Science.gov

Sample records for soil water interactions

  1. Interactions among Climate Forcing, Soil Water, and Groundwater for Enhanced Water Management Practices in Nebraska

    NASA Astrophysics Data System (ADS)

    You, J.; Hubbard, K. G.; Chen, X.

    2009-12-01

    Water is one of the most valuable and vulnerable resources. The varying precipitation regimes together with the varying land use and land cover types over the state of Nebraska necessitate continuous monitoring and modeling of soil water, particularly in the root zone. Underlying the irrigated lands is the High Plains Aquifer, one of the largest in the world. The Ogallala Aquifer is hydrologically connected with streams in numerous river valleys and with rainfall/soil water at the surface. To sustain water reserves the net effect of groundwater pumping for irrigation and recharging the ground water system by precipitation/irrigation. If the net effect is zero or positive the reserves will not shrink. The Automated Weather Data Network (AWDN) of Nebraska has intensive soil water observation and critical weather measurements. Nebraska also has ground water wells, co-located with or near some of the AWDN stations. This work was conducted to continuously monitor the soil water and groundwater table and to model the surface and subsurface hydrologic processes as an integrated/linked system. The further task is to quantify the recharge under different initial conditions, land use practices, and to combine the new information with a surface hydrology model over various sites in Nebraska. To accomplish these objectives two weather stations were installed and enhanced at Shelton and Kearney and soil probes were buried directly under the crop lands. The newly installed soil water probes are co-located with the nearby weather stations and ground water wells. All the data recorded from the atmosphere, soil and aquifer will be incorporated into AWDN data archives and will be analyzed to examine the interactions between precipitation, soil moisture and groundwater.

  2. Scaling Soil Microbe-Water Interactions from Pores to Ecosystems

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Katul, G. G.

    2014-12-01

    The spatial scales relevant to soil microbial activity are much finer than scales relevant to whole-ecosystem function and biogeochemical cycling. On the one hand, how to link such different scales and develop scale-aware biogeochemical and ecohydrological models remains a major challenge. On the other hand, resolving these linkages is becoming necessary for testing ecological hypotheses and resolving data-theory inconsistencies. Here, the relation between microbial respiration and soil moisture expressed in water potential is explored. Such relation mediates the water availability effects on ecosystem-level heterotrophic respiration and is of paramount importance for understanding CO2 emissions under increasingly variable rainfall regimes. Respiration has been shown to decline as the soil dries in a remarkably consistent way across climates and soil types (open triangles in Figure). Empirical models based on these respiration-moisture relations are routinely used in Earth System Models to predict moisture effects on ecosystem respiration. It has been hypothesized that this consistency in microbial respiration decline is due to breakage of water film continuity causing in turn solute diffusion limitations in dry conditions. However, this hypothesis appears to be at odds with what is known about soil hydraulic properties. Water film continuity estimated from soil water retention (SWR) measurements at the 'Darcy' scale breaks at far less negative water potential (<-0.1 MPa) levels than where microbial respiration ceases (approximately -15 MPa) as shown in the Figure (violet frequency distribution). Also, this threshold point inferred from SWR shows strong texture dependence, in contrast to the respiration curves. Employing theoretical tools from percolation theory, it is demonstrated that hydrological measurements can be spatially downscaled at a micro-level relevant to microbial activity. Such downscaling resolves the inconsistency between respiration thresholds and hydrological thresholds. This result, together with observations of residual microbial activity well below -15 MPa (dashed back curve in Figure), lends support to the hypothesis that soil microbes are substrate-limited in dry conditions.

  3. Study on the subgrade deformation under high-speed train loading and water-soil interaction

    NASA Astrophysics Data System (ADS)

    Han, Jian; Zhao, Guo-Tang; Sheng, Xiao-Zhen; Jin, Xue-Song

    2015-11-01

    It is important to study the subgrade characteristics of high-speed railways in consideration of the water-soil coupling dynamic problem, especially when high-speed trains operate in rainy regions. This study develops a nonlinear water-soil interaction dynamic model of slab track coupling with subgrade under high-speed train loading based on vehicle-track coupling dynamics. By using this model, the basic dynamic characteristics, including water-soil interaction and without water induced by the high-speed train loading, are studied. The main factors-the permeability coefficient and the porosity-influencing the subgrade deformation are investigated. The developed model can characterize the soil dynamic behaviour more realistically, especially when considering the influence of water-rich soil.

  4. Fecal Coliform Interaction with Soil Aggregates: Effect of Water Content and Bovine Manure Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To test the hypothesis that fecal coliform (FC) interaction with soil aggregates is affected by aggregate size, water content and bovine manure application. Methods and Results: Tyler loam soil aggregates were separated into fractions of 3.35-4.75 mm, 4.75-7.93 mm and 7.93-9.5 mm. Air-dry an...

  5. Gravel admix, vegetation, and soil water interactions in protective barriers: Experimental design, construction, and initial conditions

    SciTech Connect

    Waugh, W.J.

    1989-05-01

    The purpose of this study is to measure the interactive effects of gravel admix and greater precipitation on soil water storage and plant abundance. The study is one of many tasks in the Protective Barrier Development Program for the disposal of Hanford defense waste. A factorial field-plot experiment was set up at the site selected as the borrow area for barrier topsoil. Gravel admix, vegetation, and enhanced precipitation treatments were randomly assigned to the plots using a split-split plot design structure. Changes in soil water storage and plant cover were monitored using neutron probe and point intercept methods, respectively. The first-year results suggest that water extraction by plants will offset gravel-caused increases in soil water storage. Near-surface soil water contents were much lower in graveled plots with plants than in nongraveled plots without plants. Large inherent variability in deep soil water storage masked any effects gravel may have had on water content below the root zone. In the future, this source of variation will be removed by differencing monthly data series and testing for changes in soil water storage. Tests of the effects of greater precipitation on soil water storage were inconclusive. A telling test will be possible in the spring of 1988, following the first wet season during which normal precipitation is doubled. 26 refs., 9 figs., 9 tabs.

  6. Interacting vegetative and thermal contributions to water movement in desert soil

    USGS Publications Warehouse

    Garcia, C.A.; Andraski, B.J.; Stonestrom, D.A.; Cooper, C.A.; Simunek, J.; Wheatcraft, S.W.

    2011-01-01

    Thermally driven water-vapor flow can be an important component of total water movement in bare soil and in deep unsaturated zones, but this process is often neglected when considering the effects of soil-plant-atmosphere interactions on shallow water movement. The objectives of this study were to evaluate the coupled and separate effects of vegetative and thermal-gradient contributions to soil water movement in desert environments. The evaluation was done by comparing a series of simulations with and without vegetation and thermal forcing during a 4.7-yr period (May 2001-December 2005). For vegetated soil, evapotranspiration alone reduced root-zone (upper 1 m) moisture to a minimum value (25 mm) each year under both isothermal and nonisothermal conditions. Variations in the leaf area index altered the minimum storage values by up to 10 mm. For unvegetated isothermal and nonisothermal simulations, root-zone water storage nearly doubled during the simulation period and created a persistent driving force for downward liquid fluxes below the root zone (total net flux ~1 mm). Total soil water movement during the study period was dominated by thermally driven vapor fluxes. Thermally driven vapor flow and condensation supplemented moisture supplies to plant roots during the driest times of each year. The results show how nonisothermal flow is coupled with plant water uptake, potentially influencing ecohydrologic relations in desert environments. ?? Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA. All rights reserved.

  7. Interacting vegetative and thermal contributions to water movement in desert soil

    USGS Publications Warehouse

    Garcia, C.A.; Andraski, B.J.; Stonestrom, D.A.; Cooper, C.A.; Šimůnek, J.; Wheatcraft, S.W.

    2011-01-01

    Thermally driven water-vapor flow can be an important component of total water movement in bare soil and in deep unsaturated zones, but this process is often neglected when considering the effects of soil–plant–atmosphere interactions on shallow water movement. The objectives of this study were to evaluate the coupled and separate effects of vegetative and thermal-gradient contributions to soil water movement in desert environments. The evaluation was done by comparing a series of simulations with and without vegetation and thermal forcing during a 4.7-yr period (May 2001–December 2005). For vegetated soil, evapotranspiration alone reduced root-zone (upper 1 m) moisture to a minimum value (25 mm) each year under both isothermal and nonisothermal conditions. Variations in the leaf area index altered the minimum storage values by up to 10 mm. For unvegetated isothermal and nonisothermal simulations, root-zone water storage nearly doubled during the simulation period and created a persistent driving force for downward liquid fluxes below the root zone (total net flux ~1 mm). Total soil water movement during the study period was dominated by thermally driven vapor fluxes. Thermally driven vapor flow and condensation supplemented moisture supplies to plant roots during the driest times of each year. The results show how nonisothermal flow is coupled with plant water uptake, potentially influencing ecohydrologic relations in desert environments.

  8. Barrier erosion control test plan: Gravel mulch, vegetation, and soil water interactions

    SciTech Connect

    Waugh, W.J.; Link, S.O. )

    1988-07-01

    Soil erosion could reduce the water storage capacity of barriers that have been proposed for the disposal of near-surface waste at the US Department of Energy's Hanford Site. Gravel mixed into the top soil surface may create a self-healing veneer that greatly retards soil loss. However, gravel admixtures may also enhance infiltration of rainwater, suppress plant growth and water extraction, and lead to the leaching of underlying waste. This report describes plans for two experiments that were designed to test hypotheses concerning the interactive effects of surface gravel admixtures, revegetation, and enhanced precipitation on soil water balance and plant abundance. The first experiment is a factorial field plot set up on the site selected as a soil borrow area for the eventual construction of barriers. The treatments, arranged in a a split-split-plot design structure, include two densities of gravel admix, a mixture of native and introduced grasses, and irrigation to simulate a wetter climate. Changes in soil water storage and plant cover are monitored with neutron moisture probes and point intercept sampling, respectively. The second experiment consists of an array of 80 lysimeters containing several different barrier prototypes. Surface treatments are similar to the field-plot experiment. Drainage is collected from a valve at the base of each lysimeter tube, and evapotranspiration is estimated by subtraction. The lysimeters are also designed to be coupled to a whole-plant gas exchange system that will be used to conduct controlled experiments on evapotranspiration for modeling purposes. 56 refs., 6 figs., 8 tabs.

  9. Soil-water interactions: implications for the sustainability of urban areas

    NASA Astrophysics Data System (ADS)

    Ferreira, António J. D.; Ferreira, Carla S. S.; Walsh, Rory P. D.

    2015-04-01

    Cities have become recently the home for more than half of the world's population. Cities are often seen as ecological systems just a short step away from collapse [Newman 2006]. Being a human construction, cities disrupt the natural cycles and the patterns of temporal and spatial distribution of environmental and ecological processes. Urbanization produces ruptures in biota, water, energy and nutrients connectivity that can lead to an enhanced exposure to disruptive events that hamper the wellbeing and the resilience of urban communities in a global change context. And yet, mankind can't give up of these structures one step away from collapse. In this paper we visit the ongoing research at the Ribeira dos Covões peri-urban catchment, as the basis to discuss several important processes and relations in the water-soil interface: A] the impact of the build environment and consequently the increase of the impervious area on the generation and magnitude of hydrological processes at different scales, the impact on flash flood risk and the mitigation approaches. B] the pollutant sources transport and fade in urban areas, with particular emphasis in the role of vegetation and soils in the transmission of pollutants from the atmosphere to the soil and to the water processes. C] the use and the environmental services of the urban ecosystems (where the relations of water, soil and vegetation have a dominate role) to promote a better risk and resources governance. D] the special issue of urban agriculture, where all the promises of sustainability and threats to wellbeing interact, and where the soil and water relations in urban areas are more significant and have the widest and deepest implications.

  10. Premelted liquid water in frozen soils and its interaction with bio-molecules

    NASA Astrophysics Data System (ADS)

    Hansen-Goos, H.; Wettlaufer, J. S.

    2011-12-01

    While liquid water in bulk is unstable on the surface of Mars, there is a possibility for the persistence of thin films of liquid water in the Martian regolith as a result of interfacial forces between the interstitial ice and the soil grains even below the bulk melting temperature. This is referred to as premelting. We present a calculation of the liquid fraction of frozen soils which takes into account premelting in combination with the effect of ionic impurities and the curvature induced freezing point depression (Gibbs-Thomson effect). We introduce a revised density functional theory which accurately treats a simple model for confined liquid water. We use the theory to study how biological matter (antifreeze proteins in particular) inside a narrow liquid cavity in ice interacts with the surrounding ice-water interface. Because in this case the interface is concave and hence the Gibbs-Thomson effect is antagonistic to the liquid phase, the protein-ice interaction is responsible for the persistence of liquid water.

  11. Multi-phase mechanics and multi-scale interactions among soil-water-gas in tsunami disaster

    NASA Astrophysics Data System (ADS)

    Imase, Tatsuya; Maeda, Kenichi; Ito, Yoshimi; Goto, Mai

    2013-06-01

    A tsunami destroys many offshore and seafront structures supported by the sea floor. However, a disaster mechanism to address these concerns has not yet been completely formulated. In this paper, we discuss the ways in which multi-phase interactions among soil, water, and gas and multi-scaling problems from soil, water, and gas particles affect these structures. Based on centrifuge model tests and SPH simulation with three phase interactions, it is shown that the destabilization of offshore structures due to a tsunami not only impacts the sea-front structures, but also causes water seepage into the seabed/seafront soil, which results in the scouring of the soil due to turbulence. Excessive pore water pressure in the soil is generated and liquefaction occurs as a result, which decreases the stiffness of the soil. The scouring and liquefaction occur both at the particle scale and, in the soil, at mass scale, thereby destroying the structures: this is a multi-scale interaction. This study attempts to explain the scouring mechanism by focusing on the tractive force and pore water pressure in the ground. During a tsunami, the traction water flow and the water overflow in the soil generates a vertically upward hydraulic gradient along with excess pore water pressure in the saturated ground and, consequently, scouring is facilitated. Scouring is also expanded when the pore air is blown out of the unsaturated ground. This study finds the scouring in the ground to be facilitated by a three-phase interaction among the soil particles, the pore water, and the pore air.

  12. Interaction of soil type and carbon dioxide concentration in grassland soil pore water nitrogen concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing CO2 concentrations have been shown to limit soil nitrogen availability in terrestrial ecosystems, thereby limiting plant growth. Because changes in nitrogen availability can affect the composition of available nitrogen forms, we are interested in how changes in CO2 concentrations could af...

  13. Investigation of Interactive Effects on Water Flow and Solute Transport in Sandy Loam Soil Using Time Domain Reflectometry

    PubMed Central

    Merdun, Hasan

    2012-01-01

    Surface-applied chemicals move through the unsaturated zone with complex flow and transport processes due to soil heterogeneity and reach the saturated zone, resulting in groundwater contamination. Such complex processes need to be studied by advanced measurement and modeling techniques to protect soil and water resources from contamination. In this study, the interactive effects of factors like soil structure, initial soil water content (SWC), and application rate on preferential flow and transport were studied in a sandy loam field soil using measurement (by time domain reflectometry (TDR)) and modeling (by MACRO and VS2DTI) techniques. In addition, statistical analyses were performed to compare the means of the measured and modeled SWC and EC, and solute transport parameters (pore water velocity and dispersion coefficient) in 12 treatments. Research results showed that even though the effects of soil structural conditions on water and solute transport were not so clear, the applied solution moved lower depths in the profiles of wet versus dry initial SWC and high application rate versus low application rates. The effects of soil structure and initial SWC on water and solute movement could be differentiated under the interactive conditions, but the effects of the application rates were difficult to differentiate under different soil structural and initial SWC conditions. Modeling results showed that MACRO had somewhat better performance than VS2DTI in the estimation of SWC and EC with space and time, but overall both models had relatively low performances. The means of SWC, EC, and solute transport parameters of the 12 treatments were divided into some groups based on the statistical analyses, indicating different flow and transport characteristics or a certain degree nonuniform or preferential flow and transport in the soil. Conducting field experiments with more interactive factors and applying the models with different approaches may allow better understanding of flow and transport processes in addition to the simulations of them in the unsaturated zone. PMID:23012568

  14. Investigation of interactive effects on water flow and solute transport in sandy loam soil using time domain reflectometry.

    PubMed

    Merdun, Hasan

    2012-01-01

    Surface-applied chemicals move through the unsaturated zone with complex flow and transport processes due to soil heterogeneity and reach the saturated zone, resulting in groundwater contamination. Such complex processes need to be studied by advanced measurement and modeling techniques to protect soil and water resources from contamination. In this study, the interactive effects of factors like soil structure, initial soil water content (SWC), and application rate on preferential flow and transport were studied in a sandy loam field soil using measurement (by time domain reflectometry (TDR)) and modeling (by MACRO and VS2DTI) techniques. In addition, statistical analyses were performed to compare the means of the measured and modeled SWC and EC, and solute transport parameters (pore water velocity and dispersion coefficient) in 12 treatments. Research results showed that even though the effects of soil structural conditions on water and solute transport were not so clear, the applied solution moved lower depths in the profiles of wet versus dry initial SWC and high application rate versus low application rates. The effects of soil structure and initial SWC on water and solute movement could be differentiated under the interactive conditions, but the effects of the application rates were difficult to differentiate under different soil structural and initial SWC conditions. Modeling results showed that MACRO had somewhat better performance than VS2DTI in the estimation of SWC and EC with space and time, but overall both models had relatively low performances. The means of SWC, EC, and solute transport parameters of the 12 treatments were divided into some groups based on the statistical analyses, indicating different flow and transport characteristics or a certain degree nonuniform or preferential flow and transport in the soil. Conducting field experiments with more interactive factors and applying the models with different approaches may allow better understanding of flow and transport processes in addition to the simulations of them in the unsaturated zone. PMID:23012568

  15. Seismic evaluation of a cooling water reservoir facility including fluid-structure and soil-structure interaction effects

    SciTech Connect

    Kabir, A.F.; Maryak, M.E.; Bandyopadhyay, R.

    1991-12-31

    Seismic analyses and structural evaluations were performed for a cooling water reservoir of a nuclear reactor facility. The horizontal input seismic motion was the NRC Reg. Guide 1.60 spectrum shape anchored at 0.20 g zero period acceleration. Vertical input was taken as two-thirds of the horizontal input. Soil structure interaction and hydrodynamic effects were addressed in the seismic analyses. Uncertainties in the soil properties were accounted for by considering three soil profiles. Two 2-dimensional SSI models and a 3-dimensional static model, representing different areas of the reservoir structures were developed and analyzed to obtain seismic forces and moments, and accelerations at various locations. The results indicated that both hydrodynamic and soil-structure interaction effects are significant contributors to the seismic responses of the water-retaining walls of the reservoir.

  16. Seismic evaluation of a cooling water reservoir facility including fluid-structure and soil-structure interaction effects

    SciTech Connect

    Kabir, A.F. ); Maryak, M.E.; Bandyopadhyay, R. )

    1991-01-01

    Seismic analyses and structural evaluations were performed for a cooling water reservoir of a nuclear reactor facility. The horizontal input seismic motion was the NRC Reg. Guide 1.60 spectrum shape anchored at 0.20 g zero period acceleration. Vertical input was taken as two-thirds of the horizontal input. Soil structure interaction and hydrodynamic effects were addressed in the seismic analyses. Uncertainties in the soil properties were accounted for by considering three soil profiles. Two 2-dimensional SSI models and a 3-dimensional static model, representing different areas of the reservoir structures were developed and analyzed to obtain seismic forces and moments, and accelerations at various locations. The results indicated that both hydrodynamic and soil-structure interaction effects are significant contributors to the seismic responses of the water-retaining walls of the reservoir.

  17. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation

    NASA Astrophysics Data System (ADS)

    Grossiord, Charlotte; Gessler, Arthur; Granier, André; Berger, Sigrid; Bréchet, Claude; Hentschel, Rainer; Hommel, Robert; Scherer-Lorenzen, Michael; Bonal, Damien

    2014-11-01

    Interactions between tree species in forests can be beneficial to ecosystem functions and services related to the carbon and water cycles by improving for example transpiration and productivity. However, little is known on below- and above-ground processes leading to these positive effects. We tested whether stratification in soil water uptake depth occurred between four tree species in a 10-year-old temperate mixed species plantation during a dry summer. We selected dominant and co-dominant trees of European beech, Sessile oak, Douglas fir and Norway spruce in areas with varying species diversity, competition intensity, and where different plant functional types (broadleaf vs. conifer) were present. We applied a deuterium labelling approach that consisted of spraying labelled water to the soil surface to create a strong vertical gradient of the deuterium isotope composition in the soil water. The deuterium isotope composition of both the xylem sap and the soil water was measured before labelling, and then again three days after labelling, to estimate the soil water uptake depth using a simple modelling approach. We also sampled leaves and needles from selected trees to measure their carbon isotope composition (a proxy for water use efficiency) and total nitrogen content. At the end of the summer, we found differences in the soil water uptake depth between plant functional types but not within types: on average, coniferous species extracted water from deeper layers than did broadleaved species. Neither species diversity nor competition intensity had a detectable influence on soil water uptake depth, foliar water use efficiency or foliar nitrogen concentration in the species studied. However, when coexisting with an increasing proportion of conifers, beech extracted water from progressively deeper soil layers. We conclude that complementarity for water uptake could occur in this 10-year-old plantation because of inherent differences among functional groups (conifers and broadleaves). Furthermore, water uptake depth of beech was already influenced at this young development stage by interspecific interactions whereas no clear niche differentiation occurred for the other species. This finding does not preclude that plasticity-mediated responses to species interactions could increase as the plantation ages, leading to the coexistence of these species in adult forest stands.

  18. Spatial Heterogeneity of Soil Water after Large Rainfall Events in a Dry Forest: Interacting Canopy, Surface and Soil Effects

    NASA Astrophysics Data System (ADS)

    Magliano, P. N.; Fernández, R. J.; Breshears, D. D.; Paez, R. A.; Jobbagy, E. G.

    2014-12-01

    Ecohydrology of dry forest depends on the proportion of rainfall that enters the soil and it is spatial distribution at the patch scale. While the central role of patch scale redistribution has been widely documented, we know less about its response to rainfall intensity and its interplay with site properties (canopy, surface, soil). Here we explore water capture (infiltrated water depth, 24 hours after a rainfall event) and its determinants at the patch scale in a forest stand of the Dry Chaco (33.47 S, 66.44 W, Argentina). Water capture from 4 large rainfall events (>30 mm) was measured along 3 transects (36 m) in 18 regularly spaced (2 m) microsites, complemented by 2 years of hourly TDR moisture measurements in 3 microsites. Twelve canopy, surface and soil variables were characterized at each microsite. As the intensity of rainfall increased across events (9 to 34 mm/h) the heterogeneity of water capture became larger (coefficient of variation from 29 to 53%). Despite the intense internal redistribution of rainfall, net runoff was virtually nil (<3%) for all events, showing high capture at the stand level. Microsite variables influencing water capture changed with rainfall intensity. Canopy and soil litter cover reduced microsite water capture for the lowest intensity event (r=-0.44 and -0.37, respectively), but favor it for the highest intensity one (r=0.44 and 0.39, respectively). On intermediate intensity events water capture was predominantly explained by microtopography (greater capture in low microsites, p<0.05). Frequent TDR measurements supported these results. Water redistribution responds to rainfall intensity, creating different water capture patterns (contrasting effects of microsite conditions) for each rainfall event, an issue that may strongly influence key ecohydrological process such as E/T partition at the stand level. This study expands our perspective on dry forest water capture by quantifying its response to rainfall intensity.

  19. Interaction of carbon dioxide enrichment and soil moisture on photosynthesis, transpiration, and water use efficiency of soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max (L.) Merrill) is one of the most important oil and protein sources in the world. Interactive effect of elevated carbon dioxide (CO2) and soil water availability will have the potential impact on crops and future food security of the world under climate change scenario. A rhizotr...

  20. CHEMFLO-2000: INTERACTIVE SOFTWARE FOR PREDICTING AND VISUALIZING TRANSIENT WATER AND CHEMICAL MOVEMENT IN SOILS AND ASSOCIATED UNCERTAINTIES

    EPA Science Inventory

    An interactive Java applet and a stand-alone application program will be developed based on the CHEMFLO model developed in the mid-1980s and published as an EPA report (EPA/600/8-89/076). The model solves Richards Equation for transient water movement in unsaturated soils, and so...

  1. Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals

    NASA Astrophysics Data System (ADS)

    Oerter, Erik; Finstad, Kari; Schaefer, Justin; Goldsmith, Gregory R.; Dawson, Todd; Amundson, Ronald

    2014-07-01

    In isotope-enabled hydrology, soil and vadose zone sediments have been generally considered to be isotopically inert with respect to the water they host. This is inconsistent with knowledge that clay particles possessing an electronegative surface charge and resulting cation exchange capacity (CEC) interact with a wide range of solutes which, in the absence of clays, have been shown to exhibit δ18O isotope effects that vary in relation to the ionic strength of the solutions. To investigate the isotope effects caused by high CEC clays in mineral-water systems, we created a series of monominerallic-water mixtures at gravimetric water contents ranging from 5% to 32%, consisting of pure deionized water of known isotopic composition with homoionic (Mg, Ca, Na, K) montmorillonite. Similar mixtures were also created with quartz to determine the isotope effect of non-, or very minimally-, charged mineral surfaces. The δ18O value of the water in these monominerallic soil analogs was then measured by isotope ratio mass spectrometry (IRMS) after direct headspace CO2 equilibration. Mg- and Ca-exchanged homoionic montmorillonite depleted measured δ18O values up to 1.55‰ relative to pure water at 5% water content, declining to 0.49‰ depletion at 30% water content. K-montmorillonite enriched measured δ18O values up to 0.86‰ at 5% water content, declining to 0.11‰ enrichment at 30% water. Na-montmorillonite produces no measureable isotope effect. The isotope effects observed in these experiments may be present in natural, high-clay soils and sediments. These findings have relevance to the interpretation of results of direct CO2-water equilibration approaches to the measurement of the δ18O value of soil water. The adsorbed cation isotope effect may bear consideration in studies of pedogenic carbonate, plant-soil water use and soil-atmosphere interaction. Finally, the observed isotope effects may prove useful as molecular scale probes of the nature of mineral-water interactions.

  2. Plant Interactions with Changes in Coverage of Biological Soil Crusts and Water Regime in Mu Us Sandland, China

    PubMed Central

    Gao, Shuqin; Pan, Xu; Cui, Qingguo; Hu, Yukun; Ye, Xuehua; Dong, Ming

    2014-01-01

    Plant interactions greatly affect plant community structure. Dryland ecosystems are characterized by low amounts of unpredictable precipitation as well as by often having biological soil crusts (BSCs) on the soil surface. In dryland plant communities, plants interact mostly as they compete for water resources, and the direction and intensity of plant interaction varies as a function of the temporal fluctuation in water availability. Since BSCs influence water redistribution to some extent, a greenhouse experiment was conducted to test the hypothesis that the intensity and direction of plant interactions in a dryland plant community can be modified by BSCs. In the experiment, 14 combinations of four plant species (Artemisia ordosica, Artemisia sphaerocephala, Chloris virgata and Setaria viridis) were subjected to three levels of coverage of BSCs and three levels of water supply. The results show that: 1) BSCs affected plant interaction intensity for the four plant species: a 100% coverage of BSCs significantly reduced the intensity of competition between neighboring plants, while it was highest with a 50% coverage of BSCs in combination with the target species of A. sphaerocephala and C. virgata; 2) effects of the coverage of BSCs on plant interactions were modified by water regime when the target species were C. virgata and S. viridis; 3) plant interactions were species-specific. In conclusion, the percent coverage of BSCs affected plant interactions, and the effects were species-specific and could be modified by water regimes. Further studies should focus on effects of the coverage of BSCs on plant-soil hydrological processes. PMID:24498173

  3. BIOLOGICAL EFFECTS AND INTERACTIONS OF PESTICIDES IN A SOIL-PLANT-WATER MICROCOSM

    EPA Science Inventory

    A Soil-plant-water microcosm was used to develop a data base for pesticide transport and metabolism and to determine the effects of varying environmental conditions and/or components on chemical movement in a terrestrial ecosystem. The system was used in a comparative transport s...

  4. CHEMFLO-2000: INTERACTIVE SOFTWARE FOR SIMULATING WATER AND CHEMICAL MOVEMENT IN UNSATURATED SOILS

    EPA Science Inventory

    The movement of water and chemicals into and through soils has a large impact upon our environment and the entire ecosystem. Understanding these processes is of great importance in managing, utilizing, and protecting our natural resources. This software was written to enhance our...

