficiency of inorganic mutagens, besides the chemical analysis of metals, the Salmonella/microsome assay was performed in the preincubation and microsuspension procedures, using two solvents, and using two extraction methodologies. The efficiency of two organic compound extraction methods was compared by qualitative analysis using CG/MS in Scan mode. The results of the analysis of inorganic extracts correlated with the mutagenicity results. Mutagenic effects were detected only in the acidic extracts of soil that were shaken, in the microsuspension assay, both in the presence and absence of metabolic activation. The other conditions tested demonstrated higher cytotoxicity and negative mutagenic effects. As to the organic compounds, Accelerated Solvent Extraction (ASE) proved more effective than extraction using ultrasound (sonication). This study will help the implementation of extraction parameters to evaluate the presence of mutagenic substances in soil samples, both of inorganic and organic origins, suggesting the implementation of acidic extraction for the assessment of inorganic mutagenicity from soil samples and confirming the efficiency of ASE extraction for the assessment of organic compounds. PMID:19735934

  18. ASEPTIC SAMPLING OF UNCONSOLIDATED HEAVING SOILS IN SATURATED ZONES

    EPA Science Inventory

    Collecting undisturbed subsurface soil samples in noncohesive, heaving sandy environments below the water table has been extremely difficult using conventional soil sampling equipment. everal modifications of the conventional hollow-stem auger coring procedures were adapted, whic...

  19. NHEXAS PHASE I MARYLAND STUDY--STANDARD OPERATING PROCEDURE FOR COLLECTION, STORAGE, AND SHIPMENT OF SOIL SAMPLES FOR METAL, PESTICIDE, AND PAH ANALYSIS (F05)

    EPA Science Inventory

    The purpose of this SOP is to outline the necessary steps for sampling soil from the yard, the food garden, and the foundation of the respondent's home. Composite samples were sent to Southwest Research Institute (SwRI) to be sieved and divided. One fraction was analyzed for me...

  20. Simultaneous Analysis of Multiple Classes of Antibiotics in Water and Soil Samples via Solid Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry

    Microsoft Academic Search

    Wei Hu; Changsheng Guo; Lili Ma; Yuqiu Wang

    2010-01-01

    The analytical protocols were developed and tested for simultaneous determining three groups of antibiotics including four fluoroquinolones (FQs), three tetracyclines (TCs) and eleven sulfonamides (SAs), in water and soil samples. Solid phase extraction (SPE) was used to enrich and to clean up the aqueous samples. The potassium phosphate buffer and acetonitrile mixture solutions were used to extract the compounds from

  1. Improved cryogenic coring device for sampling wetland soils

    SciTech Connect

    Cahoon, D.R.; Lynch, J.C. [National Biological Service, Lafayette, LA (United States); Knaus, R.M. [Louisiana State Univ., Baton Rouge, LA (United States)

    1996-09-01

    This paper is the third in a series on the design and construction (Knaus 1986) and improvements (Knaus and Cahoon 1990) of a cryogenic soil-coring device (cryocorer). Freezing wetland soils in place during sampling eliminates compaction, dewatering, and loss of flocculent material at the water-sediment interface. The cryocorer is suitable for sampling soils of emergent marsh and mangrove forests as well as shallow water bottoms, although it has been used primarily for the former. A small-diameter frozen soil core minimizes disruption of the surface, can be evaluated immediately for overall quality, and can be used to measure soil profiles and subsample for further analysis. The cryocorer continues to be used in studies of wetland accretion and soil bulk density throughout the US. Concomitant with the increased use of the device, improvements in cryocorer design and application have occurred. Reported here are improvements in design that have been made since 1992 with references to wetland research in which the cryocorer has been used extensively.

  2. FIELD-SCALE STUDIES: HOW DOES SOIL SAMPLE PRETREATMENT AFFECT REPRESENTATIVENESS ? (ABSTRACT)

    EPA Science Inventory

    Samples from field-scale studies are very heterogeneous and can contain large soil and rock particles. Oversize materials are often removed before chemical analysis of the soil samples because it is not practical to include these materials. Is the extracted sample representativ...

  3. FIELD-SCALE STUDIES: HOW DOES SOIL SAMPLE PRETREATMENT AFFECT REPRESENTATIVENESS?

    EPA Science Inventory

    Samples from field-scale studies are very heterogeneous and can contain large soil and rock particles. Oversize materials are often removed before chemical analysis of the soil samples because it is not practical to include these materials. Is the extracted sample representativ...

  4. Analytical results, database management and quality assurance for analysis of soil and groundwater samples collected by cone penetrometer from the F and H Area seepage basins

    SciTech Connect

    Boltz, D.R.; Johnson, W.H.; Serkiz, S.M.

    1994-10-01

    The Quantification of Soil Source Terms and Determination of the Geochemistry Controlling Distribution Coefficients (K{sub d} values) of Contaminants at the F- and H-Area Seepage Basins (FHSB) study was designed to generate site-specific contaminant transport factors for contaminated groundwater downgradient of the Basins. The experimental approach employed in this study was to collect soil and its associated porewater from contaminated areas downgradient of the FHSB. Samples were collected over a wide range of geochemical conditions (e.g., pH, conductivity, and contaminant concentration) and were used to describe the partitioning of contaminants between the aqueous phase and soil surfaces at the site. The partitioning behavior may be used to develop site-specific transport factors. This report summarizes the analytical procedures and results for both soil and porewater samples collected as part of this study and the database management of these data.

  5. Germanium-76 Sample Analysis

    SciTech Connect

    Kouzes, Richard T.; Engelhard, Mark H.; Zhu, Zihua

    2011-04-01

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). The DEMONSTRATOR will utilize 76Ge from Russia, and the first one gram sample was received from the supplier for analysis on April 24, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of this first analysis are reported here.

  6. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF SOIL AND HOUSE DUST SAMPLES FOR GC/MS ANALYSIS OF PESTICIDE AND PAH (BCO-L-28.0)

    EPA Science Inventory

    The purpose of this SOP is to describe procedures for extracting and preparing a dust or soil sample for gas chromatography mass spectrometry (GC/MS) analysis of pesticides and polyaromatic hydrocarbons (PAHs). This procedure was followed to ensure consistent data retrieval durin...

  7. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY SOIL SAMPLES

    Microsoft Academic Search

    S. Maxwell; B. Culligan; G. Noyes

    2009-01-01

    A new rapid method for the determination of actinides in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for samples up to 2 grams in emergency response situations. The actinides in soil method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride soil matrix removal step,

  8. A method of measuring velocity of sound in soil samples 

    E-print Network

    Matzen, Walter T

    1950-01-01

    in Soil Sample Number 2 (Hun 2). . . . . 20. Relation of' Freauency to Pha. se Shift iri Soil Sample Num'oer 2 (Hun 3). . . 21. Relation of Frequency to Pnase Shift in Soil Sample Number 2 (Hun 4). . 36 A METHOD OF MEASURING VELOCITY OF SOUND IN SOIL... consecutive read- ings, the number of wave lengths is known to differ by one integral quarter wave length. Figures p and 8 show typical Lissajous patterns ob- tained from a. signal through the soil sample when the pha, se shifts were respecti, vely 0...

  9. Minimum property dataset and sampling requirement tool for soil change studies in soil survey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dynamic soil properties (DSP) are those properties that change over human time scales. The new sampling guide “Soil and Resource Inventory Guide for Dynamic Soil Properties and Soil Change” includes a minimum DSP dataset and an interactive tool to determine sampling requirements. The minimum dataset...

  10. EVALUATION OF SOIL NUTRIENT VARIABILITY FOR DEVELOPMENT OF TURFGRASS SOIL TEST SAMPLING METHODS

    Microsoft Academic Search

    Stephen J. Donohue

    2002-01-01

    One of the most important factors in soil testing is selecting a good, representative soil sample. The sample must accurately reflect the nutrient status of the area being sampled. Sampling instructions usually call for separating each location being sampled into uniform areas and collecting a composite sample within each area. An important question that sometimes arises is how many subsamples

  11. Testing Your Soil: How to Collect and Send Samples 

    E-print Network

    Provin, Tony; Pitt, John L.

    2002-06-26

    Soil tests can be used to estimate the kinds and amounts of soil nutrients available to plants and as aids in determining fertilizer needs. This publication covers the three-step procedure for obtaining sample bags and instructions, collecting...

  12. Testing Your Soil: How to Collect and Send Samples

    E-print Network

    Provin, Tony; Pitt, John L.

    2002-06-26

    Soil tests can be used to estimate the kinds and amounts of soil nutrients available to plants and as aids in determining fertilizer needs. This publication covers the three-step procedure for obtaining sample bags and instructions, collecting...

  13. Accurate measurement of uranium isotope ratios in soil samples using thermal ionization mass spectrometry equipped with a warp energy filter

    Microsoft Academic Search

    Sarata Kumar Sahoo; Yuji Nakamura; Kunio Shiraishi; Akimasa Masuda

    2004-01-01

    A chemical and mass-spectrometric procedure for uranium isotopic analysis using a thermal ionisation mass spectrometer equipped with a Wide Aperture Retardation Potential energy filter has been developed and applied to uranium isotopic measurements for various soil samples. Soil samples were digested using a microwave digestor. Uranium was isolated from soil samples by the chemical separation procedure based on the use

  14. Determination of radionuclide concentrations of U and Th in unprocessed soil samples

    Microsoft Academic Search

    Lazo

    1988-01-01

    Work with systems used to assay soil samples for U-238 and Th-232 indicated that the need existed to more directly measured the concentration of these radionuclides. An X-ray fluorescent analysis system was developed to directly measure the concentrations of these radionuclides in bulk (125 gm), unprocessed (not dried and not ground to uniform particle size), soil samples. The assay system

  15. NID Copper Sample Analysis

    SciTech Connect

    Kouzes, Richard T.; Zhu, Zihua

    2011-02-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  16. Sample Analysis at Mars

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, W. B.; Mahaffy, P. R.; Cabane, M.; Atreya, S. K.; Coll, P.; Cornish, T. J.; Harpold, D. N.; Israel, G.; Niemann, H. B.; Owen, T.

    2003-01-01

    The next landed missions to Mars, such as the planned Mars Science Laboratory and ExoMars, will require sample analysis capabilities refined well beyond what has been flown to date. A key science objective driving this requirement is the determination of the carbon inventory of Mars, and particularly the detection of organic compounds. While the gas chromatograph mass spectrometers (GC/MS) on the Viking landers did not detect any indigenous organics in near surface fines, it is possible that these measurements were not representative of Mars on the whole. That is, those compounds to which the GC/MS was sensitive would likely not have survived the strong oxidative decomposition in the regolith at the landing sites in question. The near surface fines could very well contain a significant quantity of refractory compounds that would not have been volatilized in the sample ovens on Viking. It is also possible that volatile organics exist on Mars in sedimentary, subsurface, or polar niches.

  17. Sample Analysis At Mars

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, W. B.; Mahaffy, P. R.; Cabane, M.; Atreya, S. K.; Coll, P.; Cornish, T. J.; Harpold, D. N.; Israel, G.; Niemann, H. B.; Owen, T.

    2003-01-01

    The next landed missions to Mars, such as the planned Mars Science Laboratory and ExoMars, will require sample analysis capabilities refined well beyond what has been flown to date. A key science objective driving this requirement is the determination of the carbon inventory of Mars, and particularly the detection of organic compounds. While the gas chromatograph mass spectrometers (GCMS) on the Viking landers did not detect any indigenous organics in near surface fines, it is possible that these measurements were not representative of Mars on the whole. That is, those compounds to which the GC/MS was sensitive would likely not have survived the strong oxidative decomposition in the regolith at the landing sites in question. The near surface fines could very well contain a significant quantity of refractory compounds that would not have been volatilized in the sample ovens on Viking. It is also possible that volatile organics exist on Mars in sedimentary, subsurface, or polar niches.

  18. Methods for determination of hexachlorobenzene and pentachlorophenol in soil samples

    Microsoft Academic Search

    Luciana Polese; Maria Lúcia Ribeiro

    1998-01-01

    The efficiency of methods for the determination of hexachlorobenzene (HCB) and pentachlorophenol (PCP) in soil samples was evaluated. An on-line method was applied for HCB determination. Soil samples were transferred to chromatographic columns prepacked with alumina. The HCB elution was processed with n-hexane. The PCP was extracted from soil samples with n-hexane–acetone in an ultrasonic bath. After re-extraction with K2CO3

  19. Selective trace analysis of sulfonylurea herbicides in water and soil samples based on solid-phase extraction using a molecularly imprinted polymer.

    PubMed

    Zhu, Qing-Zhi; Degelmann, Petra; Niessner, Reinhard; Knopp, Dietmar

    2002-12-15

    A molecularly imprinted polymer (MIP) was synthesized using the herbicide metsulfuron-methyl (MSM) as a template, 2-(trifluoromethyl)acrylic acid as a functional monomer, divinylbenzene as a cross-linker, and dichloromethane as a porogen. This polymer was used as a solid-phase extraction material for the quantitative enrichment of five sulfonylureas (nicosulfuron, thifensulfuron-methyl, metsulfuron-methyl, sulfometuron-methyl, and chlorsulfuron) in natural water and soil samples and off-line coupled to a reversed-phase HPLC/diode array detection (HPLC/DAD). Washing solvent was optimized in terms of kind and volume for removing the matrix constituents nonspecifically adsorbed on the MIP. It has been shown that the nonspecific binding ability of the sulfonylureas to the polymer largely increased along with increasing the concentration of Ca2+ ions in the water sample, whereas complexation of divalent ions with EDTA eliminated this interference completely. The stability of MIP was tested by consecutive percolation of water sample, and it was shown that the performance of the MIP did not vary even after 200 enrichment and desorption cycles. Recoveries of the five sulfonylureas extracted from 1 L of tap water and surface water samples such as river water and rainwater at a 50 ng/L spike level were not lower than 96%. The recoveries of sulfonylureas extracted from 10-g soil sample at the 50 microg/kg level were in the range of 71-139%. Depending on the particular compound, the limit of detection varied from 2 to 14 ng/L in water and from 5 to 12 microg/kg in soil samples. The MIP was also compared with a commercially available C-18 column and an immunoaffinity support with encapsulated polyclonal anti-MSM antibodies in sol-gel glass. PMID:12521169

  20. Study on a pattern classification method of soil quality based on simplified learning sample dataset

    USGS Publications Warehouse

    Zhang, J.; Liu, S.; Hu, Y.; Tian, Y.

    2011-01-01

    Based on the massive soil information in current soil quality grade evaluation, this paper constructed an intelligent classification approach of soil quality grade depending on classical sampling techniques and disordered multiclassification Logistic regression model. As a case study to determine the learning sample capacity under certain confidence level and estimation accuracy, and use c-means algorithm to automatically extract the simplified learning sample dataset from the cultivated soil quality grade evaluation database for the study area, Long chuan county in Guangdong province, a disordered Logistic classifier model was then built and the calculation analysis steps of soil quality grade intelligent classification were given. The result indicated that the soil quality grade can be effectively learned and predicted by the extracted simplified dataset through this method, which changed the traditional method for soil quality grade evaluation. ?? 2011 IEEE.

  1. Mobility, bioavailability, and toxic effects of cadmium in soil samples

    Microsoft Academic Search

    Z. Prokop; P Cupr; V Zlevorova-Zlamalikova; J Komarek; L Dusek; I Holoubek

    2003-01-01

    Total concentration is not a reliable indicator of metal mobility or bioavailability in soils. The physicochemical form determines the behavior of metals in soils and hence the toxicity toward terrestrial biota. The main objectives of this study were the application and comparison of three approaches for the evaluation of cadmium behavior in soil samples. The mobility and bioavailability of cadmium

  2. Planning Considerations Related to Collecting and Analyzing Samples of the Martian Soils

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Mellon, Mike T.; Ming, Douglas W.; Morris, Richard V.; Noble, Sarah K.; Sullivan, Robert J.; Taylor, Lawrence A.; Beaty, David W.

    2014-01-01

    The Mars Sample Return (MSR) End-to-End International Science Analysis Group (E2E-iSAG [1]) established scientific objectives associ-ated with Mars returned-sample science that require the return and investigation of one or more soil samples. Soil is defined here as loose, unconsolidated materials with no implication for the presence or absence of or-ganic components. The proposed Mars 2020 (M-2020) rover is likely to collect and cache soil in addition to rock samples [2], which could be followed by future sample retrieval and return missions. Here we discuss key scientific consid-erations for sampling and caching soil samples on the proposed M-2020 rover, as well as the state in which samples would need to be preserved when received by analysts on Earth. We are seeking feedback on these draft plans as input to mission requirement formulation. A related planning exercise on rocks is reported in an accompanying abstract [3].

  3. Effective soil moisture sampling depth of L-band radiometry

    NASA Astrophysics Data System (ADS)

    Escorihuela, M. J.; Kerr, Y. H.; Chanzy, A.; Wigneron, J. P.

    2009-04-01

    In the near future two new satellite missions, the Soil Moisture and Ocean Salinity (SMOS) and the Soil Moisture Active Passive (SMAP) will be providing for the first time global mapping of surface soil moisture based on radiometric measurements at L-band. For operational applications involving microwave radiometry, soil moisture is generally estimated by inverting a simple model of soil microwave emission. Several field and airborne campaigns have been carried out in order to test, validate and better understand radiative transfer models at L-band. Some of them have shown that in order to accurately model bare soil emission, it was necessary to adjust one parameter as a function of soil moisture. In this way, an exponential and linear dependency of roughness with soil moisture was found by Wigneron et al. 2001 and Escorihuela et al. 2007 respectively. While Schneeberger et al. 2004 fitted a coherent emission model with a transition zone whose thickness depended also in soil moisture. A sensitivity of soil roughness to soil moisture was also find for airborne L-band microwave data during the COSMOS campaign Saleh et al. 2008. This kind of parameterizations pose the problem that are site dependent and thus their application at the satellite scale is not straight forward. Furthermore, they seem to indicate that the actual effective soil moisture sampling depth is somewhat different that the one provided by the field sensors. The aim of this study is thus to analyze the influence of the soil moisture sampling depth in the parameterizations of soil emission in microwave radiometry at L-band. Brightness temperature, soil moisture and temperature profiles were measured over a bare soil. A more detailed profile of surface soil moisture was obtained with a soil heat and water flows mechanistic model. It was found that (1) the effective soil moisture sampling depth is shallower than provided by widely used field moisture sensors, (2) the effective soil moisture sampling depth depended on soil moisture. This conclusions are crucial for the calibration and validation of remote sensing data at L-band. A parameterization for soil moisture sampling depth at L-band is proposed.

  4. Approaches to Sampling and Sample Pretreatments for Metal Speciation in Soils and Sediments

    Microsoft Academic Search

    R. Rubio; A. M. Ure

    1993-01-01

    The main aspects of sampling and sample pretreatment in metal speciation studies of soils and sediments are discussed. The risks of sample contamination by the use of inappropriate materials, containers and tools as well as the possibilities of losses of analyte during sample handling are pointed out. Field sampling methods are described and minimum sample weight criteria for representative sampling

  5. Field portable XRF analysis of environmental samples.

    PubMed

    Kalnicky, D J; Singhvi, R

    2001-05-01

    One of the critical factors for successfully conducting contamination characterization, removal, and remedial operations at hazardous waste sites is rapid and appropriate response to analyze samples in a timely fashion. Turnaround time associated with off-site analysis is often too slow to support efficient utilization of the data. Field portable X-ray fluorescence (FPXRF) techniques provide viable and effective analytical approaches to meet on-site analysis needs for many types of environmental samples. Applications include the in situ analysis of metals in soils and sediments, thin films/particulates, and lead in paint. PMID:11267748

  6. Sample size in factor analysis

    Microsoft Academic Search

    Robert C. MacCallum; Keith F. Widaman; Shaobo Zhang; Sehee Hong

    1999-01-01

    In the factor analysis literature, much attention has be;;n given to the issue of sample size. It is widely understood that the use of larger samples in applica- tions of factor analysis tends to provide results such that sample factor loadings are more precise estimates of population loadings and are also more stable, or les s variable, across repeated sampling.

  7. Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples

    NASA Astrophysics Data System (ADS)

    Fujishiro, F.; Ishii, K.; Matsuyama, S.; Arai, H.; Ishizaki, A.; Osada, N.; Sugai, H.; Kusano, K.; Nozawa, Y.; Yamauchi, S.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Koshio, S.; Watanabe, K.; Suzuki, Y.

    2014-01-01

    Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ˜0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds.

  8. Comparison of soil solution sampling techniques to assess metal fluxes from contaminated soil to groundwater.

    PubMed

    Coutelot, F; Sappin-Didier, V; Keller, C; Atteia, O

    2014-12-01

    The unsaturated zone plays a major role in elemental fluxes in terrestrial ecosystems. A representative chemical analysis of soil pore water is required for the interpretation of soil chemical phenomena and particularly to assess Trace Elements (TEs) mobility. This requires an optimal sampling system to avoid modification of the extracted soil water chemistry and allow for an accurate estimation of solute fluxes. In this paper, the chemical composition of soil solutions sampled by Rhizon® samplers connected to a standard syringe was compared to two other types of suction probes (Rhizon®?+?vacuum tube and Rhizon®?+?diverted flow system). We investigated the effects of different vacuum application procedures on concentrations of spiked elements (Cr, As, Zn) mixed as powder into the first 20 cm of 100-cm columns and non-spiked elements (Ca, Na, Mg) concentrations in two types of columns (SiO2 sand and a mixture of kaolinite?+?SiO2 sand substrates). Rhizon® was installed at different depths. The metals concentrations showed that (i) in sand, peak concentrations cannot be correctly sampled, thus the flux cannot be estimated, and the errors can easily reach a factor 2; (ii) in sand?+?clay columns, peak concentrations were larger, indicating that they could be sampled but, due to sorption on clay, it was not possible to compare fluxes at different depths. The different samplers tested were not able to reflect the elemental flux to groundwater and, although the Rhizon®?+?syringe device was more accurate, the best solution remains to be the use of a lysimeter, whose bottom is kept continuously at a suction close to the one existing in the soil. PMID:25277861

  9. Advanced multivariate analysis to assess remediation of hydrocarbons in soils.

    PubMed

    Lin, Deborah S; Taylor, Peter; Tibbett, Mark

    2014-10-01

    Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation. PMID:25028320

  10. Challenges associated with sampling dynamic soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The determination of dynamic soil properties (DSPs) for agricultural practices poses significant challenges, particularly in the context of values derived as part of the National Soil Survey. Although DSPs have been defined as those properties that change over human time scales, limits on the time ...

  11. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1977-01-01

    The surface composition of lunar fines, the solar wind sputtering process, and the profile of reduced Fe in lunar samples are reported. Atomic absorption studies of trace metal, especially lead, distribution in lunar fines samples are described.

  12. A sampling method for preventing cross contamination of soil samples obtained from intact cores

    Microsoft Academic Search

    D. R. Jackson; J. Dragun; C. Lawrence; K. Lamber

    1989-01-01

    A subsurface soil sampling method was developed to prevent cross contamination of adjacent soil core samples. This method is useful for conducting remedial investigations of chemically contaminated sites. The sampling device consisted of a split steel tube fitted with a hardened steel cutting shoe and is capable of extracting an intact core 13 cm in diameter to a depth of

  13. A computer program integrating a multichannel analyzer with gamma analysis for the estimation of {sup 226} Ra concentration in soil samples

    SciTech Connect

    Wilson, J. E.

    1992-08-01

    A new hardware/software system has been implemented using the existing three-regions-of-interest method for determining the concentration of {sup 226}Ra in soil samples for the Pollutant Assessment Group of the Oak Ridge National Laboratory. Consisting of a personal computer containing a multichannel analyzer, the system utilizes a new program combining the multichannel analyzer with a program analyzing gamma-radiation spectra for {sup 226}Ra concentrations. This program uses a menu interface to minimize and simplify the tasks of system operation.

  14. A computer program integrating a multichannel analyzer with gamma analysis for the estimation of sup 226 Ra concentration in soil samples

    SciTech Connect

    Wilson, J. E.

    1992-08-01

    A new hardware/software system has been implemented using the existing three-regions-of-interest method for determining the concentration of {sup 226}Ra in soil samples for the Pollutant Assessment Group of the Oak Ridge National Laboratory. Consisting of a personal computer containing a multichannel analyzer, the system utilizes a new program combining the multichannel analyzer with a program analyzing gamma-radiation spectra for {sup 226}Ra concentrations. This program uses a menu interface to minimize and simplify the tasks of system operation.

  15. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1983-01-01

    The evolution of the lunar regolith under solar wind and micrometeorite bombardment is discussed as well as the size distribution of ultrafine iron in lunar soil. The most important characteristics of complex graphite, sulfide, arsenide, palladium, and platinum mineralization in a pegmatoid pyroxenite of the Stillwater Complex in Montana are examined. Oblique reflected light micrographs and backscattered electron SEM images of the graphite associations are included.

  16. Characterization of Apollo Bulk Soil Samples Under Simulated Lunar Conditions

    NASA Astrophysics Data System (ADS)

    Donaldson Hanna, K. L.; Pieters, C. M.; Thomas, I.; Bowles, N. E.; Greenhagen, B. T.

    2013-12-01

    Remote observations provide key insights into the composition and evolution of planetary surfaces. A fundamentally important component to any remote compositional analysis of planetary surfaces is laboratory measurements of well-characterized samples measured under the appropriate environmental conditions. The vacuum environment of airless bodies like the Moon creates a steep thermal gradient in the upper hundreds of microns of regolith. Lab studies of particulate rocks and minerals as well as selected lunar soils under vacuum and lunar-like conditions have identified significant effects of this thermal gradient on thermal infrared (TIR) spectral measurements [e.g. Logan et al. 1973, Salisbury and Walter 1989, Thomas et al. 2012, Donaldson Hanna et al. 2012]. Such lab studies demonstrate the high sensitivity of TIR emissivity spectra to environmental conditions under which they are measured. To best understand the effects of the near surface-environment of the Moon, a consortium of four institutions with the capabilities of characterizing lunar samples was created. The goal of the Thermal Infrared Emission Studies of Lunar Surface Compositions Consortium (TIRES-LSCC) is to characterize Apollo bulk soil samples with a range of compositions and maturities in simulated lunar conditions to provide better context for the spectral effects due to varying compositions and soil maturity as well as for the interpretation of data obtained by the LRO Diviner Lunar Radiometer and future lunar and airless body thermal emission spectrometers. An initial set of thermal infrared emissivity measurements of the bulk lunar soil samples will be made in three of the laboratories included in the TIRES-LSCC: the Asteroid and Lunar Environment Chamber (ALEC) in RELAB at Brown University, the Simulated Lunar Environment chamber in the Planetary Spectroscopy Facility (PSF) at the University of Oxford, and the Simulated Airless Body Emission Laboratory (SABEL) at the Jet Propulsion Laboratory (JPL). While the design and workings of each chamber are slightly different, the chambers are functionally similar. In each chamber, we simulate the lunar environment by: (1) pumping the chambers to vacuum pressures (<10-3 mbar), which is sufficient to simulate lunar heat transport processes within the sample, (2) cooling the chambers with liquid nitrogen to simulate the cold space environment that the Moon radiates into, and (3) heating the samples from below, above, or both to set-up thermal gradients similar to those experienced in the upper hundreds of microns at the lunar surface. Each laboratory and chamber has its own strengths and collaborating amongst multiple laboratories will provide us the unique opportunity to do a rigorous characterization of the lunar samples as well as cross-laboratory calibrations. Laboratory measurements of bulk lunar soil samples are compared with Diviner data to understand: (1) how to accurately simulate conditions of the near-surface environment of the Moon in the lab and (2) the difference between returned samples and undisturbed lunar soils in their native setting. Both are integral for constraining thermally derived compositions and properties of the lunar surface from current (Diviner) and future TIR datasets.

  17. How Well Does Zone Sampling Based On Soil Electrical Conductivity Maps Represent Soil Variability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zone soil sampling is a method in which a field sampling is based on identifying homogenous areas using an easy to measure ancillary attribute such as apparent soil electrical conductivity (ECa). This study determined if ECa-directed zone sampling in two fields in northeastern Colorado could correc...

  18. Improving soil protein extraction for metaproteome analysis and glomalin-related soil protein detection.

    PubMed

    Chen, Shaoning; Rillig, Matthias C; Wang, Wei

    2009-11-01

    Soil contains low amounts of protein but high amounts of interfering substances. Current extraction methods for soil protein cannot produce high-quality samples suitable for proteomic analysis. To resolve the problem, we devised a sequential extraction method, through sequentially extracting soil in citrate and SDS buffers, followed by phenol extraction. The method allows for obtaining applicable 1-D and 2-D protein profiles with various agricultural soils and detecting glomalin-related soil protein. The method may be a valuable tool for soil proteomics. PMID:19743425

  19. Use of combustion apparatus for low-level ⁹⁹Tc separations from soil samples

    Microsoft Academic Search

    Keiko Tagami; Shigeo Uchida

    1999-01-01

    Analysis data of global fallout ⁹⁹Tc in environmental samples should give useful information for predicting the nuclide's behavior. However, due to its low concentration and analytical difficulties with environmental samples, there are not many data. The authors improved a simple separation method, which had been previously reported for Tc in soil samples and used a combustion apparatus. In this study,

  20. Nutrient variation in forest soil samples due to time of sampling and method of storage

    Microsoft Academic Search

    Y. Lundell

    1987-01-01

    Summary  This study was carried out in order to assess the importance of storage procedures and time of sampling for the results of\\u000a routine chemical analyses of forest soils.\\u000a \\u000a Humus and mineral soil samples were collected at five-week intervals during two growing seasons from a sample plot in a coniferous\\u000a forest in northern Sweden. The samples were either air-dried (+35C) or

  1. Acetochlor persistence in surface and subsurface soil samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although degradation data for herbicides are essential in understanding their potential to be environmental contaminants and are indispensable inputs in computer-based modeling of the herbicides’ fate in the environment, most available data only concern surface soils. Soil samples, collected at two ...

  2. Radiochemical analyses of radiologically-contaminated soil samples in support of transport modeling

    Microsoft Academic Search

    D. J. Sims; W. S. Andrews; X. Wang; K. A. M. Creber

    2008-01-01

    In 1951, unsaturated prairie soil was contaminated with fission products and actinides. Fifty years later, in 2001, soil samples\\u000a were collected from the contaminated site. This paper describes the techniques used to analyze these samples, including gamma-spectroscopy\\u000a (GS) for 137Cs, neutron activation analysis (NAA\\/GS) for 238U, liquid scintillation counting (LSC) for 90Sr and inductively coupled plasma mass spectroscopy (ICP-MS) for

  3. Sample storage for soil enzyme activity and bacterial community profiles

    Microsoft Academic Search

    K. Wallenius; H. Rita; S. Simpanen; A. Mikkonen; R. M. Niemi

    2010-01-01

    Storage of samples is often an unavoidable step in environmental data collection, since available analytical capacity seldom permits immediate processing of large sample sets needed for representative data. In microbiological soil studies, sample pretreatments may have a strong influence on measurement results, and thus careful consideration is required in the selection of storage conditions. The aim of this study was

  4. ASTM sampling methods and analytical validation for lead in paint, dust, soil, and air

    SciTech Connect

    Ashley, K.; Schlecht, P.C. [Dept. of Health and Human Services, Cincinnati, OH (United States); Song, R.; Feng, A. [Computer Sciences Corp., Cincinnati, OH (United States); DeWalt, G. [QuanTech, Rosslyn, VA (United States); McKnight, M.E. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1996-12-31

    ASTM Subcommittee E06.23 on Abatement/Mitigation of Lead Hazards has developed a number of standards that are concerned with the sampling of leas in environmental media, namely paint, dust, soil and airborne particulate. An ASTM practice for the collection of airborne particulate lead in the workplace has been published. New ASTM standards for the collection of dry paint film samples, surface soil samples, and surface dust wipe samples for subsequent lead analysis have also been promulgated. Other draft standards pertinent to lead sampling are under development. The ASTM standards concerned with lead sample collection are accompanied by separate sample preparation standard practices and a standard analysis method. Sample preparation and analytical methods have been evaluated by interlaboratory testing; such analyses may be used to assess the efficacy of sampling protocols.

  5. Determining the relative importance of soil sample locations to predict risk of child lead exposure.

    PubMed

    Zahran, Sammy; Mielke, Howard W; McElmurry, Shawn P; Filippelli, Gabriel M; Laidlaw, Mark A S; Taylor, Mark P

    2013-10-01

    Soil lead in urban neighborhoods is a known predictor of child blood lead levels. In this paper, we address the question where one ought to concentrate soil sample collection efforts to efficiently predict children at-risk for soil Pb exposure. Two extensive data sets are combined, including 5467 surface soil samples collected from 286 census tracts, and geo-referenced blood Pb data for 55,551 children in metropolitan New Orleans, USA. Random intercept least squares, random intercept logistic, and quantile regression results indicate that soils collected within 1m adjacent to residential streets most reliably predict child blood Pb outcomes in child blood Pb levels. Regression decomposition results show that residential street soils account for 39.7% of between-neighborhood explained variation, followed by busy street soils (21.97%), open space soils (20.25%), and home foundation soils (18.71%). Just as the age of housing stock is used as a statistical shortcut for child risk of exposure to lead-based paint, our results indicate that one can shortcut the characterization of child risk of exposure to neighborhood soil Pb by concentrating sampling efforts within 1m and adjacent to residential and busy streets, while significantly reducing the total costs of collection and analysis. This efficiency gain can help advance proactive upstream, preventive methods of environmental Pb discovery. PMID:23973618

  6. Analysis of soil and water for TATB content

    SciTech Connect

    Schaffer, C.L.

    1992-11-01

    A reverse-phase liquid chromatography (HPLC) method was developed for the analysis of TATB in soil samples. The soil samples were extracted with dimethylformamide (DMF). The extract was analyzed to determine the TATB content in the soil. The detection limit using this procedure was 2 parts/million (ppm) for TATB in the soil. An organic free sample of water was saturated with TATB. The water was filtered through a 0.2-{mu} filter, then injected into both a reverse-phase and normal-phase liquid chromatograph system. No peaks were detected. Therefore, the solubility of TATB in water is less than the detection limits of the chromatograph methods.

  7. In situ analysis of Mars soil sample with the sam gcms instrumentation onboard Curiosity : interpretation and comparison of measurements done at Rocknest and Yelloknife bay sites

    NASA Astrophysics Data System (ADS)

    Szopa, Cyril; Coll, Patrice; Cabane, Michel; Coscia, David; Buch, Arnaud; Francois, Pascaline; Millan, Maeva; Teinturier, Sammy; Navarro-Gonzales, Rafael; Glavin, Daniel; Freissinet, Caro; Steele, Andrew; Eigenbrode, Jen; Mahaffy, Paul

    2014-05-01

    The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was chosen to achieve all the measurements done up today, as it was designed for the separation of a wide range of volatile organic molecules. Three solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, and two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013), Science, [4] Ming D. et al. (2013), Science, 32, 64-67. Acknowledgements: SAM-GC team acknowledges support from the French Space Agency (CNES), French National Programme of Planetology (PNP), National French Council (CNRS), Pierre Simon Laplace Institute, Institut Universitaire de France (IUF) and ESEP Labex.

  8. Neutron activation analysis of wheat samples.

    PubMed

    Galinha, C; Anawar, H M; Freitas, M C; Pacheco, A M G; Almeida-Silva, M; Coutinho, J; Maçãs, B; Almeida, A S

    2011-11-01

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordão/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation, Jordão presented higher transfer coefficients than Marialva, in particular for Co, Fe, and Na. The Jordão and Marialva cultivars accumulated not statistically significant different concentrations of different metals. The advantages of using INAA are the multielementality, low detection limits and use of solid samples (no need of digestion). PMID:21367605

  9. Extraction and determination of sulfonylurea herbicides in water and soil samples by using ultrasound-assisted surfactant-enhanced emulsification microextraction and analysis by high-performance liquid chromatography.

    PubMed

    Ghobadi, Masoomeh; Yamini, Yadollah; Ebrahimpour, Behnam

    2015-02-01

    An ultrasound-assisted surfactant-enhanced emulsification microextraction (UASEME) with low-density extraction solvents was developed for the extraction of sulfonylurea herbicides from water and soil samples prior to high-performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). In this technique, a surfactant was used as emulsifier which could enhance the dispersion of water-immiscible extraction solvent into aqueous phase and was favorable for the mass-transfer of the analytes from aqueous phase to organic phase. The target analytes were extracted into an extraction phase (Aliquat-336 in 1-octanol) and dispersed in an aqueous solution. After extraction and phase separation, the organic solvent on top of the solution was withdrawn into a syringe and 20 µL of it was injected into a HPLC instrument for analysis. Influential factors in extraction were investigated and optimized. Under optimum experimental conditions, calibration curve was linear in the concentration range from 1 to 100 µg/L, with coefficients of estimation (R(2) values) varying from 0.9928 to 0.9952, and satisfactory repeatabilities (4.7soil samples, was studied. The obtained results indicated that the proposed method is efficient, fast and inexpensive for extraction and determination of sulfonylurea herbicides in environmental aqueous and soil samples. PMID:25463855

  10. Sampling and Analysis Instruction for Borehole Sampling at 118-B-1 Burial Ground

    SciTech Connect

    W. S. Thompson

    2007-04-02

    The Washington Closure Hanford (WCH) Field Remediation Project has removed all of the disposed materials and contaminated soil from the 118-B-1 Burial Ground with the exception of tritium-contaminated soil that is believed to extend from the bottom of the present excavation to groundwater and is believed to contribute to tritium contamination observed at down-gradient monitoring Well 199-B8-6. This sampling and analysis instruction (SAI) provides the requirements for sample collection and laboratory analysis for characterization of the vertical distribution of tritium contamination in the vadose zone soil below the 118-B-1 Burial Ground remedial action excavation.

  11. Zinc sorption by iron oxides and soil samples 

    E-print Network

    Yli-Halla, Markku Juhani

    1989-01-01

    ZINC SORPTION BY IRON OMIDES AND SOIL SAMPLES A Thesis MARKKU JUHANI YLI-HALLA Submitted to the Office of Graduate Studies Texas A&M University in a partial fulfillment of the requirements for the degree of MASTEF. OR SCIENCE May 1989 Majo...'r Subject: Soil Science ZINC SORPTION BY IRON OXIDES AND SOIL SAMPLES A Thesis by MARKKU JUHANI YLI-HALLA Approved as to style and content by: Richard H. Loeppert (Chair of Committee) A. Clearfield (Membe ) Joe B. Dixon (Member) E. C. A. Runge...

  12. Zinc sorption by iron oxides and soil samples

    E-print Network

    Yli-Halla, Markku Juhani

    1989-01-01

    ZINC SORPTION BY IRON OMIDES AND SOIL SAMPLES A Thesis MARKKU JUHANI YLI-HALLA Submitted to the Office of Graduate Studies Texas A&M University in a partial fulfillment of the requirements for the degree of MASTEF. OR SCIENCE May 1989 Majo...'r Subject: Soil Science ZINC SORPTION BY IRON OXIDES AND SOIL SAMPLES A Thesis by MARKKU JUHANI YLI-HALLA Approved as to style and content by: Richard H. Loeppert (Chair of Committee) A. Clearfield (Membe ) Joe B. Dixon (Member) E. C. A. Runge...

  13. Soil Sampling Plan for the transuranic storage area soil overburden and final report: Soil overburden sampling at the RWMC transuranic storage area

    SciTech Connect

    Stanisich, S.N.

    1994-12-01

    This Soil Sampling Plan (SSP) has been developed to provide detailed procedural guidance for field sampling and chemical and radionuclide analysis of selected areas of soil covering waste stored at the Transuranic Storage Area (TSA) at the Idaho National Engineering Laboratory`s (INEL) Radioactive Waste Management Complex (RWMC). The format and content of this SSP represents a complimentary hybrid of INEL Waste Management--Environmental Restoration Program, and Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Remedial Investigation/Feasibility Study (RI/FS) sampling guidance documentation. This sampling plan also functions as a Quality Assurance Project Plan (QAPP). The QAPP as a controlling mechanism during sampling to ensure that all data collected are valid, reliabile, and defensible. This document outlines organization, objectives and quality assurance/quality control (QA/QC) activities to achieve the desired data quality goals. The QA/QC requirements for this project are outlined in the Data Collection Quality Assurance Plan (DCQAP) for the Buried Waste Program. The DCQAP is a program plan and does not outline the site specific requirements for the scope of work covered by this SSP.

  14. Effective soil moisture sampling depth of L-band radiometry: A case study M.J. Escorihuela a,

    E-print Network

    Paris-Sud XI, Université de

    Effective soil moisture sampling depth of L-band radiometry: A case study M.J. Escorihuela a, , A radiometry at L-band. The analysis is based on brightness temperature, soil moisture and temperature for the calibration and validation of remote sensing data at L-band. 1. Introduction Soil moisture plays a key role

  15. Rapid method for estimating the total concentration of volatile organic compounds in soil samples

    SciTech Connect

    Hewitt, A.D.; Lukash, N.J.E. [Army Cold Regions Research and Engineering Lab., Hanover, NH (United States)

    1997-12-31

    This report describes an on-site method of estimating the total concentration of volatile organic compounds (VOCs) in soil, relative to a site-specific 0.2 mg/kg standard. The purpose of this decision tool is to allow on-site sampling activities to incorporate the appropriate soil sample collection and handling protocols necessary for high- and low-level gas chromatography/mass spectrometry analysis. Combining rapid on-site analysis with sampling procedures that limit substrate disaggregation and exposure improves efforts to achieve site-representative estimates for vadose zone contamination.

  16. In situ analysis of the martian soil

    NASA Astrophysics Data System (ADS)

    Buch, A.; Sternberg, R.; Meunier, D.; Marchetti, C.; Raulin, F.

    2003-04-01

    Mars is presently the most likely planet on which there is a possibility of finding extinct and/or extant life. The next exploratory missions to Mars will focus on key organic molecules such as carboxylic and amino acids. In the frame of the Sample Analysis on Mars (SAM) GC/MS-based experiment aiming at performing in situ chemical analysis of the Martian soil, an automated extraction process coupled to chemical derivatization is under development. The extraction efficiency of various organic solvents has been tested (and compared to that of water), first on standard soil samples and then, on Martian soil analogues such as the Akatama desert (Chili) soil. It was shown that propanol is the best solvent, allowing high extraction yields for both amino and carboxylic acids with space compatible extraction time (15 to 30 min) when the extraction procedure is assisted by sonication. A highly sensititive and quantitative single-step derivatization reaction using as N-(tert-butyldimethylsilyl)-trifluoroacétanamide (MTBSTFA) as silylation agent was then used, prior to GC/MS analysis. The extraction and the derivatization process will take place in an automated miniaturized reactor, which is currently under investigation.

  17. A concise method for mine soils analysis

    SciTech Connect

    Winkler, S.; Wildeman, T.; Robinson, R.; Herron, J.

