Sample records for soil vegetation model

  1. A nonlinear coupled soil moisture-vegetation model

    NASA Astrophysics Data System (ADS)

    Liu, Shikuo; Liu, Shida; Fu, Zuntao; Sun, Lan

    2005-06-01

    Based on the physical analysis that the soil moisture and vegetation depend mainly on the precipitation and evaporation as well as the growth, decay and consumption of vegetation a nonlinear dynamic coupled system of soil moisture-vegetation is established. Using this model, the stabilities of the steady states of vegetation are analyzed. This paper focuses on the research of the vegetation catastrophe point which represents the transition between aridness and wetness to a great extent. It is shown that the catastrophe point of steady states of vegetation depends mainly on the rainfall P and saturation value v0, which is selected to balance the growth and decay of vegetation. In addition, when the consumption of vegetation remains constant, the analytic solution of the vegetation equation is obtained.

  2. [Soil moisture estimation model based on multiple vegetation index].

    PubMed

    Wu, Hai-long; Yu, Xin-xiao; Zhang, Zhen-ming; Zhang, Yan

    2014-06-01

    Estimating soil moisture conveniently and exactly is a hot issues in water resource monitoring among agriculture and forestry. Estimating soil moisture based on vegetation index has been recognized and applied widely. 8 vegetation indexes were figured out based on the hyper-spectral data measured by portable spectrometer. The higher correlation indexes among 8 vegetation indexes and surface vegetation temperature were selected by Gray Relative Analysis method (GRA). Then, these selected indexes were analyzed using Multiple Linear Regression to establish soil moisture estimation model based on multiple vegetation indexes, and the model accuracy was evaluated. The accuracy evaluation indicated that the fitting was satisfied and the significance was 0.000 (P < 0.001). High correlation was turned out between estimated and measured soil moisture with R2 reached 0.636 1 and RMSE 2.149 9. This method introduced multiple vegetation indexes into soil water content estimating over micro scale by non-contact measuring method using portable spectrometer. The exact estimation could be an appropriate replacement for remote sensing inversion and direct measurement. The model could estimate soil moisture quickly and accurately, and provide theory and technology reference for water resource management in agriculture and forestry. PMID:25358174

  3. Modeling of state of vegetation and soil erosion over large areas

    Microsoft Academic Search

    Zhao-Yin WANG; Guangqian WANG; Guohe HUANG

    2008-01-01

    A vegetation-erosion model was developed to assess the extent of soil erosion and development trend of vegetation in the context of existing and contemplated vegetation-based soil erosion controls under different climatic, topographical and soil conditions. The model recognizes four vegetation-mediated soil erosion states: (i) an expanding vegetation coverage coupled with reduced erosion (C), (ii) a deteriorating vegetation coverage coupled with

  4. Modeling vegetation coverage and soil erosion in the Loess Plateau Area of China

    Microsoft Academic Search

    Z. C. Zhou; Z. P. Shangguan; D. Zhao

    2006-01-01

    Soil erosion is still one of major issues limiting agricultural and forestry productivity in Loess Plateau of China. Vegetation plays an important role in controlling soil erosion, but studies on modeling dynamics of vegetation and soil erosion and interaction between them were hardly reported. We hypothesized that changes of vegetation coverage and soil erosion as affected by climate factors and

  5. Vegetation Dynamics And Soil Moisture: Consequences For Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Guardiola-Claramonte, M.; Troch, P. A.

    2007-12-01

    Current global population growth and economical development accelerates land cover conversion in many parts of the world. Introducing non-native species and woody species encroachment, with different water demands, can affect the partitioning of hydrological fluxes. The impacts on the hydrologic cycle at local to regional scales are poorly understood. The present study investigates the hydrologic implications of land use conversion from native vegetation to rubber. We first compare the vegetation dynamics of rubber (Hevea brasiliensis), a non- native specie in Southeast Asia, to the other main vegetation types in the study area. The experimental catchment, Nam Ken (69km 2), is located in the Xishuangbanna Prefecture (21 °N, 100 °E), in the south of Yunnan province in South China. From 2005 to 2006, we collected continuous records of 2 m deep soil moisture profiles in four different land covers (tea, secondary forest, grassland and rubber), and measured surface radiation in tea and rubber canopies. Our observations show that root water uptake by rubber during the dry season is controlled by the change of day-length, whereas water demand of the native vegetation starts with the arrival of the first monsoon rainfall. The different root water uptake dynamics of rubber result in distinct depletion of deeper layer soil moisture. Traditional evapotranspiration and soil moisture models are unable to simulate this specific behavior, thus a different conceptual model is needed to predict hydrologic changes due to land use conversion in the area.

  6. Modeling radium and radon transport through soil and vegetation

    USGS Publications Warehouse

    Kozak, J.A.; Reeves, H.W.; Lewis, B.A.

    2003-01-01

    A one-dimensional flow and transport model was developed to describe the movement of two fluid phases, gas and water, within a porous medium and the transport of 226Ra and 222Rn within and between these two phases. Included in this model is the vegetative uptake of water and aqueous 226Ra and 222Rn that can be extracted from the soil via the transpiration stream. The mathematical model is formulated through a set of phase balance equations and a set of species balance equations. Mass exchange, sink terms and the dependence of physical properties upon phase composition couple the two sets of equations. Numerical solution of each set, with iteration between the sets, is carried out leading to a set-iterative compositional model. The Petrov-Galerkin finite element approach is used to allow for upstream weighting if required for a given simulation. Mass lumping improves solution convergence and stability behavior. The resulting numerical model was applied to four problems and was found to produce accurate, mass conservative solutions when compared to published experimental and numerical results and theoretical column experiments. Preliminary results suggest that the model can be used as an investigative tool to determine the feasibility of phytoremediating radium and radon-contaminated soil. ?? 2003 Elsevier Science B.V. All rights reserved.

  7. Soil detachment by overland flow under different vegetation restoration models in the loess plateau of China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use change has significant effects on soil properties and vegetation cover and thus probably affects soil detachment by overland flow. Few studies were conducted to evaluate the effect of restoration models on the soil detachment process in the Loess Plateau in the past decade during which a Gr...

  8. A model for soil-vegetation-atmosphere interactions in water-limited ecosystems

    E-print Network

    D'Andrea, Fabio

    in water-limited environments with significant water recycling, and introduce a simple process modelA model for soil-vegetation-atmosphere interactions in water-limited ecosystems M. Baudena,1,2 F. D-vegetation-atmosphere interactions in water-limited ecosystems, Water Resour. Res., 44, W12429, doi:10.1029/2008WR007172. 1

  9. Measuring and modeling water-related soil-vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, N.; Cassiani, G.; Deiana, R.; Vignoli, G.; Boaga, J.

    2014-03-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field-scale water balance. The objectives of this study are to test the potential of integrated non-invasive geophysical methods and ground-image analysis and to quantify the effect of the soil-vegetation interaction on the water balance of fallow land at the local- and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during a controlled irrigation experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of ERT maps of soil moisture evidenced a considerably different hydrologic response to irrigation of the two plots. Local measurements of soil saturation and vegetation cover were repeated in space to evidence a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the fallow site.

  10. Measuring and modelling water related soil-vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, N.; Cassiani, G.; Deiana, R.; Vignoli, G.; Boaga, J.

    2013-08-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field scale water balance. The objectives of this study are to test the potential of integrated non invasive geophysical methods and ground-image analysis and to quantify the effect of the soil vegetation interaction on the water balance of a fallow land at the local and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during a controlled irrigation experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of ERT maps of soil moisture evidenced a considerably different hydrologic response to irrigation of the two plots. Local measurements of soil saturation and vegetation cover were repeated in space to evidence a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the fallow site.

  11. Soil dynamics and accelerated erosion: a sensitivity analysis of the LPJ Dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle; Kaplan, Jed O.; Vanwalleghem, Tom

    2013-04-01

    It is widely accepted that humans have become a major geomorphic force by disturbing natural vegetation patterns. Land conversion for agriculture purposes removes the protection of soils by the natural vegetation and leads to increased soil erosion by one to two orders of magnitude, breaking the balance that exists between the loss of soils and its production. Accelerated erosion and deposition have a strong influence on evolution and heterogeneity of basic soil characteristics (soil thickness, hydrology, horizon development,…) as well as on organic matter storage and cycling. Yet, since they are operating at a long time scale, those processes are not represented in state-of-art Dynamic Global Vegetation Models, which is a clear lack when exploring vegetation dynamics over past centuries. The main objectives of this paper are (i) to test the sensitivity of a Dynamic Global Vegetation Model, in terms of NPP and organic matter turnover, variations in state variables in response to accelerated erosion and (ii) to assess the performance of the model under the impact of erosion for a case-study in Central Spain. We evaluated the Lund-Postdam-Jena Dynamic Vegetation Model (LPJ DVGM) (Sitch et al, 2003) which simulates vegetation growth and carbon pools at the surface and in the soil based on climatic, pedologic and topographic variables. We assessed its reactions to changes in key soil properties that are affected by erosion such as texture and soil depth. We present the results of where we manipulated soil texture and bulk density while keeping the environmental drivers of climate, slope and altitude constant. For parameters exhibiting a strong control on NPP or SOM, a factorial analysis was conducted to test for interaction effects. The simulations show an important dependence on the clay content, especially for the slow cycling carbon pools and the biomass production, though the underground litter seems to be mostly influenced by the silt content. The fast cycling C pools and/or the surface pools vary with sand and silt richness, the highest values being reached with a combination of 50% silt and 25% sand while the lowest are for a 100% clay soil. Finally, LPJ is run for three cases corresponding to a stable, erosive and depositional soil profile. These simulations show how the model reacts and performs under erosion/deposition conditions which are recreated by changing the soil's texture and soil depth over time. We discuss the performance of the LPJ model in the context of accelerated erosion and conclusions drawn from the sensitivity analysis.

  12. A generalized soil-adjusted vegetation index

    Microsoft Academic Search

    M. A. Gilabert; J. Gonzalez-Piqueras; F. J. Garcõ ´ a-Haro; J Meliá

    2002-01-01

    Operational monitoring of vegetative cover by remote sensing currently involves the utilisation of vegetation indices (VIs), most of them being functions of the reflectance in red (R) and near-infrared (NIR) spectral bands. A generalized soil-adjusted vegetation index (GESAVI), theoretically based on a simple vegetation canopy model, is introduced. It is defined in terms of the soil line parameters (A and

  13. Modeling the effects of vegetation on methane oxidation and emissions through soil landfill final covers across different climates.

    PubMed

    Abichou, Tarek; Kormi, Tarek; Yuan, Lei; Johnson, Terry; Francisco, Escobar

    2015-02-01

    Plant roots are reported to enhance the aeration of soil by creating secondary macropores which improve the diffusion of oxygen into soil as well as the supply of methane to bacteria. Therefore, methane oxidation can be improved considerably by the soil structuring processes of vegetation, along with the increase of organic biomass in the soil associated with plant roots. This study consisted of using a numerical model that combines flow of water and heat with gas transport and oxidation in soils, to simulate methane emission and oxidation through simulated vegetated and non-vegetated landfill covers under different climatic conditions. Different simulations were performed using different methane loading flux (5-200 g m(-2) d(-1)) as the bottom boundary. The lowest modeled surface emissions were always obtained with vegetated soil covers for all simulated climates. The largest differences in simulated surface emissions between the vegetated and non-vegetated scenarios occur during the growing season. Higher average yearly percent oxidation was obtained in simulations with vegetated soil covers as compared to non-vegetated scenario. The modeled effects of vegetation on methane surface emissions and percent oxidation were attributed to two separate mechanisms: (1) increase in methane oxidation associated with the change of the physical properties of the upper vegetative layer and (2) increase in organic matter associated with vegetated soil layers. Finally, correlations between percent oxidation and methane loading into simulated vegetated and non-vegetated covers were proposed to allow decision makers to compare vegetated versus non-vegetated soil landfill covers. These results were obtained using a modeling study with several simplifying assumptions that do not capture the complexities of vegetated soils under field conditions. PMID:25475118

  14. Vegetation controls on soil hydraulic properties and implications for the hydrologic variability of soils: observations and modeling

    NASA Astrophysics Data System (ADS)

    Harman, C. J.; Lohse, K. A.; Troch, P. A.; Sivapalan, M.

    2010-12-01

    Soil properties and their associated spatial structure exert major controls on the storage and fluxes of water through surface soils and provide habitat and resources for life in the critical zone. Moreover it has been observed that a range of biotic processes are responsible for the formation and maintenance of these properties. For instance the build up of organic matter in soils can affect the water retention properties, particularly in coarse soils. This observation leads to the compelling possibility that the action of vegetation on its soil environment alters the hydrologic variability of soil, with consequences (positive and negative) for plant functions. This alteration was examined in four semi-arid ecosystems in southern Arizona using a combination of field data collection and modeling. It was expected that the extent and direction of biotic alteration would be dependent on the other factors determining soil formation, particularly the climate, lithology and landscape position. Controlling for the latter of these, soil samples were collected in the mid-slope sections of four north-facing hillslopes encompassing two lithologies and two climates. The effects of vegetation were examined by collecting paired samples from below and between woody-plant canopies. Samples were analyzed for their composition and hydraulic properties, including organic matter content, water retention, and permeability. The results demonstrate that the build-up of organic matter under vegetation can significantly alter soil hydraulic properties over small spatial scales. The effects of this alteration on the hydrologic variability of the soils, and the implications for vegetation water stress and nutrient cycling, will be examined using a simple model of soil-plant-atmosphere interactions.

  15. Measuring and Modelling water related soil - vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, Nadia; Cassiani, Giorgio; Deiana, Rita; Vignoli, Giulio; Boaga, Jacopo

    2013-04-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field scale water balance. The objective of this study was to test the potential of integrated non invasive geophysics and ground-image analysis and to quantify the effect of the soil vegetation interaction on the water balance of a fallow land at the local and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during an infiltration experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of the experimental data evidenced a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the site.

  16. Advances in modelling the coevolving soils, landforms and vegetation in semiarid regions: a multidisciplinary approach.

    NASA Astrophysics Data System (ADS)

    Saco, Patricia M.; Moreno-de las Heras, Mariano; Willgoose, Garry R.

    2014-05-01

    Semiarid landscapes exhibit highly nonlinear interactions between coevolving physical and biological processes. Coevolution in these systems leads to the emergence of remarkable soil, landform and vegetation patterns. Growing concern over ecosystem resilience to climate and land use perturbations that could result in irreversible degradation imposes a pressing need for research, aiming at elucidating the processes, feedbacks, and dynamics leading to these coevolving patterns. This is particularly important since degradation in drylands has been frequently linked to feedback effects between soils, biota and erosion processes. In many dryland regions, feedbacks are responsible for the emergence of areas with low infiltration in unvegetated soil patches (due to surface crusting) and high infiltration rates in the vegetated soil patches (due to improved soil aggregation and macroporosity). This variable infiltration field gives rise to runoff-runon redistribution which determines areas of soil erosion and deposition. We have combined a coupled landform-soil-vegetation model with remote sensing and field data to capture these feedbacks and improve our knowledge of these coevolving biotic-abiotic processes. We discuss and present results showing that the dynamics of the individual processes and their response to climatic and anthropic disturbances cannot be fully understood or predicted if nonlinear feedbacks and coevolution are not considered. Implications for management and restoration efforts are illustrated using data and observations from agricultural sites in central Australia and reclaimed mining sites in Spain.

  17. Spatial variability models of soil respiration from some vegetation types in Maritime Antarctica

    Microsoft Academic Search

    Newton La Scala Jr.; Eduardo S. Mendonça; Alan Rodrigo Panosso; Felipe N. Dimas; Carlos Eduardo G. Schaefer

    2010-01-01

    Soil respiration is an important part of the terrestrial carbon cycling and is influenced by several aspects, such as type and distribution of vegetation. In this work we evaluated the spatial variability of the soil respiration (or soil CO2 emission) in three sites located in Maritime Antarctica at Admiralty Bay, King George Island under contrasting vegetation, representative of this region:

  18. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition

    USGS Publications Warehouse

    Liu, S.; Bliss, N.; Sundquist, E.; Huntington, T.G.

    2003-01-01

    Soil erosion and deposition may play important roles in balancing the global atmospheric carbon budget through their impacts on the net exchange of carbon between terrestrial ecosystem and the atmosphere. Few models and studies have been designed to assess these impacts. In this study, we developed a general ecosystem model, Erosion-Deposition-Carbon-Model (EDCM), to dynamically simulate the influences of rainfall-induced soil erosion and deposition on soil organic carbon (SOC) dynamics in soil profiles. EDCM was applied to several landscape positions in the Nelson Farm watershed in Mississippi, including ridge top (without erosion or deposition), eroding hillslopes, and depositional sites that had been converted from native forests to croplands in 1870. Erosion reduced the SOC storage at the eroding sites and deposition increased the SOC storage at the depositional areas compared with the site without erosion or deposition. Results indicated that soils were consistently carbon sources to the atmosphere at all landscape positions from 1870 to 1950, with lowest source strength at the eroding sites (13 to 24 gC m-2 yr-1), intermediate at the ridge top (34 gC m-2 yr-1), and highest at the depositional sites (42 to 49 gC m-2 yr-1). During this period, erosion reduced carbon emissions via dynamically replacing surface soil with subsurface soil that had lower SOC contents (quantity change) and higher passive SOC fractions (quality change). Soils at all landscape positions became carbon sinks from 1950 to 1997 due to changes in management practices (e.g., intensification of fertilization and crop genetic improvement). The sink strengths were highest at the eroding sites (42 to 44 gC m-2 yr-1 , intermediate at the ridge top (35 gC m-2 yr-1), and lowest at the depositional sites (26 to 29 gC m-2 yr-1). During this period, erosion enhanced carbon uptake at the eroding sites by continuously taking away a fraction of SOC that can be replenished with enhanced plant residue input. Overall, soil erosion and deposition reduced CO2 emissions from the soil into the atmosphere by exposing low carbon-bearing soil at eroding sites and by burying SOC at depositional sites. The results suggest that failing to account for the impact of soil erosion and deposition may potentially contribute to an overestimation of both the total historical carbon released from soils owing to land use change and the contemporary carbon sequestration rates at the eroding sites.

  19. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

    NASA Astrophysics Data System (ADS)

    Reichstein, Markus; Rey, Ana; Freibauer, Annette; Tenhunen, John; Valentini, Riccardo; Banza, Joao; Casals, Pere; Cheng, Yufu; Grünzweig, Jose M.; Irvine, James; Joffre, Richard; Law, Beverly E.; Loustau, Denis; Miglietta, Franco; Oechel, Walter; Ourcival, Jean-Marc; Pereira, Joao S.; Peressotti, Alessandro; Ponti, Francesca; Qi, Ye; Rambal, Serge; Rayment, Mark; Romanya, Joan; Rossi, Federica; Tedeschi, Vanessa; Tirone, Giampiero; Xu, Ming; Yakir, Dan

    2003-12-01

    Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, interannual and spatial variability of soil respiration as affected by water availability, temperature, and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g., leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical nonlinear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content, and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and intersite variability of soil respiration with a mean absolute error of 0.82 ?mol m-2 s-1. The parameterized model exhibits the following principal properties: (1) At a relative amount of upper-layer soil water of 16% of field capacity, half-maximal soil respiration rates are reached. (2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. (3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly timescale, we employed the approach by [2002] that used monthly precipitation and air temperature to globally predict soil respiration (T&P model). While this model was able to explain some of the month-to-month variability of soil respiration, it failed to capture the intersite variability, regardless of whether the original or a new optimized model parameterization was used. In both cases, the residuals were strongly related to maximum site leaf area index. Thus, for a monthly timescale, we developed a simple T&P&LAI model that includes leaf area index as an additional predictor of soil respiration. This extended but still simple model performed nearly as well as the more detailed time step model and explained 50% of the overall and 65% of the site-to-site variability. Consequently, better estimates of globally distributed soil respiration should be obtained with the new model driven by satellite estimates of leaf area index. Before application at the continental or global scale, this approach should be further tested in boreal, cold-temperate, and tropical biomes as well as for non-woody vegetation.

  20. Vegetation and soils

    USGS Publications Warehouse

    Burke, M.K.; King, S.L.; Eisenbies, M.H.; Gartner, D.

    2000-01-01

    Intro paragraph: Characterization of bottomland hardwood vegetation in relatively undisturbed forests can provide critical information for developing effective wetland creation and restoration techniques and for assessing the impacts of management and development. Classification is a useful technique in characterizing vegetation because it summarizes complex data sets, assists in hypothesis generation about factors influencing community variation, and helps refine models of community structure. Hierarchical classification of communities is particularly useful for showing relationships among samples (Gauche 1982).

  1. Modeling Vegetation as a Dynamic COMPONENT in Soil-Vegetation TRANSFER Schemes and Hydrological Models

    NASA Astrophysics Data System (ADS)

    Arora, Vivek

    2002-05-01

    Vegetation affects the climate by modifying the energy, momentum, and hydrologic balance of the land surface. Soil-vegetation-atmosphere transfer (SVAT) schemes explicitly consider the role of vegetation in affecting water and energy balance by taking into account its physiological properties, in particular, leaf area index (LAI) and stomatal conductance. These two physiological properties are also the basis of evapotranspiration parameterizations in physically based hydrological models. However, most current SVAT schemes and hydrological models do not parameterize vegetation as a dynamic component. The seasonal evolution of LAI is prescribed, and monthly LAI values are kept constant year after year. The effect of CO2 on the structure and physiological properties of vegetation is also neglected, which is likely to be important in transient climate simulations with increasing CO2 concentration and for hydrological models that are used to study climate change impact. The net carbon uptake by vegetation, which is the difference between photosynthesis and respiration, is allocated to leaves, stems, and roots. Carbon allocation to leaves determines their biomass and LAI. The timing of bud burst, leaf senescence, and leaf abscission (i.e., the phenology) determines the length of the growing season. Together, photosynthesis, respiration, allocation, and phenology, which are all strongly dependent on environmental conditions, make vegetation a dynamic component. This paper (1) familiarizes the reader with the basic physical processes associated with the functioning of the terrestrial biosphere using simple nonbiogeochemical terminology, (2) summarizes the range of parameterizations used to model these processes in the current generation of process-based vegetation and plant growth models and discusses their suitability for inclusion in SVAT schemes and hydrological models, and (3) illustrates the manner in which the coupling of vegetation models and SVAT schemes/hydrological models may be accomplished.

  2. Using Distributed-Hydrology-Soil-Vegetation Model to Study Road Effects on Stream flow and Soil Moisture

    NASA Astrophysics Data System (ADS)

    Cuo, L.; Giambelluca, T. W.; Ziegler, A. D.; Nullet, M. A.

    2003-12-01

    The distributed-hydrology-soil-vegetation model (DHSVM) was applied in Pang Khum Experimental Watershed (PKEW), located near 19.05\\deg N, 98.65\\deg E in the mountainous region of northern Thailand, headwaters of the Chao Phraya River system. PKEW has a highly seasonal rainfall regime, with 90% of the annual 1200-1400 mm rainfall occurring during the southwest summer monsoon. The elevation of PKEW ranges from approximately 1100 to 1500 m. Total road area including road banks is about 1.2% of the basin area. About 57% of the road area occurs on slopes steeper than 10%. All roads are unpaved. Land cover in PKEW is affected by swidden agriculture. Six land cover and nine soil classes are identified in the basin. We have been working in the area since 1997 as part of the Thailand Roads Project (TRP). Within the basin, we are monitoring microclimate at two sites, soil moisture at four sites, and rainfall at five sites. Streamflow is measured at the outlet. Based on digital elevation data, DHSVM explicitly accounts for the spatial distribution of the stream and road networks, soil depth, soil and vegetation types. The model run period, including warm up, calibration and validation, is from August 1997 to January 2001. Field measurements provide forcing data, calibration data, and guidance in parameter selection. Model calibration and validation were done by aggregating simulated hourly soil moisture and stream flow into daily values and comparing them with aggregated daily measurements. For the calibration period, RMSEs of soil moisture and streamflow were lower than the observed variability as represented by the standard deviation, median absolute deviation, and (for stream flow) interquartile range. Model performance drops in validation period, but RMSEs remain near or lower than observed variability. We ran DHSVM with and without roads to examine their effects. Significant effects of roads were found despite the very low proportion of the watershed covered by roads and road banks. Streamflow for road and non-road cases was significantly different (p < 0.0001) based on the Wilcoxon signed rank test. In general, roads increase peak volume for short, intense storms, but reduced whole-period discharge by about 5.5%. Soil moisture was affected in cells where roads occur. In cells where water exited the road onto the hillslope, soil moisture was higher than it was without the road. In cells with roads, but without water flowing onto the hillslope, soil moisture was higher in some cases and lower in others.

  3. A snow-soil-vegetation-atmosphere transfer/radiobrightness model for wet snow

    NASA Astrophysics Data System (ADS)

    Chung, Yi-Ching

    Snow pack models like SNTHERM predict snow behavior very well during the cold periods but do not adequately capture liquid and vapor transport between soil and snow during the snowmelt period. To get a more realistic description of the snowpack and soil dynamics, I have developed a Snow-Soil-Vegetation-Atmosphere Transfer/Radiobrightness (SSVAT) model, which couples the Land Surface Processes (LSP) model with SNTHERM. I also developed an associated Radiobrightness model based on pendular rings that describes the microwave brightness signatures. Late winter/early spring comparisons with data show that SSVAT provided better estimates of heat fluxes, temperatures, grain sizes and densities in snow and soil than did SNTHERM. The SSVAT model predicted conditions for depth hoar in snow caused by vapor transport from soil. The SSVAT model could employ five-minute interval forcings for routine applications and two-minute interval forcings for research applications whereas SNTHERM requires a ten-minute, or longer, time resolution to avoid divergence. A sensitivity study suggests that the thatch at the snow/soil interface can be ignored for thick snowpacks. The Radiobrightness model was simulated at lower microwave frequencies where brightness temperatures can be estimated without considering scattering. The Radiobrightness model includes liquid water in the shape of pendular rings of an appropriate size, shape and number density, as indicated by the SSVAT model. Results show that moisture in pendular rings was a more effective absorber than equivalent moisture in spheres. The brightness temperatures of wet snow are governed by loss from water absorbers and by the dielectric contrast at the snow/soil interface. The underestimation in SSVAT based brightness temperature may be caused by the underestimation of the liquid moisture content. For an open canopy like that at CLPX'03, emission from the surrounding trees will cause a brightening. SSVAT/R provided a framework for exploring the soil-snow mechanism which is considerable interest since it plays an important role in the spring known to be influenced by water flow in snow and soil. If the melt-refreeze cycle is accurately simulated by the snow model, the darkening brightness due to increased grain size from melt-refreezing would not be mistaken for a signal of increased snow depth.

  4. A climate sensitive model of carbon transfer through atmosphere, vegetation and soil in managed forest ecosystems

    NASA Astrophysics Data System (ADS)

    Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.

    2012-12-01

    For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This model applications to the prediction and analysis of climate scenarios impacts on southwestern European forests underlines the role of management alternatives, precipitation regime, CO2 concentration and atmospheric humidity .Frequency of soil preparation operations and understorey management play a major role in controlling the net carbon flux into the atmosphere at the juvenile stage ( 0 to 10 y-old) whereas climate and rotation duration control the functioning of adult phase. The model predicts that a drier and warmer climate will reduce the forest productivity and deplete soil and carbon stocks in managed forest from Southwestern Europe within decades, such effects being amplified for most intensive management alternatives. This work was part of the European research project GHG-Europe (EU contract No. 244122) and the French national project FAST co-funded by the Ecology, Agriculture and Forestry Ministries and the Region Aquitaine.

  5. Levels of tritium in soils and vegetation near Canadian nuclear facilities releasing tritium to the atmosphere: implications for environmental models.

    PubMed

    Thompson, P A; Kwamena, N-O A; Ilin, M; Wilk, M; Clark, I D

    2015-02-01

    Concentrations of organically bound tritium (OBT) and tritiated water (HTO) were measured over two growing seasons in vegetation and soil samples obtained in the vicinity of four nuclear facilities and two background locations in Canada. At the background locations, with few exceptions, OBT concentrations were higher than HTO concentrations: OBT/HTO ratios in vegetation varied between 0.3 and 20 and values in soil varied between 2.7 and 15. In the vicinity of the four nuclear facilities OBT/HTO ratios in vegetation and soils deviated from the expected mean value of 0.7, which is used as a default value in environmental transfer models. Ratios of the OBT activity concentration in plants ([OBT]plant) to the OBT activity concentration in soils ([OBT]soil) appear to be a good indicator of the long-term behaviour of tritium in soil and vegetation. In general, OBT activity concentrations in soils were nearly equal to OBT activity concentrations in plants in the vicinity of the two nuclear power plants. [OBT]plant/[OBT]soil ratios considerably below unity observed at one nuclear processing facility represents historically higher levels of tritium in the environment. The results of our study reflect the dynamic nature of HTO retention and OBT formation in vegetation and soil during the growing season. Our data support the mounting evidence suggesting that some parameters used in environmental transfer models approved for regulatory assessments should be revisited to better account for the behavior of HTO and OBT in the environment and to ensure that modelled estimates (e.g., plant OBT) are appropriately conservative. PMID:25461522

  6. Vegetation and soil respiration: Correlations and controls

    Microsoft Academic Search

    James W. Raich; Aydin Tufekciogul

    2000-01-01

    Soil respiration rates vary significantly among major plant biomes, suggesting that vegetation type influences the rate of soil respiration. However, correlations among climatic factors, vegetation distributions, and soil respiration rates make cause-effect arguments difficult. Vegetation may affect soil respiration by influencing soil microclimate and structure, the quantity of detritus supplied to the soil, the quality of that detritus, and the

  7. Impact of improved atmospheric forcing data and soil-vegetation parameters in terrestrial hydrologic modeling over West Africa

    NASA Astrophysics Data System (ADS)

    HE, X.; Kim, H.; Yeh, P. J.; Oki, T.

    2012-12-01

    Several recent studies have shown the importance of land surface-atmosphere coupling in the monsoon system of the West Africa. The African Monsoon Multidisciplinary Analysis (AMMA) has provided an opportunity to investigate model deficiencies in land surface processes by providing high-resolution datasets. In participation with the AMMA Land Surface Model Intercomparison Project (ALMIP2), a global land surface model, the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO), is regionalized for conducting a high space-time resolution experiment (0.05°, 30 minutes). Multi-year offline simulations using improved rainfall datasets derived from local rain gauges and radar-based products are compared with relative coarse resolution satellite precipitation products, such as Tropical Rainfall Measuring Mission (TRMM; 0.25°, 3 hourly) and Global Satellite Mapping of Precipitation (GSMaP; 0.1°, hourly) to better understand the effect of precipitation on simulated hydrological responses. Sensitivity experiments are also conducted by incorporating more refined distributions of soil-vegetation parameters accounting for natural grid variability to identify how soil properties and interannual vegetation variability are significantly related to water and energy balances in West Africa. Further examination of individual soil parameter and vegetation type is also performed to identify their proper specification in land surface parameterization schemes. Simulations of surface fluxes, soil temperature and soil moisture in dry months and wet months are verified separately by using observations from the AMMA-CATCH observing system as well as several satellite-based products. In general, this study demonstrates that improved forcing and representation of soil-vegetation parameters can improve land surface model simulations from seasonal to interannual time scale.

  8. Two models to compute an adjusted Green Vegetation Fraction taking into account the spatial variability of soil NDVI

    NASA Astrophysics Data System (ADS)

    Montandon, L. M.; Small, E.

    2008-12-01

    The green vegetation fraction (Fg) is an important climate and hydrologic model parameter. The commonly- used Fg model is a simple linear mixing of two NDVI end-members: bare soil NDVI (NDVIo) and full vegetation NDVI (NDVI?). NDVI? is generally set as a percentile of the historical maximum NDVI for each land cover. This approach works well for areas where Fg reaches full cover (100%). Because many biomes do not reach Fg=0, however, NDVIo is often determined as a single invariant value for all land cover types. In general, it is selected among the lowest NDVI observed over bare or desert areas, yielding NDVIo close to zero. There are two issues with this approach: large-scale variability of soil NDVI is ignored and observations on a wide range of soils show that soil NDVI is often larger. Here we introduce and test two new approaches to compute Fg that takes into account the spatial variability of soil NDVI. The first approach uses a global soil NDVI database and time series of MODIS NDVI data over the conterminous United States to constrain possible soil NDVI values over each pixel. Fg is computed using a subset of the soils database that respects the linear mixing model condition NDVIo?NDVIh, where NDVIh is the pixel historical minimum. The second approach uses an empirical soil NDVI model that combines information of soil organic matter content and texture to infer soil NDVI. The U.S. General Soil Map (STATSGO2) database is used as input for spatial soil properties. Using in situ measurements of soil NDVI from sites that span a range of land cover types, we test both models and compare their performance to the standard Fg model. We show that our models adjust the temporal Fg estimates by 40-90% depending on the land cover type and amplitude of the seasonal NDVI signal. Using MODIS NDVI and soil maps over the conterminous U.S., we also study the spatial distribution of Fg adjustments in February and June 2008. We show that the standard Fg method overestimates Fg for a large part of the United States, with the largest over-estimation (up to 0.2) in the areas where 0.2

  9. Floodplain restoration leads to wetter and more diverse soil water regimes and vegetation types: Insight from an integrated hydroecological model

    NASA Astrophysics Data System (ADS)

    Booth, E. G.; Loheide, S. P.

    2011-12-01

    Soil moisture availability in the root zone is one of the most important factors affecting plant species composition by creating stress on vegetation both when it is lacking (water stress) and when it is excessive (oxygen stress). Plant species have individual tolerance ranges along a gradient of available soil moisture that can be described as a hydrological niche. Combining a hydrological model and a habitat niche model can provide spatially-extensive predictions of vegetation composition, which would be useful for land management decision-making under changing environmental conditions. Floodplain ecosystem restoration provides an example of the utility of such a predictive tool as a site is hydrologically altered to create a wetter environment. We developed an integrated hydroecological model that links a quasi-3D, variably-saturated, groundwater flow model that simulates soil moisture with several plant habitat niche models. The focus of this research is a floodplain in southwestern Wisconsin where post-settlement alluvium was removed with the expectation of increasing regionally-threatened wetland plant species. Hydrological niche models were created based on simultaneous observations of vegetation composition and surface effective saturation. These models were then used to predict probability of presence for two dominant plant species (Carex vulpinoidea and Elymus canadensis) and composite wetland indicator score based on simulated surface effective saturation across the study site. The model predicts the site to be more wetland-species dominant overall following restoration. However, the soil moisture regime and vegetation types are slightly drier following restoration in zones where a silt-clay confining layer is present that inhibits vertical groundwater flow from a basal gravel aquifer to the near-surface soil zone. This differential response to restoration leads to a mosaic of soil water regimes across the site, which is reflected in a wider distribution of vegetation types. Therefore, the management goal of increasing wetland plant species occurrence is shown to co-occur with an increase in the site-scale diversity of plant community types. This result reveals the unique ability of the presented modeling framework to predict vegetation composition and aid land managers that are faced with difficult management decisions in a complex and uncertain future.

  10. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    SciTech Connect

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen

    2014-06-01

    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

  11. Hydroecological model predictions indicate wetter and more diverse soil water regimes and vegetation types following floodplain restoration

    NASA Astrophysics Data System (ADS)

    Booth, Eric G.; Loheide, Steven P., II

    2012-06-01

    Transitions between aquatic and terrestrial ecosystems represent zones where soil moisture is a dominant factor influencing vegetation composition. Niche models based on hydrological and vegetation observations can be powerful tools for guiding management of these zones, especially when they are linked with physically based hydrological models. Floodplain restoration represents a unique opportunity to utilize such a predictive vegetation tool when a site's hydrology is altered to create a wetter environment. A variably saturated groundwater flow model was developed and used to simulate the soil moisture regime across a floodplain in Wisconsin where post-settlement alluvium was removed with the intent of increasing regionally threatened wetland plant species. Hydrological niche models based on simultaneous observations of vegetation composition and surface effective saturation were used to predict probability of presence for two plant species (Carex vulpinoidea (fox sedge) and Elymus canadensis(Canada wildrye)) and wetland indicator score (a composite indicator of relative frequency of species in five habitat categories) based on simulated surface effective saturation. The vegetation predictions following restoration are more wetland-species dominant overall. However, zones of the study site where a confining layer is present that decouples groundwater from the near-surface soil zone tend to be drier following restoration due to restricted upward groundwater flow and less soil water storage above the confining layer. As reflected by an increase in the interquartile range in the predicted wetland indicator score, this restoration technique may increase the site-scale spatial diversity of plant community types while simultaneously accomplishing the goal of increasing wetland plant species occurrence.

  12. Spatiotemporal analysis of urban environment based on the vegetation-impervious surface-soil model

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Huang, Qingni; Li, Xinwu; Sun, Zhongchang; Zhang, Ying

    2014-01-01

    This study explores a spatiotemporal comparative analysis of urban agglomeration, comparing the Greater Toronto and Hamilton Area (GTHA) of Canada and the city of Tianjin in China. The vegetation-impervious surface-soil (V-I-S) model is used to quantify the ecological composition of urban/peri-urban environments with multitemporal Landsat images (3 stages, 18 scenes) and LULC data from 1985 to 2005. The support vector machine algorithm and several knowledge-based methods are applied to get the V-I-S component fractions at high accuracies. The statistical results show that the urban expansion in the GTHA occurred mainly between 1985 and 1999, and only two districts revealed increasing trends for impervious surfaces for the period from 1999 to 2005. In contrast, Tianjin has been experiencing rapid urban sprawl at all stages and this has been accelerating since 1999. The urban growth patterns in the GTHA evolved from a monocentric and dispersed pattern to a polycentric and aggregated pattern, while in Tianjin it changed from monocentric to polycentric. Central Tianjin has become more centralized, while most other municipal areas have developed dispersed patterns. The GTHA also has a higher level of greenery and a more balanced ecological environment than Tianjin. These differences in the two areas may play an important role in urban planning and decision-making in developing countries.

  13. Assimilation of SMOS-derived soil moisture in a fully integrated hydrological and soil-vegetation-atmosphere transfer model in Western Denmark

    NASA Astrophysics Data System (ADS)

    Ridler, Marc-Etienne; Madsen, Henrik; Stisen, Simon; Bircher, Simone; Fensholt, Rasmus

    2014-11-01

    Real surface soil moisture retrieved from the Soil Moisture and Ocean Salinity (SMOS) satellite is downscaled and assimilated in a fully integrated hydrological and soil-vegetation-atmosphere transfer (MIKE SHE SW-ET) model using a bias aware ensemble transform Kalman filter (Bias-ETKF). Satellite-derived soil moisture assimilation in a catchment scale model is typically restricted by two challenges: (1) passive microwave is too coarse for direct assimilation and (2) the data tend to be biased. The solution proposed in this study is to disaggregate the SMOS bias using a higher resolution land cover classification map that was derived from Landsat thermal images. Using known correlations between SMOS bias and vegetation type, the assimilation filter is adapted to calculate biases online, using an initial bias estimate. Real SMOS-derived soil moisture is assimilated in a precalibrated catchment model in Denmark. The objective is to determine if any additional gains can be achieved by SMOS surface soil moisture assimilation beyond the optimized model. A series of assimilation experiments were designed to (1) determine how effectively soil moisture corrections propagate downward in the soil column, (2) compare the efficacy of in situ versus SMOS assimilation, and (3) determine how soil moisture assimilation affects fluxes and discharge in the catchment. We find that assimilation of SMOS improved R2 soil moisture correlations in the upper 5 cm compared to a network of 30 in situ sensors for most land cover classes. Assimilation also brought modest gains in R2 at 25 cm depth but slightly degraded the correlation at 50 cm depth. Assimilation overcorrected discharge peaks.

  14. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau

    USGS Publications Warehouse

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A.D.

    2013-01-01

    Soil surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to changes in climate and grazing regimes.

  15. Development of a fully-distributed daily hydrologic feedback model addressing vegetation, land cover, and soil water dynamics (VELAS)

    NASA Astrophysics Data System (ADS)

    Park, Changhui; Lee, Jejung; Koo, Min-Ho

    2013-06-01

    A simple hydrologic feedback model has been developed to simulate daily responses of hydrologic processes including interception, runoff, evapotranspiration, infiltration, and recharge under various conditions of vegetation, land cover, and soil in a fully-distributed manner. The daily soil water balance is a key element to link surface and subsurface models as it calculates infiltration and groundwater recharge by considering a time delay routing through a vadose zone down to the groundwater table. MODFLOW is adopted to simulate groundwater flow and interaction with surface water components as well. The model also can easily be localized by simple modification of soil and crop properties. The actual application of the model for a watershed in the Geum River Basin in Korea showed reliable hydrologic feedbacks between the surface and subsurface hydrologic systems.

  16. Modelling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

    NASA Astrophysics Data System (ADS)

    Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valentini, R.; Soil Respiration Synthesis Team

    2003-04-01

    Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, inter-annual and spatial variability of soil respiration as affected by water availability, temperature and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g. leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical non-linear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and inter-site variability of soil respiration with a mean absolute error of 0.82 µmol m-2 s-1. The parameterised model exhibits the following principal properties: 1) At a relative amount of upper-layer soil water of 16% of field capacity half-maximal soil respiration rates are reached. 2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. 3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly time-scale we employed the approach by Raich et al. (2002, Global Change Biol. 8, 800-812) that used monthly precipitation and air temperature to globally predict soil respiration (T&P-model). While this model was able to explain some of the month-to-month variability of soil respiration, it failed to capture the inter-site variability, regardless whether the original or a new optimized model parameterization was used. In both cases, the residuals were strongly related to maximum site leaf area index. Thus, for a monthly time scale we developed a simple T&P&LAI-model that includes leaf area index as an additional predictor of soil respiration. This extended but still simple model performed nearly as well as the more detailed time-step model and explained 50 % of the overall and 65% of the site-to-site variability. Consequently, better estimates of globally distributed soil respiration should be obtained with the new model driven by satellite estimates of leaf area index.

  17. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A. D.

    2013-07-01

    surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to changes in climate and grazing regimes.

  18. A comparison of simulation models for predicting soil water dynamics in bare and vegetated lysimeters

    SciTech Connect

    Link, S.O.; Kickert, R.N.; Fayer, M.J.; Gee, G.W.

    1993-06-01

    This report describes the results of simulation models used to predict soil water storage dynamics at the Field Lysimeter Test Facility (FLTF) weighing lysimeters. The objectives of this research is to develop the capability to predict soil water storage dynamics with plants in support of water infiltration control studies for the Hanford Permanent Isolation Barrier Development Program. It is important to gain confidence in one`s ability to simulate soil water dynamics over long time periods to assess the barrier`s ability to prevent drainage. Two models were compared for their ability to simulate soil water storage dynamics with and without plants in weighing lysimeters, the soil water infiltration and movement (SWIM) and the simulation of production and utilization of rangelands (SPUR-91) models. These models adequately simulated soil water storage dynamics for the weighing lysimeters. The range of root mean square error values for the two models was 7.0 to 19.8. This compares well with the range reported by Fayer et al. (1992) for the bare soil data sets of 8.1 to 22.1. Future research will test the predictive capability of these models for longer term lysimeter data sets and for historical data sets collected in various plant community types.

  19. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

    Microsoft Academic Search

    Markus Reichstein; Ana Rey; Annette Freibauer; John Tenhunen; Riccardo Valentini; Joao Banza; Pere Casals; Yufu Cheng; Jose M. Grünzweig; James Irvine; Richard Joffre; Beverly E. Law; Denis Loustau; Franco Miglietta; Walter Oechel; Jean-Marc Ourcival; Joao S. Pereira; Alessandro Peressotti; Francesca Ponti; Ye Qi; Serge Rambal; Mark Rayment; Joan Romanya; Federica Rossi; Vanessa Tedeschi; Giampiero Tirone; Ming Xu; Dan Yakir

    2003-01-01

    Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, interannual and spatial variability of soil respiration as affected by water availability, temperature, and site properties. The analysis was performed at a daily and at a monthly time step. With

  20. Climate-Soil-Vegetation Control on Groundwater Table Dynamics and its Feedbacks in a Climate Model

    SciTech Connect

    Leung, Lai-Yung R.; Huang, Maoyi; Qian, Yun; Liang, Xu

    2010-01-29

    Among the three dynamically linked branches of the water cycle, including atmospheric, surface, and subsurface water, groundwater is the largest reservoir and an active component of the hydrologic system. Because of the inherent slow response time, groundwater may be particularly relevant for long time-scale processes such as multi-years or decadal droughts. This study uses regional climate simulations with and without surface water – groundwater interactions for the conterminous U.S. to assess the influence of climate, soil, and vegetation on groundwater table dynamics, and its potential feedbacks to regional climate. Analysis shows that precipitation has a dominant influence on the spatial and temporal variations of groundwater table depth (GWT). The simulated GWT is found to decrease sharply with increasing precipitation. Our simulation also shows some distinct spatial variations that are related to soil porosity and hydraulic conductivity. Vegetation properties such as minimum stomatal resistance, and root depth and fraction are also found to play an important role in controlling the groundwater table. Comparing two simulations with and without groundwater table dynamics, we find that groundwater table dynamics mainly influences the partitioning of soil water between the surface (0 – 0.5 m) and subsurface (0.5 – 5 m) rather than total soil moisture. In most areas, groundwater table dynamics increases surface soil moisture at the expense of the subsurface, except in regions with very shallow groundwater table. The change in soil water partitioning between the surface and subsurface is found to strongly correlate with the partitioning of surface sensible and latent heat fluxes. The evaporative fraction (EF) is generally higher during summer when groundwater table dynamics is included. This is accompanied by increased cloudiness, reduced diurnal temperature range, cooler surface temperature, and increased cloud top height. Although both convective and non-convective precipitation are enhanced, the higher EF changes the partitioning to favor more non-convective precipitation, but this result could be sensitive to the convective parameterization used. Compared to simulations without groundwater table dynamics, the dry bias in the summer precipitation is slightly reduced over the central and eastern U.S. Groundwater table dynamics can provide important feedbacks to atmospheric processes, and these feedbacks are stronger in regions with deeper groundwater table, because the interactions between surface and subsurface are weak when the groundwater table is deep. This increases the sensitivity of surface soil moisture to precipitation anomalies, and therefore enhances land surface feedbacks to the atmosphere through changes in soil moisture and evaporative fraction. By altering the groundwater table depth, land use change and groundwater withdrawal can alter land surface response and feedback to the climate system.

  1. How to upscale the coupling between hydrology and vegetation at the hillslope scale with an equivalent soil-vegetation column model

    NASA Astrophysics Data System (ADS)

    Maquin, Mathilde; Mugler, Claude; Mouche, Emmanuel; Ducharne, Agnès

    2014-05-01

    Three-dimensional watershed models coupled with land surface models have demonstrated the control of soil moisture over land energy fluxes, as evaporation and transpiration (Maxwell and Kollet, Nature Geoscience, 2008; Condon et al., Advances in Water Resources, 2013). However, due to computational costs, these fully integrated watershed models cannot be used at larger scales. Upscaling hydrological models can be an alternative to take into account the impact of groundwater hydrology on land energy fluxes at various scales. In this purpose, we propose a two-step upscaling methodology aiming to replace a hillslope model by an equivalent vertical soil column model suitable for land surface modelling. The hillslope reference model is based on a two-dimensional aquifer model (resolution of Richards' equation) combined with a representation of vegetation and climate forcing as boundary condition. In this system, two main hydrological processes corresponding to different time scales have to be distinguished: the vertical water transfer from roots to the atmosphere through the vegetation, and the longitudinal flow of the aquifer to the stream. In an upscaling approach, two options can be considered: one may accurately model the aquifer longitudinal flow but with a degraded model of vertical transfer, or inversely give a preferential treatment to the vertical flow. As the exchanges between soil, vegetation and atmosphere are strongly dependent on the vertical profile of water (through the distribution of roots), the second option appears to be more adapted to our objective which is the assessment of hillslope hydrology on land surface fluxes. In the first step of our upscaling methodology, the two-dimensional reference hillslope is modelled as a set of one-dimensional independent vertical soil vegetation columns. In each of them, Richards' equation is solved in the vertical direction, the representation of roots and climate forcing remaining unchanged. Moreover, a sink term is added to Richards' equation at the bottom of the column to model groundwater discharge to streams. Contrary to what has already been proposed (Liang et al., Journal of Geophysical Research, 1994; Yeh and Eltahir, Journal of Climate, 2005; Niu et al., Journal of Geophysical Research, 2007), this sink term is deduced from Darcy's law and Van Genuchten's relationships. Through the approximation of a linear groundwater table profile in two dimensions, a differential equation of the water table depth at a fixed distance from the river has been determined. It depends on topographic and soil parameters, and on the distance between the stream and the modelled column. Different types of soil and climate forcing (especially precipitations) have been tested in the above framework. Comparisons between the 2D reference model and a few 1D columns show good agreement in water table depth and evapotranspiration fluxes. This justifies using an equivalent column to replace the set of independent columns, with respect to evapotranspiration fluxes.

  2. Calibrating a soil-vegetation-atmosphere transfer model with remote sensing estimates of surface temperature and soil surface moisture in a semi arid environment

    NASA Astrophysics Data System (ADS)

    Ridler, Marc E.; Sandholt, Inge; Butts, Michael; Lerer, Sara; Mougin, Eric; Timouk, Franck; Kergoat, Laurent; Madsen, Henrik

    2012-05-01

    SummaryA series of numerical experiments has been designed to investigate how effective satellite estimates of radiometric surface temperatures and soil surface moisture are for calibrating a Soil-Vegetation-Atmosphere Transfer (SVAT) model. Multi-objective calibration based on error minimization of temperature and soil moisture model outputs is performed in a semi-arid environment. Model accuracy when calibrated using in situ versus satellite objectives is explored in detail. Observational meteorological datasets from the African Monsoon Multidisciplinary Analysis (AMMA) were used to force a column model during a growing season in Mali. Fourier Amplitude Sensitivity Test (FAST) revealed the most sensitive parameters to model outputs. Parameters found sensitive were subsequently optimized in a series of model calibrations to reveal trade-offs between model objectives. Our main findings are (1) the SVAT model performs well in the semi-arid environment, but underestimates peak growing season evapotranspiration and overestimates soil moisture, (2) most of the parameters important for flux estimates can be constrained using surface temperature and soil surface moisture with the three exceptions: root depth, the extinction coefficient and unstressed stomatal resistance, (3) flux simulations are improved when the model is calibrated using in situ surface temperature and soil surface moisture versus satellite estimates.

  3. Multi-year assessment of soil-vegetation-atmosphere transfer (SVAT) modeling uncertainties over a Mediterranean agricultural site

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Calvet, J.-C.; Lafont, S.; Martin, E.; Chanzy, A.; Marloie, O.; Bertrand, N.; Desfonds, V.; Renard, D.

    2012-04-01

    Vegetation productivity and water balance of Mediterranean regions will be particularly affected by climate and land-use changes. In order to analyze and predict these changes through land surface models, a critical step is to quantify the uncertainties associated with these models (processes, parameters) and their implementation over a long period of time. Besides, uncertainties attached to the data used to force these models (atmospheric forcing, vegetation and soil characteristics, crop management practices...) which are generally available at coarse spatial resolution (>1-10 km) and for a limited number of plant functional types, need to be evaluated. This paper aims at assessing the uncertainties in water (evapotranspiration) and energy fluxes estimated from a Soil Vegetation Atmosphere Transfer (SVAT) model over a Mediterranean agricultural site. While similar past studies focused on particular crop types and limited period of time, the originality of this paper consists in implementing the SVAT model and assessing its uncertainties over a long period of time (10 years), encompassing several cycles of distinct crops (wheat, sorghum, sunflower, peas). The impacts on the SVAT simulations of the following sources of uncertainties are characterized: - Uncertainties in atmospheric forcing are assessed comparing simulations forced with local meteorological measurements and simulations forced with re-analysis atmospheric dataset (SAFRAN database). - Uncertainties in key surface characteristics (soil, vegetation, crop management practises) are tested comparing simulations feeded with standard values from global database (e.g. ECOCLIMAP) and simulations based on in situ or site-calibrated values. - Uncertainties dues to the implementation of the SVAT model over a long period of time are analyzed with regards to crop rotation. The SVAT model being analyzed in this paper is ISBA in its a-gs version which simulates the photosynthesis and its coupling with the stomata conductance, as well as the time course of the plant biomass and the Leaf Area Index (LAI). The experiment was conducted at the INRA-Avignon (France) crop site (ICOS associated site), for which 10 years of energy and water eddy fluxes, soil moisture profiles, vegetation measurements, agricultural practises are available for distinct crop types. The uncertainties in evapotranspiration and energy flux estimates are quantified from both 10-year trend analysis and selected daily cycles spanning a range of atmospheric conditions and phenological stages. While the net radiation flux is correctly simulated, the cumulated latent heat flux is under-estimated. Daily plots indicate i) an overestimation of evapotranspiration over bare soil probably due to an overestimation of the soil water reservoir available for evaporation and ii) an under-estimation of transpiration for developed canopy. Uncertainties attached to the re-analysis atmospheric data show little influence on the cumulated values of evapotranspiration. Better performances are reached using in situ soil depths and site-calibrated photosynthesis parameters compared to the simulations based on the ECOCLIMAP standard values. Finally, this paper highlights the impact of the temporal succession of vegetation cover and bare soil on the simulation of soil moisture and evapotranspiration over a long period of time. Thus, solutions to account for crop rotation in the implementation of SVAT models are discussed.

  4. Impact of Hillslope-Scale Organization of Topography, Soil Moisture, Soil Temperature, and Vegetation on Modeling Surface Microwave Radiation Emission

    E-print Network

    Flores, Alejandro N.

    Microwave radiometry will emerge as an important tool for global remote sensing of near-surface soil moisture in the coming decade. In this modeling study, we find that hillslope-scale topography (tens of meters) influences ...

  5. Stochastic generation of meteorological variables and effects on global models of water and carbon cycles in vegetation and soils

    NASA Astrophysics Data System (ADS)

    Hubert, B.; Francois, L.; Warnant, P.; Strivay, D.

    1998-12-01

    Global models of water and carbon cycles in continental vegetation and soils are usually forced with monthly mean climatic data-sets and thus neglect day to day variations of the weather. This treatment may be justified for empirical models based on parametrizations validated at a monthly timescale. Mechanistic models handling hydrological and biological processes at much shorter timescales might, however, be largely affected by such an approximation, since the various processes described are highly nonlinear. A random generator of daily precipitations and temperatures applicable at the global scale has thus been developed from worldwide meteorological data covering 6 years of observations. The probability of a wet day is correlated to the weather encountered the previous day. The amount of precipitation, the daily mean temperature and the diurnal range of temperature are described from the statistical point of view by the cumulative distribution functions (CDF) of three random variables. The CDFs relative to temperatures are different for rainy and dry days. This stochastically generated weather field is used as input to IBM (Improved Bucket Model) and CARAIB (CARbon Assimilation In the Biosphere), two global models of respectively soil hydrology and vegetation productivity. Large differences in both the geographical distribution and the global value of soil water, vegetation productivity and carbon stocks are obtained between the model runs using monthly uniform weather on one side and randomly generated weather on the other. The main contribution to this difference at the global scale arises from the precipitation generation occurring as a result of high degree of nonlinearity of the interception scheme used in IBM.

  6. Process-based modeling of vegetation dynamics, snow, evapotranspiration and soil moisture patterns in an alpine catchment

    NASA Astrophysics Data System (ADS)

    Bertoldi, Giacomo; Della Chiesa, Stefano; Engel, Michael; Niedrist, Georg; Brenner, Johannes G.; Endrizzi, Stefano; Dall'Amico, Matteo; Cordano, Emanuele; Tappeiner, Ulrike; Rigon, Riccardo

    2014-05-01

    Mountain regions are particularly sensitive to climate change and at the same time they represent a key water resource not only locally but as well for lowland areas. Because of the complexity of mountain landscapes and the high climatic variability at a local scale, detailed quantification of key water budget components as snow cover, soil moisture and groundwater recharge is required. Therefore, there is a strong need to improve the capability of hydrological models to identify patterns in complex terrain (i.e. when variability of spatial characteristics counts), and to quantify changes of the water cycle components explicitly, considering interactions and feedbacks with climate and vegetation. Process-based hydrological models represent promising tools for addressing those needs. However, even if their inherent complexity sometimes limits their applicability for operational purpose, they offer great potential in terms of tools to test hypotheses, which can be verified in the field. GEOtop is a hydrological model that calculates the energy and mass exchanges between soil, vegetation, and atmosphere, accounting for land cover, water redistribution, snow processes, glacier mass budget and the effects of complex terrain and thus is one of the few models that was built with this complexity in mind. Recently, it has also been coupled with a dynamic vegetation model in order to simulate alpine grassland ecosystems. In this contribution, we want to present an application of the GEOtop model in simulating above ground biomass (Bag) production, evapotranspiration (ET), soil moisture (SM) and snow water equivalent (SWE) patterns for a catchment of about 100 km2, located in the Venosta/Vinschgau valley in the European Alps. Despite the Alps are one of the 'water towers of Europe', water scarcity issues can affect the region where the model is applied, and an intensive hydrological and ecological monitoring activity with ground observations and remote-sensing products has been established in the last five years. Simulations results showed that, along south-facing slopes, ET and Bag did not decrease with elevation, as it happens along north facing slopes, but showed a maximum at an intermediate elevation around ca. 1500 m a.s.l., because of the contrasting trends of a shorter vegetation season at higher elevations and water stress at lower elevations. Therefore, results suggest that in this region south-facing pastures and woodlands below the elevation band of 1000 - 1500 m a.s.l. are the locations exposed to more frequent water stress conditions. Future climate change will likely worsen drought frequency. This contribution highlights that the collected data set permits a multi-scale and multi-process evaluation of the model. Plot scale observations of evapotranspiration, soil moisture and snow cover, combined with remote sensing observations of snow and soil moisture help to discriminate between uncertainties in input data (i.e. snow/rainfall partitioning) and model parameterization. Moreover, we want to show with practical examples how, when dealing with coupled process-based eco-hydrological models is essential considering the physical consistency between different processes as modeled in GEOtop. For example, accounting the role of subsurface water lateral distribution on surface soil moisture; considering both water and energy budget constrains; introducing the control of snow cover on vegetation phenology. This introduces additional constraints in model parameterization that allow a better understanding of some processes dynamics, and can lead to a more coherent and accurate estimation of the catchment hydrological behavior than the one, which is possible with simpler models.

  7. Preliminary assessment of soil moisture over vegetation

    NASA Technical Reports Server (NTRS)

    Carlson, T. N.

    1986-01-01

    Modeling of surface energy fluxes was combined with in-situ measurement of surface parameters, specifically the surface sensible heat flux and the substrate soil moisture. A vegetation component was incorporated in the atmospheric/substrate model and subsequently showed that fluxes over vegetation can be very much different than those over bare soil for a given surface-air temperature difference. The temperature signatures measured by a satellite or airborne radiometer should be interpreted in conjunction with surface measurements of modeled parameters. Paradoxically, analyses of the large-scale distribution of soil moisture availability shows that there is a very high correlation between antecedent precipitation and inferred surface moisture availability, even when no specific vegetation parameterization is used in the boundary layer model. Preparatory work was begun in streamlining the present boundary layer model, developing better algorithms for relating surface temperatures to substrate moisture, preparing for participation in the French HAPEX experiment, and analyzing aircraft microwave and radiometric surface temperature data for the 1983 French Beauce experiments.

  8. Measurements and modeling of soil creep rates based on vegetation impedance on steep hillslopes

    NASA Astrophysics Data System (ADS)

    Jones, M. B.; Furbish, D. J.

    2013-12-01

    Diffusive soil transport involves the movement of soil particles downslope due to small-scale processes such as bioturbation and rainsplash. Estimates of the diffusion-like coefficient (the "diffusivity'') associated with soil creep on soil-mantled hillslopes are conventionally obtained from fitting of measured hillslope profiles of known age to modeled profiles, calculations involving tracer motions, and calculations based on conservation of cosmogenic isotopes. Published values of diffusivities vary over several orders of magnitude and are associated with variations in soil properties, climate regime, and dominant processes contributing to soil particle motions. The rate of sediment transport depends on the diffusivity as well as the gradient of the hillslope. Even on steep slopes, small sediment transport rates on the human timescale make them difficult to measure, but diffusive transport nevertheless is involved in land-surface evolution at his timescale. On steep, forested hillslopes, trees influence the local flux of sediment. Specifically, a tree blocks delivery of sediment to its downslope side, so sediment moves away from the base of the tree faster than it is delivered from upslope. The resulting "excavation'' of sediment often leads to exposed roots. Similarly, sediment accumulates on the upslope side of the tree and is "steered'' around the tree. For trees of sufficient size (and age) a small but measurable mound often forms upslope of the tree. This mound introduces a possible method for estimating the diffusivity. The volume of sediment stored by each tree can only have been accumulating for as long as the tree has been alive, so dividing the volume of the mound by the age of the tree provides an estimate of the rate of transport. In order to illustrate and quantify this process, I have developed a numerical model that simulates the evolution of the hillslope surface concurrently with the growth of a tree. A two-dimensional, mass-conserving diffusion equation models land-surface evolution while a Chapman-Richards-like growth equation models the radial growth of the tree. In the model a mound forms upslope of the tree, and a divot forms downslope of the tree, consistent with detailed field surveys of mound and divot topography associated with large trees. Parameters such as the diffusivity, the slope of the land surface, and the total growth time can be calibrated to match model results. In general, the mound size increases with land-surface slope and tree size.

  9. Thallium contamination of soils/vegetation as affected by sphalerite weathering: a model rhizospheric experiment.

    PubMed

    Van?k, Aleš; Grösslová, Zuzana; Mihaljevi?, Martin; Ettler, Vojt?ch; Chrastný, Vladislav; Komárek, Michael; Tejnecký, Václav; Drábek, Ond?ej; Penížek, Vít; Galušková, Ivana; Van??ková, Barbora; Pavl?, Lenka; Ash, Christopher

    2015-02-11

    The environmental stability of Tl-rich sphalerite in two contrasting soils was studied. Rhizospheric conditions were simulated to assess the risk associated with sulfide microparticles entering agricultural (top)soils. The data presented here clearly demonstrate a significant effect of 500 ?M citric acid, a model rhizospheric solution, on ZnS alteration followed by enhanced Tl and Zn release. The relative ZnS mass loss after 28 days of citrate incubation reached 0.05 and 0.03 wt.% in Cambisol and Leptosol samples respectively, and was up to 4 times higher, compared to H2O treatments. Incongruent (i.e., substantially increased) mobilization of Tl from ZnS was observed during the incubation time. Generally higher (long-term) stability of ZnS with lower Tl release is predicted for soils enriched in carbonates. Furthermore, the important role of silicates (mainly illite) in the stabilization of mobilized Tl, linked with structural (inter)layer Tl-K exchange, is suggested. Thallium was highly bioavailable, as indicated by its uptake by white mustard; maximum Tl amounts were detected in biomass grown on the acidic Cambisol. Despite the fact that sulfides are thought as relatively stable phases in soil environments, enhanced sulfide dissolution and Tl/trace element release (and bioaccumulation) can be assumed in rhizosphere systems. PMID:25265594

  10. Vegetation Effects on Soil Moisture Estimation

    NASA Technical Reports Server (NTRS)

    Kim, Yunjin; van Zyl, Jakob

    2004-01-01

    Several successful algorithms have been developed to estimate soil moisture of bare surfaces. We previously reported a new algorithm using the tilted Bragg approximation. However, these algorithms are only applicable to bare surfaces. When vegetation is present, soil moisture is typically underestimated by bare surface algorithms. In order to derive soil moisture under vegetation, we have to understand the complex scattering process due to vegetation. Our main interest is to retrieve the global soil moisture information using Hydros L-band polarimetric radar data. The Hydros mission will provide the first global view of land soil moisture using L-band radar and radiometer. The unique characteristics of the Hydros data are the availability of the low resolution soil moisture information from radiometer data and the continuous time series radar data collected at the same incidence angle. In this paper, we will examine a potential inversion algorithm to retrieve soil moisture under vegetation canopies using Hydros L-band polarimetric radar data.