  5. Environmental interactions of hydrazine fuels in soil/water systems. Final report, March 1985-September 1987

    SciTech Connect

    Street, J.; Johnston, C.; Mansell, R.; Bloom, S.

    1988-10-01

    Because the Air Force is the primary user of the rocket fuels, hydrazine (Hz), monomethylhydrazine (MMH), and 1,1-dimethylhydrazine (UDMH), it is responsible for the environmental implications associated with the transport, storage, and handling of these fuels. During handling, hydrazine fuels could inadvertently be released to the atmosphere and the surrounding aqueous and terrestrial environments. The studies are divided into the following five areas: aqueous and soil suspension studies, surface interaction studies, biological interaction studies, soil column studies, and soil transport modeling. The objective of this work is to determine the fate of hydrazine fuel released into an aqueous or soil environment. Aqueous degradation studies reveal that the extent of hydrazine degradation and the products formed are highly dependent upon several variables. Among these include the type of container used in the studies, the presence of certain metal ions, the ionic strength, the presence and type of pH buffer, the temperature, the presence of bacteria, and the amount of dissolved oxygen. Aqueous hydrazine degradation is particularly rapid in quartz vessels with copper ions ions and oxygen present. Degradation also increases with increasing ionic strength, pH buffer concentration, temperature, and bacteria content.

  6. SOIL WATER HYSTERESIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since at least the early work of Haines, it has been recognized that volumetric soil water content, W, and hydraulic conductivity, K, are not singular functions of soil water pressure head, h, but rather exhibit considerable variation depending on the wetting and drying history of the soil. The non-...

  7. Space-Time Dynamics of Soil Water and Process Interactions in Semi-Arid Terrain, Colorado, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water is a dominant control of plant growth and hydrologic response in dryland (rainfed) agriculture. In agricultural fields, soil water is typically assumed to move vertically with no differential subsurface lateral flow in semi-arid regions. However, soil water dynamics in the profile can v...

  8. Interactions of soil water content heterogeneity and species diversity patterns in semi-arid steppes on the Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Wu, Gao-Lin; Zhang, Zhi-Nan; Wang, Dong; Shi, Zhi-Hua; Zhu, Yuan-Jun

    2014-11-01

    Soil water is a major driving force for plant community succession in semi-arid area. Many studies have focused on the relationships of species diversity-productivity, but few studies have paid attentions to the effects of soil water content heterogeneity on the plant species diversity in the semi-arid loess regions. To determine relationship of soil water content heterogeneity and plant community structure properties a semi-arid steppe on the Loess Plateau, we conducted a gradient analysis of soil water content variation and above- and below-ground properties of plant communities. Results showed that community coverage, above- and below-ground biomass were significantly and positively related to the surface soil water contents (0-5 cm). Plant diversity (Shannon index and Richness index) were closely correlated to soil water content at the soil depth of 0-10 cm. But plant height, litter biomass and root/shoot ratio were not related to soil water content. These results showed that there is an positive interaction effects for plant diversity and soil water content in the semi-arid grassland communities. Our observations indicate that change of plant species diversity is also an important community responses to soil water content heterogeneity in the semi-arid grassland ecosystem.

  9. Interaction of Actinide Species with Microorganisms & Microbial Chelators: Cellular Uptake, Toxicity, & Implications for Bioremediation of Soil & Ground Water.

    SciTech Connect

    Hakim Boukhalfa Mary, P. Neu Alvin Crumbliss

    2006-03-28

    Microorganisms influence the natural cycle of major elements, including C, N, P, S, and transition metals such as Mn and Fe. Bacterial processes can also influence the behavior of actinides in soil and ground water. While radionuclides have no known biological utility, they have the potential to interact with microorganisms and to interfere with processes involving other elements such as Fe and Mn. These interactions can transform radionuclides and affect their fate and transport. Organic acids, extruded by-products of cell metabolism, can solubilize radionuclides and facilitate their transport. The soluble complexes formed can be taken up by the cells and incorporated into biofilm structures. We have examined the interactions of Pu species with bacterial metabolites, studied Pu uptake by microorganisms and examined the toxicity of Pu and other toxic metals to environmentally relevant bacteria. We have also studied the speciation of Pu(IV) in the presence of natural and synthetic chelators.

  10. Soil Erosion by Water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion by water, the wearing away of the earth's surface by the forces of water and gravity, consists of rock or soil particle dislodgement, entrainment, transport, and deposition. This sequence of events occurs over a wide range of temporal and spatial scales, from raindrop splash moving par...

  11. Trench water-soil chemistry and interactions at the Maxey Flats Site

    SciTech Connect

    Weiss, A. J.; Czyscinski, K. S.

    1980-01-01

    This report is part of an overall program designed to provide an understanding of and to monitor the behavior of existing low-level sites. This investigation will provide source term data for radionuclides and other solutes in trench waters and will describe the physical, chemical, and biological properties of the geochemical system that controls radionuclide movement. General conclusions can be made from the data in terms of source term information to be used in modeling efforts, as well as processes which may affect radionuclide migration. Trench waters are complex anoxic chemical systems which require more extensive investigation to assess their role in radionuclide retention and mobilization. No overall systematic changes in the disposal site trenches were observed during the brief sampling interval. However, changes in some radionuclide and cation concentrations were observed in several trenches. Numerous organic compounds were identified in trench waters at Maxey Flats, some of which have the potential for chelation with radionuclides. The presence of radionuclides and organic compounds in wells UB1 and UB1-A and in nearby trenches indicates communication between the wells and trench water leachates by subsurface migration. Radionuclides were also measured in the new experimental trench dug parallel to trench 27. Aerobic, anaerobic, sulfate reducing, denitrifying, and methanogenic bacteria are present in the leachate samples, and are able to grow anaerobically in trench leachates. Experimental results indicate that the observed sorption K/sub d/ is a function of both solid and liquid phase compositional variations as well as contact time. The observation that e lowest K/sub d/ results are observed with anoxic trench waters and ultrasonicated soils points to the need to use site specific materials and experimental conditions which simulate in situ conditions as closely as possible.

  12. Soil-water interactions in shrink-swell clays: measurements and models across scales

    NASA Astrophysics Data System (ADS)

    Stewart, R. D.; Rupp, D. E.; Abou Najm, M. R.; Selker, J. S.

    2014-12-01

    Shrink-swell clay soils, which are characterized by crack networks that form as the soil dries, are found all over the globe, with up to 350 million hectares being classified as either Vertisols or verticintergrades. When open, soil cracks can exert substantial influence on hydrological processes; however, up until now our ability to quantify and predict soil cracking behavior in real soils has been limited due to insufficient measurements and models. Using measurements taken at multiple scales in the laboratory and in the field, as part of a long-term study, we have developed a new, parsimonious model that integrates the behavior of individual soil clods with plot- and catchment-scale processes such as infiltration and overland flow. Even though the model was developed for vertic soils, it potentially can be applied to other clayey soils in order to better describe common processes such as infiltration, preferential flow, and nutrient transport.

  13. SOIL WATER ENERGY CONCEPTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soil water hydraulic pressure head is composed of matric, overburden, and hydrostatic pressures. The soil solution will flow from higher hydraulic pressure heads to lower hydraulic pressure heads. Piezometers are used to measure the hydrostatic pressure head, and tensiometers are used to measu...

  14. Competitive interactions between established grasses and woody plant seedlings under elevated CO₂ levels are mediated by soil water availability.

    PubMed

    Manea, A; Leishman, M R

    2015-02-01

    The expansion of woody plants into grasslands has been observed worldwide and is likely to have widespread ecological consequences. One proposal is that woody plant expansion into grasslands is driven in part by the rise in atmospheric CO2 concentrations. We have examined the effect of CO2 concentration on the competitive interactions between established C4 grasses and woody plant seedlings in a model grassland system. Woody plant seedlings were grown in mesocosms together with established C4 grasses in three competition treatments (root competition, shoot competition and root + shoot competition) under ambient and elevated CO2 levels. We found that the growth of the woody plant seedlings was suppressed by competition from grasses, with root and shoot competition having similar competitive effects on growth. In contrast to expectations, woody plant seedling growth was reduced at elevated CO2 levels compared to that at the ambient CO2 level across all competition treatments, with the most plausible explanation being reduced light and soil water availability in the elevated CO2 mesocosms. Reduced light and soil water availability in the elevated CO2 mesocosms was associated with an increased leaf area index of the grasses which offset the reductions in stomatal conductance and increased rainfall interception. The woody plant seedlings also had reduced 'escapability' (stem biomass and stem height) under elevated compared to ambient CO2 levels. Our results suggest that the expansion of woody plants into grasslands in the future will likely be context-dependent, with the establishment success of woody plant seedlings being strongly coupled to the CO2 response of competing grasses and to soil water availability. PMID:25388876

  15. MANE: A MULTIPHASE, AQUEOUS, NON-STEADY STATE EQUILIBRIUM MODEL FOR SIMULATING SOIL-WATER INTERACTIONS

    EPA Science Inventory

    A variety of chemical equilibrium models have been developed to help assess environmental chemistry problems, but few were specifically developed as research and teaching tools for use in conjunction with soil chemistry experiments. MANE model was developed to calculate equilibri...

  16. Triazine Soil Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fate of triazine herbicides in soils is controlled by three basic processes: transformation, retention, and transport. Sorption of triazines on surfaces of soil particles is the primary means by which triazines are retained in soils. Soils are very complex mixtures of living organisms, various t...

  17. Interactions between root water uptake, groundwater levels, and soil moisture dynamics in Tuolumne Meadows, Yosemite National Park, CA

    NASA Astrophysics Data System (ADS)

    Lowry, C.; Loheide, S. P.

    2009-12-01

    In high elevation meadow environments within the Sierra Nevada Mountains soil moisture is controlled by the position of the water table and the partitioning of evapotranspiration through root water uptake and evaporation at the land surface. Because of the relative lack of precipitation over the growing season plant communities rely on stored soil moisture and shallow groundwater during the dry summer months. Field result, from Tuolumne Meadows show both temporally and spatially dynamic soil moisture patterning caused by the timing of spring snowmelt and subsequent drying of the meadow. Through the use of numerical modeling we are able to examine the temporal and spatial distribution of soil moisture and the potential impact on water use by plant communities. Results highlight the importance of both the position of the water table in the early growing season and sediment layering within the meadow on plant water up take. These results have implications for current meadow restorations projects and stress the importance of designing projects that focus on soil moisture dynamics in order to supply sufficient water for native plant communities.

  18. Hydraulic Redistribution of Soil Water in a Drained Loblolly Pine Plantation: Quantifying Patterns and Controls over Soil-to-Root and Canopy-to-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Domec, J.; Noormets, A.; King, J. S.; Sun, G.; McNulty, S. G.; Gavazzi, M. J.; Strickland, S.; Boggs, J. L.

    2007-12-01

    The conversion of wetlands to intensively managed forest lands in eastern North Carolina is widespread and the consequences on water and carbon balances are not well studied. Quantification of evapotranspiration (ET), tree transpiration and their biophysical regulation are needed for assessing forest water management options. We characterized vertical variation in the diurnal and seasonal soil volumetric water content at 10 cm intervals to evaluate changes in water availability for root uptake and monitored eddy covariance ET and tree transpiration (sap flux) in a drained Loblolly pine (Pinus taeda L.) plantation. We also quantified the magnitude of hydraulic redistribution (HR), the passive movement of soil water from deep to shallow roots, to identify factors affecting the seasonal dynamics of root water uptake, root and plant water potentials and stomatal conductance. Soil water content varied with soil depth and total water use from the upper 1m peaked between 4 and 6.5 mm/day during the growing season and was strongly correlated and similar to ET (ET represented 90-95% of total water depletion). After periods of more than 10 days without rain, water extraction shifted to the deeper layers, and recharge from HR approached 0.5 mm/day in the upper 60 cm. However, the upper 30cm accounted for 40% of total water depletion from the upper 1m at peak water uptake (>4 mm/day), and increased to 65% during days of low water uptake (<2 mm/day), illustrating the contribution of deeper roots to water uptake during days of high evaporative demand. This result was supported by the fact that deep roots (from 30-50cm) accounted for 65% of the total water redistributed. Because of stomatal regulation to prevent water potentials from reaching critical values that would cause significant loss of tree hydraulic conductivity, maximum tree transpiration during high evaporative demand remained constant at around 3 mm/day. Tree transpiration represented on average 60% of ET. However, it represented only 50% of ET on days following rain events and up to 80% of ET after prolonged periods without rain. We propose that HR prevented predawn water potentials from decreasing during periods of increasing soil water deficit, therefore maintaining a constant driving force for water uptake of around 1.7 MPa. It was thought that HR was an important mechanism for maintaining shallow root function during drought and preventing total stomatal closure but our study shows that even in wet conditions with soil water potentials never dropping below -0.6 MPa, HR may play a role in wetland hydrological balance. This first approximation of the extent of HR in this ecosystem suggests that it is likely to be an important process in wet forests of North Carolina.

  19. Crop Residue and Soil Water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield is greatly influenced by the amount of water that moves from the soil, through the plant, and out into the atmosphere. Winter wheat yield responds linearly to available soil water content at planting (bu/a = 5.56 + 5.34*inches). Therefore, storing precipitation in the soil during non-crop...

  20. Field study of gravel admix, vegetation, and soil water interactions: Protective Barrier Program Status Reprt - FY 1989

    SciTech Connect

    Waugh, W.J.; Thiede, M.E.; Kemp, C.J.; Cadwell, L.L. Link, S.O.

    1990-08-01

    Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (Westinghouse Hanford) are collaborating on a field study of the effects of gravel admixtures on plant growth and soil water storage in protective barriers. Protective barriers are engineered earthern covers designed to prevent water, plants, and animals from contacting buried waste and transporting contaminants to groundwater or the land surface. Some of the proposed designs include gravel admixtures or gravel mulches on the barrier surface to control soil loss by wind and runoff. The purpose of this study is to measure, in a field setting, the influence of surface gravel additions on soil water storage and plant cover. The study plots are located northwest of the Yakima Gate in the McGee Ranch old field. Here we report the status of work completed in FY 1989 on the creation of a data management system, a test of water application uniformity, field calibration of neutron moisture gages, and an analysis of the response of plants to various combinations of gravel admixtures and increased rainfall. 23 refs., 11 figs., 6 tabs.

  1. Sources, interactions, and ecological impacts of organic contaminants in water, soil, and sediment: an introduction to the special series.

    PubMed

    Pignatello, Joseph J; Katz, Brian G; Li, Hui

    2010-01-01

    Agricultural and urban activities result in the release of a large number of organic compounds that are suspected of impacting human health and ecosystems: herbicides, insecticides, human and veterinary pharmaceuticals, natural and synthetic hormones, personal care products, surfactants, plasticizers, fire retardants, and others. Sorbed reservoirs of these compounds in soil represent a potentially chronic source of water contamination. This article is an introduction to a series of technical papers stemming from a symposium at the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America 2008 Annual Meeting, which was held jointly with The Geological Society of America, The Gulf Coast Association of Geological Scientists, and the Houston Geological Society, under one of the Joint Meeting's overarching themes: Emerging Trace Contaminants in Surface and Ground Water Generated from Waste Water and Solid Waste Application. The symposium emphasized the role of soils as sources, sinks, and reaction catalysts for these contaminants and the occurrence and fate of these contaminants in surface and underground water supplies. Topics covered included novel advances in analytical techniques, transport of infectious agents, occurrence and fate of veterinary pharmaceuticals, characterization of sorption mechanism, biotic and abiotic transformation reactions, the role of soil components, occurrence and fate in wastewater treatment systems, transport of engineered nanoparticles, groundwater contamination resulting from urban runoff, and issues in water reuse. Overviews of the reports, trends, gaps in our knowledge, and topics for further research are presented in this special series of papers. The technical papers in this special series reflect current gains in knowledge and simultaneously underscore how poorly we are able to predict the fate and, hence, the associated risk to ecological and human receptors of these contaminants. PMID:20830899

  2. Semiarid soil and water conservation

    SciTech Connect

    Finkel, H.J.

    1986-01-01

    This book provides an overview of soil and water conservation and emphasizes practical control measures. Contents include surface hydrology, analysis of the erosion process, and practical control measures through: correct land use; crop rotations; shifting cultivation; contour farming; and strip cropping; Water harvesting, recently developed systems now in use, and rangeland management for soil and water conservation in semi-arid regions are reviewed.

  3. Soil and Human Interactions in Maya Wetlands

    NASA Astrophysics Data System (ADS)

    Beach, Timothy; Luzzadder-Beach, Sheryl

    2013-04-01

    Since the early 1990s, we have studied Maya interaction with soils in Mexico, Belize, Guatemala, and elsewhere. We studied upland and lowland soils, but here we focus on seasonal or 'Bajo' wetlands and perennial wetlands for different reasons. Around the bajos, the ancient Maya focused on intensive agriculture and habitation despite the difficulties their Vertisol soils posed. For the perennial wetlands, small populations spread diffusely through Mollisol and Histisol landscapes with large scale, intensive agro-ecosystems. These wetlands also represent important repositories for both environmental change and how humans responded in situ to environmental changes. Work analyzing bajo soils has recorded significant diversity but the soil and sediment record shows two main eras of soil instability: the Pleistocene-Holocene transition as rainfall fluctuated and increased and tropical forest pulsed through the region, and the Maya Preclassic to Classic 3000 to 1000 BP as deforestation, land use intensity, and drying waxed and waned. The ancient Maya adapted their bajo soil ecosystems successfully through agro-engineering but they also withdrew in many important places in the Late Preclassic about 2000 BP and Terminal Classic about 1200 BP. We continue to study and debate the importance of perennial wetland agro-ecosystems, but it is now clear that Maya interaction with these soil landscapes was significant and multifaceted. Based on soil excavation and coring with a broad toolkit of soil stratigraphy, chemistry, and paleoecology from 2001 to 2013, our results show the ancient Maya interacted with their wetland soils to maintain cropland for maize, tree crops, arrow root, and cassava against relative sea level rise, increased flooding, and aggradation by gypsum precipitation and sedimentation. We have studied these interactions across an area of 2000 km2 in Northern Belize to understand how Maya response varied and how these soil environments varied over time and distance. Most areas dealt with water table rise and gypsum aggradation from extremely sulfur- and calcium-rich water sources. Thus far we have evidence for Archaic to Classic aggradation (5000 BP to the present) and Classic period fields and canals as mostly piecemeal attempts by the Maya to adapt to these and other environmental changes. Wetland fields were mainly Classic period systems (1500 to 1000 BP) but varied from long- to short-lived. We found one example of a very Late/Terminal Classic (c. 1200 BP), preplanned reclamation project on a floodplain. One system had some reoccupation in the Postclassic about 800 BP. These findings and a recent discovery in Campeche, MX display the burgeoning evidence for intricate Maya connections with tropical wetland soils.

  4. Container Soil-Water Reactions.

    ERIC Educational Resources Information Center

    Spomer, L. Art; Hershey, David R.

    1990-01-01

    Presented is an activity that illustrates the relationship between the soil found in containers and soil in the ground including the amount of air and water found in each. Sponges are used to represent soil. Materials, procedures, and probable results are described. (KR)

  5. Spatial patterns of interaction among climate variability and change, soil water deficit and transpiration in small mountain catchments of Southern Sierra Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Son, K.; Tague, C.

    2011-12-01

    In snow-dominated mountain systems, a warming climate alters soil water deficit through changing the timing and magnitude of moisture inputs as precipitation and snowmelt and through changes in the timing and magnitude of evapotranspiration losses. The net effect of climate warming on soil water deficit and associated ecosystem processes ultimately depends on the interaction between changes in inputs and outputs and on vegetation, micro-climate and soil properties that control the sensitivity of soil water to changes in input/output drivers. In mountain environments, steep spatial gradients result in substantial variation in atmospheric forcing and vegetation and soil properties over relatively short spatial scales, which necessitate providing finer-scale assessment of climate change impact. Measurements of soil moisture and forest responses to climate are often made at plot scales but are limited in spatial coverage. Coupled eco-hydrologic models, applied at relatively fine (m) scales provide a method of extrapolating findings from local measurements and exploring hillslope and watershed scale impacts of climate warming on moisture deficit. In this study, we use RHESSys (Regional hydro-ecologic simulation system) combined with spatially intensive monitoring of coupled ecohydrologic variables at the Southern Sierra Critical Zone Observatory (SSCZO), located in the Sierra National Forest, California. We initially use the model to identify clusters of distinctive water deficit behavior as summarized by indices of summertime soil moisture and transpiration recessions. The resulting clusters demonstrate that both elevational differences in energy availability and topographic controls on drainage are 1st order controls on spatial patterns of summertime moisture deficit and tree transpiration. We then use these initial model clusters to guide soil moisture and sapflux data collection. The collected data are used to characterize soil moisture deficit and transpiration for each cluster evaluate and improve the model predictions. Our initial results highlight the importance of adequate representation of micro-climate patterns as controls on summer moisture deficits and transpiration. We then use the model to show how spatial patterns of summertime moisture deficit and transpiration may change under future climate scenarios. We apply two approaches which are 1) using 2 and 4 C° uniform temperature adding to the historic meteorological records and 2) using a downscaled GCM climate projection.

  6. Investigation of soil-atmosphere interaction in pyroclastic soils

    NASA Astrophysics Data System (ADS)

    Rianna, Guido; Pagano, Luca; Urciuoli, Gianfranco

    2014-03-01

    This paper investigates the interaction between soil and atmosphere in pyroclastic soils with a view to understanding whether and to what extent the prediction of the hydraulic (and mechanical) behaviour of geotechnical problems (cuts, slope stabilities, embankments, foundation, retaining structures) regulated by rainfall-induced fluctuations of matric suction is influenced by evaporation phenomena. Evaporation fluxes are quantified and compared with other fluxes (precipitation, run-off, deep drainage) affecting soil water content and matric suction. This work is based on the data collected through a physical model over 2 years of experimental tests. The model consisted of a 1 m3 tank, filled in this case with pyroclastic soil and exposed to natural weather elements. The system was extensively monitored to record atmospheric and soil variables. The results provided by the experiments highlight the importance of the top-soil state in determining the intensities of infiltrating rainfall and actual evaporation. The results also bring to light the significance of evaporation which, during the dry season, largely prevails over infiltration, raising suction to very high values. Also during the wet season, evaporation gives rise to a non-negligible flux with respect to the infiltrated precipitation. The reliability of two pre-existing empirical models to estimate evaporation flux is also investigated and appraised within this paper.

  7. A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems

    USGS Publications Warehouse

    Wershaw, R. L.

    1986-01-01

    A generalized model of humic materials in soils and sediments, which is consistent with their observed properties, is presented. This model provides a means of understanding the interaction of hydrophobic pollutants with humic materials. In this model, it is proposed that the humic materials in soils and sediments consist of a number of different oligomers and simple compounds which result from the partial degradation of plant remains. These degradation products are stabilized by incorporation into humic aggregates bound together by weak bonding mechanisms, such as hydrogen bonding, pi bonding, and hydrophobic interactions. The resulting structures are similar to micelles or membranes, in which the interiors of the structures are hydrophobic and the exteriors are hydrophilic. Hydrophobic compounds will partition into the hydrophobic interiors of the humic micelles or "membrane-like" structures. ?? 1986.

  8. Profiling soil water content sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A waveguide-on-access-tube (WOAT) sensor system based on time domain reflectometry (TDR) principles was developed to sense soil water content and bulk electrical conductivity in 20-cm (8 inch) deep layers from the soil surface to depths of 3 m (10 ft) (patent No. 13/404,491 pending). A Cooperative R...

  9. GRAVIMETRIC MEASUREMENT OF SOIL WATER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sampling methods that enable simultaneous measurement of both bulk density (BD) and gravimetric water content (GWC) are desirable because BD is essential for converting GWC to a volumetric water content (VWC). Expression of soil water as VWC enables calculation of several fundamental attributes of ...

  10. Estimating soil water retention using soil component additivity model

    NASA Astrophysics Data System (ADS)

    Zeiliger, A.; Ermolaeva, O.; Semenov, V.

    2009-04-01

    Soil water retention is a major soil hydraulic property that governs soil functioning in ecosystems and greatly affects soil management. Data on soil water retention are used in research and applications in hydrology, agronomy, meteorology, ecology, environmental protection, and many other soil-related fields. Soil organic matter content and composition affect both soil structure and adsorption properties; therefore water retention may be affected by changes in soil organic matter that occur because of both climate change and modifications of management practices. Thus, effects of organic matter on soil water retention should be understood and quantified. Measurement of soil water retention is relatively time-consuming, and become impractical when soil hydrologic estimates are needed for large areas. One approach to soil water retention estimation from readily available data is based on the hypothesis that soil water retention may be estimated as an additive function obtained by summing up water retention of pore subspaces associated with soil textural and/or structural components and organic matter. The additivity model and was tested with 550 soil samples from the international database UNSODA and 2667 soil samples from the European database HYPRES containing all textural soil classes after USDA soil texture classification. The root mean square errors (RMSEs) of the volumetric water content estimates for UNSODA vary from 0.021 m3m-3 for coarse sandy loam to 0.075 m3m-3 for sandy clay. Obtained RMSEs are at the lower end of the RMSE range for regression-based water retention estimates found in literature. Including retention estimates of organic matter significantly improved RMSEs. The attained accuracy warrants testing the 'additivity' model with additional soil data and improving this model to accommodate various types of soil structure. Keywords: soil water retention, soil components, additive model, soil texture, organic matter.

  11. Water in the critical zone: soil, water and life from profile to planet

    NASA Astrophysics Data System (ADS)

    Kirkby, Mike

    2015-04-01

    Water is essential to the critical zone between bedrock and the atmosphere, and without water the soil is dead. Water provides the basis for the abundant life within the soil and, interacting with micro-organisms, drives the key processes in the critical zone. This review looks at the balances that control the flow of water through the soil, and how water movement is one of the major controls on the fluxes and transformations that control the formation, evolution and loss of material that controls the 'life' and 'health' of the soil. At regional scales, climate, acting largely through the soil hydrology, plays a major part in determining the type of soils developed - from hyper arid soils dominated by aeolian inputs, through arid and semi-arid soils with largely vertical water exchanges with the atmosphere, to temperate soils with substantial lateral drainage, and humid soils dominated by organic peats. Soil water balance controls the partition of precipitation between evaporative loss, lateral subsurface flow and groundwater recharge, and, in turn, has a major influence on the potential for plant growth and on the lateral connectivity between soils on a hillslope. Sediment and solute balances distinguish soils of accumulation from soils that tend towards a stable chemical depletion ratio. Reflecting the availability of water and the soil material, carbon balance plays a major role in soil horizonation and distinguishes soils dominated by mineral or organic components. At finer catena and catchment scales, lateral connectivity, or its absence, determines how soils evolve through the transfer of water and sediment downslope, creating more or less integrated landscapes in a balance between geomorphological and pedological processes. Within single soil profiles, the movement of water controls the processes of weathering and soil horizonation by ion diffusion, advective leaching and bioturbation, creating horizonation that, in turn, modifies the hydrological responses of both soil and landscape. For example, the soil hydrological regime helps to contrast soils that accumulate more and less soluble constituents of the parent material.

  12. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.

    PubMed

    Gong, Chunmei; Wang, Jiajia; Hu, Congxia; Wang, Junhui; Ning, Pengbo; Bai, Juan

    2015-08-01

    C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges. PMID:26257361

  13. Remote sensing of soil water content at large scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water content at the near surface is a critical parameter for understanding land surface atmosphere interactions, influencing surface energy balances. Using microwave radiometry, an accurate global map of surface soil water content can be generated on a near daily basis. The accuracy of the p...

  14. INTERACTION OF METHYL-TERT BUTYL ETHER AND WATER STRESS ON SEED GERMINATION AND SEEDLING GROWTH IN SOIL MICROCOSMS

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) is a widespread contaminant in surface and ground water in the United States. Frequently irrigation is used to water fields to germinate planted seeds and sustain plant growth. A likely possibility exists that water used may have some MTBE. Our s...