    1999-07-01

    A large number of abandoned hard rock mines exist in Colorado and other mountain west states, many on public property. Public pressure and resulting policy changes have become a driving force in the reclamation of these sites. Two of the key reclamation issues for these sites in the occurrence of acid forming materials (AFMs) in mine soils, and acid mine drainage (AMD) issuing from mine audits. An AMD treatment system design project for the Forest Queen mine in Colorado's San Juan mountains raised the need for a simple, useable method for analysis of mine land soils, both for suitability as a construction material, and to determine the AFM content and potential for acid release. The authors have developed a simple, stepwise, go - no go test for the analysis of mine soils. Samples were collected from a variety of sites in the Silverton, CO area, and subjected to three tiers of tests including: paste pH, Eh, and 10% HCl fizz test; then total digestion in HNO{sub 3}/HCl, neutralization potential, exposure to meteoric water, and toxicity content leaching procedure (TCLP). All elemental analyses were performed with an inductively-coupled plasma (ICP) spectrometer. Elimination of samples via the first two testing tiers left two remaining samples, which were subsequently subjected to column and sequential batch tests, with further elemental analysis by ICP. Based on these tests, one sample was chosen for suitability as a constructing material for the Forest Queen treatment system basins. Further simplification, and testing on two pairs of independent soil samples, has resulted in a final analytical method suitable for general use.

  18. Study of seleniferous soils using instrumental neutron activation analysis.

    PubMed

    Srivastava, Alok; Bains, G S; Acharya, R; Reddy, A V R

    2011-05-01

    Soil samples from the seleniferous region of Punjab State in India were analyzed by instrumental neutron activation analysis (INAA) using reactor neutrons and high resolution ?-ray spectrometry. Samples were collected from three different depths namely surface, root and geological bed zones. Concentrations of 15 elements including selenium and arsenic were determined by relative method. For comparison purposes, soil samples collected from a non-seleniferous region were also analyzed. PMID:21334213

  19. Potential metal pollution in grass and soil samples around brickworks

    Microsoft Academic Search

    H.-J. Brumsack

    1977-01-01

    42 soil samples, chosen from 4 transects around brickworks in the Göttingen area (W. Germany), were examined for the toxic elements Bi, Tl, Cd, Pb, and Zn, as well as Fe, Mn, and organic carbon. In 44 plant samples (grass) taken from the same sites the trace elements Cd, Pb, and Zn and the matrix elements K, Ca, Mg, and

  20. Management Zone Soil Sampling on the Texas High Plains

    E-print Network

    Mukhtar, Saqib

    to contamination of ground- and surface waters. Our research has shown that soil sampling for nitrate- nitrogen in nitrogen and phos- phorus imbalances and contamination of surface waters. Nutrient contamination of ground fertilizer costs while maintaining yield potential. Zone sampling also protects ground- and surface water

  1. Tool samples subsurface soil free of surface contaminants

    NASA Technical Reports Server (NTRS)

    Kemmerer, W. W.; Wooley, B. C.

    1967-01-01

    Sampling device obtains pure subsurface soil that is free of any foreign substance that may exist on the surface. It is introduced through a contaminated surface area in a closed condition, opened, and a subsurface sample collected, sealed while in the subsurface position, and then withdrawn.

  2. Sampling Irrigated Soils for Salinity Appraisal. 

    E-print Network

    Miyamoto, S.

    1988-01-01

    by Equation [3] if the variability is totally unknown. The deviate range should be determined based on the sensitivity of a given crop to salinity, such as given by Maas and Hoffman (1977). Usually 15 percent at the surface and 20 percent at sub surface... as the salt index of the area, providing that each sample represents an equal share of the sampled area. This value can be compared against the crop salt tolerance values cited, for example, by Maas and Hoffman (1977). When waters having conductance...

  3. Using Soil Apparent Electrical Conductivity to Optimize Sampling of Soil Penetration Resistance and to Improve the Estimations of Spatial Patterns of Soil Compaction

    PubMed Central

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Bueno Lema, Javier; Valcárcel Armesto, Montserrat; Silva, Ênio Farias França e

    2014-01-01

    This study presents a combined application of an EM38DD for assessing soil apparent electrical conductivity (ECa) and a dual-sensor vertical penetrometer Veris-3000 for measuring soil electrical conductivity (ECveris) and soil resistance to penetration (PR). The measurements were made at a 6?ha field cropped with forage maize under no-tillage after sowing and located in Northwestern Spain. The objective was to use data from ECa for improving the estimation of soil PR. First, data of ECa were used to determine the optimized sampling scheme of the soil PR in 40 points. Then, correlation analysis showed a significant negative relationship between soil PR and ECa, ranging from ?0.36 to ?0.70 for the studied soil layers. The spatial dependence of soil PR was best described by spherical models in most soil layers. However, below 0.50?m the spatial pattern of soil PR showed pure nugget effect, which could be due to the limited number of PR data used in these layers as the values of this parameter often were above the range measured by our equipment (5.5?MPa). The use of ECa as secondary variable slightly improved the estimation of PR by universal cokriging, when compared with kriging. PMID:25610899

  4. SOIL SAMPLING DERELICT, UNDERUSED AND NEGLECTED

    E-print Network

    enforcement of Part IIA of the Environmental Protection Act 1990). Public confidence could be irreversibly and time-consuming activity but the consequences are too perilous to be ignored. Good sampling design to understand the difference between assessing for contamination under Part IIA of the Environmental Protection

  5. DIRECT/DELAYED RESPONSE PROJECT: FIELD OPERATIONS AND QUALITY ASSURANCE REPORT FOR SOIL SAMPLING AND PREPARATION IN THE NORTHEASTERN UNITED STATES. VOLUME 2. PREPARATION

    EPA Science Inventory

    The Direct/Delayed Response Project Soil Survey includes the mapping, characterization, sampling, preparation, and analysis of soils in order to assess watershed response to acidic deposition within various regions of the United States. Soil samples collected by sampling crews in...

  6. Sampling for Regional Monitoring of Nematode Communities in Agricultural Soils

    PubMed Central

    Neher, D. A.; Campbell, C. L.

    1996-01-01

    Regional assessment of nematode communities to monitor the condition or ecological health of agricultural soils requires sampling programs with measures of known reliability and the ability to detect differences over time. Numbers of fields sampled in a region, samples taken per field, and subsamples assayed per sample must be balanced with cost to provide the best sampling scheme. We used components of variance from statewide surveys in North Carolina (1992) and Nebraska (1993) to estimate number of (i) fields to be sampled; (ii) 20-core, composite soil samples to be obtained for each field; and (iii) subsamples to be assayed for each composite sample to detect a specified amount of change in index values within a geographic region. Variances for these three components were used to estimate the degree of reliability for five ecologically based indices (four measures of maturity and one of diversity) of nematode communities. Total variance for maturity and diversity indices, based upon communities of free-living nematodes, was greater in North Carolina than in Nebraska; the opposite was true for indices based strictly upon maturity of communities of plant-parasitic nematodes or of all nematodes in soil. Variability within samples was greater in North Carolina than in Nebraska, especially for maturity indices based only upon free-living nematodes. We identified two possible sampling strategies for a regional survey: Option 1, with two independent samples per field and a single subsample assayed per sample, which would provide a reliability ratio value ?0.6 for most indices; and Option 2, with three independent samples per field and two subsamples assayed per sample, which would provide a reliability ratio value ?0.7 for several indices. When cost was considered, Option 1 was the better strategy. Number of fields to be sampled within a region or state varied with the index chosen; with specific indices, however, a 10% change in mean index value could be detected with a sample of 50 to 100 fields. PMID:19277135

  7. High throughput phospholipid fatty acid analysis of soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phospholipid fatty acid (PLFA) analysis is widely used to characterize microbial communities in soil and other types of environmental samples. The analysis involves many steps and, as typically performed, 1.5 to 2 days are required to prepare a batch of approximately 20 samples, depending on the exa...

  8. Issues of sampling scale and transferability for digital soil mapping

    NASA Astrophysics Data System (ADS)

    Miller, Bradley; Koszinski, Sylvia; Hierold, Wilfried; Schröder, Boris; Wehrhan, Marc; Sommer, Michael

    2015-04-01

    Mapping the current state of soil landscapes requires strategic sampling, which has implications for capturing variation and for cost. Addressing issues of sustainability requires soil mapping at the landscape scale. Such an endeavor, however, needs to consider relationships between sampling scale, representation of spatial variation, and accuracy of estimated error. Also, the importance of extending information from sampled points increases with larger map extents due to limitations in practical sampling density. Therefore, the purpose of this research is to examine the ability of different spatial models to predict a soil property for a range of scales and for areas beyond the sampling extent. The respective spatial modelling methods were tested on sample sets taken at two different scales and independently validated on samples taken at three different scales. Each spatial modelling method produced a similar, but unique, map of soil organic carbon content in the topsoil. Kriging approaches excelled at internal spatial prediction, particularly with more densely spaced sample points. Because kriging depends on spatial autocorrelation, kriging performance was naturally poor in areas of spatial extrapolation. In contrast, the spatial regression approach tested could continue to perform well in spatial extrapolation areas depending on the covariates used. In this case, the problem of induction allowed for the potential of problems in some areas, which was less predictable. Spatial regression approaches have the ability to map soil properties at the landscape scale at a high resolution, but are highly dependent on the inclusion of the full feature space in the calibration of the model and the availability of transferable covariates.

  9. From Grid Soil Sampling to Management Zones in the Southern High Plains

    E-print Network

    Mukhtar, Saqib

    of the soil properties for each zone are similar with either sampling method. In terms of the yield dataFrom Grid Soil Sampling to Management Zones in the Southern High Plains Grid soil sampling from 0 on the Southern High Plain of Texas as well. Grid- soil sampling has received much criticism as a practice

  10. Rapid Determination Of Radiostrontium In Large Soil Samples

    SciTech Connect

    Maxwell, Sherrod L.; Culligan, Brian K.; Shaw, Patrick J.

    2012-05-24

    A new method for the determination of radiostrontium in large soil samples has been developed at the Savannah River Environmental Laboratory (Aiken, SC, USA) that allows rapid preconcentration and separation of strontium in large soil samples for the measurement of strontium isotopes by gas flow proportional counting. The need for rapid analyses in the event of a Radiological Dispersive Device (RDD) or Improvised Nuclear Device (IND) event is well-known. In addition, the recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid analyses for radionuclides in environmental samples in the event of a nuclear accident. The method employs a novel pre-concentration step that utilizes an iron hydroxide precipitation (enhanced with calcium phosphate) followed by a final calcium fluoride precipitation to remove silicates and other matrix components. The pre-concentration steps, in combination with a rapid Sr Resin separation using vacuum box technology, allow very large soil samples to be analyzed for {sup 89,90}Sr using gas flow proportional counting with a lower method detection limit. The calcium fluoride precipitation eliminates column flow problems typically associated with large amounts of silicates in large soil samples.

  11. Phase chemistry of Apollo 14 soil sample 14259

    NASA Technical Reports Server (NTRS)

    1974-01-01

    0.26 gm of Apollo 14 soil sample 14259 has been investigated by optical, X-ray diffraction and electron microprobe techniques. The mineral abundances in the soil are 45% plagioclase, 41% pyroxene, 7% olivine, 3% oxides, 2% K-feldspar, 1% nickel-iron and less than 1% troilite. Eleven percent of the glasses have compositions like those of mare basalts or mare soils and are believed to be mare-derived. Eighty-six percent of the glasses are equivalent in composition to basalts that have higher Al, and lower Ca/Al and Fe/Mg ratios than mare basalts. The most abundant compositional type is named Fra Mauro basaltic glass and is subdivided into three related types. The other major glass type in the soil corresponds in composition to anorthositic gabbro.

  12. Diffuse Reflectance Spectroscopy for Total Carbon Analysis of Hawaiian Soils

    NASA Astrophysics Data System (ADS)

    McDowell, M. L.; Bruland, G. L.; Deenik, J. L.; Grunwald, S.; Uchida, R.

    2010-12-01

    Accurate assessment of total carbon (Ct) content is important for fertility and nutrient management of soils, as well as for carbon sequestration studies. The non-destructive analysis of soils by diffuse reflectance spectroscopy (DRS) is a potential supplement or alternative to the traditional time-consuming and costly combustion method of Ct analysis, especially in spatial or temporal studies where sample numbers are large. We investigate the use of the visible to near-infrared (VNIR) and mid-infrared (MIR) spectra of soils coupled with chemometric analysis to determine their Ct content. Our specific focus is on Hawaiian soils of agricultural importance. Though this technique has been introduced to the soil community, it has yet to be fully tested and used in practical applications for all soil types, and this is especially true for Hawaii. In short, DRS characterizes and differentiates materials based on the variation of the light reflected by a material at certain wavelengths. This spectrum is dependent on the material’s composition, structure, and physical state. Multivariate chemometric analysis unravels the information in a set of spectra that can help predict a property such as Ct. This study benefits from the remarkably diverse soils of Hawaii. Our sample set includes 216 soil samples from 145 pedons from the main Hawaiian Islands archived at the National Soil Survey Center in Lincoln, NE, along with more than 50 newly-collected samples from Kauai, Oahu, Molokai, and Maui. In total, over 90 series from 10 of the 12 soil orders are represented. The Ct values of these samples range from < 1% - 55%. We anticipate that the diverse nature of our sample set will ensure a model with applicability to a wide variety of soils, both in Hawaii and globally. We have measured the VNIR and MIR spectra of these samples and obtained their Ct values by dry combustion. Our initial analyses are conducted using only samples obtained from the Lincoln archive. In this preliminary case, we use Partial Least Squares (PLS) regression with cross validation to develop a prediction model for soils of unknown carbon content given only their spectral signature. We find R2 values of greater than 0.93 for the MIR spectra and 0.87 for the VNIR spectra, indicating a strong ability to correlate a soil’s spectrum with its Ct content. We build on these encouraging results by continuing chemometric analyses using the full data set, different data subsets, separate model calibration and validation groups, combined VNIR and MIR spectra, and exploring different data pretreatment options and variations to the PLS parameters.

  13. Potential metal pollution in grass and soil samples around brickworks

    Microsoft Academic Search

    H.-J. Brumsack; GSttingen W. Germany

    1977-01-01

    42 soil samples, chosen from 4 transects around brickworks in the Gttingen area (W. Germany), were examined for the toxic\\u000a elements Bi, Tl, Cd, Pb, and Zn, as well as Fe, Mn, and organic carbon. In 44 plant samples (grass) taken from the same sites\\u000a the trace elements Cd, Pb, and Zn and the matrix elements K, Ca, Mg, and

  14. SOIL SAMPLING QUALITY ASSURANCE USER'S GUIDE--SECOND EDITION

    EPA Science Inventory

    Use of the first edition of the "Soil Sampling Quality Assurance User's Guide" as a text in a series of seminars conducted at various U.S. EPA Regional Offices elicited many constructive comments for improvements from seminar attendees. Many of these suggested improvements have b...

  15. Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil.

    PubMed

    Pacchioni, Ralfo G; Carvalho, Fabíola M; Thompson, Claudia E; Faustino, André L F; Nicolini, Fernanda; Pereira, Tatiana S; Silva, Rita C B; Cantão, Mauricio E; Gerber, Alexandra; Vasconcelos, Ana T R; Agnez-Lima, Lucymara F

    2014-06-01

    Although microorganisms play crucial roles in ecosystems, metagenomic analyses of soil samples are quite scarce, especially in the Southern Hemisphere. In this work, the microbial diversity of soil samples from an Atlantic Forest and Caatinga was analyzed using a metagenomic approach. Proteobacteria and Actinobacteria were the dominant phyla in both samples. Among which, a significant proportion of stress-resistant bacteria associated to organic matter degradation was found. Sequences related to metabolism of amino acids, nitrogen, and DNA and stress resistance were more frequent in Caatinga soil, while the forest sample showed the highest occurrence of hits annotated in phosphorous metabolism, defense mechanisms, and aromatic compound degradation subsystems. The principal component analysis (PCA) showed that our samples are close to the desert metagenomes in relation to taxonomy, but are more similar to rhizosphere microbiota in relation to the functional profiles. The data indicate that soil characteristics affect the taxonomic and functional distribution; these characteristics include low nutrient content, high drainage (both are sandy soils), vegetation, and exposure to stress. In both samples, a rapid turnover of organic matter with low greenhouse gas emission was suggested by the functional profiles obtained, reinforcing the importance of preserving natural areas. PMID:24706600

  16. Pragmatic soil survey design using flexible Latin hypercube sampling

    NASA Astrophysics Data System (ADS)

    Clifford, David; Payne, James E.; Pringle, M. J.; Searle, Ross; Butler, Nathan

    2014-06-01

    We review and give a practical example of Latin hypercube sampling in soil science using an approach we call flexible Latin hypercube sampling. Recent studies of soil properties in large and remote regions have highlighted problems with the conventional Latin hypercube sampling approach. It is often impractical to travel far from tracks and roads to collect samples, and survey planning should recognise this fact. Another problem is how to handle target sites that, for whatever reason, are impractical to sample - should one just move on to the next target or choose something in the locality that is accessible? Working within a Latin hypercube that spans the covariate space, selecting an alternative site is hard to do optimally. We propose flexible Latin hypercube sampling as a means of avoiding these problems. Flexible Latin hypercube sampling involves simulated annealing for optimally selecting accessible sites from a region. The sampling protocol also produces an ordered list of alternative sites close to the primary target site, should the primary target site prove inaccessible. We highlight the use of this design through a broad-scale sampling exercise in the Burdekin catchment of north Queensland, Australia. We highlight the robustness of our design through a simulation study where up to 50% of target sites may be inaccessible.

  17. 340 representative sampling verification tank sampling and analysis plan

    SciTech Connect

    Halgren, D.L., Westinghouse Hanford

    1996-09-09

    This Sampling and Analysis Plan contains requirements for characterizing the 340 vault tank 1. The objective of the sampling and characterization is to determine if the tank is homogeneous when agitated and which sampling method provides the most representative sample. A secondary objective is to collect and characterize solid samples.

  18. 340 Representative sampling verification tank sampling and analysis plan

    SciTech Connect

    Olander, A.R., Westinghouse Hanford

    1996-08-07

    This Sampling and Analysis Plan contains requirements for characterizing the 340 vault tank 1. The objective of the sampling and characterization is to determine if the tank is homogeneous when agitated and which sampling method provides the most representative sample. A secondary objective is to collect and characterize solid samples.

  19. Determination of pesticides in soil samples by solid phase extraction disks

    Microsoft Academic Search

    M. J. Redondo; M. J. Ruiz; R. Boluda

    1993-01-01

    A systematic study comparing the methodology and analytical results obtained in an investigation of seven pesticide residues (Molinate, Atrazine, Carbofuran, Pirimicarb, Prometryn, Malathion and Tetrachlorvinphos) in soil samples is reported. Solid-phase extraction (SPE) using glass columns and 47 mm disks of octyl and octadecyl-bonded silica was used in the pesticide analysis. The best extraction efficiency and clearest extracts are obtained

  20. Effect of sterilization on the scientific value of a returned Mars soil sample

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L.

    1977-01-01

    It has been proposed that a soil sample from Mars be sterilized prior to return to earth for analysis in order to prevent contamination of earth by hazardous microbial species potentially present in the sample. This paper summarizes experiments on the effect of various methods of sterilization of terrestrial soils on their biological and organic constituents. Sterilization by dry heat caused significant decreases in amino acid content, increases in amino acid racemization, and obliteration of cellular structure. Co-60 irradiation had little effect on amino acid racemization and morphology, and Co-60 irradiation combined with dry heat resulted in retention of some enzymatic activity. Treatment with chemical fixative preserved cellular structure

  1. Cold ultrasonic acid extraction of copper, lead and zinc from soil samples

    Microsoft Academic Search

    R Al-Merey; M. S Al-Masri; R Bozou

    2002-01-01

    A cold ultrasonic acid method for extracting Pb, Cu and Zn from soil samples has been studied. This work focused on studying the experimental condition for extrating trace metals from soil samples at ambient temperature (?25°C) using Syrian soil samples; the same conditions were applied to reference soil samples(SL-1, Soil-7, SDM, and BCR-32). A short exposure time (4h), and 2ml

  2. Mapping Soil Salinity with ECa-Directed Soil Sampling: History, Protocols, Guidelines, Applications, and Future Research Trends

    NASA Astrophysics Data System (ADS)

    Corwin, Dennis

    2014-05-01

    Soil salinity is a spatially complex and dynamic property of soil that influences crop yields when the threshold salinity level is exceeded. Mapping soil salinity is necessary for soil classification, reclamation, crop selection, and site-specific irrigation management of salt-affected soils in the arid and semi-arid agricultural regions of the world. Because of its spatial and temporal heterogeneity soil salinity is difficult to map and monitor at field scales. There are various methods for characterizing soil salinity variability, but none of these approaches has been as extensively investigated and is as reliable and cost effective as apparent soil electrical conductivity (ECa) directed soil sampling. Geospatial measurements of ECa are well-suited for characterizing soil salinity spatial distribution because they are reliable, quick, and easy to take with GPS-based mobilized ECa measurement equipment. However, ECa is influenced by a variety of soil properties, which makes the measurement of soil salinity at field scale problematic. It is the goal of this presentation to provide an overview of the field-scale characterization of soil salinity distribution using ECa-directed soil sampling. A historical perspective, protocols and guidelines, strengths and limitations, applications, and future trends are presented for characterizing spatial and temporal variation in soil salinity using ECa-directed soil sampling. Land resource managers, farmers, extension specialists, soil classification specialists, and Natural Resource Conservation Service field staff are the beneficiaries of field-scale maps of soil salinity.

  3. Local versus field scale soil heterogeneity characterization - a challenge for representative sampling in pollution studies

    NASA Astrophysics Data System (ADS)

    Kardanpour, Z.; Jacobsen, O. S.; Esbensen, K. H.

    2015-06-01

    This study is a contribution to development of a heterogeneity characterisation facility for "next generation" sampling aimed at more realistic and controllable pesticide variability in laboratory pots in experimental environmental contaminant assessment. The role of soil heterogeneity on quantification of a set of exemplar parameters, organic matter, loss on ignition (LOI), biomass, soil microbiology, MCPA sorption and mineralization is described, including a brief background on how heterogeneity affects sampling/monitoring procedures in environmental pollutant studies. The Theory of Sampling (TOS) and variographic analysis has been applied to develop a fit-for-purpose heterogeneity characterization approach. All parameters were assessed in large-scale profile (1-100 m) vs. small-scale (0.1-1 m) replication sampling pattern. Variographic profiles of experimental analytical results concludes that it is essential to sample at locations with less than a 2.5 m distance interval to benefit from spatial auto-correlation and thereby avoid unnecessary, inflated compositional variation in experimental pots; this range is an inherent characteristic of the soil heterogeneity and will differ among soils types. This study has a significant carrying-over potential for related research areas e.g. soil science, contamination studies, and environmental monitoring and environmental chemistry.

  4. Assessment of sampling and analytical uncertainty of trace element contents in arable field soils.

    PubMed

    Buczko, Uwe; Kuchenbuch, Rolf O; Ubelhör, Walter; Nätscher, Ludwig

    2012-07-01

    Assessment of trace element contents in soils is required in Germany (and other countries) before sewage sludge application on arable soils. The reliability of measured element contents is affected by measurement uncertainty, which consists of components due to (1) sampling, (2) laboratory repeatability (intra-lab) and (3) reproducibility (between-lab). A complete characterization of average trace element contents in field soils should encompass the uncertainty of all these components. The objectives of this study were to elucidate the magnitude and relative proportions of uncertainty components for the metals As, B, Cd, Co, Cr, Mo, Ni, Pb, Tl and Zn in three arable fields of different field-scale heterogeneity, based on a collaborative trial (CT) (standardized procedure) and two sampling proficiency tests (PT) (individual sampling procedure). To obtain reference values and estimates of field-scale heterogeneity, a detailed reference sampling was conducted. Components of uncertainty (sampling person, sampling repetition, laboratory) were estimated by variance component analysis, whereas reproducibility uncertainty was estimated using results from numerous laboratory proficiency tests. Sampling uncertainty in general increased with field-scale heterogeneity; however, total uncertainty was mostly dominated by (total) laboratory uncertainty. Reproducibility analytical uncertainty was on average by a factor of about 3 higher than repeatability uncertainty. Therefore, analysis within one single laboratory and, for heterogeneous fields, a reduction of sampling uncertainty (for instance by larger numbers of sample increments and/or a denser coverage of the field area) would be most effective to reduce total uncertainty. On the other hand, when only intra-laboratory analytical uncertainty was considered, total sampling uncertainty on average prevailed over analytical uncertainty by a factor of 2. Both sampling and laboratory repeatability uncertainty were highly variable depending not only on the analyte but also on the field and the sampling trial. Comparison of PT with CT sampling suggests that standardization of sampling protocols reduces sampling uncertainty, especially for fields of low heterogeneity. PMID:21833733

  5. The role of different soil sample digestion methods on trace elements analysis: a comparison of ICP-MS and INAA measurement results

    Microsoft Academic Search

    Stefania Gaudino; Chiara Galas; Maria Belli; Sabrina Barbizzi; Paolo de Zorzi; Radojko Ja?imovi?; Zvonka Jeran; Alessandra Pati; Umberto Sansone

    2007-01-01

    The measurement of trace-element concentration in soil, sediment and waste, is generally a combination of a digestion procedure\\u000a for dissolution of elements and a subsequent measurement of the dissolved elements. “Partial” and “total” digestion methods\\u000a can be used in environmental monitoring activities. To compare measurement results obtained by different methods, it is crucial\\u000a to determine and to maintain control of

  6. Phase chemistry of Apollo 14 soil sample 14259

    NASA Technical Reports Server (NTRS)

    Aitken, F. K.; Anderson, D. H.; Bass, M. N.; Brown, R. W.; Butler, P., Jr.; Heiken, G.; Jakes, P.; Reid, A. M.; Ridley, W. I.; Takeda, H.

    1974-01-01

    Optical, X-ray-diffraction and electron-microprobe techniques were used to investigate 0.26 gm of Apollo 14 soil sample 14259. Major element microprobe analyses were made of 470 mineral grains and 388 glass grains. The mineral abundances in the soil are 45% plagioclase, 41% pyroxene, 7% olivine, 3% oxides, 2% K-feldspar; 1% nickel-iron, and less than 1% troilite. The glasses have a wide range of compositions but preferred values are evident and are interpreted as representative of rock types contributing to the soil at the Fra Mauro site. Eleven per cent of the glasses have compositions like those of mare basalts or mare soils and are believed to be mare-derived. Eighty-six per cent of the glasses are equivalent in composition to basalts that have higher Al, and lower Ca/Al and Fe/Mg ratios than mare basalts. The most abundant compositional type is named Fra Mauro basaltic glass and is subdivided into three related types. The other major glass type in the soil corresponds in composition to anorthositic gabbro.

  7. Energy analysis sample building data

    NASA Astrophysics Data System (ADS)

    1981-03-01

    Sample building data for energy calculations necessary for the comparative analysis between the proposed energy calculation procedure and the procedures using comprehensive hourly simulation of HVAC systems are presented. The comparison calculation includes data for the terminal reheat system, double-duct system, heat reclaim system, and standard VAV system for a hypothetical 20-story office building in Washington, DC. Each is evaluated in conjunction with electric centrifugal chiller and gas-fired boiler.

  8. NIR Spectroscopy: An Alternative for Soil Analysis

    Microsoft Academic Search

    Mariela Fuentes; Claudia Hidalgo; I. González-Martín; J. M. Hernández-Hierro; B. Govaerts; K. D. Sayre; Jorge Etchevers

    2012-01-01

    Advances in laboratory instrumentation and chemometrics provide alternatives to traditional methods of conducting soil chemical analysis. One of these is infrared diffuse reflectance spectroscopy in the near-infrared spectral range (NIRS). Herein we report the results of a multinational study to develop useful calibrations associating NIRS spectra with laboratory-measured results for total soil carbon (C), total soil nitrogen (N), ?C, and

  9. Sequential extraction studies on homogenized forest soil samples

    Microsoft Academic Search

    J. Arunachalam; H. Emons; B. Krasnodebska; C. Mohl

    1996-01-01

    Sequential extraction studies on two forest soil samples from the German Environmental Specimen Bank are presented. The reagents used in the five-step extraction scheme are: dilute ammonium acetate; 0.1 M acetic acid; 0.1 M hydroxylamine hydroehloride in 25% acetic acid; hydrogen peroxide; and hot concentrated nitric acid. Several elements in the extracts have been determined by JCP-MS and ICP-AES. The

  10. Assessment of the Amino Sugar-Nitrogen Test on Iowa Soils: I. Evaluation of Soil Sampling and Corn Management Practices

    Microsoft Academic Search

    D. W. Barker; J. E. Sawyer; M. M. Al-Kaisi

    A soil N test capable of measuring the soil organic N fraction that contributes to plant available N would be useful to corn (Zea mays L.) producers as they make N fertilizer rate decisions. The objectives of this study were to evaluate the effects of soil sampling time, sampling depth, long-term crop rotation, and long-term N fertilizer application on the

  11. Molecular identification of Coccidioides spp. in soil samples from Brazil

    PubMed Central

    2011-01-01

    Background Since 1991 several outbreaks of acute coccidioidomycosis (CM) were diagnosed in the semi-arid Northeast of Brazil, mainly related to disturbance of armadillo burrows caused by hunters while digging them for the capture of these animals. This activity causes dust contaminated with arthroconidia of Coccidioides posadasii, which, once inhaled, cause the mycosis. We report on the identification of C. posadasii in soil samples related to outbreaks of CM. Results Twenty four soil samples had their DNA extracted and subsequently submitted to a semi-nested PCR technique using specific primers. While only 6 (25%) soil samples were positive for C. posadasii by mice inoculation, all (100%) were positive by the molecular tool. Conclusion This methodology represents a simple, sensitive and specific molecular technique to determine the environmental distribution of Coccidioides spp. in endemic areas, but cannot distinguish the species. Moreover, it may be useful to identify culture isolates. Key-words: 1. Coccidioidomycosis. 2. Coccidioides spp. 3. C. posadasii. 4. Semi-arid. 5. Semi-nested PCR PMID:21575248

  12. Effect of ashing temperature on accurate determination of plutonium in soil samples.

    PubMed

    Wang, Zhongtang; Yang, Guosheng; Zheng, Jian; Cao, Liguo; Yu, Haijun; Zhu, Yanbei; Tagami, Keiko; Uchida, Shigeo

    2015-06-01

    An acidic leaching method using HNO3 is widely employed to release the global fallout Pu from soil samples for further chemical separations in radioecology and toxicology studies and in many applications using Pu as a useful tracer. In the method's sample ash treatment step to decompose organic matter in soil, various ashing temperatures (400-900 °C) are used; however, the effect of ashing temperature on the accurate Pu analysis has not been well investigated. In this study, two standard reference soils (IAEA-soil-6 and IAEA-375) were used to determine the ashing temperature effect (from 375 to 600 °C) on the HNO3 leaching method. The Pu analytical results of both standard reference materials showed that lower (239+240)Pu activity was observed when the ashing temperature exceeded 450 °C, and the (239+240)Pu activity continued to decrease as the ashing temperature was raised. Approximately 40% of the Pu content could not be leached out by concentrated HNO3 after ashing for 4 h at 600 °C. The Pu loss was attributed to the formation of refractory materials, which are insoluble in HNO3 solution. This hypothesis was confirmed by the XRD analysis of soil samples, which revealed that plagioclase-like silicate materials were formed after high-temperature ashing. To ensure Pu release efficiency in HNO3 leaching, we recommend 450 °C as the ideal ashing temperature. This recommendation is also useful for analysis of other important artificial radionuclides (e.g., (137)Cs, (90)Sr, (241)Am) for which an ashing process is needed to decompose the organic content in soil samples. PMID:25938267

  13. RAPID SEPARATION METHOD FOR 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES

    Microsoft Academic Search

    S. Maxwell; B. Culligan; G. Noyes

    2010-01-01

    A new rapid method for the determination of ²³Np and Pu isotopes in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for large soil samples. The new soil method utilizes an acid leaching method, iron\\/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid

  14. GY SAMPLING THEORY IN ENVIRONMENTAL STUDIES 1: ASSESSING SOIL SPLITTING PROTOCOLS

    EPA Science Inventory

    Five soil sample splitting methods (riffle splitting, paper cone riffle splitting, fractional shoveling, coning and quartering, and grab sampling) were evaluated with synthetic samples to verify Pierre Gy sampling theory expectations. Individually prepared samples consisting of l...

  15. Soil organic carbon covariance with soil water content; a geostatistical analysis in cropland fields

    NASA Astrophysics Data System (ADS)

    Manns, H. R.; Berg, A. A.; von Bertoldi, P.

    2013-12-01

    Soil texture has traditionally represented the rate of soil water drainage influencing soil water content (WC) in the soil characteristic curves, hydrological models and remote sensing field studies. Although soil organic carbon (OC) has been shown to significantly increase the water holding capacity of soil in individual field studies, evidence is required to consider soil OC as a significant factor in soil WC variability at the scale of a remote sensing footprint (25 km2). The relationship of soil OC to soil WC was evaluated over 50 fields during the Soil Moisture Active Passive (SMAP) soil WC field sampling campaign over southern Manitoba, Canada. On each field, soil WC was measured at 16 sample points, at 100 m spacing to 5 cm depth with Stevens hydra probe sensors on 16 sampling dates from June 7 to July 19, 2012. Soil cores were also taken at sampling sites on each field, each sampling day, to determine gravimetric moisture, bulk density and particle size distribution. On 4 of the sampling dates, soil OC was also determined by loss on ignition on the dried soil samples from all fields. Semivariograms were created from the field mean soil OC and field mean surface soil WC sampled at midrow, over all cropland fields and averaged over all sampling dates. The semivariogram models explained a distinct relationship of both soil OC and WC within the soil over a range of 5 km with a Gaussian curve. The variance in soil that soil OC and WC have in common was a similar Gaussian curve in the cross variogram. Following spatial interpolation with Kriging, the spatial maps of soil OC and WC were also very similar with high covariance over the majority of the sampling area. The close correlation between soil OC and WC suggests they are structurally related in the soil. Soil carbon could thus assist in improving downscaling methods for remotely sensed soil WC and act as a surrogate for interpolation of soil WC.

  16. Sampling design optimization for multivariate soil mapping, case study from Hungary

    NASA Astrophysics Data System (ADS)

    Szatmári, Gábor; Pásztor, László; Barta, Károly

    2014-05-01

    Direct observations of the soil are important for two main reasons in Digital Soil Mapping (DSM). First, they are used to characterize the relationship between the soil property of interest and the auxiliary information. Second, they are used to improve the predictions based on the auxiliary information. Hence there is a strong necessity to elaborate a well-established soil sampling strategy based on geostatistical tools, prior knowledge and available resources before the samples are actually collected from the area of interest. Fieldwork and laboratory analyses are the most expensive and labor-intensive part of DSM, meanwhile the collected samples and the measured data have a remarkable influence on the spatial predictions and their uncertainty. Numerous sampling strategy optimization techniques developed in the past decades. One of these optimization techniques is Spatial Simulated Annealing (SSA) that has been frequently used in soil surveys to minimize the average universal kriging variance. The benefit of the technique is, that the surveyor can optimize the sampling design for fixed number of observations taking auxiliary information, previously collected samples and inaccessible areas into account. The requirements are the known form of the regression model and the spatial structure of the residuals of the model. Another restriction is, that the technique is able to optimize the sampling design for just one target soil variable. However, in practice a soil survey usually aims to describe the spatial distribution of not just one but several pedological variables. In the recent paper we present a procedure developed in R-code to simultaneously optimize the sampling design by SSA for two soil variables using spatially averaged universal kriging variance as optimization criterion. Soil Organic Matter (SOM) content and rooting depth were chosen for this purpose. The methodology is illustrated with a legacy data set from a study area in Central Hungary. Legacy soil data were collected in the end of the 1980s in the framework of the National Land Evaluation Programme. The auxiliary data were derived from the digital elevation model and from the land-use-map of the study area. Soil data were used to characterize the relationship among the soil variables and the auxiliary information and model the spatial structures of the residuals of the regression models. The known form of the regression models and semivariogram models were used through SSA to optimize a completely new sampling design for 120 soil observations. The optimization process was done twice. First separately for SOM content and rooting depth and second for both soil variables simultaneously based on the combined form of regression models and spatial structures of the residuals. The optimized sampling designs were compared and evaluated by various statistical, geostatistical and spatial statistical (point pattern analysis) tools to examine how they depend on the regression models and semivariogram models and how they cover the geographical and feature space. In the near future, we want to extend the methodology for more than two pedological variables. Acknowledgement: Our work has been supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).

  17. Microscope Image of a Martian Soil Surface Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is the closest view of the material underneath NASA's Phoenix Mars Lander. This sample was taken from the top centimeter of the Martian soil, and this image from the lander's Optical Microscope demonstrates its overall composition.

    The soil is mostly composed of fine orange particles, and also contains larger grains, about a tenth of a millimeter in diameter, and of various colors. The soil is sticky, keeping together as a slab of material on the supporting substrate even though the substrate is tilted to the vertical.

    The fine orange grains are at or below the resolution of the Optical Microscope. Mixed into the soil is a small amount&mdashabout 0.5 percent&mdashof white grains, possibly of a salt. The larger grains range from black to almost transparent in appearance. At the bottom of the image, the shadows of the Atomic Force Microscope (AFM) beams are visible. This image is 1 millimeter x 2 millimeters.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  18. Interlaboratory evaluation of the ISO standard 11063 “Soil quality — Method to directly extract DNA from soil samples”

    Microsoft Academic Search

    I. Petric; L. Philippot; C. Abbate; A. Bispo; T. Chesnot; S. Hallin; K. Laval; T. Lebeau; P. Lemanceau; C. Leyval; K. Lindström; P. Pandard; E. Romero; A. Sarr; M. Schloter; P. Simonet; K. Smalla; B.-M. Wilke; F. Martin-Laurent

    2011-01-01

    Extracting DNA directly from micro-organisms living in soil is a crucial step for the molecular analysis of soil microbial communities. However, the use of a plethora of different soil DNA extraction protocols, each with its own bias, makes accurate data comparison difficult. To overcome this problem, a method for soil DNA extraction was proposed to the International Organization for Standardization

  19. Multifractal analysis of 2D gray soil images

    NASA Astrophysics Data System (ADS)

    González-Torres, Ivan; Losada, Juan Carlos; Heck, Richard; Tarquis, Ana M.

    2015-04-01

    Soil structure, understood as the spatial arrangement of soil pores, is one of the key factors in soil modelling processes. Geometric properties of individual and interpretation of the morphological parameters of pores can be estimated from thin sections or 3D Computed Tomography images (Tarquis et al., 2003), but there is no satisfactory method to binarized these images and quantify the complexity of their spatial arrangement (Tarquis et al., 2008, Tarquis et al., 2009; Baveye et al., 2010). The objective of this work was to apply a multifractal technique, their singularities (?) and f(?) spectra, to quantify it without applying any threshold (Gónzalez-Torres, 2014). Intact soil samples were collected from four horizons of an Argisol, formed on the Tertiary Barreiras group of formations in Pernambuco state, Brazil (Itapirema Experimental Station). The natural vegetation of the region is tropical, coastal rainforest. From each horizon, showing different porosities and spatial arrangements, three adjacent samples were taken having a set of twelve samples. The intact soil samples were imaged using an EVS (now GE Medical. London, Canada) MS-8 MicroCT scanner with 45 ?m pixel-1 resolution (256x256 pixels). Though some samples required paring to fit the 64 mm diameter imaging tubes, field orientation was maintained. References Baveye, P.C., M. Laba, W. Otten, L. Bouckaert, P. Dello, R.R. Goswami, D. Grinev, A. Houston, Yaoping Hu, Jianli Liu, S. Mooney, R. Pajor, S. Sleutel, A. Tarquis, Wei Wang, Qiao Wei, Mehmet Sezgin. Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data. Geoderma, 157, 51-63, 2010. González-Torres, Iván. Theory and application of multifractal analysis methods in images for the study of soil structure. Master thesis, UPM, 2014. Tarquis, A.M., R.J. Heck, J.B. Grau; J. Fabregat, M.E. Sanchez and J.M. Antón. Influence of Thresholding in Mass and Entropy Dimension of 3-D Soil Images. Nonlinear Process in Geophysics, 15, 881-891, 2008. Tarquis, A.M., R.J. Heck, D. Andina, A. Alvarez and J.M. Antón. Multifractal analysis and thresholding of 3D soil images. Ecological Complexity, 6, 230-239, 2009. Tarquis, A.M.; D. Giménez, A. Saa, M.C. Díaz. and J.M. Gascó. Scaling and Multiscaling of Soil Pore Systems Determined by Image Analysis. Scaling Methods in Soil Systems. Pachepsky, Radcliffe and Selim Eds., 19-33, 2003. CRC Press, Boca Ratón, Florida. Acknowledgements First author acknowledges the financial support obtained from Soil Imaging Laboratory (University of Gueplh, Canada) in 2014.

  20. Characterisation of a reference site for quantifying uncertainties related to soil sampling

    Microsoft Academic Search

    Sabrina Barbizzi; Paolo de Zorzi; Maria Belli; Alessandra Pati; Umberto Sansone; Luisa Stellato; Maria Barbina; Andrea Deluisa; Sandro Menegon; Valter Coletti

    2004-01-01

    The paper reports a methodology adopted to face problems related to quality assurance in soil sampling. The SOILSAMP project, funded by the Environmental Protection Agency of Italy (APAT), is aimed at (i) establishing protocols for soil sampling in different environments; (ii) assessing uncertainties associated with different soil sampling methods in order to select the “fit-for-purpose” method; (iii) qualifying, in term

  1. A Soil Sampling Intelligent System Based on Elastic Algorithm and GIS

    Microsoft Academic Search

    Yunping Chen; Xiu Wang; Chunjiang Zhao

    2009-01-01

    The fast and low-cost soil sampling methods is the key for precision agriculture (PA) to be applied widely. In this paper, a general framework of an intelligent system for soil sampling has been constructed. Five modules have been set up to response to some main function about soil sampling based on geographic information system (GIS) and Global Positioning System (GPS)

  2. UNIFYING QUANTITATIVE ANALYSIS OF SOIL TEXTURE

    EPA Science Inventory

    The soil texture triangle used by the U.S. Department of Agriculture is converted into a new texture diagram which contains all information in the original triangle, but additionally, gives mean particle size and particle size standard deviation of soil samples. Thus, mechanical ...

  3. DNA Biosensor for Rapid Detection of Genotoxic Compounds in Soil Samples

    PubMed Central

    Bagni, Graziana; Hernandez, Silvia; Mascini, Marco; Sturchio, Elena; Boccia, Priscilla; Marconi, Simona

    2005-01-01

    An electrochemical DNA-based biosensor is proposed as a fast and easy screening method for the detection of genotoxic compounds in soil samples. The biosensor was assembled by immobilising double stranded Calf thymus DNA on screen-printed electrodes. The interactions between DNA and environmental pollutants can cause variations of the electrochemical proprieties of DNA when they cause a DNA damage. Preliminary studies were performed using benzene, naphthalene and anthracene derivatives as model compounds. The effect of these compounds on the surface-confined DNA was found to be linearly related to their concentration in solution. On the other hand, the objective was to optimise the ultrasonic extraction conditions of these compounds from artificially spiked soil samples. Then, the applicability of such a biosensor was evaluated by analysing soil samples from an Italian region with ecological risk (ACNA of Cengio, SV). DNA biosensor for qualitative analysis of soil presented a good correlation with a semi-quantitative method for aromatic ring systems determination as fixed wavelength fluorescence and interestingly, according results were found also with other bioassays. This kind of biosensors represent a new, easy and fast way of analysis of polluted sites, therefore they can be used as early warnings devices in areas with ecological risk as in situ measurement.