  11. Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data

    NASA Technical Reports Server (NTRS)

    Roberts, D. A.; Smith, M. O.; Adams, J. B.

    1993-01-01

    The problem of distinguishing between green vegetation, nonphotosynthetic vegetation (NPV, such as dry grass, leaf litter, and woody material), and soils in imaging-spectrometer data is addressed by analyzing an image taken by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over the Jasper Ridge Biological Preserve (California) on September 20, 1989, using spectral mixture analysis. Over 98 percent of the spectral variation could be explained by linear mixtures of three endmembers, green vegetation, shade, and soil. NPV, which could not be distinguished from soil when included as an endmember, was discriminated by residual spectra that contained cellulose and lignin absorptions. Distinct communities of green vegetation were distinguished by (1) nonlinear mixing effect caused by transmission and scattering by green leaves, (2) variations in a derived canopy-shade spectrum, and (3) the fraction of NPV.

  12. Treatment of soil, vegetation and snow in land surface models: a test of the BiosphereAtmosphere Transfer Scheme with the

    E-print Network

    Yang, Zong-Liang

    Treatment of soil, vegetation and snow in land surface models: a test of the Biosphere of the land surface, their individual hydrological processes and the process-oriented models are reviewed­Atmosphere Transfer Scheme (BATS) is examined regarding its performance for three different surfaces (crop, forest

  13. Modelling the links between vegetation and landforms

    Microsoft Academic Search

    Mike Kirkby

    1995-01-01

    Vegetation is the most important intermediate through which climate and land use modify geomorphological processes and landforms. In this paper we explore three types of model which attempt to simulate the links to uncultivated vegetation, all sharing a common basis in hydrology. The first simulates the relationship between climate, vegetation and erosion rates for a fixed topography and soil cover.

  14. Managing soil under vegetable production to improve soil quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the years, soil quality has eroded as soil organic matter has declined on farms across North Carolina. This study is assessing the effects of tillage practice, winter cover cropping and compost use on changes in soil function and improvement in soil quality under vegetable production. The field...

  15. Retrieving pace in vegetation growth using precipitation and soil moisture

    NASA Astrophysics Data System (ADS)

    Sohoulande Djebou, D. C.; Singh, V. P.

    2013-12-01

    The complexity of interactions between the biophysical components of the watershed increases the challenge of understanding water budget. Hence, the perspicacity of the continuum soil-vegetation-atmosphere's functionality still remains crucial for science. This study targeted the Texas Gulf watershed and evaluated the behavior of vegetation covers by coupling precipitation and soil moisture patterns. Growing season's Normalized Differential Vegetation Index NDVI for deciduous forest and grassland were used over a 23 year period as well as precipitation and soil moisture data. The role of time scales on vegetation dynamics analysis was appraised using both entropy rescaling and correlation analysis. This resulted in that soil moisture at 5 cm and 25cm are potentially more efficient to use for vegetation dynamics monitoring at finer time scale compared to precipitation. Albeit soil moisture at 5 cm and 25 cm series are highly correlated (R2>0.64), it appeared that 5 cm soil moisture series can better explain the variability of vegetation growth. A logarithmic transformation of soil moisture and precipitation data increased correlation with NDVI for the different time scales considered. Based on a monthly time scale we came out with a relationship between vegetation index and the couple soil moisture and precipitation [NDVI=a*Log(% soil moisture)+b*Log(Precipitation)+c] with R2>0.25 for each vegetation type. Further, we proposed to assess vegetation green-up using logistic regression model and transinformation entropy using the couple soil moisture and precipitation as independent variables and vegetation growth metrics (NDVI, NDVI ratio, NDVI slope) as the dependent variable. The study is still ongoing and the results will surely contribute to the knowledge in large scale vegetation monitoring. Keywords: Precipitation, soil moisture, vegetation growth, entropy Time scale, Logarithmic transformation and correlation between soil moisture and NDVI, precipitation and NDVI. The analysis is performed by combining both scenes 7 and 8 data. Schematic illustration of the two dimension transinformation entropy approach. T(P,SM;VI) stand for the transinformation contained in the couple soil moisture (SM)/precipitation (P) and explaining vegetation growth (VI).

  16. Application of the Distributed Soil Hydrology Vegetation Model (DHSVM) to the case of forest landcover change and alpine development

    NASA Astrophysics Data System (ADS)

    Del Peral, A.

    2012-12-01

    Forest cover in the North East is changing due to both natural disturbances and anthropogenic influences. These changes in forest cover are likely to affect watershed hydrology, including precipitation interception, infiltration and stream flow. Understanding the interaction between forest cover and hydrologic processes is important as forests provide critical ecosystem services to the region. Our research focuses on alpine development in high-elevation, forested watersheds, in particular how the size, spatial arrangement, and orientation of ski runs and base village development influence runoff production. Our study area includes a forested control watershed and a watershed managed as an alpine ski area in northwestern Vermont. Empirical results from these watersheds show substantial differences (10-31%) in annual water yield between the watersheds over the 11-year period of record (2000-2011). This water yield differential is correlated with maximum seasonal snow depth (R2 = .47), with larger differences occurring in years with abundant winter snowpack. Field infiltration measurements show a significant difference between ski trail and forested soils (t=2.65, p<.05) with the average infiltration measured on ski trails nearly an order of magnitude slower. We suggest that enhanced routing of water from the compact soils found on ski trails and differences in watershed storage are responsible for the observed difference in runoff. Using the Distributed Soil Hydrology Vegetation Model (DHSVM), we developed model simulations for snow accumulation, melt and streamflow in both watersheds. Preliminary model runs show high model skill in simulating observed hourly flows (NE = .77). Model simulations support the hypothesis that slower infiltration results in an enhanced routing of runoff. This unique water transport mechanism should be integrated into future alpine development designs in order to moderate environmental impacts. Next steps will involve testing alternative alpine development scenarios and the effects of variable winter climate conditions on streamflow dynamics.

  17. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (principal investigator)

    1974-01-01

    The author has identified the following significant results. The Kubelka-Munk model, a regression model, and a combination of these models were used to extract plant, soil, and shadow reflectance components of vegetated surfaces. The combination model was superior to the others; it explained 86% of the variation in band 5 reflectance of corn and sorghum, and 90% of the variation in band 6 reflectance of cotton. A fractional shadow term substantially increased the proportion of the digital count sum of squares explained when plant parameters alone explained 85% or less of the variation. Overall recognition of 94 agricultural fields using simultaneously acquired aircraft and spacecraft MSS data was 61.8 and 62.8%, respectively; recognition of vegetable fields larger than 10 acres and taller than 25 cm, rose to 88.9 and 100% for aircraft and spacecraft, respectively. Agriculture and rangeland, were well discriminated for the entire county but level 2 categories of vegetables, citrus, and idle cropland, except for citrus, were not.

  18. Modeling spatial patterns of soil respiration in maize fields from vegetation and soil property factors with the use of remote sensing and geographical information system.

    PubMed

    Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng

    2014-01-01

    To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m(-2) s(-1). The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China. PMID:25157827

  19. Modeling Spatial Patterns of Soil Respiration in Maize Fields from Vegetation and Soil Property Factors with the Use of Remote Sensing and Geographical Information System

    PubMed Central

    Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng

    2014-01-01

    To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m?2 s?1. The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China. PMID:25157827

  20. The Application and Performance of Two Soil-Vegetation-Atmosphere Modelling Platforms to a Real Hydrologic Catchment

    NASA Astrophysics Data System (ADS)

    Rihani, Jehan; Dahl Larsen, Morten Andreas; Stisen, Simon; Refsgaard, Jens Christian; Høgh Jensen, Karsten; Simmer, Clemens

    2013-04-01

    Land surface models are important in providing lower boundary fluxes and moisture for atmospheric models. Despite the increase in complexity and detailed representation of vegetation and root zone, LSMs remain for the most part one-dimensional column models which ignore lateral water flow at the land surface and within the top soil layers. In order to include processes effecting soil moisture variations such as shallow groundwater, runoff, overland flow, and subsurface lateral flow, a number of simulation platforms with varying complexity which couple groundwater, land surface, and atmospheric models have emerged. In this study, we compare two different integrated soil-vegetation-atmosphere modelling platforms: the ParFlow-CLM-COSMO model, developed within the Transregional Collaborative Research Centre (TR32), and the HIRHAM-MIKE SHE model, developed within the HOBE Centre for Hydrology and the HYdrological Modelling for Assessing Climate Change Impacts at differeNT Scales (HYACINTS) project. Both modelling platforms contain distributed, physically based, state-of-the-art components. ParFlow-CLM-COSMO consists of the variably saturated groundwater model ParFlow, the Community Land Model (CLM), and the regional climate and weather forecast model COSMO (German Weather Service, DWD). The HIRHAM-MIKE SHE model consists of the HIRHAM regional climate model (Danish Meteorological Institute), the SWET (Shuttleworth and Wallace Evapotranspiration) land-surface model, and the integrated hydrological model MIKE SHE (DHI). There are differences however between the two platforms in the handling of specific processes within the model components as well as differences in the coupling approach used. During the first part of the comparison study, we focus on the coupled subsurface-landsurface components offline from the atmosphere. One of the main differences in the handling of the subsurface component in both models is the inclusion of lateral flow in the unsaturated zone. In the MIKE SHE model, the 3D Richards' equation is used for the saturated subsurface region, while the 1D Richards' equation is used to simulate water flow in the unsaturated zone using simulated dynamic groundwater levels from its saturated zone module. ParFlow, on the other hand, includes both lateral and vertical flow by using the 3D Richards' equation for the subsurface to calculate the pressure field. This allows for lateral flows in the unsaturated zone. One of the main questions to be investigated by this comparison study is whether such a dynamic approach for the subsurface is needed within a real watershed, and if so, at which locations and times. The simulations for both platforms are established for the HOBE hydrologic observatory catchment in Denmark, the Skjern catchment. During the second part of this study, the comparison is extended to include the atmospheric components, which differ in the exchange of atmospheric forcing variables and surface moisture and energy fluxes, in fully coupled simulations. While ParFlow-CLM-COSMO utilizes an external coupler, HIRHAM-MIKE SHE implements a new OpenMI technology approach. The comparison study will highlight the effects and experiences of using different coupled model approaches on the simulated subsurface-land surface-atmosphere interactions within a real hydrologic catchment.

  1. A Coupled Energy and Water Balance Model for Snow-Vegetation-Soil Systems

    Microsoft Academic Search

    D. Marks; M. Sandells; G. Flerchinger

    2009-01-01

    In mountainous and cold regions of the world snowmelt dominates the water balance, yet is quantified poorly despite the wealth of available remote sensing observations. Field measurements of snow cover and soil moisture are limited to experimental sites while the accuracy of soil moisture measurements from passive and active microwave sensors such as the upcoming SMOS and SMAP missions depends

  2. Vegetation management with fire modifies peatland soil thermal regime.

    PubMed

    Brown, Lee E; Palmer, Sheila M; Johnston, Kerrylyn; Holden, Joseph

    2015-05-01

    Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from <2 to 15 + years post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15 + years previously, plots recently burned (<2-4 years) showed higher mean, maximum and range of soil temperatures, and lower minima. Statistical models (generalised least square regression) were developed to predict daily mean and maximum soil temperature in plots burned 15 + years prior to the study. These models were then applied to predict temperatures of plots burned 2, 4 and 7 years previously, with significant deviations from predicted temperatures illustrating the magnitude of burn management effects. Temperatures measured in soil plots burned <2 years previously showed significant statistical disturbances from model predictions, reaching +6.2 °C for daily mean temperatures and +19.6 °C for daily maxima. Soil temperatures in plots burnt 7 years previously were most similar to plots burned 15 + years ago indicating the potential for soil temperatures to recover as vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime change for carbon processing and release, and hydrological processes, in these peatlands. PMID:25728915

  3. Integrating models to simulate emergent behaviour: effects of organic matter on soil hydraulics in the ICZ-1D soil-vegetation model

    NASA Astrophysics Data System (ADS)

    Valstar, Johan; Rowe, Ed; Konstantina, Moirogiorgou; Giannakis, Giorgos; Nikolaidis, Nikolaos

    2014-05-01

    Soil develops as a result of interacting processes, many of which have been described in more or less detailed models. A key challenge in developing predictive models of soil function is to integrate processes that operate across a wide range of temporal and spatial scales. Many soil functions could be classified as "emergent", since they result from the interaction of subsystems. For example, soil organic matter (SOM) dynamics are commonly considered in relation to carbon storage, but can have profound effects on soil hydraulic properties that are conventionally considered to be static. Carbon fixed by plants enters the soil as litterfall, root turnover or via mycorrhizae. Plants need water and nutrients to grow, and an expanding root system provides access to a larger volume of soil for uptake of water and nutrients. Roots also provide organic exudates, such as oxalate, which increase nutrient availability. Carbon inputs are transformed at various rates into soil biota, CO2, and more persistent forms of organic matter. The SOM is partly taken up into soil aggregates of variable sizes, which slows down degradation. Water availability is an important factor as both plant growth and SOM degradation can be limited by shortage of water. Water flow is the main driver for transport of nutrients and other solutes. The flow of water in turn is influenced by the presence of SOM as this influences soil water retention and hydraulic conductivity. Towards the top of the unsaturated zone, bioturbation by the soil fauna transports both solid material and solutes. Weathering rates of minerals determine the availability of many nutrients and are in turn dependent on parameters such as pH, water content, CO2 pressure and oxalate concentration. Chemical reactions between solutes, dissolution and precipitation, and exchange on adsorption sites further influence solute concentrations. Within the FP7 SoilTrEC project, we developed a model that incorporates all of these processes, to explore the complex interactions involved in soil development and change. We were unable to identify appropriately-detailed existing models for plant productivity and for the dynamics of soil aggregation and porosity, and so developed the PROSUM and CAST models, respectively, to simulate these subsystems. Moreover, we applied the BRNS generator to obtain a chemical equilibrium model. These were combined with HYDRUS-1D (water and solute transport), a weathering model (derived from the SAFE model) and a simple bioturbation model. The model includes several feedbacks, such as the effect of soil organic matter on water retention and hydraulic conductivity. We encountered several important challenges when building the integrated model. First, a mechanism was developed that initiates the execution of a single time step for an individual sub-model and accounts for the relevant mass transfers between sub-models. This allows for different and sometimes variable time step duration in the submodels. Secondly, we removed duplicated processes and identified and included relevant solute production terms that had been neglected. The model is being tested against datasets obtained from several Soil Critical Zone Observatories in Europe. This contribution focuses on the design strategy for the model.

  4. Comparison of four models to determine surface soil moisture from C-band radar imagery in a sparsely vegetated semiarid landscape

    NASA Astrophysics Data System (ADS)

    Thoma, D. P.; Moran, M. S.; Bryant, R.; Rahman, M.; Holifield-Collins, C. D.; Skirvin, S.; Sano, E. E.; Slocum, K.

    2006-01-01

    Four approaches for deriving estimates of near-surface soil moisture from radar imagery in a semiarid, sparsely vegetated rangeland were evaluated against in situ measurements of soil moisture. The approaches were based on empirical, physical, semiempirical, and image difference techniques. The empirical approach involved simple linear regression of radar backscatter on soil moisture, while the integral equation method (IEM) model was used in both the physical and semiempirical approaches. The image difference or delta index approach is a new technique presented here for the first time. In all cases, spatial averaging to the watershed scale improved agreement with observed soil moisture. In the empirical approach, variation in radar backscatter explained 85% of the variation in observed soil moisture at the watershed scale. For the physical and best semiempirical adjustment to the physical model, the root-mean-square errors (RMSE) between modeled and observed soil moisture were 0.13 and 0.04, respectively. Practical limitations to obtaining surface roughness measurements limit IEM utility for large areas. The purely image-based delta index has significant operational advantage in soil moisture estimates for broad areas. Additionally, satellite observations of backscatter used in the delta index indicated an approximate 1:1 relationship with soil moisture that explained 91% of the variability, with RMSE = 0.03. Results showed that the delta index is scaled to the range in observed soil moisture and may provide a purely image based model. It should be tested in other watersheds to determine if it implicitly accounts for surface roughness, topography, and vegetation. These are parameters that are difficult to measure over large areas, and may influence the delta index.

  5. Soil Water Dynamics in a Clumped Vegetation Pattern

    NASA Astrophysics Data System (ADS)

    Manfreda, S.; Pizzolla, T.; Caylor, K. K.

    2013-12-01

    Understanding the general principles behind the self-organization of vegetation may help to predict some of the consequences of environmental change for both ecosystem services and water resources. The accurate representation of landscape structure is necessary to estimate the flows exchanged between the earth's surface and atmosphere. Here, we adopted a physically based model to describe the spatial dynamics of vegetation taking into account soil physical characteristics and plant physiology. This approach is used at the landscape scale in order investigate the impact of spatial organization of vegetation on soil moisture distribution, evapotranspiration rate, root system uptake, vegetation stress, net primary productivity, etc. The proposed model is adopted in a patchy vegetation mosaic based on a spatial random process of individual tree canopies and their accompanying root systems. The spatial distribution of vegetation is not modeled like a homogeneous process of canopies, but like aggregated tree distribution, typically observed in savannas. To this end, we used a mathematical framework for describing vegetation structure based on the density, dispersion, and size distribution of individuals within a landscape. In particular, we posed particular attention to the role of clumping on the landscape dynamics analyzing different configurations of climatic parameters, soil types and plant types. The analyses show how the clumping structure may be beneficial for water use efficiency at the landscape scale.

  6. Vegetation competition model for water and light limitation. II: Spatial dynamics of groundwater and vegetation

    Microsoft Academic Search

    R. J. Brolsma; L. P. H. van Beek; M. F. P. Bierkens

    2010-01-01

    In temperate climates groundwater can have a profound effect on vegetation, because it strongly influences the spatio-temporal distribution of soil moisture in the rootzone and therefore the occurrence of water and oxygen stress of vegetation. This article focuses on vegetation and groundwater dynamics along a hill slope by developing and evaluating a fully coupled hydrological-vegetation model for a temperate forest

  7. Development of a Scale-Consistent Soil-Vegetation-Atmosphere Modeling System Using COSMO, Community Land Model and ParFlow

    NASA Astrophysics Data System (ADS)

    Shrestha, P.; Sulis, M.; Masbou, M.; Kollet, S. J.; Simmer, C.

    2012-12-01

    Here, we present the development and application of a modular scale-consistent coupled soil vegetation atmosphere (SVA) modeling system. The SVA modeling system developed at the Transregional Collaborative Research Centre 32 (TR32, 2nd phase), consists of the Deutscher Wetterdienst (DWD, German Weather Service) regional climate and weather forecast model COSMO (Consortium for Small Scale Modeling), the National Centre for Atmospheric Research (NCAR) Community Land Model (CLM) and the 3D variably saturated groundwater hydrology model ParFlow ( originally developed at the Lawrence Livermore National Laboratory). The external coupler Ocean Atmosphere Sea Ice Soil (OASIS) developed at European Centre for Research and Advanced Training (CERFACS, Toulouse, France) is used to drive the SVA system and control the exchange of fluxes defined over different grids of the components of the modeling system. Idealized and realistic test case simulations are presented to show the capability of this SVA modeling system to simulate the land-atmosphere interactions including ground water dynamics. The development of this SVA modeling system will also allow the integration of various model advancement efforts (e.g. implementation of carbon cycle, crop dynamics, downscaling and upscaling algorithm, development of adjoint models) and ensures the availability of these developments to the scientific community.

  8. Bowen ratio measurements above various vegetation covers and its comparison with actual evapotranspiration estimated by SoilClim model

    NASA Astrophysics Data System (ADS)

    Hlavinka, P.; Trnka, M.; Fischer, M.; Kucera, J.; Mozny, M.; Zalud, Z.

    2010-09-01

    The principle of Bowen ratio is one of the available techniques for measurements of actual evapotranspiration (ETa) as one of essential water balance fractions. The main aims of submitted study were: (i) to compare the water balance of selected crops, (ii) to compare outputs of SoilClim model with observed parameters (including ETa on Bowen ratio basis). The measurements were conducted at two experimental stations in the Czech Republic (Polkovice 49°23´ (N), 17°17´ (E), 205 m a.s.l.; Domanínek 49°32´ (N), 16°15´ (E), 544 m a.s.l.) during the years 2009 and 2010. Together with Bowen ratio the global solar radiation, radiation balance, soil heat flux, volumetric soil moisture and temperature within selected depths, precipitation and wind speed were measured. The measurements were conducted simultaneously above various covers within the same soil conditions: spring barley vs. winter wheat, spring barley vs. winter rape; grass vs. poplars; harvested field after tillage vs. harvested field after cereals without any tillage. The observed parameters from different covers were compared with SoilClim estimates. SoilClim model is modular software for water balance and soil temperature modelling and finally could be used for soil Hydric and Thermic regimes (according to USDA classification) identification. The core of SoilClim is based on modified FAO Penman-Monteith methodology. Submitted study proved the applicability of SoilClim model for ETa, soil moisture within two defined layers and soil temperature (in 0.5 m depth) estimates for various crops, covers, selected soil types and climatic conditions. Acknowledgement: We gratefully acknowledge the support of the Grant Agency of the Czech Republic (no. 521/09/P479) and the project NAZV QI91C054. The study was also supported by Research plan No. MSM6215648905 "Biological and technological aspects of sustainability of controlled ecosystems and their adaptability to climate change".

  9. The soil water balance in a mosaic of clumped vegetation

    NASA Astrophysics Data System (ADS)

    Pizzolla, Teresa; Manfreda, Salvatore; Caylor, Kelly; Gioia, Andrea; Iacobellis, Vito

    2014-05-01

    The spatio-temporal distribution of soil moisture influences the plant growth and the distribution of terrestrial vegetation. This effect is more evident in arid and semiarid ecosystems where the interaction between individuals and the water limited conditions play a fundamental role, providing environmental conditions which drive a variety of non-linear ecohydrological response functions (such as transpiration, photosynthesis, leakage). In this context, modeling vegetation patterns at multiple spatial aggregation scales is important to understand how different vegetation structures can modify the soil water distribution and the exchanged fluxes between soil and atmosphere. In the present paper, the effect of different spatial vegetation patterns, under different climatic scenarios, is investigated in a patchy vegetation mosaic generated by a random process of individual tree canopies and their accompanying root system. Vegetation pattern are generated using the mathematical framework proposed by Caylor et al. (2006) characterized by a three dimensional stochastic vegetation structure, based on the density, dispersion, size distribution, and allometry of individuals within a landscape. A Poisson distribution is applied to generate different distribution of individuals paying particular attention on the role of clumping on water distribution dynamics. The soil water balance is evaluated using the analytical expression proposed by Laio et al. (2001) to explore the influence of climate and vegetation patterns on soil water balance steady-state components (such as the average rates of evaporation, the root water uptake and leakage) and on the stress-weighted plant water uptake. Results of numerical simulations show that clumping may be beneficial for water use efficiency at the landscape scale. References Caylor, Kelly K., P. D'Odorico and I. Rodriguez Iturbe: On the ecohydrology of structurally heterogeneous semiarid landscape. Water Resour. Res., 28, W07424, 2006. Laio, F., A. Porporato, L., Ridolfi and I. Rodriguez Iturbe: Plants in water controlled ecosystems: Active role in hydrological processes and response to water stress, II. Probabilistic soil moisture dynamics, Adv. Water Resour., 24(7), 707-723,2001.

  10. An applied vegetation canopy model and its application in inversion of vegetation coverage and water content

    Microsoft Academic Search

    Ru-Ru Deng; Qin-Huo Liu; Guo-Liang Tian; Xiao-Zhou Xin; Qiang Liu; Hua Gong

    2002-01-01

    Usually a vegetated area pixel is composed of the basic components, soil, leaf with different proportions, while soil and leaf have different water content. There are lots of canopy models to describe the mechanism with which these component spectra compose the canopy spectrum. For practicability, a simplified model is suggested to calculate the surface vegetation coverage, and water contents of

  11. Spatial pattern formation of coastal vegetation in response to external gradients and positive feedbacks affecting soil porewater salinity: A model study

    USGS Publications Warehouse

    Jiang, J.; DeAngelis, D.L.; Smith, T. J., III; Teh, S.Y.; Koh, H.-L.

    2012-01-01

    Coastal vegetation of South Florida typically comprises salinity-tolerant mangroves bordering salinity-intolerant hardwood hammocks and fresh water marshes. Two primary ecological factors appear to influence the maintenance of mangrove/hammock ecotones against changes that might occur due to disturbances. One of these is a gradient in one or more environmental factors. The other is the action of positive feedback mechanisms, in which each vegetation community influences its local environment to favor itself, reinforcing the boundary between communities. The relative contributions of these two factors, however, can be hard to discern. A spatially explicit individual-based model of vegetation, coupled with a model of soil hydrology and salinity dynamics is presented here to simulate mangrove/hammock ecotones in the coastal margin habitats of South Florida. The model simulation results indicate that an environmental gradient of salinity, caused by tidal flux, is the key factor separating vegetation communities, while positive feedback involving the different interaction of each vegetation type with the vadose zone salinity increases the sharpness of boundaries, and maintains the ecological resilience of mangrove/hammock ecotones against small disturbances. Investigation of effects of precipitation on positive feedback indicates that the dry season, with its low precipitation, is the period of strongest positive feedback. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  12. GRAZING AND MILITARY VEHICLE EFFECTS ON GRASSLAND SOILS AND VEGETATION

    E-print Network

    Fehmi, Jeffrey S.

    :cattlegrazing,disturbance,grasslands,GreatPlainsecosystems,militaryimpacts,state-and-transition models IntroductIon Public land managers face pressure to maintain ecosystems, often in an idealizedGRAZING AND MILITARY VEHICLE EFFECTS ON GRASSLAND SOILS AND VEGETATION John A. Guretzky and Alan B natural state, while supporting multiple and sometimes conflicting land uses(NationalResearchCouncil1994

  13. Calculations of radar backscattering coefficient of vegetation-covered soils

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.; Jackson, T. J. (principal investigators)

    1983-01-01

    A model for simulating the measured backscattering coefficient of vegetation-covered soil surfaces includes both coherent and incoherent components of the backscattered radar pulses from a rough sil surface. The effect of vegetation canopy scattering is also incorporated into the model by making the radar pulse subject to two-way attenuation and volume scattering when it passes through the vegetation layer. Model results agree well with the measured angular distributions of the radar backscattering coefficient for HH polarization at the 1.6 GHz and 4.75 GHz frequencies over grass-covered fields. It was found that the coherent scattering component is very important at angles near nadir, while the vegetation volume scattering is dominant at incident angles 30 degrees.

  14. Soil Respiration Responses to Variation in Temperature Treatment and Vegetation Type

    NASA Astrophysics Data System (ADS)

    Liu, S.; Pavao-zuckerman, M.

    2013-12-01

    Complex linkages exist between terrestrial vegetation, soil moisture, soil organic matter (SOM), local climate, and soil microorganisms. Thus, large-scale changes in vegetation, such as the woody plant encroachment observed in many historically semiarid and arid grasslands worldwide, could potentially alter the flux of carbon from soil reserves to the atmosphere. Mathematical models that attempt to project the long-term impact of vegetative shifts on soil fluxes largely rely on assumptions such as first-order donor control rather than incorporate the biological aspects of soil respiration such as microbial activity. To examine the impact of vegetation type on soil physicochemical properties and soil microbial respiration and provide experimental data to refine existing predictive models, we compared soil (ground basalt from northern Arizona) in mesocosms established with no vegetation, velvet mesquites (Prosopis velutina; woody shrub), or sideoats gramas (Bouteloua curtipendula; grass) for 2 years, The temperature sensitivity of soil respiration was examined by incubating soil (0-10 and 10-30 cm depth fractions) from each vegetation treatment at 10, 20, 30, and 40 °C for 24 hours. Vegetated soils contained more SOM (~0.1% for mesquite and grass mesocosms) than non-vegetated soils (~0.02%). Respiration rates were generally highest from grass-established soils, intermediate from mesquite-established soils, and lowest from non-vegetated soils. Respiration rates of samples incubated without the addition of substrate peaked at approximately 30 °C, whereas respiration rates of samples incubated with dextrose were highest at 40 °C. Further, the respiration assays suggest that while respiration rates are overall higher in grass-established soils, mesquite-established soils are more temperature sensitive which may have significant implications in the context of global warming and current fire management practices.

  15. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (principal investigator)

    1973-01-01

    The author has identified the following significant results. The ability to read the 24-channel MSS CCT tapes, select specified agricultural land use areas from the CCT, and perform multivariate statistical and pattern recognition analyses has been demonstrated. The 5 optimum channels chosen for classifying an agricultural scene were, in the order of their selection the far red visible, short reflective IR, visible blue, thermal infrared, and ultraviolet portions of the electromagnetic spectrum, respectively. Although chosen by a training set containing only vegetal categories, the optimum 4 channels discriminated pavement, water, bare soil, and building roofs, as well as the vegetal categories. Among the vegetal categories, sugar cane and cotton had distinctive signatures that distinguished them from grass and citrus. Acreages estimated spectrally by the computer for the test scene were acceptably close to acreages estimated from aerial photographs for cotton, sugar cane, and water. Many nonfarmable land resolution elements representing drainage ditch, field road, and highway right-of-way as well as farm headquarters area fell into the grass, bare soil plus weeds, and citrus categories and lessened the accuracy of the farmable acreage estimates in these categories. The expertise developed using the 24-channel data will be applied to the ERTS-1 data.

  16. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Gerbermann, A. H. (principal investigators)

    1974-01-01

    The author has identified the following significant results. Iron deficient and normal grain sorghum plants were sufficiently different spectrally in ERTS-1 band 5 CCT data to detect chlorotic sorghum areas 2.8 acres (1.1 hectares) or larger in size in computer printouts of the MSS data. The ratio of band 5 to band 7 or band 7 minus band 5 relates to vegetation ground cover conditions and helps to select training samples representative of differing vegetation maturity or vigor classes and to estimate ground cover or green vegetation density in the absence of ground information. The four plant parameters; leaf area index, plant population, plant cover, and plant height explained 87 to 93% of the variability in band 6 digital counts and from 59 to 90% of the variation in bands 4 and 5. A ground area 2244 acres in size was classified on a pixel by pixel basis using simultaneously acquired aircraft support and ERTS-1 data. Overall recognition for vegetables, immature crops and mixed shrubs, and bare soil categories was 64.5% for aircraft and 59.6% for spacecraft data, respectively. Overall recognition results on a per field basis were 61.8% for aircraft and 62.8% for ERTS-1 data.

  17. The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI

    E-print Network

    Small, Eric

    The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI L to calculate Fg is to create a simple linear mixing model between two NDVI endmembers: bare soil NDVI (NDVIo) and full vegetation NDVI (NDVI). Usually it is assumed that NDVIo is close to zero (NDVIo 0

  18. Coevolution of hydraulic, soil and vegetation processes in estuarine wetlands

    NASA Astrophysics Data System (ADS)

    Trivisonno, Franco; Rodriguez, Jose F.; Riccardi, Gerardo; Saco, Patricia; Stenta, Hernan

    2014-05-01

    Estuarine wetlands of south eastern Australia, typically display a vegetation zonation with a sequence mudflats - mangrove forest - saltmarsh plains from the seaward margin and up the topographic gradient. Estuarine wetlands are among the most productive ecosystems in the world, providing unique habitats for fish and many terrestrial species. They also have a carbon sequestration capacity that surpasess terrestrial forest. Estuarine wetlands respond to sea-level rise by vertical accretion and horizontal landward migration, in order to maintain their position in the tidal frame. In situations in which buffer areas for landward migration are not available, saltmarsh can be lost due to mangrove encroachment. As a result of mangrove invasion associated in part with raising estuary water levels and urbanisation, coastal saltmarsh in parts of south-eastern Australia has been declared an endangered ecological community. Predicting estuarine wetlands response to sea-level rise requires modelling the coevolving dynamics of water flow, soil and vegetation. This paper presents preliminary results of our recently developed numerical model for wetland dynamics in wetlands of the Hunter estuary of NSW. The model simulates continuous tidal inflow into the wetland, and accounts for the effect of varying vegetation types on flow resistance. Coevolution effects appear as vegetation types are updated based on their preference to prevailing hydrodynamic conditions. The model also considers that accretion values vary with vegetation type. Simulations are driven using local information collected over several years, which includes estuary water levels, accretion rates, soil carbon content, flow resistance and vegetation preference to hydraulic conditions. Model results predict further saltmarsh loss under current conditions of moderate increase of estuary water levels.

  19. Modelling of vegetation volumes

    NASA Technical Reports Server (NTRS)

    Vanzyl, J. J.; Papas, C. H.; Engheta, N.; Elachi, C.

    1985-01-01

    The purpose is to describe work that is being done to find theoretical models to describe radar backscatter from vegetation layers. The geometry of the problem is shown. The information that one would like to find through the application of the results of these models would include: the thickness of the layer; the absorption in the layer (i.e., density, moisture content, and biomass); the geometry of the scatterers (i.e., shape and orientation); how much of the received power is due to volume scattering only; and a way to enhance the ratio of scattering that has some interaction with the ground surface. The proposed ways to find this information are discussed.

  20. Analysis of co-evolving soil depths, vegetation patterns, and connectivity on drylands.

    NASA Astrophysics Data System (ADS)

    Saco, Patricia; Willgoose, Garry

    2014-05-01

    Arid and semiarid landscapes cover more than 30% of the Earth's surface. Vegetation in these areas is usually patchy due limited resource availability. This self-organized patchiness results from the nonlinear feedbacks between water redistribution, soils, landforms, and biota. These complex interactions make the understanding and prediction of landscape responses to climate and land use change highly challenging. Though several models have been recently developed and used to understand these feedbacks and the emergence of vegetation patterns in drylands, these models do not explicitly incorporate feedbacks with coevolving soil depths. Here we analyse feedback effects resulting from co-evolving soil depths, which play a key role in the redistribution of surface runoff and therefore on the patterns of vegetation and landscape connectivity. We present modelling results using a coupled landform evolution-dynamic vegetation model, which includes a soil depth evolution module accounts and for soil production and sediment erosion and deposition processes. We analyse the co-evolution of soil depths and vegetation patterns for varying soil erodibilities, slopes and plant functional types. We find that for deeper soils, facilitation effects of vegetation gives rise to the formation of regular patterns, and slope and soil erodibility are the key factors for recovery after disturbance. Disturbances in areas with high slope and/or soil erodibility lead to an increase in connectivity and a degraded state. In contrast, we find that for shallow soils, the facilitation effect of vegetation becomes less important and vegetation patterns are more irregular. In this case, soil depth becomes the key factor prescribing surface connectivity and for the recovery of the system after disturbance. These results have critical implications for effective management and restoration efforts, and for understanding the effects of changes in climate and land use.

  1. Response of spectral vegetation indices to soil moisture in grasslands and shrublands

    USGS Publications Warehouse

    Zhang, L.; Ji, L.; Wylie, B.K.

    2011-01-01

    The relationships between satellite-derived vegetation indices (VIs) and soil moisture are complicated because of the time lag of the vegetation response to soil moisture. In this study, we used a distributed lag regression model to evaluate the lag responses of VIs to soil moisture for grasslands and shrublands at Soil Climate Analysis Network sites in the central and western United States. We examined the relationships between Moderate Resolution Imaging Spectroradiometer (MODIS)-derived VIs and soil moisture measurements. The Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) showed significant lag responses to soil moisture. The lag length varies from 8 to 56 days for NDVI and from 16 to 56 days for NDWI. However, the lag response of NDVI and NDWI to soil moisture varied among the sites. Our study suggests that the lag effect needs to be taken into consideration when the VIs are used to estimate soil moisture. ?? 2011 Taylor & Francis.

  2. An Overview of the Use of the SimSphere Soil Vegetation Atmosphere Transfer (SVAT) Model for the Study of Land-Atmosphere Interactions

    PubMed Central

    Petropoulos, George; Carlson, Toby N.; Wooster, Martin J.

    2009-01-01

    Soil Vegetation Atmosphere Transfer (SVAT) models consist of deterministic mathematical representations of the physical processes involved between the land surface and the atmosphere and of their interactions, at time-steps acceptable for the study of land surface processes. The present article provides a comprehensive and systematic review of one such SVAT model suitable for use in mesoscale or boundary layer studies, originally developed by [1]. This model, which has evolved significantly both architecturally and functionally since its foundation, has been widely applied in over thirty interdisciplinary science investigations, and it is currently used as a learning resource for students in a number of educational institutes globally. The present review is also regarded as very timely, since a variation of a method using this specific SVAT model along with satellite observations is currently being considered in a scheme being developed for the operational retrieval of soil surface moisture by the US National Polar-orbiting Operational Environmental Satellite System (NPOESS), in a series of satellites that are due to be launched from 2016 onwards. PMID:22408527

  3. Vegetation and soil factors on the Jerah mine, Scotland

    Microsoft Academic Search

    Angela Heaney; John Proctor

    1983-01-01

    The vegetation of a small spoil heap at Jerah mine near Stirling was classified as species-rich acid grassland, an open barren-soil community with a high frequency of the moss Pohlia nutans, and a group which showed intermediate characteristics. Copper was present in the soil in potentially toxic concentrations and when the vegetation data were ordinated the axes showed highly significant

  4. Dual frequency microwave radiometer measurements of soil moisture for bare and vegetated rough surfaces

    NASA Technical Reports Server (NTRS)

    Lee, S. L.

    1974-01-01

    Controlled ground-based passive microwave radiometric measurements on soil moisture were conducted to determine the effects of terrain surface roughness and vegetation on microwave emission. Theoretical predictions were compared with the experimental results and with some recent airborne radiometric measurements. The relationship of soil moisture to the permittivity for the soil was obtained in the laboratory. A dual frequency radiometer, 1.41356 GHz and 10.69 GHz, took measurements at angles between 0 and 50 degrees from an altitude of about fifty feet. Distinct surface roughnesses were studied. With the roughness undisturbed, oats were later planted and vegetated and bare field measurements were compared. The 1.4 GHz radiometer was less affected than the 10.6 GHz radiometer, which under vegetated conditions was incapable of detecting soil moisture. The bare surface theoretical model was inadequate, although the vegetation model appeared to be valid. Moisture parameters to correlate apparent temperature with soil moisture were compared.

  5. Sensitivity of convective precipitation forecasts to soil moisture and vegetation

    NASA Astrophysics Data System (ADS)

    Collow, Thomas William

    Land surface properties play a major role in convective precipitation events through impacting the amount of surface evaporation which results in changes to near surface temperature and humidity. This study examines the effects of using soil moisture data from the North American Regional Reanalysis (NARR) and the Soil Moisture Ocean Salinity Satellite (SMOS) on short term weather forecasts using the Weather Research and Forecasting Model (WRF). SMOS soil moisture data were compared to in-situ observations and it was found that although they captured the spatial variation in soil moisture, the actual measurements had a dry bias of roughly 0.10 m3/m 3. Large differences existed between the in-situ observations, even for probes only a few meters apart. Observations from different sensors within a SMOS footprint differed from each other by a larger amount than they differed from the SMOS retrieval. Removing the mean and normalizing the data brought the in-situ observations into better agreement with each other and with SMOS but they still contained substantial differences. WRF sensitivity experiments demonstrated that changes to initial values of soil moisture resulted in no significant changes in precipitation. However, more of an impact was seen when the vegetation was changed, with barren vegetation yielding a substantial decrease in precipitation. Adding soil moisture resulted in significant changes to 2 m temperature and dewpoint relative to the control runs for each vegetation type. However, it was found that convective available potential energy and moist static energy change little, as the temperature and humidity impacts on these variables cancel each other out, which explain the limited precipitation response. SMOS data resulted in no significant changes in precipitation forecasts but had some impacts on temperature and humidity forecasts. However, because these results were not seen in all cases, no definitive conclusions about the usefulness of SMOS for high resolution numerical modeling can be made at this time. These results provide major implications for future satellite missions such as Soil Moisture Active Passive showing that experiments using true data assimilation methods which give only partial weight to satellite data may also not provide significant improvements to weather forecasts.

  6. Transregional Collaborative Research Centre 32: Patterns in Soil-Vegetation

    NASA Astrophysics Data System (ADS)

    Kollet, S. J.; Simmer, C.; Masbou, M.; Boessenkool, K.; Crewell, S.; Diekkruger, B.; Huber, K.; Klitzsch, N.; Koyama, C. N.; Vereecken, H.

    2011-12-01

    The soil, vegetation and the lower atmosphere (SVA) are key compartments of the Earth, where almost all activities of mankind take place. This region is characterized by extremely complex patterns, structures and processes that act at different temporal and spatial scales. While the exchange of energy, water and carbon is continuous between the different compartments, the pertinent fluxes are strongly heterogeneous and variable in space and time. The overarching TR32 paradigm is that the characterisation of structures and patterns will lead to a deeper qualitative and quantitative understanding of the SVA system, and ultimately to better predictions of the SVA state. The TR32 combines research groups in the field of soil and plant science, remote sensing, hydrology, meteorology and mathematics located at the Universities of Aachen, Bonn, Braunschweig and Cologne and the Research Centre Juelich study the soil-vegetation atmosphere system under the novel holistic paradigm of patterns. To understand the mechanisms leading to spatial and temporal patterns in energy and matter fluxes of the SVA system we link experiments and theory via model-observation integration. Focusing our research on the Rur Catchment (Germany), patterns are monitored since 2006 continuously using existing and novel geophysical and remote sensing techniques from the local to the catchment scale based on ground penetrating radar methods, induced polarization, radiomagnetotellurics, electrical resistivity tomography, boundary layer scintillometry, lidar techniques, microwave radiometry, and precipitation radars with polarization diversity. Modeling approaches involve high resolution numerical weather prediction (NWP; 400m) and hydrological models (few meters). Example work from the first phase includes the transfer of laboratory methods to the field; the measurements of patterns of soil-carbon, evapotranspiration and respiration measured in the field; catchment-scale modeling of exchange processes and the setup of an atmospheric boundary layer monitoring network. In the second phase (2011-2014), the focus is on the integration of models from the groundwater to the atmosphere for both the m- and km-scale and the extension of the experimental monitoring in respect to vegetation. The general coupled modeling concept is based on the atmospheric model COSMO, the land surface model CLM and the hydrological model ParFlow. In order to bridge the scale gaps in measurements and modelling an LES model will be validated via a dedicated field campaign.

  7. Derivation of soil moisture retrieval uncertainties associated to the simplification of the dynamic vegetation signal.

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; Dorigo, Wouter; de Jeu, Richard; Hahn, Sebastian; Salinas, Jose Luis; Wagner, Wolfgang

    2014-05-01

    Satellite-based microwave remote sensing has proven to provide reliable soil moisture observations on a global scale over the last decades. In microwave remote sensing of soil moisture the satellite signal holds information on both soil moisture and vegetation. Separating these components from each other is not straightforward. In the last years the importance of a robust and reliable vegetation parameterization within the soil moisture retrieval algorithms has become evident. In the TU-Wien soil moisture retrieval algorithm, developed by the Vienna University of Technology, the backscatter observations are corrected for vegetation effects by way of the slope and curvature. The slope and curvature are derivates of noisy backscatter measurements in relation to incidence angle and hence have a high level of noise. Therefore, they are averaged over several years resulting in a fixed seasonal vegetation correction, where no inter-annual variability is present in the characterisation of vegetation. This study assesses the strengths and weaknesses of the fixed seasonal vegetation correction in the TU-Wien soil moisture retrieval algorithm. The Vegetation Optical Depth (VOD) retrieved from AMSR-E passive microwave observations with the VUA-NASA retrieval algorithm is analysed to identify regions with high inter-annual variability in vegetation. For these regions the effect of a fixed seasonal correction on the soil moisture retrieval is investigated. First, the TU-Wien soil moisture products before and after the application of the vegetation correction, the TU-Wien normalised backscatter and TU-Wien soil moisture respectively, are compared to modelled soil moisture from ECMWFs ERA-Interim. With this analysis regions where the vegetation correction decreases the quality of the TU-Wien soil moisture product with regard to modeled soil moisture can be identified. Secondly, the vegetation correction within the TU-Wien retrieval algorithm is replaced by the VOD to simulate an inter-annually dynamic vegetation correction. The VOD is like the slope and curvature an indicator of vegetation water content. This new soil moisture product based on VOD is then also compared to modeled soil moisture from ERA-Interim. Results show that in areas of high inter-annual variability, like the Sahel, the TU-Wien vegetation correction is suboptimal and decreases the quality of the TU-Wien soil moisture product when compared to ERA-Interim. Spearman R with ERA-Interim soil moisture can decrease with as much as 0.4 after applying the vegetation correction. Using the VOD in these regions increases the quality of the TU-Wien soil moisture product. This study demonstrates that a fixed seasonal vegetation correction is not able to account for high inter-annual vegetation variability and leads to an inaccurate soil moisture signal, emphasizing the need for a dynamic vegetation correction.

  8. Linking carbon-water- and nitrogen fluxes at forest ecosystems throughout Europe with a coupled soil-vegetation process model "LandscapeDNDC"

    NASA Astrophysics Data System (ADS)

    Molina Herrera, Saul; Grote, Rüdiger; Haas, Edwin; Kiese, Ralf; Butterbach-Bahl, Klaus

    2013-04-01

    Forest ecosystems in Europe play a key role in the emission reduction commitment agreed in the Kyoto Protocol for mitigating climatic change. Forest ecological functioning and potential services (such as carbon sequestration) are a matter of debate for policy decision makers resulting from the need of identifying affordable strategies for forest management and exploitation against climate change. Forest ecosystem functioning and the linkages governing carbon-, water- and nitrogen fluxes at site scale was evaluated for three dominant tree species (Pinus sylvestris, Picea abies and Fagus sylvatica) grown on 10 different sites across Europe. We did answer in particular the following questions: a) is LandscapeDNDC able to represent NEE, GPP, TER and ET fluxes for dominant forest types in Europe at different sites with only a species specific parameterization? b) What is the relation between carbon input into the ecosystem and on the emission of carbon and nitrogen from the forest soil? Furthermore we analyzed the interaction between carbon-, nitrogen-, and water cycle, in particular the dependence of gaseous fluxes on water and litter availability. LandscapeDNDC is a process based model that integrates modules for carbon, nitrogen and water cycling within terrestrial ecosystems (i.e. forest) on the site and regional scale. Biosphere, atmosphere and hydrosphere processes in forest ecosystems are linked by daily time step integration of the microclimate, water cycle, soil biogeochemistry and tree physiology and dimensional growth modules which balances all three aforementioned cycles. All processes and state variables are considered in a vertically structured one dimensional vertical column that reaches from rooting depth (more than 1 m depth) to the uppermost canopy layer. LandscapeDNDC was tested against long term (about 10 years) field data. The capability of the applied model for reproducing daily derived GPP and TER was accompanied by a high statistical precision (r2), accuracy (r2eff) and agreement (RMSPEn) while for reproducing daily NEE and ET as well as soil moisture was accompanied by a good statistical precision and agreement. In addition, beside C fixation also simulated C allocation into different vegetation compartments agreed well with measured data on biomass development and vegetation structure. Also soil respiration and N2O emissions agreed well with field observations. Soil respiration was driven by GPP and the rates of N2O fluxes depended on soil ecosystem properties and were influenced by litter C/N inputs and weather conditions. In conclusion by use of general tree species parameterizations LandscapeDNDC was capable to simulate and capture impacts of a multitude of environmental drivers on forest ecosystem C-, N-, water dynamics, as well as linking above - and belowground processes across various sites in Europe. Nevertheless, the quality of measured data (e.g. spatial representation, time resolution) as well as the existing description of ecosystem processes in the model should be considered when evaluating the capability of process based models to be used for evaluation of biogeochemical ecosystem functioning.

  9. Associations between vegetation patterns and soil texture in the shortgrass steppe

    Microsoft Academic Search

    M. B. Dodd; W. K. Lauenroth; I. C. Burke; P. L. Chapman

    2002-01-01

    A recent conceptual model of controls on vegetation structure in semiarid regions includes the hypothesis that the balance between the dominance of woody and herbaceous species is partly controlled by soil texture. The model predicts that the dominance of woody plants is associated with coarse textured soils, and that ecotones between woody and herbaceous plant functional types are associated with

  10. The tri-soil experiment: do plants discriminate among vegetation soil types?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested if rooting mass and root nutrient uptake of cheatgrass (Bromus tectorum) or creeping wildrye (Leymus triticoides) were influenced by vegetation soil type. Three soil types (A horizons), similar in gross physical and chemical properties, were freshly-collected. The soils varied in the veget...

  11. Mediterranean shrub vegetation: soil protection vs. water availability

    NASA Astrophysics Data System (ADS)

    García Estringana, Pablo; Nieves Alonso-Blázquez, M.; Alegre, Alegre; Cerdà, Artemi

    2014-05-01

    Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensiy or slope (Ziadat and Taimeh, 2013) the plant covers is the main factor that controls the soil erosion (Haregeweyn, 2013). Plant cover is the main factor of soil erosion processes as the vegetation control the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012). Vegetation cover acts in a complex way in influencing on the one hand on runoff and soil loss and on the other hand on the amount and the way that rainfall reaches the soil surface. In arid and semiarid regions, where erosion is one of the main degradation processes and water is a scant resource, a minimum percentage of vegetation coverage is necessary to protect the soil from erosion, but without compromising the availability of water (Belmonte Serrato and Romero Diaz, 1998). This is mainly controlled by the vegetation distribution (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). Land abandonment is common in Mediterranean region under extensive land use (Cerdà, 1997b; García-Ruiz, 2010). Abandoned lands typically have a rolling landscape with steep slopes, and are dominated by herbaceous communities that grow on pasture land interspersed by shrubs. Land abandonment use to trigger an increase in soil erosion, but the vegetation recovery reduces the impact of the vegetation. The goal of this work is to assess the effects of different Mediterranean shrub species (Dorycnium pentaphyllum Scop., Medicago strasseri, Colutea arborescens L., Retama sphaerocarpa, L., Pistacia Lentiscus L. and Quercus coccifera L.) on soil protection (runoff and soil losses) and on rainfall reaching soil surface (rainfall partitioning fluxes). To characterize the effects of shrub vegetation and to evaluate their effects on soil protection, two field experiments were carried out. The presence of shrub vegetation reduced runoff by at least 45% and soil loss by at least 59% in relation to an abandoned and degraded soil (bare soil) (Garcia-Estringana et al., 2010a). D. pentaphyllum, M. strasseri and C. arborescens were more effective in reducing runoff and soil loss (at least 83% and 97% respectively) than R. sphaerocarpa (45% and 59% respectively). Pisctacia Lentiscus L reduced the soil losses in 87% and the runoff rates (68%) meanwhile Quercus coccifera L reached a larger reduction (95% and 88 %) in comparison to herbicide treated agriculture soil. So, all shrub species protected the soil, but not in the same way. In relation to rainfall reaching the soil surface, great differences were observed among species, with interception losses varying between 10% for R. sphaerocarpa to greater than 36% for D. pentaphyllum and M. strasseri, and with stemflow percentages changing between less than 11% for D. pentaphyllum and M. strasseri and 20% for R. sphaerocarpa (Garcia-Estringana et al., 2010b). Rainfall interception on Pistacia Lentiscus and Quercus coccifera were 24% and 34% respectively for the two years of measurements. The integration of the effects of Mediterranean shrub vegetation on soil protection and rainfall partitioning fluxes facilitates understanding the effects of changes in vegetation type on soil and water resources. From this perspective, the interesting protective effect of D. pentpahyllum and M. strasseri, reducing intensely runoff and soil loss contrasts with the dangerous reduction in rainfall reaching the soil surface. Soil protection is essential in semiarid and arid environments, but a proper assessment of the effects on water availability is critical because of water is a scant resource in these kinds of environments. Pistacia Lentiscus and Quercus coccifera shown both a high capacity to intercept rainfall, increase infiltration and reduce the soil losses. We suggest to apply similar research programs into recently fire affected land as the role of vegetation after the fire is very dynamic (Cerdà 1998b). Acknowledgements The research projects 07 M/0077/1998, 07 M/0023/

  12. Estimation of Soil Moisture for Vegetated Surfaces Using Multi-Temporal L-Band SAR Measurements

    NASA Technical Reports Server (NTRS)

    Shi, Jian-Cheng; Sun, G.; Hsu, A.; Wang, J.; ONeill, P.; Ranson, J.; Engman, E. T.

    1997-01-01

    This paper demonstrates the technique to estimate ground surface and vegetation scattering components, based on the backscattering model and the radar decomposition theory, under configuration of multi-temporal L-band polarimetric SAR measurement. This technique can be used to estimate soil moisture of vegetated surface.

  13. Statistical modeling of global soil NOx emissions

    Microsoft Academic Search

    Xiaoyuan Yan; Toshimasa Ohara; Hajime Akimoto

    2005-01-01

    On the basis of field measurements of NOx emissions from soils, we developed a statistical model to describe the influences of soil organic carbon (SOC) content, soil pH, land-cover type, climate, and nitrogen input on NOx emission. While also considering the effects of soil temperature, soil moisture change-induced pulse emission, and vegetation fire, we simulated NOx emissions from global soils

  14. Vegetation classification and soil moisture calculation using land surface temperature (LST) and vegetation index (VI)

    NASA Astrophysics Data System (ADS)

    Liu, Liangyun; Zhang, Bing; Xu, Genxing; Zheng, Lanfen; Tong, Qingxi

    2002-03-01

    In this paper, the temperature-missivity separating (TES) method and normalized difference vegetation index (NDVI) are introduced, and the hyperspectral image data are analyzed using land surface temperature (LST) and NDVI channels which are acquired by Operative Module Imaging Spectral (OMIS) in Beijing Precision Agriculture Demonstration Base in Xiaotangshan town, Beijing in 26 Apr, 2001. Firstly, the 6 kinds of ground targets, which are winter wheat in booting stage and jointing stage, bare soil, water in ponds, sullage in dry ponds, aquatic grass, are well classified using LST and NDVI channels. Secondly, the triangle-like scatter-plot is built and analyzed using LST and NDVI channels, which is convenient to extract the information of vegetation growth and soil's moisture. Compared with the scatter-plot built by red and near-infrared bands, the spectral distance between different classes are larger, and the samples in the same class are more convergent. Finally, we design a logarithm VIT model to extract the surface soil water content (SWC) using LST and NDVI channel, which works well, and the coefficient of determination, R2, between the measured surface SWC and the estimated is 0.634. The mapping of surface SWC in the wheat area are calculated and illustrated, which is important for scientific irrigation and precise agriculture.

  15. Carbon Dynamics in Vegetation and Soils

    NASA Technical Reports Server (NTRS)

    Trumbore, Susan; Chambers, Jeffrey Q.; Camargo, Plinio; Martinelli, Luiz; Santos, Joaquim

    2005-01-01

    The overall goals of CD-08 team in Phase I were to quantify the contributions of different components of the carbon cycle to overall ecosystem carbon balance in Amazonian tropical forests and to undertake process studies at a number of sites along the eastern LBA transect to understand how and why these fluxes vary with site, season, and year. We divided this work into a number of specific tasks: (1) determining the average rate (and variability) of tree growth over the past 3 decades; (2) determining age demographics of tree populations, using radiocarbon to determine tree age; (3) assessing the rate of production and decomposition of dead wood debris; (4) determining turnover rates for organic matter in soils and the mean age of C respired from soil using radiocarbon measurements; and (5) comparing our results with models and constructing models to predict the potential of tropical forests to function as sources or sinks of C. This report summarizes the considerable progress made towards our original goals, which have led to increased understanding of the potential for central Amazon forests to act as sources or sinks of carbon with altered productivity. The overall picture of tropical forest C dynamics emerging from our Phase I studies suggests that the fraction of gross primary production allocated to growth in these forests is only 25-30%, as opposed to the 50% assumed by many ecosystem models. Consequent slow tree growth rates mean greater mean tree age for a given diameter, as reflected in our measurements and models of tree age. Radiocarbon measurements in leaf and root litter suggest that carbon stays in living tree biomass for several years up to a decade before being added to soils, where decomposition is rapid. The time lags predicted from 14C, when coupled with climate variation on similar time scales, can lead to significant interannual variation in net ecosystem C exchange.

  16. Effects of vegetation structure on biomass accumulation in a Balanced Optimality Structure Vegetation Model (BOSVM v1.0)

    NASA Astrophysics Data System (ADS)

    Yin, Z.; Dekker, S. C.; van den Hurk, B. J. J. M.; Dijkstra, H. A.

    2014-05-01

    A myriad of interactions exist between vegetation and local climate for arid and semi-arid regions. Vegetation function, structure and individual behavior have large impacts on carbon-water-energy balances, which consequently influence local climate variability that, in turn, feeds back to the vegetation. In this study, a conceptual vegetation structure scheme is formulated and tested in the new Balanced Optimality Structure Vegetation Model (BOSVM) to explore the importance of vegetation structure and vegetation adaptation to water stress on equilibrium biomass states. Surface energy, water and carbon fluxes are simulated for a range of vegetation structures across a precipitation gradient in West Africa and optimal vegetation structures that maximize biomass for each precipitation regime are determined. Two different strategies of vegetation adaptation to water stress are included. Under dry conditions vegetation tries to maximize the water use efficiency and leaf area index as it tries to maximize carbon gain. However, a negative feedback mechanism in the vegetation-soil water system is found as the vegetation also tries to minimize its cover to optimize the surrounding bare ground area from which water can be extracted, thereby forming patches of vertical vegetation. Under larger precipitation, a positive feedback mechanism is found in which vegetation tries to maximize its cover as it then can reduce water loss from bare soil while having maximum carbon gain due to a large leaf area index. The competition between vegetation and bare soil determines a transition between a "survival" state to a "growing" state.

  17. Investigation of Soil Moisture - Vegetation Interactions in Oklahoma

    E-print Network

    Ford, Trenton W.

    2013-03-06

    and-atmosphere interactions are an important component of climate, especially in semi-arid regions such as the Southern Great Plains. Interactions between soil moisture and vegetation modulate land-atmosphere coupling and thus represent a crucial...

  18. Integrating dynamic soil and vegetation properties into ecosystem service-based state and transition models to guide rangeland management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    California’s annual rangelands cover approximately 6.4 million hectares, and produce 70% of the state’s forage base. This ecosystem supports more than 300 vertebrate, 5000 invertebrate, and 2000 plant species. Annual rangeland soils have the capacity to support high primary productivity, accumulate ...

  19. Salix vegetation filters for purification of waters and soils

    Microsoft Academic Search

    K. L. Perttu; P. J. Kowalik

    1997-01-01

    During recent years it has become obvious that it is both environmentally and economically appropriate to use vegetation filters of short rotation willows (Salix spp.) to purify waters and soils. Swedish and Polish experiences of vegetation filter efficiencies have been demonstrated in several laboratory, field lysimeter and full-scale experiments. However, there are still many questions to be answered; for example,

  20. Remote measurement of soil moisture over vegetation using infrared temperature measurements

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.

    1991-01-01

    Better methods for remote sensing of surface evapotranspiration, soil moisture, and fractional vegetation cover were developed. The objectives were to: (1) further develop a model of water movement through the soil/plant/atmosphere system; (2) use this model, in conjunction with measurements of infrared surface temperature and vegetation fraction; (3) determine the magnitude of radiometric temperature response to water stress in vegetation; (4) show at what point one can detect that sensitivity to water stress; and (5) determine the practical limits of the methods. A hydrological model that can be used to calculate soil water content versus depth given conventional meteorological records and observations of vegetation cover was developed. An outline of the results of these initiatives is presented.

  1. Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy

    Microsoft Academic Search

    Matteo Detto; Nicola Montaldo; John D. Albertson; Marco Mancini; Gaby Katul

    2006-01-01

    Micrometeorological measurements of evapotranspiration (ET) can be difficult to interpret and use for validating model calculations in the presence of land cover heterogeneity. Land surface fluxes, soil moisture ($\\\\theta$), and surface temperatures (Ts) data were collected by an eddy correlation-based tower located at the Orroli (Sardinia) experimental field (covered by woody vegetation, grass, and bare soil) from April 2003 to

  2. FUEL CHARACTERIZATION AND EFFECTS OF WILDFIRE RECURRENCE ON VEGETATION STRUCTURE ON LIMESTONE SOILS IN SOUTHEASTERN

    E-print Network

    Paris-Sud XI, Université de

    AND EFFECTS OF WILDFIRE RECURRENCE ON VEGETATION STRUCTURE ON LIMESTONE SOILS IN SOUTHEASTERN FRANCE) Fuel characterization and effects of wildfire recurrence on vegetation structure on limestone soils: wildfire recurrence; fire interval, wildland fuel, vegetation structure; shrubland, Pinus halepensis

  3. Improved Prediction of Quasi-Global Vegetation Conditions Using Remotely-Sensed Surface Soil Moisture

    NASA Technical Reports Server (NTRS)

    Bolten, John; Crow, Wade

    2012-01-01

    The added value of satellite-based surface soil moisture retrievals for agricultural drought monitoring is assessed by calculating the lagged rank correlation between remotely-sensed vegetation indices (VI) and soil moisture estimates obtained both before and after the assimilation of surface soil moisture retrievals derived from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) into a soil water balance model. Higher soil moisture/VI lag correlations imply an enhanced ability to predict future vegetation conditions using estimates of current soil moisture. Results demonstrate that the assimilation of AMSR-E surface soil moisture retrievals substantially improve the performance of a global drought monitoring system - particularly in sparsely-instrumented areas of the world where high-quality rainfall observations are unavailable.

  4. Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part II-Vegetation-Covered Soil

    Microsoft Academic Search

    Fawwaz Ulaby; Gerald Bradley; Myron Dobson

    1979-01-01

    Results are presented of an experimental investigation to determine the relationship between radar backscatter coefficient ¿° and soil moisture for vegetation-covered soil. These results extend a previous report which showed the experimental relationship between ¿° and soil moisture for bare soil [1]. It is shown that the highest correlation between ¿° and soil moisture is 0.92 for the combined response

  5. Soil, water, and vegetation conditions in south Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Everitt, J. H.; Gerbermann, A. H. (principal investigators)

    1977-01-01

    The author has identified the following significant results. The best wavelengths in the 0.4 to 2.5 micron interval were determined for detecting lead toxicity and ozone damage, distinguishing succulent from woody species, and detecting silverleaf sunflower. A perpendicular vegetation index, a measure of the distance from the soil background line, in MSS 5 and MSS 7 data space, of pixels containing vegetation was developed and tested as an indicator of vegetation development and crop vigor. A table lookup procedure was devised that permits rapid identification of soil background and green biomass or phenological development in LANDSAT scenes without the need for training data.