  15. Simulations and field observations of root water uptake in plots with different soil water availability.

    NASA Astrophysics Data System (ADS)

    Cai, Gaochao; Vanderborght, Jan; Couvreur, Valentin; Javaux, Mathieu; Vereecken, Harry

    2015-04-01

    Root water uptake is a main process in the hydrological cycle and vital for water management in agronomy. In most models of root water uptake, the spatial and temporal soil water status and plant root distributions are required for water flow simulations. However, dynamic root growth and root distributions are not easy and time consuming to measure by normal approaches. Furthermore, root water uptake cannot be measured directly in the field. Therefore, it is necessary to incorporate monitoring data of soil water content and potential and root distributions within a modeling framework to explore the interaction between soil water availability and root water uptake. But, most models are lacking a physically based concept to describe water uptake from soil profiles with vertical variations in soil water availability. In this contribution, we present an experimental setup in which root development, soil water content and soil water potential are monitored non-invasively in two field plots with different soil texture and for three treatments with different soil water availability: natural rain, sheltered and irrigated treatment. Root development is monitored using 7-m long horizontally installed minirhizotubes at six depths with three replicates per treatment. The monitoring data are interpreted using a model that is a one-dimensional upscaled version of root water uptake model that describes flow in the coupled soil-root architecture considering water potential gradients in the system and hydraulic conductances of the soil and root system (Couvreur et al., 2012). This model approach links the total root water uptake to an effective soil water potential in the root zone. The local root water uptake is a function of the difference between the local soil water potential and effective root zone water potential so that compensatory uptake in heterogeneous soil water potential profiles is simulated. The root system conductance is derived from inverse modelling using measurements of soil water potentials, water contents, and root distributions. The results showed that this modelling approach reproduced soil water dynamics well in the different plots and treatments. Root water uptake reduced when the effective soil water potential decreased to around -70 to -100 kPa in the root zone. Couvreur, V., Vanderborght, J., and Javaux, M.: A simple three dimensional macroscopic root water uptake model based on the hydraulic architecture approach, Hydrol. Earth Syst. Sci., 16, 2957-2971, doi:10.5194/hess-16-2957-2012, 2012.

  16. A review on temporal stability of soil water contents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal stability of soil water content (TS SWC) has been observed across a wide range of soil types, landscapes, climates and scales. A better understanding of TS SWC controls and their interactions needs to be developed. The objective of this work is to develop a comprehensive inventory of publis...

  17. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  18. Macroscopic modeling of plant water uptake: soil and root resistances

    NASA Astrophysics Data System (ADS)

    Vogel, Tomas; Votrubova, Jana; Dohnal, Michal; Dusek, Jaromir

    2014-05-01

    The macroscopic physically-based plant root water uptake (RWU) model, based on water-potential-gradient formulation (Vogel et al., 2013), was used to simulate the observed soil-plant-atmosphere interactions at a forest site located in a temperate humid climate of central Europe and to gain an improved insight into the mutual interplay of RWU parameters that affects the soil water distribution in the root zone. In the applied RWU model, the uptake rates are directly proportional to the potential gradient and indirectly proportional to the local soil and root resistances to water flow. The RWU algorithm is implemented in a one-dimensional dual-continuum model of soil water flow based on Richards' equation. The RWU model is defined by four parameters (root length density distribution, average active root radius, radial root resistance, and the threshold value of the root xylem potential). In addition, soil resistance to water extraction by roots is related to soil hydraulic conductivity function and actual soil water content. The RWU model is capable of simulating both the compensatory root water uptake, in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers, and the root-mediated hydraulic redistribution of soil water, contributing to more natural soil moisture distribution throughout the root zone. The present study focusses on the sensitivity analysis of the combined soil water flow and RWU model responses in respect to variations of RWU model parameters. Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154.

  19. Soil water sensing for water balance, ET, and WUE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soil water balance can be solved for evapotranspiration (ET) using data from either weighing lysimetry or soil water sensing and measurement. Weighing lysimeters are expensive and, although accurate, are difficult to manage and afford little replication. Direct soil water measurement by coring i...

  20. Soil water sensing for water balance, ET and WUE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soil water balance can be solved for evapotranspiration (ET) using data from either weighing lysimetry or soil water sensing and measurement. Weighing lysimeters are expensive and, although accurate, are difficult to manage and afford little replication. Direct soil water measurement by coring i...

  1. Modeling the Soil Water and Energy Balance of a Mixed Grass Rangeland and Evaluating a Soil Water Based Drought Index in Wyoming

    NASA Astrophysics Data System (ADS)

    Engda, T. A.; Kelleners, T. J.; Paige, G. B.

    2013-12-01

    Soil water content plays an important role in the complex interaction between terrestrial ecosystems and the atmosphere. Automated soil water content sensing is increasingly being used to assess agricultural drought conditions. A one-dimensional vertical model that calculates incoming solar radiation, canopy energy balance, surface energy balance, snow pack dynamics, soil water flow, snow-soil heat exchange is applied to calculate water flow and heat transport in a Rangeland soil located near Lingel, Wyoming. The model is calibrated and validated using three years of measured soil water content data. Long-term average soil water content dynamics are calculated using a 30 year historical data record. The difference between long-term average soil water content and observed soil water content is compared with plant biomass to evaluate the usefulness of soil water content as a drought indicator. Strong correlation between soil moisture surplus/deficit and plant biomass may prove our hypothesis that soil water content is a good indicator of drought conditions. Soil moisture based drought index is calculated using modeled and measured soil water data input and is compared with measured plant biomass data. A drought index that captures local drought conditions proves the importance of a soil water monitoring network for Wyoming Rangelands to fill the gap between large scale drought indices, which are not detailed enough to assess conditions at local level, and local drought conditions. Results from a combined soil moisture monitoring and computer modeling, and soil water based drought index soil are presented to quantify vertical soil water flow, heat transport, historical soil water variations and drought conditions in the study area.

  2. Soil water repellency of Antarctic soils (Elephant Point). First results

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Oliva, Marc; Ruiz Fernández, Jesus

    2015-04-01

    Hydrophobicity it is a natural properties of many soils around the world. Despite the large body of research about soil water hydrophobicity (SWR) in many environments, little information it is available about Antarctic soils and their hydro-geomorphological consequences. According to our knowledge, no previous work was carried out on this environment. Soil samples were collected in the top-soil (0-5 cm) and SWR was analysed according to the water drop penetration test. The preliminary results showed that all the soils collected were hydrophilic, however further research should be carried out in order to understand if SWR changes with soil depth and if have implications on soil infiltration during the summer season.

  3. Soil Water and Temperature System (SWATS) Handbook

    SciTech Connect

    Bond, D

    2005-01-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  4. Data assimilation with soil water content sensors and pedotransfer functions in soil water flow modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water flow models are based on a set of simplified assumptions about the mechanisms, processes, and parameters of water retention and flow. That causes errors in soil water flow model predictions. Soil water content monitoring data can be used to reduce the errors in models. Data assimilation (...

  5. Mechanics of wheel-soil interaction

    NASA Technical Reports Server (NTRS)

    Houland, H. J.

    1973-01-01

    An approximate theory for wheel-soil interaction is presented which forms the basis for a practical solution to the problem. It is shown that two fundamental observations render the problem determinate: (1) The line of action of the resultant of radial stresses acting at the wheel soil interface approximately bisects the wheel-soil contact angle for all values of slip. (2) A shear stress surface can be hypothesized. The influence of soil inertia forces is also evaluated. A concept of equivalent cohesion is introduced which allows a convenient experimental comparison for both cohesive and frictional soils. This theory compares favorably with previous analyses and experimental data, and shows that soil inertia forces influencing the motion of a rolling wheel can be significant.

  6. A minimalist probabilistic description of root zone soil water

    USGS Publications Warehouse

    Milly, P.C.D.

    2001-01-01

    The probabilistic response of depth-integrated soil water to given climatic forcing can be described readily using an existing supply-demand-storage model. An apparently complex interaction of numerous soil, climate, and plant controls can be reduced to a relatively simple expression for the equilibrium probability density function of soil water as a function of only two dimensionless parameters. These are the index of dryness (ratio of mean potential evaporation to mean precipitation) and a dimensionless storage capacity (active root zone soil water capacity divided by mean storm depth). The first parameter is mainly controlled by climate, with surface albedo playing a subsidiary role in determining net radiation. The second is a composite of soil (through moisture retention characteristics), vegetation (through rooting characteristics), and climate (mean storm depth). This minimalist analysis captures many essential features of a more general probabilistic analysis, but with a considerable reduction in complexity and consequent elucidation of the critical controls on soil water variability. In particular, it is shown that (1) the dependence of mean soil water on the index of dryness approaches a step function in the limit of large soil water capacity; (2) soil water variance is usually maximized when the index of dryness equals 1, and the width of the peak varies inversely with dimensionless storage capacity; (3) soil water has a uniform probability density function when the index of dryness is 1 and the dimensionless storage capacity is large; and (4) the soil water probability density function is bimodal if and only if the index of dryness is <1, but this bimodality is pronounced only for artificially small values of the dimensionless storage capacity.

  7. Least limiting water range of soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The least limiting water range (LLWR) has been developed as an index of the soil structural quality. The LLWR was defined as the region bounded by the upper and lower soil water content over which water, oxygen, and mechanical resistance become major limitations for root growth. Thus, it combines th...

  8. Interaction between BSM-contaminated soils and Italian ryegrass.

    PubMed

    Li, Huashou; Li, Na; Lin, Chuxia; He, Hongzhi; Chen, Guikui

    2012-01-01

    The interaction among the bensulfuron-methyl, growth of Italian ryegrass, and soil chemical/biochemical/microbiological parameters was investigated in a microcosm experiment. The bensulfuron-methyl added to the soil can be rapidly degraded by certain fungi and actinomycetes present in the original paddy rice soil. The growth of Italian ryegrass significantly accelerated the in-soil degradation of bensulfuron-methyl in its rhizosphere. The uptake of bensulfuron-methyl by ryegrass increased with increasing dosage level of bensulfuron-methyl. However, the phytoextraction of bensulfuron-methyl by ryegrass contributed insignificantly to the total removal of the soil bensulfuron-methyl. Within the dosage range set in this study, the root development of ryegrass was not adversely affected by the presence of the soil bensulfuron-methyl although the fresh biomass of shoot was slightly reduced in the higher dosage treatments. This can be attributed to the adsorption of the added bensulfuron-methyl by soil colloids and consequently the reduction of bensulfuron-methyl level in the soil pore water to a concentration sufficiently lower than the toxic level. The growth of ryegrass significantly increased soil pH and the activities of phosphatase and peroxidase but reduced the EC and the activities of urease in the rhizospheric soil. PMID:22424068

  9. Uptake and Hydraulic Redistribution of Soil Water in a Natural Forested Wetland and in two Contrasting Drained Loblolly Pine Plantations: Quantifying Patterns over Soil-to-Root and Canopy-to-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Domec, J.; King, J. S.; Noormets, A.; Sun, G.; McNulty, S. G.; Gavazzi, M. G.; Treasure, E.; Boggs, J. L.

    2009-05-01

    The conversion of wetlands to intensively managed forest lands in eastern North Carolina is widespread and the consequences on water and carbon balances are not well studied. Quantification of evapotranspiration (ET), tree transpiration and their biophysical regulation are needed for assessing forest water management options. We characterized vertical variation in the diurnal and seasonal soil volumetric water content at 10 cm intervals to evaluate changes in water availability for root uptake and monitored eddy covariance ET and tree transpiration (sap flux) in three contrasting loblolly pine (Pinus taeda L.) stands. Those stands included a 50- yr-old wetland natural regeneration (NG), a 17-yr-old drained mid-rotation plantation (MP) and a 5-yr-old drained plantation (YP) in eastern North Carolina. We also quantified the magnitude of hydraulic redistribution (HR), the passive movement of soil water from deep to shallow roots, to identify factors affecting the seasonal dynamics of root water uptake, root and plant water potentials and stomatal conductance. In NG, soil water content was always at full saturation and total tree water use peaked between 6-7 mm/day, and this stand was used as reference. In MP, soil water content varied with soil depth and total water use from the upper 1m peaked between 4 and 6.5 mm/day during the growing season and was strongly correlated and similar to ET (ET represented 90-95% of total water depletion). In YP, soil water used was limited to the upper 30 cm and was strongly affected by summer drought by declining progressively from 0.9 mm/day in spring to 0.4 m/day in September. After periods of more than 10 days without rain, water extraction in MP shifted to the deeper layers, and recharge from HR approached 20% of ET. During days of high evaporative demand, water use in MP was comparable to NG thanks to HR and to the contribution of deeper roots to water uptake. In YP, HR never contributed for more than 8% of ET. There was no HR in NG. Tree transpiration represented on average 60% and 40% of ET in MP and YP, respectively. However, in MP it represented only 50% of ET on days following rain events and up to 80% of ET after prolonged periods without rain. In MP, we propose that HR prevented soil water potentials from decreasing during periods of increasing soil water deficit, therefore maintaining a constant driving force for water uptake. In MP, HR was an important mechanism for maintaining shallow root function during drought and preventing total stomatal closure. Our study shows that HR prevented soil water potentials from dropping below -0.6 MPa, and played a role in wetland hydrological balance by increasing water uptake in MP to level close to those of trees growing on pure wetlands (NG).

  10. Temporal stability of soil water content and soil water flux patterns across agricultural fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When an agricultural field is repeatedly surveyed for soil water content, sites often can be spotted where soil is consistently wetter or consistently dryer than average across the study area. Temporal stability presents significant interest for upscaling observed soil water content, improving soil ...

  11. Current Advancements and Challenges in Soil-Root Interactions Modelling

    NASA Astrophysics Data System (ADS)

    Schnepf, A.; Huber, K.; Abesha, B.; Meunier, F.; Leitner, D.; Roose, T.; Javaux, M.; Vanderborght, J.; Vereecken, H.

    2014-12-01

    Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.

  12. Current advancements and challenges in soil-root interactions modelling

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Huber, Katrin; Abesha, Betiglu; Meunier, Felicien; Leitner, Daniel; Roose, Tiina; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry

    2015-04-01

    Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.

  13. Interactive effects of ozone and climate on water use, soil moisture content and streamflow in a southern Applachian forest in the USA

    SciTech Connect

    McLaughlin, Samuel B.; Wullschleger, Stan D; Sun, G.; Nosal, M.

    2007-01-01

    Documentation of the degree and direction of effects of ozone on transpiration of canopies of mature forest trees is critically needed to model ozone effects on forest water use and growth in a warmer future climate. Patterns of sap flow in stems and soil moisture in the rooting zones of mature trees, coupled with late-season streamflow in three forested watersheds in east Tennessee, USA, were analyzed to determine relative influences of ozone and other climatic variables on canopy physiology and streamflow patterns. Statistically significant increases in whole-tree canopy conductance, depletion of soil moisture in the rooting zone, and reduced late-season streamflow in forested watersheds were detected in response to increasing ambient ozone levels. Short-term changes in canopy water use and empirically modeled streamflow patterns over a 23-yr observation period suggest that current ambient ozone exposures may exacerbate the frequency and level of negative effects of drought on forest growth and stream health.

  14. Climate Change Effects on Soil Water and Temperature

    NASA Astrophysics Data System (ADS)

    Seyfried, M. S.; Chandler, D. G.; Marks, D. G.

    2011-12-01

    Soil serves as the critical interface between physical changes in climate and the biological impacts of those changes. While there is general agreement among Global Climate Models concerning the amount and trend of world air temperature change in the upcoming decades, there is less agreement regarding precipitation trends and much less agreement with respect to trends in the "soil climate" (soil water content and temperature). The difficulties with soil are probably related to variable and poorly tested land surface parameterizations. Working at sites spanning a 1000 m elevation gradient in the Reynolds Creek Experimental Watershed (RCEW) in Idaho, we showed that, over a 45 year period, the annual air temperature increased about 2° C. During that time, the amount of precipitation remained constant, but the precipitation phase shifted considerably from snow to rain depending on site elevation. Most predictions for this environment are for drier, warmer soils. We used soil water and temperature data collected at the same sites for the past 30 years in the RCEW to determine if those trends occurred. We found no significant trend in either soil water content or temperature at any site over the 30 year period. The lack of a soil water trend is related to the vegetation dynamics in this semiarid environment, where very low leaf are index values, and very dry soils much of the year, serve to restrict the impact of increased evaporative demand on transpiration. The lack of soil temperature trends is related to interactions with vegetative and snow cover, especially snow cover, which can effectively modulate exceptionally cold air temperatures. In both cases, it is clear that climate change is not directly imprinted on the soil, but affected by interactions with what is growing in, or laying on the soil.

  15. Water Retention of Extremophiles and Martian Soil Simulants Under Close to Martian Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Jänchen, J.; Bauermeister, A.; Feyh, N.; deVera, J.-P.

    2012-05-01

    We report data about interaction of moisture with soil simulants and extremophiles under Martian environmental conditions contributing on atmosphere/surface modelling and on effects determining the water inventory of the upper soil layer of Mars.

  16. Soil/Structure Interactions in Earthquakes

    NASA Technical Reports Server (NTRS)

    Ramey, G. W.; Moore, R. K.; Yoo, C. H.; Bush, Thomas D., Jr.; Stallings, J. M.

    1986-01-01

    In effort to improve design of Earthquake-resistant structures, mathematical study undertaken to simulate interactions among soil, foundation, and superstructure during various kinds of vibrational excitation. System modeled as three lumped masses connected vertically by springs, with lowest mass connected to horizontal vibrator (representing ground) through springs and dashpot. Behavior of springs described by elastic or elastoplastic force/deformation relationships. Relationships used to approximate nonlinear system behavior and soil/foundation-interface behavior.

  17. Plant Water Uptake in Drying Soils1

    PubMed Central

    Lobet, Guillaume; Couvreur, Valentin; Meunier, Félicien; Javaux, Mathieu; Draye, Xavier

    2014-01-01

    Over the last decade, investigations on root water uptake have evolved toward a deeper integration of the soil and roots compartment properties, with the goal of improving our understanding of water acquisition from drying soils. This evolution parallels the increasing attention of agronomists to suboptimal crop production environments. Recent results have led to the description of root system architectures that might contribute to deep-water extraction or to water-saving strategies. In addition, the manipulation of root hydraulic properties would provide further opportunities to improve water uptake. However, modeling studies highlight the role of soil hydraulics in the control of water uptake in drying soil and call for integrative soil-plant system approaches. PMID:24515834

  18. Fractal processes in soil water retention

    SciTech Connect

    Tyler, S.W.; Wheatcraft, S.W. )

    1990-05-01

    The authors propose a physical conceptual model for soil texture and pore structure that is based on the concept of fractal geometry. The motivation for a fractal model of soil texture is that some particle size distributions in granular soils have already been shown to display self-similar scaling that is typical of fractal objects. Hence it is reasonable to expect that pore size distributions may also display fractal scaling properties. The paradigm that they used for the soil pore size distribution is the Sierpinski carpet, which is a fractal that contains self similar holes (or pores) over a wide range of scales. The authors evaluate the water retention properties of regular and random Sierpinski carpets and relate these properties directly to the Brooks and Corey (or Campbell) empirical water retention model. They relate the water retention curves directly to the fractal dimension of the Sierpinski carpet and show that the fractal dimension strongly controls the water retention properties of the Sierpinski carpet soil. Higher fractal dimensions are shown to mimic clay-type soils, with very slow dewatering characteristics and relatively low fractal dimensions are shown to mimic a sandy soil with relatively rapid dewatering characteristics. Their fractal model of soil water retention removes the empirical fitting parameters from the soil water retention models and provides paramters which are intrinsic to the nature of the fractal porous structure. The relative permeability functions of Burdine and Mualem are also shown to be fractal directly from fractal water retention results.

  19. Hydrology: The diversified economics of soil water

    NASA Astrophysics Data System (ADS)

    Bowen, Gabriel

    2015-09-01

    Soil water that evaporates or is tapped by plants is largely separate from that which runs into streams and recharges groundwater. This finding has big implications for our understanding of water cycling. See Letter p.91

  20. Pesticide interactions with soils affected by olive oil mill wastewater

    NASA Astrophysics Data System (ADS)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM content increase and be less than that. Sorption interactions of herbicides with soils demonstrate a strong hysteresis (which is not expected to be related to a biodegradation). The data suggests that the OMWW - soil interaction seems to change the shape of the apparent sorption isotherms of organic sorbates, and, possibly, their sorption mechanisms: from a Langmuir-like sorption isotherm (describing the adsorptive interactions with a saturation of sorption sites) in the native soils to the sigmoidal or linear isotherms (expected for a partitioning into the bulk OM phases and their swelling) in the OMWW-amended soils. These results may have a significant impact on multiple agricultural and hydrological aspects, e.g., such as the application rate of herbicides in the field, and their possible release and the long term effect on groundwater. The authors acknowledge the support from the OLIVEOIL project (SCHA849/13) funded by DFG.

  1. Soil Water and Shallow Groundwater Relations in an Agricultural Hillslope

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shallow water tables contribute to soil water variations under rolling topography, and soil properties contribute to shallow water table fluctutations. Preferential flow through large soil pores can cause a rise in the water table with little increase in soil water except near the soil surface. Late...

  2. Water as a Reagent for Soil Remediation

    SciTech Connect

    Jayaweera, Indira S.; Marti-Perez, Montserrat; Diaz-Ferrero, Jordi; Sanjurjo, Angel

    2003-03-06

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, for remediating petroleum-contaminated soils. The bench-scale demonstration of the process has shown great promise, and the implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and provide a standalone technology for removal of both volatile and heavy components from contaminated soil.

  3. America's Soil and Water: Condition and Trends.

    ERIC Educational Resources Information Center

    1981

    A review of conditions and trends regarding soil and water resources of rural nonfederal lands of the United States is presented in this publication. Maps, charts, and graphs illustrate the data collected on various aspects of soil and water use and practice. Topic areas considered include: (1) land use patterns; (2) classes of land; (3)…

  4. [Stable Isotopes Characters of Soil Water Movement in Shijiazhuang City].

    PubMed

    Chen, Tong-tong; Chen, Hui; Han, Lu; Xing, Xing; Fu, Yang-yang

    2015-10-01

    In this study, we analyzed the stable hydrogen and oxygen isotope values of precipitation, soil water, irrigation water that collected in Shijiazhuang City from April 2013 to May 2014 to investigate the changing rule of the stable isotopes in different soil profiles and the process of soil water movement according to using the isotope tracer technique. The results showed that the mean excess deuterium of the local precipitation was -6.188 5 per thousand. Those reflected that the precipitation in Shijiazhuang City mainly brought by the monsoon from the ocean surface moisture, and also to some extent by the local evaporation. Precipitation was the main source of the soil water and the irrigation water played the supplementary role. In the rainy season, precipitation was enough to supply the soil water. The stable oxygen isotopes at 10-100 cm depth decreased with the increase of depth, the maximum depth of evaporation in the rainy season reached 40 cm. The peak of stable oxygen isotopes of soil water pushed down along the profile, which was infected by the interaction of the precipitation infiltration, evaporation and the mixing water. PMID:26841595

  5. Water-Mediated Hydrophobic Interactions.

    PubMed

    Ben-Amotz, Dor

    2016-05-27

    Hydrophobic interactions are driven by the combined influence of the direct attraction between oily solutes and an additional water-mediated interaction whose magnitude (and sign) depends sensitively on both solute size and attraction. The resulting delicate balance can lead to a slightly repulsive water-mediated interaction that drives oily molecules apart rather than pushing them together and thus opposes their direct (van der Waals) attraction for each other. As a consequence, competing solute size-dependent crossovers weaken hydrophobic interactions sufficiently that they are only expected to significantly exceed random thermal energy fluctuations for processes that bury more than ∼1 nm(2) of water-exposed area. PMID:27215821

  6. Soil Water Repellency in Amazonian Pastures

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Lehmann, J.; Fernandes, E. C.

    2002-12-01

    Conversion of forest to pastures represents the largest land use change in the Brazilian Amazon. Soil water repellency (hydrophobicity) impacts water, carbon, and nutrient pathways on millions of hectares worldwide and has been shown to result from fire. However, the extent and severity of soil water repellency and its impact on tropical agroecosystems remains an important knowledge gap. Water repellent soils were identified in pastures in Northwest Mato Grosso. The intensity and spatial variability of soil water repellency were determined in situ at the mineral soil surface at both micro- (mm<) and meso-scales (m<) following several weeks without rainfall. Measurements were made using the Molarity of an Ethanol Droplet (MED) test in pastures of various lengths of time since burning. Drops of increasing ethanol molarity were applied until the surface tension of the solution was sufficiently small to overcome the hydrophobic repulsion of the soil. Soils of recently burned pastures exhibited extreme water repellency (MED > 3.5 N). Soil water repellency of pastures was found to be significantly correlated to the length of time since the pasture was last burned (R2=0.38; p=0.02). Pastures that had not been burned for over a year were found to be strongly water repellent (MED > 2 N), with 7 years without burning required for pastures to become hydrophilic (MED <1 N). High MED values following pasture fires may indicate the role of water repellency in pasture degradation. The areal coverage of Brachiaria brizantha grass tufts was measured as a proxy for net primary productivity of pastures under varying grazing pressures, and was also found to be correlated with hydrophobicity (R2=0.38; p=0.06). Surprisingly, soil water repellency was found to increase for increases in B. brizantha coverage. This may be due to the increased hydrophobicity-inducing potential of a pasture with greater biomass. While pasture soils were found to be generally compacted with bulk density (0-5 cm) ranging from 1.31 to 1.52, the relationship between hydrophobicity and surface soil compaction is non-significant. Spatial variability of soil water repellency was high at both meso- and micro-scales, with hydrophilic point measurements (MED < 1.0 N) scattered through generally hydrophobic soil. Dissipation over time of soil water repellency is consistent with hydrophobicity theory.

  7. Hygrometric Measurement of Soil Water Potential

    NASA Astrophysics Data System (ADS)

    Butler, C. D.; Tyner, J. S.

    2004-12-01

    Knowledge of soil water potential as a function of water content is required to make unsaturated flow and transport predictions. Although numerous methods are available to measure soil water potential, they are largely difficult and time consuming procedures. The goal of the research is to develop a hygrometric method that will perform satisfactorily with minimal required hardware or technician time. The volume of a drop of saline water will change due to evaporation or condensation until its salinity, and hence osmotic potential, is equal to the water potential in the adjacent gas phase. This relationship is exploited by our method to measure soil moisture potential. To begin, a drop of KCl solution with known mass and KCL concentration is placed adjacent to a soil sample with known water content inside a hermetically sealed container. The mass of the KCl drop is recorded over time with an electronic balance. As thermodynamic equilibrium is achieved, the mass of water within the KCl drop changes until its osmotic potential is equal to the capillary potential of water within the soil sample. After the mass of the KCl drop reaches equilibrium, the KCl concentration is calculated, which enables direct determination of the water potential within the soil sample. Unlike transient hygrometric measurements of water potential using psychrometers, no calibration is required.

  8. Increasing Efficiency of Water Use in Agriculture through Management of Soil Water Repellency to Optimize Soil and Water Productivity

    NASA Astrophysics Data System (ADS)

    Moore, Demie; Kostka, Stan; McMillan, Mica; Gadd, Nick

    2010-05-01

    Water's ability to infiltrate and disperse in soils, and soil's ability to receive, transport, retain, filter and release water are important factors in the efficient use of water in agriculture. Deteriorating soil conditions, including development of soil water repellency, negatively impact hydrological processes and, consequently, the efficiency of rainfall and irrigation. Soil water repellency is increasingly being identified in diverse soils and cropping systems. Recently research has been conducted on the use of novel soil surfactants (co-formulations of alkyl polyglycoside and block copolymer surfactants) to avoid or overcome soil water repellency and enhance water distribution in soils. Results indicate that this is an effective and affordable approach to maintaining or restoring soil and water productivity in irrigated cropping systems. Results from studies conducted in Australia and the United States to determine how this technology modifies soil hydrological behavior and crop yields will be presented. A range of soils and various crops, including potatoes, corn, apples and grapes, were included. Several rates were compared to controls for effect on soil moisture levels, soil water distribution, and crop yield. An economic analysis was also conducted in some trials. Treatments improved rootzone water status, significantly increased crop yield and quality, and in some cases allowed significant reductions in water requirements. Where assessed, a positive economic return was generated. This technology holds promise as a strategy for increasing efficiency of water use in agriculture.

  9. Acid-base characteristics of the Grass Pond watershed in the Adirondack Mountains of New York State, USA: interactions between soil, vegetation and surface waters

    NASA Astrophysics Data System (ADS)

    McEathron, K. M.; Mitchell, M. J.; Zhang, L.

    2012-09-01

    Grass Pond watershed is located within the Southwestern Adirondack Mountain region of New York State, USA. This region receives some of the highest rates of acidic deposition in North America and is particularly sensitive to acidic inputs due to many of its soils having shallow depths and being generally base-poor. Differences in soil chemistry and tree species between seven subwatersheds were examined in relation to acid-base characteristics of the seven major streams that drain into Grass Pond. Mineral soil pH, stream water BCS and pH exhibited a positive correlation with sugar maple basal area (p = 0.055; 0.48 and 0.39, respectively). Black cherry basal area was inversely correlated with stream water BCS, ANCc and NO3- (p = 0.23; 0.24 and 0.20, respectively). Sugar maple basal areas were positively correlated with watershed characteristics associated with the neutralization of atmospheric acidic inputs while in contrast, black cherry basal areas showed opposite relationships to these same watershed characteristics. Canonical Correspondence Analysis indicated that black cherry had a distinctive relationship with forest floor chemistry apart from the other tree species, specifically a strong positive association with forest floor NH4 while sugar maple had a distinctive relationship with stream chemistry variables, specifically a strong positive association with stream water ANCc, BCS and pH. Our results provide evidence that sugar maple is acid-intolerant or calciphilic tree species and also demonstrate that black cherry is likely an acid-tolerant tree species.