  4. Metaproteomic analysis of ratoon sugarcane rhizospheric soil

    PubMed Central

    2013-01-01

    Background The current study was undertaken to elucidate the mechanism of yield decline in ratoon sugarcane using soil metaproteomics combined with community level physiological profiles (CLPP) analysis. Results The available stalk number, stalk diameter, single stalk weight and theoretical yield of ratoon cane (RS) were found to be significantly lower than those of plant cane (NS). The activities of several carbon, nitrogen and phosphorus processing enzymes, including invertase, peroxidase, urease and phosphomonoesterase were found to be significantly lower in RS soil than in NS soil. BIOLOG analysis indicated a significant decline in average well-color development (AWCD), Shannon’s diversity and evenness indices in RS soil as compared to NS soil. To profile the rhizospheric metaproteome, 109 soil protein spots with high resolution and repeatability were successfully identified. These proteins were found to be involved in carbohydrate/energy, amino acid, protein, nucleotide, auxin and secondary metabolisms, membrane transport, signal transduction and resistance, etc. Comparative metaproteomics analysis revealed that 38 proteins were differentially expressed in the RS soil as compared to the control soil or NS soil. Among these, most of the plant proteins related to carbohydrate and amino acid metabolism and stress response were up-regulated in RS soil. Furthermore, several microbial proteins related to membrane transport and signal transduction were up-regulated in RS soil. These proteins were speculated to function in root colonization by microbes. Conclusions Our experiments revealed that sugarcane ratooning practice induced significant changes in the soil enzyme activities, the catabolic diversity of microbial community, and the expression level of soil proteins. They influenced the biochemical processes in the rhizosphere ecosystem and mediated the interactions between plants and soil microbes. PMID:23773576

  5. Comparison of model- and design-based sampling strategies for characterizing spatial variablity with ECa-directed soil sampling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial variability has a profound influence on solute transport in the vadose zone, soil quality assessment, and site-specific crop management. Directed soil sampling based on geospatial measurements of apparent soil electrical conductivity (ECa) is a potential means of characterizing the spatial ...

  6. Soil sampling and isolation of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae).

    PubMed

    Orozco, Rousel A; Lee, Ming-Min; Stock, S Patricia

    2014-01-01

    Entomopathogenic nematodes (a.k.a. EPN) represent a group of soil-inhabiting nematodes that parasitize a wide range of insects. These nematodes belong to two families: Steinernematidae and Heterorhabditidae. Until now, more than 70 species have been described in the Steinernematidae and there are about 20 species in the Heterorhabditidae. The nematodes have a mutualistic partnership with Enterobacteriaceae bacteria and together they act as a potent insecticidal complex that kills a wide range of insect species. Herein, we focus on the most common techniques considered for collecting EPN from soil. The second part of this presentation focuses on the insect-baiting technique, a widely used approach for the isolation of EPN from soil samples, and the modified White trap technique which is used for the recovery of these nematodes from infected insects. These methods and techniques are key steps for the successful establishment of EPN cultures in the laboratory and also form the basis for other bioassays that consider these nematodes as model organisms for research in other biological disciplines. The techniques shown in this presentation correspond to those performed and/or designed by members of S. P. Stock laboratory as well as those described by various authors. PMID:25046023

  7. Spectral reflectance of surface soils - A statistical analysis

    NASA Technical Reports Server (NTRS)

    Crouse, K. R.; Henninger, D. L.; Thompson, D. R.

    1983-01-01

    The relationship of the physical and chemical properties of soils to their spectral reflectance as measured at six wavebands of Thematic Mapper (TM) aboard NASA's Landsat-4 satellite was examined. The results of performing regressions of over 20 soil properties on the six TM bands indicated that organic matter, water, clay, cation exchange capacity, and calcium were the properties most readily predicted from TM data. The middle infrared bands, bands 5 and 7, were the best bands for predicting soil properties, and the near infrared band, band 4, was nearly as good. Clustering 234 soil samples on the TM bands and characterizing the clusters on the basis of soil properties revealed several clear relationships between properties and reflectance. Discriminant analysis found organic matter, fine sand, base saturation, sand, extractable acidity, and water to be significant in discriminating among clusters.

  8. Pre-PCR DNA quantitation of soil and sediment samples: method development and instrument design

    Microsoft Academic Search

    P. C. Stark; K. I. Mullen; K. Banton; R. Russotti; D. Soran; C. R. Kuske

    2000-01-01

    A simple and straightforward method for the quantitation of dsDNA in soil and sediment matrices has been developed to support rapid, in-the-field PCR analysis of environmental samples. This method uses PicoGreen nucleic acid stain, and a combination of UV\\/Vis and fluorescence spectroscopy, to quantitate dsDNA in the presence of interfering humic materials. The practical utility of this approach is that

  9. Assessment of the Water-Extractable Genotoxic Potential of Soil Samples from Contaminated Sites

    Microsoft Academic Search

    Heike Ehrlichmann; Wolfgang Dott; Adolf Eisentraeger

    2000-01-01

    A screening method for the evaluation of the water-extractable genotoxic potential of soil is proposed. Due to the low sensitivity of genotoxicity test systems, PAD-1 resin was used as solid phase to concentrate less hydrophilic compounds from aqueous soil extracts. Concentrated and nonconcentrated aqueous soil extracts from 19 soil samples were evaluated using three genotoxicity assays: the umu test according

  10. Collecting cometary soil samples? Development of the ROSETTA sample acquisition system

    NASA Technical Reports Server (NTRS)

    Coste, P. A.; Fenzi, M.; Eiden, Michael

    1993-01-01

    In the reference scenario of the ROSETTA CNRS mission, the Sample Acquisition System is mounted on the Comet Lander. Its tasks are to acquire three kinds of cometary samples and to transfer them to the Earth Return Capsule. Operations are to be performed in vacuum and microgravity, on a probably rough and dusty surface, in a largely unknown material, at temperatures in the order of 100 K. The concept and operation of the Sample Acquisition System are presented. The design of the prototype corer and surface sampling tool, and of the equipment for testing them at cryogenic temperatures in ambient conditions and in vacuum in various materials representing cometary soil, are described. Results of recent preliminary tests performed in low temperature thermal vacuum in a cometary analog ice-dust mixture are provided.

  11. Precise and rapid determination of 238U\\/ 235U and uranium concentration in soil samples using thermal ionisation mass spectrometry

    Microsoft Academic Search

    Rex N Taylor; Ian W Croudace; Phillip E Warwick; Stephen J Dee

    1998-01-01

    Uranium isotopic composition and concentration have been determined on over 500 soil samples from the Greenham Common Air Base and surrounding Berkshire, UK, to detect potential contamination from nuclear sources. Due to the large number of samples involved in this study and the potentially subtle nature of the contamination a new method of analysis was developed which is both rapid

  12. Kriging analysis of soil properties

    Microsoft Academic Search

    Gilbert C. Sigua; Wayne H. Hudnall

    2008-01-01

    Background, aim, and scope  Soil as a landscape body contains wide ranges of physical, chemical, morphological, and mineralogical properties, both laterally\\u000a and vertically. Soils with similar properties and environments are expected to behave similarly. A statement on land use potential\\u000a will depend in part on the precision and accuracy of the statements that can be made about the soils. This information

  13. EFFECT OF Ca IONS IN SOLUTION TO Cs137 SORPTION INTO SOIL SAMPLES

    Microsoft Academic Search

    Budi Setiawan

    EFFECT OF Ca IONS IN SOLUTION TO Cs-137 SORPTION INTO SOIL SAMPLES. Experiment of effect of Ca ions exist in solution to sorption of Cs-137 radionuclide into soil samples have been done. In environment, Ca ion is a major constituens of mineral exists in a solution, also this mineral can come from the weathering of waste matrix\\/packages, and soil as

  14. Determination of Diazinon and Fenitrothion in Environmental Water and Soil Samples by HPLC

    Microsoft Academic Search

    M. E. Sánchez; R. Méndez; X. Gómez

    2003-01-01

    High performance liquid chromatography (HPLC) methods have been developed for the determination of the organophosphorus pesticides, diazinon, and fenitrothion in environmental water and soil samples; a simple and rapid sample preparation procedure using solid?phase extraction being developed in the case of water samples. In soil samples, the analytical procedure proposed consisted of a 10?min ultrasonic extraction of the target compounds

  15. QA/QC requirements for physical properties sampling and analysis

    SciTech Connect

    Innis, B.E.

    1993-07-21

    This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories also measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.

  16. Metallic phases in the Luna 24 soil samples

    NASA Technical Reports Server (NTRS)

    Friel, J. J.; Goldstein, J. I.

    1977-01-01

    The metal and sulfide phases in the Luna 24 soil samples were studied with the optical microscope and the electron microprobe. The compositions of the metal particles fall into three groups based on their Ni and Co contents: (1) Samples of meteoritic composition which have undergone metamorphism on the lunar surface. (2) Samples of submeteoritic, low Ni and low Co contents, including most of the metal particles observed. These particles are contained in glass and agglutinate particles and were probably formed by the mixing of meteoritic metal with lunar metal produced by the reduction of silicates during shock-impact. (3) Samples of high-CO content probably formed by mixing of meteoritic material with high-Co metal from the mare basalt or by fractional crystallization from a metal silicate melt. The sulfide minerals were also studied. These are almost pure FeS, and crystallized from a late stage liquid in the mare basalt. Three high-Ni sulfides were also found in the glass phase of agglutinates.

  17. Environmental sampling and analysis in support of NTI-3

    SciTech Connect

    McGuire, R.R.; Harrar, J.E.; Haas, J.S.; Eagle, R.J.; Andresen, B.D.

    1991-04-06

    The third National Trail Inspection took place at the Monsanto Chemical Plant in Luling, Louisiana. In order to test the effectiveness of environmental sampling (soil, water and air) in determining the nature of the chemical process in a given production plant and to examine the distance from a process building that samples can effectively be taken, we needed to select some materials that constituted components of process streams. Three materials were selected: 1. isopropyl amine for air monitoring, 2. 4-nitrophenol, one of the precursors in the acetaminophen process, and 3. an intermediate in the production of glyphosate for ROUNDUP that is known simply as glyphosate intermediated. LLNL did not participate in the air sampling nor the analysis for isopropyl amine. This paper discussed the steps in this experiment including sample collection, sample workshop, sample analysis the results and discussion and the conclusion. 3 figs., 6 tabs.

  18. Sample Drying Effects on Lead Bioaccessibility in Reduced Soil

    Microsoft Academic Search

    Olha Furman; Daniel G. Strawn; Steve McGeehan

    2007-01-01

    Risk-assessment tests of contaminated wetland soils often use ex- perimental protocols that artificially oxidize the soils. Oxidation may impact bioavailability of contaminants from the soils, creating erro- neous results and leading to improper management and remediation. The goal of this study was to determine if oxygenation of reduced sediments and soils influences Pb bioaccessibility measurements. The study site is located

  19. A Stepwise Procedure for Assessment of the Microbial Respiratory Activity of Soil Samples Contaminated with Organic Compounds

    Microsoft Academic Search

    Adolf Eisentraeger; Gudrun Maxam; Jean-Paul Rila; Wolfgang Dott

    2000-01-01

    Soil respiration measurements are used frequently for the characterization of soil samples. Identical methods are used for the ecotoxicological characterization of contaminated soil samples as well as for quantification of the active microbial biomass in agriculturally used soils. In this study four soil samples contaminated with large amounts of volatile organic compounds, polyaromatic hydrocarbons, or nitroaromatic compounds are characterized after

  20. An investigation of arsenic contamination in Peninsular Malaysia based on Centella asiatica and soil samples.

    PubMed

    Ong, G H; Yap, C K; Maziah, M; Suhaimi, H; Tan, S G

    2013-04-01

    The first objective of this study was to provide data of arsenic (As) levels in Peninsular Malaysia based on soil samples and accumulation of As in Centella asiatica collected from 12 sampling sites in Peninsular Malaysia. The second objective was to assess the accumulation of As in transplanted C. asiatica between control and semi-polluted or polluted sites. Four sites were selected which were UPM (clean site), Balakong (semi-polluted site), Seri Kembangan (semi-polluted site) and Juru (polluted site). The As concentrations of plant and soil samples were determined by Instrumental Neutron Activation Analysis. The As levels ranged from 9.38 to 57.05 ?g/g dw in soils, 0.21 to 4.33 ?g/g dw in leaves, 0.18 to 1.83 ?g/g dw in stems and 1.32-20.76 ?g/g dw in roots. All sampling sites had As levels exceeding the CCME guideline (12 ?g/g dw) except for Kelantan, P. Pauh, and Senawang with P. Klang having the highest As in soil (57.05 ?g/g dw). In C. asiatica, As accumulation was highest in roots followed by leaves and stems. When the As level in soils were higher, the uptake of As in plants would also be increased. After the transplantation of plants to semi-polluted and polluted sites for 3 weeks, all concentration factors were greater than 50 % of the initial As level. The elimination factor was around 39 % when the plants were transplanted back to the clean sites for 3 weeks. The findings of the present study indicated that the leaves, stems and roots of C. asiatica are ideal biomonitors of As contamination. The present data results the most comprehensive data obtained on As levels in Malaysia. PMID:22821327

  1. DIRECT/DELAYED RESPONSE PROJECT: FIELD OPERATIONS AND QUALITY ASSURANCE REPORT FOR SOIL SAMPLING AND PREPARATION IN THE SOUTHERN BLUE RIDGE PROVINCE OF THE UNITED STATES. VOLUME 2. PREPARATION

    EPA Science Inventory

    The Direct/Delayed Response Project Soil Survey includes the mapping, characterization, sampling, preparation, and analysis of soils in order to assess watershed response to acidic deposition within various regions of the United States. Soil samples collected by sampling crews in...

  2. Probing dissolved organic matter in the critical zone: a comparison between in situ sampling and aqueous soil extracts

    NASA Astrophysics Data System (ADS)

    Perdrial, J. N.; Perdrial, N.; Harpold, A. A.; Peterson, A. M.; Vasquez, A.; Chorover, J.

    2011-12-01

    Analyzing dissolved organic matter (DOM) of soil solution constitutes an integral activity in critical zone science as important insights to nutrient and carbon cycling and mineral weathering processes can be gained. Soil solution can be obtained by a variety of approaches such as by in situ zero-tension and tension samplers or by performing soil extracts in the lab. It is generally preferred to obtain soil solution in situ with the least amount of disturbance. However, in water limited environments, such as in southwestern US, in situ sampling is only possible during few hydrologic events and soil extracts are often employed. In order to evaluate the performance of different sampling approaches for OM analysis, results from aqueous soil extracts were compared with in situ samples obtained from suction cups and passive capillary wick samplers (PCAP's). Soil from an OA-horizon of mixed conifer forest Jemez River Basin Critical Zone Observatory (JRB-CZO) in NM was sampled twice and in situ samples from co-located suction cups and PCAPs were collected 7 times during the 2011 snowmelt period. Dissolved organic carbon and nitrogen concentrations (DOC and DN) as well as OM quality (FTIR, fluorescence spectroscopy and PARAFAC) were analyzed. The aqueous soil extracts (solid:solution = 1:5 mass basis) showed highest DOC and lowest DN concentrations whereas samples collected in-situ had lower DOC and higher DN concentrations. PARAFAC analysis using a four component model showed a dominance of fluorescence in region I and II (protein-like fluorescence) for samples collected in situ indicating the presence of more bio-molecules (proteins). In contrast, the dominant PARAFAC component of the soil extract was found in region 3 (fulvic acid-like fluorescence). FTIR analysis showed high intensity band at 1600 cm-1 in the case of the aqueous soil extract that correspond to asymmetric stretching of carboxyl groups. These preliminary results indicate that aqueous soil extracts likely lead to the underestimation of the amount of biomolecules and the overestimation of fulvic acid contents of soil solutions.

  3. IWTU Process Sample Analysis Report

    SciTech Connect

    Nick Soelberg

    2013-04-01

    CH2M-WG Idaho (CWI) requested that Battelle Energy Alliance (BEA) analyze various samples collected during June – August 2012 at the Integrated Waste Treatment Facility (IWTU). Samples of IWTU process materials were collected from various locations in the process. None of these samples were radioactive. These samples were collected and analyzed to provide more understanding of the compositions of various materials in the process during the time of the process shutdown that occurred on June 16, 2012, while the IWTU was in the process of nonradioactive startup.

  4. Soil and soil gas sampling in nine potential new waste sites, Central Shops diesel loading and SRS fault areas

    SciTech Connect

    Not Available

    1988-01-01

    Geochemical surveys conducted by Microseeps Ltd at S.R.P. during March and April 1988 were carried out in two phases. The first consisted of nine potential new waste site locations as shown in Figure 1. Soil samples to be analyzed for specific chlorinated hydrocarbons were collected at each location. Soil gas samples to be analyzed for C1-C4 hydrocarbons, were collected at six of the nine locations. In all, 165 soil samples and 130 soil gas samples were collected. The second phase consisted of two surveys, the Central Shops diesel loading area and a general S.R.P. fault' survey. At the Central Shops area 85 soil gas samples, analyzed for C1-C4 hydrocarbons, plus 30 soil samples, analyzed for diesel range hydrocarbons were collected. The fault survey is composed of 122 soil gas samples analyzed for C1-C4 hydrocarbons, helium and hydrogen. The sampling and analytical techniques are described herein and the data presented in tabular format. All analyses were performed on site in a laboratory provided by S.R.L. Magnetic diskettes containing data in spreadsheet format were given to S.R.L. personnel at the completion of the on-site work.

  5. FIELD SAMPLING PROTOCOLS AND ANALYSIS

    EPA Science Inventory

    I have been asked to speak again to the environmental science class regarding actual research scenarios related to my work at Kerr Lab. I plan to discuss sampling protocols along with various field analyses performed during sampling activities. Many of the students have never see...

  6. Spatial analysis reveals differences in soil microbial community interactions between adjacent coniferous forest and clearcut ecosystems

    Microsoft Academic Search

    Daniel L. Mummey; Jeffrey T. Clarke; Callie A. Cole; Benjamin G. O’Connor; James E. Gannon; Phillip W. Ramsey

    2010-01-01

    Knowledge of how forest management influences soil microbial community interactions is necessary for complete understanding of forest ecology. In this study, soil microbial communities, vegetation characteristics and soil physical and chemical properties were examined across a rectangular 4.57 × 36.58 m sample grid spanning adjacent coniferous forest and clearcut areas. Based on analysis of soil extracted phospholipid fatty acids, total microbial biomass, fungi

  7. Radioactivity Levels and Gamma-Ray Dose Rate in Soil Samples from Kohistan (Pakistan) Using Gamma-Ray Spectrometry

    Microsoft Academic Search

    M. Khan Hasan; M. Ismail; K. Khan; P. Akhter

    2011-01-01

    The analysis of naturally occurring radionuclides (226Ra, 232Th and 40K) and an anthropogenic radionuclide 137Cs is carried out in some soil samples collected from Kohistan district of N.W.F.P. (Pakistan), using gamma-ray spectrometry. The gamma spectrometry is operated using a high purity Germanium (HPGe) detector coupled with a computer based high resolution multi channel analyzer. The specific activity in soil ranges

  8. Performance evaluation soil samples for volatile organic compounds utilizing solvent encapsulation technology

    SciTech Connect

    Dahlgran, J. [Dept. of Energy, Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.] [Dept. of Energy, Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Thies, C. [Thies Technology, St. Louis, MO (United States)] [Thies Technology, St. Louis, MO (United States)

    1999-05-01

    A mixture of volatile organic compounds (VOCs) was encapsulated and mixed with a soil to produce a product suitable for use as a double blind source of VOCs in a soil performance evaluation sample. Two independent laboratories analyzed the standard encapsulated VOC/soil mixture for benzene, toluene, ethylbenzene, and xylene by using US EPA SW-846 Method 5035 in conjunction with SW-846 Method 8020. One laboratory received the sample as a single blind standard, while the other laboratory received the sample as a double blind standard. The percent relative standard deviation (%RSD) for triplicate analyses ranged from 2 to 13%. The lowest %RSD was for m/p-xylene (2%) from the sample analyzed as a double blind sample. Analytical results from these pilot studies indicate that it is possible to prepare standard soil samples contaminated with known amounts of VOCs which will enable soil samples to be submitted to environmental analytical laboratories as a truly blind sample.

  9. Levels of PAHs in soil and vegetation samples from Tarragona County, Spain

    Microsoft Academic Search

    M. Nadal; M. Schuhmacher; J. L. Domingo

    2004-01-01

    The levels of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in 24 soil and 12 wild chard samples collected in Tarragona County (Catalonia, Spain), an area with an important number of chemical and petrochemical industries. Samples were also collected in urban\\/residential zones and in presumably unpolluted sites (control samples). In soils, the sum of the 16 PAHs ranged between 1002

  10. A survey on the pathogenic fungi in soil samples of potted plants from Sari hospitals, Iran

    Microsoft Academic Search

    M. T. Hedayati; A. Mohseni-Bandpi; S. Moradi

    2004-01-01

    A total of 23 soil samples of potted plants was collected from hospitals in Sari, Iran. Each sample contained approximately 200 g soil, taken from a depth of 0–10 cm of the pots. Samples were analysed by two different methods. (1) Culture on Sabouraud's dextrose agar medium containing chloramphenicol (SC); cultured fungi were identified by macroscopic and microscopic characterization. (2)

  11. SAMPLING AND ANALYSIS OF ATMOSPHERIC AEROSOLS

    EPA Science Inventory

    Sampling and analysis requirements for the characterization of ambient particles are reviewed. The choice of sampling equipment and characterization procedures for ambient particles are often dictated by the objectives of the experiment. The paper describes the procedures and the...

  12. Combination of comprehensive geophysical measurements and conventional soil sampling for high resolution soil mapping

    Microsoft Academic Search

    U. Werban; A. Nuesch; T. Vienken; P. Dietrich; T. Behrens

    2010-01-01

    The focus of the FP7-EU project iSOIL ``Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping'' is to develop new and to improve existing strategies and innovative methods for generating accurate, high-resolution soil property maps. Thus we will develop, validate, and evaluate concepts and strategies for transferring measured physical parameter distributions into soil property, soil

  13. PCB Analysis Plan for Tank Archive Samples

    SciTech Connect

    NGUYEN, D.M.

    2001-03-22

    This analysis plan specifies laboratory analysis, quality assurance/quality control (QA/QC), and data reporting requirements for analyzing polychlorinated biphenyls (PCB) concentrations in archive samples. Tank waste archive samples that are planned for PCB analysis are identified in Nguyen 2001. The tanks and samples are summarized in Table 1-1. The analytical data will be used to establish a PCB baseline inventory in Hanford tanks.

  14. SAMPLING PROTOCOL AND VARIATION OF FIELD SOIL CARBON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have evaluated the amount of soil organic carbon (SOC) for grassland and cropped loamy soils but little data is available for sandy, semi arid, thermic soils. In this project we determine the level of SOC that can be maintained by cropland, conservation grassland and native grasslan...

  15. RAPID METHOD FOR PLUTONIUM, AMERICIUM AND CURIUM IN VERY LARGE SOIL SAMPLES

    SciTech Connect

    Maxwell, S

    2007-01-08

    The analysis of actinides in environmental soil and sediment samples is very important for environmental monitoring. There is a need to measure actinide isotopes with very low detection limits. A new, rapid actinide separation method has been developed and implemented that allows the measurement of plutonium, americium and curium isotopes in very large soil samples (100-200 g) with high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resin{reg_sign}, TRU Resin{reg_sign} and DGA-Resin{reg_sign} cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), americium (Am), and curium (Cm) using a single multistage column combined with alpha spectrometry. The method combines an acid leach step and innovative matrix removal using cerium fluoride precipitation to remove the difficult soil matrix. This method is unique in that it provides high tracer recoveries and effective removal of interferences with small extraction chromatography columns instead of large ion exchange resin columns that generate large amounts of acid waste. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.

  16. International methods validation for soil analysis in the third millennium

    Microsoft Academic Search

    KALRA Yash

    The AOAC INTERNATIONAL is dedicated to methods validation and quality measurements in the analytical sciences. It collaborates with the Soil Science Society of America Committee S889 (Coordination of Official Methods of Soil Analysis Committee) for the interlaboratory studies on soil analysis. Although AOAC has been conducting the official methods program for several years, the program for soil analysis is less

  17. Co-extraction of DNA and PLFA from soil samples.

    PubMed

    Brewer, Sheridan; Techtmann, Stephen M; Mahmoudi, Nagissa; Niang, Dijibril; Pfiffner, Susan; Hazen, Terry C

    2015-08-01

    Lipid/DNA co-extraction from one sample is attractive in limiting biases associated with microbial community analysis from separate extractions. We sought to enhance established co-extraction methods and use high-throughput 16S rRNA sequencing to identify preferentially extracted taxa from co-extracted DNA. Co-extraction results in low DNA yields and distinct community structure changes. PMID:26027542

  18. DESIGNING A CONTAMINATED SOIL SAMPLING STRATEGY FOR HUMAN HEALTH RISK ASSESSMENT

    E-print Network

    Paris-Sud XI, Université de

    DESIGNING A CONTAMINATED SOIL SAMPLING STRATEGY FOR HUMAN HEALTH RISK ASSESSMENT L. Malherbe INERIS and hydrogeology, soil properties, contaminants behaviour ...) to delimit contaminated areas as homogeneous, contaminated sites, risk assessment 1 Introduction - Human health risk assessment : stakes of a relevant soil

  19. A Simple Centrifugation Method for obtaining Small Samples of Soil Solution

    Microsoft Academic Search

    Brian E. Davies; R. I. Davies

    1963-01-01

    DURING the course of some investigations of seasonal variations in the available cation content of soils in Denbighshire (North Wales), samples of the soil solution were needed. The soils are classed as loams and silty loams, and moisture contents ranged from 30 to 47 per cent.

  20. A comparision of two methods to recover phages from soil samples

    Microsoft Academic Search

    Tai-Lee Hu

    1998-01-01

    Environmental contamination caused by viruses has received extensive interest. The adsorption of viruses in soil can influence the extent of groundwater pollution. Many methods have been applied to detecting viruses in soil samples. Different elution methods lead to differences of viral titers. In this study, two elution methods were compared: glycine buffer and beef extract of phages from a soil

  1. Small-Scale DNA Sample Preparation Method for Field PCR Detection of Microbial Cells and Spores in Soil

    PubMed Central

    Kuske, Cheryl R.; Banton, Kaysie L.; Adorada, Dante L.; Stark, Peter C.; Hill, Karen K.; Jackson, Paul J.

    1998-01-01

    Efficient, nonselective methods to obtain DNA from the environment are needed for rapid and thorough analysis of introduced microorganisms in environmental samples and for analysis of microbial community diversity in soil. A small-scale procedure to rapidly extract and purify DNA from soils was developed for in-the-field use. Amounts of DNA released from bacterial vegetative cells, bacterial endospores, and fungal conidia were compared by using hot-detergent treatment, freeze-thaw cycles, and bead mill homogenization. Combining a hot-detergent treatment with bead mill homogenization gave the highest DNA yields from all three microbial cell types and provided DNA from the broadest range of microbial groups in a natural soil community. Only the bead mill homogenization step was effective for DNA extraction from Bacillus globigii (B. subtilis subsp. niger) endospores or Fusarium moniliforme conidia. The hot-detergent–bead mill procedure was simplified and miniaturized. By using this procedure and small-scale, field-adapted purification and quantification procedures, DNA was prepared from four different soils seeded with Pseudomonas putida cells or B. globigii spores. In a New Mexico soil, seeded bacterial targets were detected with the same sensitivity as when assaying pure bacterial DNA (2 to 20 target gene copies in a PCR mixture). The detection limit of P. putida cells and B. globigii spores in different soils was affected by the amount of background DNA in the soil samples, the physical condition of the DNA, and the amount of DNA template used in the PCR. PMID:9647816

  2. RAPID SEPARATION METHOD FOR 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES

    SciTech Connect

    Maxwell, S.; Culligan, B.; Noyes, G.

    2010-07-26

    A new rapid method for the determination of {sup 237}Np and Pu isotopes in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for large soil samples. The new soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using this two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates are used to reduce analytical time.

  3. Phosphatase activity in Antarctica soil samples as a biosignature of extant life

    NASA Astrophysics Data System (ADS)

    Sato, Shuji; Itoh, Yuki; Takano, Yoshinori; Fukui, Manabu; Kaneko, Takeo; Kobayashi, Kensei

    Microbial activities have been detected in such extreme terrestrial environments as deep lithosphere, a submarine hydrothermal systems, stratosphere, and Antarctica. Microorganisms have adapted to such harsh environments by evolving their biomolecules. Some of these biomolecules such as enzymes might have different characteristics from those of organisms in ordinary environments. Many biosignatures (or biomarkers) have been proposed to detect microbial activities in such extreme environments. A number of techniques are proposed to evaluate biological activities in extreme environments including cultivation methods, assay of metabolism, and analysis of bioorganic compounds like amino acids and DNA. Enzyme activities are useful signature of extant life in extreme environments. Among many enzymes, phosphatase could be a good indicator of biological activities, since phosphate esters are essential for all the living terrestrial organisms. In addition, alkaline phosphatase is known as a typical zinc-containing metalloenzyme and quite stable in environments. We analyzed phosphatase activities in Antarctica soil samples to see whether they can be used as biosignatures for extant life. In addition, we characterized phosphatases extracted from the Antarctica soil samples, and compared with those obtained from other types of environments. Antarctica surface environments are quite severe environments for life since it is extremely cold and dry and exposed to strong UV and cosmic rays. We tried to evaluate biological activities in Antarctica by measuring phosphatase activities. Surface soil samples are obtained at the Sites 1-8 near Showa Base in Antarctica during the 47th Japan Antarctic exploration mission in 2005-6. Activities of acid phosphatase (ACP) and alkaline phosphatase (ALP) are measured spectrophotometrically after mixing the powdered sample and p-nitrophenyl phosphate solution (pH 6.5 for ACP, pH 8.0 for ALP). ALP was characterized after extraction from soils with Tris-HCl buffer (pH 9.0), where the activity was measured fluorometrically with 4-methylumbelliferyl phosphate (pH 8.0) as a substance. The soil of Site 8 (near a penguin rookery) showed almost the same level of ACP and ALP activities as usual surface soil sampled in YNU campus, while the soil of Sites 1-7 showed much less activities. ALP in the extract from the soil of Site 8 was characterized. It showed the maximal at 338 K, while ALP from the campus soil showed the maximal at 358 K. Gel filtration chromatography showed that the ALP activity was found only in the fraction whose molecular weights were over 60000. The ALP activity was diminished with EDTA and was recovered with addition of zinc ion. The present results showed that zinc-containing metalloenzymes, which had lower optimum temperature than those in usual environments, are present in Antarctica soil. It was suggested that phosphatases are good bio-signatures for extant life in extreme environments.

  4. SAMPLING AND ANALYSIS OF HAZARDOUS WASTES

    EPA Science Inventory

    The chapter is a relatively brief overview and guide to the very complicated endeavor of sampling and analysis of hazardous waste and related products. Stack sampling and analysis of waste combustion products is emphasized partly due to the authors' backgrounds and partly due to ...

  5. Identifying sampling locations for field-scale soil moisture estimation using K-means clustering

    NASA Astrophysics Data System (ADS)

    Van Arkel, Zach; Kaleita, Amy L.

    2014-08-01

    Identifying and understanding the impact of field-scale soil moisture patterns is currently limited by the time and resources required to do sufficient monitoring. This study uses K-means clustering to find critical sampling points to estimate field-scale near-surface soil moisture. Points within the field are clustered based upon topographic and soils data and the points representing the center of those clusters are identified as the critical sampling points. Soil moisture observations at 42 sites across the growing seasons of 4 years were collected several times per week. Using soil moisture observations at the critical sampling points and the number of points within each cluster, a weighted average is found and used as the estimated mean field-scale soil moisture. Field-scale soil moisture estimations from this method are compared to the rank stability approach (RSA) to find optimal sampling locations based upon temporal soil moisture data. The clustering approach on soil and topography data resulted in field-scale average moisture estimates that were as good or better than RSA, but without the need for exhaustive presampling of soil moisture. Using an electromagnetic inductance map as a proxy for soils data significantly improved the estimates over those obtained based on topography alone.

  6. Assessment of natural radioactivity levels and associated dose rates in soil samples from Northern Rajasthan, India.

    PubMed

    Duggal, Vikas; Rani, Asha; Mehra, Rohit; Ramola, R C

    2014-01-01

    The analysis of naturally occurring radionuclides ((226)Ra, (232)Th and (40)K) has been carried out in 40 soil samples collected from four districts of the Northern Rajasthan, India using gamma-ray spectrometry with an NaI(Tl) detector. The activity concentrations of the samples range from 38±9 to 65±11 Bq kg(-1) with a mean value of 52 Bq kg(-1) for (226)Ra, from 8±8 to 32±9 Bq kg(-1) with a mean value of 19 Bq kg(-1) for (232)Th and from 929±185 to 1894±249 Bq kg(-1) with a mean value of 1627 Bq kg(-1) for (40)K. The measured activity concentration of (226)Ra and (40)K in soil was higher and for (232)Th was lower than the worldwide range. Radium equivalent activities were calculated for the soil samples to assess the radiation hazards arising due to the use of these soils in the construction of buildings. The calculated average radium equivalent activity was 205±20 Bq kg(-1), which is less than the recommended limit of 370 Bq kg(-1) by the Organization for Economic Cooperation and Development. The total absorbed dose rate calculated from the activity concentration of (226)Ra, (232)Th and (40)K ranges from 77 to 123 nGy h(-1) with an average value of 103 nGy h(-1). The mean external (Hex) and internal hazard indices (Hin) for the area under study were determined to be 0.55 and 0.69, respectively. The corresponding average annual effective dose was found to be 0.63 mSv. PMID:23943368

  7. Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples.

    PubMed

    Tadeo, José L; Sánchez-Brunete, Consuelo; Albero, Beatriz; García-Valcárcel, Ana I

    2010-04-16

    The application of ultrasound-assisted extraction (UAE) to the sample preparation of environmental and food samples has increased in the last years. This technique has been used in the development of methods for the analysis of numerous contaminants, including organic compounds (pesticides, pharmaceuticals, polycyclic aromatic hydrocarbons, polyhalogenated flame retardants, etc.) and heavy metals. The aim of this work is to review the application of this extraction procedure to the analysis of contaminants in food and soil and the comparison of its use with other well-established extraction procedures. The advantages and disadvantages of this technique together with the possibility of coupling UAE with other analytical techniques will be also discussed. PMID:20005520

  8. Fipronil Insecticide and Soil-Sample Handling Techniques of State Regulatory Agencies

    Microsoft Academic Search

    George N. Saxton; Bernie Engel

    2007-01-01

    The goal of this project was to examine soil-sample handling techniques used by state regulatory agencies that regulate pesticides and their impact on soil-residue levels of the insecticide fipronil and to offer a standardized soil-sampling protocol. In the United States, the pesticide user industry is large for both agricultural and non-agricultural applications. The United States Environmental Protection Agency regulates pesticide

  9. Glycerol?extraction refractometry for determination of gravimetric water content of soil samples

    Microsoft Academic Search

    Y. Kakuto

    1995-01-01

    We developed a simple and rapid method suitable for on?site determination of gravimetric water content of soil samples. The proposed procedure was as follows; i) take 10–20 g of a soil sample in a tared mortar and weigh with a portable electronic balance, ii) add glycerol at a soil:glycerol ratio of 1 to 2 and weigh again, iii) mix the

  10. DESIGNING A CONTAMINATED SOIL SAMPLING STRATEGY FOR HUMAN HEALTH RISK ASSESSMENT

    E-print Network

    Paris-Sud XI, Université de

    2001-88 DESIGNING A CONTAMINATED SOIL SAMPLING STRATEGY FOR HUMAN HEALTH RISK ASSESSMENT L : stakes of a relevant soil sampling strategy ? Human health risk assessment is a site-based approach which if an old site contamination may have harmful effects on human health in view of the planned or current use

  11. Detection of Cryptosporidium oocysts in soil samples by enzyme-linked immunoassay

    Microsoft Academic Search

    G Lindergard; S. E Wade; S Schaaf; R. S Barwick; H. O Mohammed

    2001-01-01

    An ELISA protocol was adapted for detection of Cryptosporidium parvum oocysts in soil samples and the limit of detection of the test was determined. A modified indirect antigen capture ELISA protocol was developed using monoclonal antibodies against the oocyst outer wall. The accuracy of the ELISA was compared to spiked soil samples and measured in terms of sensitivity and specificity

  12. Permethrin Insecticide and Soil Sample Handling Techniques of State Regulatory Agencies

    Microsoft Academic Search

    George N. Saxton; Bernie Engel

    2005-01-01

    The goal of this project was to examine soil sample handling procedures of each state regulatory agency that regulates pesticides, and to offer a standardized soil sampling protocol. In the United States, the pesticide user industry is large for both agricultural and non-agricultural uses. The United States Environmental Protection Agency (USEPA) regulates pesticide use on a federal level. Each state

  13. FRESHWATER ASSAY USING SOIL ELUATES AS SAMPLE MATERIAL (SINGLE LABORATORY EVALUATION)

    EPA Science Inventory

    The Chlorophyta assay, which uses soil as sample material, has been a useful bioassessment technique for screening hazardous waste site problems. n eluate is prepared from a 125-gram soil sample and then diluted into three separate concentrations prior to being tested using Selen...

  14. Guidelines for sampling for dynamic soil properties for soil survey updates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dynamic soil property data can be collected during soil survey updates to add value to soil survey products and meet users’ needs. Producers and land managers need information about soil and ecosystem change in order to plan for long-term productivity, conduct monitoring and assessments and predict ...

  15. Determination of chlorophenols in soil samples by microwave-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography–electron-capture detection

    Microsoft Academic Search

    Ming-Chi Wei; Jen-Fon Jen

    2003-01-01

    Microwave-assisted extraction coupled to headspace solid-phase microextraction was studied and applied for one-step in-situ sample preparation prior to analysis of chlorophenols (CPs) in soil samples. The CPs in soil sample were extracted into the aqueous solution and then directly onto the solid-phase microextraction (SPME) fiber in headspace under the aid of microwave irradiation. After being desorbed from SPME fiber in

  16. STATISTICAL SAMPLING APPROACH FOR CLOSING A SOIL VENTING SITE

    EPA Science Inventory

    The USEPA allowed the Performing Parties (PPs) to perform a soil vapor extraction process to a site contaminated by volatile organic compounds (VOC), contingent upon the process reducing the VOC concentrations in the soil by 75% within one year. An innovative injection-extraction...

  17. 137Cs re-sampling as a method for soil erosion assessment in Alpine grasslands

    NASA Astrophysics Data System (ADS)

    Arata, Laura; Meusburger, Katrin; Bissig, Nicole; Mabit, Lionel; Alewell, Christine

    2014-05-01

    Over the past decades, radioactive fallout 137Cs has been used as a tracer to provide information on soil erosion and sedimentation rates. However, the method may produce relatively large uncertainties in Alpine grasslands. The latter difficulties are caused by a combination of (i) the heterogeneous distribution of atmospheric 137Cs Chernobyl fallout, (ii) the partly snow covered ground in Alpine areas during the fallout event in April 1986, which results in inhomogeneous 137Cs distribution during snow melt and (iii) uncertainties in finding undisturbed references sites in the geomorphological and anthropogenic highly active slopes of the Alps. To overcome these difficulties, our aim is to replace the classical 137Cs approach, where an undisturbed reference site is compared to erosional sites, with a re-sampling approach, where we re-sample sites which have already been measured for 137Cs inventories in the past. Thus, we use temporal instead of spatial reference. The study area is located in the Central Swiss Alps in the Urseren Valley. Potential erosional sites have been sampled in 2007 and re-sampled in 2012. Two different grassland types were investigated: hayfield (2 sites) and pasture without dwarf shrubs (3 sites). For each site, 4 to 9 sampling points have been defined, and at each point two soil samples have been collected. To reduce the random error, the two soil samples were bulked prior to gamma-analysis. 137Cs inventories of the two sampling years were calculated and used to assess recent soil erosion in the experimental sites. Our results show that within the 5 years measurable soil erosion and deposition processes have occurred within the sites, as indicated by the relevant difference between the 137Cs inventories of 2007 and 2012. 64% of the sites exhibit a decrease in 137Cs inventories, 20% of the sites an increase, and the remaining 16% no significant difference. In particular, hayfield sites have been affected by erosion processes, mostly due to high snow glide and avalanche dynamic, whereas pasture inventories indicate both deposition and erosion. Resulting re-sampling erosion rates for the period of 2007-2012 indicate high erosion rates of >20 t ha-1 yr-1, which confirm previous studies. The 137Cs re-sampling method has also been successfully tested to verify the appropriateness of reference sites. Reference sites in the study area, defined and sampled in 2010, have been re-sampled in 2013. Sites which did not show a considerable difference in 137Cs inventories, may subsequently be used to apply the classical 137Cs approach. The 137Cs re-sampling approach represents an effective and reliable method to assess short term erosion in Alpine grasslands, and a useful addition for the 137Cs classical approach, in validating the suitability of reference sites.

  18. Multivariate statistical analysis of heavy metals in soils of a Pb–Zn mining area, India

    Microsoft Academic Search

    M. Anju; D. K. Banerjee

    Surface soil samples collected from a Pb and Zn mining area in India were subjected to multi-elemental analysis by using inductively\\u000a coupled plasma–atomic emission spectrometry. Multivariate statistical methods such as principal component analysis and cluster\\u000a analysis, coupled with correlation coefficient analysis, were used to analyze the data and to apportion the possible sources\\u000a of elements in soils of a metal

  19. In-situ 1-D and 2-D mapping of soil core and rock samples using the LIBS long spark

    SciTech Connect

    Rodolfa, C. T. (Christopher T.); Cremers, D. A. (David A.); Ebinger, M. H. (Michael H.)

    2004-01-01

    LIBS is being developed for stand-off interrogation of samples up to 20 m from a lander or rover. Stand-off capability is important to access targets not conveniently located for in-situ analysis. On the other hand, in-situ techniques are still important and are being developed for future missions such as MSL. Retrieved samples may consist of loose soils, subsurface soil cores, drilled rock cores, and ice cores. For these sample types, it is possible to employ LIBS analysis and take advantage of LIBS capabilities. These include: (1) rapid analysis, (2) good detection sensitivity for many elements, (3) good spatial resolution (3-100 microns), and (4) ability to clean a surface prior to analysis. Using LIBS, it is possible to perform a 1-dimensional analysis, for example, determining element concentrations along a soil core, or a 2-dimensional mapping of the sample surface using a unique 'long' spark. Two-dimensional sampling has been developed previously by focusing the laser pulses as small spots on the sample and then moving the sample a short distance between sampling locations. Although demonstrated, this method is time consuming, requiring a large number of shots to span even a small region (for 3 micron resolution, an area 600 x 480 microns sampled in {approx} 30 min using a 20 Hz laser). For a spacecraft instrument, the ability to more rapidly prepare a 2D elemental spatial map will be desirable. Here they discuss the use of LIBS for sampling along a core in 1D (detection of carbon) and for 2D mapping of a rock face.

  20. Statistical Analysis Techniques for Small Sample Sizes

    NASA Technical Reports Server (NTRS)

    Navard, S. E.