  6. Influences of soil moisture and vegetation on convective precipitation forecasts over the United States Great Plains

    NASA Astrophysics Data System (ADS)

    Collow, Thomas W.; Robock, Alan; Wu, Wei

    2014-08-01

    This study investigates the influences of soil moisture and vegetation on 30 h convective precipitation forecasts using the Weather Research and Forecasting model over the United States Great Plains with explicit treatment of convection. North American Regional Reanalysis (NARR) data were used as initial and boundary conditions. We also used an adjusted soil moisture (uniformly adding 0.10 m3/m3 over all soil layers based on NARR biases) to determine whether using a simple observationally based adjustment of soil moisture forcing would provide more accurate simulations and how the soil moisture addition would impact meteorological parameters for different vegetation types. Current and extreme (forest and barren) land covers were examined. Compared to the current vegetation cover, the complete removal of vegetation produced substantially less precipitation, while conversion to forest led to small differences in precipitation. Adding 0.10 m3/m3 to the soil moisture with the current vegetation cover lowered the near surface temperature and increased the humidity to a similar degree as using a fully forested domain with no soil moisture adjustment. However, these temperature and humidity effects on convective available potential energy and moist enthalpy nearly canceled each other out, resulting in a limited precipitation response. Although no substantial changes in precipitation forecasts were found using the adjusted soil moisture, the similarity found between temperature and humidity forecasts using the increased soil moisture and those with a forested domain highlights the sensitivity of the model to soil moisture changes, reinforcing the need for accurate soil moisture initialization in numerical weather forecasting models.

  7. Coupling vegetation organization patterns to soil resource heterogeneity in a central Kenyan dryland using geophysical imagery

    NASA Astrophysics Data System (ADS)

    Franz, Trenton E.; King, Elizabeth G.; Caylor, Kelly K.; Robinson, David A.

    2011-07-01

    In dryland ecosystems, understanding the effects of heterogeneity in soil moisture and geophysical properties on vegetation structure and dynamics poses a suite of challenging research questions. Heterogeneity in soil depth can affect resource availability and the subsequent organization of woody vegetation, while spatiotemporal variation in soil moisture can reveal important ecohydrological feedbacks that govern the outcome of anthropogenic activities on the organization of dryland vegetation. In this research we investigate two cases of soil resource heterogeneity that affect the organization of dryland vegetation patterns by expanding previous electromagnetic induction (EMI) imaging techniques. In the first case we examine the influence of soil depth as a control on soil resource availability on hillslopes in tree-grass systems in central Kenya. Our results indicate that woody vegetation clumping occurs where soil depth changes, and the deeper rooted Acacia tortilis occurs on deep soils while the drought tolerant Acacia etbaica occurs on shallow soils. In the second case we examine daily patch-interpatch scale moisture dynamics following two different-sized rain events in a degraded landscape. With the aid of a numerical subsurface flow model, EMI, and soil moisture data, we have identified a possible positive feedback mechanism ("soil moisture halo effect") that we believe may have contributed to the proliferation and two-phase pattern formation of a native succulent Sansevieria volkensii in degraded ecosystems of Kenya. By determining how different plants respond to, and modify, the soil environment, we can better understand resource capture and dynamics, which in the longterm will help to develop management strategies.

  8. Vegetation Types Alter Soil Respiration and Its Temperature Sensitivity at the Field Scale in an Estuary Wetland

    PubMed Central

    Han, Guangxuan; Xing, Qinghui; Luo, Yiqi; Rafique, Rashad; Yu, Junbao; Mikle, Nate

    2014-01-01

    Vegetation type plays an important role in regulating the temporal and spatial variation of soil respiration. Therefore, vegetation patchiness may cause high uncertainties in the estimates of soil respiration for scaling field measurements to ecosystem level. Few studies provide insights regarding the influence of vegetation types on soil respiration and its temperature sensitivity in an estuary wetland. In order to enhance the understanding of this issue, we focused on the growing season and investigated how the soil respiration and its temperature sensitivity are affected by the different vegetation (Phragmites australis, Suaeda salsa and bare soil) in the Yellow River Estuary. During the growing season, there were significant linear relationships between soil respiration rates and shoot and root biomass, respectively. On the diurnal timescale, daytime soil respiration was more dependent on net photosynthesis. A positive correlation between soil respiration and net photosynthesis at the Phragmites australis site was found. There were exponential correlations between soil respiration and soil temperature, and the fitted Q10 values varied among different vegetation types (1.81, 2.15 and 3.43 for Phragmites australis, Suaeda salsa and bare soil sites, respectively). During the growing season, the mean soil respiration was consistently higher at the Phragmites australis site (1.11 µmol CO2 m?2 s?1), followed by the Suaeda salsa site (0.77 µmol CO2 m?2 s?1) and the bare soil site (0.41 µmol CO2 m?2 s?1). The mean monthly soil respiration was positively correlated with shoot and root biomass, total C, and total N among the three vegetation patches. Our results suggest that vegetation patchiness at a field scale might have a large impact on ecosystem-scale soil respiration. Therefore, it is necessary to consider the differences in vegetation types when using models to evaluate soil respiration in an estuary wetland. PMID:24608636

  9. Modeling Feedbacks Between Water and Vegetation in the Climate System

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Not only is water essential for life on earth, but life itself affects the global hydrologic cycle and consequently the climate of the planet. Whether the global feedbacks between life and the hydrologic cycle tend to stabilize the climate system about some equilibrium level is difficult to assess. We use a global climate model to examine how the presence of vegetation can affect the hydrologic cycle in a particular region. A control for the present climate is compared with a model experiment in which the Sahara Desert is replaced by vegetation in the form of trees and shrubs common to the Sahel region. A second model experiment is designed to identify the separate roles of two different effects of vegetation, namely the modified albedo and the presence of roots that can extract moisture from deeper soil layers. The results show that the presence of vegetation leads to increases in precipitation and soil moisture in western Sahara. In eastern Sahara, the changes are less clear. The increase in soil moisture is greater when the desert albedo is replaced by the vegetation albedo than when both the vegetation albedo and roots are added. The effect of roots is to withdraw water from deeper layers during the dry season. One implication of this study is that the insertion of vegetation into the Sahara modifies the hydrologic cycle so that the vegetation is more likely to persist than initially.

  10. Coupling the Soil-Vegetation-Atmosphere-Transfer Scheme ORCHIDEE to the agronomy model STICS to study the influence of croplands on the European carbon and water budgets

    Microsoft Academic Search

    Nathalie de NOBLET-DUCOUDRÉa; Philippe Ciais; Nicolas Viovy; Nadine Brisson; Bernard Seguin; Alain Perrier

    2004-01-01

    Agriculture is still accounted for in a very simplistic way in the land-surface models which are coupled to climate models, while the area it occupies will significantly increase in the next century according to future scenarios. In order to improve the representation of croplands in a Dynamic Global Vegetation Model named ORCHIDEE (which can be coupled to the IPSL1 climate

  11. Passive microwave response to vegetation and soil moisture on agricultural fields

    NASA Astrophysics Data System (ADS)

    Miller, B.; Bullock, Paul R.

    2014-10-01

    The SMAPVEX12 (Soil Moisture Active/Passive Validation Experiment) was carried out over the summer of 2012 in Manitoba, Canada. The goal of the project was to improve the accuracy of satellite based remote sensing of soil moisture. Data were gathered during a 42-day field campaign with surface measurements on 55 different agricultural fields in south-western Manitoba. The extended duration of the campaign, contrast in soil textures, and variety of crop types over the study region provided an excellent range of soil moisture and vegetation conditions. The study fields ranged from bare to fully vegetated, with volumetric soil moisture levels spanning almost 50%. Remotely sensed data were collected on 17 days by aircraft at 1.4 Ghz with a microwave radiometer at two different resolutions. Observed brightness temperatures from the radiometer showed a typical inverse relationship to the near simultaneous soil moisture measurements from the field. This study will focus on improving existing models for passive microwave retrieval of soil moisture using a more extensive data set of field-measured soil temperature, soil moisture and vegetation biomass from a wider range of crops than has been available in previous studies. The extensive ground data collected will allow for both a validation of the high-resolution passive soil moisture estimate, as well as an analysis on the effect of scaling to a lower resolution passive measurement.

  12. A multi-frequency radiometric measurement of soil moisture content over bare and vegetated fields

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Schmugge, T. J.; Gould, W. I.; Glazar, W. S.; Fuchs, J. E.; Mcmurtrey, J. E., III

    1982-01-01

    An experiment on soil moisture remote sensing was conducted during July to September 1981 on bare, grass, and alfalfa fields at frequencies of 0.6, 1.4, 5.0, and 10.6 GHz with radiometers mounted on mobile towers. The results confirm the frequency dependence of sensitivity reduction due to the presence of vegetation cover. For the type of vegetated fields reported here, the vegetation effect is appreciable even at 0.6 GHz. Measurements over bare soil show that when the soil is wet, the measured brightness temperature is lowest at 5.0 GHz and highest at 0.6 GHz, a result contrary to the expectation based on the estimated dielectric permittivity of soil-water mixtures and the current radiative transfer model in that frequency range.

  13. Soil drainage and vegetation controls of nitrogen transformation rates in forest soils, southern Quebec

    E-print Network

    Moore, Tim

    Soil drainage and vegetation controls of nitrogen transformation rates in forest soils, southern and tree species on nitrogen (N) mineralization and nitrification rates in two forest catenas in southern. Potential N transformation rates in soils under American beech, sugar maple, and eastern hemlock trees were

  14. Soil erosion-vegetation interactions in Mediterranean-dry reclaimed mining slopes

    NASA Astrophysics Data System (ADS)

    Moreno de las Heras, Mariano; Merino-Martín, Luis; Espigares, Tíscar; Nicolau, José M.

    2014-05-01

    Mining reclamation in Mediterranean-dry environments represents a complex task. Reclaimed mining slopes are particularly vulnerable to the effects of accelerated soil erosion processes, especially when these processes lead to the formation of rill networks. On the other hand, encouraging early vegetation establishment is perceived as indispensable to reduce the risk of degradation in these man-made ecosystems. This study shows a synthesis of soil erosion-vegetation research conducted in reclaimed mining slopes at El Moral field site (Teruel coalfield, central-east Spain). Our results highlight the role of rill erosion processes in the development of reclaimed ecosystems. Runoff routing is conditioned by the development of rill networks, maximizing the loss of water resources at the slope scale by surface runoff and altering the spatial distribution of soil moisture. As a result, the availability of water resources for plant growth is drastically reduced, affecting vegetation development. Conversely, vegetation exerts a strong effect on soil erosion: erosion rates rapidly decrease with vegetation cover and no significant rill erosion is usually observed after a particular cover threshold is reached. These interactive two-way vegetation-soil erosion relationships are further studied using a novel modeling approach that focuses on stability analysis of water-limited reclaimed slopes. Our framework reproduces two main groups of trends along the temporal evolution of reclaimed slopes: successful trends, characterized by widespread vegetation development and the effective control of rill erosion processes; and gullying trends, characterized by the progressive loss of vegetation and a sharp logistic increase in erosion rates. This stability-analysis also facilitates the determination of threshold values for both vegetation cover and rill erosion that drive the long-term reclamation results, assisting the identification of critical situations that require specific human interventions to ensure the long-term sustainability of the restored ecosystems.

  15. Assessment of regional biomass-soil relationships using vegetation indexes

    NASA Technical Reports Server (NTRS)

    Lozano-Garcia, D. Fabian; Fernandez, R. Norberto; Johannsen, Chris J.

    1991-01-01

    The development of photosynthetic active biomass in different ecological conditions, as indicated by normalized difference vegetation indices (NDVIs) is compared by performing a stratified sampling (based on soil assocations) on data acquired over Indiana. Data from the NOAA-10 AVHRR were collected for the 1987 and 1988 growing seasons. An NDVI transformation was performed using the two optical bands of the sensor (0.58-0.68 microns and 0.72-1.10 microns). The NDVI is related to the amount of active photosynthetic biomass present on the ground. Samples of NDVI values over 45 fields representing eight soil associations throughout Indiana were collected to assess the effect of soil conditions and acquisition date on the spectral response of the vegetation, as shown by the NDVIs. Statistical analysis of results indicate that land-cover types (forest, forest/pasture, and crops), soil texture, and soil water-holding capacity have an important effect on vegetation biomass changes as measured by AVHRR data. Acquisition dates should be selected with condideration of the phenological stages of vegetation. Sampling of AVHRR data over extended areas should be stratified according to physiographic units rather than man-made boundaries. This will provide more homogeneous samples for statistical analysis.

  16. Combined effect of soil erosion and climate change induces abrupt changes in soil and vegetation properties in semiarid Mediterranean shrublands.

    NASA Astrophysics Data System (ADS)

    Bochet, Esther; García-Fayos, Patricio

    2013-04-01

    Semiarid Mediterranean ecosystems are experiencing major alterations as a result of the complex interactions between climatic fluctuations and disturbances caused by human activities. Future scenarios of global change forecast a rapid degradation of these ecosystems, with a reduction of their functionality, as a result of changes in relevant vegetation and soil properties. Some theoretical models indicate that these ecosystems respond non-linearly to regular variations in the external conditions, with an abrupt shift when conditions approach a certain critical level or threshold. Considering these predictions, there is an urgent need to know the effects that these alterations might have on semi-arid ecosystems and their components. In this study, we aim at analyzing the consequences of climate change and increasing soil erosion on soil and vegetation properties and the functional dynamics of semiarid Mediterranean shrublands. We predict that the combined effect of both drivers will be additive or synergistic, increasing the negative effects of each one. We compared vegetation and soil properties of flat areas (low erosion) and steep hillslopes (high erosion) in two climatic areas (484 mm and 10.3°C, and 368mm and 11.9°C, respectively) that reproduce the predicted climate change in temperature and precipitation for the next 40 years. Species richness, vegetal cover, plant life-form composition were determined in 20 m2 plots and soil was sampled in the same plots to determine bulk density, aggregate stability, fertility and water holding capacity. All soil and vegetation properties were negatively affected by soil erosion and climate change. However, contrary to our hypothesis, the joined effect of both drivers on all soil and vegetation properties was antagonistic, except for the vegetal cover that showed an additive response to their interaction. Our results evidence that soil erosion affects more negatively the soil and vegetation properties in the cooler and wetter climatic area than in the warmer and drier one, and support moreover the idea that a functional threshold has been crossed between the two climatic areas.

  17. SIR-C Measurements of Soil Moisture, Vegetation and Surface Roughness and their Hydrological Application

    NASA Technical Reports Server (NTRS)

    Wang, James R.

    1996-01-01

    The objectives of the study are: (1) Analysis of SIR-C/X-SAR response to soil moisture, vegetation and surface roughness and development of an algorithm to retrieve these parameters; (2) Combination of the visible and near-infrared data and the SIR-C/X-SAR data to improve the range and accuracy of vegetation classification; (3) Testing of theoretical models for microwave propagation with SIR-C/X-SAR and microwave radiometric measurements over rough surfaces; and (4) Evaluation of a water balance model using SIR-C/X-SAR derived soil moisture values and other ancillary data. Progress, significant results and future plans are presented.

  18. Sigma Mesa: Background elemental concentrations in soil and vegetation, 1979

    SciTech Connect

    Ferenbaugh, R.W.; Gladney, E.S.; Brooks, G.H. Jr.

    1990-10-01

    In 1979, soil and vegetation samples were collected on Sigma Mesa to provide background data before construction on the mesa. Elemental data are presented for soil, grass, juniper, pinon pine, and oak. None of the data looks out of the ordinary. The purpose of the sampling program was to acquire, before any disturbance, a set of data to be used as background for future impact analysis. 6 refs., 2 figs., 7 tabs.

  19. Vegetation on the Soil Infiltration System Treating Livestock Wastewater

    NASA Astrophysics Data System (ADS)

    Sakurai, Shinji; Fujikawa, Yoko; Fukui, Masami; Hamasaki, Tastuhide; Sugahara, Masataka

    In the overland flow wastewater treatments and the constructed wetlands, the purification by soil infiltration units is enhanced using vegetation. However, wetland plants (i.e. cattail (Typha latifolia)) and trees, rather than agronomic crops, have been used in conventional systems. We carried out laboratory-scale soil infiltration experiments using two forage crops, tall fescue (Festuca araundinacea) and white clover (Trifolium repens) while using livestock wastewater for irrigation. The purpose of the study was to clarify the amount of accumulation of available phosphorus and exchangeable cations in the soil and its effect on the plant growth. The application of livestock wastewater increased available phosphorus, and exchangeable potassium and sodium in the upper soil. The soil sodification, examined based on exchangeable sodium ratio and plant growth, was not very significant after 10 months of livestock wastewater application. Growing forage crops on the soil infiltration system may be a promising technology to improve crop production and treatment efficacy.

  20. Role of vegetation cover on soil water balance in two Mediterranean areas: semiarid and dry at southeastern of Spain.

    NASA Astrophysics Data System (ADS)

    Manrique, Àngela; Ruiz, Samantha; Chirino, Esteban; Bellot, Juan

    2014-05-01

    Water is a limited resource in the semiarid areas, which affects both, the population services, the economic growth, like the natural ecosystems stability. In this context, an accurate knowledge of soil water balance and role of the vegetation cover contribute to improve the management of resources water and forest. These studies are increasingly important, if we consider the latest Assessment Reports of the Intergovernmental Panel on Climate Change. In this paper the main objectives were focused on:(1)To determine the soil water balance on two different climatic conditions, semiarid and dry climate and(2) Assess the effect of vegetation (structure and cover) on soil water balance under the studied climatic conditions. For this purpose we used HYDROBAL ecohydrological model, which calculates at a daily resolution the water flows through of the vegetation canopy, estimates daily soil moisture and predicts deep drainage from the unsaturated soil layer into the aquifer. In order to achieve these objectives, we have selected two sites in the south-eastern of Spain, on soils calcareous and different climatic conditions. Ventós site in a semiarid Mediterranean area and Confrides site in a dry Mediterranean area, with 303 and 611 mm of annual precipitation respectively. Both sites, the predominant vegetation are afforestations with Pinus halepensis on dry grasslands with some patches of thorn shrublands and dwarf scrubs; but it show difference on trees density, cover and height of pines.Soil water balance was determined in each site using HYDROBAL ecohydrological model on one hydrological year (October 2012 and September 2013).Model inputs include climatic variables (daily rainfall and temperature), as well as soil and vegetation characteristics (soil field capacity, soil wilting point, initial soil water content and vegetation cover index). Model outputs are interception, net rainfall, runoff, soil water reserves, actual evapotranspiration, direct percolation, and deep percolation (or aquifer recharge). In the last decade, HYDROBAL model has been used successfully in semiarid conditions, to assess the soil water balance on different vegetation cover types, and the effect of different land-use scenarios on water resources and aquifer recharge. Results highlight the role of vegetation cover type and volume of annual rainfall on the soil water balance. Both sites present similar percentage of vegetation cover(>80%), however in Ventós site (semiarid area), a lower pine cover (44%) and lower volume of annual rainfall produced differences in the soil water balance. In Confrides site (dry area), in spite of show the twice of annual rainfall, a higher pine cover (78%) reduced the net precipitation and consequently affected the soil water balance. An understanding the role of vegetation cover on soil water balance is a very useful tool to implement an optimal management of forest and water resources.

  1. Effect of Soil and Vegetation Heterogeneity on Runoff in a Semi-arid Grassland

    NASA Astrophysics Data System (ADS)

    Bedford, D. R.; Small, E. E.; Tucker, G. E.; Pockman, W. T.

    2006-12-01

    Vegetation in drylands is typically patchy, and surface soil properties tend to covary with this pattern. For example, infiltration rates tend to be relatively high under plant canopies, and decrease as a function of distance away from canopies. Vegetation also tends to exist on raised mounds of microtopography, and adjacent interspaces are topographically lower as a function of distance from vegetation patches. These patterns will clearly affect the locations where overland flow is generated and how it is routed on the landscape. Predicting soil erosion from overland flow therefore requires the ability to quantify how vegetation and soil properties covary over small-scales (i.e. decimeter to tens of meters). We use a two-dimensional numerical model that simulates overland flow using spatially variable vegetation, microtopography, and infiltration (saturated conductivity). We use a diffusion wave approximation for the shallow overland flow equations and green-ampt infiltration dynamics to simulate overland flow and infiltration at 5-cm grid cells. We calibrate unknown parameters such as roughness, and test the model with known spatial fields of surface properties and observed rainfall and runoff from eight ~100 m2 plots at the Sevilleta LTER in Central New Mexico. We interpolate measured surface properties with cokriging determined by geostatistical relationships to the vegetation pattern. We measure rainfall with tipping buckets and runoff at 5-second resolution from runoff gutters and flumes below the gently sloped grassland plots. Experiments indicate that bulk runoff volume is approximated as a function of surface depression volume and the mean and variance of microtopography and infiltration. We then simulate overland flow and erosion on plots that have experienced three years of vegetation reduction due to enforced drought in a controlled experiment. We quantify change in vegetation cover and pattern, and show how runoff discharge and patterns of overland flow and erosion are affected by this change in vegetation pattern, along with the covarying soil properties.

  2. An Intercomparison of Vegetation Products from Satellite-based Observations used for Soil Moisture Retrievals

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; de Jeu, Richard; Wagner, Wolfgang; Dorigo, Wouter; Hahn, Sebastian; Bloeschl, Guenter

    2013-04-01

    Vegetation and its water content affect active and passive microwave soil moisture retrievals and need to be taken into account in such retrieval methodologies. This study compares the vegetation parameterisation that is used in the TU-Wien soil moisture retrieval algorithm to other vegetation products, such as the Vegetation Optical Depth (VOD), Net Primary Production (NPP) and Leaf Area Index (LAI). When only considering the retrieval algorithm for active microwaves, which was developed by the TU-Wien, the effect of vegetation on the backscattering coefficient is described by the so-called slope [1]. The slope is the first derivative of the backscattering coefficient in relation to the incidence angle. Soil surface backscatter normally decreases quite rapidly with the incidence angle over bare or sparsely vegetated soils, whereas the contribution of dense vegetation is fairly uniform over a large range of incidence angles. Consequently, the slope becomes less steep with increasing vegetation. Because the slope is a derivate of noisy backscatter measurements, it is characterised by an even higher level of noise. Therefore, it is averaged over several years assuming that the state of the vegetation doesn't change inter-annually. The slope is compared to three dynamic vegetation products over Australia, the VOD, NPP and LAI. The VOD was retrieved from AMSR-E passive microwave data using the VUA-NASA retrieval algorithm and provides information on vegetation with a global coverage of approximately every two days [2]. LAI is defined as half the developed area of photosynthetically active elements of the vegetation per unit horizontal ground area. In this study LAI is used from the Geoland2 products derived from SPOT Vegetation*. The NPP is the net rate at which plants build up carbon through photosynthesis and is a model-based estimate from the BiosEquil model [3, 4]. Results show that VOD and slope correspond reasonably well over vegetated areas, whereas in arid areas, where the microwave signals mostly stem from the soil surface and deeper soil layers, they are negatively correlated. A second comparison of monthly values of both vegetation parameters to modelled NPP data shows that particularly over dry areas the VOD corresponds better to the NPP, with r=0.79 for VOD-NPP and r=-0.09 for slope-NPP. 1. Wagner, W., et al., A Study of Vegetation Cover Effects on ERS Scatterometer Data. IEEE Transactions on Geoscience and Remote Sensing, 1999. 37(2): p. 938-948. 2. Owe, M., R. de Jeu, and J. Walker, A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. Geoscience and Remote Sensing, IEEE Transactions on, 2001. 39(8): p. 1643-1654. 3. Raupach, M.R., et al., Balances of Water, Carbon, Nitrogen and Phosphorus in Australian Landscapes: (1) Project Description and Results, 2001, Sustainable Minerals Institute, CSIRO Land and Water. 4. Raupach, M.R., et al., Balances of Water, Carbon, Nitrogen and Phosporus in Australian Landscapes: (2) Model Formulation and Testing, 2001, Sustainable Minerals Institute, CSIRO Land and Water. * These products are the joint property of INRA, CNES and VITO under copyright of Geoland2. They are generated from the SPOT VEGETATION data under copyright CNES and distribution by VITO.

  3. [Investigation of polarization characteristics of soil surface with low vegetation cover and different soil moisture].

    PubMed

    Zhang, Qiao; Sun, Xiao-bing; Hong, Jin

    2010-11-01

    Compared with the spectral detection method, polarization detection could obtain more information of the target. For example, the polarization detection could be applied to interpret the refractive index and the surface roughness of the object, or retrieve the soil moisture, etc. Polarization detection provides a new approach to quantitative retrieval of soil moisture, and this is very important in agriculture, hydrology, meteorology and ecology. The polarization characteristics of soil surface with low vegetation cover,which is a example of mixed pixel in remote sensing, were researched with experiments, and the relationship between the polarization characteristics and soil moisture was also explored. The results showed that the polarization characteristics of soil surface with low vegetation cover are mainly determined by the area of bare soil, and are strongly relevant with the soil moisture. For the results of experiments in this paper, the IDOLP of soil surface with low vegetation cover increased with increasing soil moisture when the viewing angle of instrument was between 20 degree and 60 degree, while the incident angle of light source was fixed at 40 degree. This paper offered a new method to retrieve moisture content of soil with low vegetation cover. PMID:21284189

  4. Investigation of soil influences in AVHRR red and near-infrared vegetation index imagery

    NASA Technical Reports Server (NTRS)

    Huete, A. R.; Tucker, C. J.

    1991-01-01

    The effects of soil optical properties on vegetation index imagery are analyzed with ground-based spectral measurements and both simulated and actual AVHRR data from the NOAA satellites. Soil effects on vegetation indices were divided into primary variations associated with the brightness of bare soils, secondary variations attributed to 'color' differences among bare soils, and soil-vegetation spectral mixing. Primary variations were attributed to shifts in the soil line owing to atmosphere or soil composition. Secondary soil variance was responsible for the Saharan desert 'artefact' areas of increased vegetation index response in AVHRR imagery.

  5. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (principal investigator); Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Gerbermann, A. H.; Torline, R. J.; Gautreaux, M. R.; Everitt, J. H.; Guellar, J. A.; Rodriguez, R. R.

    1974-01-01

    The author has identified the following significant results. Bands 4, 5, and 7 and 5, 6, and 7 were best for distinguishing among crop and soil categories in ERTS-1 SCENES 1182-16322 (1-21-73) and 1308-16323 (5-21-73) respectively. Chlorotic sorghum areas 2.8 acres or larger in size were identified on a computer printout of band 5 data. Reflectance of crop residues was more often different from bare soil in band 4 than in bands 5, 6, and 7. Simultaneously acquired aircraft and spacecraft MSS data indicated that spacecraft surveys are as reliable as aircraft surveys. ERTS-1 data were successfully used to estimate acreage of citrus, cotton, and sorghum as well as idle crop land.

  6. Modeling of the interactions between forest vegetation, disturbances, and sediment yields

    Microsoft Academic Search

    Erkan Istanbulluoglu; David G. Tarboton; Robert T. Pack; Charles H. Luce

    2004-01-01

    The controls of forest vegetation, wildfires, and harvest vegetation disturbances on the frequency and magnitude of sediment delivery from a small watershed (?3.9 km2) in the Idaho batholith are investigated through numerical modeling. The model simulates soil development based on continuous bedrock weathering and the divergence of diffusive sediment transport on hillslopes. Soil removal is due to episodic gully erosion,

  7. Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme and implementation of a new numerical scheme

    E-print Network

    Moelders, Nicole

    ii Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme and implementation of a new.S. Fairbanks, Alaska August 2005 #12;iii Abstract The Hydro-Thermodynamic Soil-Vegetation Scheme (HTSVS;iv Table of Contents Abstract

  8. Modeling the interaction between plant canopies and the planetary boundary layer using a new 1D multi-layer soil- vegetation-atmosphere transfer (SVAT) scheme combined with a non-local turbulence closure model

    NASA Astrophysics Data System (ADS)

    Yetzer, Kenneth H.

    A new one-dimensional (1D) soil-vegetation-atmospheric transport (SVAT) scheme is coupled to a nonlocal turbulence closure model in order to simulate the interactions between a forested canopy and the planetary boundary layer. The SVAT consists of mechanistic models for both physiological (photosynthesis, stomatal conductance and soil/root and bole respiration) and micrometeorological (radiative transfer and surface energy exchanges) processes. The turbulence closure model is a first-order, nonlocal turbulence closure called transilient turbulence theory (Stull, 1993; Inclan et al., 1995) which includes the effects of form drag, wake turbulence, and interference to vertical mixing by the plant elements. The submodel that accounts for radiative transfer inside the forest has been taken from Norman (1979) and Baldocchi (1989). It includes the effect of varying mean leaf inclination angle with height and it also accounts for leaf clumping The photosynthesis submodel is taken from Nikolov and others (1995). It accounts for both differences between shaded and sunlit leaves and the variation of photosynthetic capacity with height. The model was tested with data obtained from a deciduous forest in Pennsylvania. The results show reasonable agreement with the observations. They also demonstrate the model's ability to simulate phenomena that is characteristic of tall canopies like forests, including counter gradient-fluxes and local wind speed maxima in the trunk space.

  9. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (principal investigator)

    1973-01-01

    There are no author-identified significant results in this report. This report deals with the selection of the best channels from the 24-channel aircraft data to represent crop and soil conditions. A three-step procedure has been developed that involves using univariate statistics and an F-ratio test to indicate the best 14 channels. From the 14, the 10 best channels are selected by a multivariate stochastic process. The third step involves the pattern recognition procedures developed in the data analysis plan. Indications are that the procedures in use are satsifactory and will extract the desired information from the data.

  10. Mercury concentrations in oligohaline wetland vegetation and associated soil biogeochemistry.

    PubMed

    Willis, Jonathan M; Gambrell, Robert P; Hester, Mark W

    2011-10-01

    Concentrations of mercury were determined in above- and below-ground tissues of dominant plant species, as well as soils, in the wetlands of Lake Maurepas, Louisiana. Indicators of wetland soil biogeochemical status, such as soil redox potential, pore-water nutrient concentrations, and pore-water total sulfides, were also determined. Total mercury concentrations in plant tissues were within the typical range for vegetation not exposed to mercury contamination. Similarly, total mercury concentrations in soils were typical of uncontaminated wetlands within this geographic region. Soil methyl mercury levels in this study are slightly lower than those reported in other studies of nearby wetlands. This may reflect the less extensive geographic sampling in this study, or the low water levels in the Lake Maurepas system immediately prior to and during this study, which would have altered soil biogeochemical status. This is corroborated by measurements of soil redox potential and soil pore-water nitrogen and sulfur constituents conducted during this study that suggest minimal sulfate reduction was occurring in surficial soils. This study indicates that the wetlands surrounding Lake Maurepas are typical of many uncontaminated oligohaline wetlands in the southeastern U.S. in regard to mercury concentrations. PMID:21188507

  11. Benchmarking LSM root-zone soil mositure predictions using satellite-based vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of modern land surface models (LSMs) to agricultural drought monitoring is based on the premise that anomalies in LSM root-zone soil moisture estimates can accurately anticipate the subsequent impact of drought on vegetation productivity and health. In addition, the water and energy ...

  12. Soil Moisture and Vegetation Water Content Retrieval Using QuikSCAT data

    NASA Astrophysics Data System (ADS)

    Oveisgharan, S.; Haddad, Z. S.; Turk, J.; Li, L.; Rodriguez, E.

    2013-05-01

    Future water resources are a critical societal impact of climate change and hydrological cycles. Current climate models uncertainties result in disagreement on whether there will be more or less water. On a global scale, there are important gaps in knowledge of where water is stored, where it is going, and how fast it is moving. Soil moisture and vegetation water content are key environmental variables on evaporation and transpiration at the land-atmosphere boundary. Radar remote sensing helps to improve our estimate of water resources globally and temporally. SMAP (Soil Moisture Active Passive) and SWOT (Surface Water Ocean Topography) are the two future NASA missions to monitor water resources and their variation spatially and temporally. Li et al. (Li. Et al. 2010) developed a physically based six-channel algorithm, which uses dual-polarization Windsat passive microwave data to retrieve soil moisture and vegetation water content. We use the retrieved soil moisture and vegetation water content using Windsat descending pass (around 6AM), and also simultaneous collocated QuikSCAT dual-polarization backscattered power to estimate different parameters of the land. The backscattered power can be written as ?pi = fbare ?grp(smi,m) + (1-fbare){ Ap ( 1-exp(-Bp Wi) ) + Cp Wi? exp(-Bp Wi) } where ?pi is the ith QuikSCAT backscatter power with polarization p, fbare is the bare surface fraction, m is soil rms. slope, ?grp is the ground backscattered power with polarization p, and smi and Wi are the retrieved soil moisture and vegetation water content using Windsat data. Ap, Cp, and Bp are the backscattering contributions from vegetation volume, canopy ground interaction, and attenuation of the canopy with polarization p, respectively. We assume all parameters remain constant for each month of different years compared to soil moisture and vegetation water content. Therefore for each point, we have 10 unknowns for HH and VV polarizations. We collect all observations of simultaneous QuikSCAT and retrieved smi and Wi for each location during the summer season and retrieve all those 10 parameters. We show how the retrieved global bare surface fraction compares well with the existing maps. These parameters are then used to estimate the soil moisture and vegetation water content for summer days of a different year using QuikSCAT backscattered power and formula above. Although QuikSCAT satellite is designed to capture sea-winds, it also collects data over land globally almost every day. Therefore, we can generate a global map of soil moisture and vegetation water content daily. We compare the retrieved values with Li et al.'s retrieval values.

  13. Modelling the Congo basin ecosystems with a dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Dury, Marie; Hambuckers, Alain; Trolliet, Franck; Huynen, Marie-Claude; Haineaux, Damien; Fontaine, Corentin M.; Fayolle, Adeline; François, Louis

    2014-05-01

    The scarcity of field observations in some parts of the world makes difficult a deep understanding of some ecosystems such as humid tropical forests in Central Africa. Therefore, modelling tools are interesting alternatives to study those regions even if the lack of data often prevents sharp calibration and validation of the model projections. Dynamic vegetation models (DVMs) are process-based models that simulate shifts in potential vegetation and its associated biogeochemical and hydrological cycles in response to climate. Initially run at the global scale, DVMs can be run at any spatial scale provided that climate and soil data are available. In the framework of the BIOSERF project ("Sustainability of tropical forest biodiversity and services under climate and human pressure"), we use and adapt the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) to study the Congo basin vegetation dynamics. The field campaigns have notably allowed the refinement of the vegetation representation from plant functional types (PFTs) to individual species through the collection of parameters such as the specific leaf area or the leaf C:N ratio of common tropical tree species and the location of their present-day occurrences from literature and available database. Here, we test the model ability to reproduce the present spatial and temporal variations of carbon stocks (e.g. biomass, soil carbon) and fluxes (e.g. gross and net primary productivities (GPP and NPP), net ecosystem production (NEP)) as well as the observed distribution of the studied species over the Congo basin. In the lack of abundant and long-term measurements, we compare model results with time series of remote sensing products (e.g. vegetation leaf area index (LAI), GPP and NPP). Several sensitivity tests are presented: we assess consecutively the impacts of the level at which the vegetation is simulated (PFTs or species), the spatial resolution and the initial land cover (potential or human-induced). First, we show simulations over the whole Congo basin at a 0.5° spatial resolution. Then, we present high-resolution simulations (1 km) carried out over different areas of the Congo basin, notably the DRC part of the WWF Lake Tele - Lake Tumba Landscape. Studied in the BIOSERF project, this area is characterized by a forest-savannah mosaic but also by swamp and flooded forest. In addition, forward transient projections of the model driven with the outputs of about thirty global climate models (GCMs) from the new Coupled Model Intercomparison Project Phase 5 (CMIP5) will permit to outline the likely response of carbon pools to changing climate over the Congo basin during the 21th century.

  14. A method to downscale soil moisture to fine-resolutions using topographic, vegetation, and soil data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture can be estimated over large regions with spatial resolutions greater than 500 m, but many applications require finer resolutions (10 – 100 m grid cells). Several methods use topographic data to downscale, but vegetation and soil patterns can also be important. In this paper, a downsc...

  15. A Mixture Modeling Approach to Estimate Vegetation Parameters for Heterogeneous Canopies in Remote Sensing

    Microsoft Academic Search

    M. A. Gilabert; F. J. Garc??a-Haro; J. Meliá

    2000-01-01

    In this article, we describe a reflectance model which parametrizes the reflectance of vegetation canopies from optical properties of leaves and soil, and dominant canopy structural parameters. The model assumes certain principles of geometric models, for example, that sensor integrates the radiance reflected from three components, plant, shaded soil, and illuminated soil. Its inversion provides compositional information of the ground

  16. Spatio-temporal soil moisture patterns across gradients of vegetation and topography

    NASA Astrophysics Data System (ADS)

    Hassler, Sibylle; Weiler, Markus; Blume, Theresa

    2014-05-01

    Soil moisture dynamics control hydrological processes on various scales: changes in local water storage and potential activation of preferential flow paths influence connectivity and runoff from hillslopes and ultimately the discharge response of the stream. The spatio-temporal patterns of soil moisture, however, are dependent on a combination of local parameters such as soil type, vegetation and topography as well as meteorological conditions, antecedent moisture and seasonality. In an integrative monitoring study carried out within the CAOS observatory in Luxemburg (http://www.caos-project.de/), soil moisture was measured at 21 sites with 3 soil moisture profiles each. These sites include grassland as well as forest on the one hand and cover different hillslope positions on the other hand. This setup allows us to study both vegetation and topographic effects. The spatio-temporal patterns of soil moisture were analysed using two approaches: 1) we examined temporal persistence of soil moisture patterns with rank stability plots and addressed the variability within and between sites for contrasting meteorological conditions. 2) In a next step we focused on specific hydrologic events: two periods during summer recession were distinguished, first the drying out of the soils during a period of no precipitation, but also the continuing decline even after summer rains have started. Furthermore, the soil moisture response to three different rainfall events was examined, varying in intensity and antecedent moisture conditions. The emerging contrasts in patterns were put into context of site-specific characteristics such as vegetation and topographical position to identify controls on soil moisture dynamics for our range of sites. Ultimately, linking similarity in soil moisture response in landscapes to these controls can elucidate the hydrological functioning of landscape units and thus facilitate modelling efforts.

  17. Canopy reflectance modelling of semiarid vegetation

    NASA Technical Reports Server (NTRS)

    Franklin, Janet

    1994-01-01

    Three different types of remote sensing algorithms for estimating vegetation amount and other land surface biophysical parameters were tested for semiarid environments. These included statistical linear models, the Li-Strahler geometric-optical canopy model, and linear spectral mixture analysis. The two study areas were the National Science Foundation's Jornada Long Term Ecological Research site near Las Cruces, NM, in the northern Chihuahuan desert, and the HAPEX-Sahel site near Niamey, Niger, in West Africa, comprising semiarid rangeland and subtropical crop land. The statistical approach (simple and multiple regression) resulted in high correlations between SPOT satellite spectral reflectance and shrub and grass cover, although these correlations varied with the spatial scale of aggregation of the measurements. The Li-Strahler model produced estimated of shrub size and density for both study sites with large standard errors. In the Jornada, the estimates were accurate enough to be useful for characterizing structural differences among three shrub strata. In Niger, the range of shrub cover and size in short-fallow shrublands is so low that the necessity of spatially distributed estimation of shrub size and density is questionable. Spectral mixture analysis of multiscale, multitemporal, multispectral radiometer data and imagery for Niger showed a positive relationship between fractions of spectral endmembers and surface parameters of interest including soil cover, vegetation cover, and leaf area index.

  18. Distinguishing vegetation from soil background information. [by gray mapping of Landsat MSS data

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Wiegand, C. L.

    1977-01-01

    In aircraft and satellite multispectral scanner data, soil background signals are superimposed on or intermingled with information about vegetation. A procedure which accounts for soil background would, therefore, make a considerable contribution to an operational use of Landsat and other spectral data for monitoring the productivity of range, forest, and crop lands. A description is presented of an investigation which was conducted to obtain information for the development of such a procedure. The investigation included a study of the soil reflectance that supplies the background signal of vegetated surfaces. Landsat data as recorded on computer compatible tapes were used in the study. The results of the investigation are discussed, taking into account a study reported by Kauth and Thomas (1976). Attention is given to the determination of Kauth's plane of soils, sun angle effects, vegetation index modeling, and the evaluation of vegetation indexes. Graphs are presented which show the results obtained with a gray mapping technique. The technique makes it possible to display plant, soil, water, and cloud conditions for any Landsat overpass.

  19. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (principal investigator)

    1973-01-01

    The author has identified the following significant results. A ratio of MSS channels 5 and 7 (5/7) and 5 to 6 (5/6) signals resulted in a correct recognition of 86.9% of the members of representative crop and soil conditions, compared with recognitions of 60.0, 64.1, 74.1, and 81.4% for channels 4, 5, 6, and 7 taken individually. Based on this result a satellite channel ratio procedure has been developed that enhances line printer gray maps for more efficient experimental test site location in the CCT data. Because independent estimates are not available to judge acreage estmates derived from ERTS-1 data against, except for a few crops, an interpenetrating sample constituting 3.5% of the county is ground truthed periodically. The crop of land uses and their acreages, respectively, as estimated from the interpenetrating samples, are: cotton, 129, 714; sorghum, 182,783; mixed citrus, 53,954; oranges, 16,929; grapefruit, 13,863; rangeland, 137,845; and, improved pastures, 57.169.

  20. Fungal communities in soils along a vegetative ecotone.

    PubMed

    Karst, Justine; Piculell, Bridget; Brigham, Christy; Booth, Michael; Hoeksema, Jason D

    2013-01-01

    We investigated the community composition and diversity of soil fungi along a sharp vegetative ecotone between coastal sage scrub (CSS) and nonnative annual grassland habitat at two sites in coastal California. USA- We pooled soil samples across 29 m transects on either side of the ecotone at each of the two sites, and. using clone libraries of fungal ribosomal DNA, we identified 280 operational taxonomic units (OTUs) from a total 40 g soil. We combined information from partial LSU and ITS sequences and found that the majority of OTUs belonged to the phylum Ascomycota, followed by Basidiomycota. Within the Ascomycota. a quarter of OTUs were Sordariomycetes. 17% were Leotiomycet.es, 16% were Dothideomycetes and the remaining OTUs were distributed among the classes Eurotiomycetes, Pezizomycetes, Lecanoromycetes, Orbiliomycetes and Arthoniomycetes. Within the Basidiomycota. all OTUs but one belonged to the subphylum Agaricomycotina. We also sampled plant communities at the same sites to offer a point of comparison for patterns in richness of fungal communities. Fungal communities had higher alpha and beta diversity than plant communities; fungal communities were approximately 20 times as rich as plant communities and the majority of OTUs were found in single soil samples. Soils harbored a unique mycoflora that did not reveal vegetative boundaries or site differences. High alpha and beta diversity and possible sampling artifacts necessitate extensive sampling to reveal differentiation in these fungal communities. PMID:22802393

  1. Soil and Vegetation Management: Keys to Water Conservation on Rangeland

    E-print Network

    Schuster, Joseph L.

    2001-01-11

    as cover declines below these levels. Plant cover also interrupts the travel of rain- drop splash and overland flow thus reducing erosion. Soil movement caused by surface flow depends on the energy of the runoff, the susceptibility of the soil to detachment... in Edwards County, Texas. Adapted from Blackburn, et al. 1986. n storm characteristics. Vegetative surfaces can hold only a certain amount of water at a given time. Large storms account for the major portion of runoff and deep drainage in the Southwest...

  2. Estimating photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions using Landsat and MODIS data: Effects of site heterogeneity, soil properties and land cover

    NASA Astrophysics Data System (ADS)

    Guerschman, J. P.; Scarth, P.; McVicar, T.; Malthus, T. J.; Stewart, J.; Rickards, J.; Trevithick, R.; Renzullo, L. J.

    2013-12-01

    Vegetation fractional cover is a key indicator for land management monitoring, both in pastoral and agricultural settings. Maintaining adequate vegetation cover protects the soil from the effects of water and wind erosion and also ensures that carbon is returned to soil through decomposition. Monitoring vegetation fractional cover across large areas and continuously in time needs good remote sensing techniques underpinned by high quality ground data to calibrate and validate algorithms. In this study we used Landsat and MODIS reflectance data together with field measurements from 1476 observations across Australia to produce estimates of vegetation fractional cover using a linear unmixing technique. Specifically, we aimed at separating fractions of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare soil (B). We used Landsat reflectance averaged over a 3x3 pixel window representing the area actually measured on the ground and also a 'degraded' Landsat reflectance 40x40 pixel window to simulate the effect of a coarser sensor. Using these two Landsat reflectances we quantified the heterogeneity of each site. We used data from two MODIS-derived reflectance products: the Nadir BRDF-Adjusted surface Reflectance product (MCD43A4) and the MODIS 8-day surface reflectance (MOD09A1). We derived endmembers from the data and estimated fractional cover using a linear unmixing technique. Log transforms and band interaction terms were added to account for non-linearities in the spectral mixing. For each reflectance source we investigated if the residuals were correlated with site heterogeneity, soil colour, soil moisture and land cover type. As expected, the best model was obtained when Landsat data for a small region around each site was used. We obtained root mean square error (RMSE) values of 0.134, 0.175 and 0.153 for PV, NPV and B respectively. When we degraded the Landsat data to an area of ~1 km2 around each site the model performance decreased to RMSE of 0.142, 0.181 and 0.166 for PV, NPV and B. Using MODIS reflectance data (from the MCD43A4 and MOD09A1 products) we obtained similar results as when using the 'degraded' Landsat reflectance, with no significant differences between them. Model performance decreased (i.e. RMSE increased) with site heterogeneity when coarse resolution reflectance data was used. We did not find any evidence of soil colour or moisture influence on model performance. We speculate that the unmixing models may be insensitive to soil colour and/or that the soil moisture in the top few millimetres of soil, which influence reflectance in optical sensors, is decoupled from the soil moisture in the top layer (i.e. a few cm) as measured by passive microwave sensors or estimated by models. The models tended to overestimate PV in cropping areas, possibly due to a strong red/ near infrared signal in homogeneous crops which do not have a high green cover. This study sets the basis for an operational Landsat/ MODIS combined product which would benefit users with varying requirements of spatial, temporal resolution and latency and could potentially be applied to other regions in the world.

  3. Using high-resolution radar images to determine vegetation cover for soil erosion assessments.

    PubMed

    Bargiel, D; Herrmann, S; Jadczyszyn, J

    2013-07-30

    Healthy soils are crucial for human well-being. Because soils are threatened worldwide, politicians recognize the need for soil protection. For example, the European Commission has launched the Thematic Strategy for Soil Protection, which requests the European member states to identify high risk areas for soil degradation. Most states use the Universal Soil Loss Equation (USLE) to assess soil erosion risk at the national scale. The USLE includes different factors, one of them is the vegetation cover and management factor (C factor). Modern satellite-based radar sensors now provide highly accurate vegetation cover data, enabling opportunities to improve the accuracy of the C factor. The presented study proves the suitability for C factor determination based on a multi-temporal classification of high-resolution radar images. Further USLE factors were derived from existing data sources (meteorological data, soil maps, digital elevation model) to conduct an USLE-based soil erosion assessment. The resulting map illustrates a qualitative assessment for soil erosion risk within a plot of about 7*12 km in an agricultural region in Poland that is very susceptible to soil erosion processes. A high erosion risk of more than 10 tonnes per ha and year was assessed to occur on 13.6% (646 ha) of the agricultural areas within the investigated plot. Further 7.8% (372 ha) of agricultural land is threaten by a medium risk of 5-10 tonnes per ha and year. Such a spatial information about areas of high or medium soil erosion risk are crucial for the development of strategies for the protection of soils. PMID:23624425

  4. Assessment of regional biomass-soil relationships using vegetation indexes

    SciTech Connect

    Lozano-Garcia, D.F.; Fernandez, R.N.; Johannsen, C.J. (Lab. of Applications of Remote Sensing, Purdue Univ., West Lafayette, IN (US))

    1991-03-01

    This paper reports on data from the NOAA-10 Advanced Very High Resolution Radiometer (AVHRR) collected over the midwestern United States for the 1987 and 1988 growing seasons. A Normalized Difference Vegetation Index (NDVI) transformation was performed using the two optical bands of the sensor (0.58-0.68 {mu}m and 0.72-1.10 {mu}m). The NDVI is related to the amount of active photosynthetic biomass present on the ground. Samples of NDVI values over 45 fields representing 8 soil associations throughout the State of Indiana were collected to assess the effect of soil conditions and acquisition data on the spectral response of the vegetation, as shown by the NDVI's.

  5. Prairie vegetation and soil nutrient responses to ungulate carcasses

    Microsoft Academic Search

    E. Gene Towne

    2000-01-01

    The impact of large ungulate carcasses on grassland dynamics was investigated by monitoring vegetation and soil nutrients\\u000a in 50-cm circular zones around the center of bison (Bos bison), cattle (B. taurus), and deer (Odocoileus virginianus) carcasses. An ungulate carcass creates an intense localized disturbance that varies with animal size and the season of death.\\u000a Unlike other natural disturbances, carcasses deposit

  6. Vegetation development on deposit soils starting at different seasons

    Microsoft Academic Search

    Franz Rebele

    2008-01-01

    Permanent plots were created in different seasons (autumn and spring) and filled with two substrates: nutrient-rich topsoil\\u000a and nutrient-poor ruderal soil (n = 5 for each treatment). My objectives were to assess the influence of starting season on initial species composition, whether\\u000a differences at the start cause divergent or convergent pathways of succession and which mechanisms are operating during vegetation\\u000a development. Mean

  7. A comparison of soil properties under four vegetation units from six metalliferous hills in Katanga

    NASA Astrophysics Data System (ADS)

    Kaya, Donato; Gregory, Mahy; Michel, Ngongo; Gilles, Colinet

    2013-04-01

    In Katanga (Democratic Republic of Congo), numerous metalliferous hills are distributed along what is called the copperhill belt from Kolwezi to Lubumbashi. Very specific vegetation developed on these hills within the miombo forest in response to very specific soil conditions, among which the copper content. Previous studies have already shown the existence of gradients of copper from the mineralized rocks outcropping at the top of the hills to the foot slopes on colluviums. After a characterization of the vertical variability of soil properties in pits distributed along the main slopes, we investigated the soil-vegetation relationships in six hills located between the towns of Tenke and Fungurume. Observation 1-square meter plots were installed in four vegetation units and sixty of them were selected according to their relative importance on the six hills. The soil from the top 10cm was sampled and analyzed for pH, Total Organic Carbon, available P, K, Mg, Ca, Cu, Co and Mn and soluble Cu and Co. Analysis of variance was performed in order to assess whether the effects of the "Hill" and of the "Vegetation Unit" were significant to explain soil chemical variability. Additionally, short transects were sampled at the boundaries from adjacent vegetation units in order to evaluate the gradual or rough nature of change in soil properties under these units. The results indicate that the six hills can not be considered as different for pH and available nutrients, excepted K, nor for the available Cu and Mn. Only TOC and Co contents were differing, mainly from one hill compared to the other five. The vegetation effect is significant for almost every studied soil characteristics, to the exception of Ca and Mn. Soluble Cu and Co significantly correlate to available Cu and Co, respectively. The pH variations however explain local departures from linear regression. The ANOVA models take into account 30 to 60% of the variations of soil properties. The study of the boundaries indicate that most changes of vegetation types may be related to abrupt changes in soil properties. These changes do not only occur along the slope as a result of malachite deposition by erosion but the surface processes seem to be predominant in the context of the hills.

  8. [Review of dynamic global vegetation models (DGVMs)].

    PubMed

    Che, Ming-Liang; Chen, Bao-Zhang; Wang, Ying; Guo, Xiang-Yun

    2014-01-01

    Dynamic global vegetation model (DGVM) is an important and efficient tool for study on the terrestrial carbon circle processes and vegetation dynamics. This paper reviewed the development history of DGVMs, introduced the basic structure of DGVMs, and the outlines of several world-widely used DGVMs, including CLM-DGVM, LPJ, IBIS and SEIB. The shortages of the description of dynamic vegetation mechanisms in the current DGVMs were proposed, including plant functional types (PFT) scheme, vegetation competition, disturbance, and phenology. Then the future research directions of DGVMs were pointed out, i. e. improving the PFT scheme, refining the vegetation dynamic mechanism, and implementing a model inter-comparison project. PMID:24765870

  9. Environmental sensor networks for vegetation, animal and soil sciences

    NASA Astrophysics Data System (ADS)

    Zerger, A.; Viscarra Rossel, R. A.; Swain, D. L.; Wark, T.; Handcock, R. N.; Doerr, V. A. J.; Bishop-Hurley, G. J.; Doerr, E. D.; Gibbons, P. G.; Lobsey, C.

    2010-10-01

    Environmental sensor networks (ESNs) provide new opportunities for improving our understanding of the environment. In contrast to remote sensing technologies where measurements are made from large distances (e.g. satellite imagery, aerial photography, airborne radiometric surveys), ESNs focus on measurements that are made in close proximity to the target environmental phenomenon. Sensors can be used to collect a much larger number of measurements, which are quantitative and repeatable. They can also be deployed in locations that may otherwise be difficult to visit regularly. Sensors that are commonly used in the environmental sciences include ground-based multispectral vegetation sensors, soil moisture sensors, GPS tracking and bioacoustics for tracking movement in wild and domesticated animals. Sensors may also be coupled with wireless networks to more effectively capture, synthesise and transmit data to decision-makers. The climate and weather monitoring domains provide useful examples of how ESNs can provide real-time monitoring of environmental change (e.g. temperature, rainfall, sea-surface temperature) to many users. The objective of this review is to examine state-of-the-art use of ESNs for three environmental monitoring domains: (a) terrestrial vegetation, (b) animal movement and diversity, and (c) soil. Climate and aquatic monitoring sensor applications are so extensive that they are beyond the scope of this review. In each of the three application domains (vegetation, animals and soils) we review the technologies, the attributes that they sense and briefly examine the technical limitations. We conclude with a discussion of future directions.

  10. River basin soil-vegetation condition assessment applying mathematic simulation methods

    NASA Astrophysics Data System (ADS)

    Mishchenko, Natalia; Trifonova, Tatiana; Shirkin, Leonid

    2013-04-01

    Meticulous attention paid nowadays to the problem of vegetation cover productivity changes is connected also to climate global transformation. At the same time ecosystems anthropogenic transformation, basically connected to the changes of land use structure and human impact on soil fertility, is developing to a great extent independently from climatic processes and can seriously influence vegetation cover productivity not only at the local and regional levels but also globally. Analysis results of land use structure and soil cover condition influence on river basin ecosystems productive potential is presented in the research. The analysis is carried out applying integrated characteristics of ecosystems functioning, space images processing results and mathematic simulation methods. The possibility of making permanent functional simulator defining connection between macroparameters of "phytocenosis-soil" system condition on the basis of basin approach is shown. Ecosystems of river catchment basins of various degrees located in European part of Russia were chosen as research objects. For the integrated assessment of ecosystems soil and vegetation conditions the following characteristics have been applied: 1. Soil-productional potential, characterizing the ability of natural and natural-anthropogenic ecosystem in certain soil-bioclimatic conditions for long term reproduction. This indicator allows for specific phytomass characteristics and ecosystem produce, humus content in soil and bioclimatic parameters. 2. Normalized difference vegetation index (NDVI) has been applied as an efficient, remotely defined, monitoring indicator characterizing spatio-temporal unsteadiness of soil-productional potential. To design mathematic simulator functional simulation methods and principles on the basis of regression, correlation and factor analysis have been applied in the research. Coefficients values defining in the designed static model of phytoproductivity distribution has been executed applying non-linear approximation by the smallest squares method with the help of software in Mathcad environment. Mathematic simulation resulted in defining possible permanent conditions of "phytocenosis-soil" system in coordinates of phytomass, phytoproductivity, humus percentage in soil. It has been demonstrated that phytocenosis productivity is determined not only by vegetation photosynthetic activity but by forest and meadow phytocenosis area ratio as well. Local maximums attached to certain phytomass areas and humus content in soil have been determined at basin phytoproductivity distribution diagram. One of such areas lies within specific phytomass values of B = 133,56 t/hectare and humus content of 2,29 % and the most stable "phytocenosis - soil" system condition corresponds to it. Efficient correlation of natural forest and meadow phytocenosis for the Klyazma river has been defined, at which the most stable permanent condition is achieved and it ranks 7:1. It corresponds to the Klyazma basin location in south taiga zone and it is proved by intensive forest over growing of the abandoned agricultural lands.

  11. Decadal predictability of soil water, vegetation, and wildfire frequency over North America

    NASA Astrophysics Data System (ADS)

    Chikamoto, Yoshimitsu; Timmermann, Axel; Stevenson, Samantha; DiNezio, Pedro; Langford, Sally

    2015-01-01

    The potential decadal predictability of land hydrological and biogeochemical variables in North America is examined using a 900-year-long pre-industrial control simulation, conducted with the NCAR Community Earth System Model (CESM) version 1.0.3. The leading modes of simulated North American precipitation and soil water storage are characterized essentially by qualitatively similar meridional seesaw patterns associated with the activity of the westerly jet. Whereas the corresponding precipitation variability can be described as a white noise stochastic process, power spectra of vertically integrated soil water exhibit significant redness on timescales of years to decades, since the predictability of soil water storage arises mostly from the integration of precipitation variability. As a result, damped persistence hindcasts following a 1st order Markov process are skillful with lead times of up to several years. This potential multi-year skill estimate is consistent with ensemble hindcasts conducted with the CESM for various initial conditions. Our control simulation further suggests that decadal variations in soil water storage also affect vegetation and wildfire occurrences. The long-term potential predictability of soil water variations in combination with the slow regrowth of vegetation after major disruptions leads to enhanced predictability on decadal timescales for vegetation, terrestrial carbon stock, and fire frequency, in particular in the Southern United States (US)/Mexico region. By contrast, the prediction skill of fire frequency in the Northern US is limited to 1 year. Our results demonstrate that skillful decadal predictions of soil water storage, carbon stock, and fire frequency are feasible with proper initialization of soil conditions. Although the potential predictability in our idealized modeling framework would overestimate the real predictability of the coupled climate-land-vegetation system, the decadal climate prediction may become beneficial for water resource management, forestry, and agriculture.

  12. [Effect of vegetation types on soil respiration characteristics on a smaller scale].

    PubMed

    Yan, Jun-Xia; Li, Hong-Jian; Tang, Yi; Zhang, Yi-Hui

    2009-11-01

    Soil respiration was measured from April 2005 to December 2007 using a LICOR-6400-09 chamber connecting a LiCor-6400 portable photosynthesis system at 3 sites with same elevation and soil texture but different vegetation types. The results indicated that seasonal trend of soil respiration showed a distinct temporal change with the higher values in summer and autumn months and the lower values in winter and spring. Annual means (March to December) of soil respiration for 3 the sampling sites were(3.58 +/- 2.50), (3.82 +/- 2.75) and (4.42 +/- 3.38) micromol x (m2 x s)(-1) (p > 0.05), respectively. Released annual amount (March to December) of CO2 efflux from 3 sites was from 854.9 to 1 297.2 g x (m2 x a)(-1) and the amount was no difference between sites and among years. The fitted exponential equations of soil respiration and soil temperature for 3 sites were all significant with the R2 from 0.61 to 0.81, and the Q10 and R10 calculated from fitted parameters of the equations ranged from 2.60 to 4.50, and from 1.70 to 3.02 micromol x (m2 x s)(-1). The relationships between soil respiration and soil water content were not significant for all 3 sites with a maximum R2 of the regression equations only 0.12 (p > 0.05). However, when the soil temperature was above 10 degrees C, the relationships between soil respiration and soil water content was significant (p < 0.05). Four combined regression equations including soil temperature and soil water content could be used to model relationships between soil respiration and both soil temperature and soil water content together, with the R2 most above 0.7, and maximum of 0.91. PMID:20063717

  13. The influence of biological soil crusts on successional vegetation patterns in a revegetated desert area in the Tengger Desert, China

    NASA Astrophysics Data System (ADS)

    Lei, Huang; Zhi-shan, Zhang; Xin-rong, Li

    2014-05-01

    Biological soil crusts (BSCs) are an important cover in arid desert landscapes, and have a profound effect on the soil water redistribution, plant growth and vegetation succession. Although a large number of studies have focused on the single-process of BSCs experimentally, relatively few studies have examined the eco-hydrological mechanisms of BSCs influence on successional vegetation patterns in revegetated desert areas. In this study, based on the long term monitoring and focused research on sand-binding vegetation in the Shapotou region (southeastern edge of the Tengger Desert, China) since the 1950s, the characteristics of plant community and BSCs at different successional stages, and the soil water dynamics were investigated. Then a simplified mathematical model describing the coupled dynamics of soil moisture and vegetation in drylands was developed. And finally the role of BSCs on soil water dynamics and vegetation patterns were discussed. Results have showed that BSCs was closely associated with the vegetation succession, such as in the Caragana korshinskii community, moss crusts were the dominate species and in the Artemisia ordosica community, algae crusts were the dominate species. BSCs had a significant effect on soil water infiltration and it was one of the main driving forces to vegetation pattern formations, as algae crusts would induced the tiger bush stripes and moss crusts would lead to the leopard bush spots in arid ecosystems.

  14. Modelling the Effects of Vegetation on Stability of Slopes

    Microsoft Academic Search

    Y H Chok; M. I. E. Aust; M B Jaksa; D V Griffiths

    Summary: It is well understood that vegetation influences slope stability in two ways: through hydrological effects and mechanical effects. Hydrological effects involve the removal of soil water by evapotranspiration through vegetation, which lead to an increase in soil suction or a reduction in pore-water pressure, hence, an increase in the soil shear strength. The shear strength of the soil is

  15. Development of the IAP Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaodong; Li, Fang; Song, Xiang

    2014-05-01

    The IAP Dynamic Global Vegetation Model (IAP-DGVM) has been developed to simulate the distribution and structure of global vegetation within the framework of Earth System Models. It incorporates our group's recent developments of major model components such as the shrub sub-model, establishment and competition parameterization schemes, and a process-based fire parameterization of intermediate complexity. The model has 12 plant functional types, including seven tree, two shrub, and three grass types, plus bare soil. Different PFTs are allowed to coexist within a grid cell, and their state variables are updated by various governing equations describing vegetation processes from fine-scale biogeophysics and biogeochemistry, to individual and population dynamics, to large-scale biogeography. Environmental disturbance due to fire not only affects regional vegetation competition, but also influences atmospheric chemistry and aerosol emissions. Simulations under observed atmospheric conditions showed that the model can correctly reproduce the global distribution of trees, shrubs, grasses, and bare soil. The simulated global dominant vegetation types reproduce the transition from forest to grassland (savanna) in the tropical region, and from forest to shrubland in the boreal region, but overestimate the region of temperate forest.