  10. Acid-base characteristics of the Grass Pond watershed in the Adirondack Mountains of New York State, USA: interactions among soil, vegetation and surface waters

    NASA Astrophysics Data System (ADS)

    McEathron, K. M.; Mitchell, M. J.; Zhang, L.

    2013-07-01

    Grass Pond watershed is located within the southwestern Adirondack Mountain region of New York State, USA. This region receives some of the highest rates of acidic deposition in North America and is particularly sensitive to acidic inputs due to many of its soils having shallow depths and being generally base poor. Differences in soil chemistry and tree species between seven subwatersheds were examined in relation to acid-base characteristics of the seven major streams that drain into Grass Pond. Mineral soil pH, stream water BCS (base-cation surplus) and pH exhibited a positive correlation with sugar maple basal area (p = 0.055; 0.48 and 0.39, respectively). Black cherry basal area was inversely correlated with stream water BCS, ANC (acid neutralizing capacity)c and NO3- (p = 0.23; 0.24 and 0.20, respectively). Sugar maple basal areas were positively associated with watershed characteristics associated with the neutralization of atmospheric acidic inputs while in contrast, black cherry basal areas showed opposite relationships to these same watershed characteristics. Canonical correspondence analysis indicated that black cherry had a distinctive relationship with forest floor chemistry apart from the other tree species, specifically a strong positive association with forest floor NH4, while sugar maple had a distinctive relationship with stream chemistry variables, specifically a strong positive association with stream water ANCc, BCS and pH. Our results provide evidence that sugar maple is acid-intolerant or calciphilic tree species and also demonstrate that black cherry is likely an acid-tolerant tree species.

  11. Performance evaluation of TDT soil water content and watermark soil water potential sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the performance of digitized Time Domain Transmissometry (TDT) soil water content sensors (Acclima, Inc., Meridian, ID) and resistance-based soil water potential sensors (Watermark 200, Irrometer Company, Inc., Riverside, CA) in two soils. The evaluation was performed by compar...

  12. Water movement in stony soils: The influence of stoniness on soil water content profiles

    NASA Astrophysics Data System (ADS)

    Novak, Viliam; Knava, Karol

    2010-05-01

    WATER MOVEMENT IN STONY SOILS: THE INFLUENCE OF STONINESS ON SOIL WATER CONTENT PROFILES Viliam Novák, Karol Kňava Institute of Hydrology, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3, Slovakia, e-mail: novak@uh.savba.sk Soils containing rock fragments are widespread over the world, on Europe such soil account for 30%, 60% in Mediterranean region. In comparison to fine earth soils (soil particles are less then 2 mm) stony soils contain rock fragments characterized by the low retention capacity and hydraulic conductivity. So, for stony soils -in comparison to the fine-earth soils - is typical lower hydraulic conductivity and retention capacity, which lead to the decrease decrease of infiltration rate and low water retention. So, water movement and its modeling in stony soil would differ from fine earth (usually agricultural) soil. The aim of this contribution is to demonstrate the differences in water movement in homogeneous soil (fine earth) and stony soil. The influence of different stoniness on soil water content and soil water dynamics was studied too. Windthrow at High Tatra mountains in Slovakia (November 2004) cleared nearly 12 000 ha of 80 year conifers and this event initiated complex research of windthrow impact on the ecosystem. The important part of this study was water movement in impacted area. Specific feature of the soil in this area was moraine soil consisting of fine earth, characterized as silty sand, with the relative stone content up to 0.49, increasing with depth. Associated phenomenon to the forest clearing is the decrease of rain interception and higher undercanopy precipitation. Conifers interception capacity can be three times higher than low canopy interception, and can reach up to 40% of annual precipitation in Central Europe. Stones in the soil are decreasing infiltration rate, but paradoxically increased understorey precipitation and followingly the increased cumulative infiltration led to the increase of the soil water content of the upper 1 meter soil layer up to 53 mm at the end of vegetation period in comparison to the afforested area. Finally, soil water content profiles of stony soil differ from homogeneous ones and contain less water comparing to soil without stones.

  13. Interaction of fecal coliforms with soil aggregates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land-applied manures may contain various contaminants that cause water pollution and concomitant health problems. Some of these pollutants are bacteria, and fecal coliforms (FC) have been widely used as an indicator of bacterial contamination. Experiments on bacteria attachment to soil are tradition...

  14. mySoil: Crowd-Sourcing Soil Water Repellency Data to Create a Global Assessment

    NASA Astrophysics Data System (ADS)

    Hallin, Ingrid; Robinson, David A.; Doerr, Stefan H.; Douglas, Peter; Lawley, Russell; Shelley, Wayne; Urbanek, Emilia

    2014-05-01

    Soil water repellency (SWR) alters the way water interacts with soil by impacting hydrological and biogeochemical cycling to an extent which is not yet fully understood. Most studies have focused on SWR in specific environments and habitats, mostly in Mediterranean climates, but SWR has been increasingly observed in a range of habitats from the tropics to the northern latitudes. To better assess the distribution of this phenomenon, we propose using citizen science to create a means of crowd-sourcing SWR data from around the globe using the mySoil app. The water drop penetration time (WDPT) test, in which the length of time a drop of water remains on the soil surface is measured and a corresponding qualitative water repellency class is assigned to the soil, provides useful data and is easy to use. We propose adding a simple, standardised WDPT protocol to the mySoil app and web portal so both academics and non-scientists can contribute to the collection of SWR data from around the world. The protocol would include guidelines on drop size and the number of drops to apply, and would encourage inclusion of details such as vegetation cover, soil moisture conditions, last rainfall, and broad habitat. By initially engaging with researchers to create a back bone of respondents, we believe we can develop a global assessment that will reveal the distribution of the SWR phenomenon.

  15. Soil water content by Karl Fischer titration

    SciTech Connect

    Prunty, L.; Zellis, M.K.; Bell, J.S.

    1997-12-31

    Specific analytical determination of water content is often desirable in contaminated soils. Karl Fischer (KF) titration is useful for this purpose, since it consumes only H{sub 2}O, even in the presence of other volatile substances. Although widely used for water content determination in industrial and food products, KF has been virtually ignored in soil and environmental science. Oven drying (OD), conversely, is considered the standard method of soil water determination, but is an indiscriminate determiner of all volatiles. The authors examined KF titration for soil water content determination. Two soil types were mixed with varying amounts of water and octane or toluene. The prepared samples containing water only, water and octane, and water and toluene were analyzed for volatile/moisture content using OD/KF analysis. Soil moisture values determined by the calibrated KF method (w{sub c}) compared favorably to those determined by OD (w{sub 0}) in terms of regression slope, intercept, correlation coefficient, and Student`s t. Regression slopes ranged from 0.980 to 1.009 while intercepts ranged from {minus}0.6 to 7.8 g kg{sup {minus}1}. Plots of the data show essentially a 1:1 correspondence of w{sub c} to w{sub o}.

  16. The soil water balance in a mosaic of clumped vegetation

    NASA Astrophysics Data System (ADS)

    Pizzolla, Teresa; Manfreda, Salvatore; Caylor, Kelly; Gioia, Andrea; Iacobellis, Vito

    2014-05-01

    The spatio-temporal distribution of soil moisture influences the plant growth and the distribution of terrestrial vegetation. This effect is more evident in arid and semiarid ecosystems where the interaction between individuals and the water limited conditions play a fundamental role, providing environmental conditions which drive a variety of non-linear ecohydrological response functions (such as transpiration, photosynthesis, leakage). In this context, modeling vegetation patterns at multiple spatial aggregation scales is important to understand how different vegetation structures can modify the soil water distribution and the exchanged fluxes between soil and atmosphere. In the present paper, the effect of different spatial vegetation patterns, under different climatic scenarios, is investigated in a patchy vegetation mosaic generated by a random process of individual tree canopies and their accompanying root system. Vegetation pattern are generated using the mathematical framework proposed by Caylor et al. (2006) characterized by a three dimensional stochastic vegetation structure, based on the density, dispersion, size distribution, and allometry of individuals within a landscape. A Poisson distribution is applied to generate different distribution of individuals paying particular attention on the role of clumping on water distribution dynamics. The soil water balance is evaluated using the analytical expression proposed by Laio et al. (2001) to explore the influence of climate and vegetation patterns on soil water balance steady-state components (such as the average rates of evaporation, the root water uptake and leakage) and on the stress-weighted plant water uptake. Results of numerical simulations show that clumping may be beneficial for water use efficiency at the landscape scale. References Caylor, Kelly K., P. D'Odorico and I. Rodriguez Iturbe: On the ecohydrology of structurally heterogeneous semiarid landscape. Water Resour. Res., 28, W07424, 2006. Laio, F., A. Porporato, L., Ridolfi and I. Rodriguez Iturbe: Plants in water controlled ecosystems: Active role in hydrological processes and response to water stress, II. Probabilistic soil moisture dynamics, Adv. Water Resour., 24(7), 707-723,2001.

  17. Black Carbon - Soil Organic Matter abiotic and biotic interactions

    NASA Astrophysics Data System (ADS)

    Cotrufo, Francesca; Boot, Claudia; Denef, Karolien; Foster, Erika; Haddix, Michelle; Jiang, Xinyu; Soong, Jennifer; Stewart, Catherine

    2014-05-01

    Wildfires, prescribed burns and the use of char as a soil amendment all add large quantities of black carbon to soils, with profound, yet poorly understood, effects on soil biology and chemical-physical structure. We will present results emerging from our black carbon program, which addresses questions concerning: 1) black carbon-soil organic matter interactions, 2) char decomposition and 3) impacts on microbial community structure and activities. Our understanding derives from a complementary set of post-fire black carbon field surveys and laboratory and field experiments with grass and wood char amendments, in which we used molecular (i.e., BPCA, PLFA) and isotopic (i.e., 13C and 15N labelled char) tracers. Overall, emerging results demonstrate that char additions to soil are prone to fast erosion, but a fraction remains that increases water retention and creates a better environment for the microbial community, particularly favoring gram negative bacteria. However, microbial decomposition of black carbon only slowly consumes a small fraction of it, thus char still significantly contributes to soil carbon sequestration. This is especially true in soils with little organic matter, where black carbon additions may even induce negative priming.

  18. Soil water evaporation and crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  19. Intrusion of Soil Water through Pipe Cracks

    EPA Science Inventory

    This report describes a series of experiments conducted at U.S. EPAs Test and Evaluation Facility in 2013-2014 to study the intrusion of contaminated soil water into a pipe crack during simulated backflow events. A test rig was used consisting of a 3 x 3 x 3 acrylic soil bo...

  20. Intrusion of Soil Water through Pipe Cracks

    EPA Science Inventory

    This report describes a series of experiments conducted at U.S. EPA’s Test and Evaluation Facility in 2013-2014 to study the intrusion of contaminated soil water into a pipe crack during simulated backflow events. A test rig was used consisting of a 3’ x 3’ x 3’ acrylic soil bo...

  1. Water retention of biochar amended soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We analyzed the water holding capacities of soils amended with biochars made from switchgrass, pecan shells, peanut hulls, poultry litter, and hardwood sawdust. Soils were amended with 20 g/kg (44 tonnes/ha) of each biochar produced at both high (>500 degrees C) and low (<400 degrees C) temperatures...

  2. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    NASA Astrophysics Data System (ADS)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and Darcy's law is no longer valid) was at a relatively high degree of saturation of 0.8. This finding is important as many water flow analyses in the literature assume that Darcy's law is valid over a much wider range of degrees of saturation, an error that potentially may lead to overestimates of water flow in unsaturated soil layers.

  3. New soil water sensors for irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  4. Water retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality

    NASA Astrophysics Data System (ADS)

    Andry, H.; Yamamoto, T.; Irie, T.; Moritani, S.; Inoue, M.; Fujiyama, H.

    2009-06-01

    SummaryHydrophilic polymers can swell by absorbing huge volumes of water or aqueous solutions. This property has led to many practical applications of these new materials, particularly in arid regions for improving water retention in sandy soils and the water supply to plants grown on them. The effects of two hydrophilic polymers, carboxymethylcellulose (RF) and isopropyl acrylamide (BF) on the water holding capacity and saturated hydraulic conductivity ( KS) of a sandy soil at varying soil temperature and water quality were evaluated. The RF was less efficient in absorbing water than BF, but the efficiency of BF in retaining water was negatively affected by its thermo-sensitivity and the quality of water. The temperature dependence of the water absorption was not clear for the soils treated with RF, whereas, the efficiency of BF treatment in absorbing water decreased significantly ( P < 0.05) with increasing soil temperature. The dependence of the KS on soil temperature differed with the type of hydrophilic polymer used. The KS of the control soil remained nearly constant as the soil temperature increased. The KS of the BF treated soil increased significantly ( P < 0.05) and linearly with increasing soil temperature, while that of soil treated with RF showed a quadratic response. The soil-absorbent mixtures exhibited different water retention characteristics under different soil temperature conditions. The increase in soil temperature did not affect the water retention characteristics curve of the control. The effect of soil temperature on the water potential curve of the soil treated with RF was not clear particularly when the temperature increased from 25 to 35 °C. The water potential curve for soil-BF mixtures showed that the water content value at field capacity shifted from 0.21 to 0.10 cm 3 cm -3 for 0.1% and from 0.27 to 0.12 cm 3 cm -3 for 0.2%, as the soil temperature increased from 15 to 35 °C. This implies that the soil-BF absorbent mixtures would release some moisture as the soil temperature would increase from 15 to 35 °C, and this water could be lost by percolation or taken up by plant. It was found that available water content increased up to four times with RF as compared to control soil whereas it increased up to five times with BF treatment. At high temperature, the difference was much reduced except for RF at 0.2%. This understanding of the characteristics of the absorbents and the interactions among absorbents, soil, and temperature would be of help in water management in sandy soil.

  5. The interaction between soil erosion and soil organisms in temperate agroecosystems: nematode redistribution in tramlines

    NASA Astrophysics Data System (ADS)

    Baxter, Craig; Rowan, John S.; McKenzie, Blair M.; Neilson, Roy

    2014-05-01

    Arable agriculture presents a unique set of challenges, and one of the most important is soil erosion. Whilst policy and practice look towards sustainable intensification of production to ensure food security, fundamental gaps in our understanding still exist. The physical processes involved in the detachment, transport and deposition of soil are well characterised but further research considering chemical and nutrient transport, fertiliser and pesticide losses, and environmental impacts to downstream environments is still required. Furthermore the interaction between soil erosion and soil organisms have largely been ignored, even though soil organisms serve a myriad of functions essential in the provision of soil ecosystem goods and services. Here we present the findings of a field-scale experiment into soil biotic redistribution undertaken at the James Hutton Institute's Balruddery Farm, Scotland (Link Tramlines Project XDW8001). Farm vehicle-tyre wheelings left in arable fields (tramlines) to enable crop spraying during the crop growth cycle have been identified as key transport pathways for sediment and associated nutrients. We tested the hypothesis that soil organisms were also transported by tramline erosion. During the winter of 2012/13 an experiment was undertaken to measure soil organism export from unbound hillslope plots subject to four different tramline treatments set out in a randomised block design. We used soil nematodes as a model organism as they are ubiquitous and sensitive to disturbance and an established indicator taxa of biological and physico-chemical changes in soil. Tramline treatments included a control tyre (conventional tractor tyre), a control tyre with a sown tramline, a low pressure tyre with sown tramline, and a control tyre with a spiked harrow. Post-event sampling of rainfall events was undertaken, and a range of variables measured in the laboratory. The spiked harrow treatment produced the greatest overall reductions in nematode export with 95% less nematodes exported, compared with the control treatment. We observed wholesale non-selective transport of all nematode trophic groups present in the soil. The findings of this experiment are twofold. Firstly, we demonstrate that soil organisms are transported by erosion processes and confirm that tramlines are key hydrological pathways. Secondly, we highlight practical on-farm solutions that have potential to decrease soil organism losses. These results provide important baseline information to improve our understanding of soil erosion impacts to the wider soil ecosystem. The results help to inform soil and water conservation measures for sustainable agriculture.

  6. Closing the loop of the soil water retention curve

    USGS Publications Warehouse

    Lu, Ning; Alsherif, N; Wayllace, Alexandra; Godt, Jonathan W.

    2015-01-01

    The authors, to their knowledge for the first time, produced two complete principal soil water retention curves (SWRCs) under both positive and negative matric suction regimes. An innovative testing technique combining the transient water release and imbibition method (TRIM) and constant flow method (CFM) was used to identify the principal paths of SWRC in the positive pore-water pressure regime under unsaturated conditions. A negative matric suction of 9.8 kPa is needed to reach full saturation or close the loop of the SWRC for a silty soil. This work pushes the understanding of the interaction of soil and water into new territory by quantifying the boundaries of the SWRC over the entire suction domain, including both wetting and drying conditions that are relevant to field conditions such as slope wetting under heavy rainfall or rapid groundwater table rise in earthen dams or levees.

  7. Fly ash dynamics in soil-water systems

    SciTech Connect

    Sharma, S.; Fulekar, M.H.; Jayalakshmi, C.P. )

    1989-01-01

    Studies regarding the effluents and coal ashes (or fly ash) resulting from coal burning are numerous, but their disposal and interactions with the soil and water systems and their detailed environmental impact assessment with concrete status reports on a global scale are scanty. Fly ash dynamics in soil and water systems are reviewed. After detailing the physical composition of fly ash, physicochemical changes in soil properties due to fly ash amendment are summarized. Areas covered include texture and bulk density, moisture retention, change in chemical equilibria, and effects of fly ash on soil microorganisms. Plant growth in amended soils is discussed, as well as plant uptake and accumulation of trace elements. In order to analyze the effect of fly ash on the physicochemical properties of water, several factors must be considered, including surface morphology of fly ash, pH of the ash sluice water, pH adjustments, leachability and solubility, and suspended ash and settling. The dynamics of fly ash in water systems is important due to pollution of groundwater resources from toxic components such as trace metals. Other factors summarized are bioaccumulation and biomagnification, human health effects of contaminants, and the impact of radionuclides in fly ash. Future research needs should focus on reduction of the environmental impact of fly ash and increasing utilization of fly ash as a soil amendment. 110 refs., 2 figs., 10 tabs.

  8. Transient soil moisture profile of a water-shedding soil cover in north Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Gonzales, Christopher; Baumgartl, Thomas; Scheuermann, Alexander

    2014-05-01

    In current agricultural and industrial applications, soil moisture determination is limited to point-wise measurements and remote sensing technologies. The former has limitations on spatial resolution while the latter, although has greater coverage in three dimensions, but may not be representative of real-time hydrologic conditions of the substrate. This conference paper discusses the use of elongated soil moisture probes to describe the transient soil moisture profile of water-shedding soil cover trial plots in north Queensland, Australia. Three-metre long flat ribbon cables were installed at designed depths across a soil cover with substrate materials from mining activities comprising of waste rocks and blended tailings. The soil moisture measurement is analysed using spatial time domain reflectometry (STDR) (Scheuermann et al., 2009) Calibration of the flat ribbon cable's soil moisture measurement in waste rocks is undertaken in a glasshouse setting. Soil moisture retention and outflows are monitored at specific time interval by mass balance and water potential measurements. These data sets together with the soil hydrologic properties derived from laboratory and field measurements are used as input in the numerical code on unsaturated flow, Hydrus2D. The soil moisture calculations of the glasshouse calibration using this numerical method are compared with results from the STDR soil moisture data sets. In context, the purpose of the soil cover is to isolate sulphide-rich mine wastes from atmospheric interaction as oxidation and leaching of these materials may result to acid and metalliferous drainage. The long term performance of a soil cover will be described in terms of the quantities and physico-chemical characteristics of its outflows. With the soil moisture probes set at automated and pre-determined measurement time intervals, it is expected to distinguish between macropore and soil moisture flows during high intensity rainfall events and, also continuously update data sets on soil moisture retention, especially during long periods of drought. As such, description of the soil cover water balance will be more elaborate as the soil moisture profile will be described in terms of temporal and spatial variability. Moreover, this field data set can lend support on the evaluation of the potential use of mine wastes as cover materials with respect to their hydrologic and geochemical properties.

  9. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-11-12

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, to separate petroleum-related contaminants and other hazardous pollutants from soil and sediments. In this process, water with added electrolytes (inexpensive and environmentally friendly) is used as the extracting solvent under subcritical conditions (150-300 C). The use of electrolytes allows us to operate reactors under mild conditions and to obtain high separation efficiencies that were hitherto impossible. Unlike common organic solvents, water under subcritical conditions dissolves both organics and inorganics, thus allowing opportunities for separation of both organic and inorganic material from soil. In developing this technology, our systematic approach was to (1) establish fundamental solubility data, (2) conduct treatability studies with industrial soils, and (3) perform a bench-scale demonstration using a highly contaminated soil. The bench-scale demonstration of the process has shown great promise. The next step of the development process is the successful pilot demonstration of this technology. Once pilot tested, this technology can be implemented quite easily, since most of the basic components are readily available from mature technologies (e.g., steam stripping, soil washing, thermal desorption). The implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and will provide a stand-alone technology for removal of both volatile and heavy components from contaminated soil.

  10. Passive Microwave Observation of Soil Water Infiltration

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; Schmugge, Thomas J.; Rawls, Walter J.; ONeill, Peggy E.; Parlange, Marc B.

    1997-01-01

    Infiltration is a time varying process of water entry into soil. Experiments were conducted here using truck based microwave radiometers to observe small plots during and following sprinkler irrigation. Experiments were conducted on a sandy loam soil in 1994 and a silt loam in 1995. Sandy loam soils typically have higher infiltration capabilities than clays. For the sandy loam the observed brightness temperature (TB) quickly reached a nominally constant value during irrigation. When the irrigation was stopped the TB began to increase as drainage took place. The irrigation rates in 1995 with the silt loam soil exceeded the saturated conductivity of the soil. During irrigation the TB values exhibited a pattern that suggests the occurrence of coherent reflection, a rarely observed phenomena under natural conditions. These results suggested the existence of a sharp dielectric boundary (wet over dry soil) that was increasing in depth with time.

  11. Simulating the fate of water in field soil crop environment

    NASA Astrophysics Data System (ADS)

    Cameira, M. R.; Fernando, R. M.; Ahuja, L.; Pereira, L.

    2005-12-01

    This paper presents an evaluation of the Root Zone Water Quality Model(RZWQM) for assessing the fate of water in the soil-crop environment at the field scale under the particular conditions of a Mediterranean region. The RZWQM model is a one-dimensional dual porosity model that allows flow in macropores. It integrates the physical, biological and chemical processes occurring in the root zone, allowing the simulation of a wide spectrum of agricultural management practices. This study involved the evaluation of the soil, hydrologic and crop development sub-models within the RZWQM for two distinct agricultural systems, one consisting of a grain corn planted in a silty loam soil, irrigated by level basins and the other a forage corn planted in a sandy soil, irrigated by sprinklers. Evaluation was performed at two distinct levels. At the first level the model capability to fit the measured data was analyzed (calibration). At the second level the model's capability to extrapolate and predict the system behavior for conditions different than those used when fitting the model was assessed (validation). In a subsequent paper the same type of evaluation is presented for the nitrogen transformation and transport model. At the first level a change in the crop evapotranspiration (ETc) formulation was introduced, based upon the definition of the effective leaf area, resulting in a 51% decrease in the root mean square error of the ETc simulations. As a result the simulation of the root water uptake was greatly improved. A new bottom boundary condition was implemented to account for the presence of a shallow water table. This improved the simulation of the water table depths and consequently the soil water evolution within the root zone. The soil hydraulic parameters and the crop variety specific parameters were calibrated in order to minimize the simulation errors of soil water and crop development. At the second level crop yield was predicted with an error of 1.1 and 2.8% for grain and forage corn, respectively. Soil water was predicted with an efficiency ranging from 50 to 95% for the silty loam soil and between 56 and 72% for the sandy soil. The purposed calibration procedure allowed the model to predict crop development, yield and the water balance terms, with accuracy that is acceptable in practical applications for complex and spatially variable field conditions. An iterative method was required to account for the strong interaction between the different model components, based upon detailed experimental data on soils and crops.

  12. Soil water balance scenario studies using predicted soil hydraulic parameters

    NASA Astrophysics Data System (ADS)

    Nemes, A.; Wsten, J. H. M.; Bouma, J.; Vrallyay, G.

    2006-03-01

    Pedotransfer functions (PTFs) have become a topic drawing increasing interest within the field of soil and environmental research because they can provide important soil physical data at relatively low cost. Few studies, however, explore which contributions PTFs can make to land-use planning, in terms of examining the expected outcome of certain changes in soil and water management practices. This paper describes three scenario studies that show some aspects of how PTFs may help improve decision making about land management practices. We use an exploratory research approach using simulation modelling to explore the potential effect of alternative solutions in land management. We: (i) evaluate benefits and risks when irrigating a field, and the impact of soil heterogeneity; (ii) examine which changes can be expected (in terms of soil water balance and supply) if organic matter content is changed as a result of an alternative management system; (iii) evaluate the risk of leaching to deeper horizons in some soils of Hungary. Using this research approach, quantitative answers are provided to what if? type questions, allowing the distinction of trends and potential problems, which may contribute to the development of sustainable management systems.

  13. Water Interaction with Iron Oxides.

    PubMed

    Dementyev, Petr; Dostert, Karl-Heinz; Ivars-Barceló, Francisco; O'Brien, Casey P; Mirabella, Francesca; Schauermann, Swetlana; Li, Xiaoke; Paier, Joachim; Sauer, Joachim; Freund, Hans-Joachim

    2015-11-16

    We present a mechanistic study on the interaction of water with a well-defined model Fe3 O4 (111) surface that was investigated by a combination of direct calorimetric measurements of adsorption energies, infrared vibrational spectroscopy, and calculations bases on density functional theory (DFT). We show that the adsorption energy of water (101 kJ mol(-1) ) is considerably higher than all previously reported values obtained by indirect desorption-based methods. By employing (18) O-labeled water molecules and an Fe3 O4 substrate, we proved that the generally accepted simple model of water dissociation to form two individual OH groups per water molecule is not correct. DFT calculations suggest formation of a dimer, which consists of one water molecule dissociated into two OH groups and another non-dissociated water molecule creating a thermodynamically very stable dimer-like complex. PMID:26457889

  14. Influence of soil pH on properties of the soil-water interface

    NASA Astrophysics Data System (ADS)

    Diehl, Doerte

    2010-05-01

    Surface characteristics of soils are one of the main factors controlling processes at the soil-water interface like wetting, sorption or dissolution processes and, thereby, have a high impact on natural soil functions like habitat, filter, buffer, storage and transformation functions. Since surface characteristics, like wettability or repellency, are not static soil properties but continuously changing, the relevant processes and mechanisms are in the focus of the presented study. These mechanisms help to gain further insight into the behaviour of soil and its dynamics under changing environmental conditions. The influence of water content, relative air humidity and drying temperature on soil water repellency has been investigated in many studies. In contrast, few studies have systematically investigated the relationship between soil water repellency (SWR) and soil pH. Several studies found alkaline soils to be less prone to SWR compared to acidic soils (e.g., Cerdà, and Doerr 2007; Mataix-Solera et al. 2007). Furthermore, SWR has been successfully reduced in acidic soils by increasing soil pH via liming (e.g., Karnok et al. 1993; Roper 2005). However, SWR has also been reported in calcareous soils in the Netherlands (Dekker and Jungerius 1990), California, USA (Holzhey 1968) and Spain (Mataix-Solera and Doerr 2004). The hypothesis that the pH may control repellency via changes in the variable surface charge of soil material has not yet been tested. Previously it has been shown that it is necessary to eliminate the direct influence of changes in soil moisture content so that the unique relationship between pH and SWR can be isolated (Bayer and Schaumann 2007). A method has been developed which allows adjustment of the pH of soils with low moisture content via the gas phase with minimal change in moisture content. The method was applied to 14 soil samples from Germany, Netherlands, the UK and Australia, using the water drop penetration time (WDPT) as the indicator of SWR. Sessile drop and Wilhelmy plate contact angles (CAsess and CAwpm resp.) were measured on the four samples from Germany and the data correlated with those of WDPT. The titratable surface charge of these four soils was measured at selected pH values using a particle charge detector (PCD). Changes in SWR with soil pH were found to be influenced by the density and type of sites able to interact with protons at the available surfaces of organic and mineral materials in soil. The maximum SWR occurred for soil at natural pH and where the charge density was minimal. As pH increased, negative surface charge increased due to deprotonation of sites and WDPT decreased. Two types of behaviour were observed: Those in which (i) WDPT shortened with decreasing pH and ii) WDPT was sensibly constant with decreasing pH. The data suggest that the availability and relative abundance of proton active sites at mineral surfaces, and those at organic functional groups influence the behaviour. Bayer, J. V. and G. E. Schaumann (2007). Hydrological processes 21(17): 2266 - 2275. Cerdà, A. and S. H. Doerr (2007). Hydrological Processes 21(17): 2325-2336. Dekker, L. W. and P. D. Jungerius (1990). Dunes of the European coasts, Catena-Verlag. 18: 173-183. Holzhey, C. S. (1968). Symposium on water repellent soils, Riverside, California. Karnok, K. A., E. J. Rowland, et al. (1993). Agronomy Journal 85(5): 983-986. Mataix-Solera, J., V. Arcenegui, et al. (2007). Hydrological Processes 21(17): 2300-2309. Mataix-Solera, J. and S. H. Doerr (2004). Geoderma 118(1-2): 77-88. Roper, M. M. (2005). Australian Journal of Soil research 43: 803-810.