    1984-01-01

    The small sample sizes problem which is encountered when dealing with analysis of space-flight data is examined. Because of such a amount of data available, careful analyses are essential to extract the maximum amount of information with acceptable accuracy. Statistical analysis of small samples is described. The background material necessary for understanding statistical hypothesis testing is outlined and the various tests which can be done on small samples are explained. Emphasis is on the underlying assumptions of each test and on considerations needed to choose the most appropriate test for a given type of analysis.

  1. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...and analysis of individual samples and composite samples. 761.292 Section 761...and analysis of individual samples and composite samples. Use either Method 3500B...extraction of PCBs from individual and composite samples of PCB remediation waste....

  2. Differential thermal analysis of lunar soil simulant

    NASA Technical Reports Server (NTRS)

    Tucker, D.; Setzer, A.

    1991-01-01

    Differential thermal analysis of a lunar soil simulant, 'Minnesota Lunar Simulant-1' (MLS-1) was performed. The MLS-1 was tested in as-received form (in glass form) and with another silica. The silica addition was seen to depress nucleation events which lead to a better glass former.

  3. Riverland ERA cleanup sampling and analysis plan

    SciTech Connect

    Heiden, C.E.

    1993-07-01

    This report describes the Riverland Expedited Response Action taking place at the Hanford Reservation. Characterization of potential waste sites within the Riverland ERA boundaries was conducted in October and November 1992. This sampling and analysis plan contains two parts: The field sampling plan (Part 1) and the quality assurance project plan (Part 2). The field sampling plan describes the activities to be performed, defines sample designation, and identifies sample analysis to be performed. The quality assurance project plan establishes data quality objectives, defines analytical methods and procedures and documentation requirements, and provides established technical procedures to be used for field sampling and measurement. The quality assurance project plan details all quality assurance/quality control procedures to be followed to ensure that usable and defensible data are collected.

  4. Porosity distribution by computed tomography and its importance to characterize soil clod samples.

    PubMed

    Pires, Luiz F; Brinatti, André M; Saab, Sérgio C; Cássaro, Fabio A M

    2014-09-01

    Gamma-ray computed tomography (CT) was employed to study the soil quality of clod samples used to investigate porosity (?). Samples with volumes varying from 50 to 100cm(3) were collected from the soil surface. 2D CT images were obtained with millimetric resolution. Porosity distribution analyses were carried out to infer the soil clod structure. Results obtained provided a new insight on the variability of internal clod structure due to the large amount of data analyzed, information that is not provided by traditional methods used in physics applied to soil. PMID:24997371

  5. Quantitative field testing Heterodera glycines from metagenomic DNA samples isolated directly from soil under agronomic production.

    PubMed

    Li, Yan; Lawrence, Gary W; Lu, Shien; Balbalian, Clarissa; Klink, Vincent P

    2014-01-01

    A quantitative PCR procedure targeting the Heterodera glycines ortholog of the Caenorhabditis elegans uncoordinated-78 gene was developed. The procedure estimated the quantity of H. glycines from metagenomic DNA samples isolated directly from field soil under agronomic production. The estimation of H. glycines quantity was determined in soil samples having other soil dwelling plant parasitic nematodes including Hoplolaimus, predatory nematodes including Mononchus, free-living nematodes and biomass. The methodology provides a framework for molecular diagnostics of nematodes from metagenomic DNA isolated directly from field soil. PMID:24587100

  6. Letter Report for Analytical Results for Two Soil Samples Associated with the Westinghouse Hematite Decommisioning Project in Hematite Missouri

    SciTech Connect

    Ivey, Wade

    2013-10-30

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, received two soil samples on September 26, 2013 from the Westinghouse Hetnatite Decomminsioning project in Hematite, Missouri. The samples were analyzed for thorium-232, radium-226, uranium-235, and uranium-238 by gamma spectrometry and technetium-99 by liquid scintillation analysis. The samples were received in good condition. The sample collection data and identification numbers are tabulated. Also presented are the gamma spectrometry and technetium-99 data, respectively. The pertinent procedure references are included with the data tables.

  7. Protein Sample Preparation and Analysis Application Manual

    E-print Network

    Lebendiker, Mario

    Protein Sample Preparation and Analysis Application Manual Technical Guide #12;Pall is the world ranging from medical/pharmaceutical, aerospace, automotive, environmental, microelectronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.0 PRE-ANALYTICAL APPLICATIONS 2.1 Abundant Protein Removal

  8. A comparative study between an electrostatic and conventional methods of drying soil samples

    Microsoft Academic Search

    N. N. Barthakur

    1989-01-01

    Drying of soil samples exposed to high fluxes of air ions of both polarity, produced by corona electrodes, were studied by a beta?ray gauge. The conventional methods of air?drying and oven?drying of soil samples were compared with the new technique. Fluxes of 0.94 x 10 positive and 1.83 x 10 negative air ions cm s reduced drying time of samples

  9. Soil Property Mapping Over Large Areas Using Sparse Ad-hoc Samples

    NASA Astrophysics Data System (ADS)

    Zhu, A.; Liu, J.; Qin, C.; Zhang, S.; Chen, Y.; Ma, X.; Solim Group

    2010-12-01

    Information on spatial variation of soil properties over large areas is a critical input for environmental modeling at the regional to continental scales. Yet, quality information on soil spatial variation over large areas is rather difficult to obtain due to the large number of field samples needed and the required global representation on field samples by existing mapping techniques. Due to the constraints of field conditions and project budget and the complexity of spatial variation of soil properties the collected samples are often sparse and ad-hoc (poor global representation) in nature. As a result field sampling can rarely meet these requirements (both the number of samples and the sound global representation). The soil property maps derived based on these samples using existing mapping techniques are not only at low quality but also lack the information on the uncertainty introduced by samples’ poor global representation. The lack of uncertainty information in the derived soil property maps also prevents proper uncertainty assessment of model outputs when the derived soil information is used as the input to environmental models. This paper presents a new approach to map soil properties and quantify uncertainty in the derived soil property maps over large areas using sparse and ad-hoc samples. The underlying assumption of this new approach is the soil-landscape concept which stipulates that the more similar the environment conditions between two locations the more similar the soil property values are between the two sites. Under this assumption each sample can be considered as a representative over areas of similar environmental conditions. The level of representation by an individual sample to an unsampled location can be approximated by the similarity between their respective environmental conditions. Based on this “individual representation” concept and with a Case-based Reasoning (CBR) approach soil property values at unsampled locations can be predicted based on their environmental similarity to individual samples. Furthermore, the uncertainty associated with each prediction is related to the similarity and can thus be quantified. A case study over the Illy Region, a 50,000 km2 area in Xinjiang, Northwest China, has demonstrated that the predicted spatial variation of soil organic matter of top layer is of good quality and the quantified uncertainty is positively correlated with prediction residuals. This suggests that the approach can be an effective alternative for mapping soil property and quantifying uncertainty over large areas with sparse and ad-hoc samples.

  10. Comparative Study on Disturbed and Undisturbed Soil Sample Incubation for Estimating Soil Nitrogen-Supplying Capacity

    Microsoft Academic Search

    Kun Zhao; Shi-Qing Li; Bing-Cheng Xu; Hong-Ling Lu; Sheng-Xiu Li

    2010-01-01

    Application of nitrogen (N) fertilizers without knowing the N-supplying capacity of soils may lead to low N use efficiency, uneconomical crop production, and pollution of the environment. Based on the results from pot experiments treated with soil initial nitrate leaching and native soil, long-term alternate leaching aerobic incubation was conducted to study the disturbed and undisturbed soil N-supplying capacity of

  11. Northern Marshall Islands radiological survey: sampling and analysis summary

    SciTech Connect

    Robison, W.L.; Conrado, C.L.; Eagle, R.J.; Stuart, M.L.

    1981-07-23

    A radiological survey was conducted in the Northern Marshall Islands to document reamining external gamma exposures from nuclear tests conducted at Enewetak and Bikini Atolls. An additional program was later included to obtain terrestrial and marine samples for radiological dose assessment for current or potential atoll inhabitants. This report is the first of a series summarizing the results from the terrestrial and marine surveys. The sample collection and processing procedures and the general survey methodology are discussed; a summary of the collected samples and radionuclide analyses is presented. Over 5400 samples were collected from the 12 atolls and 2 islands and prepared for analysis including 3093 soil, 961 vegetation, 153 animal, 965 fish composite samples (average of 30 fish per sample), 101 clam, 50 lagoon water, 15 cistern water, 17 groundwater, and 85 lagoon sediment samples. A complete breakdown by sample type, atoll, and island is given here. The total number of analyses by radionuclide are 8840 for /sup 241/Am, 6569 for /sup 137/Cs, 4535 for /sup 239 +240/Pu, 4431 for /sup 90/Sr, 1146 for /sup 238/Pu, 269 for /sup 241/Pu, and 114 each for /sup 239/Pu and /sup 240/Pu. A complete breakdown by sample category, atoll or island, and radionuclide is also included.

  12. Communications in Soil Science and Plant Analysis, 43:10421052, 2012 Copyright Taylor & Francis Group, LLC

    E-print Network

    Lehmann, Johannes

    than typically used for plant materials and entirely different methods than soil where mainly silicates as well as heavy metals in a single sample (Huang and Schulte 1985). Complete dissolution of the sample samples for elemental analysis (Jones 2001). Dry-ashing methods are comparatively sim- pler and safer than

  13. Ultrasonic dispersion of soils for routine particle size analysis: recommended procedures

    SciTech Connect

    Heller, P.R.; Hayden, R.E.; Gee, G.W.

    1984-11-01

    Ultrasonic techniques were found to be more effective than standard mechanical techniques to disperse soils for routine particle-size analysis (i.e., using a dispersing agent and mechanical mixing). Soil samples were tested using an ultrasonic homogenizer at various power outputs. The samples varied widely in texture and mineralogy, and included sands, silts, clays, volcanic soils, and soils high in organic matter. A combination of chemical and ultrasonic dispersion techniques were used in all tests. Hydrometer techniques were used for particle-size analysis. For most materials tested, clay percentage values indicated that ultrasonic dispersion was more complete than mechanical dispersion. Soils high in volcanic ash or iron oxides showed 10 to 20 wt % more clay when using ultrasonic mixing rather than mechanical mixing. The recommended procedure requires ultrasonic dispersion of a 20- to 40-g sample for 15 min at 300 W with a 1.9-cm-diameter ultrasonic homogenizer. 12 references, 5 figures, 1 table.

  14. Variability of Soil Analysis in Commercial Laboratories: Implications for Lime and Fertilizer Recommendations

    Microsoft Academic Search

    Heitor Cantarella; José A. Quaggio; Bernardo van Raij; Mônica F. de Abreu

    2006-01-01

    Data of soil analysis of 20 samples of 84 commercial laboratories were used to estimate discrepancies among results and analyze the implications for fertilizer recommendations. More than 90% of the laboratories had all results of basic routine analysis of individual samples within the confidence interval (CI). Laboratories with the best performance in the proficiency test (grade A) had only 2.9

  15. In Situ Analysis of Mars Soil and Rocks Sample with the Sam Gcms Instrumentation Onboard Curiosity : Interpretation and Comparison of Measurements Done during the First Martian Year of Curiosity on Mars

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Coll, P. J.; Cabane, M.; Buch, A.; Coscia, D.; Millan, M.; Francois, P.; Belmahadi, I.; Teinturier, S.; Navarro-Gonzalez, R.; Glavin, D. P.; Freissinet, C.; Steele, A.; Eigenbrode, J. L.; Mahaffy, P. R.

    2014-12-01

    The characterisation of the chemical and mineralogical composition of solid surface samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, SAM-GC analytical channels composed of thermal-desorption injector, and a MXT-CLP or a MXT-Q chromatographic column was chosen to achieve all the measurements done up today, with the aim to separate of a wide range of volatile inorganic and organic molecules. Four solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller, and one rock sample collected at the Kimberly site. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013), Science, [4] Ming D. et al. (2013), Science, 32, 64-67. Acknowledgements: SAM-GC team acknowledges support from the French Space Agency (CNES), French National Programme of Planetology (PNP), National French Council (CNRS), Pierre Simon Laplace Institute, Institut Universitaire de France (IUF) and ESEP Labex, and the great MSL team

  16. Isolation, Characterization and Selection of Avermectin-Producing Streptomyces avermitilis Strains From Soil Samples

    PubMed Central

    Siddique, Samia; Syed, Quratulain; Adnan, Ahmad; Qureshi, Fahim Ashraf

    2014-01-01

    Background: Streptomyces avermitilis, belonging to Actinomycetes, is specialized for production of avermectin, used as an anthelmintic and insecticidal agent. It is mostly found in soil and its isolation is very crucial for medically important avermectin production. Objectives: In the present study, 10 bacterial isolates lacking antimicrobial activities were isolated from the soil samples collected from different areas of Lahore, Pakistan. Materials and Methods: Three distinctive localities of Lahore were opted for soil assortment to isolate S. avermitilis. About 50 isolates of Streptomyces species were attained through selective prescreening procedures. All of these isolates were studied for production of the secondary metabolite, avermectin. Different test like soluble pigment color and melanin formation were used for identification. Biochemical characterizations of those isolates closely resembling the control in morphological characteristics, soluble pigment color and melanin formation tests were performed. Results: The 10 selected isolates were identified as the avermectin-producing strain by fermentation and characterized on ISP2 medium for aerial and reverse side mycelia color, soluble pigment color and melanin formation, in comparison with S. avermitilis DSM 41445. The best avermectin-producing isolate S1-C (10.15 mg/L) showed similar result as S. avermitilis DSM 41445, when subjected for culture characteristics analysis in different media along with biochemical characterization. Conclusions: From the results, it was concluded that agricultural lands around Pakistan Council of Scientific and Industrial Research (PCSIR) Campus Lahore were rich sources of industrially important Streptomyces, especially S. avermitilis. PMID:25371798

  17. Analysis procedure for americium in environmental samples

    SciTech Connect

    Holloway, R.W.; Hayes, D.W.

    1982-01-01

    Several methods for the analysis of /sup 241/Am in environmental samples were evaluated and a preferred method was selected. This method was modified and used to determine the /sup 241/Am content in sediments, biota, and water. The advantages and limitations of the method are discussed. The method is also suitable for /sup 244/Cm analysis.

  18. Temporal changes of soil physic-chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance

    PubMed Central

    Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang

    2014-01-01

    Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg?1·year?1 for SOM, 438.9 mg·g?1·year?1 for C:P, 5.3 mg·g?1·year?1 for C:K, and ?3.23 mg·cm?3·year?1 for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0–80-cm soil profile (P: ?4.10 mg·kg?1·year?1; pH: ?0.0061 unit·year?1; C:N: 167.1 mg·g?1·year?1; K:P: 371.5 mg·g?1 year?1; N:K: ?0.242 mg·g?1·year?1; EC: 0.169 ?S·cm?1·year?1), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance. PMID:24772281

  19. Central Colorado Assessment Project (CCAP)-Geochemical data for rock, sediment, soil, and concentrate sample media

    USGS Publications Warehouse

    Granitto, Matthew; DeWitt, Ed H.; Klein, Terry L.

    2010-01-01

    This database was initiated, designed, and populated to collect and integrate geochemical data from central Colorado in order to facilitate geologic mapping, petrologic studies, mineral resource assessment, definition of geochemical baseline values and statistics, environmental impact assessment, and medical geology. The Microsoft Access database serves as a geochemical data warehouse in support of the Central Colorado Assessment Project (CCAP) and contains data tables describing historical and new quantitative and qualitative geochemical analyses determined by 70 analytical laboratory and field methods for 47,478 rock, sediment, soil, and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed either in the analytical laboratories of the USGS or by contract with commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects. In addition, geochemical data from 7,470 sediment and soil samples collected and analyzed under the Atomic Energy Commission National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (henceforth called NURE) have been included in this database. In addition to data from 2,377 samples collected and analyzed under CCAP, this dataset includes archived geochemical data originally entered into the in-house Rock Analysis Storage System (RASS) database (used by the USGS from the mid-1960s through the late 1980s) and the in-house PLUTO database (used by the USGS from the mid-1970s through the mid-1990s). All of these data are maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB and from the NURE database were used to generate most of this dataset. In addition, USGS data that have been excluded previously from the NGDB because the data predate earliest USGS geochemical databases, or were once excluded for programmatic reasons, have been included in the CCAP Geochemical Database and are planned to be added to the NGDB.

  20. Soil Property Mapping Over Large Areas Using Sparse Ad-hoc Samples

    NASA Astrophysics Data System (ADS)

    Zhu, A.; Liu, J.

    2011-12-01

    Information on spatial variation of soil properties over large areas is a critical input for environmental modeling at large scales. Yet, quality information on soil spatial variation over large areas is difficult to obtain due to the large number of field samples required. Existing samples are often sparse and ad-hoc. The soil property maps created from these samples using existing techniques are not only at low quality but also lack the uncertainty information. This paper presents a new approach to map soil properties and quantify uncertainty in the derived soil property maps over large areas using sparse and ad-hoc samples. The underlying assumption of this new approach is the soil-landscape concept which stipulates that the more similar the environment conditions between two locations the more similar the soil property values are between the two sites. Under this assumption each sample can be considered as a representative over areas of similar environmental conditions. The level of representation of an individual sample for an unsampled location can be approximated by the similarity between their respective environment conditions. Based on this "individual representation" concept and with a Case-based Reasoning (CBR) approach soil property values at unsampled locations can be predicted and the uncertainty associated with each prediction can also be quantified based on their environmental similarity to individual samples. A case study over the Illy Region, a 50,000 km2 area in Xinjiang, Northwest China, has demonstrated that the approach can be an effective alternative for mapping soil property and quantifying uncertainty over large areas with sparse and ad-hoc samples.

  1. Oxidation of atmospheric methane in soil: Measurements in the field, in soil cores and in soil samples

    Microsoft Academic Search

    Matthias Koschorreck; Ralf Conrad

    1993-01-01

    Methane fluxes and vertical profiles of CH4 mixing ratios were measured in different German soils both in situ and in soil cores. Atmospheric CH4 was oxidized in the soil by microorganisms resulting in an average CH4 flux of -1.39+\\/-1.5 mumol-CH4 m-2 h-1. Methane deposition showed only a weak positive correlation (r2=0.38) with soil temperature but a relatively strong negative correlation

  2. EPA COMPARES THREE SOIL-GAS SAMPLING SYSTEMS FOR VAPOR INTRUSION INVESTIGATIONS

    EPA Science Inventory

    This newsletter article summarizes the finding of "U.S. Environmental Protection Agency, Comparison of Geoprobe PRT, AMS GVP Soil-Gas Sampling Systems with Dedicated Vapor Probes in Sandy Soils at the Raymark Superfund Site, EPA/600/R-06/11, November 2006. " ...

  3. SOIL SAMPLING AND EXTRACTION METHODS WITH POSSIBLE APPLICATION TO PEAR THRIPS (THYSANOPTERA: THRIPIDAE)

    Microsoft Academic Search

    John E. Bater

    Techniques are described for the sampling and extraction of microarthropods from soil and the potential of these methods to extract the larval stages of the pear thrips, Taeniothrips inconsequens (Uzel), from soil cores taken in sugar maple stands. Also described is a design for an emergence trap that could be used to estimate adult thrips populations as they move from

  4. ASSAY FOR FLUORESCEIN DIACETATE HYDROLYTIC ACTIVITY: OPTIMIZATION FOR SOIL SAMPLES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the increased interest in integrated soil bioecosystem studies, there has been a need to have a method of measuring overall microbial activity potential. Hydrolysis of fluorescein diacetate (3',6'-diacetylfluorescein [FDA]) has been suggested as a possible method because the ubiquitous lipase, ...

  5. Soil and Groundwater Sampling, Ellsworth Air Force Base, SD

    USGS Multimedia Gallery

    USGS Hydrologist, John Stamm, describing the split soil core for 20 to 25 feet from well EAFB FAC MW14_07, Fuels Area C, Ellsworth Air Force Base, South Dakota. In fall of 2013, the U.S. Geological Survey began a study in cooperation with the U.S. Air Force, Ellsworth Air Force Base, to estimat...

  6. NHEXAS PHASE I MARYLAND STUDY--STANDARD OPERATING PROCEDURE FOR SIEVING AND DIVISION OF DUST AND SOIL SAMPLES (L05)

    EPA Science Inventory

    The purpose of this SOP is to describe the procedure for sieving samples of house dust and soil. The procedure is applicable to house dust samples taken using the HVS3 dust sampler, and to soil samples. Keywords: dust; soil. The National Human Exposure Assessment Survey (NHE...

  7. Electron spectroscopy for chemical analysis: Sample analysis

    NASA Technical Reports Server (NTRS)

    Carter, W. B.

    1989-01-01

    Exposure conditions in atomic oxygen (ESCA) was performed on an SSL-100/206 Small Spot Spectrometer. All data were taken with the use of a low voltage electron flood gun and a charge neutralization screen to minimize charging effects on the data. The X-ray spot size and electron flood gun voltage used are recorded on the individual spectra as are the instrumental resolutions. Two types of spectra were obtained for each specimen: (1) general surveys, and (2) high resolution spectra. The two types of data reduction performed are: (1) semiquantitative compositional analysis, and (2) peak fitting. The materials analyzed are: (1) kapton 4, 5, and 6, (2) HDPE 19, 20, and 21, and (3) PVDF 4, 5, and 6.

  8. EVALUATION OF VAPOR EQUILIBRATION AND IMPACT OF PURGE VOLUME ON SOIL-GAS SAMPLING RESULTS

    EPA Science Inventory

    Sequential sampling was utilized at the Raymark Superfund site to evaluate attainment of vapor equilibration and the impact of purge volume on soil-gas sample results. A simple mass-balance equation indicates that removal of three to five internal volumes of a sample system shou...

  9. DEVELOPMENT IN THE SUPERCRITICAL FLUID EXTRACTION OF CHLOROPHENOXY ACID HERBICIDES FROM SOIL SAMPLES

    EPA Science Inventory

    Extraction of chlorophenoxy acid herbicides from soil samples with supercritical carbon dioxide as extractand and tetrabutylammonium hydroxide and methyl iodide as derivatization agents was investigated by the U.S. EPA's Office of Research and Development. he extraction was carri...

  10. Automatic analysis of immunocytochemically stained tissue samples

    Microsoft Academic Search

    Fernando Arámbula Cosío; J. A. Márquez Flores; Miguel A. Padilla Castañeda; S. Solano; P. Tato

    2005-01-01

    An automatic colour image segmentation and cell counting software system has been developed for immunocytochemical analysis\\u000a of stained tissue samples. The system was designed to count the total number of positive and negative cells in tissue samples\\u000a treated with cytokine DNA probes from pigs naturally parasitised with Taenia solium metacestodes, using in situ hybridisation.\\u000a A reaction index was calculated as

  11. Factors affecting survival of Listeria monocytogenes and Listeria innocua in soil samples

    Microsoft Academic Search

    Heather P. McLaughlin; Pat G. Casey; Jeni Cotter; Cormac G. M. Gahan; Colin Hill

    We investigated the ability of several strains of L. monocytogenes and Listeria innocua strains to survive in local soil samples in vitro. Survival of three L. monocytogenes strains, EGDe, CD83, and CD1038, and three L. innocua strains, CLIP, FH2117, FH2152, was monitored in soil samples by direct enumeration of colony-forming units on selective agar.\\u000a The study did not demonstrate any

  12. The effect of soil sample handling between collection and drying on nitrate concentration

    Microsoft Academic Search

    D. G. Westfall; M. A. Henson; E. P. Evans

    1978-01-01

    The residual soil NO3?N concentration is used in determining the N fertilizer recommendation for many crops in the arid United States. Accurate representation of the field levels of residual NO3?N is complicated by the fact that the NO3 concentration in a soil sample can change significantly if the sample is not handled properly after collection. This will result in erroneous

  13. Levels of 3\\/Fs in soil samples in the vicinity of a municipal solid waste incinerator

    Microsoft Academic Search

    M. Schuhmacher; S. Granero; A. Xifró; J. L. Domingo; J. Rivera; E. Eljarrat

    1998-01-01

    Polychlorinated dibenzo p-dioxins and dibenzofurans (PCDD\\/Fs) were determined in 24 soil samples collected near a municipal solid waste incinerator (Tarragona, Catalonia, Spain). Soil samples were obtained at various sites within 1.5 km from the stack. Total PCDD\\/F concentrations ranged from 0.225 to 5.80 ng TEQ\\/kg dry matter (d.m.) with a median value of 0.799 ng TEQ\\/kg and a mean value

  14. Determination of radium isotopes in soil samples by alpha-spectrometry

    Microsoft Academic Search

    Gugang Jia; G. Torri; R. Ocone

    2007-01-01

    A sensitive and accurate method for determination of radium isotopes in soil samples by ?-spectrometry has been developed 225Ra, which is in equilibrium with its mother 229Th, was used as a yield tracer. Radium in soil samples was fused together with Na2CO3 and Na2O2 at 600 °C, leached with HNO3, HCl and HF, preconcentrated by coprecipitation with BaSO4, separated from

  15. Determination of thorium and uranium contents in soil samples using SSNTD’s passive method

    Microsoft Academic Search

    T A Salama; U. Seddik; T M Dsoky; A. Ahmed Morsy; R. El-Asser

    2006-01-01

    Thorium-to-uranium ratios have been determined in different soil samples using CR-39 and LR-115-II solid-state nuclear track\\u000a detectors (SSNTDs). A calibration method based on determination of SSNTD registration sensitivity ratio for ?-particles of\\u000a thorium and uranium series has been developed. Thorium and uranium contents of the standard soil samples have been determined\\u000a and compared with its known values. There is a

  16. Spatial variation in soil properties among North American ecosystems and guidelines for sampling designs.

    PubMed

    Loescher, Henry; Ayres, Edward; Duffy, Paul; Luo, Hongyan; Brunke, Max

    2014-01-01

    Soils are highly variable at many spatial scales, which makes designing studies to accurately estimate the mean value of soil properties across space challenging. The spatial correlation structure is critical to develop robust sampling strategies (e.g., sample size and sample spacing). Current guidelines for designing studies recommend conducting preliminary investigation(s) to characterize this structure, but are rarely followed and sampling designs are often defined by logistics rather than quantitative considerations. The spatial variability of soils was assessed across ?1 ha at 60 sites. Sites were chosen to represent key US ecosystems as part of a scaling strategy deployed by the National Ecological Observatory Network. We measured soil temperature (Ts) and water content (SWC) because these properties mediate biological/biogeochemical processes below- and above-ground, and quantified spatial variability using semivariograms to estimate spatial correlation. We developed quantitative guidelines to inform sample size and sample spacing for future soil studies, e.g., 20 samples were sufficient to measure Ts to within 10% of the mean with 90% confidence at every temperate and sub-tropical site during the growing season, whereas an order of magnitude more samples were needed to meet this accuracy at some high-latitude sites. SWC was significantly more variable than Ts at most sites, resulting in at least 10× more SWC samples needed to meet the same accuracy requirement. Previous studies investigated the relationship between the mean and variability (i.e., sill) of SWC across space at individual sites across time and have often (but not always) observed the variance or standard deviation peaking at intermediate values of SWC and decreasing at low and high SWC. Finally, we quantified how far apart samples must be spaced to be statistically independent. Semivariance structures from 10 of the 12-dominant soil orders across the US were estimated, advancing our continental-scale understanding of soil behavior. PMID:24465377

  17. Mutagenic potency in Salmonella typhimurium of organic extracts of soil samples originating from urban, suburban, agricultural, forest and natural areas

    Microsoft Academic Search

    Benoit Courty; Frank Le Curieux; Laurence Belkessam; Agnès Laboudigue; Daniel Marzin

    2008-01-01

    The purpose of the present work was to assess the mutagenic potency of soil samples presumably not contaminated by industrial wastes and discharges. A set of 51 soil samples was collected from areas considered as not contaminated by a known industrial activity: 11 urban samples (collected in cities), 15 suburban samples (collected in villages), 7 agricultural samples, and 18 forest

  18. Analysis of lunar samples for carbon compounds.

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1971-01-01

    Description of one approach to the analysis for carbon compounds in lunar materials from the Apollo 11 mission. The sequential scheme followed generally accepted organic geochemical practices, but was unusual in its application to a single sample. The procedures of the scheme were designed to minimize handling of the solids and extracts or hydrolysates. The solid lunar sample was retained in all steps of the sequential analysis in the vessel in which it was originally placed. Centrifugation was used to separate solid and liquid phases after extraction or refluxing. Liquids were recovered from solids by decantation.

  19. Organic vs. conventional grassland management: do (15)N and (13)C isotopic signatures of hay and soil samples differ?

    PubMed

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the ?(15)N and ?(13)C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used ??(15)N (?(15)N plant - ?(15)N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in ?(13)C in hay and ?(15)N in both soil and hay between management types, but showed that ?(13)C abundances were significantly lower in soil of organic compared to conventional grasslands. ??(15)N values implied that management types did not substantially differ in nitrogen cycling. Only ?(13)C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice. PMID:24205126

  20. Massive processing of pyro-chromatogram mass spectra (py-GCMS) of soil samples using the PARAFAC2 algorithm

    NASA Astrophysics Data System (ADS)

    Cécillon, Lauric; Quénéa, Katell; Anquetil, Christelle; Barré, Pierre

    2015-04-01

    Due to its large heterogeneity at all scales (from soil core to the globe), several measurements are often mandatory to get a meaningful value of a measured soil property. A large number of measurements can therefore be needed to study a soil property whatever the scale of the study. Moreover, several soil investigation techniques produce large and complex datasets, such as pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) which produces complex 3-way data. In this context, straightforward methods designed to speed up data treatments are needed to deal with large datasets. GC-MS pyrolysis (py-GCMS) is a powerful and frequently used tool to characterize soil organic matter (SOM). However, the treatment of the results of a py-GCMS analysis of soil sample is time consuming (number of peaks, co-elution, etc.) and the treatment of large data set of py-GCMS results is rather laborious. Moreover, peak position shifts and baseline drifts between analyses make the automation of GCMS programs data treatment difficult. These problems can be fixed using the Parallel Factor Analysis 2 (PARAFAC 2, Kiers et al., 1999; Bro et al., 1999). This algorithm has been applied frequently on chromatography data but has never been applied to analyses of SOM. We developed a Matlab routine based on existing Matlab packages dedicated to the simultaneous treatment of dozens of pyro-chromatograms mass spectra. We applied this routine on 40 soil samples. The benefits and expected improvements of our method will be discussed in our poster. References Kiers et al. (1999) PARAFAC2 - PartI. A direct fitting algorithm for the PARAFAC2 model. Journal of Chemometrics, 13: 275-294. Bro et al. (1999) PARAFAC2 - PartII. Modeling chromatographic data with retention time shifts. Journal of Chemometrics, 13: 295-309.

  1. ENVIRONMENTAL SAMPLING AND ANALYSIS - GETTING IT RIGHT

    SciTech Connect

    CONNELL CW

    2008-01-22

    The Department of Energy's Hanford Site in southeastern Washington State was established in the 1940s as part of the Manhattan Project. Hanford's role was to produce weapons-grade nuclear material for defense, and by 1989, when the Site's mission changed from operations to cleanup, Hanford had produced more than 60 percent of the nation's plutonium. The legacy of Hanford's production years is enormous in terms of nuclear and hazardous waste, especially the 270 billion gallons of contaminated groundwater and the 5 million cubic yards of contaminated soil. Managing the contaminated soil and groundwater are particularly important because the Columbia River, the lifeblood of the northwest and the nation's eighth largest river, bounds the Site. Fluor Hanford's Soil & Groundwater Remediation Project (S&GRP) integrates all of the activities that deal with remediating and monitoring the groundwater across the Site. The S&GRP uses a detailed series of steps to record, track, and verify information. The Sample and Data Management (SDM) Process consists of 10 integrated steps that start with the data quality objectives process that establishes the mechanism for collecting the right information with the right people. The process ends with data quality assessment, which is used to ensure that all quantitative data (e.g., field screening, fixed laboratory) are the right type, and of adequate quality to support the decision-making process. Steps 3 through 10 of the process are production steps and are integrated electronically. The detailed plans, procedures, and systems used day-to-day by the SDM process require a high degree of accuracy and reliability. Tools must be incorporated into the processes that minimize errors. This paper discusses all of the elements of the SDM process in detail.

  2. Automated Sample collection and Analysis unit

    SciTech Connect

    Latner, Norman; Sanderson, Colin G.; Negro, Vincent C.

    1999-03-31

    Autoramp is an atmospheric radionuclide collection and analysis unit designed for unattended operation. A large volume of air passes through one of 31 filter cartridges which is then moved from a sampling chamber and past a bar code reader, to a shielded enclosure. The collected dust-borne radionuclides are counted with a high resolution germanium gamma-ray detector. An analysis is made and the results are transmitted to a central station that can also remotely control the unit.

  3. A quarantine protocol for analysis of returned extraterrestrial samples

    NASA Technical Reports Server (NTRS)

    Bagby, J. R.; Sweet, H. C.; Devincenzi, D. L.

    1983-01-01

    A protocol is presented for the analysis at an earth-orbiting quarantine facility of return samples of extraterrestrial material that might contain (nonterrestrial) life forms. The protocol consists of a series of tests designed to determine whether the sample, conceptualized as a 1-kg sample of Martian soil, is free from nonterrestrial biologically active agents and so may safely be sent to a terrestrial containment facility, or it exhibits biological activity requiring further (second-order) testing outside the biosphere. The first-order testing procedure seeks to detect the presence of any replicating organisms or toxic substances through a series of experiments including gas sampling, analysis of radioactivity, stereomicroscopic inspection, chemical analysis, microscopic examination, the search for metabolic products under growth conditions, microbiologicl assays, and the challenge of cultured cells with any agents found or with the extraterrestrial material as is. Detailed plans for the second-order testing would be developed in response to the actual data received from primary testing.

  4. Evaluation of plant availability of rare earth elements in soils by chemical fractionation and multiple regression analysis

    Microsoft Academic Search

    Fuliang Li; Xiaoquan Shan; Tianhong Zhang; Shuzhen Zhang

    1998-01-01

    This case field study describes the distribution of rare earth elements (REEs) in different soil fractions obtained by a sequential extraction procedure and plant availability with single correlation and multiple regression analysis. Soil and plant samples were collected from a rural region of Beijing, China. Plant samples (corn, rice) were segmented into grain, stem, leaf and root. The results indicated

  5. Soil organic carbon stocks in southeast Germany as affected by land use, soil type and sampling depth

    NASA Astrophysics Data System (ADS)

    Wiesmeier, M.; von Lützow, M.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; Kögel-Knabner, I.

    2012-04-01

    Precise estimations of soil organic carbon (SOC) stocks are of decided importance for the detection of carbon sequestration or emission potential induced by land use changes. For Germany, a comprehensive, land use-specific SOC data set has not yet been compiled. We evaluated a unique data set of 1460 soil profiles in southeast Germany in order to calculate representative SOC stocks to a depth of 1 m for the main land use types. The results showed that grassland soils stored the highest amount of SOC, with a median value of 11.8 kg m-2, whereas considerably lower stocks of 9.8 and 9.0 kg m-2 were found for forest and cropland soils, respectively. However, the differences between extensively used land (grassland, forest) and cropland were much lower compared with results from other studies in central European countries. The depth distribution of SOC showed that despite low SOC concentrations in A horizons of cropland soils, their stocks were not considerably lower compared with other land uses. This was due to a deepening of the topsoil compared with grassland soils. Higher grassland SOC stocks were caused by an accumulation of SOC in the B horizon which was attributable to a high proportion of C-rich Gleysols within grassland soils. The incorporation of subsoil SOC stocks revealed that land use may not be the main controlling factor for SOC storage and highlighted the importance of pedogenetic properties, particularly in grassland soils. We recommend that pedogenetic soil information should be included in SOC stock estimations as well as in carbon sequestration studies. Our results further indicate that SOC depletion in cropland soils due to cultivation is probably often overestimated because tillage-induced deepening of the topsoil was ignored by studies with fixed depths. The application of modelled parameters in SOC inventories is generally questioned, because SOC stocks, calculated with pedotransfer functions, were systematically biased, particularly for forest soils. Therefore, we propose that in future SOC inventories, soils should be sampled down to the parent material and completely analyzed by horizon instead of depth increments in order to increase the accuracy of SOC stock estimations and to elucidate pedogenetic effects on SOC storage. A land use-specific and soil type-specific quantification of functional SOC pools with different turnover times would make it possible to estimate the future development of SOC stocks under a changing climate.

  6. Effect of preservation method on the assessment of bacterial community structure in soil and water samples.

    PubMed

    Tatangelo, Valeria; Franzetti, Andrea; Gandolfi, Isabella; Bestetti, Giuseppina; Ambrosini, Roberto

    2014-07-01

    The methods used in sample preservation may affect the description of the microbial community structure by DNA-based techniques. This study aims at evaluating the effect of different storage conditions, including freezing, adding two liquid-based preservatives or simply storing samples with no preservative, on the structure of the microbial communities in aliquots of organic-rich soil and water samples as revealed by a terminal restriction fragment length polymorphisms. The results showed that the number of terminal restriction fragments (TRFs) detected in soil aliquots stored with LifeGuard(™) solution was significantly lower than that of samples analyzed immediately after sampling. Moreover, cluster and PCA analyses showed that soil aliquots stored using LifeGuard(™) clustered separately from those stored with the other methods. Conversely, soil and water aliquots stored with DMSO-EDTA-salt solution did not show either significant reduction in the number of TRFs or any change in the structure of the microbial community. Finally, the number of TRFs and the structure of microbial communities from soil aliquots stored with no preservative did not differ from those of aliquots analyzed immediately after sampling. Preservation methods should therefore be accurately evaluated before collecting samples that have to be stored for long time before DNA extraction. PMID:24840085

  7. TECHNICAL MANUAL FOR INORGANIC SAMPLING AND ANALYSIS

    EPA Science Inventory

    The manual presents the state-of-the-art of inorganic sampling and analysis (ISA) procedures in a standardized format that makes the methodology readily available to professionals in the field. Because of the breadth of ISA, a system was developed to avoid burying specific method...

  8. Analysis of Picattiny Sample for Trace Explosives

    SciTech Connect

    Klunder, G; Whipple, R; Carman, L; Spackman, P E; Reynolds, J; Alcaraz, A

    2008-05-23

    The sample received from Picatinny Arsenal was analyzed for trace amounts of high explosives (HE). A complete wash of the surface was performed, concentrated, and analyzed using two sensitive analysis techniques that are capable of detecting numerous types of explosives. No explosives were detected with either test.

  9. Microcomputer Analysis of Children's Language Samples.

    ERIC Educational Resources Information Center

    Rosenkoetter, Sharon E.; Rice, Mabel L.

    The workshop paper examines the use of microcomputer packages to analyze spontaneous language samples of children with communication disorders. Advantages of computerized analysis are seen to include time saving, more efficient data management, and increased objectivity. To help consumers determine which programs to buy, four aspects are…

  10. Polychlorinated biphenyls in contaminated soil samples evaluated by GC–ECD with dual-column and GC–HRMS

    Microsoft Academic Search

    Giuliana Bianco; Giuseppe Novario; Dominga Bochicchio; Giuseppe Anzilotta; Achille Palma; Tommaso R. I. Cataldi

    2008-01-01

    We present and compare results obtained from the analysis of polychlorinated biphenyls (PCBs) of a limited number of contaminated soil samples collected in three areas of Basilicata region (south of Italy). The levels of PCBs were evaluated by using two analytical methods: (i) parallel dual-column gas-chromatography with dual electron capture detectors (GC–ECD) and (ii) gas-chromatography coupled to high-resolution mass spectrometry

  11. Supercritical fluid extraction for the analysis of pesticide residues in miscellaneous samples

    Microsoft Academic Search

    Noboru Motohashi; Hideo Nagashima; Cyril Párkányi

    2000-01-01

    Supercritical fluid extraction (SFE) procedures for pesticide residue analysis are reviewed and discussed. A variety of applications were classified, on matrices such as fruits, vegetables, soils, biological tissues, and other materials. Emphasis is placed on analysis of samples with a high water content containing polar pesticides, with particular attention paid to the multiresidue analyses.

  12. Comparison of three tree?ring sampling methods for trace metal analysis

    Microsoft Academic Search

    Edita Baltrenaite; Donatas Butkus; Colin A. Booth

    2010-01-01

    Tree?ring growth analysis can provide information about tree development for forest inventory, environmental assessment, atmospheric and soil monitoring. Metal concentrations in wood increment correlate with metal concentrations in the environment and can indicate local environmental contamination sources. One of the most important steps of tree analysis is tree?ring sampling. To determine trace metal (TM) concentrations precisely in a separate ring,

  13. Reference values for soil structural degradation evaluation: an approach using shrinkage analysis

    NASA Astrophysics Data System (ADS)

    Johannes, Alice; Weisskopf, Peter; Schulin, Rainer; Boivin, Pascal

    2015-04-01

    Introduction Diagnosis of soil compaction and other soil structural degradation require reference threshold values defining non-degraded soil structure versus degraded soil structure. Large-scale application, e.g. for soil protection regulation, require accurate, cost-efficient and robust methods providing meaningful information with respect to soil quality. The shrinkage curve analysis (ShC)(Braudeau et al., 2004) does not only provide relevant parameters for soil functions such as water and air content of structural porosity but also holds promises to fulfil these requirements. Our objective was to test the potential of ShC analysis to define reference values for soil structural degradation at Swiss scale. Material and Methods Agricultural soils of the most common soil order on the Swiss plateau, namely cambi-luvisol, were sampled. Undisturbed samples were collected from topsoil at 200 locations from spring 2012 to fall 2014 on a large area (240 km) across Switzerland. Three types of soil managements were represented, namely permanent pasture (PP), conventional tillage and no-till. Only soils showing no evidence of structural degradation, as assessed visually and according to a VESS score smaller than 3 (Ball et al., 2007), were sampled. Compaction, erosion, waterlogging and poor degradation of organic matter were criteria to discard sampling locations. The undisturbed soil samples were analysed for SOC, texture, CEC and ShC, from which a set of parameters defining the soil porosities and hydrostructural stability was obtained. Results and Discussion The texture properties were similar between the different soil management, with clay content ranging from 10 to 35%. SOC content ranged from 0.5 to 4.5% and was significantly larger in average for PP, though the ranges were largely overlapping amongst the 3 soil managements. ShC parameters were found to be highly determined by SOC, with the R2 of the regressions usually over 70%, regardless of soil management, large spatial coverage and time of sampling. Considering additional soil properties improved only poorly the prediction of the ShC properties. These high predictions of physical parameters by SOC are partly due to the standardization with respect to matric potential or shrinkage transition points, which allows sharply decreasing the spatial and temporal variability. Consequently, a small number of samples (3-10) should accurately determine an average value of ShC parameters, with inexpensive and simple techniques. Conclusion For the considered soil order, at Swiss scale, a unique highly determined linear relation could be defined for most of the ShC parameters with respect to SOC. This relation defines the non-degraded reference state. Further comparison with degraded soil structures will show to which extent unambiguous detection of structural degradation can be performed on this basis in the perspective of soil quality regulation. Bibliography Ball, B.C., Batey, T., Munkholm, L.J., 2007. Field assessment of soil structural quality-a development of the Peerlkamp test. Soil Use Manag. 23, 329-337. Braudeau, E., Frangi, J.P., Mohtar, R.H., 2004. Characterizing nonrigid aggregated soil-water medium using its shrinkage curve. Soil Sci. Soc. Am. J. 68, 359-370.