  16. Soil TPH concentration estimation using vegetation indices in an oil polluted area of eastern China.

    PubMed

    Zhu, Linhai; Zhao, Xuechun; Lai, Liming; Wang, Jianjian; Jiang, Lianhe; Ding, Jinzhi; Liu, Nanxi; Yu, Yunjiang; Li, Junsheng; Xiao, Nengwen; Zheng, Yuanrun; Rimmington, Glyn M

    2013-01-01

    Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis) around oil wells that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m(-2) to 5.3 g m(-2) with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg(-1) to 652 mg kg(-1). The modified chlorophyll absorption ratio index (MCARI) best estimated soil TPH concentration among 20 vegetation indices. The linear model involving MCARI had the highest coefficient of determination (R(2)?=?0.73) and accuracy of prediction (RMSE?=?104.2 mg kg(-1)). For other vegetation indices and red edge parameters, the R(2) and RMSE values ranged from 0.64 to 0.71 and from 120.2 mg kg(-1) to 106.8 mg kg(-1) respectively. The traditional broadband normalized difference vegetation index (NDVI), one of the broadband multispectral vegetation indices (BMVIs), produced a prediction (R(2)?=?0.70 and RMSE?=?110.1 mg kg(-1)) similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable. PMID:23342066

  17. Soil TPH Concentration Estimation Using Vegetation Indices in an Oil Polluted Area of Eastern China

    PubMed Central

    Zhu, Linhai; Zhao, Xuechun; Lai, Liming; Wang, Jianjian; Jiang, Lianhe; Ding, Jinzhi; Liu, Nanxi; Yu, Yunjiang; Li, Junsheng; Xiao, Nengwen; Zheng, Yuanrun; Rimmington, Glyn M.

    2013-01-01

    Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis) around oil wells that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m?2 to 5.3 g m?2 with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg?1 to 652 mg kg?1. The modified chlorophyll absorption ratio index (MCARI) best estimated soil TPH concentration among 20 vegetation indices. The linear model involving MCARI had the highest coefficient of determination (R2?=?0.73) and accuracy of prediction (RMSE?=?104.2 mg kg?1). For other vegetation indices and red edge parameters, the R2 and RMSE values ranged from 0.64 to 0.71 and from 120.2 mg kg?1 to 106.8 mg kg?1 respectively. The traditional broadband normalized difference vegetation index (NDVI), one of the broadband multispectral vegetation indices (BMVIs), produced a prediction (R2?=?0.70 and RMSE?=?110.1 mg kg?1) similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable. PMID:23342066

  18. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth

    Microsoft Academic Search

    Zongqiang GONG; Peijun LI; B. M. Wilke; Kassem Alef

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soil for a remediation purpose, with some of the oil remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soil was not known. The objective of this study was to evaluate the effects of the vegetable oil

  19. A microwave scattering model for layered vegetation

    NASA Technical Reports Server (NTRS)

    Karam, Mostafa A.; Fung, Adrian K.; Lang, Roger H.; Chauhan, Narinder S.

    1992-01-01

    A microwave scattering model was developed for layered vegetation based on an iterative solution of the radiative transfer equation up to the second order to account for multiple scattering within the canopy and between the ground and the canopy. The model is designed to operate over a wide frequency range for both deciduous and coniferous forest and to account for the branch size distribution, leaf orientation distribution, and branch orientation distribution for each size. The canopy is modeled as a two-layered medium above a rough interface. The upper layer is the crown containing leaves, stems, and branches. The lower layer is the trunk region modeled as randomly positioned cylinders with a preferred orientation distribution above an irregular soil surface. Comparisons of this model with measurements from deciduous and coniferous forests show good agreements at several frequencies for both like and cross polarizations. Major features of the model needed to realize the agreement include allowance for: (1) branch size distribution, (2) second-order effects, and (3) tree component models valid over a wide range of frequencies.

  20. Transfer of Cadmium from Soil to Vegetable in the Pearl River Delta area, South China

    PubMed Central

    Zhang, Huihua; Chen, Junjian; Zhu, Li; Yang, Guoyi; Li, Dingqiang

    2014-01-01

    The purpose of this study was to investigate the regional Cadmium (Cd) concentration levels in soils and in leaf vegetables across the Pearl River Delta (PRD) area; and reveal the transfer characteristics of Cadmium (Cd) from soils to leaf vegetable species on a regional scale. 170 paired vegetables and corresponding surface soil samples in the study area were collected for calculating the transfer factors of Cadmium (Cd) from soils to vegetables. This investigation revealed that in the study area Cd concentration in soils was lower (mean value 0.158 mg kg?1) compared with other countries or regions. The Cd-contaminated areas are mainly located in west areas of the Pearl River Delta. Cd concentrations in all vegetables were lower than the national standard of Safe vegetables (0.2 mg kg?1). 88% of vegetable samples met the standard of No-Polluted vegetables (0.05 mg kg?1). The Cd concentration in vegetables was mainly influenced by the interactions of total Cd concentration in soils, soil pH and vegetable species. The fit lines of soil-to-plant transfer factors and total Cd concentration in soils for various vegetable species were best described by the exponential equation (), and these fit lines can be divided into two parts, including the sharply decrease part with a large error range, and the slowly decrease part with a low error range, according to the gradual increasing of total Cd concentrations in soils. PMID:25247431

  1. Modeling vegetation controls on fluvial morphological trajectories

    NASA Astrophysics Data System (ADS)

    Bertoldi, Walter; Siviglia, Annunziato; Tettamanti, Stefano; Toffolon, Marco; Vetsch, David; Francalanci, Simona

    2014-10-01

    The role of riparian vegetation in shaping river morphology is widely recognized. The interaction between vegetation growth and riverbed evolution is characterized by complex nonlinear feedbacks, which hinder direct estimates of the role of key elements on the morphological evolutionary trajectories of gravel bed rivers. Adopting a simple theoretical framework, we develop a numerical model which couples hydromorphodynamics with biomass dynamics. We perform a sensitivity analysis considering several parameters as flood intensity, type of vegetation, and groundwater level. We find that the inclusion of vegetation determines a threshold behavior, identifying two possible equilibrium configurations: unvegetated versus vegetated bars. Stable vegetation patterns can establish only under specific conditions, which depend on the different environmental and species-related characteristics. From a management point of view, model results show that relatively small changes in water availability or species composition may determine a sudden shift between dynamic unvegetated conditions to more stable, vegetated rivers.

  2. Influence of vegetation, soil and antecedent soil moisture on the variability of surface runoff coefficients at the plot scale in the eastern alps

    Microsoft Academic Search

    P. Chifflard; B. Kohl; G. Markart; R. Kirnbauer

    2009-01-01

    Modelling the runoff of a catchment in a high spatial resolution, you need to know the potential of a single plot to generate surface runoff. The portion of surface runoff is highly significant for storm runoff events, accordingly, it mainly forms the hydrograph. In this study, the influence of vegetation, soil features and antecedent soil moisture on generating surface runoff

  3. Soil-vegetation-climate interactions in arid landscapes: Effects of the North American monsoon on grass recruitment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used a daily time step, multi-layer simulation model of soil water dynamics to integrate effects of soils, vegetation, and climate on the recruitment of Bouteloua eriopoda (black grama), the historically dominant grass in the Chihuahuan Desert. We simulated landscapes at the Jornada ARS-LTER site...

  4. Soil-vegetation-climate interactions in arid landscapes: Effects of the North American monsoon on grass recruitment

    E-print Network

    in carbon dynamics (Jackson et al., 2002; Knapp et al., 2008) and loss of biodiversity and forage productionSoil-vegetation-climate interactions in arid landscapes: Effects of the North American monsoon Perennial grass Plant-soil feedbacks Simulation model State change a b s t r a c t We used a daily time step

  5. Effects of varying soil moisture contents and vegetation canopies on microwave emissions

    NASA Technical Reports Server (NTRS)

    Burke, H.-H. K.; Schmugge, T. J.

    1982-01-01

    Results of NASA airborne passive microwave scans of bare and vegetated fields for comparison with ground truth tests are discussed and a model for atmospheric scattering of radiation by vegetation is detailed. On-board radiometers obtained data at 21, 2.8, and 1.67 cm during three passes over each of 46 fields, 28 of which were bare and the others having wheat or alfalfa. Ground-based sampling included moisture in five layers down to 15 cm in addition to soil temperature. The relationships among the brightness temperature and soil moisture, as well as the surface roughness and the vegetation canopy were examined. A model was developed for the dielectric coefficient and volume scattering for a vegetation medium. L- to C-band data were found useful for retrieving soil information directly. A surface moisture content of 5-35% yielded an emissivity of 0.9-0.7. The data agreed well with a combined multilayer radiative transfer model with simple roughness correction.

  6. Soil moisture status estimation over Three Gorges area with Landsat TM data based on temperature vegetation dryness index

    NASA Astrophysics Data System (ADS)

    Xu, Lina; Niu, Ruiqing; Li, Jiong; Dong, Yanfang

    2011-12-01

    Soil moisture is the important indicator of climate, hydrology, ecology, agriculture and other parameters of the land surface and atmospheric interface. Soil moisture plays an important role on the water and energy exchange at the land surface/atmosphere interface. Remote sensing can provide information on large area quickly and easily, so it is significant to do research on how to monitor soil moisture by remote sensing. This paper presents a method to assess soil moisture status using Landsat TM data over Three Gorges area in China based on TVDI. The potential of Temperature- Vegetation Dryness Index (TVDI) from Landsat TM data in assessing soil moisture was investigated in this region. After retrieving land surface temperature and vegetation index a TVDI model based on the features of Ts-NDVI space is established. And finally, soil moisture status is estimated according to TVDI. It shows that TVDI has the advantages of stability and high accuracy to estimating the soil moisture status.

  7. Biological soil crust and surface soil properties in different vegetation types of Horqin Sand Land, China

    Microsoft Academic Search

    Ha-Lin Zhao; Yi-Rui Guo; Rui-Lian Zhou; Sam Drake

    2010-01-01

    Physical and chemical properties (including coverage, thickness, hardness, moisture, particle size distribution, organic matter and nutrient contents etc.) of biological soil crust and 0–5.0cm surface soil under the crust in three types of vegetation (semi-shrub Artemisia frigida, shrub Salix gordejevii and tree Populus simonii) were surveyed in 2005 and 2006 in Horqin Sand Land to understand the effects of different

  8. Radar response to vegetation. [soil moisture mapping via microwave backscattering

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1975-01-01

    Active microwave measurements of vegetation backscatter were conducted to determine the utility of radar in mapping soil moisture through vegetation and mapping crop types. Using a truck-mounted boom, spectral response data were obtained for four crop types (corn, milo, soybeans, and alfalfa) over the 4-8 GHz frequency band, at incidence angles of 0 to 70 degrees in 10-degree steps, and for all four linear polarization combinations. Based on a total of 125 data sets covering a wide range of soil moisture, content, system design criteria are proposed for each of the aforementioned objectives. Quantitative soil moisture determination was best achieved at the lower frequency end of the 4-8 GHz band using HH polarized waves in the 5- to 15-degree incidence angle range. A combination of low and high frequency measurements are suggested for classifying crop types. For crop discrimination, a dual-frequency dual-polarization (VV and cross) system operating at incidence angles above 40 degrees is suggested.

  9. Modified vegetation-erosion dynamics model and its application in typical watersheds in the Loess Plateau

    Microsoft Academic Search

    Yuehong CHEN; Feixin WANG; Guangquan LIU; Xinxiao YU; Guodong JIA; Ping GAN

    2011-01-01

    The vegetation-erosion model was applied in three typical watersheds of hilly and gully area in the Loess Plateau in northwestern China to study the dynamic relations between vegetation coverage and soil erosion rate and various stresses. The model was improved by introducing rainfall and runoff factors. Then the modified model was applied in the Luergou and Luoyugou watersheds. The calculation

  10. Use of LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    NASA Technical Reports Server (NTRS)

    Eagleson, Peter S.; Jasinski, Michael F.

    1988-01-01

    The estimation of the spatially variable surface moisture and heat fluxes of natural, semivegetated landscapes is difficult due to the highly random nature of the vegetation (e.g., plant species, density, and stress) and the soil (e.g., moisture content, and soil hydraulic conductivity). The solution to that problem lies, in part, in the use of satellite remotely sensed data, and in the preparation of those data in terms of the physical properties of the plant and soil. The work was focused on the development and testing of a stochastic geometric canopy-soil reflectance model, which can be applied to the physically-based interpretation of LANDSAT images. The model conceptualizes the landscape as a stochastic surface with bulk plant and soil reflective properties. The model is particularly suited for regional scale investigations where the quantification of the bulk landscape properties, such as fractional vegetation cover, is important on a pixel by pixel basis. A summary of the theoretical analysis and the preliminary testing of the model with actual aerial radiometric data is provided.

  11. The soil seed bank and its relationship to the established vegetation in urban wastelands

    Microsoft Academic Search

    Harald Albrecht; Elisabeth Eder; Thomas Langbehn; Clara Tschiersch

    2011-01-01

    Industrial and traffic areas are particularly characteristic of the urban environment. Due to frequent soil transport and vegetation disturbance, soil seed banks and seed production play an essential role for vegetation establishment in these sites. Since researchers have scarcely focussed on these traits, it was analysed in three railway and loading areas in Munich. Seed numbers in soil ranged from

  12. Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests

    Microsoft Academic Search

    Gloria Rodríguez-Loinaz; Miren Onaindia; Ibone Amezaga; Iker Mijangos; Carlos Garbisu

    2008-01-01

    Most studies on the interactions between aboveground vegetation and belowground soil diversity have been carried out in microcosms or manipulated field plots. In the current study, we investigated the relationship between forest vegetation diversity and soil functional diversity (calculated from the activity of soil enzymes) in naturally developed plant communities of native mixed-oak forests without imposing any disturbances to already

  13. Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type

    NASA Astrophysics Data System (ADS)

    Camino-Serrano, Marta; Gielen, Bert; Luyssaert, Sebastiaan; Ciais, Philippe; Vicca, Sara; Guenet, Bertrand; Vos, Bruno De; Cools, Nathalie; Ahrens, Bernhard; Altaf Arain, M.; Borken, Werner; Clarke, Nicholas; Clarkson, Beverley; Cummins, Thomas; Don, Axel; Pannatier, Elisabeth Graf; Laudon, Hjalmar; Moore, Tim; Nieminen, Tiina M.; Nilsson, Mats B.; Peichl, Matthias; Schwendenmann, Luitgard; Siemens, Jan; Janssens, Ivan

    2014-05-01

    Lateral transport of carbon plays an important role in linking the carbon cycles of terrestrial and aquatic ecosystems. There is, however, a lack of information on the factors controlling one of the main C sources of this lateral flux, i.e., the concentration of dissolved organic carbon (DOC) in soil solution across large spatial scales and under different soil, vegetation, and climate conditions. We compiled a database on DOC in soil solution down to 80 cm and analyzed it with the aim, first, to quantify the differences in DOC concentrations among terrestrial ecosystems, climate zones, soil, and vegetation types at global scale and second, to identify potential determinants of the site-to-site variability of DOC concentration in soil solution across European broadleaved and coniferous forests. We found that DOC concentrations were 75% lower in mineral than in organic soil, and temperate sites showed higher DOC concentrations than boreal and tropical sites. The majority of the variation (R2 = 0.67-0.99) in DOC concentrations in mineral European forest soils correlates with NH4+, C/N, Al, and Fe as the most important predictors. Overall, our results show that the magnitude (23% lower in broadleaved than in coniferous forests) and the controlling factors of DOC in soil solution differ between forest types, with site productivity being more important in broadleaved forests and water balance in coniferous stands.

  14. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index

    NASA Astrophysics Data System (ADS)

    Holzman, M. E.; Rivas, R.; Piccolo, M. C.

    2014-05-01

    Soil moisture availability affects rainfed crop yield. Therefore, the development of methods for pre-harvest yield prediction is essential for the food security. A study was carried out to estimate regional crop yield using the Temperature Vegetation Dryness Index (TVDI). Triangular scatters from land surface temperature (LST) and enhanced vegetation index (EVI) space from MODIS (Moderate Resolution Imaging Spectroradiometer) were utilized to obtain TVDI and to estimate soil moisture availability. Then soybean and wheat crops yield was estimated on four agro-climatic zones of Argentine Pampas. TVDI showed a strong correlation with soil moisture measurements, with R2 values ranged from 0.61 to 0.83 and also it was in agreement with spatial pattern of soil moisture. Moreover, results showed that TVDI data can be used effectively to predict crop yield on the Argentine Pampas. Depending on the agro-climatic zone, R2 values ranged from 0.68 to 0.79 for soybean crop and 0.76 to 0.81 for wheat. The RMSE values were 366 and 380 kg ha-1 for soybean and they varied between 300 and 550 kg ha-1 in the case of wheat crop. When expressed as percentages of actual yield, the RMSE values ranged from 12% to 13% for soybean and 14% to 22% for wheat. The bias values indicated that the obtained models underestimated soybean and wheat yield. Accurate crop grain yield forecast using the developed regression models was achieved one to three months before harvest. In many cases the results were better than others obtained using only a vegetation index, showing the aptitude of surface temperature and vegetation index combination to reflect the crop water condition. Finally, the analysis of a wide range of soil moisture availability allowed us to develop a generalized model of crop yield and dryness index relationship which could be applicable in other regions and crops at regional scale.

  15. The effects of soil moisture, surface roughness, and vegetation on L-band emission and backscatter

    NASA Technical Reports Server (NTRS)

    Wang, James R.; Shiue, J. C.; Engman, Edwin T.; Schmugge, Thomas J.; Mo, Tsan

    1987-01-01

    Measurements performed with SIR-B at 1.28 GHz and an airborne multiple-beam push-broom radiometer at 1.4 GHz over agricultural fields near Fresno, California are examined. A theoretical model (Kirchhoff approximation) was used to assess the effects of surface roughness and vegetation (alfalfa and lettuce) with respect to the responses of microwave emission and backscatter to soil-moisture variations. It is found that the surface roughness plays a dominant role compared to the vegetation cover in the microwave backscatter.

  16. Soil water and vegetation management for cleanup of selenium contaminated soils

    SciTech Connect

    Not Available

    1989-05-01

    Over the past year scientists have initiatived a new effort aimed at developing a soil water and vegetation management plan for Kesterson Reservoir. The plan is intended to result in a gradual depletion of the inventory of soluble selenium at the Reservoir through a combination agriculturally oriented practices that enhance dissipation of selenium from near surface soils. Agriculturally oriented processes that will contribute to depletion include microbial volatilization from the soils, direct volatilization by living plants, decomposition and volatilization of selenium-bearing vegetation, harvest and removal of seleniferous vegetation, and leaching. The benefits of using this integrated approach are that (1) no single mechanism needs to be relied upon to detoxify the soils, (2) a stable plant community can be established during this period so that impacts to wildlife can be more easily evaluated and controlled, (3) cleanup and management of the site can be carried out in a cost-effective manner. The management plan is also intended to facilitate control over wildlife exposure to selenium contaminated biota by creating a well managed environment. The majority of research associated with this new effort is being carried out at a 200 m by 50 m test plot in Pond 7. A two-line irrigation system , providing local groundwater as an irrigation supply, has been installed. Through an intensive program of soil water sampling, soil gas sampling, vegetation sampling, groundwater monitoring, and soil moisture monitoring, the mass balance for selenium under irrigated conditions is being evaluated. These studies, in conjunction with supplementary laboratory experiments will provide the information needed to develop an optimal management plan for the site. 23 refs., 38 figs., 10 tabs.

  17. The Impact of Climate on Sulfur Isotopes in Soils and Vegetation

    NASA Astrophysics Data System (ADS)

    Balan, S. A.; Amundson, R.

    2012-12-01

    Stable isotopes of sulfur (S) in soil can be used as tracers for sources and in-situ processes, and understanding what drives the variability of S isotope ratios in the coupled precipitation-soil-vegetation system can provide a basis for identifying regions with potential S limitations or high susceptibility to anthropogenic additions. Here we investigated the impact of climate on the isotopic composition of total S in soils and vegetation (reported as ?34S values) using a series of well-defined climosequences at several locations around the globe. This is the most comprehensive study to date of the geographical patterns of soil and plant S, with sites covering a mean annual precipitation (MAP) range of 1 to 4200 mm and a mean annual temperature (MAT) range of 2.5 to 25.5°C. Within this broad range of climates the following relationships were explored: (1) constant MAP, varying MAT; (2) constant MAT, varying MAP; (3) increasing MAP as MAT decreases; (4) decreasing MAP as MAT decreases. The impact of other soil forming factors (parent material, landscape age and topography) were also considered and distinguished from the effects of climate. Based on total S and S isotope analysis of archived and newly-collected soil, vegetation, and rainwater samples from a total of 13 sites with nearly 70 sub-sites around the world, we produced a model for predicting the behavior of soil and plant S isotopes with climate. Our results showed that location affected soil ?34S by affecting the chemistry of S inputs to soil (i.e. proximity to the ocean, industrial centers, volcanoes, or other major sources of S). In areas with similar S sources, however, ?34S of soil and vegetation was controlled by MAP, with MAT playing a secondary role. At the wet end of the rainfall spectrum (2000-4200 mm), surface soil ?34S was around 15-17‰, approaching the seawater sulfate value of 21‰. This reflects the proximity to the ocean and the high proportion of ocean-derived rain at those sites. In the moderate MAP range (50-1000 mm), ?34S values of the upper 10 cm of the soil generally increased from 2.5 to 6.9‰ with increasing MAP while plant ?34S values decreased from 7.5 to 1.8‰. At the dry end of the rainfall spectrum (MAP < 50 mm), surface soil ?34S increased again, approaching 7‰. S isotope fractionation during plant uptake was also MAP-dependent: at sites with MAP > 600 mm, the ?34S of surface soil was greater than that of plants, while the opposite behavior was observed at MAP <600 mm. Total soil S (which is mostly organic S) ?34S values generally increased with soil depth, with the most pronounced increase at the wettest sites (MAP 3500-4200 mm). This increase likely reflects microbial mineralization of soil organic S. In contrast, at the hyperarid sites (MAP <5 mm), where microbial reactions are severely limited, soil ?34S decreased with depth. Overall, our results show that soil and plant ?34S vary predictably with climate, when accounting for variations due to input chemistry and other soil forming factors.

  18. Bacterial and enchytraeid abundance accelerate soil carbon turnover along a lowland vegetation gradient in interior Alaska

    USGS Publications Warehouse

    Waldrop, M.P.; Harden, Jennifer W.; Turetsky, M.R.; Petersen, D.G.; McGuire, A.D.; Briones, M.J.I.; Churchill, A.C.; Doctor, D.H.; Pruett, L.E.

    2012-01-01

    Boreal wetlands are characterized by a mosaic of plant communities, including forests, shrublands, grasslands, and fens, which are structured largely by changes in topography and water table position. The soil associated with these plant communities contain quantitatively and qualitatively different forms of soil organic matter (SOM) and nutrient availability that drive changes in biogeochemical cycling rates. Therefore different boreal plant communities likely contain different soil biotic communities which in turn affect rates of organic matter decomposition. We examined relationships between plant communities, microbial communities, enchytraeids, and soil C turnover in near-surface soils along a shallow topographic soil moisture and vegetation gradient in interior Alaska. We tested the hypothesis that as soil moisture increases along the gradient, surface soils would become increasingly dominated by bacteria and mesofauna and have more rapid rates of C turnover. We utilized bomb radiocarbon techniques to infer rates of C turnover and the 13C isotopic composition of SOM and respired CO2 to infer the degree of soil humification. Soil phenol oxidase and peroxidase enzyme activities were generally higher in the rich fen compared with the forest and bog birch sites. Results indicated greater C fluxes and more rapid C turnover in the surface soils of the fen sites compared to the wetland forest and shrub sites. Quantitative PCR analyses of soil bacteria and archaea, combined with enchytraeid counts, indicated that surface soils from the lowland fen ecosystems had higher abundances of these microbial and mesofaunal groups. Fungal abundance was highly variable and not significantly different among sites. Microbial data was utilized in a food web model that confirmed that rapidly cycling systems are dominated by bacterial activity and enchytraeid grazing. However, our results also suggest that oxidative enzymes play an important role in the C mineralization process in saturated systems, which has been often ignored.

  19. Microwave remote sensing of soil moisture content over bare and vegetated fields

    NASA Astrophysics Data System (ADS)

    Wang, J. R.; Shiue, J. C.; McMurtrey, J. E., III

    1980-10-01

    Remote measurements of soil moisture contents over bare fields and fields covered with orchard grass, corn, and soybean were made during October 1979 with 1.4 GHz and 5 GHz microwave radiometers mounted on a truck. Ground truth of soil moisture content, ambient air and soil temperatures was acquired concurrently with the radiometric measurements. The biomass of the vegetation was sampled about once a week. The measured brightness temperatures over bare fields were compared with those of radiative transfer model calculations using as inputs the acquired soil moisture and temperature data with appropriate values of dielectric constants for soil-water mixtures. Good agreement was found between the calculated and the measured results over 10°-70° incident angles. The presence of vegetation was found to reduce the sensitivity of soil moisture sensing. At 1.4 GHz the sensitivity reduction ranged from ˜20% for 10-cm tall grassland to over 60% for the dense soybean field. At 5 GHz the corresponding reduction in sensitivity ranged from ˜70% to ˜90%.

  20. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River.

    PubMed

    Ouyang, Wei; Hao, Fanghua; Skidmore, Andrew K; Toxopeus, A G

    2010-12-15

    Soil erosion is a significant concern when considering regional environmental protection, especially in the Yellow River Basin in China. This study evaluated the temporal-spatial interaction of land cover status with soil erosion characteristics in the Longliu Catchment of China, using the Soil and Water Assessment Tool (SWAT) model. SWAT is a physical hydrological model which uses the RUSLE equation as a sediment algorithm. Considering the spatial and temporal scale of the relationship between soil erosion and sediment yield, simulations were undertaken at monthly and annual temporal scales and basin and sub-basin spatial scales. The corresponding temporal and spatial Normalized Difference Vegetation Index (NDVI) information was summarized from MODIS data, which can integrate regional land cover and climatic features. The SWAT simulation revealed that the annual soil erosion and sediment yield showed similar spatial distribution patterns, but the monthly variation fluctuated significantly. The monthly basin soil erosion varied from almost no erosion load to 3.92 t/ha and the maximum monthly sediment yield was 47,540 tones. The inter-annual simulation focused on the spatial difference and relationship with the corresponding vegetation NDVI value for every sub-basin. It is concluded that, for this continental monsoon climate basin, the higher NDVI vegetation zones prevented sediment transport, but at the same time they also contributed considerable soil erosion. The monthly basin soil erosion and sediment yield both correlated with NDVI, and the determination coefficients of their exponential correlation model were 0.446 and 0.426, respectively. The relationships between soil erosion and sediment yield with vegetation NDVI indicated that the vegetation status has a significant impact on sediment formation and transport. The findings can be used to develop soil erosion conservation programs for the study area. PMID:21071065

  1. Hydrologic modeling of soil water storage in landfill cover systems

    SciTech Connect

    Barnes, F.J.; Rodgers, J.C.

    1987-01-01

    The accuracy of modeling soil water storage by two hydrologic models, CREAMS and HELP, was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that CREAMS generally represented soil moisture more accurately than HELP simulations. Soil profiles that more closely resembled natural agricultural soils were more accurately modeled than highly artificial layered soil profiles. Precautions for determining parameter values for model input and for interpreting simulation results are discussed.

  2. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system

    Microsoft Academic Search

    G. Krinner; Nicolas Viovy; Nathalie de Noblet-Ducoudré; Jérôme Ogée; Jan Polcher; Pierre Friedlingstein; Philippe Ciais; Stephen Sitch; I. Colin Prentice

    2005-01-01

    This work presents a new dynamic global vegetation model designed as an extension of an existing surface-vegetation-atmosphere transfer scheme which is included in a coupled ocean-atmosphere general circulation model. The new dynamic global vegetation model simulates the principal processes of the continental biosphere influencing the global carbon cycle (photosynthesis, autotrophic and heterotrophic respiration of plants and in soils, fire, etc.)

  3. Productivity of wet soils: Biomass of cultivated and natural vegetation

    SciTech Connect

    Johnston, C.A.

    1988-12-01

    Wet soils, soils which have agronomic limitations because of excess water, comprise 105 million acres of non-federal land in the conterminous United States. Wet soils which support hydrophytic plants are ''wetlands'', and are some of the most productive natural ecosystems in the world. When both above- and belowground productivity are considered, cattail (Typha latifolia) is the most productive temperate wetland species (26.4 Mg/ha/year). Both cattail and reed (Phragmites australis) have aboveground productivities of about 13 Mg/ha/year. Although average aboveground yields of reed canarygrass (Phalaris arundinacea) are lower (9.5 Mg/ha/year), techniques for its establishment and cultivation are well-developed. Other herbaceous wetland species which show promise as biomass crops include sedge (Carex spp.), river bulrush (Scirpus fluviatilis) and prairie cordgrass (Spartina pectinata). About 40% of wet soils in the conterminous US are currently cultivated, and they produce one-quarter of the major US crops. Most of this land is artificially drained for crops such as corn, soybeans, and vegetables. US wetlands are drained for agriculture at the rate of 223,000 ha/yr. Paddies flooded with water are used to grow rice, cranberries, and wild rice. Forage and live sphagnum moss are products of undrained wetlands. A number of federal and state regulations apply to the draining or irrigation of wetlands, but most do not seriously restrict their use for agriculture. 320 refs., 36 tabs.

  4. Vegetation stress from soil moisture and chlorophyll fluorescence: synergy between SMAP and FLEX approaches

    NASA Astrophysics Data System (ADS)

    Moreno, Jose; Moran, Susan

    2014-05-01

    Vegetation stress detection continues being a focal objective for remote sensing techniques. It has implications not only for practical applications such as irrigation optimization or precision agriculture, but also for global climate models, providing data to better link water and carbon exchanges between the surface and the atmospheric and improved parameterization of the role of terrestrial vegetation in the coupling of water and carbon cycles. Traditional approaches to map vegetation stress using remote sensing techniques have been based on measurements of soil moisture status, canopy (radiometric) temperature and, to a lesser extent, canopy water content, but new techniques such as the dynamics of vegetation fluorescence emission, are also now available. Within the context of the preparatory activities for the SMAP and FLEX missions, a number of initiatives have been put in place to combine modelling activities and field experiments in order to look for alternative and more efficient ways of detecting vegetation stress, with emphasis on synergistic remote sensing approaches. The potential of solar-induced vegetation fluorescence as an early indicator of stress has been widely demonstrated, for different type of stress conditions: light amount (excess illumination) and conditions (direct/diffuse), temperature extremes (low and high), soil water availability (soil moisture), soil nutrients (nitrogen), atmospheric water vapour and atmospheric CO2 concentration. The effects caused by different stress conditions are sometimes difficult to be decoupled, also because different causes are often combined, but in general they then to change the overall fluorescence emission (modulating amplitude) or changing the relative contributions of photosystems PSI and PSII or the relative fluorescence re-absorption effects caused by modifications in the structure of pigment bed responsible for light absorption, in particular for acclimation for persistent stress conditions. While soil moisture deficit is often the reason for the stress, the capability for an early detection of short-time stress conditions is one of the main advantages of vegetation fluorescence. The combined usage of active and passive techniques is also discussed. In the case of soil moisture, combination of active (radar) and passive (L-band radiometry) approaches are used, while in the case of fluorescence active (laser induced) and passive (solar induced) techniques are used as well. Experience from active techniques in laboratory and field conditions helps the operational usage of passive techniques which are readily applicable to satellite observations. Vegetation fluorescence dynamics, particularly over boreal forest, is characterized by an abrupt change in fluorescence levels in coincidence with the activation and deactivation of the photosynthetic machinery at start/end of growing season, which is also related to freeze/thaw state of soil conditions. The interest of looking at such transitions both on the side of photosynthetic activity (combined fluorescence and temperature measurements) and freeze/thaw conditions (L-band radiometry) can provide an unprecedented description of the soil and vegetation interactions and dynamical feedbacks in the energy and chemical exchanges with the atmosphere. A review of methods and results will be discussed in this paper, including suggestions for synergistic approaches to be exploited in future research priorities in vegetation stress detection.

  5. Vegetation modeled as a water cloud

    Microsoft Academic Search

    E. P. W. Attema; Fawwaz T. Ulaby

    1978-01-01

    Because the microwave dielectric constant of dry vegetative matter is much smaller (by an order of magnitude or more) than the dielectric constant of water, and because a vegetation canopy is usually composed of more than 99% air by volume, it is proposed that the canopy can be modeled as a water cloud whose droplets are held in place by

  6. Interactions between vegetation, hydrology, and soil biogeochemistry in a Southern California annual grassland

    NASA Astrophysics Data System (ADS)

    Parolari, A.; Goulden, M.; Bras, R. L.

    2011-12-01

    The soil carbon-nitrogen cycle is an integral component of the surface hydrologic system. Vegetation dynamics influence and respond to soil water and nitrogen availability, which are also linked through biogeochemical (e.g. decomposition, mineralization) and physical processes (e.g. drainage, transpiration). With anticipated changes in precipitation variability and reactive nitrogen inputs, a holistic approach toward understanding this coupled system is necessary. Leveraging data from a factorial irrigation-fertilization experiment in a Mediterranean-like annual grassland, we search for evidence of feedbacks between vegetation, nitrogen availability, and hydrology. Our analysis demonstrates that the water balance is relatively insensitive to an exogenous increase in nitrogen availability, due to a trade-off between canopy density and leaf conductance. This is consistent with the notion that, in semi-arid ecosystems, canopy structure and physiology work in an integrated fashion to maintain a transpiration flux tightly controlled by soil and climate properties. We explain this behavior with a model constrained by the hydraulic capacity of the soil-vegetation-atmosphere pathway.

  7. SRTM vegetation removal and hydrodynamic modeling accuracy

    NASA Astrophysics Data System (ADS)

    Baugh, Calum A.; Bates, Paul D.; Schumann, Guy; Trigg, Mark A.

    2013-09-01

    Hydrodynamic modeling of large remote forested floodplains, such as the Amazon, is hindered by the vegetation signal contained within Digital Elevation Models (DEMs) such as the Shuttle Radar Topography Mission (SRTM). Not removing the vegetation signal causes DEMs to be overelevated preventing the correct simulation of overbank inundation. Previous efforts to remove this vegetation signal have either not accounted for its spatial variability or relied upon single assumed error values. As a possible solution, a systematic approach to removing the vegetation signal which accounts for spatial variability using recently published estimates of global vegetation heights is proposed. The proposed approach is applied to a well-studied reach of the Amazon floodplain where previous hydrodynamic model applications were affected by the SRTM vegetation signal. Greatest improvements to hydrodynamic model accuracy were obtained by subtracting 50-60% of the vegetation height from the SRTM. The vegetation signal removal procedure improved the RMSE (Root-Mean-Square Error) accuracy of the hydrodynamic model than when using the original SRTM in three ways: (1) seasonal floodplain water elevation predictions against TOPEX/Poseidon observations improved from 6.61 to 1.84 m; (2) high water inundation extent prediction accuracy improved from 0.52 to 0.07 against a JERS (Japanese Earth Resources Satellite) observation; (3) low water inundation extent accuracy against a JERS observation improved from 0.22 to 0.12. The simple data requirements of this vegetation removal method enable it to be applied to any remote floodplain for which hydrodynamic model accuracy is hindered by vegetation present in the DEM.

  8. Vegetation and soils field research data base: Experiment summaries

    NASA Technical Reports Server (NTRS)

    Biehl, L. L.; Daughtry, C. S. T.; Bauer, M. E.

    1984-01-01

    Understanding of the relationships between the optical, spectral characteristics and important biological-physical parameters of earth-surface features can best be obtained by carefully controlled studies over fields and plots where complete data describing the condition of targets are attainable and where frequent, timely spectral measurement can be obtained. Development of a vegetation and soils field research data base was initiated in 1972 at Purdue University's Laboratory for Applications of Remote Sensing and expanded in the fall of 1974 by NASA as part of LACIE. Since then, over 250,000 truck-mounted and helicopter-borne spectrometer/multiband radiometer observations have been obtained of more than 50 soil series and 20 species of crops, grasses, and trees. These data are supplemented by an extensive set of biophysical and meteorological data acquired during each mission. The field research data form one of the most complete and best-documented data sets acquired for agricultural remote sensing research. Thus, they are well-suited to serve as a data base for research to: (1) quantiatively determine the relationships of spectral and biophysical characteristics of vegetation, (2) define future sensor systems, and (3) develop advanced data analysis techniques.

  9. Interactions between soil moisture and Atmospheric Boundary Layer at the Brazilian savana-type vegetation Cerrado

    NASA Astrophysics Data System (ADS)

    Pinheiro, L. R.; Siqueira, M. B.

    2013-05-01

    Before the large people influx and development of the central part of Brazil in the sixties, due to new capital Brasília, Cerrado, a typical Brazilian savanna-type vegetation, used to occupy about 2 million km2, going all the way from the Amazon tropical forest, in the north of the country, to the edges of what used to be of the Atlantic forest in the southeast. Today, somewhat 50% of this area has given place to agriculture, pasture and managed forests. It is forecasted that, at the current rate of this vegetation displacement, Cerrado will be gone by 2030. Understanding how Cerrado interacts with the atmosphere and how this interaction will be modified with this land-use change is a crucial step towards improving predictions of future climate-change scenarios. Cerrado is a vegetation adapted to a climate characterized by two very distinct seasons, a wet season (Nov-Mar) and dry season (May-Ago), with April and October being transitions between seasons. Typically, based on measurements in a weather station located in Brasilia, 75% of precipitation happens in the wet-season months and only 5% during dry-season. Under these circumstances, it is clear that the vegetation will have to cope with long periods of water stress. In this work we studied using numerical simulations, the interactions between soil-moisture, responsible for the water stress, with the Atmospheric Boundary Layer (ABL). The numerical model comprises of a Soil-Vegetation-Atmosphere model where the biophysical processes are represented with a big-leaf approach. Soil water is estimated with a simple logistic model and with water-stress effects on stomatal conductance are parameterized from local measurements of simultaneous latent-heat fluxes and soil moisture. ABL evolution is calculate with a slab model that considers independently surface and entrainment fluxes of sensible- and latent- heat. Temperature tropospheric lapse-rate is taken from soundings at local airport. Simulations of 30-day dry down from saturation to complete water stress were performed and is analyzed as far how ABL respond to soil moisture changes. This provides informations about ABL behavior on the transition states. Future studies will look on how this behavior will change with the new vegetation covers.

  10. A Methodology for Surface Soil Moisture and Vegetation Optical Depth Retrieval Using the Microwave Polarization Difference Index

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Richard; Walker, Jeffrey; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz brightness temperature observations from the Scanning Multichannel Microwave Radiometer over several test sites in Illinois. Results using only nighttime data are presented at this time, due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a non-linear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness. Surface temperature is derived by a procedure using high frequency vertically polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is totally independent of wavelength. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.

  11. Soil eco-hydrological characteristics of typical vegetation community in Yellow River Delta

    Microsoft Academic Search

    Jiangbao Xia; Zhaohua Lu; Chuanrong Li; Peng Gao

    2011-01-01

    To study the eco-hydrological characteristics of typical vegetation community (Robinia pseudoacacia, Populus euramericana, Fraxinus chinensis) in lowlands of the Yellow River Delta, taking bare area as the control. Soil hydro-physical properties, soil water infiltration and soil water-storage capacity of three kinds of vegetation community were determined in field and laboratory. The results were showed that:1) Compared with bare area, soil

  12. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation.

    PubMed

    Madejón, Engracia; de Mora, Alfredo Pérez; Felipe, Efraín; Burgos, Pilar; Cabrera, Francisco

    2006-01-01

    We tested the effects of three amendments (a biosolid compost, a sugar beet lime, and a combination of leonardite plus sugar beet lime) on trace element stabilisation and spontaneous revegetation of a trace element contaminated soil. Soil properties were analysed before and after amendment application. Spontaneous vegetation growing on the experimental plot was studied by three surveys in terms of number of taxa colonising, percentage vegetation cover and plant biomass. Macronutrients and trace element concentrations of the five most frequent species were analysed. The results showed a positive effect of the amendments both on soil chemical properties and vegetation. All amendments increased soil pH and TOC content and reduced CaCl(2)-soluble-trace element concentrations. Colonisation by wild plants was enhanced in all amended treatments. The nutritional status of the five species studied was improved in some cases, while a general reduction in trace element concentrations of the aboveground parts was observed in all treated plots. The results obtained show that natural assisted remediation has potential for success on a field scale reducing trace element entry in the food chain. PMID:16005126

  13. The Aggregate Description of Semi-Arid Vegetation with Precipitation-Generated Soil Moisture Heterogeneity

    NASA Technical Reports Server (NTRS)

    White, Cary B.; Houser, Paul R.; Arain, Altaf M.; Yang, Zong-Liang; Syed, Kamran; Shuttleworth, W. James

    1997-01-01

    Meteorological measurements in the Walnut Gulch catchment in Arizona were used to synthesize a distributed, hourly-average time series of data across a 26.9 by 12.5 km area with a grid resolution of 480 m for a continuous 18-month period which included two seasons of monsoonal rainfall. Coupled surface-atmosphere model runs established the acceptability (for modelling purposes) of assuming uniformity in all meteorological variables other than rainfall. Rainfall was interpolated onto the grid from an array of 82 recording rain gauges. These meteorological data were used as forcing variables for an equivalent array of stand-alone Biosphere-Atmosphere Transfer Scheme (BATS) models to describe the evolution of soil moisture and surface energy fluxes in response to the prevalent, heterogeneous pattern of convective precipitation. The calculated area-average behaviour was compared with that given by a single aggregate BATS simulation forced with area-average meteorological data. Heterogeneous rainfall gives rise to significant but partly compensating differences in the transpiration and the intercepted rainfall components of total evaporation during rain storms. However, the calculated area-average surface energy fluxes given by the two simulations in rain-free conditions with strong heterogeneity in soil moisture were always close to identical, a result which is independent of whether default or site-specific vegetation and soil parameters were used. Because the spatial variability in soil moisture throughout the catchment has the same order of magnitude as the amount of rain failing in a typical convective storm (commonly 10% of the vegetation's root zone saturation) in a semi-arid environment, non-linearitv in the relationship between transpiration and the soil moisture available to the vegetation has limited influence on area-average surface fluxes.

  14. Mechanisms influencing surface soil CO2 efflux in respect to elevation and vegetation gradients in a complex watershed

    NASA Astrophysics Data System (ADS)

    Atkins, J. W.; Epstein, H. E.; Welsch, D. L.

    2011-12-01

    Topographically complex watersheds exert spatial and temporal variations in the distribution of soil water due to horizontal flows. The redistribution of soil water has profound effects on biogeochemical cycles. Of keen interest is the impact this lateral redistribution has on carbon cycling and surface soil carbon efflux. We are currently employing a plot based study across an elevation gradient (950-1150 m) in the Weimer Run watershed located near Davis, West Virginia to evaluate carbon and water cycling dynamics. At each of three different elevation levels (high, middle, low) are three sites. At each site are three 4 m2 plots, each underneath a different vegetation cover type (open, closed tree canopy, shrub canopy), for a total of 27 plots across all elevations. At each plot, surface CO2 efflux, soil temperature, PAR, air temperature and volumetric soil water content at 0-12 cm are measured weekly during the growing season. Measurements of Leaf Area Index (LAI) and soil nutrient concentrations (NH4+, NO3-) have also been conducted for each plot. Each plot also has gas wells at both 5 and 20 cm to measure CO2 concentrations below the soil surface. Data collected from June through October, 2010, indicate a stronger control on soil CO2 efflux exerted by vegetation cover type than by elevation gradient. The impact of vegetation cover type on soil CO2 efflux increases with elevation. Based on data collected weekly from June through October, 2010, there is no significant relationship between surface soil CO2 efflux and the three elevation levels within our gradient (p = 0.47). However, a significant statistical relationship between surface soil CO2 efflux and vegetation type (p = < 0.001) exists, regardless of seasonality. Soil moisture shows an expected decline with increasing elevation. Soil temperatures across vegetation types are nearly identical. Nutrient availability appears to be strongly correlated with vegetation type, but uncorrelated with elevation level. The heterogeneity of a watershed can greatly influence biogeochemical cycles. Quantifying the impact that vegetation cover, elevation and micrometeorological controls exert on soil CO2 efflux is vital for accurate model inputs and carbon budgets.
    * All values in columns represent means for respective treatments for June - October 2010. +/- indicate standard deviation.

  15. [Physicochemical and biological characteristics of coastal saline soil under different vegetation cover].

    PubMed

    Zhou, Jian; Li, Gang; Zhou, Jian; Qin, Pei

    2011-04-01

    Taking seven plots of coastal saline soil under different vegetation cover in North Jiangsu as study sites, this paper studied the seasonal fluctuations of soil basic physicochemical and biological characteristics, and analyzed the relationships between these fluctuations and vegetation cover. In the test plots, there was a greater variability of soil basic physicochemical and biological characteristics. The average soil electrical conductivity was lower in crop plots (0.95 dS m(-1)) than in natural vegetation plots (2.77 dS m(-1)), but parts of the crop plots showed an increased soil electrical conductivity compared with pre-planting. Overall, the soil fertility of the plots was generally at a low level, with the hydrolysable nitrogen content averagely lower than 50 mg kg(-1), available phosphorus content (except fertilized plots) lower than 3 mg kg(-1), and organic matter content less than 1%. Due to fertilization, the soil conditions in crop plots somewhat improved. For the test coastal saline soil, its electrical conductivity and nutrient level were the key factors affecting the vegetation distribution and plant growth, and soil electrical conductivity was most important. There existed close correlations between soil nitrogen and phosphorus contents and soil microbial amount. The seasonal fluctuations of soil characteristics were closely related with vegetation type and human disturbance, being relatively stable under higher vegetation coverage and lesser human disturbance, and dramatic in bare land and castor experimental plots. PMID:21774319

  16. Stability of banded vegetation patterns under seasonal rainfall and limited soil moisture storage capacity

    Microsoft Academic Search

    Nadia Ursino; Samuel Contarini

    2006-01-01

    The delicate equilibrium of soil moisture and biomass may become unstable under water scarcity conditions causing banded vegetation patterns to form on hillsides of semi-arid catchments. Soil related processes that induce instability (namely: soil moisture advection and diffusion), have been evaluated numerically for different rainfall regimes. This study addresses the combined influence of some relevant soil characteristics, and the effect

  17. Soil Carbon and Nitrogen Dynamics During Conversion of Agricultural Lands to Natural Vegetation in Central Korea

    Microsoft Academic Search

    Yowhan Son; Soo Young Yang; Young Chul Jun; Rae Hyun Kim; Yoon Young Lee; Jung Ok Hwang; Jong Sung Kim

    2003-01-01

    Changes in land use can affect the distribution and cycling of soil organic matter and nutrients. Soil organic carbon (C) and nitrogen (N) concentrations, soil CO2 evolution, litter decomposition, and soil N availability under the three types of conversion of agricultural lands to natural vegetation (rice field conversion to forest, crop field conversion to shrub, and indigenous forest) in central

  18. Constructing vegetation productivity equations by employing undisturbed soils data: An Oliver County, North Dakota case study

    SciTech Connect

    Burley, J.B. [Michigan State Univ., East Lansing, MI (United States); Polakowski, K.J.; Fowler, G. [Univ. of Michigan, Ann Arbor, MI (United States)

    1996-12-31

    Surface mine reclamation specialists have been searching for predictive methods to assess the capability of disturbed soils to support vegetation growth. We conducted a study to develop a vegetation productivity equation for reclaiming surface mines in Oliver County, North Dakota, thereby allowing investigators to quantitatively determine the plant growth potential of a reclaimed soil. The study examined the predictive modeling potential for both agronomic crops and woody plants, including: wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), oat (Avena sativa L.), corn (Zea mays L.), grass and legume mixtures, Eastern red cedar (Juniperus virginiana L.), Black Hills spruce (Picea glauca var. densata Bailey), Colorado spruce (Picea pungens Engelm.), ponderosa pine (Pinus ponderosa var. scope Engelm.), green ash (Fraxinus pennsylvanica Marsh.), Eastern cottonwood Populus deltoides (Bart. ex Marsh.), Siberian elm (Ulmus pumila L.), Siberian peashrub (Caragana arborescens Lam), American plum (Prunus americans Marsh.), and chokecherry ( Prunus virginiana L.). An equation was developed which is highly significant (p<0.0001), explaining 81.08% of the variance (coefficient of multiple determination=0.8108), with all regressors significant (p{le}0.048, Type II Sums of Squares). The measurement of seven soil parameters are required to predict soil vegetation productivity: percent slope, available water holding capacity, percent rock fragments, topographic position, electrical conductivity, pH, and percent organic matter. While the equation was developed from data on undisturbed soils, the equation`s predictions were positively correlated (0.71424, p{le}0.0203) with a small data set (n=10) from reclaimed soils.

  19. Evaluation of soil and vegetation response to drought using SMOS soil moisture satellite observations

    NASA Astrophysics Data System (ADS)

    Piles, Maria; Sánchez, Nilda; Vall-llossera, Mercè; Ballabrera, Joaquim; Martínez, Justino; Martínez-Fernández, José; Camps, Adriano; Font, Jordi

    2014-05-01

    Soil moisture plays an important role in determining the likelihood of droughts and floods that may affect an area. Knowledge of soil moisture distribution as a function of time and space is highly relevant for hydrological, ecological and agricultural applications, especially in water-limited or drought-prone regions. However, measuring soil moisture is challenging because of its high variability; point-scale in-situ measurements are scarce being remote sensing the only practical means to obtain regional- and global-scale soil moisture estimates. The ESA's Soil Moisture and Ocean Salinity (SMOS) is the first satellite mission ever designed to measuring the Earth's surface soil moisture at near daily time scales with levels of accuracy previously not attained. Since its launch in November 2009, significant efforts have been dedicated to validate and fine-tune the retrieval algorithms so that SMOS-derived soil moisture estimates meet the standards required for a wide variety of applications. In this line, the SMOS Barcelona Expert Center (BEC) is distributing daily, monthly, and annual temporal averages of 0.25-deg global soil moisture maps, which have proved useful for assessing drought and water-stress conditions. In addition, a downscaling algorithm has been developed to combine SMOS and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) data into fine-scale (< 1km) soil moisture estimates, which permits extending the applicability of the data to regional and local studies. Fine-scale soil moisture maps are currently limited to the Iberian Peninsula but the algorithm is dynamic and can be transported to any region. Soil moisture maps are generated in a near real-time fashion at BEC facilities and are used by Barcelona's fire prevention services to detect extremely dry soil and vegetation conditions posing a risk of fire. Recently, they have been used to explain drought-induced tree mortality episodes and forest decline in the Catalonia region. These soil moisture products can also be a useful tool to monitor the effectiveness of land restoration management practices. The aim of this work is to demonstrate the feasibility of using SMOS soil moisture maps for monitoring drought and water-stress conditions. In previous research, SMOS-derived Soil Moisture Anomalies (SSMA), calculated in a ten-day basis, were shown to be in close relationship with well-known drought indices (the Standardized Precipitation Index and the Standardized Precipitation Evapotranspiration Index). In this work, SSMA have been calculated for the period 2010-2013 in representative arid, semi-arid, sub-humid and humid areas across global land biomes. The SSMA reflect the cumulative precipitation anomalies and is known to provide 'memory' in the climate and hydrological system; the water retained in the soil after a rainfall event is temporally more persistent than the rainfall event itself, and has a greater persistence during periods of low precipitation. Besides, the Normalized Difference Vegetation Index (NDVI) from MODIS is used as an indicator of vegetation activity and growth. The NDVI time series are expected to reflect the changes in surface vegetation density and status induced by water-deficit conditions. Understanding the relationships between SSMA and NDVI concurrent time series should provide new insight about the sensitivity of land biomes to drought.

  20. Effects of spatial variations of soil moisture and vegetation on the evolution of a prestorm environment - A numerical case study

    NASA Technical Reports Server (NTRS)

    Chang, Jy-Tai; Wetzel, Peter J.

    1991-01-01

    To examine the effects of spatial variations of soil moisture and vegetation coverage on the evolution of a prestorm environment, the Goddard mesoscale model is modified to incorporate a simple evapotranspiration model that requires these two parameters. The case study of 3-4 June 1980 is of special interest due to the development of a tornado producing convective complex near Grand Island, Nebraska during a period of comparatively weak synoptic-scale forcing. It is shown that the observed stationary front was strongly enhanced by differential heating created by observed gradients of soil moisture, as acted upon by the vegetation cover.

  1. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: the impact of soil variables.

    PubMed

    McBride, Murray B; Shayler, Hannah A; Spliethoff, Henry M; Mitchell, Rebecca G; Marquez-Bravo, Lydia G; Ferenz, Gretchen S; Russell-Anelli, Jonathan M; Casey, Linda; Bachman, Sharon

    2014-11-01

    Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability. PMID:25163429

  2. Use of LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    NASA Technical Reports Server (NTRS)

    Eagleson, Peter S.; Jasinski, Michael F.

    1988-01-01

    This work focuses on the characterization of natural, spatially variable, semivegetated landscapes using a linear, stochastic, canopy-soil reflectance model. A first application of the model was the investigation of the effects of subpixel and regional variability of scenes on the shape and structure of red-infrared scattergrams. Additionally, the model was used to investigate the inverse problem, the estimation of subpixel vegetation cover, given only the scattergrams of simulated satellite scale multispectral scenes. The major aspects of that work, including recent field investigations, are summarized.

  3. Feasibility of using LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.

    1985-01-01

    Research activities conducted from February 1, 1985 to July 31, 1985 and preliminary conclusions regarding research objectives are summarized. The objective is to determine the feasibility of using LANDSAT data to estimate effective hydraulic properties of soils. The general approach is to apply the climatic-climax hypothesis (Ealgeson, 1982) to natural water-limited vegetation systems using canopy cover estimated from LANDSAT data. Natural water-limited systems typically consist of inhomogeneous vegetation canopies interspersed with bare soils. The ground resolution associated with one pixel from LANDSAT MSS (or TM) data is generally greater than the scale of the plant canopy or canopy clusters. Thus a method for resolving percent canopy cover at a subpixel level must be established before the Eagleson hypothesis can be tested. Two formulations are proposed which extend existing methods of analyzing mixed pixels to naturally vegetated landscapes. The first method involves use of the normalized vegetation index. The second approach is a physical model based on radiative transfer principles. Both methods are to be analyzed for their feasibility on selected sites.

  4. Soils and vegetation of the lateral moraine at Malte Brun, Mount Cook Region, New Zealand

    Microsoft Academic Search

    A. C. Archer; M. J. A. Simpson; B. H. Macmillan

    1973-01-01

    Soils and vegetation at an altitude of 1710 m on a lateral moraine above the Tasman glacier at Malte Brun, Southern Alps of New Zealand arc described.Surface morphology includes rectilinear and lobatc solifluction terraces, which are vegetated and stabilised, and colluvial debris in the form of fans.Two soil profiles are described, one from the solifluction terraces, the other from a

  5. The contribution of vegetation cover and bare soil to pixel reflectance in an arid ecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heterogeneity of vegetation and soils in arid and semi-arid environments complicates the analysis of medium spatial resolution remotely sensed imagery. A single pixel may contain several different types of vegetation, as well as a sizeable proportion of bare soil. We have used linear mixture mod...

  6. Reflectance of vegetation, soil, and water. [in Hidalgo County, Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (principal investigator)

    1973-01-01

    The author has identified the following significant results. A study was conducted in a 340-acre (139 hectares) field of grain sorghum (Sorghum bicolor (L.) Moench) to determine if multispectral data from ERTS-1 could be used to detect differences in chlorophyll concentration between iron-deficient (chlorotic) and apparently normal (green) grain sorghum. Chlorotic sorghum areas 2.8 acres (1.1 hectares) or larger in size were identified on a computer printout of band 5 data which contains the chlorophyll absorption band at the 0.65 micron wavelength. ERTS resolution is sufficient for practical applications in detecting iron-deficient sorghum in otherwise uniform fields. The first classification map of the study county has been produced. Vegetation (crops), rangeland, bare soil, water, and an undefined (all other) category occupied 15.2, 45.0, 19.1, 0.02, and 20.6% of the land area, respectively.

  7. Soil, water, and vegetation conditions in south Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Everitt, J. H.; Gerbermann, A. H. (principal investigators)

    1976-01-01

    The author has identified the following significant results. Field spectral measurements and laboratory densitometric measurements showed that tree canopy reflectance differences among the Marrs, Redblush, and Valencia varieties in the visible spectral region were due to their different leaf chlorophyll concentrations. Field measurements of visible light reflectance were directly related to the tonal responses on infrared color photos of the varietal tree canopies. Consequently, densitometric measurements of the foliage on the infrared color transparency with red-filtered light successfully discriminated among the three varieties. Reflectance measurements with a field spectroradiometer on nine dates the growing season of two wheat varieties, Milam and Penjamo, documented their spectra over the 0.45 to 2.50 micron wavelength interval associated with plant cover and physiological development. An image analyzer system was used to optically planimeter the percentage of soil background, vegetation and shadow in the vertical photographs taken within the FOV of the spectroradiometer on each measurement date.

  8. Influence of planting patterns on fluoroquinolone residues in the soil of an intensive vegetable cultivation area in northern China.

    PubMed

    Li, Xuewen; Xie, Yunfeng; Wang, Jinfeng; Christakos, George; Si, Jiliang; Zhao, Huinan; Ding, Yanqiang; Li, Jie

    2013-08-01

    Recent studies have demonstrated the persistence of antibiotics in soil, especially in areas of vegetable cultivation. However, there are very few studies of the influence of planting regimes on the levels of antibiotic pollution. This work introduces geographical-detector models to investigate the relationship between planting patterns (vegetable planting model, manure type and quantity, planting age, greenhouse area, and topographic elevation) and residual fluoroquinolones (FQs) in soil in a pilot project in Shouguang County, Shandong Province (the largest vegetable-producing area in China). The results led to the following findings. 1. The vegetable planting model is the major determinant of the spatial stratification of FQ in the soil. For example, the "cucumber-cucumber" model (growing cucumbers after cucumbers) has a three-fold power of determinant compared to the "pepper-melon" model (growing melons after peppers). 2. Planting age (years with continuous vegetable cultivation) does not necessarily affect the spatial distribution of FQ owing to their relatively short degradation period. 3. Interactions between risk factors were more significant than the individual factors for FQ pollution. In particular, the interaction between the vegetable planting model and amount of manure resulted in the highest pollution level. The findings of the present study make it possible to introduce effective and practical measures to alleviate pollution of soils by FQ in the study area. Adjustment of the vegetable cultivation models and application of chicken manure (less than 6 kg/m(2) manure annually with a more dry than fresh manure) could be an effective and flexible approach to alleviate FQ pollution. PMID:23644280

  9. An update on remote measurement of soil moisture over vegetation using infrared temperature measurements: A FIFE perspective

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.

    1988-01-01

    Using model development, image analysis and micrometeorological measurements, the object is to push beyond the present limitations of using the infrared temperature method for remotely determining surface energy fluxes and soil moisture over vegetation. Model development consists of three aspects: (1) a more complex vegetation formulation which is more flexible and realistic; (2) a method for modeling the fluxes over patchy vegetation cover; and (3) a method for inferring a two-layer soil vertical moisture gradient from analyses of horizontal variations in surface temperatures. HAPEX and FIFE satellite data will be used along with aircraft thermal infrared and solar images as input for the models. To test the models, moisture availability and bulk canopy resistances will be calculated from data collected locally at the Rock Springs experimental field site and, eventually, from the FIFE project.

  10. Vegetation modeling in Yakutia, northeastern Siberia: connecting to palaeovegetation simulation and model-data comparison

    NASA Astrophysics Data System (ADS)

    Ni, J.; Herzschuh, U.

    2009-04-01

    Vegetation model is a useful tool to understand the impacts of climate change on ecosystems in the present, past and future. Simulation of the palaeovegetation can link the geographical pattern of vegetation in the past to pollen proxy and then test the palaeoclimate modeling. In this study we used an equilibrium vegetation model (BIOME4) and a dynamic vegetation model (LPJ) to predict the present-day vegetation pattern and their dynamic changes from 1901-2002 in Yakutia, an Arctic and sub-Arctic region in eastern Siberia, where is sensitive to climate change. Both the models characterized the basic features of regional vegetation pattern, function and their changes through time. The BIOME4 simulated a reasonable pattern of present biome distribution compared to the regional vegetation maps, the deciduous taiga-montane forests in the southern and central Yakutia, evergreen taiga-montane forests in the southwestern mountainous region and in the eastern coast, shrub tundra and dwarf shrub tundra in the northwest and northeast mixed with temperate xerophytic shrubland. In the NW Yakutia the LPJ demonstrated a dynamic change of local vegetation during the past 102 years responding to the changed climates. Forest and shrub covered the large area from the beginning to the 1950s of the 20th Century. Tundra extended from the west to the east during 1960s to 1970s. The woody plants extended in 1980s and in late 1990s to early 21st Century and grasses extended in 1990s. The performance of global vegetation models in regional study is well, but problems still existed. More plant functional types especially the shrubs and grasses and climatic constraints to them should be taken into account when improving the models. Soil water-related parameters should be redefined. The modules of permafrost, snow, and fire should be added or modified. Regional input data of climates, vegetation and soils at finer resolutions will be obtained from the regional and local studies.

  11. Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect

    Peace, Gerald (Jerry) L.; Goering, Timothy James (GRAM inc., Albuquerque, NM); Knight, Paul J. (Marron and Associates, Albuquerque, NM); Ashton, Thomas S. (Marron and Associates, Albuquerque, NM)

    2004-11-01

    A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant species is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.

  12. Transmission Line Theory Based Two Layer Model for Determining Soil Moisture

    NASA Astrophysics Data System (ADS)

    Mishra, P.; Singh, D.

    2013-05-01

    Present paper deals with the task of estimating soil moisture under vegetation cover by using transmission line theory based two layer model. The two layer model measures the impedance of both the layers namely, soil and vegetation. This impedance is the function of dielectric constant and thickness of both the layers. For known dielectric constant and height of vegetation layer, dielectric constant of soil was determined for certain thickness of soil layer using genetic algorithm (GA). The soil moisture value was retrieved from dielectric constant of soil by using Topp et al., (1980) relationship. Retrieved soil moisture values were in good agreement with observed values.

  13. Magnesium retention on the soil exchange complex controlling Mg isotope variations in soils, soil solutions and vegetation in volcanic soils, Iceland

    NASA Astrophysics Data System (ADS)

    Opfergelt, S.; Burton, K. W.; Georg, R. B.; West, A. J.; Guicharnaud, R. A.; Sigfusson, B.; Siebert, C.; Gislason, S. R.; Halliday, A. N.