  15. Investigation of indigenous water, salt and soil for solar ponds

    NASA Technical Reports Server (NTRS)

    Marsh, H. E.

    1983-01-01

    The existence of salt-gradient solar ponds in nature is a strong indication that the successful exploitation of this phenomenon must account adequately for the influences of the local setting. Sun, weather and other general factors are treated elsewhere. This paper deals with water, salt, and soil. A general methodology for evaluating and, where feasible, adjusting the effects of these elements is under development. Eight essential solar pond characteristics have been identified, along with a variety of their dependencies upon properties of water, salt and soil. The comprehensive methodology, when fully developed, will include laboratory investigation in such diverse areas as brine physical chemistry, light transmission, water treatment, brine-soil interactions, sealants, and others. With the Salton Sea solar pond investigation as an example, some methods under development will be described.

  16. EFFECT OF SOIL ORGANIC CARBON ON SOIL WATER RETENTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reports about the relationship between soil water retention and organic carbon content are contradictory. We hypothesized that this relationship is affected by a) proportions of textural components, b) amount of organic carbon, and c) quality of organic matter. To test the hypothesis, we used Nation...

  17. Soil water monitoring equipment for irrigation scheduling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Equipment for monitoring soil water content and sometimes bulk electrical conductivity can be used for scheduling irrigations if the accuracy of the equipment is sufficient to avoid damanging plants and wasting water and fertilizer. Irrigation scheduling is the process of deciding when to irrigate a...

  18. Soil-water dynamics and tree water uptake in the Sacramento Mountains of New Mexico (USA): a stable isotope study

    NASA Astrophysics Data System (ADS)

    Gierke, Casey; Newton, B. Talon; Phillips, Fred M.

    2016-04-01

    In the southwestern United States, precipitation in the high mountains is a primary source of groundwater recharge. Precipitation patterns, soil properties and vegetation largely control the rate and timing of groundwater recharge. The interactions between climate, soil and mountain vegetation thus have important implications for the groundwater supply. This study took place in the Sacramento Mountains, which is the recharge area for multiple regional aquifers in southern New Mexico. The stable isotopes of oxygen and hydrogen were used to determine whether infiltration of precipitation is homogeneously distributed in the soil or whether it is partitioned among soil-water `compartments', from which trees extract water for transpiration as a function of the season. The results indicate that "immobile" or "slow" soil water, which is derived primarily from snowmelt, infiltrates soils in a relatively uniform fashion, filling small pores in the shallow soils. "Mobile" or "fast" soil water, which is mostly associated with summer thunderstorms, infiltrates very quickly through macropores and along preferential flow paths, evading evaporative loss. It was found that throughout the entire year, trees principally use immobile water derived from snowmelt mixed to differing degrees with seasonally available mobile-water sources. The replenishment of these different water pools in soils appears to depend on initial soil-water content, the manner in which the water was introduced to the soil (snowmelt versus intense thunderstorms), and the seasonal variability of the precipitation and evapotranspiration. These results have important implications for the effect of climate change on recharge mechanisms in the Sacramento Mountains.

  19. Measured and simulated soil water evaporation from four Great Plains soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amount of soil water lost during stage one and stage two soil water evaporation is of interest to crop water use modelers. The ratio of measured soil surface temperature (Ts) to air temperature (Ta) was tested as a signal for the transition in soil water evaporation from stage one to stage two d...

  20. Visualisation and quantification of water in bulk and rhizosphere soils using X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Tracy, Saoirse; Daly, Keith; Crout, Neil; Bennett, Malcolm; Pridmore, Tony; Foulkes, John; Roose, Tiina; Mooney, Sacha

    2015-04-01

    Understanding how water is distributed in soil and how it changes during the redistribution process or from root uptake is crucial for enhancing our understanding for managing soil and water resources. The application of X-ray Computed Tomography (CT) to soil science research is now well established; however few studies have utilised the technique for visualising water in pore spaces due to several inherent difficulties. Here we present a new method to visualise the water content of a soil in situ and in three-dimensions at successive drying matric potentials. A water release curve was obtained for different soil types using measurements from their real pore geometries. The water, soil, air and root phases from the images were segmented using image analysis techniques and quantified. These measurements allowed us to characterise pore size, shape and connectivity for both air filled pores and water. The non-destructive technique enabled water to be visualised in situ and repeated scanning allowed wetting patterns to be analysed. The experimental results were validated against conventional laboratory derived water release curves and specifically developed mechanistic models of soil-water-root interactions. Micro-scale revelations of the water-soil-root interfaces enabled us to make macro-scale predictions on water movement in soil. The information and insights obtained on the hydraulic properties of rhizosphere and bulk soil will enhance our understanding of rhizosphere biophysics and improve current water uptake models.

  1. Controlled experimental soil organic matter modification for study of organic pollutant interactions in soil.

    PubMed

    Ahmed, Ashour A; Kühn, Oliver; Leinweber, Peter

    2012-12-15

    Interactions of organic pollutants with soil organic matter can be studied by adsorption of the pollutants on well-characterized soil samples with constant mineralogy but different organic matter compositions. Therefore, the objectives of the current study are establishing a set of different, well-characterized soil samples by systematic modifications of their organic matter content and molecular composition and prove these modifications by advanced complementary analytical techniques. Modifications were done by off-line pyrolysis and removal/addition of hot-water extracted organic fraction (HWE) from/to the original soil sample. Both pyrolysis-field ionization mass spectrometry (Py-FIMS) and synchrotron-based C- and N- X-ray absorption near-edge structure spectroscopy (XANES) were applied to investigate the composition of the soil organic matter. These complementary analytical methods in addition to elemental analysis agreed in showing the following order of organic matter contents: pyrolyzed soil residuesoil+3 HWE<soil+6 HWEsoil sample increases the relative proportions of carbohydrates, N-containing heterocyclic compounds and peptides, and decreases the relative proportions of phenols, lignin monomers and dimers, and lipids. The most abundant organic compound classes in the pyrolyzed sample are aromatics, aliphatic nitriles, aldehydes, five- and six-membered N-containing heterocyclic compounds, and aliphatic carboxylic acids. It can be expected that removal or addition of HWE, that mimic biomass inputs to soil or soil amendments, change the binding capacity for organic pollutants less intensively than heat impact, e.g. from vegetation burning. It will be possible to interpret kinetic data on the pollutants adsorption by these original and modified soil samples on the basis of the bond- and element-specific speciation data through C-XANES and N-XANES and the molecular-level characterization through Py-FIMS. Finally, this combination of analytical techniques can be recommended for similar problems that require characterizing the bulk, non-extracted SOM instead of pre-selected compounds or compound classes. PMID:23137980

  2. Using soil water sensors to improve irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and som...

  3. Effect of corn or soybean row position on soil water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop plants can funnel water to the soil and increase water content more in the row relative to the interrow. Because the row intercepts more soil water after rains and higher root density, the soil may also dry out more between rains than does soil in the interrow. The purpose of this study was to ...

  4. Temperature and frequency dependent time-domain reflectometry water content calibrations in fine-textured soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High frequency dielectric measurements of soil water content can exhibit temperature sensitivities inconsistent with that expected for bulk water. These sensitivities are significant in fine-textured soils and controlled by the interaction among the temperature dependencies of the static permittivit...

  5. Water conductivity of arctic zone soils (Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Witkowska-Walczak, Barbara; Sławiński, Cezary; Bartmiński, Piotr; Melke, Jerzy; Cymerman, Jacek

    2014-10-01

    The water conductivity of arctic zone soils derived in different micro-relief forms was determined. The greatest water conductivity at the 0-5 cm depth for the higher values of water potentials (> -7 kJ m-3) was shown by tundra polygons (Brunic-Turbic Cryosol, Arenic) - 904-0.09 cm day-1, whereas the lowest were exhibited by Turbic Cryosols - 95-0.05 cm day-1. Between -16 and -100 kJ m-3, the water conductivity for tundra polygons rapidly decreased to 0.0001 cm day-1, whereas their decrease for the other forms was much lower and in consequence the values were 0.007, 0.04, and 0.01 cm day-1 for the mud boils (Turbic Cryosol (Siltic, Skeletic)), cell forms (Turbic Cryosol (Siltic, Skeletic)), and sorted circles (Turbic Cryosol (Skeletic)), respectively. In the 10-15 cm layer, the shape of water conductivity curves for the higher values of water potentials is nearly the same as for the upper layer. Similarly, the water conductivity is the highest - 0.2 cm day-1 for tundra polygons. For the lower water potentials, the differences in water conductivity increase to the decrease of soil water potential. At the lowest potential the water conductivity is the highest for sorted circles - 0.02 cm day-1 and the lowest in tundra polygons - 0.00002 cm day-1.

  6. Soil Water: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the fourth of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil water. Upon completing the three day module, the student will be able to classify water as to its presence in the soil, outline the hydrological cycle, list the ways water is lost from the soil,…

  7. Soil water percolation at different bulk densities

    NASA Astrophysics Data System (ADS)

    Ruiz-Ramos, Margarita; Grinev, Dimitri; Del Valle, Daniel; Baveye, Philippe; María Tarquis, Ana

    2010-05-01

    Soil structure, and specifically bulk density, porosity and connectivity have strong influence on water transport in the soil. In this work we describe the percolation of a fluid particle through a soil simulating its movement through voxel-thick images of the soil, imposing a downwards movement as a fluid particle randomly delivered from the top of a soil image. From the simulation, porosity, frequency distribution of random walk time (expressed as number of simulation steps), and depth reached by random walks was obtained. This work extended the analysis presented in Ruiz-Ramos et al. (2009). An arable sandy loam soil was packed into polypropylene cylinders of 6 cm diameter and 5 cm high at five different bulk densities: 1.2, 1.3, 1.4, 1.5 and 1.6 Mgm-3. The image stacks of 260x260x260 with voxel-thick slices were generated from the 3D volumes by using VGStudioMax v.1.2.1. Simulation of the percolation was done applying a set of 5 to 7 threshold values based on the analysis of the histogram region corresponding to 5 voxels. From each image, corresponding to a bulk density, percolation speed distribution in depth was estimated from the simulation outputs. Consequences and relationships among density, grey threshold, porosity and connectivity were discussed. Obtained distributions did not fit to a normal equation, preventing from applying the Darcy's Laws for describing water movement on these soils. References Ruiz-Ramos M, del Valle D, Grinev D and Tarquis AM, 2009. Soil hydraulic behaviour at different bulk densities. Geophysical Research Abstracts, Vol. 11, EGU2009-6234.

  8. An overview of soil water sensors for salinity & irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. Accurate irrigation management is even more important in salt affected soils ...

  9. The impact of land use changes on water pathways, soil formation and soil functioning

    NASA Astrophysics Data System (ADS)

    Robinet, Jérémy; Ameijeiras-Mariño, Yolanda; Minella, Jean P. G.; Vanderborght, Jan; Govers, Gerard

    2015-04-01

    The major role played by the hydrology in controlling biogeochemical fluxes at various scales has been highlighted in several studies (e.g. Van Gaelen et al., 2014; Jiang et al., 2010). Numerous studies have highlighted different factors controlling water fluxes at the hillslope or catchment scale, such as physico-chemical soil characteristics and structure (Uhlenbrook et al., 2008) and soil thickness (Buttle et al., 2004). Given the potential important impact of land use changes on water fluxes (Özturk et al., 2013), it is surprising that relatively few studies investigated the impacts of those changes. This does not only imply that the consequences of land use change on hydrological and biogeochemical pathways and fluxes are still difficult to predict but also that we lack critical information on how such changes may feed back to soil processes. Therefore, it remains impossible to assess to what extent land use conversions may affect biogeochemical processes in soils and/or soil production through weathering. The overall objective of this research project is therefore to investigate how land use change affects water and biogeochemical fluxes and how these changes may, on their turn, affect soil and landscape development on the long term. In order to achieve this objective it is necessary to not only assess the effect of land use on fluxes leaving the catchment, but also on how land use change affects water pathways and water chemistry within the catchment. This requires the combined use of a wide range of classical and novel techniques. Two catchments with contrasting land use (agriculture vs. natural forest) were selected in a subtropical region in the south of Brazil. Soil sampling, stream discharge monitoring and sampling, pore water sampling, groundwater monitoring and sampling, and geophysical techniques (Time Domain Reflectometry and Electro Magnetic Induction) are combined to yield information on water and solute movement at the plot, slope and catchment scale. The combined interpretation of these information sources will improve our understanding of the interactions between the water fluxes and the soil system under different land use systems. Combining these data with detailed studies of clay mineralogy and weathering will allow to gain first insights on how land use changes may affect biogeochemical processes and soil weathering at the landscape scale.

  10. Selenium in Oklahoma ground water and soil

    SciTech Connect

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  11. SOIL AND WATER ASSESSMENT TOOL (SWAT)

    EPA Science Inventory

    Soil and Water Assessment Tool (SWAT) is the continuation of a long-term effort of nonpoint source pollution modeling with the US Department of Agriculture -Agricultural Research Service (ARS). SWAT is a continuous time model that operates on a daily time step. The objective in ...

  12. Soil and Water Conservation Activities for Scouts.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    The purpose of the learning activities outlined in this booklet is to help Scouts understand some conservation principles which hopefully will lead to the development of an attitude of concern for the environment and a commitment to help with the task of using and managing soil, water, and other natural resources for long range needs as well as…

  13. Displacement of soil pore water by trichloroethylene

    USGS Publications Warehouse

    Wershaw, R. L.; Aiken, G.R.; Imbrigiotta, T.E.; Goldberg, M.C.

    1994-01-01

    Dense nonaqueous phase liquids (DNAPLS) are important pollutants because of their widespread use as chemical and industrial solvents. An example of the pollution caused by the discharge of DNAPLs is found at the Picatinny Arsenal, New Jersey, where trichloroethylene (TCE) has been discharged directly into the unsaturated zone. This discharge has resulted in the formation of a plume of TCE-contaminated water in the aquifer downgradient of the discharge. A zone of dark-colored groundwater containing a high dissolved organic C content has been found near the point of discharge of the TCE. The colored-water plume extends from the point of discharge at least 30 m (100 feet) downgradient. Fulvic acids isolated from the colored-waters plume, from water from a background well that has not been affected by the discharge of chlorinated solvents, and from soil pore water collected in a lysimeter installed at an uncontaminated site upgradient of the study area have been compared. Nuclear magnetic resonance spectra of the fulvic acids from the colored waters and from the lysimeter are very similar, but are markedly different from the nuclear magnetic resonance spectrum of the fulvic acid from the background well. The three-dimensional fluorescence spectrum and the DOC fractionation profile of the colored groundwater and the soil pore water are very similar to each other, but quite different from those of the background water. It is proposed from these observations that this colored water is soil pore water that has been displaced by a separate DNAPL liquid phase downward to the saturated zone.

  14. A comparative modeling study of soil water dynamics in a desert ecosystem

    NASA Astrophysics Data System (ADS)

    Kemp, Paul R.; Reynolds, James F.; Pachepsky, Yakov; Chen, Jia-Lin

    1997-01-01

    We compared three different soil water models to evaluate the extent to which variation in plant growth form and cover and soil texture along a topographic gradient interact to affect relative rates of evaporation and transpiration under semiarid conditions. The models all incorporated one-dimensional distribution of water in the soil and had separate functions for loss of water through transpiration and soil evaporation but differed in the degree of mechanism and emphasis. PALS-SW (Patch Arid Lands Simulator-Soil Water) is a mechanistic model that includes soil water fluxes and emphasizes the physiological control of water loss by different plant life forms along the gradient. 2DSOIL is a mechanistic model that emphasizes the physical aspects of soil water fluxes. SWB (Soil Water Budget) is a simple water budget model that has no soil water redistribution and includes simplified schemes for soil evaporation and transpiration by different life forms. The model predictions were compared to observed soil water distributions at five positions along the gradient. All models predicted soil water distributions reasonably well and, for the most part, predicted similar trends along the transect in the fractions of water lost as soil evaporation versus transpiration. Transpiration was lowest (about 40% of total evapotranspiration (ET)) for the creosote bush community, which had the lowest plant cover (30% peak cover). The fraction of ET as transpiration increased with increasing plant cover, with 2DSOIL predicting the highest transpiration (60% of total ET) for the mixed vegetation community (60% peak cover) on relatively fine textured soil and PALSr SW predicting highest transpiration (69% of total ET) for the mixed vegetation community (70% peak cover) on relatively coarse textured soil. The community type had an effect on the amount of water lost as transpiration primarily via depth and distribution of roots. In this respect, PALS-SW predicted greatest differences among stations as related to differences in plant community types. However, since PALS-SW did not provide as good of fit with the soil moisture data as did 2DSOIL, the differences in the morphology and physiology of the life-forms may be secondary to the overall control of water loss by the primary factors accounted for in 2DSOIL: vertical distribution of soil moisture, degree of canopy cover, and evaporative energy budget of the canopy. Soil texture interacted with the amount and type of plant cover to affect evaporation and transpiration, but the effect was relatively minor.

  15. USING FIELD TOPOGRAPHIC DESCRIPTORS TO ESTIMATE SOIL WATER RETENTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In field-, watershed-, and regional-scale projects, soil water retention is often estimated from soil textural classes shown in soil maps. Only the dominating textural class is often shown, cartographers routinely use error-prone field judgement of soil texture, and soil texture is known to vary alo...

  16. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L.) Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    PubMed

    Dou, Fugen; Soriano, Junel; Tabien, Rodante E; Chen, Kun

    2016-01-01

    The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic), cultivar ('Cocodrie' and 'Rondo'), and soil texture (clay and sandy loam) on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice. PMID:26978525

  17. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L.) Grain Yield, Yield Components and Water Productivity in Three Water Regimes

    PubMed Central

    Dou, Fugen; Soriano, Junel; Tabien, Rodante E.; Chen, Kun

    2016-01-01

    The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic), cultivar (‘Cocodrie’ and ‘Rondo’), and soil texture (clay and sandy loam) on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice. PMID:26978525

  18. Simulations on soil water variation in arid regions

    NASA Astrophysics Data System (ADS)

    Dong, Weiquan; Yu, Zhongbo; Weber, Dennis

    2003-05-01

    Significant soil water variation has often been found in top few meters of arid soils. Understanding soil water variation in these soils is crucial to groundwater recharge estimation, rainfall runoff process, risk assessment, and water resource management. A soil hydrologic model (SHM) was developed for simulating soil water movement in the vertical direction using time steps of minutes to days. To account for the dual processes of matrix and macropore flow, a parameterization scheme of dual processes has been adopted to derive effective hydraulic conductivity used in the SHM simulation. The integral-balance model based on water flux at different degrees of water saturation used to calculate the macropore conductivity is more useful in quantitatively integrating the macropore contribution to the dynamic soil water fluxes. The SHM, successfully applied to humid and semi-arid regions and validated at the Nevada Test Site (NTS) in this study, was used to evaluate soil water variation in an arid region, the NTS. Soil texture effects on soil water content have been evaluated; results indicate that higher hydraulic conductivity soils have less soil water content. A representative vegetation type at the NTS— Larrea tridentate is included to simulate the effects of vegetative cover on the soil water content. The simulations show that the bare soils have higher soil water content than the vegetated soils, which is consistent with observations and other modeled results. Due to low precipitation at the NTS for much of the year, effects of the macropore flow on soil water content are insignificant. However, the macropore flow could be an important factor influencing the soil water content during high precipitation events.

  19. CHEMFLO: ONE-DIMENSIONAL WATER AND CHEMICAL MOVEMENT IN UNSATURATED SOILS

    EPA Science Inventory

    An interactive software system was developed to enable decision-makers, regulators, policy-makers, scientists, consultants, and students to simulate the movement of waterand chemicals in unsaturated soils. Water movement is modeled using Richards (1931) - equation. Chemical trans...

  20. Behavior of fenhexamid in soil and water.

    PubMed

    Abbate, Cristina; Borzì, Daniela; Caboni, Pierluigi; Baglieri, Andrea; Gennari, Mara

    2007-01-01

    A study was conducted to investigate fenhexamid (FEX) behavior in soil and in water. FEX proved to be rather stable at acid pH but showed slight degradation at neutral and alkaline pH. After 101 days of FEX spiking of a soil sample, 94% at pH 4, 12% at pH 7 and 23% at pH 9 of the active ingredient was still present. In natural water the rate of FEX disappearance appeared to be slow which may be due to abiotic rather than biotic processes. The soil degradation tests showed low persistence of the active ingredient if a good microflora activity is guaranteed (DT(50) about 1 day). Moreover, in absence of microorganisms, FEX proved to be stable. Humidities of 25 and 50% of Water Holding Capacity (WHC) influenced in equal measure the rate of degradation. From the same soil, a bacterium was isolated and identified as Bacillus megaterium, which was able to metabolize FEX with the hydroxylation of the cyclohexane ring. Moreover, FEX showed an elevated affinity for humic acid (73%), smectite (31%), and ferrihydrite(20%) and low affinity for vermiculite (11%) and kaolinite (7%). PMID:17763042

  1. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect

    Indira S. Jayaweera; Jordi Diaz-Ferraro

    2000-02-28

    SRI International is conducting experiments to develop and evaluate hydrothermal extraction technology for remediating petroleum-contaminated soils. Most current remediation practices generally fail (or are cost prohibitive) to remove the polycyclic aromatic hydrocarbons (PAHs) found in petroleum-contaminated sites or they require the use of organic solvents to achieve removal, at the expense of additional contamination and with the added cost of recycling solvents. Hydrothermal extraction offers the promise of efficiently extracting PAHs and other kinds of organics from contaminated soils at moderate temperatures and pressures, using only water and inorganic salts such as carbonate. Initial work is being conducted at SRI to measure the solubility and rate of solubilization of selected PAHs (anthracene, fluoranthene, pyrene, and chrysene) in water, using SRI's hydrothermal optical cell with the addition of varying amounts of sodium carbonate to evaluate the efficiency of the technology for removing PAHs from the soil. Preliminary results with pyrene and fluoranthene in water clearly indicate a significant enhancement of solubility with increase in temperature. During this quarter, we conducted experiments with pyrene in the temperature range 200 to 300 C and observed a great enhancement in solubility with an increase in temperature. We also started experiments with real-world soil samples purchased from the subcontractor.

  2. Effects of Estimating Soil Hydraulic Properties and Root Growth Factor on Soil Water Balance and Crop Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing water use efficiency (WUE) is one of the oldest goals in agricultural sciences, yet it is still not fully understood and achieved due to the complexity of soil-weather-management interactions. System models that quantify these interactions are increasingly used for optimizing crop WUE, es...

  3. Response of three soil water sensors to variable solution electrical conductivity in different soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial dielectric soil water sensors may improve management of irrigated agriculture by providing continuous field soil water information. Use of these sensors is partly limited by sensor sensitivity to variations in soil salinity and texture, which force expensive, time consuming, soil specific...

  4. In-situ Field Capacity and Soil Water Retention Measurements in Two Contrasting Soil Textures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the in-situ field capacity and soil-water retention curve for soils is important for effective irrigation management and scheduling. The primary objective of this study was to estimate in-situ field capacity and soil water retention curves in the field using continually monitoring soil ...

  5. Stochastic Modeling of Soil Water and Plant Water Stress Using Cumulant Expansion Theory and Its Application to Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Kim, S.; Lee, A.; Keem, M.; Shin, H.

    2009-12-01

    For better understanding of soil water and plant water stress dynamics, a stochastic soil water and plant water stress model will be proposed and applied to climate change impact assessment. The proposed model is derived by using cumulant expansion theory from a stochastic differential equation with stochastic rainfall forcings. This model has the advantage of providing the probabilistic solution in the form of a probability distribution function, from which the ensemble average behavior of the system can be obtained easily. Also, since this model uses only the statistics of rainfall time series, the effect of different climate conditions on the soil water and plant water stress dynamics can be incorporated effectively. The simulation result of soil water confirms that the proposed model can reproduce the observation properly and shows that the soil water behaves with consistent cycle based on the precipitation pattern. In order to understand the impact of climate change on soil water and plant water stress behaviors, the RCM data developed by Korean Meteorological Administration (KMA RCM) and the third GCM by Canadian Centre for Climate Modeling and Analysis(CGCM3) are used with two time periods of 2051~2060 and 2091~2100. With all the simulation results, it can be conclude that the simulation results will be different with what climate change scenario is selected since different climate change model predicts different soil water and plant water stress behaviors. This analysis can be expected as a starting point for better understanding of the effect of soil water on ecosystem dynamics such as climate-soil-vegetation interaction. Figure 1. The evolution of the soil water PDF. The soil water PDFs have two different patterns according to wet season from June to September and dry season from October to May. From such result, it can be inferred that the mechanisms which influence the soil water behavior are different in wet and dry seasons. That is to say, in wet season, the external force of the system which is precipitation herein has a controlling effect on soil water dynamics, while the system itself, say soil and vegetation, is the dominant factor of influencing the dry season soil water behavior.

  6. Use of remote sensing for upscaling soil water models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water content controls, to a large degree, processes of plant growth, groundwater recharge and overland flow that are critical for the management of rangelands in the western USA. Direct measurement of soil water is constrained to very small scales and models that describe soil water content h...

  7. Sensible heat observations reveal soil-water evaporation dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water evaporation is important at scales ranging from microbial ecology to large-scale climate. Yet, routine measurments are unable to capture rapidly shifting near-surface soil heat and water processes involved in soil-water evaporation. The objective of this study was to determine the depth a...

  8. Stem-root flow effect on soil-atmosphere interactions and uncertainty assessments

    NASA Astrophysics Data System (ADS)

    Kuo, T.-H.; Chen, J.-P.; Xue, Y.

    2015-11-01

    Soil water can rapidly enter deeper layers via vertical redistribution of soil water through the stem-root flow mechanism. This study develops the stem-root flow parameterization scheme and coupled this scheme with the Simplified Simple Biosphere model (SSiB) to analyze its effects on land-atmospheric interactions. The SSiB model was tested in a single column mode using the Lien Hua Chih (LHC) measurements conducted in Taiwan and HAPEX-Mobilhy (HAPEX) measurements in France. The results show that stem-root flow generally caused a decrease in the moisture content at the top soil layer and moistened the deeper soil layers. Such soil moisture redistribution results in significant changes in heat flux exchange between land and atmosphere. In the humid environment at LHC, the stem-root flow effect on transpiration was minimal, and the main influence on energy flux was through reduced soil evaporation that led to higher soil temperature and greater sensible heat flux. In the Mediterranean environment of HAPEX, the stem-root flow significantly affected plant transpiration and soil evaporation, as well as associated changes in canopy and soil temperatures. However, the effect on transpiration could either be positive or negative depending on the relative changes in the moisture content of the top soil vs. deeper soil layers due to stem-root flow and soil moisture diffusion processes.

  9. Seasonal and long-term effects of CO2 and O3 on water loss in ponderosa pine and their interaction with climate and soil moisture

    EPA Science Inventory

    Evapotranspiration (ET) is driven by evaporative demand, available solar energy and soil moisture (SM) as well as by plant physiological activity which may be substantially affected by elevated CO2 and O3. A multi-year study was conducted in outdoor sunlit-controlled environment ...