  14. Emerging techniques for soil analysis via mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Linker, R.; Shaviv, A.

    2009-04-01

    Transmittance and diffuse reflectance (DRIFT) spectroscopy in the mid-IR range are well-established methods for soil analysis. Over the last five years, additional mid-IR techniques have been investigated, and in particular: 1. Attenuated total reflectance (ATR) Attenuated total reflectance is commonly used for analysis of liquids and powders for which simple transmittance measurements are not possible. The method relies on a crystal with a high refractive index, which is in contact with the sample and serves as a waveguide for the IR radiation. The radiation beam is directed in such a way that it hits the crystal/sample interface several times, each time penetrating a few microns into the sample. Since the penetration depth is limited to a few microns, very good contact between the sample and the crystal must be ensured, which can be achieved by working with samples close to water saturation. However, the strong absorbance of water in the mid-infrared range as well as the absorbance of some soil constituents (e.g., calcium carbonate) interfere with some of the absorbance bands of interest. This has led to the development of several post-processing methods for analysis of the spectra. The FTIR-ATR technique has been successfully applied to soil classification as well as to determination of nitrate concentration [1, 6-8, 10]. Furthermore, Shaviv et al. [12] demonstrated the possibility of using fiber optics as an ATR devise for direct determination of nitrate concentration in soil extracts. Recently, Du et al. [5] showed that it is possible to differentiate between 14N and 15N in such spectra, which opens very promising opportunities for developing FTIR-ATR based methods for investigating nitrogen transformation in soils by tracing changes in N-isotopic species. 2. Photo-acoustic spectroscopy Photoacoustic spectroscopy (PAS) is based on absorption-induced heating of the sample, which produces pressure fluctuations in a surrounding gas. These fluctuations are recorded by a microphone and constitute the PAS signal. The major advantage of this method is that it is suitable for highly absorbing solid samples such as soils without any special pretreatment. This method has been applied successfully to soil classification and to quantitative determination of soil properties such as available nitrogen, phosphorus and potassium, organic matter or calcium carbonate content [2-4]. 3. FTIR-based determination of ion concentration using ion-exchange membranes In addition to the previous direct methods, mid-infrared spectroscopy can also be used to estimate nutrient availability or ion availability indirectly by combining FTIR with ion-exchange membranes. Such membranes are commonly used in studies dealing with nutrient availability, in which standard chemical methods are used to determine the amount of nutrients sorbed onto the membranes. Chemical analysis can be replaced by mid-IR spectroscopy of the loaded membrane, using either the transmittance or photo-acoustic technique depending on the type of membrane [9, 11]. The present work reviews these techniques and the chemometrics tools required for accurate interpretation of the spectra and discusses the potentials and limitations of each method. References 1. Borenstein A., R. Linker, I. Shmulevich and A. Shaviv (2006). Determination of soil nitrate and water content using attenuated total reflectance spectroscopy. Applied Spectroscopy, 60: 1267-1272. 2. Du, C., R. Linker and A. Shaviv (2007). Characterization of soils using photoacoustic mid-infrared spectroscopy. Applied Spectroscopy, 61: 1063-1067. 3. Du, C., R. Linker and A. Shaviv (2008). Identification of agricultural Mediterranean soils using mid-infrared photoacoustic spectroscopy. Geoderma, 143: 85-90. 4. Du, C., J. Zhou, H. Wang, X. Chen, A. Zhu and J. Zhang (2008). Determiantion of soil properties using Fourier transform mid-infrared photoacoustic spectroscopy. Vibrational Spectroscopy (In press). 5. Du, C., R. Linker, A. Shaviv and Z. Jianmin. In situ evaluation of net nitrification rate in Terra rossa soil using FTIR-ATR

  15. Uncertainty in sample estimates and the implicit loss function for soil information.

    NASA Astrophysics Data System (ADS)

    Lark, Murray

    2015-04-01

    One significant challenge in the communication of uncertain information is how to enable the sponsors of sampling exercises to make a rational choice of sample size. One way to do this is to compute the value of additional information given the loss function for errors. The loss function expresses the costs that result from decisions made using erroneous information. In certain circumstances, such as remediation of contaminated land prior to development, loss functions can be computed and used to guide rational decision making on the amount of resource to spend on sampling to collect soil information. In many circumstances the loss function cannot be obtained prior to decision making. This may be the case when multiple decisions may be based on the soil information and the costs of errors are hard to predict. The implicit loss function is proposed as a tool to aid decision making in these circumstances. Conditional on a logistical model which expresses costs of soil sampling as a function of effort, and statistical information from which the error of estimates can be modelled as a function of effort, the implicit loss function is the loss function which makes a particular decision on effort rational. In this presentation the loss function is defined and computed for a number of arbitrary decisions on sampling effort for a hypothetical soil monitoring problem. This is based on a logistical model of sampling cost parameterized from a recent geochemical survey of soil in Donegal, Ireland and on statistical parameters estimated with the aid of a process model for change in soil organic carbon. It is shown how the implicit loss function might provide a basis for reflection on a particular choice of sample size by comparing it with the values attributed to soil properties and functions. Scope for further research to develop and apply the implicit loss function to help decision making by policy makers and regulators is then discussed.

  16. OVERVIEW OF BERYLLIUM SAMPLING AND ANALYSIS

    SciTech Connect

    Brisson, M

    2009-04-01

    Because of its unique properties as a lightweight metal with high tensile strength, beryllium is widely used in applications including cell phones, golf clubs, aerospace, and nuclear weapons. Beryllium is also encountered in industries such as aluminium manufacturing, and in environmental remediation projects. Workplace exposure to beryllium particulates is a growing concern, as exposure to minute quantities of anthropogenic forms of beryllium may lead to sensitization and to chronic beryllium disease, which can be fatal and for which no cure is currently known. Furthermore, there is no known exposure-response relationship with which to establish a 'safe' maximum level of beryllium exposure. As a result, the current trend is toward ever lower occupational exposure limits, which in turn make exposure assessment, both in terms of sampling and analysis, more challenging. The problems are exacerbated by difficulties in sample preparation for refractory forms of beryllium, such as beryllium oxide, and by indications that some beryllium forms may be more toxic than others. This chapter provides an overview of sources and uses of beryllium, health risks, and occupational exposure limits. It also provides a general overview of sampling, analysis, and data evaluation issues that will be explored in greater depth in the remaining chapters. The goal of this book is to provide a comprehensive resource to aid personnel in a wide variety of disciplines in selecting sampling and analysis methods that will facilitate informed decision-making in workplace and environmental settings.

  17. Germanium-76 Sample Analysis: Revision 3

    SciTech Connect

    Kouzes, Richard T.; Zhu, Zihua; Engelhard, Mark H.

    2011-09-19

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0{nu}{beta}{beta}). The DEMONSTRATOR will utilize 76Ge from Russia. The first one-gram sample was received from the supplier for analysis on April 24, 2011. The second one-gram sample was received from the supplier for analysis on July 12, 2011. The third sample, which came from the first large shipment of germanium from the vendor, was received from Oak Ridge National Laboratory (ORNL) on September 13, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of these analyses are reported here. The isotopic composition of a sample of natural germanium was also measured twice. Differences in the result between these two measurements led to a re-measurement of the second 76Ge sample.

  18. Sampling and analysis of 100 Area springs

    SciTech Connect

    Not Available

    1992-02-01

    This report is submitted in fulfillment of Hanford Federal Facility Agreement and Consent Order Milestone M-30-01, submit a report to EPA and Ecology evaluating the impact to the Columbia River from contaminated springs and seeps as described in the operable unit work plans listed in M-30-03. Springs, seeps, sediments, and the Columbia River were sampled for chemical and radiological analyses during the period September 16 through October 21, 1991. A total of 26 locations were sampled. Results of these analyses show that radiological and nonradiological contaminants continue to enter the Columbia River from the retired reactor areas of the 100 Area via the springs. The primary contaminants in the springs are strontium-90, tritium, and chromium. These contaminants were detected in concentrations above drinking water standards. Analysis of total organic carbon were run on all water samples collected; there is no conclusive evidence that organic constituents are entering the river through the springs. Total organic carbon analyses were generally higher for the surface water than for the springs. The results of this study will be used to develop a focused, yet flexible, long-term spring sampling program. Analysis of Columbia River water samples collected at the Hanford Townsite (i.e., downstream of the reactor areas) did not detect any Hanford-specific contaminants.

  19. Interpreting Within-Field Relationships Between Crop Yields and Soil and Plant Variables Using Factor Analysis

    Microsoft Academic Search

    A. P. Mallarino; E. S. Oyarzabal; P. N. Hinz

    1999-01-01

    Precision farming technologies allow for collection of large amounts of data from producers' fields. This study used grid-sampling techniques and factor analysis to investigate relationships between several site variables and corn (Zea mays L.) yields on five producer's fields. Sampling positions (112 to 258) were at the intersecting points of grid lines spaced 15 m. Variables measured were soil organic

  20. Particle size analysis of soils under simulated scene of crime conditions: the interest of multivariate analyses

    Microsoft Academic Search

    Véronique Chazottes; Christian Brocard; Benoit Peyrot

    2004-01-01

    Two simulated scenes of crime have been studied. Soil traces adhering to boots, sport shoes and tissues have been compared with control samples using particle size analysis. Comparisons of percentage of particles per class interval and multivariate analyses were used to determine how the size distribution of each suspect sample varied compared to the original distribution. A loss of coarse

  1. Sampling and Data Analysis for Environmental Microbiology

    SciTech Connect

    Murray, Christopher J.

    2001-06-01

    A brief review of the literature indicates the importance of statistical analysis in applied and environmental microbiology. Sampling designs are particularly important for successful studies, and it is highly recommended that researchers review their sampling design before heading to the laboratory or the field. Most statisticians have numerous stories of scientists who approached them after their study was complete only to have to tell them that the data they gathered could not be used to test the hypothesis they wanted to address. Once the data are gathered, a large and complex body of statistical techniques are available for analysis of the data. Those methods include both numerical and graphical techniques for exploratory characterization of the data. Hypothesis testing and analysis of variance (ANOVA) are techniques that can be used to compare the mean and variance of two or more groups of samples. Regression can be used to examine the relationships between sets of variables and is often used to examine the dependence of microbiological populations on microbiological parameters. Multivariate statistics provides several methods that can be used for interpretation of datasets with a large number of variables and to partition samples into similar groups, a task that is very common in taxonomy, but also has applications in other fields of microbiology. Geostatistics and other techniques have been used to examine the spatial distribution of microorganisms. The objectives of this chapter are to provide a brief survey of some of the statistical techniques that can be used for sample design and data analysis of microbiological data in environmental studies, and to provide some examples of their use from the literature.

  2. Sampling of illicit drugs for quantitative analysis--part III: sampling plans and sample preparations.

    PubMed

    Csesztregi, T; Bovens, M; Dujourdy, L; Franc, A; Nagy, J

    2014-08-01

    The findings in this paper are based on the results of our drug homogeneity studies and particle size investigations. Using that information, a general sampling plan (depicted in the form of a flow-chart) was devised that could be applied to the quantitative instrumental analysis of the most common illicit drugs: namely heroin, cocaine, amphetamine, cannabis resin, MDMA tablets and herbal cannabis in 'bud' form (type I). Other more heterogeneous forms of cannabis (type II) were found to require alternative, more traditional sampling methods. A table was constructed which shows the sampling uncertainty expected when a particular number of random increments are taken and combined to form a single primary sample. It also includes a recommended increment size; which is 1 g for powdered drugs and cannabis resin, 1 tablet for MDMA and 1 bud for herbal cannabis in bud form (type I). By referring to that table, individual laboratories can ensure that the sampling uncertainty for a particular drug seizure can be minimised, such that it lies in the same region as their analytical uncertainty for that drug. The table shows that assuming a laboratory wishes to quantitatively analyse a seizure of powdered drug or cannabis resin with a 'typical' heterogeneity, a primary sample of 15×1 g increments is generally appropriate. The appropriate primary sample for MDMA tablets is 20 tablets, while for herbal cannabis (in bud form) 50 buds were found to be appropriate. Our study also showed that, for a suitably homogenised primary sample of the most common powdered drugs, an analytical sample size of between 20 and 35 mg was appropriate and for herbal cannabis the appropriate amount was 200 mg. The need to ensure that the results from duplicate or multiple incremental sampling were compared, to demonstrate whether or not a particular seized material has a 'typical' heterogeneity and that the sampling procedure applied has resulted in a 'correct sample', was highlighted and the setting up of suitable control charts (R or S charts), for quality control purposes, was strongly recommended and examples given. Furthermore, although this particular study relates to the sampling of illicit drugs, it should be remembered that it is based on general sampling theory and therefore the same approach could be applied to other disciplines where 'correct sampling' of powders and solids is important. PMID:24815616

  3. Lunar surface: identification of the dark mantling material in the Apollo 17 soil samples

    Microsoft Academic Search

    C. Pieters; T. B. McCord; M. P. Charette; J. B. Adams

    1974-01-01

    Evidence indicates that Apollo 17 sample 74001, a soil consisting of ; very dark spheres, is composed almost entirely of the dark mantling material that ; covers a large region of the southeastern boundary of Mare Serenitatis. Other ; Apollo 17 samples contain only a component of this material. The underlying ; basalt in the Taurus- Littrow valley appears to

  4. Nano-FTIR for Geochemical Sample Analysis

    NASA Astrophysics Data System (ADS)

    Dominguez, G.; McCleod, A.; Gainsforth, Z.; Keilmann, F.; Westphal, A.; Thiemens, M. H.; Basov, D.

    2014-12-01

    Infrared (IR) spectroscopy is considered by many to be the "gold standard" for chemical identification, providing a direct connection between chemical compounds found in the laboratory and those found in natural samples including remote astrophysical environments. However, a well known limitation of using conventional IR spectroscopy is its spatial resolution determined by the wavelength of IR photons. Thus, while other techniques such as XANES and micro-Raman are capable of limited functional group mapping at tens to hundreds of nanometers, their use is limited by accessibility (the need for synchrotron beamlines) or the need for intense irradiation conditions (Raman) that can lead to sample alteration. These limitations and the wealth of information that can be extracted from detailed studies of unique micron-sized samples brought back by recent sample return missions such as NASA's Stardust mission, have motivated the development of a novel infrared mapping technique that is capable of mapping the chemical functional properties of geochemical samples with submicron resolutions. Here we describe our nano-FTIR imaging and analysis technique that allows us to bypass diffraction limited sample imaging in the infrared. Here we show, for the first time, that 1) the combination of an atomic-force microscope (AFM) and laser can be used to obtain the FTIR-equivalent spectra on spatial scales that are much smaller than the wavelength of IR radiation used 2) this technique responds to subtle shifts in cation concentrations as evidenced by changes in the frequencies of phonons at sub-micron scales 3) this technique can be used to identify regions of crystalline and semi-crystalline materials as demonstrated in our analysis of a cometary dust grain Iris. This work has clear implications for interpretations of astronomical observations and adds a new technique for the non-destructive characterization of terrestrial and extraterrestrial samples.

  5. Silicate melt inclusions and glasses in lunar soil fragments from the Luna 16 core sample

    USGS Publications Warehouse

    Roedder, E.; Weiblen, P.W.

    1972-01-01

    More than 2000 fragments were studied microscopically, and electron microprobe analyses were made of 39 selected areas, from a few square mm of polished surface, through 75- to 425-??m fragments of lunar soil from two samples of the Luna 16 core. The silicate melt inclusions and glasses differ in important details from those observed earlier in the Apollo samples. Melt inclusions in olivine contain epitaxially oriented daughter crystals, but also show a similar epitaxy around the outside of the crystals not observed in previous lunar samples. Melt inclusions in ilmenite suggest trapping at successive stages in a differentiation sequence. There is abundant evidence for late-stage silicate liquid immiscibility, with melt compositions similar but not identical to those from Apollo 11 and 12. A comparison of the alkali ratio of any given bulk rock analysis with that of its late-stage, high-silica melt shows gross differences for different rocks. This is pertinent to understanding late-stage differentiation processes. Glass fragments and spherules exhibit a wide range of crystallization textures, reflecting their wide range of compositions and cooling histories. No significant differences were found between the two portions of core examined (Zones A and D). ?? 1972.

  6. Vegetation and soil sampling for detection of enrichment facilities

    SciTech Connect

    Smith, D.H.

    1994-06-01

    The concept of being able to detect clandestine nuclear operations rests on the fact that they invariably lose material characteristic of the process to the environment. This material can be collected and characterized using highly sensitive analytical techniques. The extent to which these signatures penetrate the environment depends on the type of process and the care taken at the facility to control losses. An enrichment facility that uses UF{sub 6}, a gas, will tend to lose more than a reactor because gases are harder to contain then solids. Any nuclear facility, like industrial processes everywhere, loses some characteristic material to the environment. The issues involved in acquiring environmental samples from around nuclear facilities are discussed, with the primary application being safeguards. Sampling plans, sample acquisition, analytical techniques, and data interpretation are described.

  7. Representing major soil variability at regional scale by constrained Latin Hypercube Sampling of remote sensing data

    NASA Astrophysics Data System (ADS)

    Mulder, V. L.; de Bruin, S.; Schaepman, M. E.

    2013-04-01

    This paper presents a sparse, remote sensing-based sampling approach making use of conditioned Latin Hypercube Sampling (cLHS) to assess variability in soil properties at regional scale. The method optimizes the sampling scheme for a defined spatial population based on selected covariates, which are assumed to represent the variability of the target variables. The optimization also accounts for specific constraints and costs expressing the field sampling effort. The approach is demonstrated using a case study in Morocco, where a small but representative sample record had to be collected over a 15,000 km2 area within 2 weeks. The covariate space of the Latin Hypercube consisted of the first three principal components of ASTER imagery as well as elevation. Comparison of soil properties taken from the topsoil with the existing soil map, a geological map and lithological data showed that the sampling approach was successful in representing major soil variability. The cLHS sample failed to express spatial correlation; constraining the LHS by a distance criterion favoured large spatial variability within a short distances resulting in an overestimation of the variograms nugget and short distance variability. However, the exhaustive covariate data appeared to be spatially correlated which supports our premise that once the relation between spatially explicit remote sensing data and soil properties has been modelled, the latter can be spatially predicted based on the densely sampled remotely sensed data. Therefore, the LHS approach is considered as time and cost efficient for regional scale surveys that rely on remote sensing-based prediction of soil properties.

  8. Soil Retaining Structures: Development of models for structural analysis

    Microsoft Academic Search

    K. J. Bakker

    2000-01-01

    The topic of this thesis is the development of models for the structural analysis of soil retaining structures. The soil retaining structures being looked at are; block revetments, flexible retaining walls and bored tunnels in soft soil. Within this context typical structural behavior of these structures is discussed too. The emphasis within the context of model development is on the

  9. Stochastic analysis of soil-structure interaction 

    E-print Network

    Chan, Charles Cheuk Lap

    1994-01-01

    . Subsequently, the power and cross spectral density functions of the rigid foundation are compared to the input power and cross spectral density functions to determine the significance of the kinematic interaction. The subsequent analysis of inertial...-structure interaction. The term Sn(r?r?i0) is taken to be in the form of &&( ? ~, ta)=S&&(M)f(rt, r~, ta) where Sr/ca) is the spectral density matrix for any one point on the surface of the soil, and f(r?rz, &a) is a term that describes the variations in motion from...

  10. A novel in situ method for sampling urban soil dust: particle size distribution, trace metal concentrations, and stable lead isotopes.

    PubMed

    Bi, Xiangyang; Liang, Siyuan; Li, Xiangdong

    2013-06-01

    In this study, a novel in situ sampling method was utilized to investigate the concentrations of trace metals and Pb isotope compositions among different particle size fractions in soil dust, bulk surface soil, and corresponding road dust samples collected within an urban environment. The aim of the current study was to evaluate the feasibility of using soil dust samples to determine trace metal contamination and potential risks in urban areas in comparison with related bulk surface soil and road dust. The results of total metal loadings and Pb isotope ratios revealed that soil dust is more sensitive than bulk surface soil to anthropogenic contamination in urban areas. The new in situ method is effective at collecting different particle size fractions of soil dust from the surface of urban soils, and that soil dust is a critical indicator of anthropogenic contamination and potential human exposure in urban settings. PMID:23466731

  11. Accelerated solvent extraction combined with dispersive liquid-liquid microextraction before gas chromatography with mass spectrometry for the sensitive determination of phenols in soil samples.

    PubMed

    Xing, Han-Zhu; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song

    2015-05-01

    A method combining accelerated solvent extraction with dispersive liquid-liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m-cresol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid-liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid-liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1-3080 ng/g), low limits of detection (0.06-1.83 ng/g), and excellent reproducibility (<10%) for phenols. Four real soil samples were analyzed by the proposed method to assess its applicability. Experimental results showed that the soil samples were free of our target compounds, and average recoveries were in the range of 87.9-110%. These findings indicate that accelerated solvent extraction with dispersive liquid-liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples. PMID:25676868

  12. Laboratory and in situ experiments on soil samples for determination of pedotransferfunctions

    NASA Astrophysics Data System (ADS)

    Hagrey, Said Al; Wunderlich, Tina; Petersen, Hauke; Lay, Michael; Rabbel, Wolfgang; Stümpel, Harald

    2010-05-01

    One major objective of the iSOIL project is the determination of so called pedotransferfunctions linking measured geophysical parameters (for example conductivity and permittivity) to soil parameters (like clay content or salinity). Some empirical, site-dependent pedophysical functions are already developed, but there are limitations of validation regarding soil types, applied methodology, measuring boundaries etc. To develop new and to extend known models laboratory and in situ experiments of different kinds should be carried out. For the laboratory experiments we collected disturbed samples (50kg each) of different soil types and from different depths. These samples are dried, crushed and then saturated with rain water in steps of approximately 2-5% volumetric water content. After each saturation step the samples are mixed thoroughly until they are assumed to be homogeneously and filled in a cylindrical container. We then conduct GPR (Ground Penetrating Radar) measurements with a 1.5GHz antenna using a metal plate underneath the container as a reflector to get the permittivity of the soil at each water content step. Also geoelectrical measurements determining the resistivity are carried out in different electrode spacings and configurations for each saturation step. For the whole series of measurements the water content is controlled by gravimetrical methods and TDR (Time-domain reflectometry) measurements. Different empirical and hypothetical pedotransferfunctions have been fitted to the electrical (resistivity) and dielectrical (permittivity, radar velocity) parameters and discussed. Acknowledgement: iSOIL-Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment.

  13. FIELD POCKET GUIDE: DESCRIPTION AND SAMPLING OF CONTAMINATED SOILS

    EPA Science Inventory

    This guide describes many field methods and procedures that can be used for (1) preliminary site reconnaissance, (2) detailed site and contaminant characterization/sampling for transport/fate modeling and risk assessment, and (3) remediation selection and design. ll methods and p...

  14. Measurement of radon potential from soil using a special method of sampling

    Microsoft Academic Search

    Constantin Cosma; Botond Papp; Mircea Moldovan; Victor Cosma; Ciprian Cindea; Liviu Suciu; Adelina Apostu

    2010-01-01

    Soil radon gas and\\/or its exhalation rate are used as indicators for some applications, such as uranium exploration, indoor\\u000a radon concentration, seismic activity, location of subsurface faults, etc., and also in the studies where the main interest\\u000a is the field verification of radon transport models. This work proposes a versatile method for the soil radon sampling using\\u000a a special manner

  15. Determination of Phthalate Esters in Soil Samples by Microwave Assisted Extraction and High Performance Liquid Chromatography

    Microsoft Academic Search

    Pei Liang; Linlin Zhang; Lili Peng; Qian Li; Ehong Zhao

    2010-01-01

    A method was developed for the determination of phthalate esters (dimethyl phthalate, diethyl phthalate, benzyl butyl phthalate,\\u000a di-n-butyl phthalate, di-n-octyl phthalate and di-(2-ethylhextyl) phthalate) in soil samples. The method was based on microwave-assisted\\u000a extraction of soil using acetonitrile as extractant. Phthalate esters in the extract were determined by high performance liquid\\u000a chromatography with variable wavelength detector. Microwave-assisted extraction operational parameters,

  16. Effect of sampling and diagnostic effort on the assessment of schistosomiasis and soil-transmitted helminthiasis and drug efficacy: a meta-analysis of six drug efficacy trials and one epidemiological survey.

    PubMed

    Levecke, Bruno; Brooker, Simon J; Knopp, Stefanie; Steinmann, Peter; Sousa-Figueiredo, Jose Carlos; Stothard, J Russell; Utzinger, Jürg; Vercruysse, Jozef

    2014-12-01

    It is generally recommended to perform multiple stool examinations in order to improve the diagnostic accuracy when assessing the impact of mass drug administration programmes to control human intestinal worm infections and determining efficacy of the drugs administered. However, the collection and diagnostic work-up of multiple stool samples increases costs and workload. It has been hypothesized that these increased efforts provide more accurate results when infection and drug efficacy are summarized by prevalence (proportion of subjects infected) and cure rate (CR, proportion of infected subjects that become egg-negative after drug administration), respectively, but not when these indicators are expressed in terms of infection intensity and egg reduction rate (ERR). We performed a meta-analysis of six drug efficacy trials and one epidemiological survey. We compared prevalence and intensity of infection, CR and ERR based on collection of one or two stool samples that were processed with single or duplicate Kato-Katz thick smears. We found that the accuracy of prevalence estimates and CR was lowest with the minimal sampling effort, but that this was not the case for estimating infection intensity and ERR. Hence, a single Kato-Katz thick smear is sufficient for reporting infection intensity and ERR following drug treatment. PMID:24725546

  17. Integrated field lysimetry and porewater sampling for evaluation of chemical mobility in soils and established vegetation.

    PubMed

    Matteson, Audrey R; Mahoney, Denis J; Gannon, Travis W; Polizzotto, Matthew L

    2014-01-01

    Potentially toxic chemicals are routinely applied to land to meet growing demands on waste management and food production, but the fate of these chemicals is often not well understood. Here we demonstrate an integrated field lysimetry and porewater sampling method for evaluating the mobility of chemicals applied to soils and established vegetation. Lysimeters, open columns made of metal or plastic, are driven into bareground or vegetated soils. Porewater samplers, which are commercially available and use vacuum to collect percolating soil water, are installed at predetermined depths within the lysimeters. At prearranged times following chemical application to experimental plots, porewater is collected, and lysimeters, containing soil and vegetation, are exhumed. By analyzing chemical concentrations in the lysimeter soil, vegetation, and porewater, downward leaching rates, soil retention capacities, and plant uptake for the chemical of interest may be quantified. Because field lysimetry and porewater sampling are conducted under natural environmental conditions and with minimal soil disturbance, derived results project real-case scenarios and provide valuable information for chemical management. As chemicals are increasingly applied to land worldwide, the described techniques may be utilized to determine whether applied chemicals pose adverse effects to human health or the environment. PMID:25045915

  18. Soil pore-gas sampling by photoacoustic radiometry

    SciTech Connect

    Sollid, J.E.

    1994-11-01

    Concentrations of volatile organics in a soil pore-gas plume were measured using a commercially available multigas monitor. The monitor is a photoacoustic radiometer (PAR) controlled by an on-board, programmable microprocessor. The measurements determine the extent and location of the vapor plume in the subsurface. At least twelve wells surrounding the sources are measured quarterly. The sources are located in former liquid chemical waste disposal pits and shafts at Los Alamos National Laboratory. The primary constituents of the plume are 1,1,1 trichloroethane (TCA), trichloroethene (TCE), and tetrachloroethene or perchloroethene or perchloroethene (PCE). Four quarters of data are presented for TCA. All were used primarily as solvents and degreasers. Previously the composition of the vapor plume was determined by Gas Chromatography Mass Spectrometer GCMS methods. Photoacoustic radiometry and gas chromatography are discussed giving the advantages and disadvantages of each method, although in this program they are basically complementary. Gas chromatography is a more qualitative method to determine which analytes are present and the approximate concentration. Photoacoustic radiometry, to function well, requires foreknowledge of constituents and serves best to determine how much is present. Measurements are quicker and more direct with photoacoustic methods. Once the constituents to be measured are known, the cost to monitor is much less using photoacoustics, and the results are available more quickly.

  19. Pilot studies for the North American Soil Geochemical Landscapes Project - Site selection, sampling protocols, analytical methods, and quality control protocols

    USGS Publications Warehouse

    Smith, D.B.; Woodruff, L.G.; O'Leary, R. M.; Cannon, W.F.; Garrett, R.G.; Kilburn, J.E.; Goldhaber, M.B.

    2009-01-01

    In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada sampled and chemically analyzed soils along two transects across Canada and the USA in preparation for a planned soil geochemical survey of North America. This effort was a pilot study to test and refine sampling protocols, analytical methods, quality control protocols, and field logistics for the continental survey. A total of 220 sample sites were selected at approximately 40-km intervals along the two transects. The ideal sampling protocol at each site called for a sample from a depth of 0-5 cm and a composite of each of the O, A, and C horizons. The <2-mm fraction of each sample was analyzed for Al, Ca, Fe, K, Mg, Na, S, Ti, Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Ga, In, La, Li, Mn, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Sn, Sr, Te, Th, Tl, U, V, W, Y, and Zn by inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry following a near-total digestion in a mixture of HCl, HNO3, HClO4, and HF. Separate methods were used for Hg, Se, total C, and carbonate-C on this same size fraction. Only Ag, In, and Te had a large percentage of concentrations below the detection limit. Quality control (QC) of the analyses was monitored at three levels: the laboratory performing the analysis, the USGS QC officer, and the principal investigator for the study. This level of review resulted in an average of one QC sample for every 20 field samples, which proved to be minimally adequate for such a large-scale survey. Additional QC samples should be added to monitor within-batch quality to the extent that no more than 10 samples are analyzed between a QC sample. Only Cr (77%), Y (82%), and Sb (80%) fell outside the acceptable limits of accuracy (% recovery between 85 and 115%) because of likely residence in mineral phases resistant to the acid digestion. A separate sample of 0-5-cm material was collected at each site for determination of organic compounds. A subset of 73 of these samples was analyzed for a suite of 19 organochlorine pesticides by gas chromatography. Only three of these samples had detectable pesticide concentrations. A separate sample of A-horizon soil was collected for microbial characterization by phospholipid fatty acid analysis (PLFA), soil enzyme assays, and determination of selected human and agricultural pathogens. Collection, preservation and analysis of samples for both organic compounds and microbial characterization add a great degree of complication to the sampling and preservation protocols and a significant increase to the cost for a continental-scale survey. Both these issues must be considered carefully prior to adopting these parameters as part of the soil geochemical survey of North America.

  20. A quest for porphyrins in lunar soil - Samples from Apollo 11, 12 and 14.

    NASA Technical Reports Server (NTRS)

    Hodgson, G. W.; Kvenvolden, K.; Peterson, E.; Ponnamperuma , C.

    1972-01-01

    Analyses for porphyrins in the lunar samples were carried out by extracting the lunar soils as received by organic solvents followed by analytical demetallation using methanesulfonic acid after which free-base porphyrins, if present, were recovered and demonstrably recomplexed with divalent cations. Samples from Apollo 11 showed the presence of fluorescent substances attributed to exhaust from the descent engine. One sample from Apollo 12 showed pigments resembling porphyrins. The Apollo 14 results were negative.

  1. Sulphate reducing activity detected in soil samples from Antarctica, Ecology Glacier Forefield, King George Island.

    PubMed

    Wolicka, Dorota; Zdanowski, Marek K; ?muda-Baranowska, Magdalena J; Poszytek, Anna; Grzesiak, Jakub

    2014-01-01

    We determined sulphate-reducing activities in media inoculated with soils and with kettle lake sediments in order to investigate their potential in geomicrobiological processes in low-temperature, terrestrial maritime Antarctic habitats. Soil and sediment samples were collected in a glacier valley abandoned by Ecology Glacier during the last 30 years: from a new formed kettle lake sediment and forefield soil derived from ground moraine. Inoculated with these samples, liquid Postgate C and minimal media supplemented with various carbon sources as electron donors were incubated for 8 weeks at 4°C. High rates of sulphate reduction were observed only in media inoculated with soil. No sulphate reduction was detected in media inoculated with kettle lake sediments. In soil samples culture media calcite and elemental sulphur deposits were observed, demonstrating that sulphate-reducing activity is associated with a potential to mineral formation in cold environments. Cells observed on scanning microscopy (SEM) micrographs of post-culture-soil deposits could be responsible for sulphate-reducing activity. PMID:25804064

  2. Water extraction times for plant and soil materials used in stable isotope analysis.

    PubMed

    West, Adam G; Patrickson, Shela J; Ehleringer, James R

    2006-01-01

    Stable isotopic analysis of water for many ecological applications commonly requires extractions of water from dozens to hundreds of plant and soil samples. With recent advances in mass spectrometry, water extraction, rather than the isotopic analysis itself, is the bottleneck in sample processing. Using cryogenic vacuum distillation, we have created extraction timing curves to determine how much time (T(min)) is required to extract an unfractionated water sample. Our results indicated that T(min) values are 60 to 75 min for stems, 40 min for clay soils, 30 min for sandy soils and 20 to 30 min for leaves. While the extraction times reported here may allow for some reductions relative to times reported in the literature, the extraction process will continue to be a rate-limiting step in plant water analyses. Ultimately, technological advances eliminating the need for extraction are required to greatly increase throughput rates in water isotope analysis for ecological research. PMID:16555369

  3. High-throughput diagnosis of potato cyst nematodes in soil samples.

    PubMed

    Reid, Alex; Evans, Fiona; Mulholland, Vincent; Cole, Yvonne; Pickup, Jon

    2015-01-01

    Potato cyst nematode (PCN) is a damaging soilborne pest of potatoes which can cause major crop losses. In 2010, a new European Union directive (2007/33/EC) on the control of PCN came into force. Under the new directive, seed potatoes can only be planted on land which has been found to be free from PCN infestation following an official soil test. A major consequence of the new directive was the introduction of a new harmonized soil sampling rate resulting in a threefold increase in the number of samples requiring testing. To manage this increase with the same staffing resources, we have replaced the traditional diagnostic methods. A system has been developed for the processing of soil samples, extraction of DNA from float material, and detection of PCN by high-throughput real-time PCR. Approximately 17,000 samples are analyzed each year using this method. This chapter describes the high-throughput processes for the production of float material from soil samples, DNA extraction from the entire float, and subsequent detection and identification of PCN within these samples. PMID:25981252

  4. DNA-based determination of microbial biomass suitable for frozen and alkaline soil samples

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Blagodatskaya, Evgeniya; Kogut, Boris; Kuzyakov, Yakov

    2015-04-01

    Microbial biomass is a sensitive indicator of changes due to soil management, long before other basic soil measures such as Corg or Ntot. Improvement of methods for determination of microbial biomass still remains relevant, and these methods should be correctly applicable for the soil samples being in various state. This study was designed to demonstrate the applicability of DNA-based determination of microbial biomass under conditions when the common basic approaches, namely chloroform fumigation-extraction (CFE) and substrate-induced respiration (SIR), are restricted by certain soil properties, experimental designs or research needs, e.g. in frozen, alkaline or carbonaceous soils. We compared microbial biomass determined by CFE, SIR and by DNA approaches in the range of neutral and slightly alkaline Chernozem and alkaline Calcisol of semi-arid climate. The samples of natural and agricultural ecosystems were taken throughout the soil profile from long-term static field experiments in the European part of Russia. Extraction and subsequent quantification of dsDNA revealed a strong agreement with SIR and CFE when analyzing the microbial biomass content in soils with pH below 8. The conversion factors (FDNA) from dsDNA to SIR-Cmic (5.10) and CFE-Cmic (4.41) were obtained by testing a range of the soil samples down to 1.5 m depth and indicated a good reproducibility of DNA-based estimations. In alkaline soils (pH > 8), CO2 retention due to alkaline pH and exchange with carbonates resulted in a strong underestimation of soil microbial biomass by SIR or even in the absence of any CO2 emission, especially at low absolute values of microbial biomass in subsoil. Correction of CO2 efflux by theoretical retention pH-dependent factors caused overestimation of SIR-biomass. In alkaline conditions, DNA extraction proved to be a reliable alternative for microbial biomass determination. Moreover, the DNA-based approach can serve as an excellent alternative enabling correct estimation of microbial biomass in geographically widespread soils after their freezing. The DNA-based approach can also be applied to calculate eco-physiological indexes, e.g. Cmic:Corg ratio. The DNA-Cmic revealed that although the absolute values of microbial biomass in Chernozem were expectedly higher than in Calcisol, the Cmic:Corg ratio was greater in Calcisol versus Chernozem. Therefore, Chernozems can be characterized by a low proportion of microbiologically active C in total Corg. DNA-based determination of Cmic and Cmic:Corg ratios revealed that agrogenic impact does not always lead to negative consequences for soil status and cannot be considered as a solely negative phenomenon.

  5. Optimal Sample Preparation for the Analysis of Micrometric Heterogeneous Samples.

    PubMed

    Beltran, Victòria; Salvadó, Nati; Butí, Salvador; Cinque, Gianfelice; Wehbe, Katia; Pradell, Trinitat

    2015-07-01

    Precise microanalytical techniques are essential in many fields such as cultural heritage materials, showing complex layered microstructures containing a wide range of materials of diverse nature and hardness. Noninvasive sample manipulation and preparation is required to avoid, as much as possible, sample contamination, which may strongly limit the materials identification. The method proposed consists in the application of thin gold or carbon protecting layers before embedding the samples in synthetic resin for microtoming. The validity and optimal procedure is checked for those materials most often found on the surface of paintings: varnishes (natural resins and wax). An artwork sample is similarly prepared and analyzed by optical microscopy (OM), scanning electron microscopy (SEM/EDS), micro-infrared spectroscopy (?FTIR/?SR-FTIR), and X-ray diffraction (?SR-XRD) with synchrotron light. PMID:26023879

  6. Diversity of bacteria producing pigmented colonies in aerosol, snow and soil samples from remote glacial areas (Antarctica, Alps and Andes)

    NASA Astrophysics Data System (ADS)

    González-Toril, E.; Amils, R.; Delmas, R. J.; Petit, J.-R.; Komárek, J.; Elster, J.

    2008-04-01

    Four different communities and one culture of pigmented microbial assemblages were obtained by incubation in mineral medium of samples collected from high elevation snow in the Alps (Mt. Blanc area) and the Andes (Nevado Illimani summit, Bolivia), from Antarctic aerosol (French station Dumont d'Urville) and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas). Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. The phylogenetic comparison with the currently available rDNA database allowed the identification of sequences belonging to Proteobacteria (Alpha-, Beta- and Gamma-proteobacteria), Actinobacteria and Bacteroidetes phyla. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified) and the maritime Antarctic soil the poorest (only one). Snow samples from Col du midi (Alps) and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones). These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteria clone). The only microorganism identified in the maritime Antarctica soil (Brevundimonas sp.) was also detected in the Antarctic aerosol. The two snow samples from the Alps only shared one common microorganism. Most of the identified microorganisms have been detected previously in cold environments (Dietzia kujamenisi, Pseudonocardia Antarctica, Hydrogenophaga palleronii and Brebundimonas sp.), marine sediments (Aquiflexus balticus, Pseudomonas pseudoalkaligenes, Pseudomonas sp. and one uncultured Alphaproteobacteria), and soils and rocks (Pseudonocardia sp., Agrobactrium sp., Limnobacter sp. and two uncultured Alphaproteobacetria clones). Air current dispersal is the best model to explain the presence of very specific microorganisms, like those used in this work, in very distant environments. In addition these microorganisms have to be resistant to extreme conditions and able to grow in oligotrophic environments. Considering the habitats in which they have been identified, the presence of pigments must be related with their ability to resist high doses of radiation.

  7. Observations from TEM Analysis of Swift Creek Samples

    NASA Astrophysics Data System (ADS)

    Harris, J. R.

    2012-12-01

    Samples analyzed by transmission electron microscopy (TEM) from suspended sediments in Swift Creek have unique characteristics compared to other naturally occurring asbestos (NOA) sites across the country. Our first introduction to the uniqueness of the Swift Creek site came about when we analyzed soil sediments by polarized light microscopy (PLM) and found relatively low or nonexistent levels of chrysotile asbestos. Upon submission of these samples for TEM analysis, we found that the samples were literally filled with small chrysotile fibers and bundles. We also notice a high number of dark, rounded particles which were not asbestiform. Out of curiosity, we viewed the surface features of one of these particles using scanning electron microscopy to find compacted chrysotile fibers bundled inside these particles. These particles contained the vast majority of chrysotile in the sample. This finding began our approach to provide more advanced TEM/SEM methods for identifying and characterizing complex arrangements of asbestos from NOA sites. We will present some of our experiences and methods for characterizing these types of particles common to NOA sites.

  8. Small sample analysis of vision measurement error

    NASA Astrophysics Data System (ADS)

    Li, Dan; Wang, Zhongyu

    2015-02-01

    Small sample analysis method is proposed to find out the relationship between measurement distance and position error. The grey absolute correlation degree is first used to analyze the correlations of position measurement error. A grey forecasting model is then used to forecast data and expand the small sample size to a relatively larger one. The multivariate multi-order polynomial fitting is made with data. Finally, the accuracy evaluation indices are used to assess the accuracy of curve fitting, which include maximum, minimum and average relative errors. Experimental results show that the difference between maximum and minimum relative errors is in an acceptable range and the accuracy of curve fitting is proved to be superior to 99% which satisfies the engineering requirements.

  9. Soil moisture optimal sampling strategy for Sentinel 1 validation super-sites in Poland

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Lukowski, Mateusz; Marczewski, Wojciech; Lipiec, Jerzy; Usowicz, Jerzy; Rojek, Edyta; Slominska, Ewa; Slominski, Jan

    2014-05-01

    Soil moisture (SM) exhibits a high temporal and spatial variability that is dependent not only on the rainfall distribution, but also on the topography of the area, physical properties of soil and vegetation characteristics. Large variability does not allow on certain estimation of SM in the surface layer based on ground point measurements, especially in large spatial scales. Remote sensing measurements allow estimating the spatial distribution of SM in the surface layer on the Earth, better than point measurements, however they require validation. This study attempts to characterize the SM distribution by determining its spatial variability in relation to the number and location of ground point measurements. The strategy takes into account the gravimetric and TDR measurements with different sampling steps, abundance and distribution of measuring points on scales of arable field, wetland and commune (areas: 0.01, 1 and 140 km2 respectively), taking into account the different status of SM. Mean values of SM were lowly sensitive on changes in the number and arrangement of sampling, however parameters describing the dispersion responded in a more significant manner. Spatial analysis showed autocorrelations of the SM, which lengths depended on the number and the distribution of points within the adopted grids. Directional analysis revealed a differentiated anisotropy of SM for different grids and numbers of measuring points. It can therefore be concluded that both the number of samples, as well as their layout on the experimental area, were reflected in the parameters characterizing the SM distribution. This suggests the need of using at least two variants of sampling, differing in the number and positioning of the measurement points, wherein the number of them must be at least 20. This is due to the value of the standard error and range of spatial variability, which show little change with the increase in the number of samples above this figure. Gravimetric method gives a more varied distribution of SM than those derived from TDR measurements. It should be noted that reducing the number of samples in the measuring grid leads to flattening the distribution of SM from both methods and increasing the estimation error at the same time. Grid of sensors for permanent measurement points should include points that have similar distributions of SM in the vicinity. Results of the analysis including number, the maximum correlation ranges and the acceptable estimation error should be taken into account when choosing of the measurement points. Adoption or possible adjustment of the distribution of the measurement points should be verified by performing additional measuring campaigns during the dry and wet periods. Presented approach seems to be appropriate for creation of regional-scale test (super) sites, to validate products of satellites equipped with SAR (Synthetic Aperture Radar), operating in C-band, with spatial resolution suited to single field scale, as for example: ERS-1, ERS-2, Radarsat and Sentinel-1, which is going to be launched in next few months. The work was partially funded by the Government of Poland through an ESA Contract under the PECS ELBARA_PD project No. 4000107897/13/NL/KML.