    2014-01-01

    Understanding the biogeochemical cycle of magnesium (Mg) is not only crucial for terrestrial ecology, as this element is a key nutrient for plants, but also for quantifying chemical weathering fluxes of Mg and associated atmospheric CO2 consumption, requiring distinction of biotic from abiotic contributions to Mg fluxes exported to the hydrosphere. Here, Mg isotope compositions are reported for parent basalt, bulk soils, clay fractions, exchangeable Mg, seasonal soil solutions, and vegetation for five types of volcanic soils in Iceland in order to improve the understanding of sources and processes controlling Mg supply to vegetation and export to the hydrosphere. Bulk soils (?26Mg = -0.40 ± 0.11‰) are isotopically similar to the parent basalt (?26Mg = -0.31‰), whereas clay fractions (?26Mg = -0.62 ± 0.12‰), exchangeable Mg (?26Mg = -0.75 ± 0.14‰), and soil solutions (?26Mg = -0.89 ± 0.16‰) are all isotopically lighter than the basalt. These compositions can be explained by a combination of mixing and isotope fractionation processes on the soil exchange complex. Successive adsorption-desorption of heavy Mg isotopes leads to the preferential loss of heavy Mg from the soil profile, leaving soils with light Mg isotope compositions relative to the parent basalt. Additionally, external contributions from sea spray and organic matter decomposition result in a mixture of Mg sources on the soil exchange complex. Vegetation preferentially takes up heavy Mg from the soil exchange complex (?26Mgplant-exch = +0.50 ± 0.09‰), and changes in ?26Mg in vegetation reflect changes in bioavailable Mg sources in soils. This study highlights the major role of Mg retention on the soil exchange complex amongst the factors controlling Mg isotope variations in soils and soil solutions, and demonstrates that Mg isotopes provide a valuable tool for monitoring biotic and abiotic contributions of Mg that is bioavailable for plants and is exported to the hydrosphere.

  14. Modelling of backscatter from vegetation layers

    NASA Technical Reports Server (NTRS)

    Van Zyl, J. J.; Engheta, N.; Papas, C. H.; Elachi, C.; Zebker, H.

    1985-01-01

    A simple way to build up a library of models which may be used to distinguish between the different types of vegetation and ground surfaces by means of their backscatter properties is presented. The curve of constant power received by the antenna (Gamma sphere) is calculated for the given Stokes Scattering Operator, and model parameters are adopted of the most similar library model Gamma sphere. Results calculated for a single scattering model resembling coniferous trees are compared with the Gamma spheres of a model resembling tropical region trees. The polarization which would minimize the effect of either the ground surface or the vegetation layer can be calculated and used to analyze the backscatter from the ground surface/vegetation layer combination, and enhance the power received from the desired part of the combination.

  15. Effects of Vegetation and of Heat and Vapor Fluxes from Soil on Snowpack Evolution and Radiobrightness

    NASA Technical Reports Server (NTRS)

    Chung, Y. C.; England, A. W.; DeRoo, R. D.; Weininger, Etai

    2006-01-01

    The radiobrightness of a snowpack is strongly linked to the snow moisture content profile, to the point that the only operational inversion algorithms require dry snow. Forward dynamic models do not include the effects of freezing and thawing of the soil beneath the snowpack and the effect of vegetation within the snow or above the snow. To get a more realistic description of the evolution of the snowpack, we reported an addition to the Snow-Soil-Vegetation-Atmosphere- Transfer (SSVAT) model, wherein we coupled soil processes of the Land Surface Process (LSP) model with the snow model SNTHERM. In the near future we will be adding a radiobrightness prediction based on the modeled moisture, temperature and snow grain size profiles. The initial investigations with this SSVAT for a late winter and early spring snow pack indicate that soil processes warm the snowpack and the soil. Vapor diffusion needs to be considered whenever the ground is thawed. In the early spring, heat flow from the ground into a snow and a strong temperature gradient across the snow lead to thermal convection. The buried vegetation can be ignored for a late winter snow pack. The warmer surface snow temperature will affect radiobrightness since it is most sensitive to snow surface characteristics. Comparison to data shows that SSVAT provides a more realistic representation of the temperature and moisture profiles in the snowpack and its underlying soil than SNTHERM. The radiobrightness module will be optimized for the prediction of brightness when the snow is moist. The liquid water content of snow causes considerable absorption compared to dry snow, and so longer wavelengths are likely to be most revealing as to the state of a moist snowpack. For volumetric moisture contents below about 7% (the pendular regime), the water forms rings around the contact points between snow grains. Electrostatic modeling of these pendular rings shows that the absorption of these rings is significantly higher than a sphere of the same volume. The first implementation of the radiobrightness module will therefore be a simple radiative transfer model without scattering.

  16. Terrestrial biogeochemical cycling and vegetation response to climate in an earth system model

    SciTech Connect

    Kercher, J.R.; Axelrod, M.C.; MacCracken, M.C. (Lawrence Livermore National Lab., CA (United States)); Chambers, J.Q. (Lawrence Livermore National Lab., CA (United States) California Univ., Santa Barbara, CA (United States). Dept. of Biological Sciences)

    1992-10-01

    We are developing (1) a seasonal model of terrestrial productivity and biogeochemical cycling (TERRA) and (2) a model of vegetation response to climate (HABITAT). Both of these models are designed to be components of an Earth System Model being developed at Lawrence Livermore National Laboratory (LLNL). We have implemented the grid-cell model of TERRA and have calibrated it for the 17 vegetation types that it simulates. In a sensitivity analysis, we have found that total system response is most sensitive to parameters affecting soil moisture content which, in turn, affects soil respiration. Albedo was found to be an important factor in tundra systems. Carbon sequestration was strongly influenced by only a handful of parameters for each of the five types discussed in this paper. Parameters affecting soil respiration, soil moisture, littefall rate, CO[sub 2] assimilation, C:N ratio in litterfall, and nitrogen uptake were, in most circumstances, found to be the most important parameters. As an initial phase in constructing the vegetation response model, we have investigated an existing method of classifying vegetation life zones based on total annual precipitation and average monthly temperature to determine if this method discriminates between vegetation types. We used global vegetation and climatic data sets for this analysis. We found that these variables lack power to resolve vegetation types.

  17. Terrestrial biogeochemical cycling and vegetation response to climate in an earth system model

    SciTech Connect

    Kercher, J.R.; Axelrod, M.C.; MacCracken, M.C. [Lawrence Livermore National Lab., CA (United States); Chambers, J.Q. [Lawrence Livermore National Lab., CA (United States)]|[California Univ., Santa Barbara, CA (United States). Dept. of Biological Sciences

    1992-10-01

    We are developing (1) a seasonal model of terrestrial productivity and biogeochemical cycling (TERRA) and (2) a model of vegetation response to climate (HABITAT). Both of these models are designed to be components of an Earth System Model being developed at Lawrence Livermore National Laboratory (LLNL). We have implemented the grid-cell model of TERRA and have calibrated it for the 17 vegetation types that it simulates. In a sensitivity analysis, we have found that total system response is most sensitive to parameters affecting soil moisture content which, in turn, affects soil respiration. Albedo was found to be an important factor in tundra systems. Carbon sequestration was strongly influenced by only a handful of parameters for each of the five types discussed in this paper. Parameters affecting soil respiration, soil moisture, littefall rate, CO{sub 2} assimilation, C:N ratio in litterfall, and nitrogen uptake were, in most circumstances, found to be the most important parameters. As an initial phase in constructing the vegetation response model, we have investigated an existing method of classifying vegetation life zones based on total annual precipitation and average monthly temperature to determine if this method discriminates between vegetation types. We used global vegetation and climatic data sets for this analysis. We found that these variables lack power to resolve vegetation types.

  18. Evaluation of Landsat Multispectral Scanner data for mapping vegetated soil landscapes

    USGS Publications Warehouse

    Thompson, D. R.; Haas, Robert H.; Milford, M. H.

    1981-01-01

    Landsat multispectral scanner data for Brazos County, Texas, were evaluated in terms of effectiveness for classifying soils on vegetated landscapes at three times during the year: a time of normally adequate soil water, a time of expected soil water deficit, and a time when soil water is normally being replenished. Six test sites were used to evaluate LARSYS supervised and unsupervised classification of vegetated soil landscapes. Open grassland soils were best separated in the fall during a period when soil moisture was being replenished after the summer period of soil water deficit. Woodland soils were separated by Landsat data in late spring when adequate moisture was available. However, a high degree of accuracy was not achieved using Landsat for separating soil map units. Accurate separation of soil mapping units on vegetated landscapes was not possible during late summer when soil water was deficient. Selected soil properties important to plant growth were separable on the test sites using June and October Landsat data. Particle size and soil moisture regime were separated at both dates. Soils with argillic horizons were separated from soils without argillic horizons.

  19. Evapotranspiration of soil water movement in small area vegetation

    NASA Astrophysics Data System (ADS)

    Paraskevas, C.; Georgiou, P.; Ilias, A.; Panoras, A.; Babajimopoulos, C.

    2013-12-01

    In Greece, crops are frequently cultivated in small isolated areas in close proximity to roads and bare soils and therefore evapotranspiration is affected by local advection. Under these circumstances, oasis effect conditions are present and evapotranspiration is higher than what is expected. In this paper, the evapotranspiration and soil water dynamics of a cotton crop cultivated in small areas under the oasis effect is studied. To this end, two isolated free-drainage lysimeters cultivated with cotton in the year 2007 were used. Soil moisture of the soil profile of both the lysimeters was monitored with two capacitance water content probes. The soil water balance method was used to estimate crop evapotranspiration and corresponding crop coefficients in one of the two lysimeters. These coefficients were 75% larger than the FAO-56 crop coefficients at the mid-season stage. The FAO-56 and the derived crop coefficients were used for the simulation of the water dynamics in the second lysimeter by the SWBACROS model. The derived crop coefficients for these conditions produced much better results than the FAO-56 crop coefficients. The results were improved when crop coefficient value equal to 2.5 was used for the mid-season stage.

  20. Effects of Salmon-Borne Nutrients on Riparian Soils and Vegetation in Southwest Alaska

    Microsoft Academic Search

    Krista K. Bartz; Robert J. Naiman

    2005-01-01

    Spawning Pacific salmon (Oncorhynchus spp.) contribute marine-derived nutrients to riparian ecosystems, potentially affecting characteristics of the associated soils and vegetation. We quantified these effects by comparing soil and vegetative characteristics upstream and downstream of natural migratory barriers on ten spawning streams in southwest Alaska. Mean ?15N values—indicative of salmon-borne nutrients—were significantly higher in the O horizon and surface mineral soils

  1. Soil and vegetation carbon stocks in Brazilian Western Amazonia: relationships and ecological implications for natural landscapes

    Microsoft Academic Search

    C. E. G. R. Schaefer; B. A. F. de Mendonça; H. Oliveira; J. L. Lani; L. M. Costa; E. I. Fernandes Filho

    2008-01-01

    The relationships between soils attributes, soil carbon stocks and vegetation carbon stocks are poorly know in Amazonia, even\\u000a at regional scale. In this paper, we used the large and reliable soil database from Western Amazonia obtained from the RADAMBRASIL\\u000a project and recent estimates of vegetation biomass to investigate some environmental relationships, quantifying C stocks of\\u000a intact ecosystem in Western Amazonia.

  2. Reflectance of vegetation, soil, and water. [Hidalgo County, Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (principal investigator)

    1974-01-01

    The author has identified the following significant results. The majority of the rangelands of Hidalgo County, Texas are used in cow-calf operations. Continuous year-long grazing is practiced on about 60% of the acreage and some type of deferred system on the rest. Mechanical brush control is used more than chemical control. Ground surveys gave representative estimates for 15 vegetable crops produced in Hidalgo County. ERTS-1 data were used to estimate the acreage of citrus in the county. Combined Kubleka Munk and regression models, that included a term for shadow areas, gave a higher correlation of composite canopy reflectance with ground truth than either model alone.

  3. Radar backscattering measurement of bare soil and vegetation covered soil using X-band and full polarization

    NASA Astrophysics Data System (ADS)

    Goswami, B.; Kalita, M.

    2014-11-01

    The objective of the study is to measure backscattered power of bare soil and vegetation covered soil using X-band scatterometer system with full polarization and various angles during monsoon season and relate backscattered power to the density of vegetation over soil. The measurement was conducted at an experimental field located in the campus of Assam Engineering College, Guwahati, India. The soil sample consists of Silt and Clay in higher proportions as compared to Sand. The scatterometer system consists of dual-polarimetric square horn antennas, Power meter, Klystron, coaxial cables, isolator and waveguide detector. The polarization of the horn antennas as well as the look angle can be changed in the set-up. The backscattering coefficients were calculated by applying a radar equation for the measured values at incident angles between 30° and 60° for full polarization (HH, VV, HV, VH), respectively, and compared with vegetation cover over soil for each scatterometer measurement simultaneously. The VH polarization and 60° look angle are found to be the most suitable combination of configuration of an X-band scatterometer for distinguishing the land cover targets such as bare soil and vegetation covered soil. From the analysis of the results, polarimetric scatterometer data appear to be promising to distinguish the land cover types such as bare soil and soil completely covered by vegetation. The results of this study will help the scientists working in the field of active microwave remote sensing.

  4. Monte Carlo simulation model for electromagnetic scattering from vegetation and inversion of vegetation parameters

    E-print Network

    Wang, Li-Fang, Ph. D. Massachusetts Institute of Technology

    2007-01-01

    In this thesis research, a coherent scattering model for microwave remote sensing of vegetation canopy is developed on the basis of Monte Carlo simulations. An accurate model of vegetation structure is essential for the ...

  5. A regional dynamic vegetation-climate model for Central America

    NASA Astrophysics Data System (ADS)

    Snell, R. S.; Cowling, S. A.; Smith, B.

    2009-12-01

    Global vegetation models simulate the distribution of vegetation as a function of climate. Dynamic global vegetation models (DGVMs) are also able to simulate the vegetation shifts in response to climate change, which makes them particularly useful for addressing questions about past and future climate scenarios. However, DGVMs have been criticized for using generic plant functional types (PFTs) and running the models at a coarse grid cell resolution. Regional dynamic vegetation models are able to simulate important landscape variation, since they use a finer resolution and specific PFTs for their region. Regional studies have typically focused on boreal or temperate ecosystems in North America and Europe. We will be presenting the results of applying a dynamic regional vegetation-climate model (LPJ-GUESS) for Central America. Initially, the model was run with the described global PFTs. However, several biomes were very poorly represented. Two PFTs were added: a Tropical Needleleaf Evergreen Tree to improve the simulation of the Mixed Pine-Oak biome, and a Desert Shrub to capture the Xeric Shrublands. The overall distribution of biomes was visually similar, however the Kappa statistic indicated a poor agreement with the potential biome map (overall Kappa = 0.301). The Kappa statistic did improve as we aggregated cell sizes and simplified the biomes (overall Kappa = 0.728). Compared to remote sensing data, the model showed a strong correlation with total LAI (r = 0.75). The poor Kappa statistic is likely due to a combination of factors. The way in which biomes are defined by the author can have a large influence on the level of agreement between simulated and potential vegetation. The Kappa statistic is also limited to comparing individual grid cells and thus, cannot detect overall patterns. Examining those areas which are poorly represented will help to identify future work and improve the representation of vegetation in these ecological models. In particular, the model was especially poor at distinguishing between the different ‘dry’ biomes, such as Tropical Dry Forest, Savanna, Grassland and Xeric Shrubland. There are several potential reasons why this might be so. The module which simulates fire in LPJ-GUESS is based on fire requirement for boreal and temperate regions. Fire was underestimated in those areas which were supposed to be Savannas, which is likely why those areas were dominated by a Dry Tropical Forest. Other potential factors include hydraulic redistribution, facilitation, photosynthetic pathway, and the described soil layer.

  6. Evaluating models of climate and forest vegetation

    NASA Technical Reports Server (NTRS)

    Clark, James S.

    1992-01-01

    Understanding how the biosphere may respond to increasing trace gas concentrations in the atmosphere requires models that contain vegetation responses to regional climate. Most of the processes ecologists study in forests, including trophic interactions, nutrient cycling, and disturbance regimes, and vital components of the world economy, such as forest products and agriculture, will be influenced in potentially unexpected ways by changing climate. These vegetation changes affect climate in the following ways: changing C, N, and S pools; trace gases; albedo; and water balance. The complexity of the indirect interactions among variables that depend on climate, together with the range of different space/time scales that best describe these processes, make the problems of modeling and prediction enormously difficult. These problems of predicting vegetation response to climate warming and potential ways of testing model predictions are the subjects of this chapter.

  7. Modeling Hydrologic and Vegetation Responses in Freshwater Wetlands

    NASA Astrophysics Data System (ADS)

    Chui, Ting Fong May; Low, Swee Yang; Liong, Shie-Yui

    2010-05-01

    Wetlands constitute 6 - 7 % of the Earth's land surface and provide various critical ecosystem services such as purifying the air and water, mitigating floods and droughts, and supporting wildlife habitats. Despite the importance of wetlands, they are under threat of degradation by human-induced land use changes and climate change. Even if the value of wetlands is recognized, they are often not managed properly or restored successfully due to an inadequate understanding of the ecosystems and their responses to management scenarios. A better understanding of the main components of wetlands, namely the interdependent hydrologic and vegetation systems, and the sensitivity of their responses to engineering works and climate change, is crucial for the preservation of wetlands. To assess these potential impacts, a model is developed in this study for characterizing the coupled dynamics between soil moisture and plant biomass in wetland habitats. The hydrology component of the model is based on the Richards' equation and simulates spatially-varying groundwater movement and provides information on soil moisture at different depths. The plant growth component of the model is described through an equation of the Lotka-Volterra type modified for plant growth dynamics and is adapted from published literature. The two components are coupled via transpiration and ecosystem carrying capacity for plants. Transpiration is modeled for both unsaturated and saturated zones, while the carrying capacity describes limiting oxygen and subsequent nutrient availability in the soil column as a function of water table depth. Vegetation is represented by two species characteristic of mudflat herbaceous plants ranging from facultative wetland to upland plants. The model is first evaluated using a simplified domain and the hydrological information available in the RG2 site of the Everglades wetlands region. The modeled water table fluctuations in general are comparable to field data collected on-site, indicating the potential of the model in capturing soil moisture dynamics. Further application of the model for impact assessments demonstrates that drainage of wetlands resulting in groundwater drawdown is expected to produce appreciable effects on vegetation biomass response. The model developed in this study simulates the coupled and spatially-varying groundwater movement and plant growth dynamics, which allows researchers to better understand and protect the integrated hydrologic and vegetation systems of wetlands worldwide.

  8. Lead, cadmium, and zinc contamination of Aspen garden soils and vegetation

    Microsoft Academic Search

    D. Y. Boon; P. N. Soltanpour

    2009-01-01

    Samples of old silver mine dump materials, garden soils contaminated with mine dump materials, noncontaminated garden soils, and vegetation grown in these gardens were collected to determine the extent of Pb, Cd, and Zn contamination in Aspen, CO. Many of the mine dump materials and soils contained sufficient quantities of Pb and Cd to pose potential health risks if the

  9. Re-Vegetating Mine Land that Has Been Ameliorated with Alternative Soil Ameliorants

    Microsoft Academic Search

    Wayne F. Truter; Norman F. G. Rethman

    One of the major limiting factors for re-vegetating soils disturbed by surface coal mining in South Africa is their potentially acidic and nutrient deficient nature. Liming and fertilizing these soils are accepted as common practice, but recently it has become crucial to investigate the use of other soil ameliorants that can possibly provide a more sustainable system. The use of

  10. Soil-vegetation correlations in the Connecticut River floodplain of Western Massachusetts

    USGS Publications Warehouse

    Veneman, Peter L.M.; Tiner, Ralph W.

    1990-01-01

    As part of a national study analyzing the relation between hydric soils and wetland vegetation, the vegetation associated with a series of known soils was sampled along the Connecticut River floodplain in Massachusetts. Weighted average and index average (presence/absence) values were calculated for vegetation using wetland ecological index values from the National List of Plant Species that Occur in Wetlands developed by the U.S. Fish and Wildlife Service and procedures developed by T. R. Wentworth and G. P. Johnson at North Carolina State University. Good correspondence between soils and vegetation was recorded with two exceptions. Two typically nonhydric soils were determined to be hydric based on vegetation analyses. Examination of the groundwater hydrology of these two soils confirmed their hydric nature. The authors suggested that one of these soils may need to be redefined and they also suggested that the assigned index values for a few species of vegetation should be reexamined. However, in general the index average values of vegetation based on published wetland index values corresponded with the hydric and nonhydric nature of soils.

  11. Assembly Processes under Severe Abiotic Filtering: Adaptation Mechanisms of Weed Vegetation to the Gradient of Soil Constraints

    PubMed Central

    Nikolic, Nina; Böcker, Reinhard; Kostic-Kravljanac, Ljiljana; Nikolic, Miroslav

    2014-01-01

    Questions Effects of soil on vegetation patterns are commonly obscured by other environmental factors; clear and general relationships are difficult to find. How would community assembly processes be affected by a substantial change in soil characteristics when all other relevant factors are held constant? In particular, can we identify some functional adaptations which would underpin such soil-induced vegetation response? Location Eastern Serbia: fields partially damaged by long-term and large-scale fluvial deposition of sulphidic waste from a Cu mine; subcontinental/submediterranean climate. Methods We analysed the multivariate response of cereal weed assemblages (including biomass and foliar analyses) to a strong man-made soil gradient (from highly calcareous to highly acidic, nutrient-poor soils) over short distances (field scale). Results The soil gradient favoured a substitution of calcicoles by calcifuges, and an increase in abundance of pseudometallophytes, with preferences for Atlantic climate, broad geographical distribution, hemicryptophytic life form, adapted to low-nutrient and acidic soils, with lower concentrations of Ca, and very narrow range of Cu concentrations in leaves. The trends of abundance of the different ecological groups of indicator species along the soil gradient were systematically reflected in the maintenance of leaf P concentrations, and strong homeostasis in biomass N:P ratio. Conclusion Using annual weed vegetation at the field scale as a fairly simple model, we demonstrated links between gradients in soil properties (pH, nutrient availability) and floristic composition that are normally encountered over large geographic distances. We showed that leaf nutrient status, in particular the maintenance of leaf P concentrations and strong homeostasis of biomass N:P ratio, underpinned a clear functional response of vegetation to mineral stress. These findings can help to understand assembly processes leading to unusual, novel combinations of species which are typically observed as a consequence of strong environmental filtering, as for instance on sites affected by industrial activities. PMID:25474688

  12. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions.

    PubMed

    Fraga, Helder; Malheiro, Aureliano C; Moutinho-Pereira, José; Cardoso, Rita M; Soares, Pedro M M; Cancela, Javier J; Pinto, Joaquim G; Santos, João A

    2014-01-01

    The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate. PMID:25251495

  13. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data

    USGS Publications Warehouse

    Gu, Y.; Hunt, E.; Wardlow, B.; Basara, J.B.; Brown, J.F.; Verdin, J.P.

    2008-01-01

    The evaluation of the relationship between satellite-derived vegetation indices (normalized difference vegetation index and normalized difference water index) and soil moisture improves our understanding of how these indices respond to soil moisture fluctuations. Soil moisture deficits are ultimately tied to drought stress on plants. The diverse terrain and climate of Oklahoma, the extensive soil moisture network of the Oklahoma Mesonet, and satellite-derived indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) provided an opportunity to study correlations between soil moisture and vegetation indices over the 2002-2006 growing seasons. Results showed that the correlation between both indices and the fractional water index (FWI) was highly dependent on land cover heterogeneity and soil type. Sites surrounded by relatively homogeneous vegetation cover with silt loam soils had the highest correlation between the FWI and both vegetation-related indices (r???0.73), while sites with heterogeneous vegetation cover and loam soils had the lowest correlation (r???0.22). Copyright 2008 by the American Geophysical Union.

  14. Soil drainage and vegetation controls of nitrogen transformation rates in forest soils, southern Quebec

    NASA Astrophysics Data System (ADS)

    Ullah, Sami; Moore, Tim R.

    2009-03-01

    We investigated the influence of soil drainage class and tree species on nitrogen (N) mineralization and nitrification rates in two forest catenas in southern Quebec. Monthly net N mineralization and nitrification rates were determined along transects running from well-drained to poorly drained soils for 2 years through in situ incubation of homogenized soils. Potential N transformation rates in soils under American beech, sugar maple, and eastern hemlock trees were determined through incubation of homogenized soils in the laboratory under two different moisture regimes (50 and 100% water by volume) mimicking well-drained and poorly drained soil conditions in the two watersheds. Field-based N mineralization rates averaged 38 ± 6 mg m-2 d-1 in well-drained soils, while those in the poorly drained soils averaged 17 ± 5 mg N m-2 d-1. Similarly, net nitrification rates in well-drained soils (18 ± 4 mg N m-2 d-1) were 3 times greater than those in poorly drained soils (6 ± 3 mg N m-2 d-1). Laboratory-based potential N mineralization rates in soils ranked sugar maple > American beech > eastern hemlock under both well-drained (incubated at 50% water by volume) and poorly drained soil conditions (incubated at 100% water by volume). Potential nitrification rates ranked sugar maple > American beech > eastern hemlock under well-drained soil conditions, while under poorly drained conditions, American beech > sugar maple ? eastern hemlock. Nitrification enzyme activity determined through a soil slurry method correlated significantly with field-based nitrification rates. Differences in soil volumetric water contents, leaf litter N input, and soil C:N ratios, as surrogates of soil drainage and floristic heterogeneity, respectively, correlated significantly with field-based N mineralization and nitrification rates. Field-based N mineralization and nitrification rates were higher in summer than in early spring and autumn. Soil drainage class and tree species exert marked controls over N transformation rates in forested landscapes and need to be incorporated when characterizing and/or modeling internal N cycling at watershed scales.

  15. Quantifying the influence of deep soil moisture on ecosystem albedo: The role of vegetation

    NASA Astrophysics Data System (ADS)

    Sanchez-Mejia, Zulia Mayari; Papuga, Shirley Anne; Swetish, Jessica Blaine; van Leeuwen, Willem Jan Dirk; Szutu, Daphne; Hartfield, Kyle

    2014-05-01

    As changes in precipitation dynamics continue to alter the water availability in dryland ecosystems, understanding the feedbacks between the vegetation and the hydrologic cycle and their influence on the climate system is critically important. We designed a field campaign to examine the influence of two-layer soil moisture control on bare and canopy albedo dynamics in a semiarid shrubland ecosystem. We conducted this campaign during 2011 and 2012 within the tower footprint of the Santa Rita Creosote Ameriflux site. Albedo field measurements fell into one of four Cases within a two-layer soil moisture framework based on permutations of whether the shallow and deep soil layers were wet or dry. Using these Cases, we identified differences in how shallow and deep soil moisture influence canopy and bare albedo. Then, by varying the number of canopy and bare patches within a gridded framework, we explore the influence of vegetation and soil moisture on ecosystem albedo. Our results highlight the importance of deep soil moisture in land surface-atmosphere interactions through its influence on aboveground vegetation characteristics. For instance, we show how green-up of the vegetation is triggered by deep soil moisture, and link deep soil moisture to a decrease in canopy albedo. Understanding relationships between vegetation and deep soil moisture will provide important insights into feedbacks between the hydrologic cycle and the climate system.

  16. Calculation set for design and optimization of vegetative soil covers Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect

    Peace, Gerald L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM)

    2005-02-01

    This study demonstrates that containment of municipal and hazardous waste in arid and semiarid environments can be accomplished effectively without traditional, synthetic materials and complex, multi-layer systems. This research demonstrates that closure covers combining layers of natural soil, native plant species, and climatic conditions to form a sustainable, functioning ecosystem will meet the technical equivalency criteria prescribed by the U. S. Environmental Protection Agency. In this study, percolation through a natural analogue and an engineered cover is simulated using the one-dimensional, numerical code UNSAT-H. UNSAT-H is a Richards. equation-based model that simulates soil water infiltration, unsaturated flow, redistribution, evaporation, plant transpiration, and deep percolation. This study incorporates conservative, site-specific soil hydraulic and vegetation parameters. Historical meteorological data are used to simulate percolation through the natural analogue and an engineered cover, with and without vegetation. This study indicates that a 3-foot (ft) cover in arid and semiarid environments is the minimum design thickness necessary to meet the U. S. Environmental Protection Agency-prescribed technical equivalency criteria of 31.5 millimeters/year and 1 x 10{sup -7} centimeters/second for net annual percolation and average flux, respectively. Increasing cover thickness to 4 or 5 ft results in limited additional improvement in cover performance.

  17. Relationship between polychlorinated dibenzo-p-dioxin, polychlorinated dibenzofuran, and dioxin-like polychlorinated biphenyl concentrations in vegetation and soil on residential properties.

    PubMed

    Demond, Avery; Towey, Timothy; Adriaens, Peter; Zhong, Xiaobo; Knutson, Kristine; Chen, Qixuan; Hong, Biling; Gillespie, Brenda; Franzblau, Alfred; Garabrant, David; Lepkowski, James; Luksemburg, William; Maier, Martha

    2010-12-01

    The University of Michigan Dioxin Exposure Study was undertaken to address concerns that the industrial discharge of dioxin-like compounds in the Midland, Michigan, USA area had resulted in the contamination of soil and vegetation in the Tittabawassee River floodplain and downwind of the incinerator in the City of Midland. The study included the analysis of 597 vegetation samples, predominantly grass and weeds, from residential properties selected through a multistage probabilistic sample design in the Midland area, and in Jackson and Calhoun Counties (Michigan), as a background comparison, for 29 polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs). The mean toxic equivalent (TEQ) of the house perimeter vegetation samples ranged from 4.2 to 377 pg/g. The ratio of TEQs (vegetation to soil) was about 0.3, with a maximum of 3.5. Based on a calculation of the similarity of the congener patterns between the soil and the vegetation, it appeared that the source of the contamination on the vegetation was the surrounding soil. This conclusion was supported by linear regression analysis, which showed that the largest contributor to the R(2) for the outcome variable of log(10) of the vegetation concentration was log(10) of the surrounding soil concentration. Models of vegetation contamination usually focus on atmospheric deposition and partitioning. The results obtained here suggest that the deposition of soil particles onto vegetation is a significant route of contamination for residential herbage. Thus, the inclusion of deposition of soil particles onto vegetation is critical to the accurate modeling of contamination residential herbage in communities impacted by historic industrial discharges of persistent organic compounds. PMID:20963797

  18. The N transformation mechanisms for rapid nitrate accumulation in soils under intensive vegetable cultivation

    Microsoft Academic Search

    Tongbin Zhu; Jinbo Zhang; Zucong Cai; Christoph Müller

    Purpose  Rapid soil degradation occurring under intensive vegetable cultivation, an increasingly common agricultural strategy in China,\\u000a is characterized by soil acidification, salinity, and NO3? accumulation. However, to date, the reasons for rapid NO3? accumulation in soils at the nitrogen (N) levels have not been completely understood. In this study, we explored the underlying\\u000a mechanisms for rapid NO3? accumulation in soils used

  19. The influence of precipitation, vegetation and soil properties on the ecohydrology of sagebrush steppe rangelands on the INL site

    USGS Publications Warehouse

    Germino, Matthew J.

    2013-01-01

    The INL Site and other landscapes having sagebrush steppe vegetation are experiencing a simultaneous change in climate and floristics that result from increases in exotic species. Determining the separate and combined/interactive effects of climate and vegetation change is important for assessing future changes on the landscape and for hydrologic processes. This research uses the 72 experimental plots established and initially maintained for many years as the “Protective Cap Biobarrier Experiment” by Dr. Jay Anderson and the Stoller ESER program, and the experiment is also now referred to as the “INL Site Ecohydrology Study.” We are evaluating long-term impacts of different plant communities commonly found throughout Idaho subject to different precipitation regimes and to different soil depths. Treatments of amount and timing of precipitation (irrigation), soil depth, and either native/perennial or exotic grass vegetation allow researchers to investigate how vegetation, precipitation and soil interact to influence soil hydrology and ecosystem biogeochemistry. This information will be used to improve a variety of models, as well as provide data for these models.

  20. Bioremediation of petroleum contaminated soil using vegetation. A microbial study

    SciTech Connect

    Lee, E.; Banks, M.K. (Kansas State Univ., Manhattan, KS (United States))

    1993-12-01

    The degradation of selected petroleum hydrocarbons in the rhizosphere of alfalfa was investigated in a greenhouse experiment. Petroleum contaminated and uncontaminated soils were spiked with 100 ppm of polynuclear aromatic and aliphatic hydrocarbons. Unspiked, uncontaminated soil was used as a control. Microbial counts for soils with and without plants for each soil treatment were performed 4, 8, 16, and 24 weeks after planting. Microbial numbers were substantially greater in soil with plants when compared to soil containing no plants, indicating that plant roots enhanced microbial populations in contaminated soil. Soil treatments had no effect on microbial numbers in the presence of plants. 12 refs., 3 figs., 1 tab.

  1. Effects of changing channel morphology on vegetation, groundwater, and soil moisture regimes in groundwater dependent ecosystems

    NASA Astrophysics Data System (ADS)

    Loheide, S. P.; Booth, E. G.

    2008-12-01

    Channel incision and excessive floodplain sedimentation are major causes of riparian degradation across the country. Though the causes and consequences of these processes vary significantly, the resulting morphology in both cases is steep streambanks and a stream that is less connected with the floodplain. A case study from semi-arid, wet meadows with snow-melt driven hydrology in the Sierra Nevada of CA will be compared with one from a riparian wet prairie in the humid environment of the Driftless Area of southern Wisconsin. In the mountain meadows, 80 years of logging and overgrazing led to more flashy runoff and downcutting of the stream. This led to drainage of groundwater from the meadow and a shift in vegetation composition from sedges and rushes to dryland grasses and sagebrush in this groundwater dependent ecosystem. In the Driftless Area of WI, the introduction of agricultural practices by European settlers in the 1830s resulted in severe erosion from the cropped areas in the uplands. This sediment was transported to the stream valleys where it was deposited on the floodplain, raising this surface relative to the streambed. As a result, the water table is at a greater depth from this elevated land surface. In this ecosystem, the vegetation has shifted from wet prairie and sedge meadow communities to grasses and lowland forests dominated by box elder trees. The geomorphic result at both sites was a channel bounded by tall banks with reduced hydrologic connectivity with the floodplain. In both cases, the slope of the water table towards the stream is greater than the topographic slope across the riparian zone and the greatest depth to the water table is found adjacent to the channel. Transects exhibit a decreasing trend in soil moisture with increasing variability toward the channel. Remotely sensed imagery shows trends of drier vegetation communities adjacent to channels and wetter vegetation communities toward the margin of the riparian zones. Coupled hydrologic and vegetation models describing the effects following channel incision or excessive floodplain sedimentation are consistent with water table, soil moisture and vegetation observations. These case studies illustrate the role channel morphology plays in controlling vegetation patterning of riparian zones via the groundwater hydrologic linkage.

  2. Relations between Root-zone Soil Moisture and MODIS-derived Vegetation Indices in Oak savanna and Open Grassland in California

    NASA Astrophysics Data System (ADS)

    Liu, S.; Chadwick, O.; Roberts, D.

    2008-12-01

    Optical remote sensing cannot provide direct quantification of soil moisture, but here we test the idea that plant available soil moisture can be inferred through calibration of images that quantify plant-leaf water and photosynthetic relationships. We measured relationships between volumetric soil water content in the rooting zone of annual grasslands and oak savanna and six vegetation indices (VIs) derived from MODIS data (NDVI, EVI, ARVI, SAVI,VARI and NDWI). The measured sites were part of the AmeriFlux network in California: Tonzi Ranch (oak savanna)and Vaira Ranch(open grassland). To reduce the empirical effect of linking vegetation indices to soil moisture directly, measured gross primary production (GPP) was used to bridge them. The results showed that (1) VARI was most sensitive to soil moisture variations; (2) in open grassland GPP is significantly controlled by the available water in the soil but the relationship is not linear----- GPP continues to increase in the growing season as long as soil moisture is sufficient. In oak savanna, the relationship is less obvious because oak trees can exploit water in deep soil layers. The results also demonstrated a strong linear relationship between GPP and vegetation indices for both oak savanna and open grassland. Therefore, based on the relation between GPP and root-zone soil moisture and the relation between GPP and VI, we estimated soil moisture as a function of a VI. Likely, the functional parameters are dependent on vegetation types, soil texture and topography. In order to explore the sensitivity of this relationship in areas where soil moisture and vegetation production data are not available, we will use DayCENTURY and ISOLSM models to simulate soil moisture and primary production at instrumented sites with meteorological data and soil properties data. The simulation tested in Tonzi Ranch and Vaira Ranch suggest that we can estimate root-zone soil moisture with optical remotely sensed data at large scale.

  3. The Changing Model of Soil

    NASA Astrophysics Data System (ADS)

    Richter, D. D.; Yaalon, D.

    2012-12-01

    The contemporary genetic model of soil is changing rapidly in response to advances in soil science and to human and environmental forcings in the 21st century (Richter and Yaalon, 2012). Three ongoing changes in the model of soil include that: (1) lower soil boundaries are much deeper than the solum, historically the O to B horizons, (2) most soils are polygenetic paleosols, products of soil-forming processes that have ranged widely over soils' lifetimes, and (3) soils are globally human-natural bodies, no longer natural bodies. Together, these changes in the model of soil mean that human forcings are a global wave of soil polygenesis altering fluxes of matter and energy and transforming soil thermodynamics as potentially very deep systems. Because soils are non-linear systems resulting from high-order interactions of physics, chemistry, and biology, trajectories of how human forcings alter soils over decades are not readily predictable and require long-term soil observations. There is much to learn about how soils are changing internally as central components of management systems and externally in relation to wider environments. To be critical, research has been remarkably superficial in studies of soil, reductionist in approach, and lacking in time-series observations of responses to soil management. While this criticism may sound negative, it creates significant opportunities for contemporary soil scientists.

  4. Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem

    E-print Network

    Katul, Gabriel

    Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean 2006. [1] Micrometeorological measurements of evapotranspiration (ET) can be difficult to interpret on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy, Water Resour. Res., 42, W08419, doi

  5. Coupling a distributed hydrological model with a vegetated slope stability model

    NASA Astrophysics Data System (ADS)

    Preti, F.; Dani, A.; Chirico, G. B.

    2012-04-01

    Vegetation significantly influences the hydrological and mechanical properties which are relevant for the stability of shallow soils along sloping surfaces. In view of the complexity of soil plant hydrological interactions, the quantification of root mechanical reinforcement remains a challenge. In this paper we couple root reinforcement models with a quasi-dynamic wetness index (QDI), which is specifically designed for estimating the local wetness conditions by accounting for the character of the upslope topography and the time of the lateral soil moisture distribution. The overall modelling strategy can be effectively employed for assessing the relative hazard of shallow landslides accounting for vegetation patterns and dominant forest management practices. The methodology is applied to an area located in Northern Tuscany to assess the effect of root degradation after tree logging on the spatial occurrence of shallow landslides during extreme rainfall events.

  6. Bioremediation of petroleum contaminated soil using vegetation: A microbial study

    Microsoft Academic Search

    Euisang Lee; M. K. Banks

    1993-01-01

    The degradation of selected petroleum hydrocarbons in the rhizosphere of alfalfa was investigated in a greenhouse experiment. Petroleum contaminated and uncontaminated soils were spiked with 100 ppm of polynuclear aromatic and aliphatic hydrocarbons. Unspiked, uncontaminated soil was used as a control. Microbial counts for soils with and without plants for each soil treatment were performed 4, 8, 16, and 24

  7. Dual frequency microwave radiometer measurements of soil moisture for bare and vegetated rough surfaces

    E-print Network

    Lee, Siu Lim

    1974-01-01

    of Dielectric Constant of Soil Measurements with Wiebe Waveguide System Measurements with Giarola's Modified Waveguide Method V. RESULTS AND ANALYSIS Introduction Experimental Results and Analysis Effects of Surface Roughness Effects of Vegetation... Soil Moisture Contents" of the Vegetated Rough Surface. . . . The Tools of the Special Technique for Handling Clay for Dielectric Constant Measurements 194 202 ~Fi ure B-2a B-2b B-3a B-3b Step 1. . Step 2. Step 3. Step 4. ~pa e 203 203...

  8. Vegetation and soil characteristics of the wasteland of Valika Chemical Industries near Manghopir, Karachi

    Microsoft Academic Search

    Tariq Mehmood; Zafar M. Iqbal

    1995-01-01

    The vegetation of the wasteland of Valika chemical industries near Manghopir road, Karachi was studied. Nine plant communities were recognized based on dominant species. In these plant communities the vegetation was disturbed, mostly halophytic and dominated bySuaeda fruticosa,Tamarix indica,Salsola baryosma,Cressa cretica,Atriplex griffithii,Haloxylon recurvum,Indigofera hochstetteri,Prosopis julifloraandChenopodium album.The physico-chemical properties of the soils were also analysed. Soil texture was mostly sandy loam,

  9. Direct leaf wetness measurements and its numerical analysis using a multi-layer atmosphere-soil-vegetation model at a grassland site in pre-alpine region in Germany

    NASA Astrophysics Data System (ADS)

    Katata, Genki; Held, Andreas; Mauder, Matthias

    2014-05-01

    The wetness of plant leaf surfaces (leaf wetness) is important in meteorological, agricultural, and environmental studies including plant disease management and the deposition process of atmospheric trace gases and particles. Although many models have been developed to predict leaf wetness, wetness data directly measured at the leaf surface for model validations are still limited. In the present study, the leaf wetness was monitored using seven electrical sensors directly clipped to living leaf surfaces of thin and broad-leaved grasses. The measurements were carried out at the pre-alpine grassland site in TERestrial ENvironmental Observatories (TERENO) networks in Germany from September 20 to November 8, 2013. Numerical simulations of a multi-layer atmosphere-SOiL-VEGetation model (SOLVEG) developed by the authors were carried out for analyzing the data. For numerical simulations, the additional routine meteorological data of wind speed, air temperature and humidity, radiation, rainfall, long-wave radiative surface temperature, surface fluxes, ceilometer backscatter, and canopy or snow depth were used. The model reproduced well the observed leaf wetness, net radiation, momentum and heat, water vapor, and CO2 fluxes, surface temperature, and soil temperature and moisture. In rain-free days, a typical diurnal cycle as a decrease and increase during the day- and night-time, respectively, was observed in leaf wetness data. The high wetness level was always monitored under rain, fog, and snowcover conditions. Leaf wetness was also often high in the early morning due to thawing of leaf surface water frozen during a cold night. In general, leaf wetness was well correlated with relative humidity (RH) in condensation process, while it rather depended on wind speed in evaporation process. The comparisons in RH-wetness relations between leaf characteristics showed that broad-leaved grasses tended to be wetter than thin grasses.

  10. Estimating Fractional Cover of Photosynthetic Vegetation, Non-Photosynthetic Vegetation and Soil in Savannas Using the EO-1 Hyperion and MODIS Sensors

    NASA Astrophysics Data System (ADS)

    Guerschman, J. P.; Hill, M. J.; Barrett, D. J.; Renzullo, L.; Marks, A.; Botha, E.

    2007-12-01

    Monitoring the fractional cover of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare soil (BS) in savannas is important for carbon and water modeling, grazing management, fire risk assessment and erosion control. We developed a simple method for resolving their fractional cover with hyperspectral imagery, by combining the Normalized Difference Vegetation Index (NDVI) which measures vegetation greenness and the Cellulose Absorption Index (CAI), which quantifies the intensity of the cellulose-lignin feature at 2.0-2.2 ?m, and then applying a linear unmixing. We applied this method to three EO-1 Hyperion scenes acquired during the 2005 growing season in a site in northern Australia. Data from field measurements and from fire scar maps provided a means for qualitatively validating the results obtained. We then explored the potential of the MODIS-TERRA sensor for resolving vegetation fractional cover. We generated synthetic MODIS data from the Hyperion images and also used actual MODIS reflectance from the MOD09 product, concurrent with the Hyperion images. We found that the MODIS-TERRA sensor, despite not being able to quantify the cellulose feature directly, can be used for mapping fractional cover. This is due to the fact that vegetation, regardless of its photosynthetic status, has a lower reflectance at 2.1 ?m (MODIS band 7) than at 1.6 ?m (MODIS band 6), compared to soils, which have a relatively flat spectra at those wavelengths. We propose using the ratio of band 7 to band 6 together with the NDVI for resolving the proportions of PV, NPV and BS. We tested the method in 10 independent savanna sites across Australia where grass curing is continuously monitored and found very good agreement both in space and in time between observed and modeled fractional cover. Finally, we developed a prototype of an operational product based on the MOD43 product (Nadir BRDF-Adjusted Reflectance 16-Day composites) and discuss its strengths and limitations.

  11. Phosphorus in China's Intensive Vegetable Production Systems: Overfertilization, Soil Enrichment, and Environmental Implications.

    PubMed

    Yan, Zhengjuan; Liu, Pengpeng; Li, Yuhong; Ma, Lin; Alva, Ashok; Dou, Zhengxia; Chen, Qing; Zhang, Fusuo

    2013-07-01

    China's vegetable production has experienced a rapid growth in recent years. Total production amounted to 522.7 million Mg (1 Mg = 10 g) in 2009, which was more than nine times that in 1980 and represented >50% of the world production. Meanwhile, excessive use of animal manures and chemical fertilizers in vegetable fields has brought various production and environmental challenges, including excessive accumulation of nutrients in soils and accelerated water pollution problems. In this study, we have evaluated the current status of phosphorus (P) in China's intensive vegetable production systems based on data summarized from nearly 100 publications plus results from our recent experiments. Gross overfertilization occurred in greenhouse (571 kg P ha) and open-field (117 kg P ha) vegetable systems compared with P removal in harvested crops (44 and 25 kg P ha) per season. Excess P input led to soil enrichment of labile P, measured as Olsen-P, averaging 179 (greenhouses) and 100 mg P kg (open fields) in the 0- to 20-cm soil depth, and in some cases led to P leaching, as evidenced by increases in Olsen-P and CaCl-P at the 40- to 60-cm soil depth. The vast majority of vegetable soils had Olsen-P exceeding the critical level (46.0-58.0 mg P kg) for optimum vegetable yield. Innovative policies and strategies are urgently needed to implement science-based nutrient management practices to attain sustainable vegetable production while protecting natural and environmental resources. PMID:24216350

  12. [Soil physical and chemical characteristics under different vegetation restoration patterns in China south subtropical area].

    PubMed

    Kang, Bing; Liu, Shi-rong; Cai, Dao-xiong; Lu, Li-hua; He, Ri-ming; Gao, Yan-xia; Di, Wei-zhi

    2010-10-01

    This paper studied the change of soil physical and chemical properties under eleven vegetation restoration patterns (1 kind of secondary forest, 2 kinds of pure coniferous plantations, 5 kinds of evergreen broad-leaved plantations, 2 kinds of conifer and broad-leaved mixed plantations, and 1 kind of shrub) typical in Daqingshan of Guangxi. Obvious differences were observed in the soil physical and chemical properties under different vegetation restoration patterns. The soil physical properties were better in secondary forest but poorer in pure conifer plantations. Conifer and broad-leaved mixed plantations had lower soil bulk density, and their soil total porosity and water-holding capacity were higher than those in pure plantations. There were no significant differences in the soil porosity among the 5 evergreen broad-leaved plantations. Except that of soil total K, the contents of soil nutrients in secondary forest were higher than those in plantations, and the soil C/N ratio and pH value were relatively lower. Comparing with shrub, the 9 plantations had an obvious change in their soil nutrient contents, e. g. , the increase of soil total N and available K. The 2 pure coniferous plantations had lower soil nutrient contents, but after mixed planted with evergreen broad-leaved trees, their soil nutrient contents increased markedly, and the soil C/N ratio decreased. PMID:21328932

  13. Effects of Woody Vegetation Removal on Soil Water Dynamics in a South Texas Shrubland

    E-print Network

    Mattox, April Marie

    2013-07-30

    the root zone of plants. Water moving beyond the root zone is referred to as deep drainage, and has potential to become aquifer recharge. A vegetation manipulation project was designed to understand the effects of woody vegetation removal on soil water...

  14. Fertility Element Storage in Chaparral Vegetation, Leaf Litter, and Soil1

    E-print Network

    Standiford, Richard B.

    Fertility Element Storage in Chaparral Vegetation, Leaf Litter, and Soil1 Paul J. Zinke2 Gen. Tech; and Ceanothus cuneatus, & C. crassifolius. Data for elemental composition, total vegetation and leaf litter weights, and elemental storage weights for each of these species were determined. These data

  15. Precontact vegetation and soil nutrient status in the shadow of Kohala Volcano, Hawaii

    Microsoft Academic Search

    Oliver A. Chadwick; Eugene F. Kelly; Sara C. Hotchkiss; Peter M. Vitousek

    2007-01-01

    Humans colonized Hawaii about 1200 years ago and have progressively modified vegetation, particularly in mesic to dry tropical forests. We use ?13C to evaluate the contribution of C3 and C4 plants to deep soil organic matter to reconstruct pre-human contact vegetation patterns along a wet to dry climate transect on Kohala Mountain, Hawaii Island. Precontact vegetation assemblages fall into three distinct

  16. Feedback between structured vegetation and soil water in a changing climate: A simulation study

    Microsoft Academic Search

    Heike Lischke; Bärbel Zierl

    Structure and composition of vegetation influence the local water budget by transpiration and interception. On the other hand\\u000a soil water content crucially affects plant physiological processes such as nutrient transport or photosynthesis. These processes\\u000a in turn partly determine biomass production, plant growth, survival and competition and, thus, vegetation structure. This\\u000a vegetation-hydrology feedback has the potential to influence the impacts of

  17. Spatial variability of the properties of marsh soils and their impact on vegetation

    NASA Astrophysics Data System (ADS)

    Sidorova, V. A.; Svyatova, E. N.; Tseits, M. A.

    2015-03-01

    Spatial variability of the properties of soils and the character of vegetation was studied on seacoasts of the Velikii Island in the Kandalaksha Bay of the White Sea. It was found that the chemical and physicochemical properties of marsh soils (Tidalic Fluvisols) are largely dictated by the distance from the sea and elevation of the sampling point above sea level. The spatial distribution of the soil properties is described by a quadratic trend surface. With an increase in the distance from the sea, the concentration of ions in the soil solution decreases, and the organic carbon content and soil acidity become higher. The spatial dependence of the degree of variability in the soil properties is moderate. Regular changes in the soil properties along the sea-land gradient are accompanied by the presence of specific spatial patterns related to the system of temporary water streams, huge boulders, and beached heaps of sea algae and wood debris. The cluster analysis made it possible to distinguish between five soil classes corresponding to the following plant communities: barren surface (no permanent vegetation), clayey-sandy littoral with sparse halophytes, marsh with large rhizomatous grasses, and grass-forb-bunchberry vegetation of forest margins. The subdivision into classes is especially distinct with respect to the concentration of chloride ions. The following groups of factors affect the distribution of vegetation: the composition of the soil solution, the height above sea level, the pH of water suspensions, and the humus content.

  18. Temporal Variations in Soil Moisture for Three Typical Vegetation Types in Inner Mongolia, Northern China

    PubMed Central

    Zheng, Hao; Gao, Jixi; Teng, Yanguo; Feng, Chaoyang; Tian, Meirong

    2015-01-01

    Drought and shortages of soil water are becoming extremely severe due to global climate change. A better understanding of the relationship between vegetation type and soil-moisture conditions is crucial for conserving soil water in forests and for maintaining a favorable hydrological balance in semiarid areas, such as the Saihanwula National Nature Reserve in Inner Mongolia, China. We investigated the temporal dynamics of soil moisture in this reserve to a depth of 40 cm under three types of vegetation during a period of rainwater recharge. Rainwater from most rainfalls recharged the soil water poorly below 40 cm, and the rainfall threshold for increasing the moisture content of surface soil for the three vegetations was in the order: artificial Larix spp. (AL) > Quercus mongolica (QM) > unused grassland (UG). QM had the highest mean soil moisture content (21.13%) during the monitoring period, followed by UG (16.52%) and AL (14.55%); and the lowest coefficient of variation (CV 9.6-12.5%), followed by UG (CV 10.9-18.7%) and AL (CV 13.9-21.0%). QM soil had a higher nutrient content and higher soil porosities, which were likely responsible for the higher ability of this cover to retain soil water. The relatively smaller QM trees were able to maintain soil moisture better in the study area. PMID:25781333

  19. Storage of atmospheric carbon in global litter and soil pools in response to vegetation change and biomass allocation

    SciTech Connect

    Klooster, S.A.; Potter, C.S. [NASA/Ames Research Center, Moffett Field, CA (United States)

    1995-06-01

    Changes in the distribution of vegetation types under altered climate regimes could have important consequences for the storage of stems. Because there are relatively few definitive field studies of changes in whole ecosystem carbon process-level models driven by gridded global databases may provide reasonable indicators of to changes in vegetation cover. We have used plant litter quality (lignin content) and carbon allocation to woody tissues as surrogates for testing the hypothetical effects of future vegetation change using the CASA (Carnegie-Ames-Stanford Approach) Biosphere model. The model is driven by global gridded (1{degree}) satellite imagery on a monthly time interval to simulate seasonal patterns in net ecosystem carbon balance and steady-state carbon storage in detritus arid soils. Sensitivity tests treated litter quality and allocation effects independently from other direct effects of changes in climate, atmospheric CO{sub 2} levels, and primary production. Results support the hypothesis that soil C storage in today`s temperate and boreal forest life zones are those most sensitive to changes in litter lignin content which may accompany increased climate stress. For these systems, the model predicts that a 50% increase in litter lignin concentration would result in a long-term net gain of about 10% C from the atmosphere into surface litter and soil organic matter pools. A 50% decrease in C allocation to woody tissues would invoke a net loss of 10% C from litter and soil organic matter pools.

  20. Role of vegetation in modulating rainfall interception and soil water flux in ecosystems under transition from grassland to woodland

    NASA Astrophysics Data System (ADS)

    Zou, Chris; Will, Rodney; Stebler, Elaine; Qiao, Lei

    2014-05-01

    Vegetation exerts strong control on the hydrological budget by shielding the soil from rainfall through interception and modulating water transmission in the soil by altering soil properties and rooting zone water extraction. Therefore, a change in vegetation alters the water cycle by a combination of a passive, rainfall redistribution mechanism controlled by the physical dimensions of vegetation and active, water extracting processes resulting from physiological attributes of different plants. As a result, the role of vegetation on the water cycle is likely to change where vegetation is under transition such as in the southern Great Plains of USA due to woody plant encroachment. However, it remains largely unknown how this physiognomic transformation from herbaceous cover to woody canopy alters rainfall influx, soil water transmission and efflux from the soil profile and consequently alters historic patterns of runoff and groundwater recharge. This knowledge is critical for both water resource and ecosystem management. We conducted a comprehensive, 5-year study involving direct quantification of throughfall and stemflow for grassland and encroached juniper woodland (Juniperus virginiana), water efflux through transpiration using an improved Granier thermal dissipation method (trees) and ET chamber (grassland), soil moisture storage and dynamics (capacitance probe) and streamflow (small catchment). We calibrated a prevailing hydrological model (SWAT) based on observed data to simulate potential change in runoff and recharge for the Cimarron River basin (study site located within this basin) under various phases of grassland to woodland transition. Our results show that juniper encroachment reduces throughfall reaching the soil surface compared with grassland under moderate grazing. The evergreen junipers transpired water year-round including fall and winter when the warm season grasses were senescent. As a result, soil water content and soil water storage on the encroached catchment were generally lower than on the grassland catchment, especially proceeding the seasons of peak rainfall in spring and fall. Frequency and magnitude of streamflow events was observed to be substantially reduced in the encroached catchment. Model simulation suggests that conversion of all existing grassland to juniper in the Cimarron River basin will increase overall water efflux through evapotranspiration sufficient to substantially reduce water yield for streamflow. Rapid transformation of mesic grasslands to a woodland state with juniper encroachment, if not confined, has the potential to reduce soil water, streamflow and flow duration of ephemeral streams. Slowing the expansion of woody encroachment into grasslands might be considered as a land-based strategy to sustain or even augment streamflow and groundwater recharge to meet the increase in water demand under increasing climate variability and population growth in the southern Great Plains of USA

  1. Utilizing satellite imagery and GLOBE student data to model soil dynamics

    Microsoft Academic Search

    Jessica Robin; Elissa Levine; Susan Riha

    2005-01-01

    General Purpose Atmosphere Plant Soil Simulator (GAPS), a menu-driven soil-vegetation-atmosphere transfer (SVAT) model, was used to simulate soil water dynamics from 1998 through 2001 for Greenville, PA, USA. GLOBE student data collected by students from Reynolds Junior and Senior High School, coupled with normalized difference vegetation index (NDVI) data derived from SPOT4 vegetation imagery, were used to parameterize and validate

  2. A multi-frequency radiometric measurement of soil moisture content over bare and vegetated fields

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Schmugge, T. J.; Mcmurtrey, J. E., III; Gould, W. I.; Glazar, W. S.; Fuchs, J. E. (principal investigators)

    1981-01-01

    A USDA Beltsville Agricultural Research Center site was used for an experiment in which soil moisture remote sensing over bare, grass, and alfalfa fields was conducted over a three-month period using 0.6 GHz, 1.4 GHz, and 10.6 GHz Dicke-type microwave radiometers mounted on mobile towers. Ground truth soil moisture content and ambient air and sil temperatures were obtained concurrently with the radiometric measurements. Biomass of the vegetation cover was sampled about once a week. Soil density for each of the three fields was measured several times during the course of the experiment. Results of the radiometric masurements confirm the frequency dependence of moisture sensing sensitivity reduction reported earlier. Observations over the bare, wet field show that the measured brightness temperature is lowest at 5.0 GHz and highest of 0.6 GHz frequency, a result contrary to expectation based on the estimated dielectric permittivity of soil water mixtures and current radiative transfer model in that frequency range.

  3. Floristic Composition of Vegetation and the Soil Seed Bank in Different Types of Dunes of Kerqin Steppe

    Microsoft Academic Search

    Yulin Li; Jianyuan Cui; Xueyong Zhao; Halin Zhao

    2004-01-01

    The floristic composition of the vegetation and the soil seed bank in different types of dunes of Kerqin steppe were compared. The aim of this study was to examine the influence of desertification on the floristic composition of the vegetation and soil seed bank. An indirect germination method was used to study the seed bank. Thirty species of the vegetation

  4. Petroleum contamination of soil and water, and their effects on vegetables by statistically analyzing entire data set.

    PubMed

    Zhang, Juan; Fan, Shu-kai; Yang, Jun-cheng; Du, Xiao-ming; Li, Fa-sheng; Hou, Hong

    2014-04-01

    Aliphatic hydrocarbons have been used to assess total oil concentrations, petroleum sources, and petroleum degradation. In this study, surface soil, groundwater, surface water, and vegetables were collected from the outskirts of Xi'an, the largest city in northwestern China, and the samples were analyzed for aliphatic hydrocarbon contents. The concentrations of n-alkanes were 1.06-4.01 ?g/g in the soil. The concentrations and the geochemical characteristics of n-alkanes showed that the low carbon number hydrocarbons were mainly from petroleum sources, whereas the high carbon number hydrocarbons received more hydrocarbons from herbaceous plants. The concentrations of n-alkanes were 9.20-93.44 ?g/L and 23.74-118.27 ?g/L in the groundwater and the surface water, respectively. The water had characteristics of petroleum and submerged/floating macrophytes and was found in concentrations that would cause chronic disruption of sensitive organisms. The concentrations and geochemical characteristics of n-alkanes in Brassica chinensis L. and Apium graveolens were different, but both were contaminated by petroleum hydrocarbons. The results from principal component analysis (PCA) indicated that the sorption of n-alkanes to soil particles could not be described by linear models. The distributions of n-alkanes in vegetables were positively correlated with those in soil, and the correlation coefficient was up to 0.9310 using the constructed vectors. Therefore, the researchers should pay close attention to the effect of soil contamination on vegetables. PMID:24468500

  5. Soil vulnerability to future climate in the southwestern USA, with implications for vegetation change and water cycle

    NASA Astrophysics Data System (ADS)

    Peterman, W. L.; Bachelet, D. M.

    2011-12-01

    Understanding soil response to changes in precipitation/snow cover and increasing temperatures is essential to predicting changes in riparian, wetland, and aquatic as well as terrestrial communities in the coming decades. Changes in precipitation and snowmelt are affecting streamflow seasonality and magnitude, and rising air temperatures and declining precipitation affect aquatic habitats directly by causing increases in stream temperatures and evapo-transpiration causing lower streamflow. The water resources of the Colorado River system are projected to be strained due to runoff losses of 7 to 20% this century, and a reduction of approximately 5% of the annual average runoff is due to increased evapotranspiration from early exposure of vegetation and soils. We are developing a spatially-explicit soil vulnerability index of high, moderate and low sensitivity soils for the southwestern USA and comparing it to projections of vegetation dieback under future climate change scenarios to provide 1) a measure of uncertainty of the model skill and 2) a warning that vegetation shifts may increase soil vulnerability in areas where it is still protected by current plant cover, thus enabling a preliminary estimate of the future location of sources of aeolian dust.

  6. Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model

    Microsoft Academic Search

    Dieter Gerten; Sibyll Schaphoff; Uwe Haberlandt; Wolfgang Lucht; Stephen Sitch

    2004-01-01

    Earth's vegetation plays a pivotal role in the global water balance. Hence, there is a need to model dynamic interactions and feedbacks between the terrestrial biosphere and the water cycle. Here, the hydrological performance of the Lund–Potsdam–Jena model (LPJ), a prominent dynamic global vegetation model, is evaluated. Models of this type simulate the coupled terrestrial carbon and water cycle, thus

  7. Laboratorial simulation on soil erosion under different vegetation coverage in Southwest Karst Area, China

    Microsoft Academic Search

    Xiongfei Cai; Ji Wang; Yulun An; Wenli Dan

    2011-01-01

    n Abstract-In order to understand soil erosion characteristics on different vegetation coverage in karst mountain area in southwest of China, 12 tests of soil erosion simulation were carried out according to the land surface features and meteorological data in this region. The results showed that slop runoff ratio which was after 180 ? 300s changed little, and the average runoff

  8. Contamination of soil and vegetation near a zinc smelter by zinc, cadmium, copper, and lead

    Microsoft Academic Search

    Marilyn J. Buchauer

    1973-01-01

    Metal oxide fumes escaping from two zinc smelters in Palmerton, Pa., have highly contaminated soil and vegetation with zinc, cadmium, copper, and lead. Within 1 km of the smelters, 135,000 parts per million (ppm) zinc, 1750 ppm cadmium, 2000 ppm copper, and 2000 ppm lead have been measured in the Oâ horizon. Approximately 90% of metals deposited on the soil

  9. Alpine tussockland communities and vegetation-landform-soil relationships, Wapiti Lake, Fiordland, New Zealand

    Microsoft Academic Search

    A. B. Rose; J. B. J. Harrison; K. H. Platt

    1988-01-01

    Classification and ordination of 139 plots and 207 species in a 2 km alpine area revealed nine tussockland communities within two broad community groups. The two community groups occupied different ends of a gradient in soil development, nutrient status, and drainage, indicating that soil factors were the dominant broad-scale influence on the vegetation. Within this pattern, the communities were mainly

  10. Effects of Vegetation Cover on the Microwave Radiometric Sensitivity to Soil Moisture

    Microsoft Academic Search

    Fawwaz T. Ulaby; Mohammad Razani; Myron C. Dobson

    1983-01-01

    The reduction in sensitivity of the microwave brightness temperature to soil moisture content due to vegetation cover is analyzed using airborne observations made at 1.4 and 5 GHz. The data were acquired during six flights in 1978 over a test site near Colby, Kansas. The test site consisted of bare soil, wheat stubble, and fully mature corn fields. The results

  11. Spatial variability of soil and vegetation characteristics in an urban park in TelAviv

    Microsoft Academic Search

    Pariente Sarah; Helena M. Zhevelev; Atar Oz

    2010-01-01

    Mosaic-like spatial patterns, consisting of divers soil microenvironments, characterize the landscapes of many urban parks. These microenvironments may differ in their pedological, hydrological and floral characteristics, and they play important roles in urban ecogeomorphic system functioning. In and around a park covering 50 ha in Tel Aviv, Israel, soil properties and herbaceous vegetation were measured in eight types of microenvironments.