  10. Seasonal and long-term effects of CO2 and O3 and their interaction with climate and soil moisture on water loss in ponderosa pine

    EPA Science Inventory

    Evapotranspiration (ET) is driven by evaporative demand, available solar energy and soil moisture as well as by physiological plant activity which may be substantially affected by elevated CO2 and O3. A multi-year study was conducted in outdoor sun-lit controlled-environment cha...

  11. Principles of water capture, evaporation, and soil water retention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Successful dryland crop production in semiarid environments is dependent upon efficient storage of precipitation and use of stored soil water supplies. The objectives of this presentation are to: 1. Summarize information regarding the effects of time of year; environmental parameters; residue orient...

  12. A Review on Temporal Stability of Soil Water Contents

    NASA Astrophysics Data System (ADS)

    Vanderlinden, Karl; Vereecken, Harry; Hardelauf, Horst; Herbst, Michael; Martínez, Gonzalo; Cosh, Michael H.; Pachepsky, Yakov A.

    2013-04-01

    Temporal stability of soil water content (TS SWC) has been observed across a wide range of soil types, landscapes, climates and scales. A better understanding of TS SWC controls and their interactions needs to be developed. The objective of this work is to develop a comprehensive inventory of published data on TC SWC and to determine knowledge gaps. Mean relative difference (MRD) values and associated standard deviations (SDRD) were digitized from 157 graphs in 37 publications and analyzed. The MRD followed generally a Gaussian distribution with the determination coefficient R2 > 0.84. The standard deviation of MRD (SDMRD) showed a trend of increase with scale. No relationship between SDMRD and R2 was observed. The smallest R2 values were mostly found for negatively skewed and platykurtic MRD distributions. An analysis of seven measurement-, terrain-, and climate-related TS SWC controls suggested strong interactions and showed that combined effects are typically observed. Many of the existing datasets on TS WCS are mostly byproducts of soil water dynamics studies in agronomic or environmental projects. Future research should include more focused TS SWC studies tailored to understand interactions of controls, underlying mechanisms, and efficiency of applications.

  13. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    PubMed

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. PMID:26183941

  14. Water movement through an experimental soil liner

    USGS Publications Warehouse

    Krapac, I.G.; Cartwright, K.; Panno, S.V.; Hensel, B.R.; Rehfeldt, K.R.; Herzog, B.L.

    1991-01-01

    A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (???1 x 10-7 cm s-1). The 8 x 15 x 0.9m liner was constructed in 15 cm compacted lifts using a 20,037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water break through at the base of the liner occurs. Estimated saturated hydraulic conductivities were 2.5 x 10-9, 4.0 x 10-8, and 5.0 x 10-8 cm s-1 based on measurements of water infiltration into the liner by large- and small-ring infiltrometers and a water balance analysis, respectively. Also investigated in this research was the variability of the liner's hydraulic properties and estimates of the transit times for water and tracers. Small variances exhibited by small-ring flux data suggested that the liner was homogeneous with respect to infiltration fluxes. The predictions of water and tracer breakthrough at the base of the liner ranged from 2.4-12.6 y, depending on the method of calculation and assumptions made. The liner appeared to be saturated to a depth between 18 and 33 cm at the end of the first year of monitoring. Transit time calculations cannot be verified yet, since breakthrough has not occurred. The work conducted so far indicates that compacted soil barriers can be constructed to meet the saturated hydraulic conductivity requirement established by the U.S. EPA.A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (??? 1 ?? 10-7 cm s-1). The 8 ?? 15 ?? 0.9 m liner was constructed in 15 cm compacted lifts using a 20.037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water break through at the base of the liner occurs. Estimated saturated hydraulic conductivities were 2.5 ?? 10-9, 4.0 ?? 10-8, and 5.0 ?? 10-8 cm s-1 based on measurements of water infiltration into the liner by large- and small-ring infiltrometers and a water balance analysis, respectively. Also investigated in this research was the variability of the liner's hydraulic properties and estimates of the transit times for water and tracers. Small variances exhibited by small-ring flux data suggested that the liner was homogeneous with respect to infiltration fluxes. The predictions of water and tracer breakthrough at the base of the liner ranged from 2.4-12.6 y, depending on the method of calculation and assumptions made. The liner appeared to be saturated to a depth between 18 and 33 cm at the end of the first year of monitoring. Transit time calculations cannot be verified yet, since breakthrough has not occurred. The work conducted so far indicates that compacted soil barriers can be constructed to meet the saturated hydraulic conductivity requirement established by the U.S. EPA.

  15. USE OF LIMITED SOIL PROPERTY DATA AND MODELING TO ESTIMATE ROOT ZONE SOIL WATER CONTENT.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modeling root zone soil water content at watershed scales is important for both the strategic and tactical management of water resources, but detailed soil physical and hydraulic property data required by most physically-based soil water models are generally not available over large land areas. Wit...

  16. Research Spotlight: Dual-dynamic approach improves soil water transport model

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-05-01

    To simulate perfectly the flow of water through the ground, one would need to know the details of every pore, passage, and air pocket in the soil. To circumvent such daunting requirements, researchers simulate soil moisture transport as if the water were flowing through a series of cylindrical tubes, with the groundwater transport influenced by both gravity and pressure. This simplified representation holds up well when the soil is wet, but the analogy begins to break down when moisture levels drop. At very low moisture levels a dynamic nearly negligible at high flow rates begins to dominate: the adsorption of water onto soil particles. Water creates a thin film around individual grains of soil through molecular, ionicelectrostatic, and other attraction forces, but these interactions, while well known, are generally overlooked in models of soil moisture transport.

  17. Temporal patterns of infiltration into a water repellent soil under field conditions

    NASA Astrophysics Data System (ADS)

    Ward, Phil; Roper, Margaret; Micin, Shayne; Jongepier, Ramona

    2014-05-01

    Water repellency causes substantial economic losses for farmers in southern Australia through impacts on crop growth and weed germination. However, recent research has demonstrated that laboratory measurements of water repellency may not be a reliable indicator of the severity of symptoms experienced in the field. In particular, crop residue retention and minimal soil disturbance led to increased water repellency, but was also associated with higher soil water contents measured at strategic times of the year. Little is known about the temporal patterns of soil water storage close to the soil surface in a water repellent sand. In this research we measured soil water content at a depth of 0.05 m at 15-minute intervals from June 2011 to October 2012, under various treatment combinations of residue retention and soil disturbance. Measurements were made in both 'crop row' and 'crop inter-row' positions. For a rainfall event (9.2 mm) in March 2012, prior to crop seeding, plots previously established with no-till absorbed significantly more water (increase in soil water content of 0.074 v/v) than plots conventionally cultivated (0.038 v/v). In June 2012 (12.6 mm), 4 weeks after crop seeding, tillage was again significant, and there was a significant interaction between tillage and 'row' or 'inter-row' position. These results demonstrate the importance of crop management in modifying the response of water repellent soils to rainfall in the field.

  18. Characterization of soil water content variability and soil texture using GPR groundwave techniques

    SciTech Connect

    Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y.

    2010-08-15

    Accurate characterization of near-surface soil water content is vital for guiding agricultural management decisions and for reducing the potential negative environmental impacts of agriculture. Characterizing the near-surface soil water content can be difficult, as this parameter is often both spatially and temporally variable, and obtaining sufficient measurements to describe the heterogeneity can be prohibitively expensive. Understanding the spatial correlation of near-surface soil water content can help optimize data acquisition and improve understanding of the processes controlling soil water content at the field scale. In this study, ground penetrating radar (GPR) methods were used to characterize the spatial correlation of water content in a three acre field as a function of sampling depth, season, vegetation, and soil texture. GPR data were acquired with 450 MHz and 900 MHz antennas, and measurements of the GPR groundwave were used to estimate soil water content at four different times. Additional water content estimates were obtained using time domain reflectometry measurements, and soil texture measurements were also acquired. Variograms were calculated for each set of measurements, and comparison of these variograms showed that the horizontal spatial correlation was greater for deeper water content measurements than for shallower measurements. Precipitation and irrigation were both shown to increase the spatial variability of water content, while shallowly-rooted vegetation decreased the variability. Comparison of the variograms of water content and soil texture showed that soil texture generally had greater small-scale spatial correlation than water content, and that the variability of water content in deeper soil layers was more closely correlated to soil texture than were shallower water content measurements. Lastly, cross-variograms of soil texture and water content were calculated, and co-kriging of water content estimates and soil texture measurements showed that geophysically-derived estimates of soil water content could be used to improve spatial estimation of soil texture.

  19. How can climate, soil, and monitoring schedule affect temporal stability of soil water contents?

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Pachepsky, Y. A.; Vereecken, H.

    2012-12-01

    Temporal stability (TS) of soil water content (SWC) reflects the spatio-temporal organization of soil water. The TS SWC was originally recognized as a phenomenon that can be used to provide temporal average SWC of an area of interest from observations at a representative location(s). Currently application fields of TS SWC are numerous, e.g. up- and downscaling SWC, SWC monitoring and data assimilation, precision farming, and sensor network design and optimization. However, the factors that control the SWC organization and TS SWC are not completely understood. Among these factors are soil hydraulic properties that are considered as local controls, weather patterns, and the monitoring schedule. The objective of this work was to use modeling to assess the effect of these factors on the spatio-temporal patterns of SWC. We ran the HYDRUS6 code to simulate four years of SWC in 4-m long soil columns. The columns were assumed homogeneous, soil hydraulic conductivity was drawn from lognormal distributions. Sets of columns were generated separately for sandy loam and loamy soils, soil water retention was set to typical values for those soil textures. Simulations were carried out for four climates present at the continental US. The climate-specific weather patterns were obtained with the CLIGEN code using climate-specific weather observation locations that were humid subtropical from College Station (TX), humid continental from Indianapolis (IN), cold semiarid from Moscow (ID) and hot semiarid from Tucson (AZ). We evaluated the TS and representative location (RL) selections by comparing i) different climates; ii) for the same climates different years; iii) different time intervals between samplings; iv) one year duration surveys vs. one month summer campaigns; and v) different seasons of the same year. Spatial variability of the mean relative differences (MRD) differed among climates for both soils, as the probability of observing the same variance in the MRD was lower than 29%. These differences were smaller for the loamy soils than for the sandy loam and may be related to more inertia to changes in SWC in the loam soil. The probability that the variance in MRD depended on sampling frequency was always higher than 89% in the sandy loam soil and was above 97% in the loamy soil. Same variability of MRD with July and the whole year SWC was generally low probable and depended on the soil type and climate. Different variability of the MRD with season was found with at least a 55% probability. Larger differences were observed for the robustness of the MRD than for its spatial variability. The inter-annual difference in MRD variation from short and intensive summer campaigns was highly probable for all climates. There were more coincidences under the different scenarios analyzed in the RL selected for the sandy loam soil than for the loamy soil. Among the methods used for selection of RL, those that are based on a minimum difference with MRD of zero showed more consistency than others. The TS appears to be the result of the interplay between climate, soil properties, and survey protocols. One implication of this factor interaction effect on TS SWC is that a simulation study can be useful to decide on the feasibility of including a search for the representative location based on TS for a specific site.

  20. Soil-Plant Nutrient Interactions on Manure-Enriched Calcareous Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient accumulations on heavily manured soils can trigger soil and plant nutrient interactions. The goal of the study was to determine the current impact of dairy manure applications on nutrient concentrations in soil and tissue for irrigated corn silage crops grown in Southern Idaho. At harvest,...

  1. Ad Hoc Modeling of Root Zone Soil Water with Landsat Imagery and Terrain and Soils Data

    PubMed Central

    Sankey, Joel B.; Lawrence, Rick L.; Wraith, Jon M.

    2008-01-01

    Agricultural producers require knowledge of soil water at plant rooting depths, while many remote sensing studies have focused on surface soil water or mechanistic models that are not easily parameterized. We developed site-specific empirical models to predict spring soil water content for two Montana ranches. Calibration data sample sizes were based on the estimated variability of soil water and the desired level of precision for the soil water estimates. Models used Landsat imagery, a digital elevation model, and a soil survey as predictor variables. Our objectives were to see whether soil water could be predicted accurately with easily obtainable calibration data and predictor variables and to consider the relative influence of the three sources of predictor variables. Independent validation showed that multiple regression models predicted soil water with average error (RMSD) within 0.04 mass water content. This was similar to the accuracy expected based on a statistical power test based on our sample size (n = 41 and n = 50). Improved prediction precision could be achieved with additional calibration samples, and range managers can readily balance the desired level of precision with the amount of effort to collect calibration data. Spring soil water prediction effectively utilized a combination of land surface imagery, terrain data, and subsurface soil characterization data. Ranchers could use accurate spring soil water content predictions to set stocking rates. Such management can help ensure that water, soil, and vegetation resources are used conservatively in irrigated and non-irrigated rangeland systems.

  2. Combining Neutron and Magnetic Resonance Imaging to Study the Interaction of Plant Rootsand Soil

    NASA Astrophysics Data System (ADS)

    Oswald, Sascha E.; Tötzke, Christian; Haber-Pohlmeier, Sabina; Pohlmeier, Andreas; Kaestner, Anders P.; Lehmann, Eberhard

    The soil in direct vicinity of the roots, the root-soil interface or so called rhizosphere, is heavily modified by the activity of roots, compared to bulk soil, e.g. in respect to microbiology and soil chemistry. It has turned out that the root-soil interface, though small in size, also plays a decisive role in the hydraulics controlling the water flow from bulk soil into the roots. A promising approach for the non-invasive investigation of water dynamics, water flow and solute transport is the combination of the two imaging techniques magnetic resonance imaging (MRI) and neutron imaging (NI). Both methods are complementary, because NI maps the total proton density, possibly amplified by NI tracers, which usually corresponds to total water content, and is able to detect changes and spatial patterns with high resolution. On the other side, nuclear magnetic resonance relaxation times reflect the interaction between fluid and matrix, while also a mapping of proton spin density and thus water content is possible. Therefore MRI is able to classify different water pools via their relaxation times additionally to the water distribution inside soil as a porous medium. We have started such combined measurements with the approach to use the same samples and perform tomography with each imaging method at different location and short-term sample transfer.

  3. Interaction of Escherichia coli and Soil Particles in Runoff

    PubMed Central

    Muirhead, Richard William; Collins, Robert Peter; Bremer, Philip James

    2006-01-01

    A laboratory-scale model system was developed to investigate the transport mechanisms involved in the horizontal movement of bacteria in overland flow across saturated soils. A suspension of Escherichia coli and bromide tracer was added to the model system, and the bromide concentration and number of attached and unattached E. coli cells in the overland flow were measured over time. Analysis of the breakthrough curves indicated that the E. coli and bromide were transported together, presumably by the same mechanism. This implied that the E. coli was transported by advection with the flowing water. Overland-flow transport of E. coli could be significantly reduced if the cells were preattached to large soil particles (>45 μm). However, when unattached cells were inoculated into the system, the E. coli appeared to attach predominantly to small particles (<2 μm) and hence remained unattenuated during transport. These results imply that in runoff generated by saturation-excess conditions, bacteria are rapidly transported across the surface and have little opportunity to interact with the soil matrix. PMID:16672484

  4. Evaluation and Targeting of Soil and Water Conservation Practices in the Goodwater Creek Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of our research was to identify how conservation practices, their biophysical settings, and the socio/economic constraints interact to affect water quality in the Goodwater Creek Experimental Watershed. Analysis of fifteen years of flow and water quality data showed that soil and water...

  5. Managing pine straw harvests to minimize soil and water losses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pine straw is a valuable landscape mulch because it conserves soil moisture, moderates soil temperature, inhibits weed growth, and protects the soil surface against erosion, while retaining a loose structure that allows water, air, and fertilizer to easily reach the soil surface. As a result, marke...

  6. EFFECT OF SOIL AGGREGATE SIZE DISTRIBUTION ON WATER RETENTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative information on soil water retention is in demand in hydrology, agrometeorology, agronomy, contaminant transport, and other soil-related disciplines of earth and environmental sciences. Soil aggregate composition is an important characteristic of soil structure and, as such, has been exp...

  7. Climate change impacts on soil and water conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2003 report of the Soil and Water Conservation Society concluded that changes in long-term precipitation may substantial impact runoff and soil erosion. These findings call for a review of current approaches to estimating runoff and soil erosion from agricultural lands, enhancements to soil and wa...

  8. Soil erosion by water - model concepts and application

    NASA Astrophysics Data System (ADS)

    Schmidt, Juergen

    2010-05-01

    Soil erosion is not a continuous process but the result of isolated surface runoff events, whose erosional effects are determined by numerous temporally and spatially varying variables. Thus the monitoring of soil loss by direct observation is extremely limited with respect to space and time. Usually observation plots cover an area of less than 100 m2 and the observation period is less than 10 years. In order to estimate soil losses by water erosion for others than empirically observable conditions, mathematical models are needed, which are able to describe the interaction of the different physical mechanisms involved either statistically or on the basis of physical algorithms. Such models are absolutely essential for risk prognoses on catchment and regional scale. Besides the aspect of soil conservation the delivery of sediments and sediment bound pollutants into surface water bodies are of increasing relevance in this context. Based on an exemplary selection of existing water erosion models this contribution aims to give an overview over different mathematical approaches used for the description of particle detachment, transport and deposition of soil particles. According to the chronology in the development of soil erosion models empirical algorithms will be presented first based on the USLE approach. However, since purely empirical models like USLE are limited to the estimation of annual soil loss further attempts in soil erosion modelling are focussed on event based estimations considering the fact that soil erosion is not a continuous process but the result of isolated runoff events. One of the first models of this type was CREAMS using physically based algorithms in combination with empirical ones in order to describe the basic erosion processes. Today there are diverse soil erosion models available following in principle the CREAMS concept but using different algorithms in detail. Concerning particle detachment, transport and deposition alternative approaches will be discussed taking account of the models WEPP, EUROSEM, IISEM and EROSION 3D. In order to provide a better representation of spatially heterogeneous catchments in terms of landuse, soil, slope, and rainfall most of recently developed models operate on a grid-cell basis or other kinds of sub-units, each having uniform characteristics. These so-called "Distributed Models" accepts inputs from raster based geographic information system (GIS). The cell-based structure of the models also allows to generate drainage paths by which water and sediment can be routed from the top to the bottom of the respective watershed. One of the open problems in soil erosion modelling refers to the spontaneous generation of erosion rills without the need for pre-existing morphological contours. A promising approach to handle this problem was realized first in the RILLGROW model, which uses a cellular automaton system in order to generate realistic rill patterns. With respect to the above mentioned models selected applications will be presented and discussed regarding their usability for soil and water conservation purposes.

  9. Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil

    SciTech Connect

    Schulze, E.D.

    1986-01-01

    This review describes the current hypotheses of how humidity and plant and soil water status may interact and regulate stomatal conductance and photosynthesis. This review will focus on the effects of 1. humidity, 2. leaf water potential and leaf turgor, and of 3. soil water status on leaf conductance, transpiration, and CO/sub 2/ assimilation.

  10. Experimental Test on Control Points Materialization for the Study of Vertical Movements of Soil and its Interactions with Ground Water Contents

    NASA Astrophysics Data System (ADS)

    Vittuari, L.; Gottardi, G.; Tini, M. A.

    2013-01-01

    In the study of soil vertical movements, one of the techniques most commonly used is the spirit levelling, now flanked by satellite SAR interferometry and by the analysis of time series acquired through permanent GNSS stations. The reliability of control points monuments varies depending both on the geological context and on the structure being representative of the investigated phenomenon. Often due to the high number of desired points or to the need of maintaining a specific areal distribution, they are fixed on existing structures (as in the common case of spirit levelling networks). This aspect is even more evident in the case of SAR interferometric analysis, where the permanent scatterers are identified on the basis of consistency in the radar response, but the points display movements measured by structures with different foundations at different depths. Starting from repeated precision levelling measurements, we verified which is the order of magnitude of movements of control points characterized by shallow foundations in cohesive soils, observing their behaviours at different depths, under simple and very common conditions such as the presence of periods of drought or rainfall. The results point-out movements in the order of 3-7 mm in the first meter of depth occurred in a week, during the transition between the period of summer drought and the first rains.

  11. Effects of two abiotic factors and their interaction on Soil Carbon Dioxide flux

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Armstrong, Alona; Gristina, Luciano; Quinton, John

    2010-05-01

    Soils release more carbon per annum than current global anthropogenic emissions (Luo and Zhou, 2006). Soils emit carbon dioxide through mineralization and decomposition of organic matter and respiration of roots and soil organism (Houghton 2007) Evaluation of the effects of abiotic factors on microbial activity is of major importance in the context of mitigation greenhouse gases emissions. One of the key greenhouse gases is carbon dioxide (CO2) and previous studies demonstrate that soil CO2 emission is significantly affected by temperature and soil water content. There are a limited number of studies that examine the impact of bulk density and soil surface characteristics as a result of exposure to rain on CO2 emission, however, none examine their relative importance. Therefore, this study investigated the effects of soil compaction and exposure of the soil surface to rainfall and their interaction on CO2 release. We conducted a factorial soil core experiment with three different bulk densities (1.1 g cm-3, 1.3 g cm-3, 1.5 g cm-3) and three difference exposures to rainfall (no rain, 30 minutes and 90 minutes of rainfall). Water was poured on to the cores not exposed to rain and those exposed for 30 minutes through a gauze to ensure all cores received the same volume of water. Immediately the rainfall treatments the soil cores were incubated and soil CO2 efflux and water content were measured 1, 2, 5, 6, 9, and 10 days after the start of the incubation. The results indicate soil CO2 emissions and rate changes significantly through time and with different bulk densities and rain exposures. The relationship between rain exposure and CO2 is positive: CO2 emission was 53% and 42% greater for the 90 min and 30 min rainfall exposure, respectively, compared to those not exposed to rain. Bulk density exhibited a negative relationship with CO2 emission: soil compacted to a bulk density of 1.1 g cm-3 emitted 32% more CO2 than soil compacted to 1.5 g cm-3. Furthermore we found that the magnitude of CO2 effluxes depended on the interaction of these two abiotic factors. Given these results, understanding the influence of soil compaction and raindrop impact on CO2 emission could lead to modified soil management practices which promote carbon sequestration. Key Words: Soil Carbone Dioxide flux, Rain exposure, Soil Compaction.

  12. Phosphorus dynamics in soils irrigated with reclaimed waste water or fresh water - A study using oxygen isotopic composition of phosphate

    USGS Publications Warehouse

    Zohar, I.; Shaviv, A.; Young, M.; Kendall, C.; Silva, S.; Paytan, A.

    2010-01-01

    Transformations of phosphate (Pi) in different soil fractions were tracked using the stable isotopic composition of oxygen in phosphate (??18Op) and Pi concentrations. Clay soil from Israel was treated with either reclaimed waste water (secondary, low grade) or with fresh water amended with a chemical fertilizer of a known isotopic signature. Changes of ??18Op and Pi within different soil fractions, during a month of incubation, elucidate biogeochemical processes in the soil, revealing the biological and the chemical transformation impacting the various P pools. P in the soil solution is affected primarily by enzymatic activity that yields isotopic equilibrium with the water molecules in the soil solution. The dissolved P interacts rapidly with the loosely bound P (extracted by bicarbonate). The oxides and mineral P fractions (extracted by NaOH and HCl, respectively), which are considered as relatively stable pools of P, also exhibited isotopic alterations in the first two weeks after P application, likely related to the activity of microbial populations associated with soil surfaces. Specifically, isotopic depletion which could result from organic P mineralization was followed by isotopic enrichment which could result from preferential biological uptake of depleted P from the mineralized pool. Similar transformations were observed in both soils although transformations related to biological activity were more pronounced in the soil treated with reclaimed waste water compared to the fertilizer treated soil. ?? 2010 Elsevier B.V.

  13. Impacts of Evaporation from Saline Soils on Soil Hydraulic Properties and Water Fluxes

    NASA Astrophysics Data System (ADS)

    Fierro, V.; Hernandez, M. F.; Braud, I.; Cristi Matte, F.; Hausner, M. B.; Suarez, F. I.; Munoz, J.

    2013-12-01

    Saline soils are common in arid zones, where evaporation from shallow groundwater is generally the major component of the water balance. Thus, accurate quantification of soil water evaporation is crucial to improve water resource management in these regions. Evaporation from saline soils is a complex process that couples the movement of salts, heat, liquid water and water vapor. Precipitation/dissolution reactions can alter the soil structure and modify flow paths. The impact of evaporation from shallow groundwater on soil properties and water fluxes poses a major hydrologic challenge that remains to be answered. As a preliminary approach to consider these effects, we used the SiSPAT model (Simple Soil Plant Atmospheric Transfer) to represent the movement of liquid water and water vapor in a saline soil column subjected to two groundwater levels under nonisothermal conditions. To parameterize the model, we determined the hydraulic properties of the soil before performing the soil column experiments. When the SiSPAT model was run using uniform and constant hydraulic properties, it was unable to predict the moisture and thermal profiles, or the cumulative evaporation. This inability to reproduce the observed data is most likely due to alterations of the soil structure as a result of precipitation/dissolution reactions. When the soil hydraulic properties were allowed to vary in space, the model reproduced the experimental data successfully, suggesting that the structure of the initially homogeneous soil column was modified. It is thus necessary to incorporate salt precipitation to correctly simulate evaporation in saline soils.

  14. Mucilage exudation facilitates root water uptake in dry soils

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez; Kroener, Eva; Holz, Maire; Zarebanadkouki, Mohsen; Carminati, Andrea

    2014-05-01

    As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere of lupines was wetter than the bulk soil during root water uptake. On the other hand, after irrigation the rhizosphere remained markedly dry and it rewetted only after one-two days. We hypothesize that: 1) drying/wetting rates of the rhizosphere are controlled by mucilage exuded by roots; 2) mucilage alters the soil hydraulic conductivity: in particular, wet mucilage increases the soil hydraulic conductivity and dry mucilage makes the soil water repellent; 3) mucilage exudation favors root water uptake in dry soil; and 4) dry mucilage limits water loss from roots to dry soils. We used a root pressure probe to measure the hydraulic conductance of artificial roots sitting in soils. As an artificial root we employed a suction cup with a diameter of 2 mm and a length of 45 mm. The root pressure probe gave the hydraulic conductance of the soil-root continuum during pulse experiments in which water was injected into or sucked from the soil. First, we performed experiments with roots in a relatively dry soil with a volumetric water content of 0.03. Then, we repeated the experiment with artificial roots covered with mucilage and then placed into the soil. As a model for mucilage, we collected mucilage from Chia seeds. The water contents (including that of mucilage) in the experiments with and without mucilage were equal. The pressure curves were fitted with a model of root water that includes rhizosphere dynamics. We found that the artificial roots covered with wet mucilage took up water more easily. In a second experimental set-up we measured the outflow of water from the artificial roots into dry soils. We compared two soils: 1) a sandy soil and 2) the same soil wetted with mucilage from Chia seeds and then let dry. The latter soil became water repellent. Due to the water repellency, the outflow of water from the root in this soil was significantly reduced. The experiments demonstrated that mucilage increased the hydraulic conductance of the root-soil continuum and facilitated the extraction of water from dry soils. The increase in conductivity resulted from the higher water content of the soil near the roots. Mucilage has a lower surface tension than pure water and a higher viscosity, resulting in a slower penetration of mucilage into the soil. After mucilage was placed into the soil, it did not spread into the bulk soil, but it remained near the roots, maintaining the rhizosphere wetter and more conductive than the bulk soil. However, as mucilage dried, it turned water repellent and reduced the back flow of water from the root to soil. We hypothesize that mucilage exudation is a plant strategy to locally and temporally facilitate water uptake from dry soils. After drying, mucilage becomes water repellent and may limit the local uptake of water after irrigation. On the other hand, mucilage water repellency may as well be a strategy to reduce water loss from roots to dry soils.

  15. Soil Water Trends During the 2005 - 2006 Drought in Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water depletion is an early consequence of a meteorological drought, with the latter defined as a precipitation deficit lasting a few months to several years. Soil water in the upper soil profile (approximately first meter) is limited and highly variable because of its rapid response to precipi...

  16. Determining the least limiting water range using limited soil data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Least Limiting Water Range (LLWR) is a useful tool to evaluate changes in soil physical condition caused by changing soil management. It incorporates limitations to plant growth based on limiting aeration, water holding capacity and soil strength. A disadvantage of the LLWR is the need to determ...