  10. Sedimentation Time Measurements of Soil Particles by Light Scattering and Determination of Chromium, Lead, and Iron in Soil Samples via ICP

    ERIC Educational Resources Information Center

    Todebush, Patricia Metthe; Geiger, Franz M.

    2005-01-01

    The study of soil samples, using light scattering and Inductively Coupled Plasma spectrometry (ICP) to determine colloid sedimentation rates and the quantity of chromium, lead, and iron in the sample is described. It shows the physical and chemical behavior of solid components in soil, and how such pollutant binding colloid surfaces directly…

  11. [Heavy metal pollution characteristics and ecological risk analysis for soil around Haining electroplating industrial park].

    PubMed

    Li, Jiong-Hui; Weng, Shan; Fang, Jing; Huang, Jia-Lei; Lu, Fang-Hua; Lu, Yu-Hao; Zhang, Hong-Ming

    2014-04-01

    The pollution status and potential ecological risks of heavy metal in soils around Haining electroplating industrial park were studied. Hakanson index approach was used to assess the ecological hazards of heavy metals in soils. Results showed that average concentrations of six heavy metals (Cu, Ni, Pb, Zn, Cd and Cr) in the soils were lower than the secondary criteria of environmental quality standard for soils, indicating limited harmful effects on the plants and the environment in general. Though the average soil concentrations were low, heavy metal concentrations in six sampling points located at the side of road still exceeded the criteria, with excessive rate of 13%. Statistic analysis showed that concentrations of Cu and Cd in roadside soils were significantly higher than those in non-roadside soils, indicating that the excessive heavy metal accumulations in the soil closely related with traffic transport. The average potential ecological hazard index of soils around Haining electroplating industrial park was 46.6, suggesting a slightly ecological harm. However, the potential ecological hazard index of soils with excessive heavy metals was 220-278, suggesting the medium ecological hazards. Cd was the most seriously ecological hazard factor. PMID:24946611

  12. BEAST: Bayesian Evolutionary Analysis Sampling Trees

    NSDL National Science Digital Library

    This Web site presents a free downloadable program for "testing evolutionary hypotheses without conditioning on a single tree topology." Bayesian Evolutionary Analysis Sampling Trees, or BEAST, was created by Alexei Drummond and Andrew Rambaut of the Evolutionary Biology Group at the University of Oxford. The latest version (v1.0.2) is bug-free and ready for download. The Web site includes detailed information on what BEAST can do, and what researchers can expect to find in future versions of the program.

  13. High productivity analysis of 15 N and 13 C in soil\\/plant research

    Microsoft Academic Search

    A. Barrie; S. T. Brookes; S. J. Prosser; S. Debney

    1995-01-01

    On-line sample preparation and analysis enables faster testing of hypotheses in biological research, particularly in field experiments where many samples must be processed to integrate spatial variability. Soil scientists were first to recognise the need for a fast, easy-to-use15N analyser to replace the isotope ratio mass spectrometer (IRMS) and Kjeldahl-Rittenberg sample preparation. Development has since led to a variety of

  14. Rapid Test Methods for the Field Screening of Heavy Metals in Soil Samples

    Microsoft Academic Search

    Marija Jozic; Thomas Peer; Hans Malissa

    2009-01-01

    In the present work, rapid test methods for field screening of soil for Cu, Ni, and Pb content are presented. They are based\\u000a on commercially obtainable Microquant tests (Merck, Germany), which are originally developed for water analysis. The same\\u000a type of color reaction was also used for the determination of heavy metals in soil extracts: Reagents to form colored metal

  15. A Brazilian soil hydraulic database and field capacity analysis

    NASA Astrophysics Data System (ADS)

    Luiza Lima Ferreira, Ana; Van Dam, Jos Cornelis; de Jong van Lier, Quirijn

    2015-04-01

    Field Capacity (FC) is a widely-used concept by agricultural engineers, hydrologists and soil physicists to quantify the available soil water during growing seasons and the accessible soil water storage during intensive rainfall periods. In the field FC does depend on various environmental factors, including the soil hydraulic properties, rate of evapotranspiration, root density distribution, and groundwater level. Therefore world-wide different approaches are used to determine field capacity, based on both static and dynamic criteria. Dynamic criteria are usually related to the simulation of the soil internal drainage, until the percolation attains a negligible value. Recently Assouline and Or (2014) proposed a soil intrinsic characteristic length to determine the FC pressure head. This characteristic length is related to the loss of hydraulic continuity and is derived from the soil water retention function. In Brazil soil hydraulic properties were not yet organized in a database. Therefore we collected existing data of unsaturated soil hydraulic properties across Brazil, using available PhD thesis and scientific publications. This inquiry resulted in a soil sample data set of 106 horizons. We fitted the soil hydraulic parameters (?r, ?s, ?, n,g? and Ks)of the Mualem-Van Genuchten (1980) function to all soil samples. Next we derived FC values based on soil internal drainage and using the characteristic length according to Assouline and Or (2014). The internal drainage is analysed with the agrohydrological model SWAP (Kroes and van Dam, 2008). In the poster we will present the Brazilian soil hydraulic database and the derived FC values.

  16. Conceptual designs for in situ analysis of Mars soil

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Zent, A. P.; Hartman, H.

    1991-01-01

    A goal of this research is to develop conceptual designs for instrumentation to perform in situ measurements of the Martian soil in order to determine the existence and nature of any reactive chemicals. Our approach involves assessment and critical review of the Viking biology results which indicated the presence of a soil oxidant, an investigation of the possible application of standard soil science techniques to the analysis of Martian soil, and a preliminary consideration of non-standard methods that may be necessary for use in the highly oxidizing Martian soil. Based on our preliminary analysis, we have developed strawman concepts for standard soil analysis on Mars, including pH, suitable for use on a Mars rover mission. In addition, we have devised a method for the determination of the possible strong oxidants on Mars.

  17. Microbial colonisation in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    NASA Astrophysics Data System (ADS)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2014-09-01

    Colonisation of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focusing on settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associate vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soils types on the surface of the island. Total viable bacterial counts were performed with plate count at 22, 30 and 37 °C for all soils samples and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms aerobic and anaerobic bacteria. The deep subsurface biosphere was investigated by collecting liquid subsurface samples from a 182 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between N deficits and the number of microorganisms in surface soils samples. The lowest number of bacteria (1 × 104-1 × 105 g-1) was detected in almost pure pumice but the count was significant higher (1 × 106-1 × 109 g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 m and 172 m depth at 80 °C and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  18. Recent Advances in Soil Carbon Measurement With Laser-Induced Breakdown Spectroscopy (LIBS): High Resolution Analysis in the Field

    NASA Astrophysics Data System (ADS)

    Ebinger, M. H.; Meyer, C. W.; Cremers, D. A.; Ferris, M.; Breshears, D. D.; Unkefer, P.

    2002-05-01

    Accurate measurement of carbon in soils remains one of the largest challenges in understanding sources and sinks of carbon in terrestrial systems. Conventional methods of analyzing carbon require large initial volumes of soil, therefore obtaining samples for conventional analysis is time consuming and expensive. The application of laser-induced breakdown spectroscopy (LIBS) to carbon analysis has several advantages over conventional methods, such as rapid measurement of samples and improved accuracy of the measurements, and it requires only a small soil sample for a measurement. Recently, LIBS instrumentation has been modified for soil carbon measurement from intact soil cores and from discreet samples in the field. With these advances, considerable soil carbon data can be obtained from analyses of small soil samples, or carbon-depth profiles can be constructed at resolutions less than 1 cm. Measurements on such a fine spatial scale can be used to characterize horizontal and vertical variation of soil carbon distributions and improve estimates of soil carbon inventory in heterogeneous media. In addition, these data are valuable tools for evaluating management strategies tied to terrestrial carbon sequestration.

  19. NHEXAS PHASE I REGION 5 STUDY--STANDARD OPERATING PROCEDURE--ANALYSIS OF SOIL FOR ARSENIC (RTI/ACS-AP-209-123)

    EPA Science Inventory

    The purpose of this protocol is to provide guidelines for the analysis of soil samples for arsenic. This method involves the extraction of the analyte from soil samples using a 50% ultra-pure nitric acid, and subsequent analysis by hydride generation atomic fluorescence spectrome...

  20. Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing.

    PubMed

    Barca, E; Castrignanò, A; Buttafuoco, G; De Benedetto, D; Passarella, G

    2015-07-01

    Soil survey is generally time-consuming, labor-intensive, and costly. Optimization of sampling scheme allows one to reduce the number of sampling points without decreasing or even increasing the accuracy of investigated attribute. Maps of bulk soil electrical conductivity (EC a ) recorded with electromagnetic induction (EMI) sensors could be effectively used to direct soil sampling design for assessing spatial variability of soil moisture. A protocol, using a field-scale bulk EC a survey, has been applied in an agricultural field in Apulia region (southeastern Italy). Spatial simulated annealing was used as a method to optimize spatial soil sampling scheme taking into account sampling constraints, field boundaries, and preliminary observations. Three optimization criteria were used. the first criterion (minimization of mean of the shortest distances, MMSD) optimizes the spreading of the point observations over the entire field by minimizing the expectation of the distance between an arbitrarily chosen point and its nearest observation; the second criterion (minimization of weighted mean of the shortest distances, MWMSD) is a weighted version of the MMSD, which uses the digital gradient of the grid EC a data as weighting function; and the third criterion (mean of average ordinary kriging variance, MAOKV) minimizes mean kriging estimation variance of the target variable. The last criterion utilizes the variogram model of soil water content estimated in a previous trial. The procedures, or a combination of them, were tested and compared in a real case. Simulated annealing was implemented by the software MSANOS able to define or redesign any sampling scheme by increasing or decreasing the original sampling locations. The output consists of the computed sampling scheme, the convergence time, and the cooling law, which can be an invaluable support to the process of sampling design. The proposed approach has found the optimal solution in a reasonable computation time. The use of bulk EC a gradient as an exhaustive variable, known at any node of an interpolation grid, has allowed the optimization of the sampling scheme, distinguishing among areas with different priority levels. PMID:26065887

  1. Soil Enzyme Analysis for Leaf Litter Decomposition in Global Wetlands

    Microsoft Academic Search

    Hojeong Kang; Chris Freeman

    2009-01-01

    Enzyme activities (??glucosidase, N?acetylglucosaminidase, phosphatase, and arylsulfatase) were determined in various wetland soils. Soil samples from 21 locations were analyzed, covering a latitudinal range of 5° to 60° N and four types of wetlands (bog, fen, marsh, and swamp). Overall, the greatest activity was found in swamps, followed by marshes. Bogs and fens exhibited less activity than the other two

  2. Soil–geosynthetic interaction: Modelling and analysis

    Microsoft Academic Search

    Ennio Marques Palmeira

    2009-01-01

    Interaction between soils and geosynthetics is of utmost importance in applications of these materials as reinforcement in geotechnical engineering. That is also the case for some applications of geosynthetics in environmental protection works. The mechanisms of soil–geosynthetic interaction can be very complex, depending on the type and properties of the geosynthetic and the soil. This paper presents and discusses some

  3. IDENTIFYING COST-EFFECTIVE SOIL SAMPLING SCHEMES FOR VARIABLE-RATE FERTILIZATIONAND LIMING

    Microsoft Academic Search

    A. P. Mallarino; D. J. Wittry

    Within-field nutrient variability causes some areas of a field to be more or less responsive to fertilization. The best soil sampling and fertilization strategies are those that best estimate and apply economic optimum fertilizer rates across a field. Although current site-specific management practices could achieve this goal, questions remain concerning the cost-effectiveness of alternative sampling strategies. This study compared various

  4. AUTOMATED SYSTEM FOR COLLECTING MULTIPLE, SEQUENTIAL SAMPLES FROM SOIL WATER SAMPLERS UNDER CONTINUOUS VACUUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manually collecting a series of sequential, discrete water samples from soil water percolation samplers, or similar devices, that withdraw water from unsaturated porous media under continuous vacuum is a logistical challenge, though the resulting collection can provide valuable information on the dy...

  5. DEVELOPMENTS IN THE SUPERCRITICAL FLUID EXTRACTION OF CHLOROPHENOXY ACID HERBICIDES FROM SOIL SAMPLES

    EPA Science Inventory

    Extraction of chlorophenoxy acid herbicides from soil samples with supercritical carbon dioxide as extractant and tetrabutylammonium hydroxide and methyl iodide as derivatization agents was investigated. The extraction was carried out at 400 atm and 80 C for 15 min static, follow...

  6. Evaluation and Optimization of DNA Extraction and Purification Procedures for Soil and Sediment Samples

    Microsoft Academic Search

    D. N. MILLER; J. E. BRYANT; E. L. MADSEN; W. C. GHIORSE

    1999-01-01

    We compared and statistically evaluated the effectiveness of nine DNA extraction procedures by using frozen and dried samples of two silt loam soils and a silt loam wetland sediment with different organic matter contents. The effects of different chemical extractants (sodium dodecyl sulfate (SDS), chloroform, phenol, Chelex 100, and guanadinium isothiocyanate), different physical disruption methods (bead mill homogeniza- tion and

  7. RATIONALE FOR THE ASSESSMENT OF ERRORS IN THE SAMPLING OF SOILS

    EPA Science Inventory

    The sampling of soils in RCRA and Superfund monitoring programs requires associated quality assurance programs. ne objective of any quality assurance program is to assess and document the quality of the study data to ensure that it satisfies the needs of the users. he purpose of ...

  8. DIVISION S-8--NUTRIENT MANAGEMENT & SOIL & PLANT ANALYSIS

    E-print Network

    Clarke, Keith

    pairwise comparison t-tests. Results indicated that spatial interpo- based on a minimum sample size and Srivastava, 1989). The of twelve soil properties we investigated exhibited characteristics other sample size kriging and inverse-distance sample size or the number of possible pairwise compari- weighting were

  9. Detection of Bacillus anthracis DNA in Complex Soil and Air Samples Using Next-Generation Sequencing

    PubMed Central

    Be, Nicholas A.; Thissen, James B.; Gardner, Shea N.; McLoughlin, Kevin S.; Fofanov, Viacheslav Y.; Koshinsky, Heather; Ellingson, Sally R.; Brettin, Thomas S.; Jackson, Paul J.; Jaing, Crystal J.

    2013-01-01

    Bacillus anthracis is the potentially lethal etiologic agent of anthrax disease, and is a significant concern in the realm of biodefense. One of the cornerstones of an effective biodefense strategy is the ability to detect infectious agents with a high degree of sensitivity and specificity in the context of a complex sample background. The nature of the B. anthracis genome, however, renders specific detection difficult, due to close homology with B. cereus and B. thuringiensis. We therefore elected to determine the efficacy of next-generation sequencing analysis and microarrays for detection of B. anthracis in an environmental background. We applied next-generation sequencing to titrated genome copy numbers of B. anthracis in the presence of background nucleic acid extracted from aerosol and soil samples. We found next-generation sequencing to be capable of detecting as few as 10 genomic equivalents of B. anthracis DNA per nanogram of background nucleic acid. Detection was accomplished by mapping reads to either a defined subset of reference genomes or to the full GenBank database. Moreover, sequence data obtained from B. anthracis could be reliably distinguished from sequence data mapping to either B. cereus or B. thuringiensis. We also demonstrated the efficacy of a microbial census microarray in detecting B. anthracis in the same samples, representing a cost-effective and high-throughput approach, complementary to next-generation sequencing. Our results, in combination with the capacity of sequencing for providing insights into the genomic characteristics of complex and novel organisms, suggest that these platforms should be considered important components of a biosurveillance strategy. PMID:24039948

  10. Alaska Geochemical Database (AGDB)-Geochemical data for rock, sediment, soil, mineral, and concentrate sample media

    USGS Publications Warehouse

    Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

    2011-01-01

    The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons, are included here in the AGDB and will be added to the NGDB. The AGDB data provided here are the most accurate and complete to date, and should be useful for a wide variety of geochemical studies. The AGDB data provided in the linked database may be updated or changed periodically. The data on the DVD and in the data downloads provided with this report are current as of date of publication.

  11. Preparation of spiked soils by vapor fortification for volatile organic compounds analysis

    SciTech Connect

    Hewitt, A.D. [Army Cold Regions Research and Engineering Lab., Hanover, NH (United States)

    1994-05-01

    This paper describes a vapor fortification method for preparing quality assurance/quality control soils for volatile organic compound analysis. Treatment of soils with volatile organic compounds occurs in a closed container in a manner somewhat analogous to the way the vadose zone often becomes contaminated. One advantage of this method for preparing soils for quality assurance/quality control purposes is that the efficiency of various extraction methods can be reliably compared. Furthermore, by substantially reducing the error due to sample inhomogeneity, the error associated with the determinative step can also be properly evaluated. 15 refs., 3 tabs.

  12. Drive tube 60009 - A chemical study of magnetic separates of size fractions from five strata. [lunar soil analysis

    NASA Technical Reports Server (NTRS)

    Blanchard, D. P.; Jacobs, J. W.; Brannon, J. C.; Brown, R. W.

    1976-01-01

    Each bulk soil and both the magnetic and nonmagnetic components of the 90-150 micron and below 20 micron fractions of five soils from drive tube 60009 were analyzed. Samples were analyzed for FeO, Na2O, Sc, Cr, Co, Ni, Hf, Ta, Th, La, Ce, Sm, Eu, Tb, Yb, and Lu by neutron activation analysis. Several samples were fused and analyzed for major elements by electron microprobe analysis. Compositional variations are not systematically related to depth. The compositions of the five soils studied are well explained by a two-component mixing model whose end members are a submature Apollo 16-type soil and an extremely immature anorthositic material similar to 60025. There is evidence that the anorthositic component had received a small amount of exposure before these soils were mixed. After mixing, the soils received little exposure suggesting mixing and deposition on a rapid time scale.

  13. Soil and soil gas sampling in nine potential new waste sites, Central Shops diesel loading and SRS fault areas. Final report

    SciTech Connect

    Not Available

    1988-12-31

    Geochemical surveys conducted by Microseeps Ltd at S.R.P. during March and April 1988 were carried out in two phases. The first consisted of nine potential new waste site locations as shown in Figure 1. Soil samples to be analyzed for specific chlorinated hydrocarbons were collected at each location. Soil gas samples to be analyzed for C1-C4 hydrocarbons, were collected at six of the nine locations. In all, 165 soil samples and 130 soil gas samples were collected. The second phase consisted of two surveys, the Central Shops diesel loading area and a general S.R.P. `fault` survey. At the Central Shops area 85 soil gas samples, analyzed for C1-C4 hydrocarbons, plus 30 soil samples, analyzed for diesel range hydrocarbons were collected. The fault survey is composed of 122 soil gas samples analyzed for C1-C4 hydrocarbons, helium and hydrogen. The sampling and analytical techniques are described herein and the data presented in tabular format. All analyses were performed on site in a laboratory provided by S.R.L. Magnetic diskettes containing data in spreadsheet format were given to S.R.L. personnel at the completion of the on-site work.

  14. High priority tank sampling and analysis report

    SciTech Connect

    Brown, T.M.

    1998-03-05

    In July 1993, the Defense Nuclear Facilities Safety Board (DNFSB) transmitted Recommendation 93-5 (Conway 1993) to the US Department of Energy (DOE). Recommendation 93-5 noted that there was insufficient tank waste technical information and the pace to obtain it was too slow to ensure that Hanford Site wastes could be safely stored, that associated operations could be conducted safely, and that future disposal data requirements could be met. In May 1996, the DOE issued Revision 1 of the Recommendation 93-5 Implementation Plan (DOE-RL 1996). The Implementation Plan revision presented a modified approach to achieve the original plan`s objectives. The approach concentrated on actions necessary to ensure that wastes can be safely stored, that operations can be safely conducted, and that timely characterization information for the tank waste Disposal Program could be obtained. The Implementation Plan proposed 28 High Priority tanks, which, if sampled and analyzed, were expected to provide information to answer questions regarding safety and disposal issues. The High Priority tank list was originally developed in Section 9.0 of the Tank Waste Characterization Basis (Brown et al. 1995) by integrating the needs of the various safety and disposal programs. The High Priority tank list represents a set of tanks that were expected to provide the highest information return for characterization resources expended. The High Priority tanks were selected for near-term core sampling and were not expected to be the only tanks that would provide meaningful information. Sampling and analysis of non-High Priority tanks also could be used to provide scientific and technical data to confirm assumptions, calibrate models, and measure safety related phenomenological characteristics of the waste. When the sampling and analysis results of the High Priority and other tanks were reviewed, it was expected that a series of questions should be answered allowing key decisions to be made. The first nine questions related to safety issues and the last three questions related to planning for the disposal process (retrieval, treatment, and immobilization). The 12 questions are listed.

  15. Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    Chang, Sherwood (Compiler)

    1997-01-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  16. Data analysis for steam generator tubing samples

    SciTech Connect

    Dodd, C.V.

    1996-07-01

    The objective of the Improved Eddy-Current ISI for Steam Generators program is to upgrade and validate eddy-current inspections, including probes, instrumentation, and data processing techniques for inservice inspection of new, used, and repaired steam generator tubes; to improve defect detection, classification and characterization as affected by diameter and thickness variations, denting, probe wobble, tube sheet, tube supports, copper and sludge deposits, even when defect types and other variables occur in combination; to transfer this advanced technology to NRC`s mobile NDE laboratory and staff. This report provides a description of the application of advanced eddy-current neural network analysis methods for the detection and evaluation of common steam generator tubing flaws including axial and circumferential outer-diameter stress-corrosion cracking and intergranular attack. The report describes the training of the neural networks on tubing samples with known defects and the subsequent evaluation results for unknown samples. Evaluations were done in the presence of artifacts. Computer programs are given in the appendix.

  17. Passive soil vapor versus grab samples for determining volatile organic compound concentrations

    SciTech Connect

    Hewitt, A.D. [Army Cold Regions Research and Engineering Lab., Hanover, NH (United States)

    1997-12-31

    The GORE-SORBER Module, a passive soil vapor method, and the mean of two colocated grab samples handled and analyzed using an in-vial method were compared for estimating volatile organic compound (VOC) contamination in the near-surface vadose zone. The strong semi-log correlation between these two methods (r{sup 2} = 0.944) and equally strong linear correlation for grab samples taken 15 cm apart (r{sup 2} = 0.957) indicate: (1) a fairly homogeneous distribution existed for this contaminant, and (2) that this passive soil vapor technology offers a promising means of estimating subsurface concentrations in locations where grab samples cannot be easily obtained.

  18. Analysis of microbial habitats in soil-root interfaces in space and time

    NASA Astrophysics Data System (ADS)

    Eickhorst, Thilo; Schmidt, Hannes

    2015-04-01

    Microorganisms are of great importance for a wide range of processes in terrestrial systems, especially in soil-root interfaces and the resulting gradients. Their physiology is regulated by the environmental conditions on the scale of microbial habitats which are mainly the features of biogeochemical interfaces. The microbial colonization of soil-root interfaces in soil is hence of great importance when studying processes on this particular scale. A set of techniques has been developed recently to study the colonization and distribution of microorganisms in the undisturbed soil matrix and thus in their microbial habitat in situ. This is done via 16S rRNA targeted fluorescence in situ hybridization (FISH) combined with micropedological resin impregnation. The impregnation of the fragile soil structure is a good way to preserve the in situ arrangements of soil compounds forming the physical structure of the soil matrix including the pore space being relevant for the support with water and air. The preparation of high quality polished blocks and thin sections of these resin impregnated samples enables a detailed analysis of the spatial information on the level of microbial habitats in soil. A correlative microscopic approach of the aforementioned techniques allows the characterization of soil-root interfaces and the resulting physico-chemical living conditions as well as the identification and localization of soil microorganisms on the microscale. This gives qualitative insights of the features in microbial habitats which are of great importance for the study of the microbial ecology of microbes in soil in space and time. Since the various processes related to soil-root interfaces have a relevance on the large scale and vice versa upscaling is of great importance for the investigation of their influence on ecosystem functioning. Furthermore spatial modelling based on these observations is required to understand and predict the effects of changing physico-chemical conditions. Accurate quantitative data are therefore required which can be retrieved from correlative microscopic/spectroscopic analysis directly or generated by statistical analysis of individual spatial data or spatial extrapolation. Examples for these approaches will be presented based on applications in paddy soil systems. The influence of physical structure dynamics as it occurs under submerged paddy soil management due to the cycles of flooding and drying on biogeochemical features and microbial dynamics will be shown. Spatio-temporal effects and their consequences for greenhouse gas emission and iron oxidation will be highlighted. Based on microcosm approaches examples for reliable quantitative data acquisition of microbial distribution in the soil matrix and the soil-root interface will be demonstrated.

  19. A Simple Method for Screening of Soil Samples for Organochlorine Insecticide Residues by Thin-Layer Chromatography

    Microsoft Academic Search

    Parm Pal Singh; Ram Parkash Chawla

    1989-01-01

    A simple, rapid and sensitive screening procedure requiring no costly equipment is described for the estimation of chlorinated hydrocarbon insecticide residues in soil samples by semi-quantitative TLC. Three published insecticide residue extraction procedures were evaluated for the recovery of spiked as well as field-acquired and naturally weathered residues from soil samples. Extraction of soils with methanol-water (2:1, v\\/v) and partitioning

  20. Rapid methods for classification and quantitative assessment of petroleum hydrocarbons pollution in soil samples using reflectance spectroscopy

    Microsoft Academic Search

    G. Schwartz; G. Eshel; M. Ben-Haim; E. Ben-Dor

    2009-01-01

    Petroleum hydrocarbons (PHC) are one of the most significant environmental polluter (for both soil and water) mainly due to its mass production and use (13.26 million cubic meters of crude oil per day). The commonly used method for PHC determination in soil samples is by PHC extraction from the soil sample using 1,1,2-Trichlorotrifluoroethane (Freon 113) and afterwards determining the total

  1. Influence of Laboratory Storage on the Organic Contaminant Content and Water-Extractable Ecotoxicological Potential of Soil Samples

    Microsoft Academic Search

    Jean-Paul Rila; Adolf Eisentraeger

    2007-01-01

    At present there is a high level of uncertainty about whether or not soil samples, which are required to be toxicologically\\u000a characterized, could be preserved without affecting their toxicological characteristics. In the existing DIN\\/ISO standards\\u000a for soil investigations, there is no documentation on the storage of soil samples after collection for (eco-)toxicological\\u000a investigations. Furthermore, procedures for receiving justifiable and verifiable

  2. Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India - Spectroscopical approach

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, A.; Ravisankar, R.; Harikrishnan, N.; Satapathy, K. K.; Prasad, M. V. R.; Kanagasabapathy, K. V.

    2015-02-01

    Anthropogenic activities increase the accumulation of heavy metals in the soil environment. Soil pollution significantly reduces environmental quality and affects the human health. In the present study soil samples were collected at different locations of Yelagiri Hills, Tamilnadu, India for heavy metal analysis. The samples were analyzed for twelve selected heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn) using energy dispersive X-ray fluorescence (EDXRF) spectroscopy. Heavy metals concentration in soil were investigated using enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) to determine metal accumulation, distribution and its pollution status. Heavy metal toxicity risk was assessed using soil quality guidelines (SQGs) given by target and intervention values of Dutch soil standards. The concentration of Ni, Co, Zn, Cr, Mn, Fe, Ti, K, Al, Mg were mainly controlled by natural sources. Multivariate statistical methods such as correlation matrix, principal component analysis and cluster analysis were applied for the identification of heavy metal sources (anthropogenic/natural origin). Geo-statistical methods such as kirging identified hot spots of metal contamination in road areas influenced mainly by presence of natural rocks.

  3. Evaluation of Zone Soil Sampling Approaches for Phosphorus and Potassium Based on Corn and Soybean Response to Fertilization

    Microsoft Academic Search

    Jorge Sawchik; Antonio P. Mallarino

    2007-01-01

    Soil sampling approaches have been compared based on soil-test variation. This study evaluated sampling approaches for Pand K based on yield response to fertilization. Strip trials were established on four fields for P and three fields for K managed with corn (Zea mays L.) and soybean (Glycine max L. Merr.) rotations and evaluated 3 or 4 yr (27 site-years). Treatments

  4. Sample size in factor analysis: The role of model error

    E-print Network

    MacCallum, R. C.; Widaman, K. F.; Preacher, K. J.; Hong, Sehee

    2001-01-01

    This article examines effects of sample size and other design features on correspondence between factors obtained from analysis of sample data and those present in the population from which the samples were drawn. We extend earlier work...

  5. Extensive Diversity of Ionizing-Radiation-Resistant Bacteria Recovered from Sonoran Desert Soil and Description of Nine New Species of the Genus Deinococcus Obtained from a Single Soil Sample†

    PubMed Central

    Rainey, Fred A.; Ray, Keren; Ferreira, Margarida; Gatz, Bridget Z.; Nobre, M. Fernanda; Bagaley, Danielle; Rash, Brian A.; Park, Mie-Jung; Earl, Ashlee M.; Shank, Nicole C.; Small, Alanna M.; Henk, Margaret C.; Battista, John R.; Kämpfer, Peter; da Costa, Milton S.

    2005-01-01

    The ionizing-radiation-resistant fractions of two soil bacterial communities were investigated by exposing an arid soil from the Sonoran Desert and a nonarid soil from a Louisiana forest to various doses of ionizing radiation using a 60Co source. The numbers of surviving bacteria decreased as the dose of gamma radiation to which the soils were exposed increased. Bacterial isolates surviving doses of 30 kGy were recovered from the Sonoran Desert soil, while no isolates were recovered from the nonarid forest soil after exposure to doses greater than 13 kGy. The phylogenetic diversities of the surviving culturable bacteria were compared for the two soils using 16S rRNA gene sequence analysis. In addition to a bacterial population that was more resistant to higher doses of ionizing radiation, the diversity of the isolates was greater in the arid soil. The taxonomic diversity of the isolates recovered was found to decrease as the level of ionizing-radiation exposure increased. Bacterial isolates of the genera Deinococcus, Geodermatophilus, and Hymenobacter were still recovered from the arid soil after exposure to doses of 17 to 30 kGy. The recovery of large numbers of extremely ionizing-radiation-resistant bacteria from an arid soil and not from a nonarid soil provides further ecological support for the hypothesis that the ionizing-radiation resistance phenotype is a consequence of the evolution of other DNA repair systems that protect cells against commonly encountered environmental stressors, such as desiccation. The diverse group of bacterial strains isolated from the arid soil sample included 60 Deinococcus strains, the characterization of which revealed nine novel species of this genus. PMID:16151108

  6. Using Inverse Probability Bootstrap Sampling to Eliminate Sample Induced Bias in Model Based Analysis of Unequal Probability Samples

    PubMed Central

    Nahorniak, Matthew

    2015-01-01

    In ecology, as in other research fields, efficient sampling for population estimation often drives sample designs toward unequal probability sampling, such as in stratified sampling. Design based statistical analysis tools are appropriate for seamless integration of sample design into the statistical analysis. However, it is also common and necessary, after a sampling design has been implemented, to use datasets to address questions that, in many cases, were not considered during the sampling design phase. Questions may arise requiring the use of model based statistical tools such as multiple regression, quantile regression, or regression tree analysis. However, such model based tools may require, for ensuring unbiased estimation, data from simple random samples, which can be problematic when analyzing data from unequal probability designs. Despite numerous method specific tools available to properly account for sampling design, too often in the analysis of ecological data, sample design is ignored and consequences are not properly considered. We demonstrate here that violation of this assumption can lead to biased parameter estimates in ecological research. In addition, to the set of tools available for researchers to properly account for sampling design in model based analysis, we introduce inverse probability bootstrapping (IPB). Inverse probability bootstrapping is an easily implemented method for obtaining equal probability re-samples from a probability sample, from which unbiased model based estimates can be made. We demonstrate the potential for bias in model-based analyses that ignore sample inclusion probabilities, and the effectiveness of IPB sampling in eliminating this bias, using both simulated and actual ecological data. For illustration, we considered three model based analysis tools—linear regression, quantile regression, and boosted regression tree analysis. In all models, using both simulated and actual ecological data, we found inferences to be biased, sometimes severely, when sample inclusion probabilities were ignored, while IPB sampling effectively produced unbiased parameter estimates. PMID:26126211

  7. DWPF GC FILTER ASSEMBLY SAMPLING AND ANALYSIS

    SciTech Connect

    Bannochie, C.; Imrich, K.

    2009-11-11

    On March 18, 2009 a Defense Waste Processing Facility (DWPF) GC Line Filter Assembly was received at the Savannah River National Laboratory (SRNL). This filter assembly was removed from operation following the completion of Sludge Batch 4 processing in the DWPF. Work on this sample was requested in a Technical Assistance Request. This document reports the pictures, observations, samples collected, and analytical results for the assembly. The assembly arrived at SRNL separated into its three component filters: high efficiency particulate air (HEPA)-1, HEPA-2, and a high efficiency mist evaporator (HEME). Each stage of the assembly's media was sampled and examined visually and by scanning electron microscopy (SEM). Solids built up in the filter housing following the first stage HEME, were dissolved in dilute nitric acid and analyzed by ICP-AES and the undissolved white solids were analyzed by x-ray diffraction (XRD). The vast majority of the material in each of the three stages of the DWPF GC Line Filter Assembly appears to be contaminated with a Hg compound that is {approx}59 wt% Hg on a total solids basis. The Hg species was identified by XRD analysis to contain a mixture of Hg{sub 4}(OH)(NO{sub 3}){sub 3} and Hg{sub 10}(OH){sub 4}(NO{sub 3}){sub 6}. Only in the core sample of the second stage HEPA, did this material appear to be completely covering portions of the filter media, possibly explaining the pressure drops observed by DWPF. The fact that the material migrates through the HEME filter and both HEPA filters, and that it was seen collecting on the outlet side of the HEME filter, would seem to indicate that these filters are not efficient at removing this material. Further SRAT off-gas system modeling should help determine the extent of Hg breakthrough past the Mercury Water Wash Tank (MWWT). The SRAT off-gas system has not been modeled since startup of the facility. Improvements to the efficiency of Hg stripping prior to the ammonia scrubber would seem to be the only way to prevent/mitigate the formation of the compounds found in the GC Line Filter Assembly filters and therefore prevent pluggage of this filter assembly.

  8. Comparability of chemical analysis of heavy metals and fluorine in soils: Results of an interlaboratory study

    Microsoft Academic Search

    A. Desaules; P. Lischer; R. Dahinden; H. J. Bachmann

    1992-01-01

    The results of an interlaboratory study, with 45 participants, of the analysis of Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Tl, and F in soil samples by specified extraction techniques and optional measurement procedures are presented. The results are presented graphically as the relationship between robust coefficients of variation of reproducibility and the robust mean concentrations, separately for individual

  9. LABORATORY METHODS FOR SOIL AN FOLIAR ANALYSIS IN LONG-TERM ENVIRONMENTAL MONITORING PROGRAMS

    EPA Science Inventory

    The principal objective of this methods manual is to present methods for the analysis of soil and plant tissue samples taken as part of a long-term environmental study to evaluate the effects of acid rain on terrestrial systems. hrough the use of these standardized methods, it is...

  10. Continuous versus pulse neutron induced gamma spectroscopy for soil carbon analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neutron induced gamma spectra analysis (NGA) provides a means of measuring carbon in large soil volumes without destructive sampling. Calibration of the NGA system must account for system background and the interference of other nuclei on the carbon peak at 4.43 MeV. Accounting for these factors pro...

  11. Thermal analysis to derive energetic quality parameters of soil organic matter?

    NASA Astrophysics Data System (ADS)

    Peikert, Benjamin; Schaumann, Gabriele Ellen

    2014-05-01

    Many studies have dealt with thermal analysis for characterisation of soil and soil organic matter. It is a versatile tool assessing various physicochemical properties of the sample during heating and/or cooling. Especially the combination of different detection methods is highly promising. In this contribution, we will discuss the combination of thermogravimetry (TGA) with differential scanning calorimetry (DSC) in one single thermal analysis device. TGA alone helps distinguishment of soil and soil organic matter fractions with respect to their resistance towards combustion and allows a quantitative assignment of thermolabile and recalcitrant OM fractions. Combination with DSC in the same device, allows determination of energy transformation during the combustion process. Therefore, it becomes possible to determine not only the calorific value of the organic matter, but also of its fractions. We will show the potential of using the calorific values of OM fractions as quality parameter - exemplified for the analysis of soils polluted with organic matter from the olive oil production. The pollution history of these samples is largely unknown. As expected, TGA indicated a relative enrichment of the labile carbon fraction in contaminated samples with respect to the controls. The calorific values of the thermolabile and the recalcitrant fractions differ from each other, and those of the recalcitrant fractions of the polluted samples were higher than of those of the unpolluted controls. Further analyses showed correlation of the calorific value of this fraction with soil water repellency and the carbon isotopic ratio. The synthesis of our current data suggests that the content of thermolabile fraction, the isotopic ratio and calorific value of the recalcitrant fraction are useful indicators for characterizing the degree of decomposition of OMW organic matter. In this contribution, we will further discuss the potential of using the energetic parameters a quality parameter for soil organic matter.

  12. SAMPLE SIZE DETERMINATION USING ROC ANALYSIS Viktoriya Stalbovskaya1

    E-print Network

    Paris-Sud XI, Université de

    SAMPLE SIZE DETERMINATION USING ROC ANALYSIS Viktoriya Stalbovskaya1 , Brahim Hamadicharef2.ifeachor@plymouth.ac.uk Abstract: The paper presents a new method of sample size determination (SSD) based on performance evalu: sample size determination, ROC analysis, decision support systems INTRODUCTION Determination of sample

  13. Europlanet Research Infrastructure: Planetary Sample Analysis Facilities

    NASA Astrophysics Data System (ADS)

    Cloquet, C.; Mason, N. J.; Davies, G. R.; Marty, B.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the third TNA: Planetary Sample Analysis Facilities. The modular infrastructure represents a major commitment of analytical instrumentation by three institutes and together forms a state-of-the-art analytical facility of unprecedented breadth. These centres perform research in the fields of geochemistry and cosmochemistry, studying fluids and rocks in order to better understand the keys cof the universe. Europlanet Research Infrastructure Facilities: Ion Probe facilities at CRPG and OU The Cameca 1270 Ion microprobe is a CNRS-INSU national facility. About a third of the useful analytical time of the ion probe (about 3 months each year) is allocated to the national community. French scientists have to submit their projects to a national committee for selection. The selected projects are allocated time in the following 6 months twice a year. About 15 to 20 projects are run each year. There are only two such instruments in Europe, with cosmochemistry only performed at CRPG. Different analyses can be performed on a routine basis, such as U-Pb dating on Zircon, Monazite or Pechblende, Li, B, C, O, Si isotopic ratios determination on different matrix, 26Al, 60Fe extinct radioactivity ages, light and trace elements contents . The NanoSIMS 50L - producing element or isotope maps with a spatial resolution down to ?50nm. This is one of the cornerstone facilities of UKCAN, with 75% of available instrument time funded and committed to UK cosmochemical activity - but the remainder is free for other applications and users. The UK activity is managed by the UKCAN management committee and vetted through a local working group. Management of the remaining 25% of other activity will be organised through the local working group. This is the newest, and most advanced of three instruments of this type in Europe which routinely address cosmochemical analyses. The instrument is capable of providing high spatial resolution (down to 50nm) elemental and isotope distribution maps for a wide range of elements from across the periodic table. It is also capable of high precision (per mil) isotopic spot measurements with a spatial resolution of a few microns for a range of elements including C, N, O, S, Si, Mg, etc. Noble Gases facilities at CRPG and OU Ar/Ar Nu Instruments Noblesse is coupled with an ultra-low volume extraction line and with a choice of 213 nm UV laser or 1090 nm IR lasers, providing a wide range of analytical capability in Ar/Ar dating of lunar and meteorite samples. This instrument is unique with a mass resolution of 3000, and with the UV laser it has the capability to measure Ar isotope variation on a ca. 30 -micron resolution enabling detailed mapping of age and apparent age variation within minerals. The 1090 nm laser provides the capability to step-heat small samples. The laboratory is fully supported by sample preparation facilities and technical expertise in lunar and meteorite Ar/Ar analysis. Helium isotope facility. Analysis of the isotopes of helium in rocks and minerals. Determining the origin of gases in meteorites and ET return samples, dating surface exposure with cosmogenic 3He using the latest He isotope mass spectrometer, the GV Helix SFT, the first instrument installed in Europe. CRPG is an European leader in this domain. Non-Traditional stable Isotopes and radiogenic isotopes at VUA and CRPG The specific facility proposed for the TNA is the geochemistry labs used for the study of long (e.g. Rb- Sr, Sm-Nd…) and short-lived radioisotope (e.g. Mg- Al, Hf-W..), inc

  14. SAMPLE PREPARATION FOR TRACE ANALYSIS BY CHROMATOGRAPHIC METHODS

    Microsoft Academic Search

    Romeo-Iulian Olariu; Davide Vione; Nelu Grinberg; Cecilia Arsene

    2010-01-01

    The determination of trace analytes in complex natural matrices often requires extensive sample extraction and preparation prior to chromatographic analysis. Correct sample preparation can reduce analysis time, sources of error, enhance sensitivity, and enable unequivocal identification, confirmation, and quantification. This overview considers general aspects on sample preparation techniques for trace analysis in various matrices. The discussed extraction\\/enrichment techniques cover classical

  15. Incremental soil sampling root water uptake, or be great through others

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ray Allmaras pursued several research topics in relation to residue and tillage research. He looked for new tools to help explain soil responses to tillage, including disk permeameters and image analysis. The incremental sampler developed by Pikul and Allmaras allowed small-depth increment, volumetr...

  16. Developments in Sampling and Analysis Instrumentation for Stationary Sources

    ERIC Educational Resources Information Center

    Nader, John S.

    1973-01-01

    Instrumentation for the measurement of pollutant emissions is considered including sample-site selection, sample transport, sample treatment, sample analysis, and data reduction, display, and interpretation. Measurement approaches discussed involve sample extraction from within the stack and electro-optical methods. (BL)

  17. An enzyme-linked immunosorbent assay for the determination of dioxins in contaminated sediment and soil samples

    PubMed Central

    Van Emon, Jeanette M.; Chuang, Jane C.; Lordo, Robert A.; Schrock, Mary E.; Nichkova, Mikaela; Gee, Shirley J.; Hammock, Bruce D.