  12. The Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation

    Microsoft Academic Search

    Esteban G. Jobbagy; Robert B. Jackson

    2000-01-01

    As the largest pool of terrestrial organic carbon, soils interact strongly with atmospheric composition, climate, and land cover change. Our capacity to predict and ameliorate the consequences of global change depends in part on a better understanding of the distributions and controls of soil organic carbon (SOC) and how vegetation change may affect SOC distributions with depth. The goals of

  13. Fifteen Years of Vegetation and Soil Development after Brackish-Water

    Microsoft Academic Search

    Marsh Creation; Christopher Craft; Stephen Broome; Carlton Campbell

    Aboveground biomass, macro-organic matter (MOM), and wetland soil characteristics were measured peri- odically between 1983 and 1998 in a created brackish- water marsh and a nearby natural marsh along the Pamlico River estuary, North Carolina to evaluate the development of wetland vegetation and soil de- pendent functions after marsh creation. Development of aboveground biomass and MOM was dependent on elevation

  14. [Characteristics of soil microelements contents in the rhizospheres of different vegetation in hilly-gully region of Loess Plateau].

    PubMed

    Zhang, Chao; Liu, Guo-Bin; Xue, Sha; Zhang, Chang-Sheng

    2012-03-01

    To explore the rhizosphere effect of the microelements in the soils under different vegetation types in Loess Plateau, this paper analyzed the organic C, total N, Mn, Cu, Fe, and Zn contents in the rhizosphere soil and bulk soil of six vegetation types in hilly-gully region of Loess Plateau. Among the six vegetation types, Caragana korshinskii, Heteropappus altaicus, and Artemisia capillaries had higher organic C and total N contents in rhizosphere soil than in bulk soil. With the exception of C. korshinskii and H. rhamnoides, all the six vegetation types had a significantly lower pH in rhizosphere soil than in bulk soil. The six vegetation types had a lower available Mn content in rhizosphere soil than in bulk soil, and the C. korshinskii, Astragalus adsurgen, and Panicum virgatum had a significantly higher available Cu content in rhizosphere soil than in bulk soil. The six vegetation types except A. adsurgens had a slightly higher available Fe content in rhizosphere soil than in bulk soil, and A. adsurgens, P. virgatum, H. altaicus, and A. capillaries had a significant accumulation of available Zn in rhizosphere soil. There existed significant positive correlations between the rhizosphere soil and bulk soil of the six vegetation types in the relationships between the organic C and total N contents and the available Mn and Zn contents and between the contents of available Mn and Zn. In rhizosphere soil, available Mn and Zn contents were significantly negative- ly correlated with pH value. Due to the differences in root growth characteristics, rhizosphere pH value, and microbial structure composition, the microelements contents in the rhizosphere soil of the six vegetation types differed, with the contents of Mn, Cu, Fe, and Zn being higher in the rhizosphere soil of H. altaicus than in that of the other vegetation types. PMID:22720606

  15. Soil moisture inferences from thermal infrared measurements of vegetation temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, R. D. (principal investigator)

    1981-01-01

    Thermal infrared measurements of wheat (Triticum durum) canopy temperatures were used in a crop water stress index to infer root zone soil moisture. Results indicated that one time plant temperature measurement cannot produce precise estimates of root zone soil moisture due to complicating plant factors. Plant temperature measurements do yield useful qualitative information concerning soil moisture and plant condition.

  16. Productivity of wet soils: Biomass of cultivated and natural vegetation

    Microsoft Academic Search

    1988-01-01

    Wet soils, soils which have agronomic limitations because of excess water, comprise 105 million acres of non-federal land in the conterminous United States. Wet soils which support hydrophytic plants are ''wetlands'', and are some of the most productive natural ecosystems in the world. When both above- and belowground productivity are considered, cattail (Typha latifolia) is the most productive temperate wetland

  17. INNOVATIVE APPROACHES FOR SOIL FUMIGATION IN VEGETABLE PRODUCTION SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An apparatus was developed for injecting soil fumigants beneath raised planting beds covered by plastic mulch without disturbing the integrity of the beds. Soil fumigation using a mixture of 1,3-dichloropropene (1,3-D) and chloropicrin (Pic) was combined with abbreviated soil solarization periods, v...

  18. Carbon in the Vegetation and Soils of Great Britain

    Microsoft Academic Search

    R. Milne; T. A. Brown

    1997-01-01

    •The total amount of carbon held by vegetation in Great Britain is estimated to be 114 Mtonnes. •Woodlands and forests hold 80% of the G.B. total although they occupy only about 11% of the rural land area. Broadleaf species hold about 50% of the carbon in woodlands and forests. •A map of carbon in the vegetation of Great Britain at

  19. A distributed hydrology-vegetation model for complex terrain

    SciTech Connect

    Wigmosta, M.S.; Lettenmaier, D.P. [Univ. of Washington, Seattle, WA (United States)] [Univ. of Washington, Seattle, WA (United States); Vail, L.W. [Pacific Northwest Lab., Richland, WA (United States)] [Pacific Northwest Lab., Richland, WA (United States)

    1994-06-01

    A distributed hydrology-vegetation model is described that includes canopy interception, evaporation, transpiration, and snow accumulation and melt, as well as runoff generation via the saturation excess mechanisms. Digital elevation data are used to model topographic controls on incoming solar radiation, air temperature, precipitation, and downslope water movement. Canopy evapotranspiration is represented via a two-layer Penman-Monteith formulation that incorporates local net solar radiation, surface meteorology, soil characteristics and moisture status, and species-dependent leaf area index and stomatal resistance. Snow accumulation and ablation are modeled using an energy balance approach that includes the effects of local topography and vegetation cover. Saturated subsurface flow is modeled using a quasi three-dimensional routing scheme. The model was applied at a 180-m scale to the Middle Fork Flathead River basin in northwestern Montana. This 2900-km{sup 2}, snowmelt-dominated watershed ranges in elevation from 900 to over 3000 m. The model was calibrated using 2 years of recorded precipitation and streamflow. The model was verified against 2 additional years of runoff and against advanced very high resolution radiometer based spatial snow cover data at the 1-km{sup 2} scale. Simulated discharge showed acceptable agreement with observations. The simulated areal patterns of snow cover were in general agreement with the remote sensing observations, but were lagged slightly in time. 42 refs., 10 figs., 1 tab.

  20. Linear spectral mixture modelling to estimate vegetation amount from optical spectral data

    Microsoft Academic Search

    F. J. GARCÍA-HARO; M. A. GILABERT; J. MELIÁ

    1996-01-01

    Spectral mixture modelling has developed in recent years as a suitable remote sensing tool for analysing the biophysical and compositional character of ground surfaces. In this paper the potentiality of the linear spectral mixture model to extract vegetation related parameters from 0·4-2·5 ?m reflectance data has been tested. High spectral resolution reflectance measurements of soil-plant mixtures with different soil colour

  1. Can artificial soil be used in the vegetative vigor test for U.S. pesticide registration?

    PubMed

    Bidelspach, Conor; Olszyk, David; Pfleeger, Thomas

    2008-10-01

    Current testing guidelines for pesticide registration for the protection of nontarget plants calls for the use of sterilized, standardized soil consisting of primarily sandy loam, loamy sand, loamy clay, or clay loam that contains up to 3% organic matter. Low organic matter soils can be difficult to manage in a greenhouse setting because when soils dry, they contract, causing impeded water infiltration, or when overwatered, poor drainage increases the chances of anaerobic conditions. The purpose of this study was to determine if the results for the vegetative vigor test differed when using either natural or artificial soils. The herbicide sulfometuron methyl was applied 14 d after emergence at 0.1 and 0.0032 of the suggested field application rate. Six plant species were tested, 4 of the common test species, Zea mays (corn), Glycine max (soybean), Avena sativa (oat), and Lactuca sativa (lettuce), and 2 native plants of the Willamette Valley, Oregon prairie, Bromus carinatus (California brome) and Ranunculus occidentalis (western buttercup). Herbicide application rate was the most significant factor in the experiment regardless of soil type. The different soils generally produced different results, even though the 2 native soils, one from Oregon and the other from Maryland, are both acceptable soils for the pesticide registration tests. The plants grown on artificial soil produced results generally between the Oregon and Maryland soil results. This study indicates that artificial soils may produce results similar to or more sensitive than soils currently used in the vegetative vigor test. PMID:18563958

  2. Metal speciation in soil and health risk due to vegetables consumption in Bangladesh.

    PubMed

    Islam, Md Saiful; Ahmed, Md Kawser; Habibullah-Al-Mamun, Md

    2015-05-01

    This study was conducted to investigate the contamination level of heavy metals in soil and vegetables, chemical speciation, and their transfer to the edible part of vegetables. Metals were analyzed using inductively coupled plasma mass spectrometer (ICP-MS). The ranges of Cr, Ni, Cu, As, Cd, and Pb in agricultural soils were 3.7-41, 3.9-36, 3.7-46, 2.3-26, 0.6-13, and 4.5-32 mg/kg, respectively. The metals were predominantly associated with the residual fractions of 39, 41, 40, 40, 34, and 41 % for Cr, Ni, Cu, As, Cd, and Pb, respectively. Considering the metal transfer from soil to the edible part of vegetables, the mean transfer factors (TFs) were in the descending order of Cu?>?Ni?>?Cr?>?Pb?>?As?>?Cd. In the edible tissues of vegetables, the concentrations of As, Cd, and Pb in most vegetable samples exceeded the maximum permissible levels, indicating not safe for human consumption. Total target hazard quotient (THQ) of the studied metals (except Cr) from all vegetables were higher than 1, indicated that if people consume these types of vegetables in their diet, they might pose risk to these metals. Total values of carcinogenic risk (CR) were 3.2 for As and 0.15 for Pb which were higher than the US Environmental Protection Agency (USEPA) threshold level (0.000001), indicating that the inhabitants consuming these vegetables are exposed to As and Pb with a lifetime cancer risk. PMID:25903407

  3. Comparisons among a new soil index and other two- and four-dimensional vegetation indices

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Richardson, A. J. (principal investigators)

    1982-01-01

    The 2-D difference vegetation index (DVI) and perpendicular vegetation index (PVI), and the 4-D green vegetation index (GVI) are compared in LANDSAT MSS data from grain sorghum (Sorghum bicolor, L. Moench) fields for the years 1973 to 1977. PVI and DVI were more closely related to LAI than was GVI. A new 2-D soil line index (SLI), the vector distance from the soil line origin to the point of intersection of PVI with the soil line, is defined and compared with the 4-D soil brightness index, SBI. SLI (based on MSS and MSS7) and SL16 (based on MSS 5 and MSS 6) were smaller in magnitude than SBI but contained similar information about the soil background. These findings indicate that vegetation and soil indices calculated from the single visible and reflective infrared band sensor systems, such as the AVHRR of the TIROS-N polar orbiting series of satellites, will be meaningful for synoptic monitoring of renewable vegetation.

  4. Comparisons among a new soil index and other two- and four-dimensional vegetation indices

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Richardson, A. J.

    1982-01-01

    The 2-D difference vegetation index (DVI) and perpendicular vegetation index (PVI), and the 4-D green vegetation index (GVI) are compared in Landsat MSS data from grain sorghum (Sorghum bicolor, L. Moench) fields for the years 1973 to 1977. PVI and DVI were more closely related to LAI than was GVI. A new 2-D soil line index (SLI), the vector distance from the soil line origin to the point of intersection of PVI with the soil line, is defined and compared with the 4-D soil brightness index, SBI. SLI (based on MSS and MSS7) and SL16 (based on MSS5 and MSS6) were smaller in magnitude than SBI but contained similar information about the soil background. These findings indicate that vegetation and soil indices calculated from the single visible and reflective infrared band sensor systems, such as the AVHRR of the TIROS-N polar orbiting series of satellites, will be meaningful for synoptic monitoring of renewable vegetation. Previously announced in STAR as N83-14567

  5. [Soil microbial properties under different vegetation types in Loess hilly region].

    PubMed

    Zhang, Yan-Yan; Qu, Lai-Ye; Chen, Li-Ding; Wei, Wei

    2010-01-01

    By using fumigation-extract (FE) method and Biolog Ecoplate, this paper investigated the microbial biomass and diversity in 0-20 cm soil layer under five vegetation types, including artificial woodland, shrubland, cropland, abandoned farmland, and natural grassland, in Dingxi of Gansu Province. In the meanwhile, the relationships between soil microbes and soil nutrients were studied by path analysis, and the five typical vegetation types were evaluated from the aspect of soil microbes. Relative to cropland, "grain for green" project played a key role in improving soil microbial resources. Microbial biomass carbon was the highest in ridge grassland, abandoned farmland, and pine woodland, followed by in Caragana korshinskii land, Medicago sativa land, restored land, and roadside land, and in wheat field and potato field. Microbial biomass nitrogen was the highest in ridge land, abandoned farmland, Pinus tabulaeformis woodland, Caragana korshinskii land, and Medicago sativa land, followed by in restored land and roadside land, and in wheat field and potato field. Caragana korshinskii land and Medicago sativa land, due to the existence of N-fixing rhizobium, had the highest ratio of soil microbial biomass nitrogen to soil total nitrogen. Owing to the continual biomass loss and rare feedback, cropland had the lowest quantity and activity of soil microbes. Through planting trees, shrubs and grasses or through fallowing, soil microbial biomass and activity were recovered, and the effect was increased with time. In 20-year old Caragana korshinskii land, the quantity and activity of soil microbes were similar to those in 50-year old Pinus tabulaeformis woodland, and the microbial community catabolic activity and soil nutrient use efficiency were higher. Considering the features of soil microbes under test vegetation types, Caragana korshinskii would be a good choice for local vegetation restoration. PMID:20387439

  6. Static headspace analysis of volatile organic compounds in soil and vegetation samples for site characterization

    Microsoft Academic Search

    Jorge S Alvarado; Candace Rose

    2004-01-01

    Traditional methodologies for the characterization of volatile organic compounds (VOCs) in subsurface soil are expensive, time-consuming processes that are often conducted on samples collected at random. The determination of VOCs in near-surface soils and vegetation is the foundation for a more efficient sampling strategy to characterize subsurface soil and improve understanding of environmental problems.In the absence of a standard methodology

  7. The influence of annual precipitation, topography, and vegetative cover on soil moisture and summer drought in southern California

    Microsoft Academic Search

    P. C. Miller; D. K. Poole

    1983-01-01

    The influence of annual precipitation and vegetation cover on soil moisture and on the length of the summer drought was estimated quantitatively using 9 years of soil moisture data collected at Echo Valley in southern California. The measurements support the conclusions that in the semi-arid mediterranean climate a soil drought will occur regardless of vegetation cover and annual precipitation, but

  8. Heterogeneity as an index of anthropogenic disturbance of soil and vegetation in urban Parks

    NASA Astrophysics Data System (ADS)

    Zhevelev, H.; Sarah, P.

    2012-04-01

    The conditions of urban ecosystems depend on a wide range of anthropogenic factors, one of which is visitor pressure on urban parks. This study aims: (1) to analyze soil properties and vegetation characteristics of different open areas, and (2) to determine an index of disturbance for these areas, according to their spatial heterogeneity. The study was conducted in Tel-Aviv, and addressed two scales: (1) Land Use Units (municipal parks and vacant lots); and (2) Microenvironment (under tree, under bush, herbaceous area, lawn, and path). In each type of microenvironment, soil was sampled at seven points, from layers at two depths (0-2 and 5-10 cm). Before the sampling, penetration depth, litter biomass and vegetation characteristics (vegetation cover, number of species, and vegetation height) were determined in the field. In each soil sample gravimetric soil moisture and organic matter contents were determined, and pH, electrical conductivity and soluble-ion contents were measured in a 1:1 water extraction. The level of disturbance by visitors was scored for each microenvironment according to field evidence of trampling, such as lack of vegetation cover and litter biomass. The results show strong differences in soil properties among the various microenvironments: penetration depth ranged from a few millimeters up to ~ 3 cm; organic matter content from less than 1% to 10%; soil moisture content from a few percents to ~ 30%; electrical conductivity from ~ 0.3 to ~2 dS/m; sodium content from ~ 1 to 7.5 meq/kg; chlorine content from ~ 0.5 to ~9 meq/kg; and litter biomass from 0.5 to 1.4 kg/m2. The vegetation characteristics also varied among the microenvironments: vegetation cover ranged from 11 to 99 %; number of species from 2 to11; and vegetation height from 5 to 35 cm. In order to assess the level of heterogeneity of soil and vegetation, an integral index, based on the number of Duncan groups, has been calculated. Regarding the Scale of Land Use unit, it was found that the highest heterogeneity of soil characteristics corresponded with the lowest species richness. For the smaller-scale unit - Microenvironment - an index was developed that defines the status of disturbance, and it was used to sort the microenvironments into several groups. High correlation between percentiles and averages of soil properties was found for the microenvironments. This hints at a fractal structure of soil properties distribution at the microenvironment level.

  9. Modeling Soil Freezing Dynamics

    Microsoft Academic Search

    G. N. Flerchinger; M. S. Seyfried; S. P. Hardegree

    2002-01-01

    Seasonally frozen soil strongly influences runoff and erosion on large areas of land around the world. In many areas, rain or snowmelt on seasonally frozen soil is the single leading cause of severe runoff and erosion events. As soils freeze, ice blocks the soil pores, greatly diminishing the permeability of the soil. This is aggravated by the tendency of water

  10. Erosion of upland hillslope soil organic carbon: Coupling field measurements with a sediment transport model

    Microsoft Academic Search

    Kyungsoo Yoo; Ronald Amundson; Arjun M. Heimsath; William E. Dietrich

    2005-01-01

    Little is known about the role of vegetated hillslope sediment transport in the soil C cycle and soil-atmosphere C exchange. We combined a hillslope sediment transport model with empirical soil C measurements to quantify the erosion and temporal storage of soil organic carbon (SOC) within two grasslands in central California. The sites have contrasting erosional mechanisms: biological perturbation (Tennessee Valley

  11. Modelling Soil respiration in agro-ecosystems

    NASA Astrophysics Data System (ADS)

    Delogu, Emilie; LeDantec, Valerie; Mordelet, Patrick; Buysse, Pauline; Aubinet, Marc; Pattey, Elizabeth

    2013-04-01

    A soil respiration model was developed to simulate soil respiration in crops on a daily time step. The soil heterotrophic respiration component was derived from Century (Parton et al., 1987). Soil organic carbon is divided into three major components including active, slow and passive soil carbon. Each pool has its own decomposition rate coefficient. Carbon flows between these pools are controlled by carbon inputs (crop residues), decomposition rate and microbial respiration loss parameters, both of which are a function of soil texture, soil temperature and soil water content. The model assumes that all C decompositions flows are associated with microbial activity and that microbial respiration occurs for each of these flows. Heterotrophic soil respiration is the sum of all these microbial respiration processes. To model the soil autotrophic respiration component, maintenance respiration is calculated from the nitrogen content and assuming an exponential relationship to account for temperature dependence (Ryan et al., 1991). Growth respiration is calculated assuming a dependence on both growth rate and construction cost of the considered organ (MacCree et al., 1982) A database, made of four different soil and climate conditions in mid-latitude was used to study the two components of the soil respiration model in wheat fields. Soil respiration were measured in three winter wheat fields at Lamasquère (43°49'N, 01°23'E, 2007) and Auradé (43°54'N, 01°10'E, 2008), South-West France and Lonzée (50°33'N, 4°44'E, 2007), Belgium, and in a spring wheat field at Ottawa (45°22'N, 75°43'W, 2007, 2011), Ontario, Canada. Manual closed chambers were used in the French sites. The Belgium and Canadian sites were equipped with automated closed chamber systems, which continuously collected 30-min soil respiration exchanges. All the sites were also equipped with eddy flux towers. When eddy flux data were collected over bare soil, the net ecosystem exchange (NEE) was equal to soil respiration exchange. These NEE data were used to validate the model. The carbon pools in the model needed to be initialized at each site, by running iteratively simulations of a same climatic year in a given wheat field, until equilibrium was reached. The model performance was evaluated by comparing simulated and measured soil respiration values. The predicted heterotrophic soil respiration compared well with the seasonal dynamic fluxes at each site. The measured values of heterotrophic soil respiration were also well calculated by the model. Then, the autotrophic soil respiration was validated. The parameterization of the Root/Shoot ratio dynamic was a key factor to retrieve the seasonal dynamic of observed root+rhizosphere respiration during vegetation growth period. Finally, the total soil respiration model was validated on independent datasets from calibration, of four wheat crops and could be used as a prediction model for comparison between different scenario of irrigation, ploughing, or crop rotation.

  12. A Broad Approach to Abrupt Boundaries: Looking Beyond the Boundary at Soil Attributes within and Across Tropical Vegetation Types

    PubMed Central

    Warman, Laura; Bradford, Matt G.; Moles, Angela T.

    2013-01-01

    Most research on boundaries between vegetation types emphasizes the contrasts and similarities between conditions on either side of a boundary, but does not compare boundary to non-boundary vegetation. That is, most previous studies lack suitable controls, and may therefore overlook underlying aspects of landscape variability at a regional scale and underestimate the effects that the vegetation itself has on the soil. We compared 25 soil chemistry variables in rainforest, sclerophyll vegetation and across rainforest-sclerophyll boundaries in north-eastern Queensland, Australia. Like previous studies, we did find some contrasts in soil chemistry across vegetation boundaries. However we did not find greater variation in chemical parameters across boundary transects than in transects set in either rainforest or woodland. We also found that soil on both sides of the boundary is more similar to “rainforest soil” than to “woodland soil”. Transects in wet sclerophyll forests with increasing degrees of rainforest invasion showed that as rainforest invades wet sclerophyll forest, the soil beneath wet sclerophyll forest becomes increasingly similar to rainforest soil. Our results have implications for understanding regional vegetation dynamics. Considering soil-vegetation feedbacks and the differences between soil at boundaries and in non-boundary sites may hold clues to some of the processes that occur across and between vegetation types in a wide range of ecosystems. Finally, we suggest that including appropriate controls should become standard practice for studies of vegetation boundaries and edge effects worldwide. PMID:23593312

  13. How can effect the synergy of climate change, soil units and vegetation groups the potential global distribution of plants up to 2300: a modelling study for prediction of potential global distribution and migration of the N2 fixing species Alnus spp.

    NASA Astrophysics Data System (ADS)

    Sakalli, A.

    2015-01-01

    Plant migration is a well known adaptation strategy of plant groups or species with evidence from historical to present observation and monitoring studies. Importance of N2-fixing plants has increased in last decades. Alnus (alder) is an important plant group because of its nitrogen fixation ability. Alders are generally distributed in humid locations of boreal, temperate and tropical climate zones, where the nitrogen fixation is an important nitrogen source for other plants. To model the nitrogen fixation by alder, data about the global distribution of alder is absolutely required. In this study a new method and model are presented to predict the distribution of N2-fixing genus on global scale and its migration in the future by using climate change scenarios. Three linear functions were defined for the determination of climate niche of alders. The distribution and migration model (Alnus-Distribution-Model (ADM)) was improved with the aid of the soil units from FAO-Unesco Soil Database, and vegetation types from Schmithüsen's biogeographical atlas. The model was also developed to predict the impact of climate change on alder distribution by using climate data from experiments performed by the Community Climate System Model version 4 (CCSM4) including the representative concentration pathways (RCPs) mitigation scenarios, and extensions of the scenarios beyond 2100 to 2300. The model covered basic approaches to understand the combine effect of climate, soil and vegetation on plant distribution and migration in the current time and future.

  14. Climate-vegetation-soil interactions and long-term hydrologic partitioning: Signatures of catchment co-evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Troch, P. A.; Carrillo, G. A.; Sivapalan, M.; Sawicz, K. A.; Wagener, T.

    2013-12-01

    Budyko (1974) postulated that long-term catchment water balance is controlled to first order by the available water and energy. This leads to the interesting question of how do landscape characteristics (soils, geology, vegetation) and climate properties (precipitation, potential evaporation, number of wet and dry days) interact at the catchment scale to produce such a simple and predictable outcome of hydrological partitioning? Here we use a physically-based hydrologic model separately parameterized in 12 US catchments across a climate gradient to decouple the impact of climate and landscape properties to gain insight into the role of climate-vegetation-soil interactions in long-term hydrologic partitioning. The 12 catchment models (with different paramterizations) are subjected to the 12 different climate forcings, resulting in 144 10-year model simulations. The results are analyzed per catchment (one catchment model subjected to 12 climates) and per climate (one climate filtered by 12 different model parameterization), and compared to water balance predictions based on Budyko's hypothesis (E/P=?(Ep/P); E: evaporation, P: precipitation, Ep: potential evaporation). We find significant anti-correlation between average deviations of the evaporation index (E/P) computed per catchment vs. per climate, compared to that predicted by Budyko. Catchments that on average produce more E/P have developed in climates that on average produce less E/P, when compared to Budyko's prediction. Water and energy seasonality could not explain these observations, confirming previous results reported by Potter et al. (2005). Next, we analyze which model (i.e., landscape filter) characteristics explain the catchment's tendency to produce more or less E/P. We find that the time scale that controls subsurface storage release explains the observed trend. This time scale combines several geomorphologic and hydraulic soil properties. Catchments with relatively longer subsurface storage release time scales produce significantly more E/P. Vegetation in these catchments have longer access to this additional groundwater source and thus are less prone to water stress. Further analysis reveals that climates that give rise to more (less) E/P are associated with catchments that have vegetation with less (more) efficient water use parameters. In particular, the climates with tendency to produce more E/P have catchments that have lower % root fraction and less light use efficiency. Our results suggest that their exists strong interactions between climate, vegetation and soil properties that lead to specific hydrologic partitioning at the catchment scale. This co-evolution of catchment vegetation and soils with climate needs to be further explored to improve our capabilities to predict hydrologic partitioning in ungaged basins.

  15. Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables.

    PubMed

    De Temmerman, Ludwig; Waegeneers, Nadia; Thiry, Céline; Du Laing, Gijs; Tack, Filip; Ruttens, Ann

    2014-01-15

    A series of 695 food crops were collected on 539 soils throughout Belgium. All samples were collected on commercial production fields, omitting private gardens. All crops were analyzed for their selenium (Se) concentration. The soils represent different soil types occurring in Belgium, with soil textures ranging from sand to silt loam, and including a few clay soils. They were analyzed for Se concentration, organic carbon content, cation exchange capacity and extractable sulphur (S) concentration. The Se concentrations in the soils were low (range 0.14-0.70 mg kg(-1) dw), but increasing soil Se concentrations were observed with increasing clay content. Stepwise multiple regressions were applied to determine relations between Se concentrations in crops and soil characteristics. Among field crops, wheat is the most important accumulator of selenium but the concentration remains rather low on the Belgian low Se-soils. Based on dry weight, leafy vegetables contain more Se than wheat. The soil is the most important source of Se and the element is transported with the water stream to the leaves, where it is accumulated. Vegetables rich in S, e.g. some Brassica and Allium species, have a higher capacity to accumulate Se as it can replace S in the proteins, although this accumulation is still limited at low soil Se concentrations. In loamy soils, weak correlations were found between the soil Se concentration and its concentration in wheat and potato. The uptake of Se increased with increasing pH. The Se concentrations in Belgian soils are far too low to generate a driving force on Se uptake. General climatic conditions such as temperature, air humidity and soil moisture are also important for the transfer of Se within the plant, and plant linked factors such as cultivar, growth stage and edible part are important as well, although their influence remains limited at low soil Se concentrations. PMID:24013513

  16. Estimation of effective hydrologic properties of soils from observations of vegetation density. M.S. Thesis; [water balance of watersheds in Clinton, Maine and Santa Paula, California

    NASA Technical Reports Server (NTRS)

    Tellers, T. E.

    1980-01-01

    An existing one-dimensional model of the annual water balance is reviewed. Slight improvements are made in the method of calculating the bare soil component of evaporation, and in the way surface retention is handled. A natural selection hypothesis, which specifies the equilibrium vegetation density for a given, water limited, climate-soil system, is verified through comparisons with observed data and is employed in the annual water balance of watersheds in Clinton, Ma., and Santa Paula, Ca., to estimate effective areal average soil properties. Comparison of CDF's of annual basin yield derived using these soil properties with observed CDF's provides excellent verification of the soil-selection procedure. This method of parameterization of the land surface should be useful with present global circulation models, enabling them to account for both the non-linearity in the relationship between soil moisture flux and soil moisture concentration, and the variability of soil properties from place to place over the Earth's surface.

  17. Influence of vegetation spatial heterogeneity on soil enzyme activity in burned Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Mayor, Á. G.; Goirán, S.; Bautista, S.

    2009-04-01

    Mediterranean ecosystems are commonly considered resilient to wildfires. However, depending on fire severity and recurrence, post-fire climatic conditions and plant community type, the recovery rate of the vegetation can greatly vary. Often, the post-fire vegetation cover remains low and sparsely distributed many years after the wildfire, which could have profound impacts on ecosystem functioning. In this work, we studied the influence of vegetation patchiness on soil enzyme activity (acid phosphatase, ?-glucosidase and urease), at the patch and landscape scales, in degraded dry Mediterranean shrublands affected by wildfires. At the patch scale, we assessed the variation in soil enzyme between bare soils and vegetation patches. At the landscape scale, we studied the relationships between soil enzyme activity and various landscape metrics (total patch cover, average interpatch length, average patch width, and patch density). The study was conducted in 19 sites in the Valencia Region (eastern Spain), which had been affected by large wildfires in 1991. Site selection aimed at capturing a wide range of the variability of post-fire plant recovery rates in Mediterranean areas. The activities of the three enzymes were significantly higher in soils under the vegetation canopies than in adjacent bare areas, which we attributed to the effect of plants on the soil amount of both enzyme substrates and enzymes. The differences between bare and plant microsites were larger in the case of the acid phosphatase and less marked for urease. The activity of acid phosphatase was also higher under patches of resprouter species than under patches of seeder species, probably due to the faster post-fire recovery and older age of resprouter patches in fire-prone ecosystems. Soil enzyme activities of ?-glucosidase and urease in both bare soils and vegetation patches showed no relationships with any of the landscape metrics analysed. However, the activity of acid phosphatase increased linearly with the total cover of vegetation patches, which is consistent with the strong effect of plant patches on the activity of this enzyme. According to our results, variations in the cover and composition of vegetation patches may have profound impacts on the soil enzyme activity and associated nutrient cycling processes in burned Mediterranean areas, particularly in the case of phosphorus. Keywords: wildfires, landscape metrics, Mediterranean shrublands, soil enzyme activity, resprouter species.

  18. The effects of vegetation parameter aggregation on modeled evapotranspiration

    E-print Network

    Hoffpauir, Richard James

    2001-01-01

    vegetation indices developed from satellite remote sensing images of the study area. Aggregation of the vegetation parameters followed a subcatchment scheme. The model was executed for one growing season for each subcatchment aggregation scheme...

  19. Ad Hoc Modeling of Root Zone Soil Water with Landsat Imagery and Terrain and Soils Data

    PubMed Central

    Sankey, Joel B.; Lawrence, Rick L.; Wraith, Jon M.

    2008-01-01

    Agricultural producers require knowledge of soil water at plant rooting depths, while many remote sensing studies have focused on surface soil water or mechanistic models that are not easily parameterized. We developed site-specific empirical models to predict spring soil water content for two Montana ranches. Calibration data sample sizes were based on the estimated variability of soil water and the desired level of precision for the soil water estimates. Models used Landsat imagery, a digital elevation model, and a soil survey as predictor variables. Our objectives were to see whether soil water could be predicted accurately with easily obtainable calibration data and predictor variables and to consider the relative influence of the three sources of predictor variables. Independent validation showed that multiple regression models predicted soil water with average error (RMSD) within 0.04 mass water content. This was similar to the accuracy expected based on a statistical power test based on our sample size (n = 41 and n = 50). Improved prediction precision could be achieved with additional calibration samples, and range managers can readily balance the desired level of precision with the amount of effort to collect calibration data. Spring soil water prediction effectively utilized a combination of land surface imagery, terrain data, and subsurface soil characterization data. Ranchers could use accurate spring soil water content predictions to set stocking rates. Such management can help ensure that water, soil, and vegetation resources are used conservatively in irrigated and non-irrigated rangeland systems.

  20. Vegetation effects on soil water erosion rates and nutrient losses at Santa Catarina highlands, south Brazil

    NASA Astrophysics Data System (ADS)

    Bertol, I.; Barbosa, F. T.; Vidal Vázquez, E.; Paz Ferreiro, J.

    2009-04-01

    Water erosion involves three main processes: detachment, transport and deposition of soil particles. The main factors affecting water erosion are rainfall, soil, topography, soil management and land cover and use. Soil erosion potential is increased if the soil has no or very little vegetative cover of plants and/or crop residues, whereas plant and residue cover substantially decrease rates of soil erosion. Plant and residue cover protects the soil from raindrop impact and splash, tends to slow down the movement of surface runoff and allows excess surface water to infiltrate. Moreover, plant and residue cover improve soil physical, chemical and biological properties. Soils with improved structure have a greater resistance to erosion. By contrast, accelerated soil erosion is accentuated by deforestation, biomass burning, plowing and disking, cultivation of open-row crops, etc. The erosion-reducing effectiveness of plant and/or residue covers depends on the type, extent and quantity of cover. Vegetation and residue combinations that completely cover the soil are the most efficient in controlling soil. Partially incorporated residues and residual roots are also important, as these provide channels that allow surface water to move into the soil. The effectiveness of any crop, management system or protective cover also depends on how much protection is available at various periods during the year, relative to the amount of erosive rainfall that falls during these periods. Most of the erosion on annual row crop land can be reduced by leaving a residue cover greater after harvest and over the winter months, or by inter-seeding a forage crop. Soil erosion potential is also affected by tillage operations and tillage system. Conservation tillage reduces water erosion in relation to conventional tillage by increasing soil cover and soil surface roughness. Here, we review the effect of vegetation on soil erosion in the Santa Catarina highlands, south of Brazil, under subtropical climatic conditions. The area cropped under no tillage in Brazil has increased rapidly since 1990, especially in the southern region. This practice was first introduced in the 1970s as a strategy to control soil erosion and continuous declines in land productivity under conventional tillage systems. No tillage almost entirely keeps the previous crop residue on the surface. In the last 15 years soil and water losses by water erosion have been quantified for different soil tillage systems, diverse crop rotations and successive crop stages under simulated and natural rain conditions. Plot experiments showed that soil losses under no tillage systems with a vegetative cover were 98% lower when compared with conventionally tilled bare soil. Moreover water losses were 60% lower for these conditions. Conventional tillage (plowing + harrowing) in the presence of vegetative cover reduced soil losses and water losses by 80% and 50%, respectively, taken the uncultivated bare soil as a reference. The review includes the effect of vegetative cover on nutrient losses at the studied sites in the Santa Catarina highlands.

  1. Water status of soil and vegetation in a shortgrass steppe

    Microsoft Academic Search

    O. E. Sala; W. K. Lauenroth; W. J. Parton; M. J. Trlica

    1981-01-01

    In an attempt to describe some major relationships between soil and plant compartments in a shortgrass steppe, the process of water loss from the system and plant water relations throughout a drying cycle were studied. The water supply was manipulated and some soil and plant variables monitored throughout a drying cycle. Leaf conductance and leaf water potential of blue grama

  2. FIRE AND GRAZING EFFECTS ON VEGETATION AND BIOLOGICAL SOIL CRUSTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological soil crusts increase soil water retention and may enhance plant establishment. Crusts may be sensitive to disturbances, but little information is available on their response to fire and grazing in the Northern Plains. We measured cover on permanent plots in grazed, burned, and non-graze...

  3. Modeling Vernal Pool Hydrology and Vegetation in the Sierra Nevadas

    NASA Astrophysics Data System (ADS)

    Montrone, A. K.; Saito, L.; Weisberg, P.; Gosejohan, M.

    2012-12-01

    Vernal pools are geographic depressions with relatively impermeable substrates that are subject to four distinct seasons in mountainous regions: they fill with snow in the winter, melt into inundated pools in the spring, become unsaturated and vegetated by summer, then dry and become fully desiccated by fall. Vernal pools in California are greatly threatened. Over 90% of the pools in California have been destroyed by urbanization and other land use changes and continue to disappear with population growth. Furthermore, these pools face threats posed by climate change due to altered precipitation and temperature regimes. In the context of anthropogenic climate change, we are evaluating the direct and indirect effects of grazing management on ecohydrology and plant community structure in vernal pools Northern Sierra Nevada mountains. Hydrologic models of vernal pool basins, driven by climatic variables, are used to 1) determine if a changing climate will alter the magnitude and spatial distribution of inundation period within the pools; 2) determine how the available habitat for vernal pool vegetation specialists will change with climate change; 3) determine if increased soil compaction due to cattle grazing can help mitigate effects of climate change resulting from changes in hydraulic conductivity; and 4) determine the importance of spatial resolution in constructing the physical representation of the pools within the hydrologic models. Preliminary results from the models including calibration error metrics and hydroperiod impacts of grazing for models with varying spatial complexity will be presented.

  4. Evolution of vegetation and soil nutrients after uranium mining in Los Ratones mine (Cáceres, Spain).

    PubMed

    Pérez-Fernández, María A; Vera-Tomé, Feliciano; Blanco-Rodríguez, María P; Lozano, Juan C

    2014-06-01

    The evolution of vegetation structure following mine rehabilitation is rather scarce in the literature. The concentration of long-lived radionuclides of the (238)U series might have harmful effects on living organisms. We studied soil properties and the natural vegetation occurring along a gradient in Los Ratones, an area rehabilitated after uranium mining located in Cáceres, Spain. Soil and vegetation were sampled seasonally and physical and chemical properties of soil were analysed, including natural isotopes of (238)U, (230)Th, (226)Ra and (210)Pb. Species richness, diversity, evenness and plant cover were estimated and correlated in relation to soil physical and chemical variables. The location of the sampling sites along a gradient had a strong explanatory effect on the herbaceous species, as well as the presence of shrubs and trees. Seasonal effects of the four natural isotopes were observed in species richness, species diversity and plant cover; these effects were directly related to the pH values in the soil, this being the soil property that most influences the plant distribution. Vegetation in the studied area resembles that of the surroundings, thus proving that the rehabilitation carried out in Los Ratones mine was successful in terms of understorey cover recovery. PMID:24450758

  5. [Effects of artificial vegetation on the spatial heterogeneity of soil moisture and salt in coastal saline land of Chongming Dongtan, Shanghai].

    PubMed

    He, Bin; Cai, Yong-li; Ran, Wen-rui; Zhao, Xiao-lei

    2013-08-01

    By the methods of classical statistics and geostatistics, this paper studied the spatial heterogeneity of surface soil (0-20 cm layer) moisture and salt contents under three kinds of artificial vegetation in coastal salt land in Chongming Dongtan of Shanghai. The soil moisture content in different plots was in order of Cynodon dactylon > Taxodium distichum > Nerium indicum, and the coefficient of variation was 13.9%, 13.4% and 12.9%, respectively. The soil electric conductivity was in the order of N. indicum > C. dactylon > T. distichum, and the coefficient of variation was 79.2%, 55.4% and 15. 9%, respectively. Both the soil moisture content and the salt content were in moderate variation. The theoretical models of variogram for the soil moisture and salt contents in different plots varied, among which, the soil electric conductivity fitted better, with R2 between 0.97 and 0.99. When the artificial vegetation varied from N. indicum to T. distichum and then to C. dactylon, the spatial heterogeneity of soil moisture content changed from weak to strong, in which, the variability was random under N. indicum. When the vegetation varied from C. dactylon to T. distichum and to N. indicum, the spatial heterogeneity of soil electric conductivity changed from moderate to strong. Under different vegetations, the soil electric conductivity was mostly in positive correlation, whereas the soil moisture content was in negative correlation. The spatial pattern of soil moisture and salt contents under T. distichum was in striped distribution, that under C. dactylon was in large plaque and continuous distribution, whereas under N. indicum, the spatial pattern of soil moisture content was in small breaking plaque distribution, and that of soil salt content was in striped distribution. PMID:24380332

  6. Modeling soil freezing dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonally frozen soil strongly influences runoff and erosion on large areas of land around the world. In many areas, rain or snowmelt on seasonally frozen soil is the single leading cause of severe runoff and erosion events. As soils freeze, ice blocks the soil pores, greatly diminishing the permea...

  7. Monitoring soil-vegetation interactions using non-invasive geophysical techniques

    NASA Astrophysics Data System (ADS)

    Perri, M.; Cassiani, G.; Boaga, J.; Rossi, M.; Vignoli, G.; Deiana, R.; Ursino, N.; Putti, M.; Majone, B.; Bellin, A.; Blaschek, M.; Duttmann, R.; Meyer, S.; Ludwig, R.; Soddu, A.; Dietrich, P.; Werban, U.

    2012-12-01

    The understanding of soil-vegetation-atmosphere interactions is of utmost importance in the solution of a number of hydrological questions and practical issues, including flood control, agricultural best practice, slope stability and impacts of climatic changes. Geophysical time-lapse monitoring can greatly contribute to the understanding of these interactions particularly for its capability to map in space and time the effects of vegetation on soil moisture content. In this work we present the results of two case studies showing the potential of hydro-geophysics in this context. The first example refers to the long term monitoring of the soil static and dynamic characteristics in an experimental site located in Sardinia (Italy). The main objective of this study is to understand the effects of soil - water - plants interactions on soil water balance. A combination of time-lapse electromagnetic induction (EMI) monitoring over wide areas and localized irrigation tests monitored by electrical resistivity tomography (ERT) and TDR soil moisture measurements is here used, in order to achieve quantitative field-scale estimates of moisture content from topsoil layer. Natural gamma-ray emission mapping, texture analysis and laboratory calibration of an electrical constitutive relationship on soil samples complete the dataset. We therefore observed that the growth of vegetation, with the associated below ground allocation of biomass, has a significant impact on the soil moisture dynamics. In particular vegetation extracts a large amount of water from the soil in the hot season, but it also reduces evaporation by shadowing the soil surface. In addition, vegetation enhances the soil wetting process as the root system facilitates water infiltration, thus creating a positive feedback system. The second example regards the time-lapse monitoring of soil moisture content in an apple orchard located in the Alpine region of Northern Italy (Trento). A three-dimensional cross-hole ERT setup was created using four small-scale boreholes and a 2D array of surface electrodes. The soil response to irrigation and evapo-transpiration evidences the location of tree roots, including the influence of irrigation patterns on the root growth, and their efficiency at removing soil moisture.

  8. Modeling the effects of historical vegetation change on near-surface atmosphere in the northern Chihuahuan Desert

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our goal was to evaluate the effects of a broad-scale change in vegetation from grasslands in the mid-1800s to shrublands in the late 1900’s on weather and climate. Vegetation and soil maps for 1858 and 1998 were used to run a fully coupled atmospheric-biospheric model for two times during the growi...

  9. Calibrating a Coupled SVAT-Vegetation Growth Model with Remotely Sensed Reflectance and Surface Temperature--A Case Study for the HAPEX-Sahel Grassland Sites

    Microsoft Academic Search

    P. Cayrol; L. Kergoat; S. Moulin; G. Dedieu; A. Chehbouni

    2000-01-01

    Models simulating the seasonal growth of vegetation have been recently coupled to soil-vegetation-atmosphere transfer schemes (SVATS). Such coupled vegetation-SVATS models (V-S) account for changes of the vegetation leaf area index (LAI) over time. One problem faced by V-S models is the high number of parameters that are required to simulate different sites or large areas. Therefore, efficient calibration procedures are

  10. Physically-based parameterization of spatially variable soil and vegetation using satellite multispectral data

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Eagleson, Peter S.

    1989-01-01

    A stochastic-geometric landsurface reflectance model is formulated and tested for the parameterization of spatially variable vegetation and soil at subpixel scales using satellite multispectral images without ground truth. Landscapes are conceptualized as 3-D Lambertian reflecting surfaces consisting of plant canopies, represented by solid geometric figures, superposed on a flat soil background. A computer simulation program is developed to investigate image characteristics at various spatial aggregations representative of satellite observational scales, or pixels. The evolution of the shape and structure of the red-infrared space, or scattergram, of typical semivegetated scenes is investigated by sequentially introducing model variables into the simulation. The analytical moments of the total pixel reflectance, including the mean, variance, spatial covariance, and cross-spectral covariance, are derived in terms of the moments of the individual fractional cover and reflectance components. The moments are applied to the solution of the inverse problem: The estimation of subpixel landscape properties on a pixel-by-pixel basis, given only one multispectral image and limited assumptions on the structure of the landscape. The landsurface reflectance model and inversion technique are tested using actual aerial radiometric data collected over regularly spaced pecan trees, and using both aerial and LANDSAT Thematic Mapper data obtained over discontinuous, randomly spaced conifer canopies in a natural forested watershed. Different amounts of solar backscattered diffuse radiation are assumed and the sensitivity of the estimated landsurface parameters to those amounts is examined.

  11. Water based microwave assisted extraction of thiamethoxam residues from vegetables and soil for determination by HPLC.

    PubMed

    Karmakar, Rajib; Singh, Shashi Bala; Kulshrestha, Gita

    2012-02-01

    A microwave assisted extraction (MAE) method for determination of thiamethoxam residues in vegetable and soil samples was standardized. Insecticide spiked vegetable and soil samples were extracted by MAE using water as an extraction solvent, cleaned up by solid phase extraction and analysed by high performance liquid chromatography on photodiode array detector. The recoveries of the insecticide from various vegetable (tomato, radish, brinjal, okra, French been, sugarbeet) and soil (sandy loam, silty clay loam, sandy clay loam, loamy sand) samples at 0.1 and 0.5 ?g g(-1) spiking levels ranged from 79.8% to 86.2% and from 82.1% to 87.0%, respectively. The recoveries by MAE were comparable to those obtained by the conventional blender and shake-flask extraction techniques. The precision of the MAE method was demonstrated by relative standard deviations of <3% for the insecticide. PMID:22065124

  12. Fluoride accumulation in soil and vegetation in the vicinity of brick fields.

    PubMed

    Jha, S K; Nayak, A K; Sharma, Y K; Mishra, V K; Sharma, D K

    2008-04-01

    Fluoride in the soil and vegetation in the vicinity of brick field in the suburb of Lucknow, India was estimated. The water soluble fluoride (1:1) in the surface soil ranged from 0.59 ppm to 2.74 ppm where as CaCl(2) extractable fluoride ranged from 0.69 ppm to 3.18 ppm. The mean total fluoride concentration in surface soil varied from 322 microg g(-1) to 456 microg g(-1). The local vegetations grown in the area found to accumulate air borne fluoride from the brick field. The fluoride accumulation in the vegetation followed the order Mentha arvensis > Spinacea oleracea > Luffa cylindrical. PMID:18345473

  13. Post Chernobyl surveys of radiocaesium in soil, vegetation, wildlife and fungi in Great Britain

    NASA Astrophysics Data System (ADS)

    Chaplow, J. S.; Beresford, N. A.; Barnett, C. L.

    2014-12-01

    The dataset "Post Chernobyl surveys of radiocaesium in soil, vegetation, wildlife and fungi in Great Britain" was developed to enable data collected by the Natural Environment Research Council after the Chernobyl accident to be made publicly available. Data for samples collected between May 1986 (immediately after Chernobyl) to spring 1997 are presented. Additional data to radiocaesium concentrations are presented where available. The data have value in trying to assess the contribution of new sources of radiocaesium in the environment, providing baseline data for future planned releases and to aid the development and testing of models. The data are freely available for non-commercial use under Open Government Licence terms and conditions. doi:10.5285/7a5cfd3e-0247-4228-873d-5be563c4ee3b

  14. Coincidence and spatial variability of geology, soils, and vegetation, Mill Run watershed, Virginia.

    USGS Publications Warehouse

    Olson, C.G.; Hupp, C.R.

    1986-01-01

    The Mill Run watershed is a structurally-controlled synclinal basin on the eastern limb of the Massanutten Mountain complex of NW Virginia. Bedrock contacts are obscured by coarse sandstone debris from exposures near basin divides. Colluvium blankets more than half the basin, masking geomorphic surfaces, affecting vegetation patterns, and contributing to the convexity of the alluvial, terrace, pediment and erosion surfaces. Vegetation is strongly interdependent with geomorphology, bedrock geology, and soils. - from Authors

  15. Mapping the spectral variability in photosynthetic and non-photosynthetic vegetation, soils, and shade using AVIRIS

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Smith, Milton O.; Sabol, Donald E.; Adams, John B.; Ustin, Susan L.

    1992-01-01

    The primary objective of this research was to map as many spectrally distinct types of green vegetation (GV), non-photosynthetic vegetation (NPV), shade, and soil (endmembers) in an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene as is warranted by the spectral variability of the data. Once determined, a secondary objective was to interpret these endmembers and their abundances spatially and spectrally in an ecological context.

  16. Technique for assessing vegetation-induced moisture flux, with implications for global climate modeling

    NASA Technical Reports Server (NTRS)

    Macari, Emir Jose

    1990-01-01

    The time between storms, the duration of storms, and the storm depths are studied in relation to vegetation controls on the disposition of rainfall. It is proposed that understanding the movement of water between the vegetation and soil (including evapotranspiration and infiltration) will be the gateway for modeling atmospheric flux and improving global climate models. The overall objective goal of the proposed research effort is to develop a field/lab methodology which will provide a better understanding of vegetation induced water movement. Water flow initiated from stem flow of wooded slopes feeds soil water pathways, which in turn feed the deeper ground water system and give rise to stream response. This is balanced by more water inputs via throughfall, where it percolates the soil matrix and allows much greater rates of evapotranspiration and atmospheric/soil moisture flux. This research study seeks to gain an understanding of the effect of vegetation on soil moisture, and the effect of this differential wetting on resulting evapotranspiration and atmospheric flux.

  17. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation.

    PubMed

    Fu, Xiaoli; Yang, Fengting; Wang, Jianlei; Di, Yuebao; Dai, Xiaoqin; Zhang, Xinyu; Wang, Huimin

    2015-01-01

    Experiments with potted plants and removed understories have indicated that understory vegetation often affects the chemical and microbial properties of soil. In this study, we examined the mechanism and extent of the influence of understory vegetation on the chemical and microbial properties of soil in plantation forests. The relationships between the vegetational structure (diversity for different functional layers, aboveground biomass of understory vegetation, and species number) and soil properties (pH, microbial community structure, and levels of soil organic carbon, total nitrogen, and inorganic nitrogen) were analyzed across six reforestation types (three pure needleleaf forests, a needle-broadleaf mixed forest, a broadleaf forest, and a shrubland). Twenty-seven years after reforestation, soil pH significantly decreased by an average of 0.95 across reforestation types. Soil pH was positively correlated with the aboveground biomass of the understory. The levels of total, bacterial, and fungal phospholipid fatty acids, and the fungal:bacterial ratios were similar in the shrubland and the broadleaf forest. Both the aboveground biomass of the understory and the diversity of the tree layer positively influenced the fungal:bacterial ratio. Improving the aboveground biomass of the understory could alleviate soil acidification. An increase in the aboveground biomass of the understory, rather than in understory diversity, enhanced the functional traits of the soil microbial communities. The replacement of pure plantations with mixed-species stands, as well as the enhancement of understory recruitment, can improve the ecological functions of a plantation, as measured by the alleviation of soil acidification and increased fungal dominance. PMID:25261818

  18. Relations between soil moisture and satellite vegetation indices in the U.S. Corn Belt

    USGS Publications Warehouse

    Adegoke, J.O.; Carleton, A.M.

    2002-01-01

    Satellite-derived vegetation indices extracted over locations representative of midwestern U.S. cropland and forest for the period 1990-94 are analyzed to determine the sensitivity of the indices to neutron probe soil moisture measurements of the Illinois Climate Network (ICN). The deseasoned (i.e., departures from multiyear mean annual cycle) soil moisture measurements are shown to be weakly correlated with the deseasoned full resolution (1 km ?? 1 km) normalized difference vegetation index (NDVI) and fractional vegetation cover (FVC) data over both land cover types. The association, measured by the Pearson-moment-correlation coefficient, is stronger over forest than over cropland during the growing season (April-September). The correlations improve successively when the NDVI and FVC pixel data are aggregated to 3 km ?? 3 km, 5 km ?? 5 km, and 7 km ?? 7 km areas. The improved correlations are partly explained by the reduction in satellite navigation errors as spatial aggregation occurs, as well as the apparent scale dependence of the NDVI-soil moisture association. Similarly, stronger relations are obtained with soil moisture data that are lagged by up to 8 weeks with respect to the vegetation indices, implying that soil moisture may be a useful predictor of warm season satellite-derived vegetation conditions. This study suggests that a "long-term" memory of several weeks is present in the near-surface hydrological characteristics, especially soil water content, of the Midwest Corn Belt. The memory is integrated into the satellite vegetation indices and may be us??eful for predicting crop yield estimates and surface temperature anomalies.

  19. [Sizes of soil macropores and related main affecting factors on a vegetated basalt slope].

    PubMed

    Guan, Qi; Xu, Ze-Min; Tian, Lin

    2013-10-01

    The landslide on vegetated slopes caused by extreme weather has being increased steadily, and the preferential flow in soil macropores plays an important role in the landslide. By using water breakthrough curve and Poiseuille equation, this paper estimated the radius range, amount, and average volume of soil macropores on a vegetated basalt slope of Maka Mountain, Southwest China, and analyzed the distribution of the soil macropores and the main affecting factors. In the study area, the radius of soil macropores ranged from 0.3 to 1.8 mm, mainly between 0.5 and 1.2 mm. The large-radius macropores (1.4-1.8 mm) were lesser, while the small-radius macropores (< 1.4 mm) were more. With the development of soil profile, soil macropores were more in upper layers and lesser in deeper layers. The average volume of the macropores contributed 84.7% to the variance of steady effluent rate. Among the factors affecting the average volume of the large macropores, vegetations root mass had a linear relationship, with the correlation coefficient being 0.70, and soil organic matter content also had a linear relationship, with the correlation coefficient being 0.64. PMID:24483084

  20. The Soil Biota Composition along a Progressive Succession of Secondary Vegetation in a Karst Area

    PubMed Central

    He, Xunyang; Liu, Lu; Wang, Kelin

    2014-01-01

    Karst ecosystems are fragile and are in many regions degraded by anthropogenic activities. Current management of degraded karst areas focuses on aboveground vegetation succession or recovery and aims at establishing a forest ecosystem. Whether progressive succession of vegetation in karst areas is accompanied by establishment of soil biota is poorly understood. In the present study, soil microbial and nematode communities, as well as soil physico-chemical properties were studied along a progressive succession of secondary vegetation (from grassland to shrubland to forest) in a karst area in southwest China. Microbial biomass, nematode density, ratio of fungal to bacterial biomass, nematode structure index, and nematode enrichment index decreased with the secondary succession in the plant community. Overall, the results indicated a pattern of declines in soil biota abundance and food web complexity that was associated with a decrease in soil pH and a decrease in soil organic carbon content with the progressive secondary succession of the plant community. Our findings suggest that soil biota amendment is necessary during karst ecosystem restoration and establishment and management of grasslands may be feasible in karst areas. PMID:25379741

  1. Anthropogenic impact on the presence of L. monocytogenes in soil, fruits, and vegetables.

    PubMed

    Szymczak, Barbara; Szymczak, Mariusz; Sawicki, Wojciech; D?browski, Waldemar

    2014-01-01

    The aim of this study was to determine the prevalence of Listeria sp. and Listeria monocytogenes in soil samples with reference to type of fertilizers (natural and artificial) and distance from places intensively exploited by men, as well as to determine the relationship between the presence of L. monocytogenes in the soil and in fruits and vegetables. The examined 1,000 soil samples originated from 15 different areas, whilst 140 samples of fruits and 210 samples of vegetables were collected from those areas. L. monocytogenes was isolated only from 5.5 % of all soil samples coming exclusively from meadows intensively grazed by cattle (27.8 %) and areas near food processing plants (25 %) and wild animal forests (24 %). Listeria sp. and L. monocytogenes were not present on artificially fertilized areas and wastelands. L. monocytogenes was detected in 10 % of samples of strawberry, 15 % of potato samples, and 5 % of parsley samples. Our data indicate that Listeria spp. and particularly L. monocytogenes were found in the soil from (1) arable lands fertilized with manure, (2) pasture (the land fertilized with feces of domestic animals), and (3) forests (again, the land fertilized with feces of animals, not domestic but wild). The bacteria were not detected in the soil samples collected at (1) artificially fertilized arable lands and (2) wastelands (the lands that were not fertilized with manure or animal feces). Moreover, a correlation was determined in the presence of L. monocytogenes between soil samples and samples of the examined fruits and vegetables. PMID:23775320

  2. Agricultural use of soil, consequences in soil organic matter and hydraulic conductivity compared with natural vegetation in central Spain

    NASA Astrophysics Data System (ADS)

    Vega, Verónica; Carral, Pilar; Alvarez, Ana Maria; Marques, Maria Jose

    2014-05-01

    When ecosystems are under pressure due to high temperatures and water scarcity, the use of land for agriculture can be a handicap for soil and water conservation. The interactions between plants and soils are site-specific. This study provides information about the influence of the preence vs. The absence of vegetation on soil in a semi-arid area of the sout-east of Madrid (Spain, in the Tagus River basin. In this area soil materials are developed over a calcareous-evaporitic lithology. Soils can be classified as Calcisols, having horizons of accumulation with powdered limestone and irregular nodules of calcium carbonate. They can be defined as Haplic Cambisols and Leptic Calcisols (WRB 2006-FAO). The area is mainly used for rainfed agriculture, olive groves, vineyards and cereals. There are some patches of bushes (Quercus sp.) and grasses (Stipa tenacissima L.) although only found on the top of the hills. This study analyses the differences found in soils having three different covers: Quercus coccifera, Stipa tenacissima and lack of vegetation. This last condition was found in the areas between cultivated olive trees. Soil organic matter, porosity and hydraulic conductivity are key properties of soil to understand its ability to adapt to climate or land use changes. In order to measure the influence of different soil covers, four replicates of soil were sampled in each condition at two soil depth, (0-10 cm and 10-20 cm). Hydraulic conductivity was measured in each soil condition and replicate using a Mini-disk® infiltrometer. There were no differences between the two depths sampled. Similarly, there were no changes in electric conductivity (average 0.1±0.03 dS m-1); pH (8.7±0.2) or calcium carbonate content (43±20 %). Nevertheless, significant differences (p>0.001) were found in soil organic matter. The maximum was found in soils under Quercus (4.7±0.5 %), followed by Stipa (2.2±1.1 %). The soil without vegetation in the areas between olive trees had only 0.7±1.1 % soil organic matter; far from the usual limit advisable for cultivated soils. Soil porosity was also affected in cultivated soils, being 39±5% (total porosity), significantly less than those found under Stipa (46%) and Quercus (51%). Hydraulic conductivity presented a similar pattern to porosity, being higher in soils under Quercus, however further research is needed to clarify this result, as it can also be related to changes detected in soil texture. Sand content, which was different between soil conditions, is highly correlated to hydraulic conductivity. Changes in soil texture can be due to erosive processes that have to be studied to establish the causative relationships between these findings. Acknowledgements: Project CGL 2008-04296. Environmental Impact evaluation through the assessment of soil organic matter resilient forms in soils.

  3. Influence of Vegetations' Metabolites on the Composition and Functioning of Soil Microbial Complex

    NASA Astrophysics Data System (ADS)

    Biryukov, Mikhail

    2013-04-01

    Microbiota is one of the major factors of soils fertility. It transforms organic substances in soil and, therefore, serves as the main component in the cycles of carbon and nitrogen. Microbial communities (MC) are characterized as highly diverse and extremely complex structures. This allows them to adapt to any affection and provide all the necessary biospheric functions. Hence, the study of their functional diversity and adaptivity of microbiota provides the key to the understanding of the ecosystems' functioning and their adaptivity to the human impact. The formation of MC at the initial stage is regulated by the fluxes of substrates and biologically active substances (BAS), which vary greatly in soils under different vegetations. These fluxes are presented by: low molecular weights organic substances (LMWOS), which can be directly included in metabolism of microbes; polymers, that can be decomposed to LMWOS by exoenzymes; and more complex compounds, having different "drug effects" (e.g. different types of phenolic acids) and regulating growth and enzymatic properties of microbiota. Therefore, the main hypothesis of the research was formulated as follows: penetration of different types of substrates and BAS into soil leads to the emergence of MC varying in enzymatic properties and structure. As a soil matrix we used the soil from the untreated variant of the lysimeter model experiment taking place in the faculty of Soil Science of the MSU for over the last 40 years. It was sieved with a 2mm sieves, humidified and incubated at 25C during one week. Subsequently, the samples were air-dried with occasional stirring for one more week. Thereafter, aliquots of the prepared soil were taken for the different experimental variants. The samples were rewetted with solutions of various substrates (glucose, cellulose, starch, etc.) and thoroughly mixed. The control variant was established with addition of deionised water. The samples were incubated at the 25C. During the incubation the rate of mineralisation of organic substances was assessed with CO2 measurements. In 5, 10 and 21 days of incubation the enzymatic properties of the formed MC were studied by the hydrolysis of fluorogenic substrates. The influence of BAS on enzymatic properties of MC were researched by addition of different concentrations of phenolic acids (e.g. salicylic, vanillic, benzoic, etc.) to the samples from various substrates treatments. The acute toxicity of BAS was studied with bacterial luminescent test. After the last measurement, the isolations of microorganisms on elective nutrient medias were made. The dominant microorganisms were collected to the library for further identification and physiological tests. MeOH-chloroform extraction of phospholipids were performed with the remaining samples. Finally, they were stored for subsequent FAME identifications. The obtained data prove that penetration of various substrates into the soil determines the formation of MC different in structure and properties. It was found, that EC50 of the most studied phenolic acids are similar to naturally occurring concentrations. This means that they can be the real drivers of forming endemical MC under various vegetations along with the plant-specific fluxes of nutrients.

  4. Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils

    USGS Publications Warehouse

    Neff, J.C.; Hooper, D.U.

    2002-01-01

    Climatic change may influence decomposition dynamics in arctic and boreal ecosystems, affecting both atmospheric CO2 levels, and the flux of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) to aquatic systems. In this study, we investigated landscape-scale controls on potential production of these compounds using a one-year laboratory incubation at two temperatures (10?? and 30??C). We measured the release of CO2, DOC and DON from tundra soils collected from a variety of vegetation types and climatic regimes: tussock tundra at four sites along a latitudinal gradient from the interior to the north slope of Alaska, and soils from additional vegetation types at two of those sites (upland spruce at Fairbanks, and wet sedge and shrub tundra at Toolik Lake in northern Alaska). Vegetation type strongly influenced carbon fluxes. The highest CO2 and DOC release at the high incubation temperature occurred in the soils of shrub tundra communities. Tussock tundra soils exhibited the next highest DOC fluxes followed by spruce and wet sedge tundra soils, respectively. Of the fluxes, CO2 showed the greatest sensitivity to incubation temperatures and vegetation type, followed by DOC. DON fluxes were less variable. Total CO2 and total DOC release were positively correlated, with DOC fluxes approximately 10% of total CO2 fluxes. The ratio of CO2 production to DOC release varied significantly across vegetation types with Tussock soils producing an average of four times as much CO2 per unit DOC released compared to Spruce soils from the Fairbanks site. Sites in this study released 80-370 mg CO2-C g soil C-1 and 5-46 mg DOC g soil C-1 at high temperatures. The magnitude of these fluxes indicates that arctic carbon pools contain a large proportion of labile carbon that could be easily decomposed given optimal conditions. The size of this labile pool ranged between 9 and 41% of soil carbon on a g soil C basis, with most variation related to vegetation type rather than climate.