  17. Ecohydrology of root zone water fluxes and soil development in complex semiarid rangelands

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Jurado, Hugo A.; Vivoni, Enrique R.; Harrison, J. Bruce J.; Guan, Huade

    2006-10-01

    In semiarid complex terrain, the landscape creates spatial niches for different types of vegetation through the effects of aspect, slope and curvature on the water and energy balance at the soil surface. The ecohydrology of rangelands is defined by the interaction of soils, plants and climate occurring on a topographic surface. While these interactions have been studied for subtle terrain, little is known about the controls exerted by terrain position, in particular terrain aspect, on ecosystem processes. Furthermore, differential plant establishment can lead to measurable differences in rates of soil development, which in turn can affect soil hydraulic properties and the surface water balance. In this study, we outline the physical mechanisms affecting plant establishment, soil development and hydrologic fluxes in semiarid complex terrain. We illustrate the interactions between vegetation, root zone water fluxes and soil development using, as an example, a small drainage basin in the Sevilleta National Wildlife Refuge (SNWR), New Mexico. In the study basin, opposing hillslopes are characterized by marked differences in ecosystem composition and soil profile properties, with the north-facing hillslope dominated by one seed juniper (Juniperus monosperma) and the south-facing slope consisting of creosote bush (Larrea tridentata). We assess the effect of terrain aspect on root zone hydrologic fluxes and soil development in the two ecosystems by using soil observations, hydraulic properties from pedotransfer functions (PTFs), and numerical modelling of vadose zone fluxes. Modelling results show marked differences in root zone fluxes in the north-facing juniper and south-facing creosote ecosystems. Differences in the amplitude and frequency of soil water content and pressure correspond to changes in soil profile and vegetation characteristics. For example, soil properties of the calcium carbonate (CaCO3) horizons and differential plant water uptake impact the simulated soil water pressure over an 8-year period in the opposing ecosystems. It is believed that these variations in water fluxes reinforce the development of CaCO3 horizons present in the soil profiles, leading to a feedback between vegetation establishment, soil water fluxes and geomorphic processes in the catchment. Our results also indicate that soil properties and water fluxes compensate for large differences in evaporative demand and lead to similar actual evapotranspiration (AET) in the opposing slopes.

  18. Determination of Martian soil mineralogy and water content using the Thermal Analyzer for Planetary Soils (TAPS)

    NASA Technical Reports Server (NTRS)

    Gooding, James L.; Ming, Douglas W.; Allton, Judith H.; Byers, Terry B.; Dunn, Robert P.; Gibbons, Frank L.; Pate, Daniel B.; Polette, Thomas M.

    1992-01-01

    Physical and chemical interactions between the surface and atmosphere of Mars can be expected to embody a strong cause-and-effect relationship with the minerals comprising the martian regolith. Many of the minerals in soils and sediments are probably products of chemical weathering (involving surface/atmosphere or surface/hydrosphere reactions) that could be expected to subsequently influence the sorption of atmospheric gases and water vapor. Therefore, identification of the minerals in martian surface soils and sediments is essential for understanding both past and present interactions between the Mars surface and atmosphere. Clearly, the most definitive mineral analyses would be achieved with well-preserved samples returned to Earth-based laboratories. In advance of a Mars sample return mission, however, significant progress could be made with in situ experiments that fill current voids in knowledge about the presence or abundance of key soil minerals such as clays (layered-structured silicates), zeolites, and various salts, including carbonates. TAPS is intended to answer that challenge by providing first-order identification of soil and sediment minerals.

  19. Importance of soil-water relation in assessment endpoint in bioremediated soils: Plant growth and soil physical properties

    SciTech Connect

    Li, X.; Sawatsky, N.

    1995-12-31

    Much effort has been focused on defining the end-point of bioremediated soils by chemical analysis (Alberta Tier 1 or CCME Guideline for Contaminated Soils) or toxicity tests. However, these tests do not completely assess the soil quality, or the capability of soil to support plant growth after bioremediation. This study compared barley (Hordeum vulgare) growth on: (i) non-contaminated, agricultural topsoil, (2) oil-contaminated soil (4% total extractable hydrocarbons, or TEH), and (3) oil-contaminated soil treated by bioremediation (< 2% TEH). Soil physical properties including water retention, water uptake, and water repellence were measured. The results indicated that the growth of barley was significantly reduced by oil-contamination of agricultural topsoil. Furthermore, bioremediation did not improve the barley yield. The lack of effects from bioremediation was attributed to development of water repellence in hydrocarbon contaminated soils. There seemed to be a critical water content around 18% to 20% in contaminated soils. Above this value the water uptake by contaminated soil was near that of the agricultural topsoil. For lower water contents, there was a strong divergence in sorptivity between contaminated and agricultural topsoil. For these soils, water availability was likely the single most important parameter controlling plant growth. This parameter should be considered in assessing endpoint of bioremediation for hydrocarbon contaminated soils.

  20. Measuring and modelling water related soil-vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, N.; Cassiani, G.; Deiana, R.; Vignoli, G.; Boaga, J.

    2013-08-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field scale water balance. The objectives of this study are to test the potential of integrated non invasive geophysical methods and ground-image analysis and to quantify the effect of the soil vegetation interaction on the water balance of a fallow land at the local and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during a controlled irrigation experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of ERT maps of soil moisture evidenced a considerably different hydrologic response to irrigation of the two plots. Local measurements of soil saturation and vegetation cover were repeated in space to evidence a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the fallow site.

  1. Measuring and modeling water-related soil-vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, N.; Cassiani, G.; Deiana, R.; Vignoli, G.; Boaga, J.

    2014-03-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field-scale water balance. The objectives of this study are to test the potential of integrated non-invasive geophysical methods and ground-image analysis and to quantify the effect of the soil-vegetation interaction on the water balance of fallow land at the local- and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during a controlled irrigation experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of ERT maps of soil moisture evidenced a considerably different hydrologic response to irrigation of the two plots. Local measurements of soil saturation and vegetation cover were repeated in space to evidence a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the fallow site.

  2. PERMEABILITY OF SOILS TO FOUR ORGANIC LIQUIDS AND WATER

    EPA Science Inventory

    Saturated hydraulic conductivities and intrinsic permeabilities were evaluated for eight contrasting soils with four organic liquids and water. The organic liquids were kerosene, ethylene glycol, isopropyl alcohol and xylene. Intrinsic permeability for any given soil varied inver...

  3. REGIONAL SOIL WATER RETENTION IN THE CONTIGUOUS US: SOURCES OF VARIABILITY AND VOLCANIC SOIL EFFECTS

    EPA Science Inventory

    Water retention of mineral soil is often well predicted using algorithms (pedotransfer functions) with basic soil properties but the spatial variability of these properties has not been well characterized. A further source of uncertainty is that water retention by volcanic soils...

  4. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-03-29

    SRI International is conducting experiments to develop and evaluate hydrothermal extraction technology or hot water extraction (HWE) technology for remediating petroleum-contaminated soils. Most current remediation practices either fail to remove the polycyclic aromatic hydrocarbons (PAHs) found in petroleum-contaminated sites, are too costly, or require the use of organic solvents at the expense of additional contamination and with the added cost of recycling solvents. Hydrothermal extraction offers the promise of efficiently extracting PAHs and other kinds of organics from contaminated soils at moderate temperatures and pressures, using only water and inorganic salts such as carbonate. SRI has conducted experiments to measure the solubility and rate of solubilization of selected PAHs (fluoranthene, pyrene, chrysene, 9,10-dimethylanthracene) in water using SRI's hydrothermal optical cell with the addition of varying amounts of sodium carbonate to evaluate the efficiency of the technology for removing PAHs from the soil. SRI data shows a very rapid increase in solubility of PAHs with increase in temperature in the range 25-275 C. SRI also measured the rate of solubilization, which is a key factor in determining the reactor parameters. SRI results for fluoranthene, pyrene, chrysene, and 9,10-dimethylanthracene show a linear relationship between rate of solubilization and equilibrium solubility. Also, we have found the rate of solubilization of pyrene at 275 C to be 6.5 ppm/s, indicating that the equilibrium solubilization will be reached in less than 3 min at 275 C; equilibrium solubility of pyrene at 275 C is 1000 ppm. Also, pyrene and fluoranthene appear to have higher solubilities in the presence of sodium carbonate. In addition to this study, SRI studied the rate of removal of selected PAHs from spiked samples under varying conditions (temperature, pore sizes, and pH). We have found a higher removal of PAHs in the presence of sodium carbonate in both sand and bentonite systems. Also, sodium carbonate greatly reduces the possible reactor corrosion under hydrothermal conditions. Our results show that a water-to-sand ratio of at least 3:1 is required to efficiently remove PAH from soil under static conditions.

  5. Interactions between soil and tree roots accelerate long-term soil carbon decomposition.

    PubMed

    Dijkstra, Feike A; Cheng, Weixin

    2007-11-01

    Decomposition of soil organic carbon (SOC) is the main process governing the release of CO(2) into the atmosphere from terrestrial systems. Although the importance of soil-root interactions for SOC decomposition has increasingly been recognized, their long-term effect on SOC decomposition remains poorly understood. Here we provide experimental evidence for a rhizosphere priming effect, in which interactions between soil and tree roots substantially accelerate SOC decomposition. In a 395-day greenhouse study with Ponderosa pine and Fremont cottonwood trees grown in three different soils, SOC decomposition in the planted treatments was significantly greater (up to 225%) than in soil incubations alone. This rhizosphere priming effect persisted throughout the experiment, until well after initial soil disturbance, and increased with a greater amount of root-derived SOC formed during the experiment. Loss of old SOC was greater than the formation of new C, suggesting that increased C inputs from roots could result in net soil C loss. PMID:17910623

  6. MODELING SOIL-WATER DISTRIBUTION OF AROMATIC AMINES IN WATER SATURATED SOIL SYSTEMS

    EPA Science Inventory

    Research summarized in this report focuses on the abiotic interactions of aromatic amines with whole soils in aqueous systems. This work was initiated to improve our ability to predict the mobility of aromatic amines and their potential to contaminate groundwater, and to improve...

  7. Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils.

    PubMed

    Briones, Mara Jess I; McNamara, Niall P; Poskitt, Jan; Crow, Susan E; Ostle, Nicholas J

    2014-09-01

    Partially decomposed plant and animal remains have been accumulating in organic soils (i.e. >40% C content) for millennia, making them the largest terrestrial carbon store. There is growing concern that, in a warming world, soil biotic processing will accelerate and release greenhouse gases that further exacerbate climate change. However, the magnitude of this response remains uncertain as the constraints are abiotic, biotic and interactive. Here, we examined the influence of resource quality and biological activity on the temperature sensitivity of soil respiration under different soil moisture regimes. Organic soils were sampled from 13 boreal and peatland ecosystems located in the United Kingdom, Ireland, Spain, Finland and Sweden, representing a natural resource quality range of C, N and P. They were incubated at four temperatures (4, 10, 15 and 20 C) at either 60% or 100% water holding capacity (WHC). Our results showed that chemical and biological properties play an important role in determining soil respiration responses to temperature and moisture changes. High soil C : P and C : N ratios were symptomatic of slow C turnover and long-term C accumulation. In boreal soils, low bacterial to fungal ratios were related to greater temperature sensitivity of respiration, which was amplified in drier conditions. This contrasted with peatland soils which were dominated by bacterial communities and enchytraeid grazing, resulting in a more rapid C turnover under warmer and wetter conditions. The unexpected acceleration of C mineralization under high moisture contents was possibly linked to the primarily role of fermented organic matter, instead of oxygen, in mediating microbial decomposition. We conclude that to improve C model simulations of soil respiration, a better resolution of the interactions occurring between climate, resource quality and the decomposer community will be required. PMID:24687903

  8. Global distribution of plant-extractable water capacity of soil

    USGS Publications Warehouse

    Dunne, K.A.; Willmott, C.J.

    1996-01-01

    Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. It is often assumed to be spatially invariant in large-scale computations of the soil-water balance. Empirical evidence, however, suggests that this assumption is incorrect. In this paper, we estimate the global distribution of the plant-extractable water capacity of soil. A representative soil profile, characterized by horizon (layer) particle size data and thickness, was created for each soil unit mapped by FAO (Food and Agriculture Organization of the United Nations)/Unesco. Soil organic matter was estimated empirically from climate data. Plant rooting depths and ground coverages were obtained from a vegetation characteristic data set. At each 0.5?? ?? 0.5?? grid cell where vegetation is present, unit available water capacity (cm water per cm soil) was estimated from the sand, clay, and organic content of each profile horizon, and integrated over horizon thickness. Summation of the integrated values over the lesser of profile depth and root depth produced an estimate of the plant-extractable water capacity of soil. The global average of the estimated plant-extractable water capacities of soil is 8??6 cm (Greenland, Antarctica and bare soil areas excluded). Estimates are less than 5, 10 and 15 cm - over approximately 30, 60, and 89 per cent of the area, respectively. Estimates reflect the combined effects of soil texture, soil organic content, and plant root depth or profile depth. The most influential and uncertain parameter is the depth over which the plant-extractable water capacity of soil is computed, which is usually limited by root depth. Soil texture exerts a lesser, but still substantial, influence. Organic content, except where concentrations are very high, has relatively little effect.

  9. Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement.

    PubMed

    Lynch, Jonathan P; Chimungu, Joseph G; Brown, Kathleen M

    2014-11-01

    Several root anatomical phenes affect water acquisition from drying soil, and may therefore have utility in breeding more drought-tolerant crops. Anatomical phenes that reduce the metabolic cost of the root cortex ('cortical burden') improve soil exploration and therefore water acquisition from drying soil. The best evidence for this is for root cortical aerenchyma; cortical cell file number and cortical senescence may also be useful in this context. Variation in the number and diameter of xylem vessels strongly affects axial water conductance. Reduced axial conductance may be useful in conserving soil water so that a crop may complete its life cycle under terminal drought. Variation in the suberization and lignification of the endodermis and exodermis affects radial water conductance, and may therefore be important in reducing water loss from mature roots into dry soil. Rhizosheaths may protect the water status of young root tissue. Root hairs and larger diameter root tips improve root penetration of hard, drying soil. Many of these phenes show substantial genotypic variation. The utility of these phenes for water acquisition has only rarely been validated, and may have strong interactions with the spatiotemporal dynamics of soil water availability, and with root architecture and other aspects of the root phenotype. This complexity calls for structural-functional plant modelling and 3D imaging methods. Root anatomical phenes represent a promising yet underexplored and untapped source of crop breeding targets. PMID:24759880

  10. Subsurface And Surface Water Flow Interactions

    EPA Science Inventory

    In this chapter we present basic concepts and principles underlying the phenomena of groundwater and surface water interactions. Fundamental equations and analytical and numerical solutions describing stream-aquifer interactions are presented in hillslope and riparian aquifer en...

  11. Soil formation in post mining sites: the role of vegatation soil microflora and fauna interactions

    NASA Astrophysics Data System (ADS)

    Frouz, J.

    2009-04-01

    The role of vegetation and soil micro flora and fauna interaction during soil formation was studied in post mining sites in Czech Republic, Germany and USA. Vegetation and character of substrate substantially effect, micro flora, namely fungal bacterial ration, fauna composition and resulting microstructure of soil. Plants that bring more nitrogen in to the system support larger biomass of soil fauna and namely occurrence of earthworms which yield in larger bioturbation and associated faster production of A horizon in newly developing soil. Manipulation experiment show that presence of fauna have crucial effect of soil formation in these soil and positive effect of many plant species which are assumed to beneficial for reclamation is in fact indirect and caused by its positive effect on soil fauna development.

  12. Centrifuge modelling of lateral pipeline/soil interaction -- Phase 2

    SciTech Connect

    Paulin, M.J.; Phillips, R.; Boivin, R.

    1995-12-31

    An ongoing research program is investigating the load transfer behavior of buried pipelines subjected to lateral soil movement in cohesive soil. Phase 1 of this study, reported to OMAE `92, demonstrated that the centrifuge technique was appropriate for this application in determining the interaction conditions for the lateral loading of pipelines. Limited control of the shear strength masked geometric effects (trench width and burial depth) on the interaction factors and desiccation affected the interpretation of some of the interaction factors. The Phase 2 study investigated the geometric effects of pipeline soil cover, ditch width and also displacement rate. The study included a ``modelling of models`` test to verify the reliability of the centrifuge modelling technique. This paper addresses two issues: (1) The Phase 1 soil strength profiles and interaction factors were reanalyzed based on an improved understanding of the soil conditions at the time of testing; (2) A selection of the Phase 2 results are presented for a 0.95m diameter pipeline subjected to lateral soil movement. The program results are discussed and compared with current pipeline/soil interaction analysis methods.

  13. Soil CO₂ dynamics in a tree island soil of the Pantanal: the role of soil water potential.

    PubMed

    Johnson, Mark S; Couto, Eduardo Guimarães; Pinto, Osvaldo B; Milesi, Juliana; Santos Amorim, Ricardo S; Messias, Indira A M; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO₂ research has been conducted in this region. We evaluated soil CO₂ dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO₂ concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO₂ efflux and related environmental parameters. Soil CO₂ efflux during the study averaged 3.53 µmol CO₂ m⁻² s⁻¹, and was equivalent to an annual soil respiration of 1220 g C m⁻² y⁻¹. This efflux value, integrated over a year, is comparable to soil C stocks for 0-20 cm. Soil water potential was the measured parameter most strongly associated with soil CO₂ concentrations, with high CO₂ values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO₂ efflux from the tree island soil, with soil CO₂ dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO₂ efflux from soil. The annual flood arrives later, and saturates soil from below. While CO₂ concentrations in soil grew very high under both wetting mechanisms, the change in soil CO₂ efflux was only significant when soils were wet from above. PMID:23762259

  14. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    PubMed Central

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  15. Can surfactants affect management of non-water repellent soils?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants affect the water relations of water repellent soils but may or may not affect those of wettable soils. We studied the effects of three surfactants, Aquatrols IrrigAid Gold®, an ethylene oxide/propylene oxide block copolymer, and an alkyl polyglycoside, along with untreated tap water as ...

  16. STABLE ISOTOPES AS INDICATORS OF SOIL WATER DYNAMICS IN WATERSHEDS

    EPA Science Inventory

    Stream water quality and quantity depend on discharge rates of water and nutrients from soils. However, soil-water storage is very dynamic and strongly influenced by plants. We analyzed stable isotopes of oxygen and hydrogen to quantify spatial and temporal changes in evaporati...

  17. Soil water sensor response to bulk electrical conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  18. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The ability to read the 24-channel MSS CCT tapes, select specified agricultural land use areas from the CCT, and perform multivariate statistical and pattern recognition analyses has been demonstrated. The 5 optimum channels chosen for classifying an agricultural scene were, in the order of their selection the far red visible, short reflective IR, visible blue, thermal infrared, and ultraviolet portions of the electromagnetic spectrum, respectively. Although chosen by a training set containing only vegetal categories, the optimum 4 channels discriminated pavement, water, bare soil, and building roofs, as well as the vegetal categories. Among the vegetal categories, sugar cane and cotton had distinctive signatures that distinguished them from grass and citrus. Acreages estimated spectrally by the computer for the test scene were acceptably close to acreages estimated from aerial photographs for cotton, sugar cane, and water. Many nonfarmable land resolution elements representing drainage ditch, field road, and highway right-of-way as well as farm headquarters area fell into the grass, bare soil plus weeds, and citrus categories and lessened the accuracy of the farmable acreage estimates in these categories. The expertise developed using the 24-channel data will be applied to the ERTS-1 data.

  19. Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance

    USGS Publications Warehouse

    Yi, S.; McGuire, A.D.; Harden, J.; Kasischke, E.; Manies, K.; Hinzman, L.; Liljedahl, A.; Randerson, J.; Liu, H.; Romanovsky, V.; Marchenko, S.; Kim, Y.

    2009-01-01

    Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were investigated with a new ecosystem model framework, the dynamic organic soil version of the Terrestrial Ecosystem Model, that incorporates an efficient and stable numerical scheme for simulating soil thermal and hydrological dynamics within soil profiles that contain a live moss horizon, fibrous and amorphous organic horizons, and mineral soil horizons. The performance of the model was evaluated for a tundra burn site that had both preburn and postbura measurements, two black spruce fire chronosequences (representing space-for-time substitutions in well and intermediately drained conditions), and a poorly drained black spruce site. Although space-for-time substitutions present challenges in modeldata comparison, the model demonstrates substantial ability in simulating the dynamics of ??vapotranspiration, soil temperature, active layer depth, soil moisture, and water table depth in response to both climate variability and fire disturbance. Several differences between model simulations and field measurements identified key challenges for evaluating/improving model performance that include (1) proper representation of discrepancies between air temperature and ground surface temperature; (2) minimization of precipitation biases in the driving data sets; (3) improvement of the measurement accuracy of soil moisture in surface organic horizons; and (4) proper specification of organic horizon depth/properties, and soil thermal conductivity. Copyright 2009 by the American Geophysical Union.

  20. Effect of antecedent soil-water content on aggregate stability and erodibility of a loess soil

    NASA Astrophysics Data System (ADS)

    Vermang, J.; Demeyer, V.; Cornelis, W. M.; Gabriels, D.

    2009-04-01

    Soil erosion processes are affected by the erodibility of the soil and by the erosivity of the rain. Aggregate stability is commonly considered as the most significant soil physical property that determines soil erodibility. Both aggregate stability and soil erodibility are commonly considered to be constant properties, without taking into account the influence of time-dependent parameters, such as antecedent soil-water content (?), being the soil-water content prior to the rainfall. The effects of rain characteristics and invariant soil properties such as texture and organic matter content on soil erosion processes are well documented. However, the effect of antecedent soil-water content on aggregate breakdown, seal formation and subsequent soil erosion is much more disputable as opposing effects have been reported. The objectives were to determine the effect of ? on aggregate stability, seal formation, runoff and soil loss. Lab experiments were conducted on a Belgian silt loam soil. Air-dried soil aggregates were subjected to antecedent soil-water contents of 0.04 (air-dry aggregates), 0.12 and 0.19 m3 m-3. Aggregate stability was determined according to the 'dry and wet sieving' method of De Leenheer and De Boodt (1959). The method starts from fixed aggregate fractions obtained from dry sieving which subsequently are prewetted and undergo a wet sieving. Runoff and soil loss was determined by means of a laboratory rainfall simulator, consisting of a rotating circular water tank, which is located at 3.20 m height and which is supplied with 90 glass capillaries serving as drop formers. A positive relationship between antecedent soil-water content and aggregate stability was found. This can be attributed to a decrease in slaking forces. On the soils with highest antecedent soil-water content an increase in aggregate stability due to prewetting prevented aggregate breakdown. As such, no seal was formed and no runoff occurred. The highest total runoff values were observed for the intermediate ?, while intermediate amounts of total runoff were noticed for the air-dry aggregates. Soil loss, however, showed a different trend: highest values were found for the lowest ?, intermediate values for the intermediate ? and no soil loss for the highest ?. We further observed that ? had no influence on the final runoff rates and on the final infiltration rate through the soil surface. In using a water discharge and stream power equation to predict sediment transport, we found a decreasing erodibility with increasing ?. We therefore suggest including ? as an additional variable to assess soil erodibility in deterministic event-based water erosion models.

  1. Ecohydrology of dry regions: storage versus pulse soil water dynamics

    USGS Publications Warehouse

    Lauenroth, William K.; Schlaepfer, Daniel R.; Bradford, John B.

    2014-01-01

    Although arid and semiarid regions are defined by low precipitation, the seasonal timing of temperature and precipitation can influence net primary production and plant functional type composition. The importance of precipitation seasonality is evident in semiarid areas of the western U.S., which comprise the Intermountain (IM) zone, a region that receives important winter precipitation and is dominated by woody plants and the Great Plains (GP), a region that receives primarily summer precipitation and is dominated by perennial grasses. Although these general relationships are well recognized, specific differences in water cycling between these regions have not been well characterized. We used a daily time step soil water simulation model and twenty sites from each region to analyze differences in soil water dynamics and ecosystem water balance. IM soil water patterns are characterized by storage of water during fall, winter, and spring resulting in relatively reliable available water during spring and early summer, particularly in deep soil layers. By contrast, GP soil water patterns are driven by pulse precipitation events during the warm season, resulting in fluctuating water availability in all soil layers. These contrasting patterns of soil waterstorage versus pulse dynamicsexplain important differences between the two regions. Notably, the storage dynamics of the IN sites increases water availability in deep soil layers, favoring the deeper rooted woody plants in that region, whereas the pulse dynamics of the Great Plains sites provide water primarily in surface layers, favoring the shallow-rooted grasses in that region. In addition, because water received when plants are either not active or only partially so is more vulnerable to evaporation and sublimation than water delivered during the growing season, IM ecosystems use a smaller fraction of precipitation for transpiration (47%) than GP ecosystems (49%). Recognizing the pulse-storage dichotomy in soil water regimes between the IM and GP regions may be useful for understanding the potential influence of climate changes on soil water patterns and resulting dominant plant functional groups in both regions.

  2. [Impact of biological soil crusts on soil water repellence in the hilly Loess Plateau region, China].

    PubMed

    Zhang, Pei-Pei; Zhao, Yun-Ge; Wang, Yuan; Yao, Chun-Zhu

    2014-03-01

    By using water drop penetration time (WDPT) and molarity of ethanol droplet (MED) methods, the soil water repellence of undisturbed biological soil crusts (biocrusts) in five successional stages, from the hilly Loess Plateau region of China was tested. The five stages of biocrusts were light cyanobacterial crust, dark cyanobacterial crust, cyanobacterial with sparse moss crust, moss and tiny cyanobacteria patches crust and moss dominated crust. The results showed that 1) the soil water repellence was markedly increased both in the intensity and persistence since the formation of biocrusts. 2) The soil water repellence showed a decrease trend along with the successional stages of biocrusts. The soil water repellence of the biocrusts with the moss coverage above 20% was significantly lower than that of the cyanobacterial crusts. 3) The soil water repellence of the biocrusts was closely related to soil moisture and the dominant organism. The soil water repellence increased with the decrease of soil water content for the moss dominated biocrusts, while changed in a bimodal curve with the decrease of soil water content for the cyanobacterial biocrusts. PMID:24984480

  3. Interaction of potassium phosphonate fungicide in laterite soil.

    PubMed

    Kumar, R Anil; Velayudhan, K T; Vasu, K; Ramachandran, V; Bhai, R Susheela; Unnikrishnan, G

    2005-10-01

    Potassium phosphonate is a fungicide widely used to control Phytophthora fungi species in many crops all over the world. In this paper, an attempt has been made to study the interaction of potassium phosphonate with soil under varying pH and calcium level. Several reports available in literature indicate that the phosphonate in organic form adsorb strongly on almost all mineral surfaces and natural materials like soil and sediments. The present study conducted on laterite soil of Kerala using 2 mm sieved sample indicated that phosphonate obeys Freundlich adsorption isotherm. Though at lower concentrations, Langmuir model equally fits well, deviation was observed at higher concentrations. pH and calcium content of the soil had striking influence on the interaction of the chemical with the soil. The calcium source also appeared to influence the adsorption phenomenon. Since potassium phosphonate is extensively used to control Phytophthora fungi species in black pepper (Piper nigrum) plantations in India and liming is a standard practice followed as soil amendment in acid soils to increase the soil pH, this study may help to maintain good soil quality. PMID:17051913

  4. A Comparison of Soil-Water Sampling Techniques

    NASA Astrophysics Data System (ADS)

    Tindall, J. A.; Figueroa-Johnson, M.; Friedel, M. J.

    2007-12-01

    The representativeness of soil pore water extracted by suction lysimeters in ground-water monitoring studies is a problem that often confounds interpretation of measured data. Current soil water sampling techniques cannot identify the soil volume from which a pore water sample is extracted, neither macroscopic, microscopic, or preferential flowpath. This research was undertaken to compare values of extracted suction lysimeters samples from intact soil cores with samples obtained by the direct extraction methods to determine what portion of soil pore water is sampled by each method. Intact soil cores (30 centimeter (cm) diameter by 40 cm height) were extracted from two different sites - a sandy soil near Altamonte Springs, Florida and a clayey soil near Centralia in Boone County, Missouri. Isotopically labeled water (O18? - analyzed by mass spectrometry) and bromide concentrations (KBr- - measured using ion chromatography) from water samples taken by suction lysimeters was compared with samples obtained by direct extraction methods of centrifugation and azeotropic distillation. Water samples collected by direct extraction were about 0.25 ? more negative (depleted) than that collected by suction lysimeter values from a sandy soil and about 2-7 ? more negative from a well structured clayey soil. Results indicate that the majority of soil water in well-structured soil is strongly bound to soil grain surfaces and is not easily sampled by suction lysimeters. In cases where a sufficient volume of water has passed through the soil profile and displaced previous pore water, suction lysimeters will collect a representative sample of soil pore water from the sampled depth interval. It is suggested that for stable isotope studies monitoring precipitation and soil water, suction lysimeter should be installed at shallow depths (10 cm). Samples should also be coordinated with precipitation events. The data also indicate that each extraction method be use to sample a different component of soil-pore water. Centrifugation can be used with success, particularly for efficient sampling of large areas. Azeotropic distillation is more appropriate when strict qualitative and quantitative data on sorption/desorption and various types of kinetic studies may be needed.