    2010-01-01

    A 96-microwell enzyme-linked immunosorbent assay (ELISA) method was evaluated to determine PCDDs/PCDFs in sediment and soil samples from an EPA Superfund site. Samples were prepared and analyzed by both the ELISA and a gas chromatography/high resolution mass spectrometry (GC/HRMS) method. Comparable method precision, accuracy, and detection level (8 ng kg?1) were achieved by the ELISA method with respect to GC/HRMS. However, the extraction and cleanup method developed for the ELISA requires refinement for the soil type that yielded a waxy residue after sample processing. Four types of statistical analyses (Pearson correlation coefficient, paired t-test, nonparametric tests, and McNemar’s test of association) were performed to determine whether the two methods produced statistically different results. The log-transformed ELISA-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin values and logtransformed GC/HRMS-derived TEQ values were significantly correlated (r = 0.79) at the 0.05 level. The median difference in values between ELISA and GC/HRMS was not significant at the 0.05 level. Low false negative and false positive rates (<10%) were observed for the ELISA when compared to the GC/HRMS at 1000 ng TEQ kg?1. The findings suggest that immunochemical technology could be a complementary monitoring tool for determining concentrations at the 1000 ng TEQ kg?1 action level for contaminated sediment and soil. The ELISA could also be used in an analytical triage approach to screen and rank samples prior to instrumental analysis. PMID:18313102

  18. Investigation of Biological Soil Crusts Metabolic Webs Using Exometabolomic Analysis

    NASA Astrophysics Data System (ADS)

    Northen, T.; Karaoz, U.; Jenkins, S.; Lau, R.; Bowen, B.; Cadillo-Quiroz, H.; Garcia-Pichel, F.; Brodie, E.; Richard, B.

    2014-12-01

    Desert biological soil crusts are simple cyanobacteria-dominated surface soil microbial communities found in areas with infrequent wetting, often extreme temperatures, low coverage of vascular plants and constitute the world's largest biofilm. They exist for extended periods in a desiccated dormant state, yet rapidly re-boot metabolism within minutes of wetting. These soil microbial communities are highly dependent on filamentous cyanobacteria such as Microcoleus vaginatusto stabilize the soil and to act as primary producers for the community through the release carbon sources to feed a diversity of heterotrophs. Exometabolomic analysis was performed using liquid chromatography coupled to tandem mass spectrometry on biological soil crust pore water and spent media of key soil bacterial isolates. Comparison of spent vs. fresh media was used to determine uptake or release of metabolites by specific microbes. To link pore water experiments with isolate studies, metabolite extracts of authentic soil were used as supplements for isolate exometabolomic profiling. Our soil metabolomics methods detected hundreds of metabolites from soils including may novel compounds. Only a small set of which being targeted by all isolates. Beyond these few metabolites, the individual bacteria examined showed specialization towards specific metabolites. Surprisingly, many of the most abundant oligosaccharides and other metabolites were ignored by these isolates. The observed specialization of biological soil crust bacteria may play a significant role in determining community structure.

  19. Tank 241-AX-104 upper vadose zone cone penetrometer demonstration sampling and analysis plan

    SciTech Connect

    FIELD, J.G.

    1999-02-02

    This sampling and analysis plan (SAP) is the primary document describing field and laboratory activities and requirements for the tank 241-AX-104 upper vadose zone cone penetrometer (CP) demonstration. It is written in accordance with Hanford Tank Initiative Tank 241-AX-104 Upper Vadose Zone Demonstration Data Quality Objective (Banning 1999). This technology demonstration, to be conducted at tank 241-AX-104, is being performed by the Hanford Tanks Initiative (HTI) Project as a part of Tank Waste Remediation System (TWRS) Retrieval Program (EM-30) and the Office of Science and Technology (EM-50) Tanks Focus Area. Sample results obtained as part of this demonstration will provide additional information for subsequent revisions to the Retrieval Performance Evaluation (RPE) report (Jacobs 1998). The RPE Report is the result of an evaluation of a single tank farm (AX Tank Farm) used as the basis for demonstrating a methodology for developing the data and analyses necessary to support making tank waste retrieval decisions within the context of tank farm closure requirements. The RPE includes a study of vadose zone contaminant transport mechanisms, including analysis of projected tank leak characteristics, hydrogeologic characteristics of tank farm soils, and the observed distribution of contaminants in the vadose zone in the tank farms. With limited characterization information available, large uncertainties exist as to the nature and extent of contaminants that may exist in the upper vadose zone in the AX Tank Farm. Traditionally, data has been collected from soils in the vadose zone through the installation of boreholes and wells. Soil samples are collected as the bore hole is advanced and samples are screened on site and/or sent to a laboratory for analysis. Some in-situ geophysical methods of contaminant analysis can be used to evaluate radionuclide levels in the soils adjacent to an existing borehole. However, geophysical methods require compensation for well casing interference and soil moisture content and may not be successful in some conditions. In some cases the level of interference must be estimated due to uncertainties regarding the materials used in well construction and soil conditions, Well casing deployment used for many in-situ geophysical methods is relatively expensive and geophysical methods do not generally provide real time values for contaminants. In addition, some of these methods are not practical within the boundaries of the tank farm due to physical constraints, such as underground piping and other hardware. The CP technologies could facilitate future characterization of vadose zone soils by providing vadose zone data in near real-time, reducing the number of soil samples and boreholes required, and reducing characterization costs.

  20. Analysis of heavy metal sources in soil using kriging interpolation on principal components.

    PubMed

    Ha, Hoehun; Olson, James R; Bian, Ling; Rogerson, Peter A

    2014-05-01

    Anniston, Alabama has a long history of operation of foundries and other heavy industry. We assessed the extent of heavy metal contamination in soils by determining the concentrations of 11 heavy metals (Pb, As, Cd, Cr, Co, Cu, Mn, Hg, Ni, V, and Zn) based on 2046 soil samples collected from 595 industrial and residential sites. Principal Component Analysis (PCA) was adopted to characterize the distribution of heavy metals in soil in this region. In addition, a geostatistical technique (kriging) was used to create regional distribution maps for the interpolation of nonpoint sources of heavy metal contamination using geographical information system (GIS) techniques. There were significant differences found between sampling zones in the concentrations of heavy metals, with the exception of the levels of Ni. Three main components explaining the heavy metal variability in soils were identified. The results suggest that Pb, Cd, Cu, and Zn were associated with anthropogenic activities, such as the operations of some foundries and major railroads, which released these heavy metals, whereas the presence of Co, Mn, and V were controlled by natural sources, such as soil texture, pedogenesis, and soil hydrology. In general terms, the soil levels of heavy metals analyzed in this study were higher than those reported in previous studies in other industrial and residential communities. PMID:24693925

  1. Comparison of Techniques for the Analysis of Industrial Soils by Atomic Spectrometry

    Microsoft Academic Search

    Peter Anderson; Christine M. Davidson; David Littlejohn; Allan M. Ure; Louise M. Garden; John Marshall

    1998-01-01

    Methods based on AAS, ICP-AES and XRFS have been developed for determination of Cd, Cr, Cu, Mn, Ni, Pb, V and Zn in soil layers from pits excavated on a redundant industrial site. Samples were dried and sieved, and the < 2 mm fraction was ground in a ball mill prior to analysis. For ICP-AES and AAS, 1 g sub-samples

  2. Grounding Analysis in Heterogeneous Soil Models: Application to Underground Substations

    E-print Network

    Colominas, Ignasi

    Grounding Analysis in Heterogeneous Soil Models: Application to Underground Substations Ignasi substations indeed. Nevertheless, the current trend in electric power Engineering moves in another direction, due to the growing preference for smaller underground substations as a general rule. This pushes

  3. Initiatives of the Australasian Soil and Plant Analysis Council to Assess the Measurement Quality of Common Methods for Soil and Plant Analysis in Australasia

    Microsoft Academic Search

    George E. Rayment; Roger Hill; Ken Peverill; Brian Daly

    2009-01-01

    The Australasian Soil and Plant Analysis Council Inc (ASPAC) commenced its not?for?profit interlaboratory proficiency programs (ILPPs) in 1990 and issued its first soil program report in 1993. ILPPs target soil and plant chemical testing laboratories across Australasia. These ILPPs contribute to ASPAC's goals to promote excellence in all aspects of soil and plant analysis and to encourage adoption of preferred

  4. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 95. Progress report

    SciTech Connect

    Childs, M.; Conrad, R.

    1997-09-01

    ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory (LANL) during FY 95 to characterize possible radionuclide movement out of Area G through surface water and entrained sediment runoff. Soil samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. The single-stage water samples were analyzed for tritium and plutonium isotopes. All radiochemical data was compared with analogous samples collected during FY 93 and 94 and reported in LA-12986 and LA-13165-PR. Six surface soils were also submitted for metal analyses. These data were included with similar data generated for soil samples collected during FY 94 and compared with metals in background samples collected at the Area G expansion area.

  5. Sampling Soil CO2 for Isotopic Flux Partitioning: Non Steady State Effects and Methodological Biases

    NASA Astrophysics Data System (ADS)

    Snell, H. S. K.; Robinson, D.; Midwood, A. J.

    2014-12-01

    Measurements of ?13C of soil CO2 are used to partition the surface flux into autotrophic and heterotrophic components. Models predict that the ?13CO2 of the soil efflux is perturbed by non-steady state (NSS) diffusive conditions. These could be large enough to render ?13CO2 unsuitable for accurate flux partitioning. Field studies sometimes find correlations between efflux ?13CO2 and flux or temperature, or that efflux ?13CO2 is not correlated as expected with biological drivers. We tested whether NSS effects in semi-natural soil were comparable with those predicted. We compared chamber designs and their sensitivity to changes in efflux ?13CO2. In a natural soil mesocosm, we controlled temperature to generate NSS conditions of CO2 production. We measured the ?13C of soil CO2 using in situ probes to sample the subsurface, and dynamic and forced-diffusion chambers to sample the surface efflux. Over eight hours we raised soil temperature by 4.5 OC to increase microbial respiration. Subsurface CO2 concentration doubled, surface efflux became 13C-depleted by 1 ‰ and subsurface CO2 became 13C-enriched by around 2 ‰. Opposite changes occurred when temperature was lowered and CO2 production was decreasing. Different chamber designs had inherent biases but all detected similar changes in efflux ?13CO2, which were comparable to those predicted. Measurements using dynamic chambers were more 13C-enriched than expected, probably due to advection of CO2 into the chamber. In the mesocosm soil, ?13CO2 of both efflux and subsurface was determined by physical processes of CO2 production and diffusion. Steady state conditions are unlikely to prevail in the field, so spot measurements of ?13CO2 and assumptions based on the theoretical 4.4 ‰ diffusive fractionation will not be accurate for estimating source ?13CO2. Continuous measurements could be integrated over a period suitable to reduce the influence of transient NSS conditions. It will be difficult to disentangle biologically driven changes in soil ?13CO2 from physical controls, particularly as they occur on similar timescales and are driven by the same environmental variables, such as temperature, moisture and daylight.

  6. Application of a new purification method of West-Kazakhstan chestnut soil microbiota DNA for metagenomic analysis

    NASA Astrophysics Data System (ADS)

    Sergaliev, N. Kh.; Kakishev, M. G.; Zhiengaliev, A. T.; Volodin, M. A.; Andronov, E. E.; Pinaev, A. G.

    2015-04-01

    A method for the extraction of soil microbial DNA has been tested on chestnut soils (Kastanozems) of the West Kazakhstan region. The taxonomic analysis of soil microbiome libraries has shown that the phyla Actinobacteria and Proteobacteria constitute the largest part of microbial communities in the analyzed soils. The Archaea form an appreciable part of the microbiome in the studied samples. In the underdeveloped dark chestnut soil, their portion is higher than 11%. This is of interest, as the proportion of Archaea in the soil communities of virgin lands usually does not exceed 5%. In addition to the phyla mentioned above, there are representatives of the phyla Acidobacteria, Bacteroidetes, Firmicutes, Gemmatimonadales, Planctomycetes, and Verrucomicrobia, which are all fairly common in soil communities.

  7. Changes of pore systems and infiltration analysis in two degraded soils after rock fragment addition

    NASA Astrophysics Data System (ADS)

    Gargiulo, Laura; Coppola, Antonio; De Mascellis, Roberto; Basile, Angelo; Mele, Giacomo; Terribile, Fabio

    2015-04-01

    Many soils in arid and semi-arid environments contain high amounts of rock fragments as a result of both natural soil forming processes and human activities. The amount, dimension and shape of rock fragment strongly influence soil structure development and therefore many soil processes (e.g. infiltration, water storage, solute transport, etc.). The aim of this work was to test the effects on both infiltration process and soil pore formation following an addition of rock fragments. The test was performed on two different soils: a clayey soil (Alfisol) and a clay loamy soil (Entisol) showing both a natural compact structure and water stagnation problems in field. Three concentrations of 4-8mm rock fragments (15%, 25% and 35%) were added to air-dried soils and the repacked samples have been subject to nine wet/dry cycles in order to induce soil structure formation and its stabilization. The process of infiltration was monitored at -12 cm of pressure heads imposed at the soil surface and kept constant for a certain time by a tension infiltrometer. Moreover, k(h) was determined imposing -9, -6,-3 and -1 cm at soil surface and applying a steady-state solution. After the hydrological measurements the soil samples were resin-impregnated and images of vertical sections of the samples, acquired at 20µm resolution, were analyzed in order to quantify the pore size distribution. This latter was calculated using the "successive opening" approach. The Entisol samples showed similar infiltration curves I(t) among the 4 treatments, with higher percentage of stones (i.e. 25 and 35%) showing a faster rising in the early-time (< 2 min) infiltration; the Alfisol samples are spread, showing a higher variability: limiting the analysis to the first three, despite they show a similar shape, the higher the stones content the lower the cumulated infiltration. The behavior of the 35% sample diverges from the others: it shows a fast rising step at the very early time (< 2 min) followed by a rather flat infiltration curve. Hydraulic conductivity decreases with the rock fragment addition till 25% for the Entisol and 35% for the Alfisol; then an increase of hydraulic conductivity was observed. The same trend was observed in the Sorptivity values obtained by the early-time (< 3 min) analysis. Image analysis showed in both soils first a decrease of porosity at 15% RF concentration and then an increase of porosity at increasing RF concentration. Such an increase respect to the control was evident starting from 25% RF concentration in the Entisol and at 35% in the Alfisol. Comparison of Pore size distributions showed in both soils an increase of larger pores in a range starting from 150µm to 300µm, more evident in the Entisol samples which showed also a reduction of porosity in the smaller pore size classes. Overall, the results showed that only after addition of 35% of rock fragments to the Alfisols and 25% to the Entisol a physical restoration was reached.

  8. Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples.

    PubMed

    Bastos, A E; Moon, D H; Rossi, A; Trevors, J T; Tsai, S M

    2000-11-01

    Two phenol-degrading microorganisms were isolated from Amazonian rain forest soil samples after enrichment in the presence of phenol and a high salt concentration. The yeast Candida tropicalis and the bacterium Alcaligenes faecoalis were identified using several techniques, including staining, morphological observation and biochemical tests, fatty acid profiles and 16S/18S rRNA sequencing. Both isolates, A. faecalis and C. tropicalis, were used in phenol degradation assays, with Rhodococcus erythropolis as a reference phenol-degrading bacterium, and compared to microbial populations from wastewater samples collected from phenol-contaminated environments. C. tropicalis tolerated higher concentrations of phenol and salt (16 mM and 15%, respectively) than A. faecalis (12 mM and 5.6%). The yeast also tolerated a wider pH range (3-9) during phenol degradation than A. faecalis (pH 7-9). Phenol degradation was repressed in C. tropicalis by acetate and glucose, but not by lactate. Glucose and acetate had little effect, while lactate stimulated phenol degradation in A. faecalis. To our knowledge, these soils had never been contaminated with man-made phenolic compounds and this is the first report of phenol-degrading microorganisms from Amazonian forest soil samples. The results support the idea that natural uncontaminated environments contain sufficient genetic diversity to make them valid choices for the isolation of microorganisms useful in bioremediation. PMID:11131025

  9. The Benefits of Sample Return: Connecting Apollo Soils and Diviner Lunar Radiometer Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Greenhagen, B. T.; Donaldson-Hanna, K. L.; Thomas, I. R.; Bowles, N. E.; Allen, C. C.; Pieters, C. M.; Paige, D. A.

    2014-01-01

    The Diviner Lunar Radiometer, onboard NASA's Lunar Reconnaissance Orbiter, has produced the first global, high resolution, thermal infrared observations of an airless body. The Moon, which is the most accessible member of this most abundant class of solar system objects, is also the only body for which we have extraterrestrial samples with known spatial context. Here we present the results of a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of a representative suite of Apollo soils, and correlate them with Diviner observations of the lunar surface. We find that analyses of Diviner observations of individual sampling stations and SLE measurements of returned Apollo soils show good agreement, while comparisons to thermal infrared reflectance under terrestrial conditions do not agree well, which underscores the need for SLE measurements and validates the Diviner compositional dataset. Future work includes measurement of additional soils in SLE and cross comparisons with measurements in JPL Simulated Airless Body Emission Laboratory (SABEL).

  10. Optimization of matrix solid-phase dispersion conditions for organic fungicides determination in soil samples.

    PubMed

    Carpinteiro, Inmaculada; Casado, Jorge; Rodríguez, Isaac; Ramil, María; Cela, Rafael

    2012-04-01

    A simplified sample preparation method, based on the matrix solid-phase dispersion technique, is proposed for the sensitive determination of 15 organic fungicides in vineyard soils by gas chromatography-mass spectrometry (GC-MS). Under final working conditions, sieved samples (0.5 g) were blended and dispersed with 2 g of C18 and transferred to a polypropylene syringe containing 1 g of diatomaceous earth. Analytes were recovered using 10 mL of ethyl acetate, this extract was concentrated to 1 mL and fungicides determined by GC-MS, without additional cleanup. The method provided recoveries in the range from 74 to 122% for soils with total carbon contents up to 5.5% and it allowed the use of external standard as quantification technique. Inter-day precision, given as relative standard deviations, stayed between 3 and 13%, and the limits of quantification were comprised between 0.6 and 15 ng g(-1). Several fungicides were found in the top layer of vineyard soils with the highest detection frequency and maximum concentration corresponding to iprovalicarb. Some real samples were also submitted to pressurized liquid extraction. Measured concentrations were in excellent agreement with those obtained by matrix solid-phase dispersion, which reinforces the accuracy of the latter methodology. PMID:22532354

  11. A stratified two-stage sampling design for digital soil mapping in a Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Blaschek, Michael; Duttmann, Rainer

    2015-04-01

    The quality of environmental modelling results often depends on reliable soil information. In order to obtain soil data in an efficient manner, several sampling strategies are at hand depending on the level of prior knowledge and the overall objective of the planned survey. This study focuses on the collection of soil samples considering available continuous secondary information in an undulating, 16 km²-sized river catchment near Ussana in southern Sardinia (Italy). A design-based, stratified, two-stage sampling design has been applied aiming at the spatial prediction of soil property values at individual locations. The stratification based on quantiles from density functions of two land-surface parameters - topographic wetness index and potential incoming solar radiation - derived from a digital elevation model. Combined with four main geological units, the applied procedure led to 30 different classes in the given test site. Up to six polygons of each available class were selected randomly excluding those areas smaller than 1ha to avoid incorrect location of the points in the field. Further exclusion rules were applied before polygon selection masking out roads and buildings using a 20m buffer. The selection procedure was repeated ten times and the set of polygons with the best geographical spread were chosen. Finally, exact point locations were selected randomly from inside the chosen polygon features. A second selection based on the same stratification and following the same methodology (selecting one polygon instead of six) was made in order to create an appropriate validation set. Supplementary samples were obtained during a second survey focusing on polygons that have either not been considered during the first phase at all or were not adequately represented with respect to feature size. In total, both field campaigns produced an interpolation set of 156 samples and a validation set of 41 points. The selection of sample point locations has been done using ESRI software (ArcGIS) extended by Hawth's Tools and later on its replacement the Geospatial Modelling Environment (GME). 88% of all desired points could actually be reached in the field and have been successfully sampled. Our results indicate that the sampled calibration and validation sets are representative for each other and could be successfully used as interpolation data for spatial prediction purposes. With respect to soil textural fractions, for instance, equal multivariate means and variance homogeneity were found for the two datasets as evidenced by significant (P > 0.05) Hotelling T²-test (2.3 with df1 = 3, df2 = 193) and Bartlett's test statistics (6.4 with df = 6). The multivariate prediction of clay, silt and sand content using a neural network residual cokriging approach reached an explained variance level of 56%, 47% and 63%. Thus, the presented case study is a successful example of considering readily available continuous information on soil forming factors such as geology and relief as stratifying variables for designing sampling schemes in digital soil mapping projects.

  12. Relationship between Hydrological Parameters and Induced Polarization Spectra of Soil Samples

    NASA Astrophysics Data System (ADS)

    Nordsiek, S.; Durner, W.; Hoerdt, A.; Diamantopoulos, E.

    2011-12-01

    Problems concerning groundwater renewal, surface runoff, and agricultural questions are examples where soil hydraulic properties are relevant. Soil hydraulic properties describe the relationships between the state properties water content, capillary pressure, and hydraulic conductivity in partially water saturated soils. To obtain these properties for an area by soil hydrologic measurement techniques is time-consuming. Furthermore, the information gained is valid only for the vicinity of the investigated location. Geophysical methods offer a relatively quick way to get areal information. Geoelectrical measurements are most suitable for this purpose due to the correlation between electrical resistivity and properties like pore fluid conductivity and water saturation. Measuring complex resistivity instead of direct current resistivity yields the additional information of the quadrature component of resistivity, which is expected to correlate with properties of the interface between the pore fluid and the solid matrix. The spectral induced polarization (SIP) is a common geoelectrical method to investigate complex resistivity for a defined frequency range. The amplitude of the complex resistivity and the phase angle between real and imaginary part of resistivity are recorded for frequencies from 0.01 Hz to 100 Hz. The understanding of the correlation between complex electrical and hydraulic properties is essential for a successful application of the SIP method to hydrological problems. Therefore, laboratory SIP measurements and hydrologic Multi-Step-Outflow (MSO) experiments were performed on different soil samples. The investigated material include sand with a narrow grain size distribution as well as real soil samples from different locations in the vicinity of Braunschweig. The SIP measurements were performed at first on samples fully saturated with a sodium-chloride solution. The fluid conductivity is approximately 20 mS/m. Later, additional SIP spectra were recorded at different desaturation states. From the measured SIP spectra the mean relaxation time and the total chargeability were derived by application of the Deybe decomposition approach. After finishing all SIP measurements, the samples were re-saturated completely to perform the MSO experiments to obtain the retention curves and hydraulic conductivity functions. The parameters of the functions were then compared with the mean relaxation time and the total chargeability, respectively, to find correlations between the electrical and hydrological properties.

  13. High-temperature hydrocarbon biodegradation activities in Kuwaiti desert soil samples.

    PubMed

    Obuekwe, C O; Hourani, G; Radwan, S S

    2001-01-01

    Soil samples taken monthly from the Burgan South oil field of Kuwait for one year degraded crude oil, phenanthrene, and hexadecane. Bacteria were better degraders at high-temperature (55 degrees C) than fungi, especially in the drier, hotter months. Depending on the period of sampling, bacteria degraded hydrocarbons in the range of 46-86% (crude oil), 42-100% (hexadecane) and 5-58% (phenanthrene). Fungi alone accounted for degradation by 20-81% (crude oil), 30-95% (hexadecane) and less than 55% (phenanthrene). PMID:11898344

  14. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: considerations for sample preparation and measurement conditions.

    PubMed

    Parsons, Chris; Margui Grabulosa, Eva; Pili, Eric; Floor, Geerke H; Roman-Ross, Gabriela; Charlet, Laurent

    2013-11-15

    Recent technological improvements have led to the widespread adoption of field portable energy dispersive X-ray fluorescence (FP-XRF) by governmental agencies, environmental consultancies and research institutions. FP-XRF units often include analysis modes specifically designed for the quantification of trace elements in soils. Using these modes, X-ray tube based FP-XRF units can offer almost "point and shoot" ease of use and results comparable to those of laboratory based instruments. Nevertheless, FP-XRF analysis is sensitive to spectral interferences as well as physical and chemical matrix effects which can result in decreased precision and accuracy. In this study, an X-ray tube-based FP-XRF analyser was used to determine trace (low ppm) concentrations of As in a floodplain soil. The effect of different sample preparation and analysis conditions on precision and accuracy were systematically evaluated. We propose strategies to minimise sources of error and maximise data precision and accuracy, achieving in situ limits of detection and precision of 6.8 ppm and 14.4%RSD, respectively for arsenic. We demonstrate that soil moisture, even in relatively dry soils, dramatically affects analytical performance with a signal loss of 37% recorded for arsenic at 20 wt% soil moisture relative to dry soil. We also highlight the importance of the use of certified reference materials and independent measurement methods to ensure accurate correction of field values. PMID:22819961

  15. Are We Under-Estimating Mercury in Soils? Experimental Acidification and Sample Collection Timing Demonstrate Variability in Estimates of Mercury in O-Horizon Soils at a Maine Site

    NASA Astrophysics Data System (ADS)

    Nelson, S. J.; Johnson, K. B.

    2009-12-01

    Sampling protocols, including sample timing, collection methods, preservation, and preparation, can strongly influence the results of any analysis. Organic soil horizons are a large pool of mercury (Hg) in most temperate, forested sites; minimizing the potential for under- or over- estimates in this medium is critical for discerning the fate and transport of Hg. Detailed guidance is available for ultra-clean and semi-clean handling for Hg sampling in surface waters. However, neither guidance regarding the proper time of year to sample soils nor methodological studies regarding post-sampling preservation and handling were available in the scientific literature for soil Hg sampling. Here we report on pilot work that (1) provides data for Hg in soils (O-horizon) through an entire year, to determine whether seasonality affects Hg estimates; and (2) documents the effect of treating a soil with acidic water prior to preparation and analysis. We collected O-horizon soil samples monthly from a single plot during 2008, and analyzed them for total Hg. Each month, samples were split; half were ‘control’ samples (dried then analyzed) and half were ‘acidified’ (treated with acidic (pH 2.0) ultrapure water prior to drying and analysis). We observed: (1) a three-fold range of Hg values (148-446 ppb) for the control samples (all collected within the same 2-m2 plot), varying across the twelve months in 2008 during which samples were collected; (2) differences of ~15-20% between acidified and control samples; and, (3) an apparent loss of ~100 ppb of Hg (~22%) if acidification of the dry sample was delayed a day or more. Soils collected when the antecedent period had been wet lost Hg when soils were treated with pH 2.0 solution, potentially because soluble Hg in solution could have been leached during acid treatment. This finding may help to explain why researchers have seen large pulses of Hg in streamwater flux during snowmelt. Further, our results may help to inform ongoing scientific discussions regarding the fate of ‘old’ Hg versus ‘new’ Hg. If ‘new’ Hg is subject to rapid transformations that depend, in part, on antecedent weather conditions, this could account for some of the temporal variability in the proportion of ‘new’ Hg in streamwater flux. Although potential mechanisms that explain the temporal variability and acidification effect need to be more thoroughly studied, our results clearly demonstrate that there is large variability within the O-horizon component of watershed-scale budgets of Hg. The effects of long storage times, heating or air-drying samples, and freezing samples have not been explicitly discussed in the literature, though potential sources of variability, including those we investigated, are listed by US EPA. A standardized sampling protocol for soils, based on rigorous tests of field and laboratory handling and preparation, should be developed to support cross-site comparison such as that proposed in the national mercury monitoring network.

  16. Perimeter air sampling strategy for soil remediation at a Superfund Site

    SciTech Connect

    Potter, S.L. [Forrester Group, Inc., Springfield, MO (United States); Vaughan, W.M. [Environmental Solutions, Inc., St. Louis, MO (United States); Mescher, J.A. [McKesson Corp., San Francisco, CA (United States)

    1996-12-31

    Perimeter and off-site air monitoring were performed during the remedial action at a Superfund Site in northwest Arkansas. The remedial action consisted of soil excavation, pre-treatment by dry sieving and off-Site incineration. Air monitoring was conducted for total suspended particulates (TSP), pentachlorophenol, carcinogenic polynuclear aromatic hydrocarbons, and 2,3,7,8-TCDD dioxin equivalents (dioxins). Selection of samples for chemical analyses followed a strategy based upon TSP levels, meteorologic data, and project schedule. The sampling strategy focused on the selection of the chemical samples reasonably expected to contain the highest level of contaminants based upon TSP levels and avoided the overly conservative approach of analyzing all chemical samples collected at the Site. By utilizing this strategy, estimated analytical costs of air monitoring were reduced by 80 percent. 2 refs., 1 fig., 1 tab.

  17. Evaluation of soil damping techniques used in soil structure interaction analysis of a nuclear power plant

    SciTech Connect

    Nelson, T.A.

    1982-02-24

    A prediction of dynamic soil properties at the site of a nuclear power plant plays a very important role in the seismic analysis of the facility. Conventional modal analysis procedures can accommodate virtually any range of equivalent elastic soil stiffness which is used to characterize the site. However, high radiation damping associated with energy dissipation in the soil half-space is difficult to accommodate in an elastic modal solution to the dynamic problem. Several methods are available to combine the soil damping with the structural damping in a composite modal damping coefficient. However, even with this convenient representation, the resulting large fractions of critical damping can make modal solutions to the problems suspect. This paper is based on experience gained in this area during studies performed for the Nuclear Regulatory Commission involving seismic analyses of power plants.

  18. Protocols and guidelines for field-scale measurement of soil salinity distribution with ECa-directed soil sampling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil salinity is a spatially complex and dynamic property of soil that influences crop yields when the threshold salinity level is exceeded. The mapping and monitoring of soil salinity is necessary for reclamation, crop selection, and site-specific irrigation management of salt-affected soils in th...

  19. Stream sediment sampling and analysis. Final report

    SciTech Connect

    Means, J.L.; Voris, P.V.; Headington, G.L.

    1986-04-01

    The objectives were to sample and analyze sediments from upstream and downstream locations (relative to the Goodyear Atomic plant site) of three streams for selected pollutants. The three streams sampled were the Scioto River, Big Beaver Creek, and Big Run Creek. Sediment samples were analyzed for EPA's 129 priority pollutants (Clean Water Act) as well as isotopic uranium (/sup 234/U, /sup 235/U, and /sup 238/U) and technetium-99.

  20. Techniques for geothermal liquid sampling and analysis

    SciTech Connect

    Kindle, C.H.; Woodruff, E.M.

    1981-07-01

    A methodology has been developed that is particularly suited to liquid-dominated resources and adaptable to a variety of situations. It is intended to be a base methodology upon which variations can be made to meet specific needs or situations. The approach consists of recording flow conditions at the time of sampling, a specific insertable probe sampling system, a sample stabilization procedure, commercially available laboratory instruments, and data quality check procedures.

  1. Extraction of Plutonium From Spiked INEEL Soil Samples Using the Ligand-Assisted Supercritical Fluid Extraction (LA-SFE) Technique

    SciTech Connect

    Fox, R.V.; Mincher, B.J. (INEEL); Holmes, R.G.G. (British Nuclear Fuels, Inc.)

    1999-08-01

    In order to investigate the effectiveness of ligand-assisted supercritical fluid extraction for the removal of transuranic contaminations from soils an Idaho National Engineering and Environmental Laboratory (INEEL) silty-clay soil sample was obtained from near the Radioactive Waste Management Complex area and subjected to three different chemical preparations before being spiked with plutonium. The spiked INEEL soil samples were subjected to a sequential aqueous extraction procedure to determine radionuclide portioning in each sample. Results from those extractions demonstrate that plutonium consistently partitioned into the residual fraction across all three INEEL soil preparations whereas americium partitioned 73% into the iron/manganese fraction for soil preparation A, with the balance partitioning into the residual fraction. Plutonium and americium were extracted from the INEEL soil samples using a ligand-assisted supercritical fluid extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction efficiencies ranging from 14% to 19%. After a second round wherein the initial extraction parameters were changed, the plutonium extraction efficiencies increased to 60% and as high as 80% with the americium level in the post-extracted soil samples dropping near to the detection limits. The third round of experiments are currently underway. These results demonstrate that the ligand-assisted supercritical fluid extraction technique can effectively extract plutonium from the spiked INEEL soil preparations.

  2. Environmental radiation levels in soil and sediment samples collected from floating water from a land runway resulting from heavy rains in the Jeddah region, KSA

    NASA Astrophysics Data System (ADS)

    Mohery, M.; Baz, Shadiah; Kelany, Adel M.; Abdallah, A. M.

    2014-04-01

    The natural radiation levels in soil and sediment samples collected from floating water from a land runway resulting from heavy rains in the Jeddah region as well as the activity in the population of its surrounding environments were studied. In the regions surrounding Jeddah, the movements of floating water may increase the concentration of radioactivity due to the movement of soil due to heavy rains. In addition, the technological development of industry, agriculture and other sources around the Jeddah region has increased environmental pollution, resulting in noticeable concentrations of radioactivity. The measured activity concentrations of 214Pb, 214Bi, 228Ac, 208Tl, 40K, 226Ra and 228Ra in the studied area suggest that they are within the world average for soils and sediments, except those for water sample no. 4; the concentration in this sample was five times higher than the world average concentration (this water is not consumable). Herein, the radioactivity concentrations that were obtained from the analysis of soil and sediment samples that were collected from the investigated area are discussed. Additionally, the absorbed dose rate (D), radium equivalent activity (Raeq), external hazard index (Hex), annual gonadal dose equivalent (AGDE) and annual effective dose equivalent (AEDE) were evaluated. For the soil and sediment samples, the average radioactivity concentrations were determined for each site and are expressed in Becquerels per kilogram (Bq/kg) of dry weight, while for the measurement of both the 226Ra and 228Ra isotopes in the water samples, the activity concentration is expressed in picoCuries per liter (pCi/l). The obtained results were compared with other measurements from different countries. The movement of floating water around the Jeddah region increases the concentration of radioactivity due to the movement of soils with heavy rains.

  3. NG09 And CTBT On-Site Inspection Noble Gas Sampling and Analysis Requirements

    NASA Astrophysics Data System (ADS)

    Carrigan, Charles R.; Tanaka, Junichi

    2010-05-01

    A provision of the Comprehensive Test Ban Treaty (CTBT) allows on-site inspections (OSIs) of suspect nuclear sites to determine if the occurrence of a detected event is nuclear in origin. For an underground nuclear explosion (UNE), the potential success of an OSI depends significantly on the containment scenario of the alleged event as well as the application of air and soil-gas radionuclide sampling techniques in a manner that takes into account both the suspect site geology and the gas transport physics. UNE scenarios may be broadly divided into categories involving the level of containment. The simplest to detect is a UNE that vents a significant portion of its radionuclide inventory and is readily detectable at distance by the International Monitoring System (IMS). The most well contained subsurface events will only be detectable during an OSI. In such cases, 37 Ar and radioactive xenon cavity gases may reach the surface through either "micro-seepage" or the barometric pumping process and only the careful siting of sampling locations, timing of sampling and application of the most site-appropriate atmospheric and soil-gas capturing methods will result in a confirmatory signal. The OSI noble gas field tests NG09 was recently held in Stupava, Slovakia to consider, in addition to other field sampling and analysis techniques, drilling and subsurface noble gas extraction methods that might be applied during an OSI. One of the experiments focused on challenges to soil-gas sampling near the soil-atmosphere interface. During withdrawal of soil gas from shallow, subsurface sample points, atmospheric dilution of the sample and the potential for introduction of unwanted atmospheric gases were considered. Tests were designed to evaluate surface infiltration and the ability of inflatable well-packers to seal out atmospheric gases during sample acquisition. We discuss these tests along with some model-based predictions regarding infiltration under different near-surface hydrologic conditions. We also consider how naturally occurring as well as introduced (e.g., SF6) soil-gas tracers might be used to guard against the possibility of atmospheric contamination of soil gases while sampling during an actual OSI. The views expressed here do not necessarily reflect the opinion of the United States Government, the United States Department of Energy, or Lawrence Livermore National Laboratory. This work has been performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-418791

  4. 27 CFR 26.192 - Samples and analysis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 2014-04-01 false Samples and analysis. 26.192...Puerto Rico § 26.192 Samples and analysis. The chemist...Treasury of Puerto Rico may take samples of the product to be shipped...that it is eligible for tax-free...

  5. 27 CFR 26.192 - Samples and analysis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 2012-04-01 false Samples and analysis. 26.192...Puerto Rico § 26.192 Samples and analysis. The chemist...Treasury of Puerto Rico may take samples of the product to be shipped...that it is eligible for tax-free...

  6. 27 CFR 26.192 - Samples and analysis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 2011-04-01 false Samples and analysis. 26.192...Puerto Rico § 26.192 Samples and analysis. The chemist...Treasury of Puerto Rico may take samples of the product to be shipped...that it is eligible for tax-free...

  7. 27 CFR 26.192 - Samples and analysis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 2013-04-01 false Samples and analysis. 26.192...Puerto Rico § 26.192 Samples and analysis. The chemist...Treasury of Puerto Rico may take samples of the product to be shipped...that it is eligible for tax-free...

  8. Biogenic nitric oxide emission of mountain soils sampled from different vertical landscape zones in the Changbai Mountains, northeastern China.

    PubMed

    Yu, Junbao; Meixner, Franz X; Sun, Weidong; Mamtimin, Buhalqem; Xia, Chuanhai; Xie, Wenjun

    2010-06-01

    Nitric oxide (NO) is an important component in nitrogen biogeochemical cycling produced through biological processes of nitrification and denitrification in soils, but the production and the consumption processes of NO in temperate mountain soil are less understood. Through laboratory experiments focusing on NO biogenic emissions from six kinds of mountain soils sampled from different vertical landscape zones, that is, coniferous and broadleaf mixed forest (CBF), fir forest (FF), spruce forest (SF), Erman's birch forest (EBF), alpine tundra (AT), and volcanic ash (VA), in the Changbai Mountains, northeastern China, we found that the optimum water-filled pore space (WFPS) for NO production varies between 22.5% and 35% for a range of mountain soils. The optimum soil moisture for the maximum NO emission for a certain soil type, however, was constant and independent of soil temperature. The NO emission potential for forest soils was about 7-50-fold higher than tundra soil and volcanic ash, indicating that it is strongly influenced by nutrient contents in soils. On the basis of laboratory results and field monitoring data, the average NO fluxes from these mountain soils were estimated to be 0.14-29.56 ng N m(-2) s(-1) for an entire plant growth period. NO emissions mainly occur in wet season for CBF and FF, but in dry season for other soil types. PMID:20450189

  9. In situ silicone tube microextraction: a new method for undisturbed sampling of root-exuded thiophenes from marigold (Tagetes erecta L.) in soil.

    PubMed

    Mohney, Brian K; Matz, Tricia; Lamoreaux, Jessica; Wilcox, David S; Gimsing, Anne Louise; Mayer, Philipp; Weidenhamer, Jeffrey D

    2009-11-01

    The difficulties of monitoring allelochemical concentrations in soil and their dynamics over time have been a major barrier to testing hypotheses of allelopathic effects. Here, we evaluate three diffusive sampling strategies that employ polydimethylsiloxane (PDMS) sorbents to map the spatial distribution and temporal dynamics of root-exuded thiophenes from the African marigold, Tagetes erecta. Solid phase root zone extraction (SPRE) probes constructed by inserting stainless steel wire into PDMS tubing were used to monitor thiophene concentrations at various depths beneath marigolds growing in PVC pipes. PDMS sheets were used to map the distribution of thiophenes beneath marigolds grown in thin glass boxes. Concentrations of the two major marigold thiophenes measured by these two methods were extremely variable in both space and time. Dissection and analysis of roots indicated that distribution of thiophenes in marigold roots also was quite variable. A third approach used 1 m lengths of PDMS microtubing placed in marigold soil for repeated sampling of soil without disturbance of the roots. The two ends of the tubing remained out of the soil so that solvent could be washed through the tubing to collect samples for HPLC analysis. Unlike the other two methods, initial experiments with this approach show more uniformity of response, and suggest that soil concentrations of marigold thiophenes are affected greatly even by minimal disturbance of the soil. Silicone tube microextraction gave a linear response for alpha-terthienyl when maintained in soils spiked with 0-10 ppm of this thiophene. This method, which is experimentally simple and uses inexpensive materials, should be broadly applicable to the measurement of non-polar root exudates, and thus provides a means to test hypotheses about the role of root exudates in plant-plant and other interactions. PMID:19902302

  10. Space X First Entry Sample Analysis

    NASA Technical Reports Server (NTRS)

    James, John T.

    2012-01-01

    The toxicological assessment of one sample collected on May 26, 2012 and returned to earth on May 31, 2012 was analyzed for pollutants that had offgassed into the Dragon capsule by the time of first entry operations performed by the ISS crew. The components identified in the first-entry sample and their contributions to the total T-value are shown.

  11. [Physical and chemical methods for eliminating propagules of indigenous mycorrhizal fungi from soil samples].

    PubMed

    Covacevich, Fernanda; Castellari, Claudia C; Echeverría, Hernán E

    2014-01-01

    The objective of this work was to evaluate methods to eliminate or reduce the number of indigenous arbuscular mycorrhizal fungi (AMF) from soil samples without affecting their edaphic or microbiological properties. At an early trial we evaluated moist heat (autoclaving), dry heat (oven), sodium hypochlorite (NaClO) and formaldehyde at a range of 100.0-3.3?l/g and 16.7-3.3?l/g respectively. There was no germination in plants of ryegrass (Lolium multiflorum Lam.) sown on substrates receiving NaClO (100.0-33.3?l/g), whereas autoclaving significantly increased the available soil phosphorous content. Both treatments failed to eradicate AMF colonization at 9 weeks; therefore, they were discarded. In a second trial, oven and formaldehyde (10.0?l/g) treatments were analyzed to assess the effects of seed decontamination and AMF reinoculation. Both procedures were effective in reducing or eliminating indigenous AMF at a range of soil P availability of 12-29mg/kg. However, the time between soil treatment and AMF multiplication and safety requirements were greater in the case of formaldehyde application. PMID:25444132

  12. Self-absorption correction in determining the 238U activity of soil samples via 63.3 keV gamma ray using MCNP5 code.

    PubMed

    Huy, Ngo Quang; Binh, Do Quang; An, Vo Xuan; Loan, Truong Thi Hong; Can, Nguyen Thanh

    2013-01-01

    The essential issue in analyzing the activity of (238)U in an HPGe detector based gamma spectrometer via 63.3 keV line is relating to the strong self-absorption of this weak gamma ray in sample material. The present work suggests a method of the self-absorption corrections for 63.3 keV gamma rays by a combination of experimental measurements and Monte Carlo MCNP5 calculations. The effects of sample chemical composition, density and geometry were calculated in terms of self-attenuation factors. The method, developed for a cylindrical sample geometry, accounted for variable sample heights and densities. The analysis of (238)U activity was applied for three main soil types in Vietnam, which are grey, alluvial and red soils. The results obtained with the above outlined method were in good agreement with those derived by other methods. PMID:23079486

  13. Determination of traces of Pt and Rh in soil and quartz samples contaminated by automobile exhaust after an ion-exchange matrix separation.