  5. ORIGINAL ARTICLE Responses of vegetation to soil disturbance by Sibelian

    E-print Network

    Schweik, Charles M.

    ; this is an example of a keystone species acting as an ecosystem engineer (Adiya 2000; Yoshihara et al. 2009a Ecosystem engineer; keystone species; landscape richness enhancement; susceptibility to disturbance; zoning rodent in Mongolia, and play many impor- tant roles, such as increasing species diversity of vegetation

  6. Evaluation of Thematic Mapper for detecting soil properties under grassland vegetation

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Henderson, K. E.

    1984-01-01

    Analysis of Thematic Mapper data acquired November 15, 1982, over a vegetated site located in the East Texas Timberlands and Claypan area of Texas has indicated that montmorillonitic clay textured soils can be separated from soils with different textures. The difference of TM band 4 (0.76-0.90 micron) and band 7 (2.08-2.35 microns) had an agreement of 55.8 percent with the USDA soil survey for upland clay soils. This compared to 55.9-percent agreement when all six bands (excluding the thermal) were used. The disagreement occurred at the boundary lines as defined by the USDA soil survey and the spectral data. This result is considered to be fairly good, considering the difficulty in placement of soil boundaries by the soil scientist in the field. While the exact influence on the vegetation, and thus the spectral response observed by TM, is not understood at this time, it appears that TM band 7 is responding to the type of mineralogy of the soil and that soil properties important to the plant can be detected using TM.

  7. Continuous measurements of net CO2 exchange by vegetation and soils in a suburban landscape

    NASA Astrophysics Data System (ADS)

    Peters, Emily B.; McFadden, Joseph P.

    2012-09-01

    In a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA, we simultaneously measured net CO2 exchange of trees using sap flow and leaf gas exchange measurements, net CO2exchange of a turfgrass lawn using eddy covariance from a portable tower, and total surface-atmosphere CO2 fluxes (FC) using an eddy covariance system on a tall tower. Two years of continuous measurements showed that net CO2exchange varied among vegetation types, with the largest growing-season (Apr-Nov) net CO2 uptake on a per cover area basis from evergreen needleleaf trees (-603 g C m-2), followed by deciduous broadleaf trees (-216 g C m-2), irrigated turfgrass (-211 g C m-2), and non-irrigated turfgrass (-115 g C m-2). Vegetation types showed seasonal patterns of CO2exchange similar to those observed in natural ecosystems. Scaled-up net CO2 exchange from vegetation and soils (FC(VegSoil)) agreed closely with landscape FC measurements from the tall tower at times when fossil fuel emissions were at a minimum. Although FC(VegSoil) did not offset fossil fuel emissions on an annual basis, the temporal pattern of FC(VegSoil) did significantly alter the seasonality of FC. Total growing season FC(VegSoil)in recreational land-use areas averaged -165 g C m-2 and was dominated by turfgrass CO2 exchange (representing 77% of the total), whereas FC(VegSoil) in residential areas averaged -124 g C m-2 and was dominated by trees (representing 78% of the total). Our results suggest urban vegetation types can capture much of the variability required to predict seasonal patterns and differences in FC(VegSoil) that could result from changes in land use or vegetation composition in temperate cities.

  8. Salt-marsh Vegetation and Morphology: Basic Physiology, Modelling and Remote Sensing Observations

    Microsoft Academic Search

    Sonia Silvestri; Marco Marani

    The state and evolution of a tidal salt marsh are crucially dependent on the interplay between sediment input and transport, eustatism, hydrodynamic regimes and biotic factors (e.g. vegetation colonization). Biotic factors have a decisive influence on sediment deposition, resuspension and compaction but are, in turn, governed by numerous physical factors (e.g. soil salinity and oxygen availability). A model that can

  9. Effect of land-use practice on soil moisture variability for soils covered with dense forest vegetation of Puerto Rico

    NASA Technical Reports Server (NTRS)

    Tsegaye, T.; Coleman, T.; Senwo, Z.; Shaffer, D.; Zou, X.

    1998-01-01

    Little is known about the landuse management effect on soil moisture and soil pH distribution on a landscape covered with dense tropical forest vegetation. This study was conducted at three locations where the history of the landuse management is different. Soil moisture was measured using a 6-cm three-rod Time Domain Reflectometery (TDR) probe. Disturbed soil samples were taken from the top 5-cm at the up, mid, and foothill landscape position from the same spots where soil moisture was measured. The results showed that soil moisture varies with landscape position and depth at all three locations. Soil pH and moisture variability were found to be affected by the change in landuse management and landscape position. Soil moisture distribution usually expected to be relatively higher in the foothill (P3) area of these forests than the uphill (P1) position. However, our results indicated that in the Luquillo and Guanica site the surface soil moisture was significantly higher for P1 than P3 position. These suggest that the surface and subsurface drainage in these two sites may have been poor due to the nature of soil formation and type.

  10. Classification of Soil Moisture on Vegetated Earthen Levees Using X and L Band Synthetic Aperture Radar (SAR)

    NASA Astrophysics Data System (ADS)

    Mahrooghy, M.; Aanstoos, J. V.; Hasan, K.; Nobrega, R. A.; Younan, N. H.

    2011-12-01

    Earthen levees protect large areas of land in the US from flooding. Timely inspection and repairs can reduce the potential for catastrophic failures. Changes in spatial and temporal patterns of soil moisture can reveal signs of instability and help identify zones of weakness. Since analytical and empirical models have shown a relationship between SAR backscatter and soil moisture, we are using SAR to classify soil moisture on levees. Estimation of soil moisture from SAR is challenging when the surface has any significant vegetation. For the levee application, the soil is typically covered with a uniform layer of grass. Our methodology is based on a supervised soil moisture classification using a back propagation neural network with four classes of low, medium, high, and very high soil moisture. Our methodology consists of the following steps: 1) segmentation of the levee area from background and exclusion of tree-covered areas; 2) extracting the backscattering and texture features such as GLCM (Grey-Level Co-occurrence Matrix) and wavelet features; 3) training the back propagation neural network classifier; and 4) testing the area of interest and validation of the results using ground truth data. Two sources of SAR imagery are tested with this method: (1) fully polarimetric L-band data from NASA's UAVSAR; and (2) dual-polarimetric X-band data from the German TerraSAR-X satellite. The study area is a 4 km stretch of levee along the lower Mississippi River in the United States. Field data collected simultaneously with image acquisition are utilized for training and validation. Preliminary results show classification accuracies of about 50% for the UAVSAR image and 30% for the TerraSAR-X image in vegetated areas. The figure below shows a soil moisture classification using UAVSAR on April 28, 2011.

  11. Infrared temperature measurements over bare soil and vegetation - A HAPEX perspective

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.; Perry, Eileen M.; Taconet, Odile

    1987-01-01

    Preliminary analyses of aircraft and ground measurements made in France during the HAPEX experiment show that horizontal radiometric surface temperature variations, as viewed by aircraft, can reflect the vertical profile of soil moisture (soil versus root zone) because of horizontal variations in vegetation density. Analyses based on one day's data show that, although horizontal variations in soil moisture were small, the vertical differences between a dry surface and a wet root zone were large. Horizontal temperature differences between bare soil, corn and oats reflect differences in the fractional vegetation cover, as seen by the radiometer. On the other hand, these horizontal variations in radiometric surface temperature seem to reflect real horizontal variations in surface turbulent energy fluxes.

  12. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes

    USGS Publications Warehouse

    Jorgenson, M. Torre; Harden, Jennifer; Kanevskiy, Mikhail; O'Donnell, Jonathan; Wickland, Kim; Ewing, Stephanie; Manies, Kristen; Zhuang, Qianlai; Shur, Yuri; Striegl, Robert; Koch, Josh

    2013-01-01

    The diversity of ecosystems across boreal landscapes, successional changes after disturbance and complicated permafrost histories, present enormous challenges for assessing how vegetation, water and soil carbon may respond to climate change in boreal regions. To address this complexity, we used a chronosequence approach to assess changes in vegetation composition, water storage and soil organic carbon (SOC) stocks along successional gradients within four landscapes: (1) rocky uplands on ice-poor hillside colluvium, (2) silty uplands on extremely ice-rich loess, (3) gravelly–sandy lowlands on ice-poor eolian sand and (4) peaty–silty lowlands on thick ice-rich peat deposits over reworked lowland loess. In rocky uplands, after fire permafrost thawed rapidly due to low ice contents, soils became well drained and SOC stocks decreased slightly. In silty uplands, after fire permafrost persisted, soils remained saturated and SOC decreased slightly. In gravelly–sandy lowlands where permafrost persisted in drier forest soils, loss of deeper permafrost around lakes has allowed recent widespread drainage of lakes that has exposed limnic material with high SOC to aerobic decomposition. In peaty–silty lowlands, 2–4 m of thaw settlement led to fragmented drainage patterns in isolated thermokarst bogs and flooding of soils, and surface soils accumulated new bog peat. We were not able to detect SOC changes in deeper soils, however, due to high variability. Complicated soil stratigraphy revealed that permafrost has repeatedly aggraded and degraded in all landscapes during the Holocene, although in silty uplands only the upper permafrost was affected. Overall, permafrost thaw has led to the reorganization of vegetation, water storage and flow paths, and patterns of SOC accumulation. However, changes have occurred over different timescales among landscapes: over decades in rocky uplands and gravelly–sandy lowlands in response to fire and lake drainage, over decades to centuries in peaty–silty lowlands with a legacy of complicated Holocene changes, and over centuries in silty uplands where ice-rich soil and ecological recovery protect permafrost.

  13. Soil, water, and vegetation conditions in south Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Everitt, J. H.; Gerbermann, A. H. (principal investigators)

    1976-01-01

    The author has identified the following significant results. Software development for a computer-aided crop and soil survey system is nearing completion. Computer-aided variety classification accuracies using LANDSAT-1 MSS data for a 600 hectare citrus farm were 83% for Redblush grapefruit and 91% for oranges. These accuracies indicate that there is good potential for computer-aided inventories of grapefruit and orange citrus orchards with LANDSAT-type MSS data. Mean digital values of clouds differed statistically from those for crop, soil, and water entities, and those for cloud shadows were enough lower than sunlit crop and soil to be distinguishable. The standard errors of estimate for the calibration of computer compatible tape coordinate system (pixel and record) to earth coordinate system (longitude and latitude) for 6 LANDSAT scenes ranged from 0.72 to 1.50 pixels and from 0.58 to 1.75 records.

  14. Soil, water, and vegetation conditions in South Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Everitt, J. H.; Gerbermann, A. H. (principal investigators)

    1976-01-01

    The author has identified the following significant results. Reflectance measurements with a field spectroradiometer on nine dates (between December 9 and April 8) during the growing season of two wheat varieties, Milam and Penjamo, showed that the reflectance curves had the characteristic shape of vegetated surfaces by 4 weeks after the emergence. Green light (0.55 micron) reflectance was maximal and between water absorption bands (1.65 and 2.2 microns) reflectance was minimal when green vegetation development was greatest. Computer classification was accomplished for 81,000 hectare coastal rangeland area for October 13 and December 10, 1975, overpass dates. A hard freeze occurred between these two dates and many of the deciduous woody species defoliated so that more light penetrated to the herbaceous understory in December than in October.

  15. Spatial variability of soil and vegetation characteristics in an urban park in Tel-Aviv

    NASA Astrophysics Data System (ADS)

    Sarah, Pariente; Zhevelev, Helena M.; Oz, Atar

    2010-05-01

    Mosaic-like spatial patterns, consisting of divers soil microenvironments, characterize the landscapes of many urban parks. These microenvironments may differ in their pedological, hydrological and floral characteristics, and they play important roles in urban ecogeomorphic system functioning. In and around a park covering 50 ha in Tel Aviv, Israel, soil properties and herbaceous vegetation were measured in eight types of microenvironments. Six microenvironments were within the park: area under Ceratonia siliqua (Cs-U), area under Ficus sycomorus (Fi-U), a rest area under F. sycomorus (Re-U), an open area with bare soil (Oa-S), an open area with biological crusts (Oa-C), and an open area with herbaceous vegetation (Oa-V). Outside the park were two control microenvironments, located, respectively, on a flat area (Co-P) and an inclined open area (Co-S). The soil was sampled from two depths (0-2 and 5-10 cm), during the peak of the growing season (March). For each soil sample, moisture content, organic matter content, CaCO3 content, texture, pH, electrical conductivity, and soluble ions contents were determined in 1:1 water extraction. In addition, prior to the soil sampling, vegetation cover, number of species, and species diversity of herbaceous vegetation were measured. The barbecue fires and visitors in each of the microenvironments were counted. Whereas the soil organic matter and vegetation in Fi-U differed from those in the control(Co-P, Co-S), those in Oa-V were similar to those in the control. Fi-U was characterized by higher values of soil moisture, organic matter, penetration depth, and vegetation cover than Cs-U. Open microenvironments within the park (Oa-S, Oa-C, Oa-V) showed lower values of soil penetration than the control microenvironments. In Oa-V unique types of plants such as Capsella bursa-pastoris and Anagallis arvensis, which did not appear in the control microenvironments, were found. This was true also for Fi-U, in which species like Oxalis pes-caprae were found. Significant differences in soil and vegetation properties were found between Re-U and the rest of microenvironments. Differences in levels of human activities, in addition to differences in vegetation types, increased the spatial heterogeneity of soil properties. The rest microenvironment (Re-U) exhibited degraded soil conditions and can be regarded as forming the fragile areas of the park. An urban park offers potential for presence and growth of natural vegetation and, therefore, also for preservation of biodiversity. Natural vegetation, in its role as a part of the urban park, enriches the landscape diversity and thereby may contribute to the enjoyment of the visitors in the park.

  16. Environmental controls on the 34S/32S ratios of soil and vegetation

    NASA Astrophysics Data System (ADS)

    Balan, S. A.; Laleian, A.; Portier, E.; Amundson, R.

    2010-12-01

    Climate and landscape age strongly affect most soil processes, however their impact on the terrestrial sulfur (S) cycle is poorly known. In this study, we examine how S isotope composition changes in soils and plants along gradients of climate (Tanzania, Hawaii, California, Great Plains) and age (California). As a model, we assume (as is the case for C and N) that soil S pools are largely at steady state, representing the balance between inputs and losses. The same assumption is made for isotopes: the ?34S value of soil S (in most cases dominantly in organic form) represents the value of inputs and the S isotope fractionation between the losses and the soil S it is derived from. While the geographic variation in the isotopic composition of atmospheric S inputs is not well known at this stage, conducting gradient analyses in confined areas (where S inputs should be constant), allows us to examine how forms of S loss vary with climate and time. For the African (Kilimanjaro) transect, as elevation increases, both mean annual precipitation (MAP) and mean annual temperature (MAT) decrease. Mean ?34S values increase with elevation up a value of 17.9‰ at 2545 m, and then decrease from 2990 m, to a minimum of 8.8‰ at 3900 m. The higher ?34S values at lower elevations, where the climate is wetter and warmer, indicate that the forms of S losses are relatively depleted in 34S , suggesting gaseous losses along with sulfate leaching. The Hawaiian transect mirrors that of Africa at comparable MAP and MAT conditions, suggesting both similar sources, but most importantly similar in-soil responses to temperature/moisture combinations. In contrast, the Great Plain soils, which are significantly drier and somewhat cooler than the Kilimanjaro and Hawaii soils, have ?34S values ranging from -3.3 to +3.8‰, likely as a result of a combination of more 34S-depleted atmospheric inputs and smaller losses of S-depleted sulfate given the drier climate. For the Sierra Nevada transect, MAP increases and MAT decreases with increasing elevation, while the average ?34S values of vegetation increases only slightly. For most tree samples, leaves are slightly more enriched in 34S than the stems, however no clear difference is seen between different plant types at the same site, or between plants and soil, indicating that there is little to no fractionation during plant uptake. On the Merced chronosequence, biomass ?34S values initially increase with age (5.8, 6.1, 6.3 and 6.7‰ for the 3 ky, 6 ky, 150 ky and 600 ky soils respectively) and then decrease on the most ancient terraces (6.0 and 5.3‰ for the 1 and 3 My soils respectively). At this stage, there appears to be similarities in the patterns of S isotopes and our previous work along these same transects on N isotopes (Amundson et al., 2003), indicating (as we hypothesized) a common response of these somewhat similar biological elements to climate. However, increasing our knowledge of the mechanisms underlying these emerging patterns is the goal of our on-going work.

  17. Interacting vegetative and thermal contributions to water movement in desert soil

    USGS Publications Warehouse

    Garcia, C.A.; Andraski, B.J.; Stonestrom, D.A.; Cooper, C.A.; Simunek, J.; Wheatcraft, S.W.

    2011-01-01

    Thermally driven water-vapor flow can be an important component of total water movement in bare soil and in deep unsaturated zones, but this process is often neglected when considering the effects of soil-plant-atmosphere interactions on shallow water movement. The objectives of this study were to evaluate the coupled and separate effects of vegetative and thermal-gradient contributions to soil water movement in desert environments. The evaluation was done by comparing a series of simulations with and without vegetation and thermal forcing during a 4.7-yr period (May 2001-December 2005). For vegetated soil, evapotranspiration alone reduced root-zone (upper 1 m) moisture to a minimum value (25 mm) each year under both isothermal and nonisothermal conditions. Variations in the leaf area index altered the minimum storage values by up to 10 mm. For unvegetated isothermal and nonisothermal simulations, root-zone water storage nearly doubled during the simulation period and created a persistent driving force for downward liquid fluxes below the root zone (total net flux ~1 mm). Total soil water movement during the study period was dominated by thermally driven vapor fluxes. Thermally driven vapor flow and condensation supplemented moisture supplies to plant roots during the driest times of each year. The results show how nonisothermal flow is coupled with plant water uptake, potentially influencing ecohydrologic relations in desert environments. ?? Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA. All rights reserved.

  18. Genetic algorithm applied to a Soil-Vegetation-Atmosphere system: Sensitivity and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Schneider, Sébastien; Jacques, Diederik; Mallants, Dirk

    2010-05-01

    Numerical models are of precious help for predicting water fluxes in the vadose zone and more specifically in Soil-Vegetation-Atmosphere (SVA) systems. For such simulations, robust models and representative soil hydraulic parameters are required. Calibration of unsaturated hydraulic properties is known to be a difficult optimization problem due to the high non-linearity of the water flow equations. Therefore, robust methods are needed to avoid the optimization process to lead to non-optimal parameters. Evolutionary algorithms and specifically genetic algorithms (GAs) are very well suited for those complex parameter optimization problems. Additionally, GAs offer the opportunity to assess the confidence in the hydraulic parameter estimations, because of the large number of model realizations. The SVA system in this study concerns a pine stand on a heterogeneous sandy soil (podzol) in the Campine region in the north of Belgium. Throughfall and other meteorological data and water contents at different soil depths have been recorded during one year at a daily time step in two lysimeters. The water table level, which is varying between 95 and 170 cm, has been recorded with intervals of 0.5 hour. The leaf area index was measured as well at some selected time moments during the year in order to evaluate the energy which reaches the soil and to deduce the potential evaporation. Water contents at several depths have been recorded. Based on the profile description, five soil layers have been distinguished in the podzol. Two models have been used for simulating water fluxes: (i) a mechanistic model, the HYDRUS-1D model, which solves the Richards' equation, and (ii) a compartmental model, which treats the soil profile as a bucket into which water flows until its maximum capacity is reached. A global sensitivity analysis (Morris' one-at-a-time sensitivity analysis) was run previously to the calibration, in order to check the sensitivity in the chosen parameter search space. For the inversion procedure a genetical algorithm (GA) was used. Specific features such as elitism, roulette-wheel process for selection operator and island theory were implemented. Optimization was based on the water content measurements recorded at several depths. Ten scenarios have been elaborated and applied on the two lysimeters in order to investigate the impact of the conceptual model in terms of processes description (mechanistic or compartmental) and geometry (number of horizons in the profile description) on the calibration accuracy. Calibration leads to a good agreement with the measured water contents. The most critical parameters for improving the goodness of fit are the number of horizons and the type of process description. Best fit are found for a mechanistic model with 5 horizons resulting in absolute differences between observed and simulated water contents less than 0.02 cm3cm-3 in average. Parameter estimate analysis shows that layers thicknesses are poorly constrained whereas hydraulic parameters are much well defined.

  19. Mineralisation of atrazine, metolachlor and their respective metabolites in vegetated filter strip and cultivated soil.

    PubMed

    Krutz, Larry J; Gentry, Terry J; Senseman, Scott A; Pepper, Ian L; Tierney, Dennis P

    2006-06-01

    In vegetated filter strips (VFS) the presence of perennial vegetation, rhizodeposition of labile organic substrates and the accumulation of an organic residue thatch layer may enhance microbial numbers and activity, thereby increasing the potential for mineralisation of herbicides and herbicide metabolites retained during run-off events. The objective of this laboratory experiment was to compare the mineralisation of atrazine and metolachlor with that of their respective metabolites in VFS and cultivated soil. With the exception of total bacteria, propagule density of the microbial groups, endogenous soil enzymes and microbial diversity were higher in the VFS soil. This correlated with increased mineralisation of metolachlor and its metabolites in the VFS soil and indicates potential for VFS to curtail the subsequent transport of these compounds. In contrast, the mineralisation of atrazine and the majority of its metabolites was substantially reduced in VFS soil relative to cultivated soil. Consequently, the potential for subsequent transport of atrazine and many of its metabolites may be greater in VFS soil than in cultivated soil if reduced mineralisation is not offset by increased sorption in the VFS. PMID:16612813

  20. Relationships between soil microbial communities and soil carbon turnover along a vegetation and moisture gradient in interior Alaska

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Harden, J. W.; Turetsky, M. R.; Petersen, D. G.; McGuire, A. D.; Briones, M. J.; Churchill, A. C.; Doctor, D. H.; Pruett, L. E.

    2010-12-01

    Boreal landscapes are characterized by a mosaic of uplands and lowlands, which differ in plant species composition, litter biochemistry, and biogeochemical cycling rates. Boreal ecosystems, from upland black spruce stands to lowland fens, are structured largely by water table position and contain quantitatively and qualitatively different forms of soil organic matter. Differences in carbon (C) availability among ecosystems likely translate to differences in the structure of soil microbial communities, which in turn could affect rates of organic matter decomposition and turnover. We examined relationships between microbial communities and soil C turnover in near-surface soils along a topographic soil moisture and vegetation gradient in interior Alaska. We tested the hypothesis that upland black spruce sites would be dominated by soil fungi and have slow rates of C turnover, whereas lowland ecosystems would be dominated by bacteria and mesofauna (enchytraeids) and have more rapid rates of C turnover. We utilized several isotopic measures of soil C turnover including bomb radiocarbon techniques, the ?15N of SOM, and the difference between ?13C of SOM, DOC, and respired CO2. All three measures indicated greater C turnover rates in the surface soils of the lowland fen sites compared to the more upland locations. Quantitative PCR analyses of soil bacteria and archaea, combined with enchytraed counts, confirmed that surface soils from the lowland fen ecosystems had the highest abundances of these functional groups. Fungal biomass was highly variable and tended to be more abundant in the upland forest sites. Soil enzymatic results were mixed: potential cellulase activities were higher in the more upland soils even though rates of microbial activity were generally lower. Oxidative enzyme activities were higher in fens, even though these ecosystems are saturated and partly anaerobic. Overall our data support soil food web theory which argues that rapidly cycling systems are bacterial dominated with mesofaunal grazing, whereas slowly cycling systems have characteristic higher fungal:bacterial ratios.

  1. The impact of parent material, climate, soil type and vegetation on Venetian forest humus forms: a direct gradient approach

    E-print Network

    Boyer, Edmond

    1 The impact of parent material, climate, soil type and vegetation on Venetian forest humus forms and vegetation on forest humus forms was studied in the Veneto Region (northern Italy). A total of 352 study, warmer climate associated to lower elevation, lower soil acidity, deciduous (as opposed to coniferous

  2. Storage of atmospheric carbon in global litter and soil pools in response to vegetation change and biomass allocation

    SciTech Connect

    Klooster, S.A.; Potter, C.S. [NASA-Ames Research Center, Moffett Field, CA (United States)

    1995-09-01

    Changes in the distribution of vegetation types under altered climate regimes could have important consequences for the storage of atmospheric carbon in terrestrial ecosystems. Because there are relatively few definitive field studies of changes in whole ecosystem carbon balance under modified climate stress, process-level models driven by gridded global databases may provide reasonable indicators of biome-specific sensitivity of C storage to changes in vegetation cover. We have used plant litter quality (lignin content) and carbon allocation to woody tissues as surrogates for testing the hypothetical effects of future vegetation change using the CASA (Carnegie-Ames-Stanford Approach) Biosphere model. The model is driven by global gridded (1{degrees}) satellite imagery on a monthly time interval to simulate seasonal patterns in net ecosystem carbon balance and steady-state carbon storage in detritus and soils. Sensitivity tests treated litter quality and allocation effects independently from other direct effects of changes in climate, atmospheric CO{sub 2} levels, and primary production. Results support the hypothesis that soil C storage in today`s temperate and boreal forest life zones are those most sensitive to changes in litter lignin content which may accompany increased climate stress. For these systems, the model predicts that a 50% increase in litter lignin concentrations would result in a long-term net gain of about 10% C from the atmosphere into surface litter and soil organic matter pools. A 50% decrease in C allocation to woody tissues would invoke a net loss of 10% C from litter and soil organic matter pools.

  3. Modelling of groundwater-vegetation interactions in a tidal marsh

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Kong, Jun; Li, Ling; Barry, D. A.

    2013-07-01

    Wetting and drying due to tidal fluctuations affect soil conditions and hence plant growth in tidal marshes. Here, a coupled one-dimensional model was developed to simulate interacting groundwater flow and plant growth in these wetlands. The simulation results revealed three characteristic zones of soil conditions for plant growth along a cross-creek section subjected to the combined influences of spring-neap tides and evapotranspiration: (1) a near-creek zone affected by semi-diurnal tides over the whole spring-neap cycle, where the soil is well aerated although the plant growth could be slightly limited by the local water content dropping periodically below the wilting point on the ebb tide; (2) a less well-drained zone where drainage occurs only during neap tides (for which the daily inundation is absent) and plant growth is aeration-limited; and (3) an interior zone where evapotranspiration determines the soil-water saturation. Plant growth dynamics, which depend on these soil conditions, lead to spatial biomass distributions that are consistent with the characteristic zonation. The simulations shed light on the feedback mechanism for groundwater-vegetation interactions in the marsh system. It was demonstrated that the growth of pioneer plants can improve the soil aeration condition as a result of transpiration. The strength of this feedback varies spatially in accordance with the three characteristic zones of soil-water saturation. However, the development of another species in the marsh system is likely to be more complicated than suggested by the "positive feedback" mechanism proposed previously, due to the influence of inter-species competition. The feedback effects are generally more complex, involving both plant growth enhancement and inhibition depending on the combined influence of the intra- and inter-species competition, the ecosystem's carrying capacity and plant transpiration. These findings demonstrate the interplay of ecological and hydrological processes in tidal marshes, and provide guidance for future research, including field investigations that aim to establish the principle relationship between marsh morphology and plant zonation.

  4. COMMENTARY - SPATIAL VARIATION OF SOIL PROPERTIES RELATING TO VEGETATION CHANGES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bekele and Hudnall provide an interesting perspective on the spatial variation of soil chemical properties in a natural area undergoing transition from prairie to forest. Their focus is on the unique calcareous prairie ecosystem of Louisiana where prairie remnants are being encroached upon by the f...

  5. Soil changes after four years of organic vegetable production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2002, scientists at the Lane Agricultural Center in southeastern Oklahoma began a study to explore the potential for organic agricultural production. Land was certified as organic according to the guidelines of the National Organic Program. At the beginning of the study, soil samples were taken...

  6. Trace elements in vegetables grown in an industrial area in relation to soil and air particulate matter

    Microsoft Academic Search

    D. Voutsa; A. Grimanis; C. Samara

    1996-01-01

    The relationships between the trace element content of vegetables, agricultural soil and airborne particulate matter were investigated in the greater industrial area of Thessaloniki, northern Greece. Most elements were found at concentrations normally observed in vegetables grown in uncontaminated areas, however, elevated concentrations of Pb, Zn, Cr and Mn were found particularly in leafy vegetables. The trace element content of

  7. Soil seed bank recovery occurs more rapidly than expected in semi-arid Mediterranean gypsum vegetation

    PubMed Central

    Olano, J. M.; Caballero, I.; Escudero, A.

    2012-01-01

    Background and Aims Seed banks are critical in arid ecosystems and ensure the persistence of species. Despite the importance of seed banks, knowledge about their formation and the extent to which a seed bank can recover after severe perturbation remains scarce. If undisturbed, soil seed banks reflect a long vegetation history; therefore, we would expect that new soil seed banks and those of undisturbed soils require long periods to become similar with respect to both density and composition. In contrast, if soil seed banks are only a short- to mid-term reservoir in which long-term accumulation constitutes only a tiny fraction, they will recover rapidly from the vegetation. To shed light on this question, we evaluated seed bank formation in a semi-arid gypsum community. Methods Soils from 300 plots were replaced with sterilized soil in an undisturbed semi-arid Mediterranean community. Seasonal changes in seed bank density and composition were monitored for 3 years by comparing paired sterilized and control soil samples at each plot. Key Results Differences in seed bank density between sterilized and control soil disappeared after 18 months. The composition of sterilized seed banks was correlated with that of the control plots from the first sampling date, and both were highly correlated with vegetation. Nearly 24 % of the seed bank density could be attributed to secondary dispersal. Most seeds died before emergence (66·41–71·33 %), whereas the rest either emerged (14·08–15·48 %) or persisted in the soil (14·59–18·11 %). Conclusions Seed banks can recover very rapidly even under the limiting and stressful conditions of semi-arid environments. This recovery is based mainly on the seed rain at small scales together with secondary dispersal from intact seed banks in the vicinity. These results emphasize the relevance of processes occurring on short spatial scales in determining community structure. PMID:22003238

  8. Radionuclide concentrations in terrestrial vegetation and soil on and around the Hanford Site, 1983 through 1993

    SciTech Connect

    Poston, T.M.; Antonio, E.J.; Cooper, A.T.

    1995-08-01

    This report reviews concentrations of {sup 60}Co, {sup 90}Sr, {sup 137}Cs, U isotopes, {sup 238}Pu, {sup 239,240}Pu, and {sup 241}Am in soil and vegetation samples collected from 1983 through 1993 during routine surveillance of the Hanford Site. Sampling locations were grouped in study areas associated with operational areas on the Site. While radionuclide concentrations were very low and representative of background concentrations from historic fallout, some study areas on the Site contained slightly elevated concentrations compared to other study areas onsite and offsite. The 100 Areas had concentrations of {sup 60}Co comparable to the minimum detectable concentration of 0.02 pCi/g in soil. Concentrations of {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, and {sup 241}Am in 200 Area soils were slightly elevated. The 300 Area had a slight elevation of U in soil. These observations were expected because many of the sampling locations were selected to monitor specific facilities or operations at the operational areas. Generally, concentrations of the radionuclides studied were greater and more readily measured in soil samples compared to vegetation samples. The general pattern of concentrations of radionuclide concentrations in vegetation by area mirrored that observed in soil. Declines in {sup 90}Sr in soil appear to be attributed to radioactive decay and possibly downward migration out of the sampling horizon. The other radionuclides addressed in this report strongly sorb to soil and are readily retained in surface soil. Because of their long half-lives compared to the length of the study period, there was no significant indication that concentrations of U isotopes and Pu isotopes were decreasing over time.

  9. Evaluation of microbial inoculation and vegetation to enhance the dissipation of atrazine and metolachlor in soil.

    PubMed

    Zhao, Shaohan; Arthur, Ellen L; Moorman, Thomas B; Coats, Joel R

    2005-10-01

    Four greenhouse studies were conducted to evaluate the effects of native prairie grasses and two pesticide-degrading bacteria to remediate atrazine and metolachlor in soils from agricultural dealerships (Alpha site soil, northwest Iowa, USA; Bravo site soil, central Iowa, USA). The Alpha soil contained a low population of atrazine-degrading microorganisms relative to the Bravo soil. Each soil freshly treated with atrazine or metolachlor was aged for a short or long period of time, respectively. An atrazine-degrading bacterium, Agrobacterium radiobacter strain J14a; a metolachlor-degrading bacterium, Pseudomonas fluorescens strain UA5-40; and a mixture of three native prairie grasses-big bluestem (Andropogon gerardii Vitman), yellow Indian grass (Sorghastrum nutans [L.] Nash), and switchgrass (Panicum virgatum L.)-were added to the soils after the soils were aged for long periods of time. The soils aged for short periods of time were treated with J14a, the prairie grasses, or both after aging. The J14a and the grasses significantly reduced the concentration of atrazine in Alpha soil when the soil was aged for a short period of time. However, these treatments had no statistically significant effect when the soil was aged for a long period of time or on atrazine in Bravo soil. Inoculation with UA5-40 did not enhance metolachlor dissipation in either soil, but vegetation did increase metolachlor dissipation. Our results indicate that the dissipation of atrazine by J14a is affected by the presence of indigenous atrazine-mineralizing microorganisms and probably by the bioavailability of atrazine in the soil. PMID:16268144

  10. Transregional Collaborative Research Centre 32: Patterns in Soil-Vegetation-Atmosphere-Systems

    NASA Astrophysics Data System (ADS)

    Thiele-Eich, Insa; Simmer, Clemens; Diekkrüger, Bernd; Crewell, Susanne; Klitzsch, Norbert; Vereecken, Harry; Kollet, Stefan; Hintz, Michael

    2014-05-01

    The soil-vegetation-atmosphere (SVA) system is characterized by non-linear multi-scale exchange processes concerning mass, momentum and energy resulting in complex spatial and temporal patterns and structures. Under the TR32 framework, the characterisation of these structures and patterns will lead to a deeper qualitative and quantitative understanding of the SVA system, and ultimately to better predictions of the SVA state. TR32-research is based on three methodological pillars: Monitoring, Modelling and Data Assimilation. While focusing on the Rur Catchment (Germany), patterns are monitored since 2006 continuously using existing and novel geophysical and remote sensing techniques from the local to the catchment scale like ground penetrating radar, polarimetric precipitation and cloud radar imaging, spectrally induced polarization, radiomagnetotellurics, electrical resistivity tomography, boundary layer scintillometry, lidar techniques, cosmic-ray, and microwave radiometry. Model development centers around a coupled model platform TerrSysMP, which considers mutual fluxes from the groundwater to the atmosphere from the meter to the kilometer scale by combining the atmospheric model COSMO, the land surface model CLM, and the hydrological model ParFlow in a scale-consistent way using the external OASIS coupler. Another focus is a LES model coupled to a novel landsurface scheme, which has been developed for a better understanding of the propagation of patterns between landsurface and atmosphere and their mutual interactions. A range of projects focus on smaller scales processes e.g. down to individual roots, which are modelled at high resolution in order to develop suitable parametrisations for TerrSysMP. Other research foci of TR32 are the transfer of results and developed technology related to new soil analysis tools from the laboratory to the field, the quantification of patterns of soil-carbon, evapotranspiration and respiration in the field, and the setup and operation of the atmospheric boundary layer, cloud and precipitation monitoring site JOYCE (Jülich ObservatorY for Cloud Evolution). These modern and predominantly non-invasive measurement techniques are exploited in combination with advanced modelling systems by data assimilation to yield improved predictions of the transfers of water-, energy and CO2 by accounting for the patterns occurring at various scales. We will present selected results and remaining challenges for characterizing the intertwined patterns and structure at the catchment scale.

  11. REMOVAL AND DEGRADATION OF ATRAZINE AND METOLACHLOR BY VEGETATIVE FILTER STRIPS ON CLAY LOAM SOIL

    Microsoft Academic Search

    Cathy Seybold; Wondi Mersie; Don Delorem

    2001-01-01

    The effectiveness of filter strips, with and without vegetation, in removing dissolved atrazine and metolachlor in runoff was investigated using aluminum tilted beds set at 1% slope on Cullen clay loam soil. Runon containing atrazine and metolachlor was applied on the up-slope end of the simulated filter strips. Water samples from surface runoff, lateral subsurface movement, and leachates as well

  12. Soil erosion and runoff in different vegetation patches from semiarid Central Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation patches in arid and semiarid areas are important in the regulation of surface hydrological processes. Canopy and ground cover in these fertility islands develop a natural cushion against the impact energy of rainfall, and the higher levels of organic matter improve soil physicochemical pr...

  13. Vegetation controls on soil organic carbon dynamics in an arid, hyperthermic ecosystem

    Microsoft Academic Search

    David A. White II; Amy Welty-Bernard; Craig Rasmussen; Egbert Schwartz

    2009-01-01

    The large land area occupied by arid lands, roughly 36% to 40% globally, underscores the importance for understanding how these ecosystems function in the global carbon cycle. Few studies have directly examined soil organic carbon (SOC) dynamics and the effect of vegetation on SOC and microbial community structure in arid ecosystems. The objective of this study was to determine the

  14. Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils

    E-print Network

    Neff, Jason

    at two temperatures (10 and 30 C). We measured the release of CO2, DOC and DON from tundra soils collected from a variety of vegetation types and climatic regimes: tussock tundra at four sites along types at two of those sites (upland spruce at Fairbanks, and wet sedge and shrub tundra at Toolik Lake

  15. Late-Holocene glacier growth in Svalbard, documented by subglacial relict vegetation and living soil microbes

    Microsoft Academic Search

    Ole Humlum; Bo Elberling; Anne Hormes; Kristine Fjordheim; Odd Harald Hansen; Jan Heinemeier

    2005-01-01

    Much renewed research interest in Arctic regions stems from the increasing concentration of atmospheric greenhouse gases and the alleged climatic sensitivity of high latitude areas. Glacier and permafrost changes are among a number of proxies used for monitoring past and present Arctic climate change. Here we present observations on frozen in situ soil and vegetation, found below cold-based glacier Longyearbreen

  16. Impact of soil type on vegetation response to prairie dog herbivory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prairie dogs and their impact on vegetation have been the focus of numerous research projects. However, the effect of soil from this interaction has been less thoroughly documented. We evaluated prairie dog colonies (on-colony) and nearby sites without prairie dogs (off-colony) on Wayden, Cabba an...

  17. Microbial Communities in Cerrado Soils under Native Vegetation Subjected to Prescribed Fires and Under Pasture

    EPA Science Inventory

    The objective of this work was to evaluate the effects of fire regimes and vegetation cover on the structure and dynamics of soil microbial communities, through phospholipid fatty acid (PLFA) analysis. Comparisons were made between native areas with different woody covers ("cerra...

  18. Evaluating MODIS Vegetation Indices as Ancillary Data in the Retrieval of Soil Moisture from Microwave Data

    Microsoft Academic Search

    A. Y. Hsu; T. J. Jackson

    2005-01-01

    One approach to soil moisture retrieval from remotely sensed microwave data uses single frequency H polarization brightness temperature measurements. This algorithm requires ancillary information to estimate the effective temperature of the surface and the attenuation of the microwave signal by vegetation. When applied on a global basis using spaceborne microwave observations, such as AMSR-E, it is most efficient if the

  19. Heavy metals in industrial wastewater, soil and vegetables in Lohta village, India

    Microsoft Academic Search

    Prabhat Kumar Rai; B. D. Tripathi

    2008-01-01

    A field study was conducted at four major sites that were irrigated by either treated or untreated wastewater in the Lohta village of Varanasi, India, receiving the discharged water from DLW (Diesel Locomotive Works) sewage treatment plant. Samples of irrigation water, soil and the edible portion of various vegetables were collected monthly during the summer and winter seasons. Heavy metals

  20. Author's personal copy Soil and vegetation as the determinants of lake nitrogen

    E-print Network

    Mazumder, Asit

    Author's personal copy Soil and vegetation as the determinants of lake nitrogen concentrations Sciences Research Program, Department of Biology, University of Victoria, P.O. Box 3020, STN CSC, Victoria rivers and lakes within forested areas. The remaining 20% of the population draws water from large lakes

  1. Exploring cover crops as carbon sources for anaerobic soil disinfestation in a vegetable production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a raised-bed plasticulture vegetable production system utilizing anaerobic soil disinfestation (ASD) in Florida field trials, pathogen, weed, and parasitic nematode control was equivalent to or better than the methyl bromide control. Molasses was used as the labile carbon source to stimulate micr...

  2. Inter-sensor relationship of two-band spectral vegetation index based on soil isoline equation: derivation and numerical validation

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kenta; Obata, Kenta; Matsuoka, Masayuki; Yoshioka, Hiroki

    2013-09-01

    Differences in spectral response function among sensors have known to be a source of bias error in derived data products such as spectral vegetation indices (VIs). Numerous studies have been conducted to identify such bias errors by comparing VI data acquired simultaneously by two different sensors. Those attempts clearly indicted two facts: 1) When one tries to model a relationship of two VIs from different sensors by a polynomial function, the coefficients of polynomial depends heavily on region to be studied: 2) Although increase of the degree of polynomial improves the translation accuracies, this improvement is very limited. Those facts imply that a better functional form than a simple polynomial may exist to model the VI relationships, and also that the coefficients of such a relationship can be written as a function of variables other than vegetation biophysical parameters. This study tries to address those issues by deriving an inter-sensor VI relationship analytically. The derivation has been performed based on a relationship of two reflectances at different wavelengths (bands), called soil isoline equation. The derived VI relationship becomes a form of rational function with the coefficients that depend purely on the soil reflectance spectra. The derived relationship has been demonstrated numerically by a radiative transfer model of canopy, PROSAIL. It is concluded that a rational function is a good candidate to model inter-sensor VI relationship. This study also shows the mechanism of how the coefficients of such a relationship could vary with the soil reflectance underneath the canopy.

  3. [Soil organic carbon storage changes with land reclamation under vegetation reconstruction on opencast coal mine dump].

    PubMed

    Li, Jun-Chao; Dang, Ting-Hui; Guo, Sheng-Li; Xue, Jiang; Tang, Jun

    2014-10-01

    Vegetation reconstruction was an effective solution to reclaim the opencast coal mine dump which was formed in the process of mining. To understand the impact of the vegetation reconstruction patterns' on the mine soil organic carbon (SOC) storage was essential for selecting the methods of vegetation restoration and also important for accurately estimating the potential of the soil carbon sequestration. The study area was on the Heidaigou opencast coal mine, which was 15 years reclaimed coal mine dump in Zhungeer, Inner Mongolia autonomous region, we selected 5 vegetation reconstruction patterns (natural recovery land, grassland, bush land, mixed woodland of arbor and bush, arbor land), and 16 vegetation types, 408 soil samples (0-100 m), to study the effect of the vegetation reconstruction patterns on the SOC storage. The results were showed as follows: (1) on the reclaimed coal mine dump, the vegetation reconstruction patterns significantly affected the SOC content and its distribution in the soil profile (P < 0.05). The surface 0-10 cm SOC content was grassland > shrub land > arbor forest > mixed forest of arbor and shrub > natural recovery land, in which the grassland, shrub land and arbor forest were about 2.2, 1.3, and 1.3 times of natural recovery land (2.14 g · kg(-1)) respectively. The total nitrogen (TN) showed the similar trends. (2) Among the vegetation types, Medicago sativa had the highest surface SOC content (5.71 g · kg(-1)) and TN content (0.49 g · kg(-1)), that were 171.3% and 166.7% higher than the natural recovery land, and two times of Hippophae rhamnoides, Amorpha fruticosa + Pinus tabulaeformis and Robinia pseudoacacia. (3) The effect of vegetation types on SOC mainly concentrated in the 0-20 cm depth, and the effect on TN accounted for 40 cm. (4) For the SOC storage, the order was original landform area > reclaimed dump > new dump and grassland > woodland (including arbor and shrub land). After 15 years revegetation, the soil carbon storage of the grassland, shrub land and arbor land were increased by 15.47 t · hm(-2), 6.93 t · hm(-2) and 6.95 t · hm(-2) respectively in the 100 cm depth, which were equivalent to 2/3, 1/2 and 1/2 of the original landform levels. The results showed a great ability of carbon sequestration. PMID:25693392

  4. Contributions of Understory and/or Overstory Vegetations to Soil Microbial PLFA and Nematode Diversities in Eucalyptus Monocultures

    PubMed Central

    Liu, Zhanfeng; Zhou, Lixia; Fu, Shenglei

    2014-01-01

    Ecological interactions between aboveground and belowground biodiversity have received many attentions in the recent decades. Although soil biodiversity declined with the decrease of plant diversity, many previous studies found plant species identities were more important than plant diversity in controlling soil biodiversity. This study focused on the responses of soil biodiversity to the altering of plant functional groups, namely overstory and understory vegetations, rather than plant diversity gradient. We conducted an experiment by removing overstory and/or understory vegetation to compare their effects on soil microbial phospholipid fatty acid (PLFA) and nematode diversities in eucalyptus monocultures. Our results indicated that both overstory and understory vegetations could affect soil microbial PLFA and nematode diversities, which manifested as the decrease in Shannon–Wiener diversity index (H?) and Pielou evenness index (J) and the increase in Simpson dominance index (?) after vegetation removal. Soil microclimate change explained part of variance of soil biodiversity indices. Both overstory and understory vegetations positively correlated with soil microbial PLFA and nematode diversities. In addition, the alteration of soil biodiversity might be due to a mixing effect of bottom-up control and soil microclimate change after vegetation removal in the studied plantations. Given the studied ecosystem is common in humid subtropical and tropical region of the world, our findings might have great potential to extrapolate to large scales and could be conducive to ecosystem management and service. PMID:24427315

  5. Vegetation modeling in Yakutia, northeastern Siberia: connecting to palaeovegetation simulation and model-data comparison

    Microsoft Academic Search

    J. Ni; U. Herzschuh

    2009-01-01

    Vegetation model is a useful tool to understand the impacts of climate change on ecosystems in the present, past and future. Simulation of the palaeovegetation can link the geographical pattern of vegetation in the past to pollen proxy and then test the palaeoclimate modeling. In this study we used an equilibrium vegetation model (BIOME4) and a dynamic vegetation model (LPJ)

  6. Optimum vegetation characteristics, assimilation, and transpiration during a dry season: 1. Model description

    NASA Astrophysics Data System (ADS)

    van der Tol, C.; Meesters, A. G. C. A.; Dolman, A. J.; Waterloo, M. J.

    2008-03-01

    This paper presents a model to predict optimum vegetation characteristics in water stressed conditions. Starting point is the principle of homeostasis of water flow through the soil-vegetation-atmosphere continuum. Combining this with a biochemical model for photosynthesis, a relationship between photosynthetic capacity, stomatal regulation, and hydraulic properties of the vegetation is derived. Optimum photosynthetic capacity and internal carbon dioxide concentration are calculated using the assumption that growth is maximized. This optimality hypothesis is applied for three scenarios which are increasingly realistic. Optimum parameters reflect a strategy to deal with two tradeoffs: the trade-off between fast growth and avoidance of drought and between a high photosynthetic capacity and avoidance of high respiration losses. The theory predicts general boundary conditions for growth but does not consider effects of competition between species, fires, pest, and diseases or other limitations that occur locally. In a companion paper the theory is evaluated using a data set collected in sub-Mediterranean vegetation.

  7. Trampling resistance of tropical rainforest soils and vegetation in the wet tropics of north east Australia.

    PubMed

    Talbot, L M; Turton, S M; Graham, A W

    2003-09-01

    Controlled trampling was conducted to investigate the trampling resistance of contrasting high fertility basaltic and low fertility rhyolitic soils and their associated highland tropical rainforest vegetation in north east Australia's Wet Tropics. Although this approach has been taken in numerous studies of trampling in a variety of ecosystem types (temperate and subtropical forest, alpine shrubland, coral reef and seagrass beds), the experimental method does not appear to have been previously applied in a tropical rainforest context. Ground vegetation cover and soil penetration resistance demonstrated variable responses to trampling. Trampling, most noticeably after 200 and 500 passes reduced organic litter cover. Bulk density increased with trampling intensity, particularly on basalt soils as rhyolite soils appeared somewhat resistant to the impacts of trampling. The permeability of the basalt and rhyolite soils decreased markedly with increased trampling intensity, even after only 75 passes. These findings suggest physical and hydrological changes may occur rapidly in tropical rainforest soils following low levels of trampling, particularly on basalt soils. PMID:12927152

  8. CLASSIFICATION OF COAL SURFACE MINE SOIL MATERIAL FOR VEGETATION MANAGEMENT AND SOIL WATER QUALITY

    EPA Science Inventory

    An Alabama minesoil classification system was developed based on soil texture, soil color value and soil pH. Only five different soil classes were found in this study. However, the classification scheme allows for the inclusion of any minesoil that occurs on the basis of its text...

  9. Sampling dynamic soil properties and vegetation for soil survey and ecological site descriptions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dynamic soil property data can be collected during soil survey updates to add value to soil survey products and meet users needs for ecological site descriptions. Producers and land managers need information about soil and ecosystem change in order to plan for long-term productivity, conduct monito...

  10. Estimating soil water retention using soil component additivity model

    NASA Astrophysics Data System (ADS)

    Zeiliger, A.; Ermolaeva, O.; Semenov, V.

    2009-04-01

    Soil water retention is a major soil hydraulic property that governs soil functioning in ecosystems and greatly affects soil management. Data on soil water retention are used in research and applications in hydrology, agronomy, meteorology, ecology, environmental protection, and many other soil-related fields. Soil organic matter content and composition affect both soil structure and adsorption properties; therefore water retention may be affected by changes in soil organic matter that occur because of both climate change and modifications of management practices. Thus, effects of organic matter on soil water retention should be understood and quantified. Measurement of soil water retention is relatively time-consuming, and become impractical when soil hydrologic estimates are needed for large areas. One approach to soil water retention estimation from readily available data is based on the hypothesis that soil water retention may be estimated as an additive function obtained by summing up water retention of pore subspaces associated with soil textural and/or structural components and organic matter. The additivity model and was tested with 550 soil samples from the international database UNSODA and 2667 soil samples from the European database HYPRES containing all textural soil classes after USDA soil texture classification. The root mean square errors (RMSEs) of the volumetric water content estimates for UNSODA vary from 0.021 m3m-3 for coarse sandy loam to 0.075 m3m-3 for sandy clay. Obtained RMSEs are at the lower end of the RMSE range for regression-based water retention estimates found in literature. Including retention estimates of organic matter significantly improved RMSEs. The attained accuracy warrants testing the 'additivity' model with additional soil data and improving this model to accommodate various types of soil structure. Keywords: soil water retention, soil components, additive model, soil texture, organic matter.

  11. Oscillations in a simple climate-vegetation model

    NASA Astrophysics Data System (ADS)

    Rombouts, J.; Ghil, M.

    2015-02-01

    We formulate and analyze a simple dynamical systems model for climate-vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate-vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various time scales is discussed.

  12. Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.

  13. Interacting vegetative and thermal contributions to water movement in desert soil

    USGS Publications Warehouse

    Garcia, C.A.; Andraski, B.J.; Stonestrom, D.A.; Cooper, C.A.; Šim?nek, J.; Wheatcraft, S.W.

    2011-01-01

    Thermally driven water-vapor flow can be an important component of total water movement in bare soil and in deep unsaturated zones, but this process is often neglected when considering the effects of soil–plant–atmosphere interactions on shallow water movement. The objectives of this study were to evaluate the coupled and separate effects of vegetative and thermal-gradient contributions to soil water movement in desert environments. The evaluation was done by comparing a series of simulations with and without vegetation and thermal forcing during a 4.7-yr period (May 2001–December 2005). For vegetated soil, evapotranspiration alone reduced root-zone (upper 1 m) moisture to a minimum value (25 mm) each year under both isothermal and nonisothermal conditions. Variations in the leaf area index altered the minimum storage values by up to 10 mm. For unvegetated isothermal and nonisothermal simulations, root-zone water storage nearly doubled during the simulation period and created a persistent driving force for downward liquid fluxes below the root zone (total net flux ~1 mm). Total soil water movement during the study period was dominated by thermally driven vapor fluxes. Thermally driven vapor flow and condensation supplemented moisture supplies to plant roots during the driest times of each year. The results show how nonisothermal flow is coupled with plant water uptake, potentially influencing ecohydrologic relations in desert environments.

  14. Vegetation heterogeneity and landscape position exert strong controls on soil CO2 efflux in a moist, Appalachian watershed

    NASA Astrophysics Data System (ADS)

    Atkins, J. W.; Epstein, H. E.; Welsch, D. L.

    2014-12-01

    In topographically complex watersheds, landscape position and vegetation heterogeneity can alter the soil water regime through both lateral and vertical redistribution, respectively. These alterations of soil moisture may have significant impacts on the spatial heterogeneity of biogeochemical cycles throughout the watershed. To evaluate how landscape position and vegetation heterogeneity affect soil CO2 efflux (FSOIL) we conducted observations across the Weimer Run watershed (373 ha), located near Davis, West Virginia, for three growing seasons with varying precipitation (2010 - 1042 mm; 2011 - 1739 mm; 2012 - 1244 mm; precipitation data from BDKW2 station, MesoWest, University of Utah). An apparent soil temperature threshold of 11 °C at 12 cm depth on FSOIL was observed in our data - where FSOIL rates greatly increase in variance above this threshold. For analysis, FSOIL values above this threshold were isolated and examined. Differences in FSOIL among years were apparent by elevation (F4,633 = 3.17; p = 0.013) and by vegetation cover (F4, 633 = 2.96; p = 0.019). For the Weimer Run watershed, vegetation exerts the major control on soil CO2 efflux (FSOIL), with the plots beneath shrubs at all elevations for all years showing the greatest mean rates of FSOIL (6.07 ?mol CO2 m-2 s-1) compared to plots beneath closed-forest canopy (4.69 ?mol CO2 m-2 s-1) and plots located in open, forest gaps (4.09 ?mol CO2 m-2 s-1) plots. During periods of high soil moisture, we find that CO2 efflux rates are constrained and that maximum efflux rates in this system occur during periods of average to below average soil water availability. These findings offer valuable insight into the processes occurring within these topographically complex, temperate and humid systems, and the interactions of abiotic and biotic factors mediating biogeochemical cycles. With possible changing rainfall patterns as predicted by climate models, it is important to understand the couplings between water and carbon cycling at the watershed and landscape scales, and their potential dynamics under global change scenarios.

  15. Effect of vegetation rehabilitation on soil carbon and its fractions in mu us desert, northwest china.

    PubMed

    Liu, Jia-Bin; Zhang, Yu-Qing; Wu, Bin; Qin, Shu-Gao; Jia, Xin; Fa, Ke-Yu; Feng, Wei; Lai, Zong-Rui

    2015-01-01

    Although vegetation rehabilitation on semi-arid and arid regions may enhance soil carbon sequestration, its effects on soil carbon fractions remain uncertain. We carried out a study after planting Artemisia ordosica (AO, 17 years), Astragalus mongolicum (AM, 5 years), and Salix psammophila (SP, 16 years) on shifting sand land (SL) in the Mu Us Desert, northwest China. We measured total soil carbon (TSC) and its components, soil inorganic carbon (SIC) and soil organic carbon (SOC), as well as the light and heavy fractions within soil organic carbon (LF-SOC and HF-SOC), under the SL and shrublands at depths of 100 cm. TSC stock under SL was 27.6 Mg ha(-1), and vegetation rehabilitation remarkably elevated it by 40.6 Mgha(-1), 4.5 Mgha(-1), and 14.1 Mgha(-1) under AO, AM and SP land, respectively. Among the newly formed TSC under the three shrublands, SIC, LF-SOC and HF-SOC accounted for 75.0%, 10.7% and 13.1% for AO, respectively; they made up 37.0%, 50.7% and 10.6% for AM, respectively; they occupied 68.6%, 18.8% and 10.0% for SP, respectively. The accumulation rates of TSC within 0-100 cm reached 238.6 g m(-2)y(-1), 89.9 g m(-2)y(-1) and 87.9 g m(-2)y(-1) under AO, AM and SP land, respectively. The present study proved that the accumulation of SIC considerably contributed to soil carbon sequestration, and vegetation rehabilitation on shifting sand land has a great potential for soil carbon sequestration. PMID:25747239

  16. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  17. Concentrations of Radionuclides and Trace Elements in Soils and Vegetation Around the DARHT Facility during 2004

    SciTech Connect

    P.R. Fresquez

    2004-10-01

    Samples of soil, sediment, and unwashed overstory and understory vegetation were collected at four locations around the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL). All samples were analyzed for concentrations of {sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, {sup 238}U, Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl. These results, which represent five years since the start of operations, were compared with baseline statistical reference level (BSRL) data established over a four-year-long preoperational period prior to DARHT operations, and to LANL and U.S. Environmental Protection Agency Screening Action Levels (SALs). Most radionuclides and trace elements in soil, sediment, and vegetation were below BSRL values and those soils/sediments that were above BSRLs were far below SALs.

  18. Unexpected occurrence of volatile dimethylsiloxanes in antarctic soils, vegetation, phytoplankton, and krill.

    PubMed

    Sanchís, Josep; Cabrerizo, Ana; Galbán-Malagón, Cristóbal; Barceló, Damià; Farré, Marinella; Dachs, Jordi

    2015-04-01

    Volatile methyl siloxanes (VMS) are high-production synthetic compounds, ubiquitously found in the environment of source regions. Here, we show for the first time the occurrence of VMS in soils, vegetation, phytoplankton, and krill samples from the Antarctic Peninsula region, which questions previous claims that these compounds are "flyers" and do not significantly reach remote ecosystems. Cyclic VMS are the predominant compounds, with concentrations ranging from the limits of detection to 110 ng/g in soils. Concentrations of cyclic VMS in phytoplankton are negatively correlated with sea surface salinity, indicating a source from ice and snow melting and consistent with snow depositional inputs. After the summer snow melting, VMS accumulate in the Southern Ocean and Antarctic biota. Therefore, once introduced into the marine environment, VMS are eventually trapped by the biological pump and, thus, behave as "single hoppers". Conversely, VMS in soils and vegetation behave as "multiple hoppers" due to their high volatility. PMID:25658133

  19. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    PubMed Central

    Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  20. A simulation model of vegetation temperature based on physiological characteristics

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Wang, Ji-yuan; Chen, Yu-hua; Wang, Ji-jun; Su, Rong-hua

    2014-11-01

    To simulate vegetation temperature is an important part in the thermal infrared simulation. In previous physical models, the physiological characteristics of vegetation has only considered the influence of transpiration to temperature, but without respiration, and the aerodynamics model which has been used before needs more model parameters and they are difficult to obtain. In the present paper, a transpiration rate model has been used, in which the latent heat component of the vegetation has been optimized and the respiration component has been joined. Then the physiological model of vegetation temperature simulation has been established which improves the original vegetation energy budget theory. Experimental verification and comparison shows that the maximum simulation error of physiological model is within 2°, the average error is within 1°. It seems that the simulation accuracy is significantly better than the previous physical model that will improve the overall thermal infrared simulation accuracy.

  1. The variation of soil temperature and water content of seasonal frozen soil with different vegetation coverage in the headwater region of the Yellow River, China

    Microsoft Academic Search

    Huiyan Cheng; Genxu Wang; Hongchang Hu; Yibo Wang

    2008-01-01

    The variation and distribution of temperature and water moisture in the seasonal frozen soil is an important factor in the\\u000a study of both the soil water cycle and heat balance within the source region of the Yellow River, especially under the different\\u000a conditions of vegetation coverage. In this study, the impact of various degrees of vegetation coverage on soil water

  2. Growing up green on serpentine soils: Biogeochemistry of serpentine vegetation in the Central Coast Range of California

    USGS Publications Warehouse

    Oze, C.; Skinner, C.; Schroth, A.W.; Coleman, R.G.

    2008-01-01

    Serpentine soils derived from the weathering of ultramafic rocks and their metamorphic derivatives (serpentinites) are chemically prohibitive for vegetative growth. Evaluating how serpentine vegetation is able to persist under these chemical conditions is difficult to ascertain due to the numerous factors (climate, relief, time, water availability, etc.) controlling and affecting plant growth. Here, the uptake, incorporation, and distribution of a wide variety of elements into the biomass of serpentine vegetation has been investigated relative to vegetation growing on an adjacent chert-derived soil. Soil pH, electrical conductivity, organic C, total N, soil extractable elements, total soil elemental compositions and plant digestions in conjunction with spider diagrams are utilized to determine the chemical relationships of these soil and plant systems. Plant available Mg and Ca in serpentine soils exceed values assessed in chert soils. Magnesium is nearly 3 times more abundant than Ca in the serpentine soils; however, the serpentine soils are not Ca deficient with Ca concentrations as high as 2235 mg kg-1. Calcium to Mg ratios (Ca:Mg) in both serpentine and chert vegetation are greater than one in both below and above ground tissues. Soil and plant chemistry analyses support that Ca is not a limiting factor for plant growth and that serpentine vegetation is actively moderating Mg uptake as well as tolerating elevated concentrations of bioavailable Mg. Additionally, results demonstrate that serpentine vegetation suppresses the uptake of Fe, Cr, Ni, Mn and Co into its biomass. The suppressed uptake of these metals mainly occurs in the plants' roots as evident by the comparatively lower metal concentrations present in above ground tissues (twigs, leaves and shoots). This research supports earlier studies that have suggested that ion uptake discrimination and ion suppression in the roots are major mechanisms for serpentine vegetation to tolerate the chemistry of serpentine soils. ?? 2008 Elsevier Ltd.

  3. Estimating models of vegetation fractional coverage based on remote sensing images at different radiometric correction levels

    Microsoft Academic Search

    Zhujun Gu; Zhiyuan Zeng; Xuezheng Shi; Dongsheng Yu; Wei Zheng; Zhenlong Zhang; Zifu Hu

    2009-01-01

    The images of post atmospheric correction reflectance (PAC), top of atmosphere reflectance (TOA), and digital number (DN)\\u000a of a SPOT5 HRG remote sensing image of Nanjing, China were used to derive four vegetation indices (VIs), that is, normalized\\u000a difference vegetation index (NDVI), transformed vegetation index (TVI), soil-adjusted vegetation index (SAVI), and modified\\u000a soil-adjusted vegetation index (MSAVI). Based on these VIs

  4. MODELING STREAM CHANNEL ADJUSTMENT TO WOODY VEGETATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    River restoration and bank stabilization programs often use vegetation for improving stream corridor habitat, aesthetic, and function. Yet no study has examined the use of managed vegetation plantings to transform a straight, degraded stream corridor into a more functional, aesthetically-pleasing m...

  5. Phthalic Acid Esters in Soils from Vegetable Greenhouses in Shandong Peninsula, East China

    PubMed Central

    Chai, Chao; Cheng, Hongzhen; Ge, Wei; Ma, Dong; Shi, Yanxi

    2014-01-01

    Soils at depths of 0 cm to 10 cm, 10 cm to 20 cm, and 20 cm to 40 cm from 37 vegetable greenhouses in Shandong Peninsula, East China, were collected, and 16 phthalic acid esters (PAEs) were detected using gas chromatography-mass spectrometry (GC-MS). All 16 PAEs could be detected in soils from vegetable greenhouses. The total of 16 PAEs (?16PAEs) ranged from 1.939 mg/kg to 35.442 mg/kg, with an average of 6.748 mg/kg. Among four areas, including Qingdao, Weihai, Weifang, and Yantai, the average and maximum concentrations of ?16PAEs in soils at depths of 0 cm to 10 cm appeared in Weifang, which has a long history of vegetable production and is famous for extensive greenhouse cultivation. Despite the different concentrations of ?16PAEs, the PAE compositions were comparable. Among the 16 PAEs, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), di-n-butyl phthalate (DnBP), and diisobutyl phthalate (DiBP) were the most abundant. Compared with the results on agricultural soils in China, soils that are being used or were used for vegetable greenhouses had higher PAE concentrations. Among PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP) and DnBP exceeded soil allowable concentrations (in US) in more than 90% of the samples, and DnOP in more than 20%. Shandong Peninsula has the highest PAE contents, which suggests that this area is severely contaminated by PAEs. PMID:24747982

  6. Rapid assessment of soil and groundwater tritium by vegetation sampling

    SciTech Connect

    Murphy, C.E. Jr.

    1995-09-01

    A rapid and relatively inexpensive technique for defining the extent of groundwater contamination by tritium has been investigated. The technique uses existing vegetation to sample the groundwater. Water taken up by deep rooted trees is collected by enclosing tree branches in clear plastic bags. Water evaporated from the leaves condenses on the inner surface of the bag. The water is removed from the bag with a syringe. The bags can be sampled many times. Tritium in the water is detected by liquid scintillation counting. The water collected in the bags has no color and counts as well as distilled water reference samples. The technique was used in an area of known tritium contamination and proved to be useful in defining the extent of tritium contamination.

  7. Biomarker patterns in present-day vegetation: consistency and variation - A study on plaggen soils

    NASA Astrophysics Data System (ADS)

    Kirkels, Frédérique; Jansen, Boris; Kalbitz, Karsten

    2013-04-01

    Biomarker patterns in present-day vegetation are commonly used as proxies to reconstruct paleo-vegetation composition, land use history and to elucidate carbon cycling. Plaggen soils are formed by diverse vegetational inputs during century-long plaggen (i.e. sod) application associated with plaggen-agriculture on poor soils in north-western Europe. This resulted in remarkably stable organic matter. Plant source identification by biomarkers could provide insight in yet unknown stabilization mechanisms and the fate of organic matter upon ongoing land use change. The current rationale behind biomarker-based source identification is that patterns observed in present-day vegetation are generally representative with little random variation. However, our knowledge on variability and consistency of biomarker patterns is yet scarce. Therefore, to assess the applicability of biomarkers for source identification in plaggen soils, we analyzed published n-alkane and n-alcohol patterns of species and their various parts which contribute(d) input to plaggen soils. We considered shrubs, trees and grass species and evaluated rescaled patterns (i.e. relative abundances in chain-length range C17-36), odd-over-even predominance (OEP) and predominant n-alkanes. In addition, we explicitly looked into potential sources of systematic variation, e.g. spatial variation (climate, site conditions), temporal variation (seasonality, ontogeny) and laboratory methodology (extraction technique: washing/shaking, Soxhlet/ASE, saponification). We found meaningful clustering of n-alkanes C27, C29, C31 and C33, allowing for clear distinction of input by shrubs, trees and grasses to plaggen soils. Combination of these homologues with complete n-alkane patterns (C17-36) and OEP enabled further differentiation, while n-alcohols patterns were less distinct. Current limitation is the lack of extended and diverse quantitative records on biomarker patterns, especially for n-alcohols, non-leaf and belowground tissues, which hindered full statistical analysis. On species level we also recognized outliers and spreading. Systematic variation was indicated among tree species according to spatial conditions and by ontogeny. Yet, observed effects were ambiguous for other variation sources. This study highlights clear opportunities for application of biomarker patterns for source identification and elucidation of stabilization processes in (plaggen) soils. At the same time, application is challenged by systematic variation. Further research is key to quantify controls, magnitude and potential correction factors for such systematic variation. This would validate the use of n-alkane and n-alcohol patterns across broad spatial and temporal scales or identify boundaries wherein their consistency is ensured. Likely, these challenges apply to vegetation in a broad perspective, transcending plaggen vegetation, as assessment and application of present-day vegetation patterns is emerging.

  8. Vegetation effects on airborne passive microwave response to soil moisture: A case study for the Rur catchment, Germany

    NASA Astrophysics Data System (ADS)

    Hasan, Sayeh; Montzka, Carsten; Bogena, Heye; Rüdiger, Chris; Ali, Muhammad; Verrecken, Harry

    2013-04-01

    Soil water content stored in the upper soil layer, is a key determinant of a large number of applications, including numerical weather prediction, flood forecasting, agricultural drought assessment, water resources management, greenhouse gas accounting and civil protection. Passive microwave sensors implemented on airborne and spaceborne platforms have been shown to provide useful retrievals of near-surface soil moisture variations at regional and global scales. Polarimetric L-band Multibeam Radiometer (PLMR2) of the Forschungszentrum Jülich was flown in line with the F-SAR sensor from the German Aerospace Center (DLR) in the TERENO (Terrestrial Environmental Observatories) Rur site, Germany to prepare for the calibration and validation of the NASA Soil Moisture Active and Passive (SMAP) satellite mission. Brightness temperature observed by the PLMR2 was mapped at three different altitudes (1200m 1000m and 700m). The L-band Microwave Emission of the Biosphere (L-MEB) model was used to retrieve surface soil moisture (SSM) from the PLMR2 brightness temperature measurements. Leaf Area Index (LAI) was estimated from multispectral RapidEye imagery of the same day with 5m resolution. Different approaches were analyzed for transferring the LAI into vegetation opacity. Comparison of SSM to ground measurement at different test sites within the TERENO observatory shows that most of the captured soil moisture values are in good agreement with ground measurements.

  9. Insights into biogeochemical cycling from a soil evolution model and long-term chronosequences

    NASA Astrophysics Data System (ADS)

    Johnson, M. O.; Gloor, M.; Kirkby, M. J.; Lloyd, J.

    2014-12-01

    Despite the importance of soil processes for global biogeochemical cycles, our capability for predicting soil evolution over geological timescales is poorly constrained. We attempt to probe our understanding and predictive capability of this evolutionary process by developing a mechanistic soil evolution model, based on an existing model framework, and comparing the predictions with observations from soil chronosequences in Hawaii. Our soil evolution model includes the major processes of pedogenesis: mineral weathering, percolation of rainfall, leaching of solutes, surface erosion, bioturbation, the effects of vegetation in terms of organic matter input and nutrient cycling and can be applied to various bedrock compositions and climates. The specific properties the model simulates over timescales of tens to hundreds of thousand years are, soil depth, vertical profiles of elemental composition, soil solution pH and organic carbon distribution. We demonstrate with this model the significant role that vegetation plays in accelerating the rate of weathering and hence soil profile development. Comparisons with soils that have developed on Hawaiian basalts reveal a remarkably good agreement with Na, Ca and Mg profiles suggesting that the model captures well the key components of soil formation. Nevertheless, differences between modelled and observed K and P are substantial. The fact that these are important plant nutrients suggests that a process likely missing from our model is the active role of vegetation in selectively acquiring nutrients. This study therefore indirectly indicates the valuable role that vegetation can play in accelerating the weathering and thus release of these globally important nutrients into the biosphere.

  10. Soil, Water, and Vegetation Conditions in South Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J. (principal investigators)

    1976-01-01

    The author has identified the following significant results. Reflectance differences between the dead leaves of six crops (corn, cotton, sorghum, sugar cane, citrus, and avocado) and the respective bare soils where the dead leaves were lying on the ground were determined from laboratory spectrophotometric measurements over the 0.5- to 2.5 micron wavelength interval. The largest differences were in the near infrared waveband 0.75- to 1.35 microns. Leaf area index was predicted from plant height, percent ground cover, and plant population for irrigated and nonirrigated grain sorghum fields for the 1975 growing season.

  11. Stochastic Modeling of Soil Salinity

    E-print Network

    Suweis, S; Van der Zee, S E A T M; Daly, E; Maritan, A; Porporato, A; 10.1029/2010GL042495

    2012-01-01

    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The long term probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equation to a single stochastic differential equation driven by multiplicative Poisson noise. The novel analytical solutions provide insight on the interplay of the main soil, plant and climate parameters responsible for long-term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in long-term soil salinization trend...

  12. A model of goal directed vegetable parenting practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to explore factors underlying parents' motivations to use vegetable parenting practices (VPP) using the Model of Goal Directed Vegetable Parenting Practices (MGDVPP) (an adaptation of the Model of Goal Directed Behavior) as the theoretical basis for qualitative interviews. ...

  13. Improving sensitivity to vegetation variability in the EC-Earth Earth System Model

    NASA Astrophysics Data System (ADS)

    Alessandri, Andrea; Catalano, Franco; De Felice, Matteo

    2014-05-01

    The EC-Earth earth system model has been recently developed to include the dynamics of vegetation through the coupling with the LPJ-Guess model. In its original formulation, the coupling between atmosphere and vegetation variability is simply operated by the vegetation Leaf Area Index (LAI), which affects climate by only changing the vegetation physiological resistance to evapotranspiration. This coupling with no implied change of the vegetation fractional coverage has been reported in previous work to have a weak effect on the surface climate modeled by EC-Earth. The effective vegetation fractional coverage can vary at seasonal and interannual time-scales as a function of leaf-canopy growth, phenology and senescence, and therefore affect biophysical parameters such as the surface roughness, albedo and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation density to the LAI, based on a Lambert-Beer formulation. By comparing historical 20th-century simulations and retrospective forecasts performed applying the new effective fractional-coverage parameterization with the respective reference simulations using the original constant vegetation-fraction, it is demonstrated an increased effect of vegetation on the EC-Earth surface climate. The analysis shows noticeable sensitivity of EC-Earth surface climate at seasonal to interannual time-scales due to the variability of vegetation effective fractional coverage. Particularly large effects are shown over boreal winter middle-to-high latitudes, where the cooling effect of the new parameterization appears to correct the warm biases of the control simulations.

  14. Uptake of explosives from contaminated soil by existing vegetation at the Iowa Army Ammunition Plant

    SciTech Connect

    Schneider, J.F.; Zellmer, S.D.; Tomczyk, N.A.; Rastorier, J.R.; Chen, D.; Banwart, W.L. [Argonne National Lab., IL (United States)

    1995-02-01

    This study examines the uptake of explosives by existing vegetation growing in soils contaminated with 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-3,5-triazine (RDX) in three areas at the Iowa Army Ammunition Plant (IAAP). To determine explosives uptake under natural environmental conditions, existing plant materials and soil from the root zone were sampled at different locations in each area, and plant materials were separated by species. Standard methods were used to determine the concentrations of explosives, their derivatives, and metabolites in the soil samples. Plant materials were also analyzed. The compound TNT was not detected in the aboveground portion of plants, and vegetation growing on TNT-contaminated soils is not considered a health hazard. However, soil and plant roots may contain TNT degradation products that may be toxic; hence, their consumption is not advised. The compound RDX was found in the tops and roots of plants growing on RDX-contaminated soils at all surveyed sites. Although RDX is not a listed carcinogen, several of its potentially present degradation products are carcinogens. Therefore, the consumption of any plant tissues growing on RDX-contaminated sites should be considered a potential health hazard.

  15. Chemical-Specific Representation of Air-Soil Exchange and Soil Penetration in Regional Multimedia Models

    SciTech Connect

    McKone, T.E.; Bennett, D.H.

    2002-08-01

    In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.

  16. Soil Water Conditions According to Landscape Position and Aboveground Vegetation in an Acacia mangium Plantation in Sabah, Malaysia

    Microsoft Academic Search

    Masahiro INAGAKI; Koichi KAMO; Tsuyoshi YAMADA; Jupiri TITIN

    2008-01-01

    We studied the soil water dynamics of the humid tropics at a 1.6-ha Acacia mangium stand in Sabah State, northern Borneo, to quantify the effect of landscape position and vegetation on soil water condi- tions. We monitored the volumetric soil water content (VSW) at a depth of 30 cm at 12 locations in the research plot, every 30 min for

  17. Patch dynamics in arid lands: localized effects of Acacia papyrocarpa on soils and vegetation of open woodlands of south Australia

    Microsoft Academic Search

    Jose M. Facelli; Daniel J. Brock

    2000-01-01

    Although the importance of plant-created heterogeneity in arid lands has long been recognized, little information is available on the dynamics of these patches. We studied the changes in soil and vegetation associated with the presence of a long-lived tree, Acacia papyrocarpa, in arid lands of south Australia. The soil under young individuals was not different from the soil in the

  18. Evaluation of a new model of aeolian transport in the presence of vegetation

    USGS Publications Warehouse

    Li, Junran; Okin, Gregory S.; Herrick, Jeffrey E.; Belnap, Jayne; Miller, Mark E.; Vest, Kimberly; Draut, Amy E.

    2013-01-01

    Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation. This approach differs from previous models by accounting for how vegetation affects the distribution of shear velocity on the surface rather than merely calculating the average effect of vegetation on surface shear velocity or simply using empirical relationships. Vegetation, soil, and meteorological data at 65 field sites with measurements of horizontal aeolian flux were collected from the Western United States. Measured fluxes were tested against modeled values to evaluate model performance, to obtain a set of optimum model parameters, and to estimate the uncertainty in these parameters. The same field data were used to model horizontal aeolian flux using three other schemes. Our results show that the model can predict horizontal aeolian flux with an approximate relative error of 2.1 and that further empirical corrections can reduce the approximate relative error to 1.0. The level of error is within what would be expected given uncertainties in threshold shear velocity and wind speed at our sites. The model outperforms the alternative schemes both in terms of approximate relative error and the number of sites at which threshold shear velocity was exceeded. These results lend support to an understanding of the physics of aeolian transport in which (1) vegetation's impact on transport is dependent upon the distribution of vegetation rather than merely its average lateral cover and (2) vegetation impacts surface shear stress locally by depressing it in the immediate lee of plants rather than by changing the bulk surface's threshold shear velocity. Our results also suggest that threshold shear velocity is exceeded more than might be estimated by single measurements of threshold shear stress and roughness length commonly associated with vegetated surfaces, highlighting the variation of threshold shear velocity with space and time in real landscapes.

  19. Evaluation of vegetative cover on reclaimed land by color infrared videography relative to soil properties

    E-print Network

    Pfordresher, Anne Augusta

    1988-01-01

    were collected in three reclaimed portions of the Martin Lake mine near Tatum, Texas. Analysis of the video imagery indicated that 11% of the A2 area, 8% of the B area and 15% of the C2 area were poorly vegetated by bermudagrass. Areas totally devoid... as bare soil in these two mine areas are known to be actively used haul roads. Sparsely vegetated areas account for 7. 8'4 of the A2, 4. 8% of the B and 13% of the C2 areas. These values were significantly different at the 5% confidence level...

  20. Identifying environmental controls on vegetation greenness phenology through model-data integration

    NASA Astrophysics Data System (ADS)

    Forkel, M.; Carvalhais, N.; Schaphoff, S.; Bloh, W. v.; Migliavacca, M.; Thurner, M.; Thonicke, K.

    2014-07-01

    Existing dynamic global vegetation models (DGVMs) have a~limited ability in reproducing phenology and decadal dynamics of vegetation greenness as observed by satellites. These limitations in reproducing observations reflect a poor understanding and description of the environmental controls on phenology, which strongly influence the ability to simulate longer term vegetation dynamics, e.g. carbon allocation. Combining DGVMs with observational data sets can potentially help to revise current modelling approaches and thus to enhance the understanding of processes that control seasonal to long-term vegetation greenness dynamics. Here we implemented a~new phenology model within the LPJmL (Lund Potsdam Jena managed lands) DGVM and integrated several observational data sets to improve the ability of the model in reproducing satellite-derived time series of vegetation greenness. Specifically, we optimized LPJmL parameters against observational time series of the fraction of absorbed photosynthetic active radiation (FAPAR), albedo and gross primary production to identify the main environmental controls for seasonal vegetation greenness dynamics. We demonstrated that LPJmL with new phenology and optimized parameters better reproduces seasonality, inter-annual variability and trends of vegetation greenness. Our results indicate that soil water availability is an important control on vegetation phenology not only in water-limited biomes but also in boreal forests and the arctic tundra. Whereas water availability controls phenology in water-limited ecosystems during the entire growing season, water availability co-modulates jointly with temperature the beginning of the growing season in boreal and arctic regions. Additionally, water availability contributes to better explain decadal greening trends in the Sahel and browning trends in boreal forests. These results emphasize the importance of considering water availability in a new generation of phenology modules in DGVMs in order to correctly reproduce observed seasonal to decadal dynamics of vegetation greenness.

  1. Identifying environmental controls on vegetation greenness phenology through model-data integration

    NASA Astrophysics Data System (ADS)

    Forkel, M.; Carvalhais, N.; Schaphoff, S.; Bloh, W. v.; Migliavacca, M.; Thurner, M.; Thonicke, K.

    2014-12-01

    Existing dynamic global vegetation models (DGVMs) have a limited ability in reproducing phenology and decadal dynamics of vegetation greenness as observed by satellites. These limitations in reproducing observations reflect a poor understanding and description of the environmental controls on phenology, which strongly influence the ability to simulate longer-term vegetation dynamics, e.g. carbon allocation. Combining DGVMs with observational data sets can potentially help to revise current modelling approaches and thus enhance the understanding of processes that control seasonal to long-term vegetation greenness dynamics. Here we implemented a new phenology model within the LPJmL (Lund Potsdam Jena managed lands) DGVM and integrated several observational data sets to improve the ability of the model in reproducing satellite-derived time series of vegetation greenness. Specifically, we optimized LPJmL parameters against observational time series of the fraction of absorbed photosynthetic active radiation (FAPAR), albedo and gross primary production to identify the main environmental controls for seasonal vegetation greenness dynamics. We demonstrated that LPJmL with new phenology and optimized parameters better reproduces seasonality, inter-annual variability and trends of vegetation greenness. Our results indicate that soil water availability is an important control on vegetation phenology not only in water-limited biomes but also in boreal forests and the Arctic tundra. Whereas water availability controls phenology in water-limited ecosystems during the entire growing season, water availability co-modulates jointly with temperature the beginning of the growing season in boreal and Arctic regions. Additionally, water availability contributes to better explain decadal greening trends in the Sahel and browning trends in boreal forests. These results emphasize the importance of considering water availability in a new generation of phenology modules in DGVMs in order to correctly reproduce observed seasonal-to-decadal dynamics of vegetation greenness.

  2. INTERCOMPARISON OF ALTERNATIVE VEGETATION DATABASES FOR REGIONAL AIR QUALITY MODELING

    EPA Science Inventory

    Vegetation cover data are used to characterize several regional air quality modeling processes, including the calculation of heat, moisture, and momentum fluxes with the Mesoscale Meteorological Model (MM5) and the estimate of biogenic volatile organic compound and nitric oxide...

  3. Uptake of explosives from contaminated soil by vegetation at the Joliet Army Ammunition Plant

    SciTech Connect

    Schneider, J.F.; Tomczyk, N.A.; Zellmer, S.D. [Argonne National Lab., IL (United States); Banwart, W.L. [University of Illinois, Champaign-Urbana, IL (United States). Agronomy Dept.; Houser, W.P. [US Army Environmental Center, Edgewood, MD (United States)

    1994-06-01

    This study examines the uptake of explosives by vegetation growing on soils contaminated by 2,4,6-trinitrotoluene (TNT) in Group 61 at the Joliet Army Ammunition Plant (JAAP). Plant materials and soil from the root zone were sampled and analyzed to determine TNT uptake under natural field conditions. Standard USATHAMA methods were used to determine concentrations of explosives, their derivatives, and metabolites in the soil samples. No- explosives were detected in the aboveground portion of any plant sample. However, results indicate that TNT, 2-aminodinitrotoluene (2-ADNT), and/or 4-ADNT were present in some root samples. The presence of 2-ADNT and 4-ADNT increases the likelihood that explosives were taken up by plant roots, as opposed to their presence resulting from external soil contamination.

  4. \\vspace{8mm}Inclusion of vegetation in the Town Energy Balance model for modelling urban green areas

    NASA Astrophysics Data System (ADS)

    Lemonsu, A.; Masson, V.; Shashua-Bar, L.; Erell, E.; Pearlmutter, D.

    2012-11-01

    Cities impact both local climate, through urban heat islands and global climate, because they are an area of heavy greenhouse gas release into the atmosphere due to heating, air conditioning and traffic. Including more vegetation into cities is a planning strategy having possible positive impacts for both concerns. Improving vegetation representation into urban models will allow us to address more accurately these questions. This paper presents an improvement of the Town Energy Balance (TEB) urban canopy model. Vegetation is directly included inside the canyon, allowing shadowing of grass by buildings, better representation of urban canopy form and, a priori, a more accurate simulation of canyon air microclimate. The surface exchanges over vegetation are modelled with the well-known Interaction Soil Biosphere Atmosphere (ISBA) model that is integrated in the TEB's code architecture in order to account for interactions between natural and built-up covers. The design of the code makes possible to plug and use any vegetation scheme. Both versions of TEB are confronted to experimental data issued from a field campaign conducted in Israel in 2007. Two semi-enclosed courtyards arranged with bare soil or watered lawn were instrumented to evaluate the impact of landscaping strategies on microclimatic variables and evapotranspiration. For this case study, the new version of the model with integrated vegetation performs better than if vegetation is treated outside the canyon. Surface temperatures are closer to the observations, especially at night when radiative trapping is important. The integrated vegetation version simulates a more humid air inside the canyon. The microclimatic quantities (i.e., the street-level meteorological variables) are better simulated with this new version. This opens opportunities to study with better accuracy the urban microclimate, down to the micro (or canyon) scale.

  5. Modeling land surface processes of the midwestern United States : predicting soil moisture under a warmer climate

    E-print Network

    Winter, Jonathan (Jonathan Mark)

    2010-01-01

    This dissertation seeks to quantify the response of soil moisture to climate change in the midwestern United States. To assess this response, a dynamic global vegetation model, Integrated Biosphere Simulator, was coupled ...

  6. Measurement of directional thermal infrared emissivity of vegetation and soils

    SciTech Connect

    Norman, J.M. [Wisconsin Univ., Madison, WI (United States). Dept. of Soil Science; Balick, L.K. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States)

    1995-10-01

    A new method has been developed for measuring directional thermal emissivity as a function of view angle for plant canopies and soils using two infrared thermometers each sensitive to a different wavelength band. By calibrating the two infrared thermometers to 0.1C consistency, canopy directional emissivity can be estimated with typical errors less than 0.005 in the 8--14 um wavelength band, depending on clarity of the sky and corrections for CO{sub 2} absorption by the atmosphere. A theoretical justification for the method is developed along with an error analysis. Laboratory measurements were used to develop corrections for CO{sub 2}, absorption and a field calibration method is used to obtain the necessary 0.1C consistency for relatively low cost infrared thermometers. The emissivity of alfalfa (LAI=2.5) and corn (LAI=3.2) was near 0.995 and independent of view angle. Individual corn leaves had an emissivity of 0.97. A wheat (LAI=3.0) canopy had an emissivity of 0.985 at nadir and 0.975 at 75 degree view angle. The canopy emissivity values tend to be higher than values in the literature, and are useful for converting infrared thermometer measurements to kinetic temperature and interpreting satellite thermal observations.

  7. Detecting vegetation-precipitation feedbacks in mid-Holocene North Africa from two climate models

    SciTech Connect

    Wang, Yi; Notaro, Michael; Liu, Zhengyu; Gallimore, Robert; Levis, Samuel; Kutzbach, John E.

    2008-03-31

    Using two climate-vegetation model simulations from the Fast Ocean Atmosphere Model (FOAM) and the Community Climate System Model (CCSM, version 2), we investigate vegetation-precipitation feedbacks across North Africa during the mid-Holocene. From mid-Holocene snapshot runs of FOAM and CCSM2, we detect a negative feedback at the annual timescale with our statistical analysis. Using the Monte- Carlo bootstrap method, the annual negative feedback is further confirmed to be significant in both simulations. Additional analysis shows that this negative interaction is partially caused by the competition between evaporation and transpiration in North African grasslands. Furthermore, we find the feedbacks decrease with increasing timescales, and change signs from positive to negative at increasing timescales in FOAM. The proposed mechanism for this sign switch is associated with the different persistent timescales of upper and lower soil water contents, and their interactions with vegetation and atmospheric precipitation.

  8. Effect of Industrial Effluents of Zob-Ahan on Soil, Water and Vegetable Plants

    NASA Astrophysics Data System (ADS)

    Rahmani, Hamid Reza; Rezaei, Mosleheddin

    Monitoring harmful chemicals especially heavy metals in industrial effluent for prevention and degradation of natural resources are required. The Effluent Water (EW) of Zob-Ahan (steel industrial complex), were seasonally collected, three times during 48 h period. The soils, well-water and vegetable plant samples were collected in land irrigated with EW and soil in adjacent virgin lands. The EW EC, TDS, BOD, COD, sulfate, chloride, bicarbonate and N-NO3 and of Cd, Co and Cr were above permissible limit, wells-water for in the down side of evaporation ponds EC, TDS, N-NO3, sulfate, chloride, bicarbonate and concentration of Cu, Co, Fe and Cr were above permissible limit and the soils treated with EW Zn, Mn and Cd concentration were in critical range. Soils irrigated with EW had higher OC content and available concentration of Cd, Fe, Cu, Mn, Zn and Pb compared to control sample (adjacent virgin land). In vegetable plants, all measured heavy metals concentration (except Cu content in Taree Irani that was in critical rang) was in normal range. The heavy metals concentration in unwashed plant samples were higher than washed ones. The results showed that Zob-Ahan EW has limitation for application as irrigation water, discharge into surface and subsurface water. Therefore, the EW, should properly be treated before discharging into environment. The heavy metals in soil and well-water affected by EW and irrigated plants with EW should regularly and closely be monitored.

  9. Nitrogen critical loads for alpine vegetation and soils in Rocky Mountain National Park.

    PubMed

    Bowman, William D; Murgel, John; Blett, Tamara; Porter, Ellen

    2012-07-30

    We evaluated the ecological thresholds associated with vegetation and soil responses to nitrogen (N) deposition, by adding NH(4)NO(3) in solution at rates of 5, 10 and 30 kg N ha(-1) yr(-1) to plots in a species rich dry meadow alpine community in Rocky Mountain National Park receiving ambient N deposition of 4 kg N ha(-1) yr(-1). To determine the levels of N input that elicited changes, we measured plant species composition annually, and performed one-time measurements of aboveground biomass and N concentrations, soil solution and resin bag inorganic N, soil pH, and soil extractable cations after 3 years of N additions. Our goal was to use these dose-response relationships to provide N critical loads for vegetation and soils for the alpine in Rocky Mountain National Park. Species richness and diversity did not change in response to the treatments, but one indicator species, Carex rupestris increased in cover from 34 to 125% in response to the treatments. Using the rate of change in cover for C. rupestris in the treatment and the ambient plots, and assuming the change in cover was due solely to N deposition, we estimated a N critical load for vegetation at 3 kg N ha(-1) yr(-1). Inorganic N concentrations in soil solution increased above ambient levels at input rates between 9 kg N ha(-1) yr(-1) (resin bags) and 14 kg N ha(-1) yr(-1) (lysimeters), indicating biotic and abiotic sinks for N deposition are exhausted at these levels. No changes in soil pH or extractable cations occurred in the treatment plots, indicating acidification had not occurred after 3 years. We conclude that N critical loads under 10 kg ha(-1) yr(-1) are needed to prevent future acidification of soils and surface waters, and recommend N critical loads for vegetation at 3 kg N ha(-1) yr(-1) as important for protecting natural plant communities and ecosystem services in Rocky Mountain National Park. PMID:22516810

  10. The applicability of ERTS-1 data covering the major landforms of Kenya. [landforms, vegetation, soils, forests

    NASA Technical Reports Server (NTRS)

    Omino, J. H. O. (principal investigator)

    1973-01-01

    The author has identified the following significant results. Five investigators report on the applicability of ERTS-1 data covering the major landforms of Kenya. Deficiencies due to lack of equipment, repetitive coverage and interpretation know-how are also reported on. Revision of lake shorelines is an immediate benefit. Basement system metasediments are rapidly differentiated, but dune areas are not readily distinguishable from sandy soils. Forest, moorland, high altitude grass, tea, and conifer plantations are readily distinguished, with podocarpus forest especially distinguishable from podocarpus/juniperus forest. In the arid areas physiographic features, indicating the major soil types, are readily identified and mapped. Preliminary vegetation type analysis in the Mara Game Reserve indicates that in a typical savannah area about 36% of the vegetation types are distinguishable at a scale of 1:1 million as well as drainage patterns and terrain features.

  11. A new model of wind erosion in the presence of vegetation

    Microsoft Academic Search

    Gregory S. Okin

    2008-01-01

    Vegetation is known to impact strongly the erosion of soil by the wind. Lateral cover is the primary parameter used to represent the amount of vegetation in aeolian research and, in particular, shear stress partitioning research. Although lateral cover provides a simple means for representing how much vegetation is in an area, it is not capable of characterizing how vegetation

  12. Concentration of Lead in Soils and Some Vegetable Plants in North Nile Delta as affected by Soil Type and Irrigation Water

    Microsoft Academic Search

    Sabry M. Shaheen; Christos D. Tsadilas

    2009-01-01

    Soil pollution by lead (Pb) is of great concern because of its adverse effect to human health. This study was conducted in the north Nile Delta, Egypt, to investigate the influence of soil type and irrigation water on the total and ammonium bicarbonate–diethylenetriaminepentaacetic acid (AB?DTPA)–extractable Pb content of soils and growing vegetable plants. Eight soil profiles were selected from the

  13. Anaerobic Soil Disinfestation (ASD) Combined with Soil Solarization as a Methyl Bromide Alternative: Vegetable Crop Performance and Soil Nutrient Dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil treatment by anaerobic soil disinfestation (ASD) combined with soil solarization can effectively control soilborne plant pathogens and plant-parasitic nematodes in specialty crop production systems. At the same time, research is limited on the impact of soil treatment by ASD + solarization on c...

  14. Soil and vegetation carbon stocks in Brazilian Western Amazonia: relationships and ecological implications for natural landscapes.

    PubMed

    Schaefer, C E G R; do Amaral, E F; de Mendonça, B A F; Oliveira, H; Lani, J L; Costa, L M; Fernandes Filho, E I

    2008-05-01

    The relationships between soils attributes, soil carbon stocks and vegetation carbon stocks are poorly know in Amazonia, even at regional scale. In this paper, we used the large and reliable soil database from Western Amazonia obtained from the RADAMBRASIL project and recent estimates of vegetation biomass to investigate some environmental relationships, quantifying C stocks of intact ecosystem in Western Amazonia. The results allowed separating the western Amazonia into 6 sectors, called pedo-zones: Roraima, Rio Negro Basin, Tertiary Plateaux of the Amazon, Javari-Juruá-Purus lowland, Acre Basin and Rondonia uplands. The highest C stock for the whole soil is observed in the Acre and in the Rio Negro sectors. In the former, this is due to the high nutrient status and high clay activity, whereas in the latter, it is attributed to a downward carbon movement attributed to widespread podzolization and arenization, forming spodic horizons. The youthful nature of shallow soils of the Javari-Juruá-Purus lowlands, associated with high Al, results in a high phytomass C/soil C ratio. A similar trend was observed for the shallow soils from the Roraima and Rondonia highlands. A consistent east-west decline in biomass carbon in the Rio Negro Basin sector is associated with increasing rainfall and higher sand amounts. It is related to lesser C protection and greater C loss of sandy soils, subjected to active chemical leaching and widespread podzolization. Also, these soils possess lower cation exchangeable capacity and lower water retention capacity. Zones where deeply weathered Latosols dominate have a overall pattern of high C sequestration, and greater than the shallower soils from the upper Amazon, west of Madeira and Negro rivers. This was attributed to deeper incorporation of carbon in these clayey and highly pedo-bioturbated soils. The results highlight the urgent need for refining soil data at an appropriate scale for C stocks calculations purposes in Amazonia. There is a risk of misinterpreting C stocks in Amazonia when such great pedological variability is not taken into account. PMID:17846909

  15. Lead contamination and its potential sources in vegetables and soils of Fujian, China

    Microsoft Academic Search

    Zhi-Yong HuangTing; Ting Chen; Jiang Yu; De-Ping Qin; Lan Chen

    Lead (Pb) contents and partition in soils collected from eleven vegetable-growing lands in Fujian Province, China, were investigated\\u000a using a modification of the BCR (Community Bureau of Reference) sequential extraction procedure coupled with the Pb isotope\\u000a ratio technique. Pb contents in Chinese white cabbage (B. Chinensis L.) grown on the lands for this study were also measured. Results showed that

  16. Edge effects on vegetation and soils in a Virginia old-field

    Microsoft Academic Search

    Sebastian M. Riedel; Howard E. Epstein

    2005-01-01

    We investigated the effect of proximity to forest edge on plant community structure and ecosystem properties during succession, using field measurements of leaf area index (LAI), species composition, and soil carbon. Data were collected along four transects within a 14-year-old temperate successional field in north-central Virginia over the 2000 growing season. Additionally, the normalized difference vegetation index (NDVI) was calculated

  17. Gravel admix, vegetation, and soil water interactions in protective barriers: Experimental design, construction, and initial conditions

    SciTech Connect

    Waugh, W.J.

    1989-05-01

    The purpose of this study is to measure the interactive effects of gravel admix and greater precipitation on soil water storage and plant abundance. The study is one of many tasks in the Protective Barrier Development Program for the disposal of Hanford defense waste. A factorial field-plot experiment was set up at the site selected as the borrow area for barrier topsoil. Gravel admix, vegetation, and enhanced precipitation treatments were randomly assigned to the plots using a split-split plot design structure. Changes in soil water storage and plant cover were monitored using neutron probe and point intercept methods, respectively. The first-year results suggest that water extraction by plants will offset gravel-caused increases in soil water storage. Near-surface soil water contents were much lower in graveled plots with plants than in nongraveled plots without plants. Large inherent variability in deep soil water storage masked any effects gravel may have had on water content below the root zone. In the future, this source of variation will be removed by differencing monthly data series and testing for changes in soil water storage. Tests of the effects of greater precipitation on soil water storage were inconclusive. A telling test will be possible in the spring of 1988, following the first wet season during which normal precipitation is doubled. 26 refs., 9 figs., 9 tabs.

  18. A fully traits-based approach to modeling global vegetation distribution

    PubMed Central

    van Bodegom, Peter M.; Douma, Jacob C.; Verheijen, Lieneke M.

    2014-01-01

    Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs. PMID:25225413

  19. A fully traits-based approach to modeling global vegetation distribution.

    PubMed

    van Bodegom, Peter M; Douma, Jacob C; Verheijen, Lieneke M

    2014-09-23

    Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs. PMID:25225413

  20. Infiltration and soil erosion modelling on Lausatian post mine sites

    NASA Astrophysics Data System (ADS)

    Kunth, Franziska; Schmidt, Jürgen

    2013-04-01

    Land management of reclaimed lignite mine sites requires long-term and safe structuring of recultivation areas. Erosion by water leads to explicit soil losses, especially on heavily endangered water repellent and non-vegetated soil surfaces. Beyond that, weathering of pyrite-containing lignite burden dumps causes sulfuric acid-formation, and hence the acidification of groundwater, seepage water and surface waters. Pyrite containing sediment is detached by precipitation and transported into worked-out open cuts by draining runoff. In addition to ground water influence, erosion processes are therefore involved in acidification of surface waters. A model-based approach for the conservation of man-made slopes of post mining sites is the objective of this ongoing study. The study shall be completed by modeling of the effectiveness of different mine site recultivation scenarios. Erosion risks on man-made slopes in recultivation areas should be determined by applying the physical, raster- and event based computer model EROSION 2D/3D (Schmidt, 1991, 1992; v. Werner, 1995). The widely used erosion model is able to predict runoff as well as detachment, transport and deposition of sediments. Lignite burden dumps contain hydrophobic substances that cover soil particles. Consequently, these soils show strong water repellency, which influences the processes of infiltration and soil erosion on non-vegetated, coal containing dump soils. The influence of water repellency had to be implemented into EROSION 2D/3D. Required input data for soil erosion modelling (e.g. physical soil parameters, infiltration rates, calibration factors, etc.) were gained by soil sampling and rainfall experiments on non-vegetated as well as recultivated reclaimed mine sites in the Lusatia lignite mining region (southeast of Berlin, Germany). The measured infiltration rates on the non-vegetated water repellent sites were extremely low. Therefore, a newly developed water repellency-factor was applied to depict infiltration and erosion processes on water repellent dump soils. For infiltration modelling with EROSION 2D calibration factors (e.g. water repellency factor, skin-factor, etc.) were determined in different steps by calibrating computer modelled infiltration, respectively volume rate of flow to the measured data.

  1. Interactions of aluminum with forest soils and vegetation: Implications for acid deposition

    SciTech Connect

    Maynard, A.A.

    1989-01-01

    Recent evidence suggests that an important ecological consequence of acidic deposition is increased aluminum mobilization. There is concern that increased aluminum activity may produce toxic effects in forested ecosystems. My studies were concerned with the behavior of pedogenic and added aluminum in soils derived from chemically different parent material. Soil aluminum was related to the aluminum content of the vegetation found growing in the soils. In addition, aluminum levels of forest litter was compared to levels determined 40 years ago. Field, greenhouse, and laboratory investigations were conducted in which the effects of aluminum concentration on germination and early growth was determined. Soils were then used in greenhouse and laboratory studies to establish patterns of soil and plant aluminum behavior with implications to acid deposition. Results show that the amount of aluminum extracted was related to the pH value of the extracting solution and to the chemical characteristics of the soil. Some acid rain solutions extracted measurable amounts of aluminum from selected primary minerals. Germination and early growth of Pinus radiata was controlled by levels of aluminum in the soil or in solution. Field studies indicated that most forest species were sensitive to rising levels of aluminum in the soil. In general, ferns and fern allies were less sensitive to very high levels of aluminum in the soil, continuing to grow when more advanced dicots have disappeared. Aluminum tissue levels of all species were related to the concentration of aluminum in the soil as was the reappearance of species. Aluminum levels in leaf litter have risen at least 50% in the last 40 years. These values were consistent over 3 years. The implications to acid deposition were discussed.

  2. Soil bacterial community shifts in response to vegetation and soil temperature change in moist acidic tundra of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Ricketts, M. P.; Gonzalez-Meler, M. A.

    2013-12-01

    The effects of rising temperatures on Earth's ecosystems remain largely unknown and are an active area of research. In temperate systems, plant species often respond directly to climate forcing factors causing complex cascading effects in ecosystem C and nutrient cycling. Similarly, in the Arctic tundra, shifts in aboveground species composition and distribution have been observed in response to warming and other climate change factors, following increases in active layer depth and soil temperature. These abiotic changes provide soil microorganisms access to previously unavailable soil organic matter via thawing soils and increases soil microbial mineralization rates, suggesting that soil microorganisms may be eliciting the plant response. It is hypothesized that this release of nutrients may be providing a competitive advantage to N rich woody species, such as dwarf birch and diamond-leaf willow, over grassy species such as cottongrass tussock. Here we examine how microbial communities respond to increases in soil thermal insulation and vegetative change caused by the accumulation of winter precipitation at a snowfence installed in 1998 at Toolik Field Station, Alaska. In addition to soil temperature, increased snow depth also results in increased surface moisture, soil temperature, and active layer depth. Bacterial phylogenies and relative abundances from soils collected in August of 2012 were determined by sequencing 16S rRNA genes and analyzed using the QIIME software package. We found many significant relative abundance shifts between snow depth treatments (deep, intermediate, low) and soil depths (organic, transition, mineral), most notable of which include in an increase in Deltaproteobacteria in the deep treatment zones, a decrease in Alphaproteobacteria with increased soil depth, and a marked increase in Chloroflexi Anaerolineae (a green non-sulfur bacteria found in a wide range of habitats) in the deep treatment and mineral layers. Other interesting results include the presence of two novel, uncultured phyla of Bacteria, AD3 (phylogenetically related to green non-sulfur bacteria) which was found in mineral layers across all treatments, and OP8 (yet to be characterized), found only in the mineral layers of the deep snow depth treatment.

  3. Appropriate scale of soil moisture retrieval from high-resolution radar imagery for bare and minimally vegetated soils 1859

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research investigates the appropriate scale for watershed averaged and site specific soil moisture retrieval from high resolution radar imagery. The first approach involved filtering backscatter for input to a retrieval model that was compared against field measures of soil moisture. The seco...

  4. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation.

    PubMed

    Dawes, Melissa A; Philipson, Christopher D; Fonti, Patrick; Bebi, Peter; Hättenschwiler, Stephan; Hagedorn, Frank; Rixen, Christian

    2015-05-01

    Responses of alpine tree line ecosystems to increasing atmospheric CO2 concentrations and global warming are poorly understood. We used an experiment at the Swiss tree line to investigate changes in vegetation biomass after 9 years of free air CO2 enrichment (+200 ppm; 2001-2009) and 6 years of soil warming (+4 °C; 2007-2012). The study contained two key tree line species, Larix decidua and Pinus uncinata, both approximately 40 years old, growing in heath vegetation dominated by dwarf shrubs. In 2012, we harvested and measured biomass of all trees (including root systems), above-ground understorey vegetation and fine roots. Overall, soil warming had clearer effects on plant biomass than CO2 enrichment, and there were no interactive effects between treatments. Total plant biomass increased in warmed plots containing Pinus but not in those with Larix. This response was driven by changes in tree mass (+50%), which contributed an average of 84% (5.7 kg m(-2) ) of total plant mass. Pinus coarse root mass was especially enhanced by warming (+100%), yielding an increased root mass fraction. Elevated CO2 led to an increased relative growth rate of Larix stem basal area but no change in the final biomass of either tree species. Total understorey above-ground mass was not altered by soil warming or elevated CO2 . However, Vaccinium myrtillus mass increased with both treatments, graminoid mass declined with warming, and forb and nonvascular plant (moss and lichen) mass decreased with both treatments. Fine roots showed a substantial reduction under soil warming (-40% for all roots <2 mm in diameter at 0-20 cm soil depth) but no change with CO2 enrichment. Our findings suggest that enhanced overall productivity and shifts in biomass allocation will occur at the tree line, particularly with global warming. However, individual species and functional groups will respond differently to these environmental changes, with consequences for ecosystem structure and functioning. PMID:25471674

  5. Spreading Topsoil Encourages Ecological Restoration on Embankments: Soil Fertility, Microbial Activity and Vegetation Cover

    PubMed Central

    Rivera, Desirée; Mejías, Violeta; Jáuregui, Berta M.; López-Archilla, Ana Isabel; Peco, Begoña

    2014-01-01

    The construction of linear transport infrastructure has severe effects on ecosystem functions and properties, and the restoration of the associated roadslopes contributes to reduce its impact. This restoration is usually approached from the perspective of plant cover regeneration, ignoring plant-soil interactions and the consequences for plant growth. The addition of a 30 cm layer of topsoil is a common practice in roadslope restoration projects to increase vegetation recovery. However topsoil is a scarce resource. This study assesses the effects of topsoil spreading and its depth (10 to 30 cm) on two surrogates of microbial activity (?-glucosidase and phosphatase enzymes activity and soil respiration), and on plant cover, plant species richness and floristic composition of embankment vegetation. The study also evaluates the differences in selected physic-chemical properties related to soil fertility between topsoil and the original embankment substrate. Topsoil was found to have higher values of organic matter (11%), nitrogen (44%), assimilable phosphorous (50%) and silt content (54%) than the original embankment substrate. The topsoil spreading treatment increased microbial activity, and its application increased ?-glucosidase activity (45%), phosphatase activity (57%) and soil respiration (60%). Depth seemed to affect soil respiration, ?-glucosidase and phosphatase activity. Topsoil application also enhanced the species richness of restored embankments in relation to controls. Nevertheless, the depth of the spread topsoil did not significantly affect the resulting plant cover, species richness or floristic composition, suggesting that both depths could have similar effects on short-term recovery of the vegetation cover. A significant implication of these results is that it permits the application of thinner topsoil layers, with major savings in this scarce resource during the subsequent slope restoration work, but the quality of topsoil relative to the original substrate should be previously assessed on a site by site basis. PMID:24984137

  6. Responses of soil microbial and nematode communities to aluminum toxicity in vegetated oil-shale-waste lands.

    PubMed

    Shao, Yuanhu; Zhang, Weixin; Liu, Zhanfeng; Sun, Yuxin; Chen, Dima; Wu, Jianping; Zhou, Lixia; Xia, Hanping; Neher, Deborah A; Fu, Shenglei

    2012-11-01

    Both soil nematodes and microorganisms have been shown to be sensitive bioindicators of soil recovery in metal-contaminated habitats; however, the underlying processes are poorly understood. We investigated the relationship among soil microbial community composition, nematode community structure and soil aluminum (Al) content in different vegetated aluminum-rich ecosystems. Our results demonstrated that there were greater soil bacterial, fungal and arbuscular mycorrhizal fungal biomass in Syzygium cumini plantation, greater abundance of soil nematodes in Acacia auriculiformis plantation, and greater abundance of soil predatory and herbivorous nematodes in Schima wallichii plantation. The concentration of water-soluble Al was normally greater in vegetated than non-vegetated soil. The residual Al and total Al concentrations showed a significant decrease after planting S. cumini plantation onto the shale dump. Acid extractable, reducible and oxidisable Al concentrations were greater in S. wallichii plantation. Stepwise linear regression analysis suggests the concentrations of water-soluble Al and total Al content explain the most variance associated with nematode assembly; whereas, the abundance of early-successional nematode taxa was explained mostly by soil moisture, soil organic C and total N rather than the concentrations of different forms of Al. In contrast, no significant main effects of either Al or soil physico-chemical characteristics on soil microbial biomass were observed. Our study suggests that vegetation was the primary driver on soil nematodes and microorganisms and it also could regulate the sensitivity of bio-indicator role mainly through the alteration of soil Al and physico-chemical characteristics, and S. cumini is effective for amending the Al contaminated soils. PMID:22732942

  7. Differences in Soil Fungal Communities between European Beech (Fagus sylvatica L.) Dominated Forests Are Related to Soil and Understory Vegetation

    PubMed Central

    Schöning, Ingo; Boch, Steffen; Gawlich, Melanie; Schnabel, Beatrix; Fischer, Markus; Buscot, François

    2012-01-01

    Fungi are important members of soil microbial communities with a crucial role in biogeochemical processes. Although soil fungi are known to be highly diverse, little is known about factors influencing variations in their diversity and community structure among forests dominated by the same tree species but spread over different regions and under different managements. We analyzed the soil fungal diversity and community composition of managed and unmanaged European beech dominated forests located in three German regions, the Schwäbische Alb in Southwestern, the Hainich-Dün in Central and the Schorfheide Chorin in the Northeastern Germany, using internal transcribed spacer (ITS) rDNA pyrotag sequencing. Multiple sequence quality filtering followed by sequence data normalization revealed 1655 fungal operational taxonomic units. Further analysis based on 722 abundant fungal OTUs revealed the phylum Basidiomycota to be dominant (54%) and its community to comprise 71.4% of ectomycorrhizal taxa. Fungal community structure differed significantly (p?0.001) among the three regions and was characterized by non-random fungal OTUs co-occurrence. Soil parameters, herbaceous understory vegetation, and litter cover affected fungal community structure. However, within each study region we found no difference in fungal community structure between management types. Our results also showed region specific significant correlation patterns between the dominant ectomycorrhizal fungal genera. This suggests that soil fungal communities are region-specific but nevertheless composed of functionally diverse and complementary taxa. PMID:23094057

  8. Site identity and moss species as determinants of soil microbial community structure in Norway spruce forests across three vegetation zones

    Microsoft Academic Search

    Lisbet Holm Bach; Åsa Frostegård; Mikael Ohlson

    2009-01-01

    Soil microbial community structure was investigated by PLFA-analysis in four spruce forests in Norway. The maximum latitudinal\\u000a distance between the sites was approximately 350 km. Bilberry Vaccinium myrtillus dominated the forest floor vegetation in the study sites, which were selected because of the vegetation type. Soil samples\\u000a were taken from all four sites under close to 100% homogeneous ground cover of

  9. Accounting for spatial variation in vegetation properties improves simulations of Amazon forest biomass and productivity in a global vegetation model

    NASA Astrophysics Data System (ADS)

    de Almeida Castanho, A. D.; Coe, M. T.; Heil Costa, M.; Malhi, Y.; Galbraith, D.; Quesada, C. A.

    2012-08-01

    Dynamic vegetation models forced with spatially homogeneous biophysical parameters are capable of producing average productivity and biomass values for the Amazon basin forest biome that are close to the observed estimates, but are unable to reproduce the observed spatial variability. Recent observational studies have shown substantial regional spatial variability of above-ground productivity and biomass across the Amazon basin, which is believed to be primarily driven by soil physical and chemical properties. In this study, spatial heterogeneity of vegetation properties is added to the IBIS land surface model, and the simulated productivity and biomass of the Amazon basin are compared to observations from undisturbed forest. The maximum Rubisco carboxylation capacity (Vcmax) and the woody biomass residence time (?w) were found to be the most important properties determining the modeled spatial variation of above-ground woody net primary productivity and biomass, respectively. Spatial heterogeneity of these properties may lead to a spatial variability of 1.8 times in the simulated woody net primary productivity and 2.8 times in the woody above-ground biomass. The coefficient of correlation between the modeled and observed woody productivity improved from 0.10 with homogeneous parameters to 0.73 with spatially heterogeneous parameters, while the coefficient of correlation between the simulated and observed woody above-ground biomass improved from 0.33 to 0.88. The results from our analyses with the IBIS dynamic vegetation model demonstrate that using single values for key ecological parameters in the tropical forest biome severely limits simulation accuracy. We emphasize that our approach must be viewed as an important first step and that a clearer understanding of the biophysical mechanisms that drive the spatial variability of carbon allocation, ?w and Vcmax are necessary.

  10. Remediation of trichloroethylene-contaminated soils by star technology using vegetable oil smoldering.

    PubMed

    Salman, Madiha; Gerhard, Jason I; Major, David W; Pironi, Paolo; Hadden, Rory

    2015-03-21

    Self-sustaining treatment for active remediation (STAR) is an innovative soil remediation approach based on smoldering combustion that has been demonstrated to effectively destroy complex hydrocarbon nonaqueous phase liquids (NAPLs) with minimal energy input. This is the first study to explore the smoldering remediation of sand contaminated by a volatile NAPL (trichloroethylene, TCE) and the first to consider utilizing vegetable oil as supplemental fuel for STAR. Thirty laboratory-scale experiments were conducted to evaluate the relationship between key outcomes (TCE destruction, rate of remediation) to initial conditions (vegetable oil type, oil: TCE mass ratio, neat versus emulsified oils). Several vegetable oils and emulsified vegetable oil formulations were shown to support remediation of TCE via self-sustaining smoldering. A minimum concentration of 14,000mg/kg canola oil was found to treat sand exhibiting up to 80,000mg/kg TCE. On average, 75% of the TCE mass was removed due to volatilization. This proof-of-concept study suggests that injection and smoldering of vegetable oil may provide a new alternative for driving volatile contaminants to traditional vapour extraction systems without supplying substantial external energy. PMID:25528233

  11. Technical note monitoring native vegetation on a dumpsite of PCB-contaminated soil.

    PubMed

    Pavlíková, Daniela; Macek, Tomas; Macková, Martina; Pavlík, Milan

    2007-01-01

    Composition of native vegetation on a polychlorinated biphenyls (PCB)-contaminated soil dumpsite at Lhenice, South Bohemia (Czech Republic), was determined and species variability in the accumulation of PCBs in plant biomass was investigated. Soil stripping contaminated by PCBs originated at a factory producing electrical transformers that mostly used the commercial PCB mixture Delor 103 and 106. The PCB content of soil in the most contaminated part of the dumpsite reached 153 mg kg(-1) dry soil. Low diversity of plant species was found on the dumpsite. Results showed three grass species, Festuca arundinacea Schreb., Phalaroides arundinacea (L.) Rauschert., and Calamagrostis epigeios (L.) Roth., to be the major components of the vegetation and confirmed their high tolerance toward PCB contamination. The highest content of PCB in plant biomass--813.2 microg kg(-1) dry biomass--was determined in Festuca aboveground biomass. For phytoextraction purposes especially, Festuca can be recommended due to its high biomass yield, but its bioconcentration factor was very low (0.006). Tripleurospermum maritimum (L.) Sch. Bip. and Cirsium arvense (L.) Scop. grew mainly at the margins of the most contaminated part of the dumpsite. The PCB content determined in their aboveground biomass-278.7 and 289.5 microg kg(-1) dry biomass, respectively--was nonsignificantly lower compared to grass species Phalaroides and Calamagrostis. Salix (Salix viminalis L. and Salix caprea L.) was monitored among plant species composition at this site as a representative of woody species. PMID:18246716

  12. Sensitivity and feedbacks associated with vegetation-related land surface parameters in a general circulation model

    SciTech Connect

    Lofgren, B.M.

    1993-01-01

    A series of general circulation model (GCM) experiments were run to investigate the effects on climate of surface albedo, surface roughness, and field capacity. When decreased surface albedo is prescribed, at low latitudes, precipitation and soil moisture are increased, because of the increased upward motion resulting from additional atmospheric heating. At mid-latitudes, the precipitation is insensitive to decreased surface albedo, but soil moisture is decreased. A prescribed decrease in land surface roughness causes a general decrease in evaporation from land and water vapor flux convergence over land, and consequently also in precipitation. Land surface albedo was interactive with the GCM climate, using the climate to determine the vegetative cover. When compared to a control case with constant surface albedo over all land, tropical rainforests have increased precipitation and soil moisture. This promotes more growth of vegetation, causing positive feedback within the system. Subtropical deserts have decreased precipitation and soil moisture, and there is evidence of a southward shift in the Sahara. Midlatitudes have little response in precipitation, but have soil moisture responses which imply negative feedback. When surface roughness is interactively predicted, low-latitude forests have increased precipitation, primarily along coasts where there are shoreward winds. This leads to increased vegetation and greater surface roughness, making it a positive feedback. At midlatitudes the roughness of the forests causes enhanced Ekman convergence, resulting in increased precipitation. Neither the pattern changes in precipitation nor of changes in soil moisture as a fraction of field capacity is clearly correlated to the distribution of initially predicted field capacity. When all three parameters are made interactive simultaneously, the precipitation and soil moisture responses are approximately the sum of the responses to individual parameters.

  13. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    PubMed

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation. PMID:24463013

  14. Effects of various uranium leaching procedures on soil: Short-term vegetation growth and physiology. Progress report, April 1994

    SciTech Connect

    Edwards, N.T.

    1994-08-01

    Significant volumes of soil containing elevated levels of uranium exist in the eastern United States. The contamination resulted from the development of the nuclear industry in the United States requiring a large variety of uranium products. The contaminated soil poses a collection and disposal problem of a magnitude that justifies the development of decontamination methods. Consequently, the Department of Energy (DOE) Office of Technology Development formed the Uranium Soils Integrated Demonstration (USID) program to address the problem. The fundamental goal of the USID task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than what can be done using current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics and without generating waste that is difficult to manage and/or dispose of. However, procedures developed for removing uranium from contaminated soil have involved harsh chemical treatments that affect the physicochemical properties of the soil. The questions are (1) are the changes in soil properties severe enough to destroy the soil`s capacity to support and sustain vegetation growth and survival? and (2) what amendments might be made to the leached soil to return it to a reasonable vegetation production capacity? This study examines the vegetation-support capacity of soil that had been chemically leached to remove uranium. The approach is to conduct short-term germination and phytotoxicity tests for evaluating soils after they are subjected to various leaching procedures followed by longer term pot studies on successfully leached soils that show the greatest capacity to support plant growth. This report details the results from germination and short-term phytotoxicity testing of soils that underwent a variety of leaching procedures at the bench scale at ORNL and at the pilot plant at Fernald.

  15. Improving Space-borne Radiometer Soil Moisture Retrievals with Alternative Aggregation Rules for Ancillary Parameters in Highly Heterogeneous Vegetated Areas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Retrieving soil moisture from space-borne microwave radiometer observations often requires ancillary parameters such as surface vegetation opacity or vegetation water content. The conventional approach for deriving representative footprint-scale values of these parameters is to simply average the co...

  16. An investigation of Mesoscale Flows Induced by Vegetation Inhomogeneities Using an Evapotranspiration Model Calibrated Against HAPEX-MOBILHY Data

    Microsoft Academic Search

    Jean-Pierre Pinty; Patrick Mascart; Evelyne Richard; Robert Rosset

    1989-01-01

    Many recent studies have suggested that heterogeneities in soil properties or vegetation characteristics many trigger mesoscale circulations in planetary boundary layer (PBL). Unfortunately, these flows appear to be very sensitive to the choice of the model characteristics and therefore require a careful calibration of the parameterization representing the vegetation\\/atmosphere interface.In this paper, the micrometeorological data from the HAPEX-MOBILHY field experiment

  17. Geothermal environmental assessment baseline study: vegetation and soils of the Roosevelt Hot Springs Geothermal Resource Area

    SciTech Connect

    Brown, K.W.; Wiersma, G.B.

    1981-07-01

    Identification and elemental concentrations of indigenous soil and plant systems found on the Roosevelt Hot Spring KGRA are described. Twenty-three different soils and five separate plant communities are geographically mapped and identified. One hundred forty-seven plant species were identified. Forbs, shrubs, and grasses are represented by 58, 53, and 36 species respectively. Three sites, each measuring 25 hectares, were selected for long-term vegetative assessment. At these locations a permanent enclosure measuring 24.4 meters x 24.4 meters was constructed to assess long-term effects of livestock grazing. Biomass, plant species, percentage composition, ground cover and livestock carrying capacities were determined at each site. Surface soils and Artemisia tridentata leaf tissue were collected for elemental analysis.

  18. Geothermal environmental assessment baseline study: Vegetation and soils of the Roosevelt Hot Springs geothermal resource area

    NASA Astrophysics Data System (ADS)

    Brown, K. W.; Wiersma, G. B.

    1981-07-01

    Identification and elemental concentrations of indigenous soil and plant systems found on the Roosevelt Hot Spring KGRA are described. Twenty-three different soils and five separate plant communities are geographically mapped and identified. One hundred forty-seven plant species were identified. Forbs, shrubs, and grasses are represented by 58, 53, and 36 species respectively. Three sites each measuring 25 hectares were selected for long-term vegetative assessment. At these locations a permanent enclosure measuring 24.4 meters x 24.4 meters was constructed to assess long-term effects livestock grazing. Biomass plant species, percentage composition, ground cover and livetock carrying capacities were determined at each site. Surface soils and Artemisia tridentata leaf tissue were collected for elemental analysis.

  19. [Characteristics of soil salinity profiles and their electromagnetic response under various vegetation types in coastal saline area].

    PubMed

    Yang, Jing-Song; Yao, Rong-Jiang; Zou, Ping; Liu, Guang-Ming

    2008-10-01

    Aiming at the intrinsic relationships between vegetation type and soil salinity in coastal saline area, and by using electromagnetic induction EM38 and field sampling method, the characteristics of soil salinity profiles under various vegetation types in typical coastal saline region of the Yellow River Delta were analyzed, and the electromagnetic response characters of the salinity profiles were compared. The results showed that across the study area, soil salinity exhibited the characteristics of top enrichment and strong spatial variation. The horizontal electromagnetic conductivity EM(h) responded well to soil salinity at upper layers, and the response of vertical electromagnetic conductivity EM(v) to soil salinity at deeper layers was superior to that of EM(h). Soil salinity profiles were classified into inverted, normal, and uniform types. The vegetation types of inverted salinity profiles were mainly bare land and Suaeda salsa, while those of normal and uniform salinity profiles were cotton and weed, respectively. The sequence of top enrichment intensity was bare land > S. salsa land > weed land > cotton land. With the change of vegetation type of cotton-weed-S. salsa-bare land, the EM(v)/EM(h) value of salinity profiles decreased gradually. Nonparametric test results showed that there was a significant correlation between vegetation type and electromagnetic response characters, and the distribution characters of EM(v)/EM(h) under various vegetation types varied significantly. PMID:19123343

  20. Uptake of explosives from contaminated soil by existing vegetation at the Joliet Army Ammunition Plant

    SciTech Connect

    Schneider, J.F.; Tomczyk, N.A.; Zellmer, S.D. [Argonne National Lab., IL (United States); Banwart, W.L. [Argonne National Lab., IL (United States)]|[Univ., of Illinois, Urbana, IL (United States). Dept., of Agronomy

    1994-01-01

    This study examines the uptake of explosives by existing vegetation growing in TNT-contaminated soils on Group 61 at the Joliet Army Ammunition Plant (JAAP). The soils in this group were contaminated more than 40 years ago. In this study, existing plant materials and soil from the root zone were sampled from 15 locations and analyzed to determine TNT uptake by plants under natural field conditions. Plant materials were separated by species if more than one species was present at a sampling location. Standard methods were used to determine concentrations of explosives, their derivatives, and metabolites in the soil samples. Plant materials were also analyzed. No. explosives were detected in the aboveground portion of any plant sample. However, the results indicate that TNT, 2-amino DNT, and/or 4-amino DNT were found in some root samples of false boneset (Kuhnia eupatorioides), teasel (Dipsacus sylvestris), and bromegrass (Bromus inermis). It is possible that slight soil contamination remained on the roots, especially in the case of the very fine roots for species like bromegrass, where washing was difficult. The presence of 2-amino DNT and 4-amino DNT, which could be plant metabolites of TNT, increases the likelihood that explosives were taken up by plant roots, as opposed to their presence resulting from external soil contamination.

  1. Use of arsenic contaminated irrigation water for lettuce cropping: effects on soil, groundwater, and vegetal.

    PubMed

    Beni, Claudio; Marconi, Simona; Boccia, Priscilla; Ciampa, Alessandra; Diana, Giampietro; Aromolo, Rita; Sturchio, Elena; Neri, Ulderico; Sequi, Paolo; Valentini, Massimiliano

    2011-10-01

    The present study investigated the effects of using arsenic (As) contaminated irrigation water in Lactuca sativa L. cropping. Two different arsenic concentrations, i.e., 25 and 85 ?g L(-1) and two different soils, i.e., sandy and clay loam, were taken into account. We determined the arsenic mobility in the different soil fractions, its amount in groundwater, and the phytotoxicity and genotoxicity. Nuclear magnetic resonance (NMR) and inductively coupled plasma (ICP) were used to assess the lettuce metabolic profile changes and the arsenic uptake by the plant, respectively, as a function of the various conditions studied, i.e., As content and type of soil. Data indicated that at both concentrations in sandy soil, arsenic is in part quickly leached and thus present in groundwater and in part absorbed by the vegetable, being therefore readily available for assimilation by consumption. NMR results reported a large modification of the metabolic pattern, which was depending on the pollutant amount. In clay loam soil, the groundwater had a low As content with respect to sandy soil, and NMR and ICP performed on t