    PubMed

    Kowalska, Joanna; Ki?ska, Katarzyna; Pa?dyna, Joanna; Czy?ewska, Monika; Boder, Kamila; Krasnod?bska-Ostr?ga, Beata

    2014-09-01

    Monitoring of PGEs content in the natural samples is a crucial point in the environment science since catalytic car converters have been introduced. In the presented paper application of a very sensitive voltammetric method for determination of traces of Pt and Rh in the environmental samples contaminated by automobile exhausts is discussed. Voltammetric measurements were carried out in the supporting electrolyte containing formaldehyde and semicarbazide. PGEs were separated from the digested solutions of soils or quartz samples, collected from monitoring plots-by applying an ion-exchange resin Cellex-T. Pt was very effectively separated from the matrix approaching nearly 100% recovery after its elution by hydrochloric acid. Moreover the conditions of soil and quartz samples digestion were discussed. To validate the obtained result an independent analytical method-ICP MS was applied and analysis of certified reference material road dust 723-was completed. PMID:24913884

  14. UMTRA water sampling and analysis plan, Green River, Utah

    SciTech Connect

    Papusch, R.

    1993-12-01

    The purpose of this water sampling and analysis plan (WSAP) is to provide a basis for groundwater and surface water sampling at the Green River Uranium Mill Tailing Remedial Action (UMTRA) Project site. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring locations.

  15. Passive and active soil gas sampling at the Mixed Waste Landfill, Technical Area III, Sandia National Laboratories/New Mexico

    SciTech Connect

    McVey, M.D.; Goering, T.J. [GRAM, Inc., Albuquerque, NM (United States); Peace, J.L. [Sandia National Labs., Albuquerque, NM (United States)

    1996-02-01

    The Environmental Restoration Project at Sandia National Laboratories, New Mexico is tasked with assessing and remediating the Mixed Waste Landfill in Technical Area III. The Mixed Waste Landfill is a 2.6 acre, inactive radioactive and mixed waste disposal site. In 1993 and 1994, an extensive passive and active soil gas sampling program was undertaken to identify and quantify volatile organic compounds in the subsurface at the landfill. Passive soil gas surveys identified levels of PCE, TCE, 1,1, 1-TCA, toluene, 1,1,2-trichlorotrifluoroethane, dichloroethyne, and acetone above background. Verification by active soil gas sampling confirmed concentrations of PCE, TCE, 1,1,1-TCA, and 1,1,2-trichloro-1,2,2-trifluoroethane at depths of 10 and 30 feet below ground surface. In addition, dichlorodifluoroethane and trichlorofluoromethane were detected during active soil gas sampling. All of the volatile organic compounds detected during the active soil gas survey were present in the low ppb range.

  16. Tank 241-Z-361 vapor sampling and analysis plan

    SciTech Connect

    BANNING, D.L.

    1999-02-23

    Tank 241-Z-361 is identified in the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement), Appendix C, (Ecology et al. 1994) as a unit to be remediated under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). As such, the U.S. Environmental Protection Agency will serve as the lead regulatory agency for remediation of this tank under the CERCLA process. At the time this unit was identified as a CERCLA site under the Tri-Party Agreement, it was placed within the 200-ZP-2 Operable Unit. In 1997, The Tri-parties redefined 200 Area Operable Units into waste groupings (Waste Site Grouping for 200 Areas Soils Investigations [DOE-RL 1992 and 1997]). A waste group contains waste sites that share similarities in geological conditions, function, and types of waste received. Tank 241-Z-361 is identified within the CERCLA Plutonium/Organic-rich Process Condensate/Process Waste Group (DOE-RL 1992). The Plutonium/Organic-rich Process Condensate/Process Waste Group has been prioritized for remediation beginning in the year 2004. Results of Tank 216-Z-361 sampling and analysis described in this Sampling and Analysis Plan (SAP) and in the SAP for sludge sampling (to be developed) will determine whether expedited response actions are required before 2004 because of the hazards associated with tank contents. Should data conclude that remediation of this tank should occur earlier than is planned for the other sites in the waste group, it is likely that removal alternatives will be analyzed in a separate Engineering Evaluation/Cost Analysis (EE/CA). Removal actions would proceed after the U.S. Environmental Protection Agency (EPA) signs an Action Memorandum describing the selected removal alternative for Tank 216-Z-361. If the data conclude that there is no immediate threat to human health and the environment from this tank, remedial actions for the tank will be defined in a feasibility study for the entire waste group.

  17. Area G Perimeter Surface-Soil Sampling Environmental Surveillance for Fiscal Year 1998 Hazardous and Solid Waste Group (ESH-19)

    SciTech Connect

    Marquis Childs

    1999-09-01

    Material Disposal Area G (Area G) is at Technical Area 54 at Los Alamos National Laboratory (LANL). Area G has been the principal facility for the disposal of low-level, solid-mixed, and transuranic waste since 1957. It is currently LANL's primary facility for radioactive solid waste burial and storage. As part of the annual environmental surveillance effort at Area G, surface soil samples are collected around the facility's perimeter to characterize possible radionuclide movement off the site through surface water runoff During 1998, 39 soil samples were collected and analyzed for percent moisture, tritium, plutonium-238 and 239, cesium-137 and americium-241. To assess radionuclide concentrations, the results from these samples are compared with baseline or background soil samples collected in an undisturbed area west of the active portion Area G. The 1998 results are also compared to the results from analogous samples collected during 1996 and 1997 to assess changes over this time in radionuclide activity concentrations in surface soils around the perimeter of Area G. The results indicate elevated levels of all the radionuclides assessed (except cesium-137) exist in Area G perimeter surface soils vs the baseline soils. The comparison of 1998 soil data to previous years (1996 and 1997) indicates no significant increase or decrease in radionuclide concentrations; an upward or downward trend in concentrations is not detectable at this time. These results are consistent with data comparisons done in previous years. Continued annual soil sampling will be necessary to realize a trend if one exists. The radionuclide levels found in the perimeter surface soils are above background but still considered relatively low. This perimeter surface soil data will be used for planning purposes at Area G, techniques to prevent sediment tm.nsport off-site are implemented in the areas where the highest radionuclide concentrations are indicated.

  18. SAMPLING AND ANALYSIS INFORMATION AIDS FOR STATIONARY SOURCE PERSONNEL

    EPA Science Inventory

    The Environmental Protection Agency, in developing and evaluating sampling and analysis methodology for stationary sources, has collected information on availability and applicability of sampling and analytical methods. ll of this information is compiled in three reference docume...

  19. Galvanic Cell Type Sensor for Soil Moisture Analysis.

    PubMed

    Gaikwad, Pramod; Devendrachari, Mruthyunjayachari Chattanahalli; Thimmappa, Ravikumar; Paswan, Bhuneshwar; Raja Kottaichamy, Alagar; Makri Nimbegondi Kotresh, Harish; Thotiyl, Musthafa Ottakam

    2015-07-21

    Here we report the first potentiometric sensor for soil moisture analysis by bringing in the concept of Galvanic cells wherein the redox energies of Al and conducting polyaniline are exploited to design a battery type sensor. The sensor consists of only simple architectural components, and as such they are inexpensive and lightweight, making it suitable for on-site analysis. The sensing mechanism is proved to be identical to a battery type discharge reaction wherein polyaniline redox energy changes from the conducting to the nonconducting state with a resulting voltage shift in the presence of soil moisture. Unlike the state of the art soil moisture sensors, a signal derived from the proposed moisture sensor is probe size independent, as it is potentiometric in nature and, hence, can be fabricated in any shape or size and can provide a consistent output signal under the strong aberration conditions often encountered in soil moisture analysis. The sensor is regenerable by treating with 1 M HCl and can be used for multiple analysis with little read out hysteresis. Further, a portable sensor is fabricated which can provide warning signals to the end user when the moisture levels in the soil go below critically low levels, thereby functioning as a smart device. As the sensor is inexpensive, portable, and potentiometric, it opens up avenues for developing effective and energy efficient irrigation strategies, understanding the heat and water transfer at the atmosphere-land interface, understanding soil mechanics, forecasting the risk of natural calamities, and so on. PMID:26098202

  20. An Accurate and Efficient Method for Sorting Biomass Extracted from Soil Cores Using Point-Intercept Sampling

    Microsoft Academic Search

    Rebecca C. Wenk; John J. Battles; Randall D. Jackson; James W. Bartolome; Barbara Allen-Diaz

    2006-01-01

    We describe a point-intercept sampling technique that reduces the time and therefore the cost associated with hand sorting biomass extracted from soil cores. Typically, organic material that has been extracted from soil cores is painstakingly separated into categories such as roots, leaves, and unidentifiable organic matter so that each can be weighed. With the point-intercept method, we spread the ex-

  1. An enzyme-linked immunosorbent assay for the determination of dioxins in contaminated sediment and soil samples

    E-print Network

    Hammock, Bruce D.

    level for contaminated sediment and soil. The ELISA could also be used in an analytical triage approachAn enzyme-linked immunosorbent assay for the determination of dioxins in contaminated sediment and soil samples Jeanette M. Van Emon a,*, Jane C. Chuang b , Robert A. Lordo b , Mary E. Schrock b

  2. Effect of sampling volume on the measurement of soil physical properties: simulation with x-ray tomography data

    Microsoft Academic Search

    Philippe Baveye; Helmut Rogasik; Ole Wendroth; Ingrid Onasch; John W. Crawford

    2002-01-01

    The dependence of macroscopic soil parameters on sampling volume is currently the object of renewed research focus. In this paper, x-ray computed tomography data related to cores obtained in two different locations in a field soil are used to simulate this dependence. Several integration methods are adopted, to mimic different measuring devices. Calculation results, relative to the volumetric water content,

  3. LABORATORY GUIDELINES FOR ANALYSIS OF BIOTERRORISM SAMPLES

    EPA Science Inventory

    With advent of deaths associated with Bacillus anthracis spore contaminated mail, a worldwide need was apparent for increased laboratory capacity to safely analyze bioterrorism samples. The U.S. Department of Health and Human Services has furnished guidelines for microbiological...

  4. SAMPLING AND ANALYSIS OF SEMIVOLATILE AEROSOLS

    EPA Science Inventory

    Denuder based samplers can effectively separate semivolatile gases from particles and 'freeze' the partitioning in time. Conversely, samples collected on filters partition mass according to the conditions of the influent airstream, which may change over time. As a result thes...

  5. PIXE and XRF analysis of honey samples

    Microsoft Academic Search

    J. Braziewicz; I Fija?; T. Czyzewski; M. Jaskóla; A. Korman; D. Banas; A. Kubala-Kukus; U. Majewska; L. Zemlo

    2002-01-01

    The systematic determination of trace-element concentrations in honey samples was done by the PIXE method using a 2 MeV proton beam and by the total reflection XRF method. The different kinds of honey samples were collected in the period of spring–summer in three places of Poland: in the centre of Warsaw (a highly polluted region) and about 100 km east

  6. Analysis of plasmid samples on a microchip

    Microsoft Academic Search

    Li Ding; Kathi Williams; Walter Ausserer; Luc Bousse; Robert Dubrow

    2003-01-01

    We have developed a LabChip-based plasmid assay that runs on the Agilent 2100 Bioanalyzer. The assay determines the sizes and relative concentrations of the multiple forms of plasmid samples. Twelve samples can be analyzed on each chip in an automated run lasting approximately 30min. By using a supercoiled DNA sizing standard of 2–16kb, the size of the analyzed plasmid can

  7. Trajectories of loose sand samples in the Phase Space of Soil Mechanics

    E-print Network

    P. Evesque

    2005-07-05

    In general, the evolution of soil submitted to simple stress-strain paths is characterised using the 3d phase space (v,p',q) i.e. (specific volume, mean intergranular pressure, deviatoric stress q. When uniaxial compressions is performed at constant lateral pressure p' or at constant mean pressure p', one finds that all trajectories end up at a line of attracting point called the critical-state line via the surface of Roscoe or of Hvorslev depending if the initial volume is the loosest possible one (at a given p') or densest. Trajectories of weakly dense samples are not often reported in this phase space. We find here that they shall present some sigmoid shape as it can be found from soil mechanics argument. This seems to indicate that Roscoe's surface shall exhibit a singularity at the critical point.

  8. Multisubstrate Isotope Labeling and Metagenomic Analysis of Active Soil Bacterial Communities

    PubMed Central

    Verastegui, Y.; Cheng, J.; Engel, K.; Kolczynski, D.; Mortimer, S.; Lavigne, J.; Montalibet, J.; Romantsov, T.; Hall, M.; McConkey, B. J.; Rose, D. R.; Tomashek, J. J.; Scott, B. R.

    2014-01-01

    ABSTRACT Soil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacterial communities and their glycoside hydrolase genes, which have value for industrial applications. We incubated samples from three disparate Canadian soils (tundra, temperate rainforest, and agricultural) with five native carbon (12C) or stable-isotope-labeled (13C) carbohydrates (glucose, cellobiose, xylose, arabinose, and cellulose). Indicator species analysis revealed high specificity and fidelity for many uncultured and unclassified bacterial taxa in the heavy DNA for all soils and substrates. Among characterized taxa, Actinomycetales (Salinibacterium), Rhizobiales (Devosia), Rhodospirillales (Telmatospirillum), and Caulobacterales (Phenylobacterium and Asticcacaulis) were bacterial indicator species for the heavy substrates and soils tested. Both Actinomycetales and Caulobacterales (Phenylobacterium) were associated with metabolism of cellulose, and Alphaproteobacteria were associated with the metabolism of arabinose; members of the order Rhizobiales were strongly associated with the metabolism of xylose. Annotated metagenomic data suggested diverse glycoside hydrolase gene representation within the pooled heavy DNA. By screening 2,876 cloned fragments derived from the 13C-labeled DNA isolated from soils incubated with cellulose, we demonstrate the power of combining DNA-SIP, multiple-displacement amplification (MDA), and functional metagenomics by efficiently isolating multiple clones with activity on carboxymethyl cellulose and fluorogenic proxy substrates for carbohydrate-active enzymes. PMID:25028422

  9. Evaluation of soil fertility in the succession of karst rocky desertification using principal component analysis

    NASA Astrophysics Data System (ADS)

    Xie, L. W.; Zhong, J.; Cao, F. X.; Li, J. J.; Wu, L. C.

    2014-12-01

    Expanding of karst rocky desertification (RD) area in southwestern China has led to destructed ecosystem and local economic development lagging behind. It is important to understand the soil fertility at RD regions for the sustainable management of karst lands. The effects of the succession of RD on soil fertility were studied by investigating the stands and analyzing the soil samples with different RD grades in the central Hunan province, China, using the principal component analysis method. The results showed that the succession of RD had different impacts on soil fertility indicators. The changing trend of total organic carbon (TOC), total nitrogen (TN), available phosphorous (AP), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN) out of 19 selected indicators in different RD regions was: potential RD (PRD) > light RD (LRD) > moderate RD (MRD) > intensive RD (IRD), whereas the changing trend of other indicators was not entirely consistent with the succession of RD. The degradation trend of soil fertility was basically parallel to the aggravation of RD, and the strength of integrated soil fertility was in the order of PRD > MRD > LRD > IRD. The TOC, total phosphorus (TP), cation exchange capacity (CEC), MBC, MBN, microbial mass phosphorous (MBP), and bulk density (BD) could be regarded as the key indicators to evaluate the soil fertility due to their close correlations to the integrated fertility.

  10. Visible and Near-Infrared Spectroscopy Analysis of a Polycyclic Aromatic Hydrocarbon in Soils

    PubMed Central

    Okparanma, Reuben N.; Mouazen, Abdul M.

    2013-01-01

    Visible and near-infrared (VisNIR) spectroscopy is becoming recognised by soil scientists as a rapid and cost-effective measurement method for hydrocarbons in petroleum-contaminated soils. This study investigated the potential application of VisNIR spectroscopy (350–2500?nm) for the prediction of phenanthrene, a polycyclic aromatic hydrocarbon (PAH), in soils. A total of 150 diesel-contaminated soil samples were used in the investigation. Partial least-squares (PLS) regression analysis with full cross-validation was used to develop models to predict the PAH compound. Results showed that the PAH compound was predicted well with residual prediction deviation of 2.0–2.32, root-mean-square error of prediction of 0.21–0.25?mg?kg?1, and coefficient of determination (r2) of 0.75–0.83. The mechanism of prediction was attributed to covariation of the PAH with clay and soil organic carbon. Overall, the results demonstrated that the methodology may be used for predicting phenanthrene in soils utilizing the interrelationship between clay and soil organic carbon. PMID:24453798

  11. Investigation of Luna-20 soil samples, using a mass spectrometer with a spark-discharge ion source

    NASA Technical Reports Server (NTRS)

    Hubbard, N. J.; Ramendik, G. I.; Gronskaia, S. I.; Gubina, I. IA.; Gushchin, V. N.

    1979-01-01

    A method of analyzing soil samples with a mass spectrometer employing a spark-discharge ion source is described, and the effectiveness of the method is demonstrated by applying it to the determination of impurities, in amounts of less than 10 mg, in lunar samples. It is shown that four parts of the Luna-20 lunar highland sample differ in their chemical composition.

  12. A sampling method for improving the representation of spatially varying precipitation and soil moisture using the Simple Biosphere Model

    E-print Network

    Collett Jr., Jeffrey L.

    A sampling method for improving the representation of spatially varying precipitation and soil (sampling method). Pre- cipitation was randomly distributed over fractions of the grid area for the explicit and sampling methods, while the standard SiB3 exponential distribution relating precipita- tion intensity

  13. Characterization and analytical validation of a microcantilever-based sensor for the determination of total carbonate in soil samples

    Microsoft Academic Search

    M. R. Plata; J. Hernando; M. Zougagh; A. M. Contento; M. J. Villaseñor; J. L. Sánchez-Rojas; A. Ríos

    2008-01-01

    A microcantilever device has been used as a miniaturized sensor for the determination of total carbonate in soil samples. The method is based on the selective generation of CO2 (g) from samples and the measure of the pressure effect on the microcantilever sensor located in a closed system. The experimental set-up uses a manifold including the sample reaction minichamber and

  14. PCDD/Fs in soil samples collected in the vicinity of a municipal solid waste incinerator: human health risks.

    PubMed

    Schuhmacher, M; Xifró, A; Llobet, J M; de Kok, H A; Domingo, J L

    1997-10-01

    The concentrations of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) were determined in soil samples taken from 24 sites in the vicinity of a municipal solid waste incinerator (Montcada, Barcelona, Spain). Samples were collected within a radius of 3 km in each of the three main directions of the wind rose in that area. Hepta- and octa-CDDs were the predominant congeners and contributors to TEQ. PCDD/F levels ranged from 0.30 to 44.26 ng TEQ/kg (dry matter), with median and mean values of 3.52 and 6.91 ng TEQ/kg, respectively. The highest and lowest PCDD/F concentrations were found at 750 m (44.26 ng TEQ/kg) and 3000 m (0. 30 ng TEQ/kg) from the stack, while the PCDD/PCDF ratio was 1.78. The health risk analysis of the data shows that the PCDD/F intake from soils is substantially lower than the tolerable daily intake for toxicologic (other than cancer) effects of PCDD/Fs. PMID:9353200

  15. Hydrodispersive characterization of a sandy porous medium by tracer tests carried out in laboratory on undisturbed soil samples

    NASA Astrophysics Data System (ADS)

    Ferrante, Aldo Pedro; Fallico, Carmine; Rios, Ana C.; Fernanda Rivera, Maria; Santillan, Patricio; Salazar, Mario

    2013-04-01

    The contamination of large areas and correspondent aquifers often imposes to implement some recovery operations which are generally complex and very expensive. Anyway, these interventions necessarily require the preventive characterization of the aquifers to be reclaimed and in particular the knowledge of the relevant hydrodispersive parameters. The determination of these parameters requires the implementation tracer tests for the specific site (Sauty JP, 1978). To reduce cost and time that such test requires tracer tests on undisturbed soil samples, representative of the whole aquifer, can be performed. These laboratory tests are much less expensive and require less time, but the results are certainly less reliable than those obtained by field tests for several reasons, including the particular scale of investigation. In any case the hydrodispersive parameters values, obtained by tests carried out in laboratory, can provide useful information on the considered aquifer, allowing to carry out initial verifications on the transmission and propagation of the pollutants in the aquifer considered. For this purpose, tracer tests with inlet of short time were carried out in the Soil Physics Laboratory of the Department of Soil Protection (University of Calabria), on a series of sandy soil samples with six different lengths, repeating each test with three different water flow velocities (5 m/d; 10 m/s and 15 m/d) (J. Feyen et al., 1998). The lengths of the samples taken into account are respectively 15 cm, 24 cm, 30 cm, 45 cm, 60 cm and 75 cm, while the solution used for each test was made of 100 ml of water and NaCl with a concentration of this substance corresponding to 10 g/L. For the porous medium taken into consideration a particle size analysis was carried out, resulting primarily made of sand, with total porosity equal to 0.33. Each soil sample was placed in a flow cell in which was inlet the tracer from the bottom upwards, measuring by a conductivimeter the variation of the outgoing concentration over time and obtaining the respective breakthrough curve. The flow was induced and regulated by a peristaltic pump. The results obtained are consistent together with those obtained by other researchers for analogues soil types; moreover the existence of a scaling law for the hydrodispersive parameters considered, ie the longitudinal dispersivity (?L) and the longitudinal dispersion coefficient (DL), was also verified (Neuman S.P., 1990), (Schulze-Makuch D., 2005). References Feyen J. et al., 1998. "Modelling Water Flow and Solute Transport in Heterogeneous Soils: A Review of Recent Approaches", Silsoe Research Institute. Neuman S.P., 1990. "Universal Scaling of Hydraulic Conductivities and Dispersivities in Geologic Media", Water Resources Research, vol. 26. Schulze-Makuch D., 2005. "Longitudinal Dispersivity Data and Implications for Scaling Behavior", Ground Water, vol.43. Sauty J.P., 1978. "Identification des paramètres du transport hydrodispersif dans les aquifères par interprétation de traçages en ecoulement cylindrique convergent ou divergent", Journal of hydrology n. 39.

  16. Neutron activation analysis for antimetabolites. [in food samples

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Determination of metal ion contaminants in food samples is studied. A weighed quantity of each sample was digested in a concentrated mixture of nitric, hydrochloric and perchloric acids to affect complete solution of the food products. The samples were diluted with water and the pH adjusted according to the specific analysis performed. The samples were analyzed by neutron activation analysis, polarography, and atomic absorption spectrophotometry. The solid food samples were also analyzed by neutron activation analysis for increased sensitivity and lower levels of detectability. The results are presented in tabular form.

  17. Chemometrics-assisted spectrophotometric method for simultaneous determination of Pb²? and Cu²? ions in different foodstuffs, soil and water samples using 2-benzylspiro [isoindoline-1,5'-oxazolidine]-2',3,4'-trione using continuous wavelet transformation and partial least squares - calculation of pKf of complexes with rank annihilation factor analysis.

    PubMed

    Abbasi Tarighat, Maryam; Nabavi, Masoume; Mohammadizadeh, Mohammad Reza

    2015-06-15

    A new multi-component analysis method based on zero-crossing point-continuous wavelet transformation (CWT) was developed for simultaneous spectrophotometric determination of Cu(2+) and Pb(2+) ions based on the complex formation with 2-benzyl espiro[isoindoline-1,5 oxasolidine]-2,3,4 trione (BSIIOT). The absorption spectra were evaluated with respect to synthetic ligand concentration, time of complexation and pH. Therefore according the absorbance values, 0.015 mmol L(-1) BSIIOT, 10 min after mixing and pH 8.0 were used as optimum values. The complex formation between BSIIOT ligand and the cations Cu(2+) and Pb(2+) by application of rank annihilation factor analysis (RAFA) were investigated. Daubechies-4 (db4), discrete Meyer (dmey), Morlet (morl) and Symlet-8 (sym8) continuous wavelet transforms for signal treatments were found to be suitable among the wavelet families. The applicability of new synthetic ligand and selected mother wavelets were used for the simultaneous determination of strongly overlapped spectra of species without using any pre-chemical treatment. Therefore, CWT signals together with zero crossing technique were directly applied to the overlapping absorption spectra of Cu(2+) and Pb(2+). The calibration graphs for estimation of Pb(2+) and Cu (2+)were obtained by measuring the CWT amplitudes at zero crossing points for Cu(2+) and Pb(2+) at the wavelet domain, respectively. The proposed method was validated by simultaneous determination of Cu(2+) and Pb(2+) ions in red beans, walnut, rice, tea and soil samples. The obtained results of samples with proposed method have been compared with those predicted by partial least squares (PLS) and flame atomic absorption spectrophotometry (FAAS). PMID:25766479

  18. Chemometrics-assisted spectrophotometric method for simultaneous determination of Pb2+ and Cu2+ ions in different foodstuffs, soil and water samples using 2-benzylspiro [isoindoline-1,5?-oxazolidine]-2?,3,4?-trione using continuous wavelet transformation and partial least squares - Calculation of pKf of complexes with rank annihilation factor analysis

    NASA Astrophysics Data System (ADS)

    Abbasi Tarighat, Maryam; Nabavi, Masoume; Mohammadizadeh, Mohammad Reza

    2015-06-01

    A new multi-component analysis method based on zero-crossing point-continuous wavelet transformation (CWT) was developed for simultaneous spectrophotometric determination of Cu2+ and Pb2+ ions based on the complex formation with 2-benzyl espiro[isoindoline-1,5oxasolidine]-2,3,4 trione (BSIIOT). The absorption spectra were evaluated with respect to synthetic ligand concentration, time of complexation and pH. Therefore according the absorbance values, 0.015 mmol L-1 BSIIOT, 10 min after mixing and pH 8.0 were used as optimum values. The complex formation between BSIIOT ligand and the cations Cu2+ and Pb2+ by application of rank annihilation factor analysis (RAFA) were investigated. Daubechies-4 (db4), discrete Meyer (dmey), Morlet (morl) and Symlet-8 (sym8) continuous wavelet transforms for signal treatments were found to be suitable among the wavelet families. The applicability of new synthetic ligand and selected mother wavelets were used for the simultaneous determination of strongly overlapped spectra of species without using any pre-chemical treatment. Therefore, CWT signals together with zero crossing technique were directly applied to the overlapping absorption spectra of Cu2+ and Pb2+. The calibration graphs for estimation of Pb2+ and Cu 2+were obtained by measuring the CWT amplitudes at zero crossing points for Cu2+ and Pb2+ at the wavelet domain, respectively. The proposed method was validated by simultaneous determination of Cu2+ and Pb2+ ions in red beans, walnut, rice, tea and soil samples. The obtained results of samples with proposed method have been compared with those predicted by partial least squares (PLS) and flame atomic absorption spectrophotometry (FAAS).

  19. Modified electrokinetic sample injection method in chromatography and electrophoresis analysis

    DOEpatents

    Davidson, J. Courtney (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2001-01-01

    A sample injection method for horizontal configured multiple chromatography or electrophoresis units, each containing a number of separation/analysis channels, that enables efficient introduction of analyte samples. This method for loading when taken in conjunction with horizontal microchannels allows much reduced sample volumes and a means of sample stacking to greatly reduce the concentration of the sample. This reduction in the amount of sample can lead to great cost savings in sample preparation, particularly in massively parallel applications such as DNA sequencing. The essence of this method is in preparation of the input of the separation channel, the physical sample introduction, and subsequent removal of excess material. By this method, sample volumes of 100 nanoliter to 2 microliters have been used successfully, compared to the typical 5 microliters of sample required by the prior separation/analysis method.

  20. Dissolved organic C and N pools in soils amended with composted and thermally-dried sludge as affected by soil tillage systems and sampling depth

    NASA Astrophysics Data System (ADS)

    García-Gil, Juan Carlos; Soler-Rovira, Pedro Angel; García López de Sa, Esther; Polo, Alfredo

    2013-04-01

    Soil tillage practices exert a significant influence on the dynamic of soluble organic C and N pools, affecting nutrient cycling in agricultural systems by enhancing its mineralization through microbial activities or stabilization in soil microaggregates, which contribute to mitigate greenhouse gases emissions. The objective of the present research was to determine the influence of three different soil management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) obtained from wastewater treatment processes on dissolved organic C (water-soluble organic C -WSOC-, carbohydrates, phenolic compounds) and soluble N (total-N, NH4+, NO3-) pools in a long-term field experiment (27 years) conducted on a sandy-loam soil at the experimental station "La Higueruela" (40° 03'N, 4° 24'W) under semi-arid conditions. Both organic amendments were applied at a rate of 30 tonnes per hectare prior to tillage practices. Unamended soils were used as control for each tillage system. Soil sampling was performed two months after tillage practices at the following depths for each treatment: 0-10 cm, 10-20 cm and 20-30 cm. Results obtained for unamended soils showed that no-tillage management increased total-N, NH4+ and NO3- contents at the 0-10 cm depth samples, meanwhile WSC and carbohydrates contents were larger at 20-30 cm depth samples in both moldboard and no-tillage plots. CS and TSS-amended soils presented a general increase in soluble C and N compounds, being significantly higher in TSS-amended soils, as TSS contains a great amount of labile organic C and N substrates due to the lack of stabilization treatment. TSS-amended soils under no-tillage and chisel plowing showed larger N, NH4+ and NO3- content at the 0-10 cm samples, meanwhile moldboard management exhibited larger NH4+ and NO3- content at 10-20 and 20-30 cm samples, possibly due to the incorporation of TSS at deeper depths (20-40 cm). CS and TSS-amended soils in no-tillage system showed the largest content of organic C pools at 0-10 cm depth samples due to less soil disturbance and the input of organic substrates with CS and TSS on soil surface. CS and TSS-amended soils under chisel plowing exhibited similar contents of soluble organic C pools at 10-20 and 20-30 cm depth samples and only TSS-amended soils increased significantly WSOC content at 0-10 cm samples. Similarly, contents of WSOC and carbohydrates in moldboard plowing were distributed more uniformly throughout the soil profile due to the turnover of soil and CS and TSS amendments into the plow layer. Acknowledgements: this research was supported by the Spanish CICYT, Project no. CTM2011-25557.

  1. Treaty verification sample analysis program analytical results: UNSCOM 65 samples. Final report, December 1993-January 1994

    SciTech Connect

    Szafraniec, L.L.; Beaudry, W.T.; Bossle, P.C.; Durst, H.D.; Ellzy, M.W.

    1994-07-01

    Nineteen samples from the United Nations Special Commission 65 on Iraq (UNSCOM 65) were analyzed for chemical warfare (CW) related compounds using a variety of highly sophisticated spectroscopic and chromatographic techniques. The samples consisted of six water, six soil, two vegetation, one cloth, one wood, and two mortar shell crosscut sections. No sulfur or nitrogen mustards, Lewsite, or any of their degradation products were detected. No nerve agents were observed, and no tin was detected precluding the presence of stannic chloride, a component of NC, a World War I choking agent. Diethyl phosphoric acid was unambiguously identified in three water samples, and ethyl phosphoric acid was tentatively identified, at very low levels, in one water sample. These phosphoric acids are degradation products of Amiton, many commercially available pesticides, as well as Tabun, and impurities in munitions-grade Tabun. No definitive conclusions concerning the source of these two chemicals could be drawn from the analytical results.

  2. The cytotoxic and genetoxic effects of dust and soil samples from E-waste recycling area on L02 cells.

    PubMed

    Wang, Liulin; Hou, Meiling; An, Jing; Zhong, Yufang; Wang, Xuetong; Wang, Yangjun; Wu, Minghong; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    2011-10-01

    Electrical and electronic waste (E-waste) has now become the fastest growing solid waste around the world. Primitive recycling operations for E-waste have resulted in severe contamination of toxic metals and organic chemicals in the related areas. In this study, six dust and soil samples collected from E-waste recycling workshops and open-burning sites in Longtang were analyzed to investigate their cytotoxicity and genotoxicity on L02 cells. These six samples were: dust No. 1 collected at the gate of the workshop; dust No. 2 collected from air conditioning compressor dismantling site; dust No. 3 collected from where some motors, wires, and aluminium products since the 1980s were dismantled; soil No. 1 collected at the circuit board acid washing site; soil No. 2 collected from a wire open-burning site; soil No. 3 collected near a fiber open-burning site. At the same time, two control soil samples were collected from farmlands approximately 8 km away from the dismantling workshops. The results showed that all of these samples could inhibit cell proliferation and cause cell membrane lesion, among which dust No. 3 and soil No. 2 had the strongest toxicity. Moreover, the comet assay showed that the dust No. 3 had the most significant capability to cause DNA single-strand beaks (SSB), while the road dust (dust No. 1) collected at the gate of the workshop, a relatively farer site, showed the slightest capability to induce DNA SSB. The intracellular reactive oxygen species (ROS) detection showed that ROS level was elevated with the increase of dust and soil samples concentration. Dust No. 3 and soil No. 2 had the highest ROS level, followed by dust No. 2 and 1, soil No. 3 and 1. All of the above results indicated that polluted soil and dust from the E-waste area had cytotoxicity and genotoxicity on L02 cells, the mechanism might involve the increased ROS level and consequent DNA SSB. PMID:21421680

  3. Soil radioactivity measurements and estimation of radon/thoron exhalation rate in soil samples from Kalpakkam residential complex.

    PubMed

    Bala Sundar, S; Chitra, N; Vijayalakshmi, I; Danalakshmi, B; Chandrasekaran, S; Jose, M T; Venkatraman, B

    2015-06-01

    The objective of this study is to compute the primordial radionuclides activity in soil samples and estimate the radon/thoron exhalation rates. A total of 25 locations were chosen for the study at Kalpakkam. Ambient radiation levels were monitored prior to collection of samples, which were subjected to gamma spectrometry. While (238)U concentration was found to be below detectable limit, the activities of (232)Th and (40)K were varying from 34.53 to 1093.11 Bq kg(-1) and 36.6 to 570.08 Bq kg(-1), respectively. The radium equivalent activities (Raeq) were in the range of 83-1574 Bq kg(-1). There was no appreciable radon exhalation, and the thoron surface exhalation rate varied from 942 to 7720 Bq m(-2) h(-1). The annual effective dose was ranging from 0.05 to 0.81 mSv y(-1). Good correlation was observed between (232)Th content and thoron exhalation rate. The details of the study are presented in this article. PMID:25977353

  4. Gas chromatographic analysis of soil atmospheres

    Microsoft Academic Search

    A. M. Blackmer; J. M. Bremner

    1977-01-01

    A gas chromatographic procedure is described that permits rapid, specific, and precise determination of Nâ, Oâ, Ar, COâ, CHâ, NâO, and other gases in soil atmospheres. It involves use of an ultrasonic detector and two columns of Porapak Q at different temperatures, and it does not require temperature programming, column conditioning, stream splitting, column switching, or switching of recorder polarity.

  5. Probabilistic Analysis of the Compressibility of Soils 

    E-print Network

    Jung, Byoung C.

    2010-07-14

    ...................................................... 51 3.3.2. Prior distribution ................................................................... 52 3.3.3. Likelihood function and maximum likelihood estimates ...... 54 3.3.4. Posterior estimates... ..................................... 15 2.5. Results of soil classification estimated by Bayesian method with exact measurements (a) MLE (b) posterior estimate with COV=0.1 (c) posterior estimate with COV=0.6. (TTS...

  6. Microwave soil moisture measurements and analysis

    NASA Technical Reports Server (NTRS)

    Newton, R. W.; Howell, T. A.; Nieber, J. L.; Vanbavel, C. H. M. (principal investigators)

    1980-01-01

    An effort to develop a model that simulates the distribution of water content and of temperature in bare soil is documented. The field experimental set up designed to acquire the data to test this model is described. The microwave signature acquisition system (MSAS) field measurements acquired in Colby, Kansas during the summer of 1978 are pesented.

  7. Effect of soil water content, sampling method and sample storage on the quantification of root lesion nematodes ( Pratylenchus spp.) by different methods

    Microsoft Academic Search

    Grant J. Hollaway; Kathy M. Ophel-Keller; Sharyti P. Taylor; Russell A. Burns; Alan C. McKay

    2003-01-01

    Quantification of root lesion nematodes (Pratylenchus thornei and P. neglectus) was evaluated using three different methods; the Whitehead tray method, the mister method and the commercially available\\u000a quantitative DNA assay. These methods were compared to determine the effect of soil water content, sampling method and soil\\u000a storage conditions on estimates of pre-sowing densities of nematodes. The Whitehead tray method, which

  8. A miniaturised method to quantify microbial mineralisation of 13C-labelled organic compounds in small soil samples

    Microsoft Academic Search

    Cécile Monard; Naoise Nunan; Gérard Bardoux; Laure Vieublé-Gonod

    2010-01-01

    A miniaturised method developed to measure the mineralisation of 13C-labelled organic compounds in small soil samples is presented. Soil samples (<0.5 g) were placed in wells of microtiter plates with CO2 traps (NaOH-soaked glass microfiber filters) and amended with 13C-labelled substrate. The microtiter plate was covered with a seal and placed in a microplate clamp system to ensure that each well

  9. Analysis of Arsenical Metabolites in Biological Samples

    PubMed Central

    Hernandez-Zavala, Araceli; Drobna, Zuzana; Styblo, Miroslav; Thomas, David J.

    2009-01-01

    Quantitation of iAs and its methylated metabolites in biological samples provides dosimetric information needed to understand dose-response relations. Here, methods are described for separation of inorganic and mono-, di-, and trimethylated arsenicals by thin layer chromatography. This method has been extensively used to track the metabolism of the radionuclide [73As] in a variety of in vitro assay systems. In addition, a hydride generation-cryotrapping-gas chromatography-atomic absorption spectrometric method is described for the quantitation of arsenicals in biological samples. This method uses pH-selective hydride generation to differentiate among arsenicals containing trivalent or pentavalent arsenic. PMID:20396652

  10. Sampling uncertainty in coordinate measurement data analysis

    Microsoft Academic Search

    Woncheol Choi; Thomas R. Kurfess; Jonathan Cagan

    1998-01-01

    There are a number of important software related issues in coordinate metrology. After measurement data are collected in the form of position vectors, the data analysis software must derive the necessary geometric information from the point set, and uncertainty plays an important role in the analysis. When extreme fit approaches (L?? norm estimation approaches) are employed for form error evaluation,

  11. Neutron-Activation Soil Analysis in Ecological Investigations

    Microsoft Academic Search

    Sh. Khatamov; A. Zhumamuratov; B. Ibragimov; T. Tillaev

    2000-01-01

    The scientific-technical base and instrumentation for neutron-activation analysis has reached a level such that today such an analysis can be used to find more than 70 chemical elements in soil and other biological objects. The method is widely used in various fields of science and industry. At the same time, as noted in [1], unsolved methodological and metrological problems are

  12. Soil Analysis using the semi-parametric NAA technique

    SciTech Connect

    Zamboni, C. B. [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil); Silveira, M. A. G. [Centro Universitario da FEI, Sao Bernardo do Campo (Brazil); Medina, N. H. [Instituto de Fisica da Universidade de Sao Paulo, Sao Paulo (Brazil)

    2007-10-26

    The semi-parametric Neutron Activation Analysis technique, using Au as a flux monitor, was applied to measure element concentrations of Br, Ca, Cl, K, Mn and Na for soil characterization. The results were compared with those using the Instrumental Neutron Activation Analysis technique and they found to be compatible. The viability, advantages, and limitations of using these two analytic methodologies are discussed.

  13. Analysis of plasmid samples on a microchip.

    PubMed

    Ding, Li; Williams, Kathi; Ausserer, Walter; Bousse, Luc; Dubrow, Robert

    2003-05-01

    We have developed a LabChip-based plasmid assay that runs on the Agilent 2100 Bioanalyzer. The assay determines the sizes and relative concentrations of the multiple forms of plasmid samples. Twelve samples can be analyzed on each chip in an automated run lasting approximately 30min. By using a supercoiled DNA sizing standard of 2-16kb, the size of the analyzed plasmid can be determined. The resulting MW has a relative standard deviation (CV) <5% and error <5%. Plasmids from 2-8kb can be separated with resolution better than 1kb. Topological isoforms in a plasmid sample can also be separated. However, due to differential staining, the heterogeneity of plasmid samples can only be measured if the signal of each isomer peak can be calibrated with pure standards for every isomer form. For a typical plasmid preparation which predominately is in the supercoiled form, the normalized corrected peak area for the supercoiled form correlates with the plasmid concentration in a broad range of 1-100ng/microl. The measurement is semiquantitative with a CV lower than 20%. A number of applications of this assay on a Labchip will be shown. PMID:12694731

  14. Trace Element Analysis of Biological Samples.

    ERIC Educational Resources Information Center

    Veillon, Claude

    1986-01-01

    Reviews background of atomic absorption spectrometry techniques. Discusses problems encountered and precautions to be taken in determining trace elements in the parts-per-billion concentration range and below. Concentrates on determining chromium in biological samples by graphite furnace atomic absorption. Considers other elements, matrices, and…

  15. Analysis of Arsenic Species in Environmental Samples

    Microsoft Academic Search

    Barbara Radke; Linda Jewell; Jacek Namie?nik

    2012-01-01

    Many analytical methods for determining arsenic in various forms in environmental samples have been developed in recent years. The main objective of this review article is the presentation and comparison of the three principal techniques for the determination arsenic compounds, namely: hydride generation (HG), voltammetry and chromatography (liquid chromatography including high-performance liquid chromatography (HPLC), and gas chromatography (GC). These techniques

  16. LABORATORY GUIDELINES FOR ANALYSIS OF BIOTERRORISM SAMPLES

    EPA Science Inventory

    After the attack on the World Trade Center on September 11, 2002, and the subsequent deaths associated with Bacillus anthracis spore contaminated mail, a worldwide need was apparent for increased laboratory capacity to safely analyze bioterrorism samples. The U.S. Department o...

  17. AEROSOL SAMPLING AND ANALYSIS, PHOENIX, ARIZONA

    EPA Science Inventory

    An atmospheric sampling program was carried out in the greater Phoenix, Arizona metropolitan area in November, 1975. Objectives of the study were to measure aerosol mass flux through Phoenix and to characterize the aerosol according to particle type and size. The ultimate goal of...

  18. Isotopic composition and origin of uranium and plutonium in selected soil samples collected in Kosovo

    Microsoft Academic Search

    P. R. Danesi; A. Bleise; W. Burkart; T. Cabianca; M. J. Campbell; M. Makarewicz; J. Moreno; C. Tuniz; M. Hotchkis

    2003-01-01

    Soil samples collected from locations in Kosovo where depleted uranium (DU) ammunition was expended during the 1999 Balkan conflict were analysed for uranium and plutonium isotopes content (234U,235U,236U,238U,238Pu,239+240Pu). The analyses were conducted using gamma spectrometry (235U,238U), alpha spectrometry (238Pu,239+240Pu), inductively coupled plasma–mass spectrometry (ICP—MS) (234U,235U,236U,238U) and accelerator mass spectrometry (AMS) (236U). The results indicated that whenever the U concentration exceeded

  19. Course Number: 7/8129 Course Title: Environmental Sampling and Analysis

    E-print Network

    Dasgupta, Dipankar

    and analytical methods; demonstrate specific knowledge related to air, water and soil sampling principles. Topics include sampling design, sampling techniques, analytical methods, quality assurance/quality control, and regulatory mandates applied to air, water and soil samples. It is designed for students

  20. Single Marker Association Analysis for Unrelated Samples

    PubMed Central

    Zheng, Gang; Xu, Jinfeng; Yuan, Ao; Gastwirth, Joseph L.

    2013-01-01

    Methods for single marker association analysis are presented for binary and quantitative traits. For a binary trait, we focus on the analysis of retrospective case–control data using Pearson's chi-squared test, the trend test, and a robust test. For a continuous trait, typical methods are based on a linear regression model or the analysis of variance. We illustrate how these tests can be applied using a public available R package “Rassoc” and some existing R functions. Guidelines for choosing these test statistics are provided. PMID:22307707