  5. Predicting and mapping soil available water capacity in Korea

    PubMed Central

    Hong, Suk Young; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo

    2013-01-01

    The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at −10 and −1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at −10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils. PMID:23646290

  6. Responses of amphibian populations to water and soil factors in experimentally-treated aquatic macrocosms

    USGS Publications Warehouse

    Sparling, D.W.; Lowe, T.P.; Day, D.; Dolan, K.

    1995-01-01

    Survival of anuran embryos and tadpoles is reduced in acidic (pH < 5.0) waters under laboratory conditions. However, field data on the presence-absence of amphibian species and acidity are equivocal. This study attempts to reconcile some of this discrepancy by using macrocosms to examine the interaction of soil type and water acidification on free-ranging tadpole populations. Tadpoles were caught with activity traps in 24 aquatic macrocosms experimentally treated with H2SO4 and Al2(SO4)3 and lined with either comparatively high metal, Iow organic matter clay soils or lower metal, higher organic matter loams. Northern cricket frog (Acris crepitans) tadpole abundance was less in acidified macrocosms than in circumneutral ones (p < 0.05) and less in those with loam soils than in macrocosms with clay soils (p < 0.04). Gray treefrog (Hyla versicolor) abundance was affected by an interaction between soil and acidification (p < 0.07) in that treatment effects were only observed in macrocosms with clay soils (p < 0.01). No differences were observed among treatments for green frog (Rana clamitans) or southern leopard frog (R. utricularia) tadpoles. The study shows that soil type may interact with water conditions to affect amphibian populations in acidified waters

  7. The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards

    NASA Astrophysics Data System (ADS)

    Brillante, L.; Mathieu, O.; Bois, B.; van Leeuwen, C.; Lévêque, J.

    2015-03-01

    Soil water availability deeply affects plant physiology. In viticulture it is considered a major contributor to the "terroir" effect. The assessment of soil water in field conditions is a difficult task, especially over large surfaces. New techniques are therefore required in order to better explore variations of soil water content in space and time with low disturbance and with great precision. Electrical resistivity tomography (ERT) meets these requirements for applications in plant sciences, agriculture and ecology. In this paper, possible techniques to develop models that allow the use of ERT to spatialise soil water available to plants are reviewed. An application of soil water monitoring using ERT in a grapevine plot in Burgundy (north-east France) during the vintage 2013 is presented. We observed the lateral heterogeneity of ERT-derived fraction of transpirable soil water (FTSW) variations, and differences in water uptake depend on grapevine water status (leaf water potentials measured both at predawn and at solar noon and contemporary to ERT monitoring). Active zones in soils for water movements were identified. The use of ERT in ecophysiological studies, with parallel monitoring of plant water status, is still rare. These methods are promising because they have the potential to reveal a hidden part of a major function of plant development: the capacity to extract water from the soil.

  8. Effects of soil management techniques on soil water erosion in apricot orchards.

    PubMed

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi

    2016-05-01

    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (<8% soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide treatment should be avoided. PMID:26881727

  9. Soil-plant-biochar interactions and effects on soil C and N cycling in a wheat greenhouse pot experiment.

    NASA Astrophysics Data System (ADS)

    Michie, E.; Panzacchi, P.; Davies, C. A.; Toet, S.; Ineson, P.

    2012-04-01

    Biochar is carbon rich material, able to modify soil qualities and increase soil carbon sequestration. We investigated the benefits, interactions and mechanisms observed when adding biochar (from Miscanthus feedstock) to soil. In a greenhouse experiment with wheat grown in pots under simulated natural conditions, biochars pyrolysed at 360° C and 450° C were applied at 10, 25, and 50 tha-1, with or without nitrogen (urea). These pots were subjected to different water regimes (400 and 800 mm per year) according to a randomised block design. Growth rate, grain yield and total biomass will be related to the biochar production temperature and application rate. The effect of biochar on water availability and C and N cycling will be tested by direct measurements of CO2, CH4 and N2O fluxes from soil using closed dynamic and static chamber methods. Different natural 13C abundance in biochar (Δ13C≈-13) and soil organic matter (SOM; (Δ13C ≈-27) will be used to calculate the relative contribution of biochar to total soil respiration and the potential priming effect of the biochar on SOM. In addition a labelling experiment with 13CO2 will be used to trace C from the atmosphere through the plant, revealing how biochar affects C allocation in plant biomass, rhizodeposition and root respiration. Preliminary results will be presented.

  10. Predicting sub-grid variability of soil water content from basic soil information

    NASA Astrophysics Data System (ADS)

    Qu, Wei; Bogena, Heye; Huisman, Johan Alexander; Vanderborght, Jan; Schuh, Max; Priesack, Eckart; Vereecken, Harry

    2015-04-01

    Knowledge of unresolved soil water content variability within model grid cells (i.e. sub-grid variability) is important for accurate predictions of land-surface energy and hydrologic fluxes. Here, we derived a closed-form expression to describe how soil water content variability depends on mean soil water content using stochastic analysis of 1D unsaturated gravitational flow based on the van Genuchten-Mualem (VGM) model. A sensitivity analysis of this closed-form expression showed that the n parameter strongly influenced both the shape and magnitude of the maximum of this relationship. In a next step, the closed-form expression was used to predict soil water content variability for eight datasets with varying soil texture using VGM parameters obtained from pedotransfer functions that rely on readily available soil information. Generally, there was good agreement between observed and predicted soil water content variability despite the obvious simplifications that were used to derive the closed-form expression (e.g. gravity flow in dry soils). A simplified closed-form expression that neglected the effect of pressure head fluctuations showed that the good performance in the dry soil range is related to the dominant role of the variability in MVG parameters determining water retention as compared to the effect of water flow. Furthermore, the novel closed-form expression was successfully used to inversely estimate the variability of hydraulic properties from observed data on soil water content variability from several test sites in Germany, China and Australia.

  11. Quantification of the inevitable: the influence of soil macrofauna on soil water movement in rehabilitated open-cut mined lands

    NASA Astrophysics Data System (ADS)

    Arnold, S.; Williams, E. R.

    2016-01-01

    Recolonisation of soil by macrofauna (especially ants, termites and earthworms) in rehabilitated open-cut mine sites is inevitable and, in terms of habitat restoration and function, typically of great value. In these highly disturbed landscapes, soil invertebrates play a major role in soil development (macropore configuration, nutrient cycling, bioturbation, etc.) and can influence hydrological processes such as infiltration, seepage, runoff generation and soil erosion. Understanding and quantifying these ecosystem processes is important in rehabilitation design, establishment and subsequent management to ensure progress to the desired end goal, especially in waste cover systems designed to prevent water reaching and transporting underlying hazardous waste materials. However, the soil macrofauna is typically overlooked during hydrological modelling, possibly due to uncertainties on the extent of their influence, which can lead to failure of waste cover systems or rehabilitation activities. We propose that scientific experiments under controlled conditions and field trials on post-mining lands are required to quantify (i) macrofauna-soil structure interactions, (ii) functional dynamics of macrofauna taxa, and (iii) their effects on macrofauna and soil development over time. Such knowledge would provide crucial information for soil water models, which would increase confidence in mine waste cover design recommendations and eventually lead to higher likelihood of rehabilitation success of open-cut mining land.

  12. Effect of Thickness of a Water Repellent Soil Layer on Soil Evaporation Rate

    NASA Astrophysics Data System (ADS)

    Ahn, S.; Im, S.; Doerr, S.

    2012-04-01

    A water repellent soil layer overlying wettable soil is known to affect soil evaporation. This effect can be beneficial for water conservation in areas where water is scarce. Little is known, however, about the effect of the thickness of the water repellent layer. The thickness of this layer can vary widely, and particularly after wildfire, with the soil temperature reached and the duration of the fire. This study was conducted to investigate the effect of thickness of a top layer of water repellent soil on soil evaporation rate. In order to isolate the thickness from other possible factors, fully wettable standard sand (300~600 microns) was used. Extreme water repellency (WDPT > 24 hours) was generated by 'baking' the sand mixed with oven-dried pine needles (fresh needles of Pinus densiflora) at the mass ratio of 1:13 (needle:soil) at 185C for 18 hours. The thicknesses of water repellent layers were 1, 2, 3 and 7 cm on top of wettable soil. Fully wettable soil columns were prepared as a control. Soil columns (8 cm diameter, 10 cm height) were covered with nylon mesh. Tap water (50 ml, saturating 3 cm of a soil column) was injected with hypoderm syringes from three different directions at the bottom level. The injection holes were sealed with hot-melt adhesive immediately after injection. The rate of soil evaporation through the soil surface was measured by weight change under isothermal condition of 40C. Five replications were made for each. A trend of negative correlation between the thickness of water repellent top layer and soil evaporation rate is discussed in this contribution.

  13. A fragrant neighborhood: volatile mediated bacterial interactions in soil

    PubMed Central

    Schulz-Bohm, Kristin; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    There is increasing evidence that volatile organic compounds (VOCs) play essential roles in communication and competition between soil microorganisms. Here we assessed volatile-mediated interactions of a synthetic microbial community in a model system that mimics the natural conditions in the heterogeneous soil environment along the rhizosphere. Phylogenetic different soil bacterial isolates (Burkholderia sp., Dyella sp., Janthinobacterium sp., Pseudomonas sp., and Paenibacillus sp.) were inoculated as mixtures or monoculture in organic-poor, sandy soil containing artificial root exudates (ARE) and the volatile profile and growth were analyzed. Additionally, a two-compartment system was used to test if volatiles produced by inter-specific interactions in the rhizosphere can stimulate the activity of starving bacteria in the surrounding, nutrient-depleted soil. The obtained results revealed that both microbial interactions and shifts in microbial community composition had a strong effect on the volatile emission. Interestingly, the presence of a slow-growing, low abundant Paenibacillus strain significantly affected the volatile production by the other abundant members of the bacterial community as well as the growth of the interacting strains. Furthermore, volatiles released by mixtures of root-exudates consuming bacteria stimulated the activity and growth of starved bacteria. Besides growth stimulation, also an inhibition in growth was observed for starving bacteria exposed to microbial volatiles. The current work suggests that volatiles produced during microbial interactions in the rhizosphere have a significant long distance effect on microorganisms in the surrounding, nutrient-depleted soil. PMID:26579111

  14. Soil water balance in an unsaturated pyroclastic slope for evaluation of soil hydraulic behaviour and boundary conditions

    NASA Astrophysics Data System (ADS)

    Pirone, Marianna; Papa, Raffaele; Nicotera, Marco Valerio; Urciuoli, Gianfranco

    2015-09-01

    Flowslides in granular soils pose a major threat to life and the environment. Their initiation in unsaturated soils is regulated by rainfall infiltration which reduces the matric suction and hence shear strength. Analysis of such phenomena is of strategic importance especially when it aims to mitigate landslide risk by means of early warning systems (EWSs). In this framework, physically-based models need to reproduce the hydro-mechanical behaviour of the slopes through numerical analyses, whose main uncertainty concerns the hydraulic conditions at the boundaries of the studied domain and hydraulic conductivity functions of unsaturated soils. Hence consummate knowledge of both these factors is absolutely necessary for efficient predictions. In this paper hydraulic boundary conditions and hydraulic conductivity functions are investigated at the scale of the slope through an application of soil water balance based on in-situ monitoring at the test site of Monteforte Irpino (southern Italy). Meteorological data, matric suction and soil water content measurements were collected over four years at the test site. The soil water balance was analysed on a seasonal time scale with regard to the whole pyroclastic cover resting on the steep limestone substratum. Infiltration and runoff are estimated, interaction between the soil cover and the substratum is investigated, and the hydraulic conductivity functions operative at the site scale are defined.

  15. Physical and chemical effects of biochar on natural and artificial water repellent soils

    NASA Astrophysics Data System (ADS)

    Hallin, Ingrid; Douglas, Peter; Doerr, Stefan H.; Bryant, Rob; Matthews, Ian; Charbonneau, Cecile

    2014-05-01

    Water repellency (WR) affects soils worldwide. Hydrophobic compounds accumulate in soil through organic matter decomposition, microbial activity, condensation of organic compounds during vegetation fires, or through anthropogenic impacts such as oil spills. WR hinders vegetation establishment, which can lead to soil erosion and increased runoff. Biochar is currently being evaluated for its potential to increase soil carbon and as a soil amendment. To date, the effect of biochar on water repellent soils has remained largely undetermined. This study considered the potential of biochar as both a physical and chemical amendment for water repellent soils by asking two questions: does adding biochar reduce the observed degree of soil water repellency; and does biochar remove hydrophobic compounds from soil? The potential of biochar as a physical amendment to water repellent soils was evaluated by mixing 5, 10, 25 and 40% (by weight) each of coarse and fine ground biochar with two naturally water repellent soils and measuring the water drop penetration time (WDPT) for each mixture. Biochar particles beyond the range of existing soil particle diameters increased WDPT variability, which could be explained by increased surface roughness and the resulting enhancement of water repellency effects through Cassie-Baxter interactions. Overall, fine biochar was more effective at reducing water repellency: 25% w/w rendered both soils studied wettable. Removal of hydrophobic compounds by biochar was tested by mixing 1, 5, 10, 25 and 40% biochar with acid washed sand (AWS) coated with 1.2x10-5 mol octadecane and octadecanoic acid (per gram AWS, which corresponds to approximately 50 monolayers hydrophobic compound per gram AWS). Each mix stood for 1 to 30 days in a solution of pH 3, 6 or 9 before the AWS was extracted and the quantity of hydrophobic compound remaining determined by infrared spectroscopy and/or gas chromatography. Biochar successfully removed the hydrophobic compounds, even in dry conditions and independent of pH and exposure time. Results varied with the quantity of biochar added: some removal was evident with 1% and 5% biochar additions, approximately 50% of material initially deposited onto AWS was removed by 10% biochar, and ≥ 25% biochar removed 100% of the material present. These results suggest that biochar can reduce WR effects in soils by creating wettable pathways through water repellent soil and by removing hydrophobic compounds from soil particles.

  16. Use of a Cropping System Model for Soil-Specific Optimization of Limited Water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the arena of modern agriculture, system models capable of simulating the complex interactions of all the relevant processes in the soil-water-plant-atmosphere continuum are widely accepted as potential tools for decision support to optimize crop inputs of water to achieve location specific yield ...

  17. Soil carbon storage controlled by interactions between geochemistry and climate

    NASA Astrophysics Data System (ADS)

    Doetterl, Sebastian; Stevens, Antoine; Six, Johan; Merckx, Roel; van Oost, Kristof; Casanova Pinto, Manuel; Casanova-Katny, Anglica; Muoz, Cristina; Boudin, Mathieu; Zagal Venegas, Erick; Boeckx, Pascal

    2015-10-01

    Soils are an important site of carbon storage. Climate is generally regarded as one of the primary controls over soil organic carbon, but there is still uncertainty about the direction and magnitude of carbon responses to climate change. Here we show that geochemistry, too, is an important controlling factor for soil carbon storage. We measured a range of soil and climate variables at 24 sites along a 4,000-km-long north-south transect of natural grassland and shrubland in Chile and the Antarctic Peninsula, which spans a broad range of climatic and geochemical conditions. We find that soils with high carbon content are characterized by substantial adsorption of carbon compounds onto mineral soil and low rates of respiration per unit of soil carbon; and vice versa for soils with low carbon content. Precipitation and temperature were only secondary predictors for carbon storage, respiration, residence time and stabilization mechanisms. Correlations between climatic variables and carbon variables decreased significantly after removing relationships with geochemical predictors. We conclude that the interactions of climatic and geochemical factors control soil organic carbon storage and turnover, and must be considered for robust prediction of current and future soil carbon storage.

  18. SORPTION OF A HYDROPHILIC PESTICIDE: EFFECTS OF SOIL WATER CONTENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transport of pesticide to groundwater is governed in part by sorption of the pesticide to soil particles. Sorption may be dependent on soil moisture conditions, but limited data are available from which to elucidate the effect. The objective of this research is to determine the effects of soil water...

  19. Soil water retention within an eroded and restored landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant changes in soil properties and productivity have occurred as a result of intensive row crop production. Many of these changes are related to soil loss from water, wind, and tillage erosion. Soil is lost from convex and steeper landscape positions and deposited in concave lower landscape ...

  20. Linking soil and water quality in conservation agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and water resources are fundamental components of agriculture. Successful utilization of these resources for sustainable agricultural production is partly dependent upon how they are conserved. Soil quality is generally defined by how well soil functions under a given set of environmental con...

  1. Teaching Soil and Water Conservation: A Classroom and Field Guide.

    ERIC Educational Resources Information Center

    Foster, Albert B.; Fox, Adrian C.

    Compiled in this booklet are 22 activities designed to develop awareness of the importance of conservation and the wise use of soil and moisture on croplands, grasslands, and woodlands. They have been selected by Soil Conservation Service (SCS) personnel and consultants to show that the way we manage our basic natural resources, soil and water,…

  2. Quantifying crop water stress factors from soil water measurements in a limited irrigation experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying crop water stress factors from soil water measurements in a limited irrigation experiment. A correct simulation of crop responses to water stress is essential for a system model. In this study, we investigated three methods of quantifying water deficit stresses based on soil water meas...

  3. Soil management system for water conservation and mitigation of global change effect

    NASA Astrophysics Data System (ADS)

    Ospina, A.; Florentino, A.; Lorenzo, V.

    2012-04-01

    One of the main constraints in rained agriculture is the water availability for plant growth which depends largely on the ability of the soil to allow water flow, infiltration and its storage. In Venezuela, the interaction between aggressive climatic conditions, highly susceptible soils and inadequate management systems have caused soil degradation which together with global change threatened the food production sustainability. To address this problem, we need to implement conservationist management strategies that improve infiltration rate, permeability and water holding capacity in soil and reduce water loss by protecting the soil surface. In order to study the impact of different management systems on soil water balance in a Fluventic Haplustept, the effects of 11 years of tillage and crops rotation management were evaluated in a long term field experiment located in Turén (Portuguesa state). The evaluated tillage systems were no tillage (NT) and conventional tillage (CT) and crop rotation treatments were maize (Zea mays)-cotton (Gossypium hirsutum) and maize-bean (Vigna unguiculata). Treatments were established in plots arranged in a randomized block design with three replicates. The gravimetric moisture content was determined in the upper 20 cm of soil, at eight different sampling dates. Results showed increased in time of the water availability with the use of tillage and corn-cotton rotation and, better protection of the soil against raindrop impact with crop residues. Water retention capacity also increased and improved structural condition on soil surface such as infiltration, storage and water flow distribution in the rooting zone. We conclude that these strategies of land use and management would contribute to mitigate the climate change effects on food production in this region of Venezuela. Key words: Soil quality; rained agriculture; plant water availability

  4. Modeling as a tool for management of saline soils and irrigation waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimal management of saline soils and irrigation waters requires consideration of many interrelated factors including, climate, water applications and timing, water flow, plant water uptake, soil chemical reactions, plant response to salinity and solution composition, soil hydraulic properties and ...

  5. Experimental and mathematical modeling of soil water and heat regime in selected soils

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Fer, Miroslav; Klement, Ales; Nikodem, Antonin; Vlasakova, Mirka; Tepla, Daniela; Jaksik, Ondrej

    2013-04-01

    Knowledge of soil thermal (heat) properties is essential when assessing heat transport in soils. Heat regime in soils associates with many other soil processes (like water evaporation and diffusion, plant transpiration, contaminants behavior etc.). Thermal properties are needed when assessing affectivity of energy gathering from soil profiles using horizontal ground heat exchangers, which is a main goal of this study. Study is focused on measuring of thermal properties (heat capacity and heat conductivity) in representative soils of the Czech Republic. Measurements were performed on soil samples taken from the surface horizons of 11 representative soil types and from 2 soil substrates (sand and loess). The measured relationships between the heat conductivity and volumetric soil-water content were described by non-linear equations (Chung and Horton, 1987). The measured relationships between the heat capacity and volumetric soil-water content were expressed using the linear equations. The greatest values of the heat conductivity were measured in sandy soils (sandy and gravely sand substrates). The average values were obtained in soils on loess substrates. Lower values were obtained for all Cambisols (variable substrates). The lowest values were measured in Stagnic Chernozem Siltic on marlite. Opposite trend was observed for the maximal heat capacity, which was mostly impacted by water content. A soil water and heat regime within the soil profile was monitored at one location. In addition the impact of various soil cover at the soil top on soil water content and temperature was measured. Soil hydraulic properties were measured using the multistep-outflow technique. The saturated hydraulic conductivities were also measured using the Guelph permeameter. Programs HYDRUS-1D and 2D/3D were used for a mathematical interpretation of the observed soil water and heat regime. Acknowledgment: Authors acknowledge the financial support of the Technology Agency of the Czech Republic (TA02020991). Work was also partly supported by the Ministry of Agriculture of the Czech Republic (QJ1230319). Literature Chung, S.O., Horton, R. 1987. Soil heat and water flow with a partial surface mulch, Water Resour. Res., 23(12), 2175-2186, 1987.

  6. Critical water contents of hydrophobic soils in New Zealand

    NASA Astrophysics Data System (ADS)

    Landl, Magdalena; Holzinger, Ursula; Singh, Ranvir; Klik, Andreas

    2013-04-01

    Soil water repellency is an important problem for pasture farming in New Zealand which causes low infiltration rates and increased surface runoff. However, the real extent of this issue is not yet evaluated. Water repellency is thought to appear on dry soils, when the water content falls below a critical limit. The main objectives of this study was 1) to investigate the effects of different amounts of infiltration water on hydrophobicity of three selected soils under grassland in the North island of New Zealand, and 2) to determine the critical water content for ten sites with five different soil types. In April 2011 undisturbed and disturbed soil samples from a brown, gley and organic soil have been taken from sites around Mount Taranaki. Soil water repellency was determined using the Water Droplet Penetration Time Test (WDPT) and the Molarity of Ethanol Droplet Test (MED). During the lab experiment four amounts of water were applied to the 270 cm³ samples: 400, 800, 1600 and 2400 mL . One test was performed with cold and one with hot (80 °C) water. Each test was replicated four times. In the leachate the amount of dissolved organic carbon was analyzed. The experiments showed that only for the brown soil water repellency decreased significantly with increasing amount of infiltration water whereas for gley soils no correlation was found. Gley soil had initially a lower degree of hydrophobicity compared to the other soils. Possibly due to the higher bulk density of these soils, the carbon compounds directly surrounding the soil particles wre rearranged rather than leached. No clear pattern could be obtained for organic soils. This may be explained by the high initial carbon content of more than 20%. It may take a much greater amount of infiltration to affect hydrophobicity. The critical contact angle of investigated soils above which water repellency is moderately persistent, was 93.8°. In May 2012 ten more sites were sampled and five soil types were investigated with respect to the critical water content. Soil hydrophobicity was again tested during 4 wetting and drying cycles on 3 replicates each of disturbed and undisturbed soil samples. The tests confirmed that water repellency does not exist at high water contents. It generally starts to appear at a certain limit, increases rapidly up to a peak value and finally decreases slowly when the water content approaches 0. Critical water contents were very high in the first wetting cycle and stabilized at a rather constant level during the 2nd, 3rd and 4th wetting cycle. This phenomenon may be due to inhomogeneous water distributions within the field moist soil samples in the 1st wetting cycle and it was thus chosen to take the critical moisture content from the 2nd wetting cycle for further purposes. We found relatively broad transition zones where soils were found to be both hydrophilic and hydrophobic. Critical water contents or rather transition zones were found to differ significantly between the various soil orders and showed values between 0.34 (m³/m³) for recent soil and 0.44(m³/m³) for organic soil.

  7. Interaction of water with epoxy.

    SciTech Connect

    Powers, Dana Auburn

    2009-07-01

    The chemistries of reactants, plasticizers, solvents and additives in an epoxy paint are discussed. Polyamide additives may play an important role in the absorption of molecular iodine by epoxy paints. It is recommended that the unsaturation of the polyamide additive in the epoxy cure be determined. Experimental studies of water absorption by epoxy resins are discussed. These studies show that absorption can disrupt hydrogen bonds among segments of the polymers and cause swelling of the polymer. The water absorption increases the diffusion coefficient of water within the polymer. Permanent damage to the polymer can result if water causes hydrolysis of ether linkages. Water desorption studies are recommended to ascertain how water absorption affects epoxy paint.

  8. Genetic by environment interactions affect plant–soil linkages

    PubMed Central

    Pregitzer, Clara C; Bailey, Joseph K; Schweitzer, Jennifer A

    2013-01-01

    The role of plant intraspecific variation in plant–soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18- to 21-year-old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics beneath individual trees. We found that soil nitrogen and carbon varied by over 50% and 62%, respectively, across all common garden environments. We found that plant leaf litter (but not root) traits vary by genotype and environment while soil nutrient pools demonstrated genotype, environment, and sometimes G × E interactions, while process rates (net N mineralization and net nitrification) demonstrated G × E interactions. Plasticity in tree growth and litter chemistry was significantly related to the variation in soil nutrient pools and processes across environments, reflecting tight plant–soil linkages. These data overall suggest that plant genetic variation can have differential affects on carbon storage and nitrogen cycling, with implications for understanding the role of genetic variation in plant–soil feedback as well as management plans for conservation and restoration of forest habitats with a changing climate. PMID:23919173

  9. Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils

    NASA Astrophysics Data System (ADS)

    Kroener, Eva; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2014-08-01

    The flow of water from soil to plant roots is controlled by the properties of the narrow region of soil close to the roots, the rhizosphere. In particular, the hydraulic properties of the rhizosphere are altered by mucilage, a polymeric gel exuded by the roots. In this paper we present experimental results and a conceptual model of water flow in unsaturated soils mixed with mucilage. A central hypothesis of the model is that the different drying/wetting rate of mucilage compared to the bulk soil results in nonequilibrium relations between water content and water potential in the rhizosphere. We coupled this nonequilibrium relation with the Richards equation and obtained a constitutive equation for water flow in soil and mucilage. To test the model assumptions, we measured the water retention curve and the saturated hydraulic conductivity of sandy soil mixed with mucilage from chia seeds. Additionally, we used neutron radiography to image water content in a layer of soil mixed with mucilage during drying and wetting cycles. The radiographs demonstrated the occurrence of nonequilibrium water dynamics in the soil-mucilage mixture. The experiments were simulated by numerically solving the nonequilibrium model. Our study provides conceptual and experimental evidences that mucilage has a strong impact on soil water dynamics. During drying, mucilage maintains a greater soil water content for an extended time, while during irrigation it delays the soil rewetting. We postulate that mucilage exudation by roots attenuates plant water stress by modulating water content dynamics in the rhizosphere.

  10. Percolation behavior of tritiated water into a soil packed bed

    SciTech Connect

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S.; Takeishi, T.

    2015-03-15

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  11. Lichen-moss interactions within biological soil crusts

    NASA Astrophysics Data System (ADS)

    Ruckteschler, Nina; Williams, Laura; Büdel, Burkhard; Weber, Bettina

    2015-04-01

    Biological soil crusts (biocrusts) create well-known hotspots of microbial activity, being important components of hot and cold arid terrestrial regions. They colonize the uppermost millimeters of the soil, being composed of fungi, (cyano-) bacteria, algae, lichens, bryophytes and archaea in varying proportions. Biocrusts protect the (semi-) arid landscape from wind and water erosion, and also increase water holding capacity and nutrient content. Depending on location and developmental stage, composition and species abundance vary within biocrusts. As species live in close contact, they are expected to influence each other, but only a few interactions between different organisms have so far been explored. In the present study, we investigated the effects of the lichen Fulgensia fulgens whilst growing on the moss Trichostomum crispulum. While 77% of Fulgensia fulgens thalli were found growing associated with mosses in a German biocrust, up to 95% of Fulgensia bracteata thalli were moss-associated in a Swedish biocrust. In 49% (Germany) and in 78% (Sweden) of cases, thalli were observed on the moss T. crispulum and less frequently on four and three different moss species. Beneath F. fulgens and F. bracteata thalli, the mosses were dead and in close vicinity to the lichens the mosses appeared frail, bringing us to the assumption that the lichens may release substances harming the moss. We prepared a water extract from the lichen F. fulgens and used this to water the moss thalli (n = 6) on a daily basis over a time-span of three weeks. In a control setup, artificial rainwater was applied to the moss thalli (n = 6). Once a week, maximum CO2 gas exchange rates of the thalli were measured under constant conditions and at the end of the experiment the chlorophyll content of the moss samples was determined. In the course of the experiment net photosynthesis (NP) of the treatment samples decreased concurrently with an increase in dark respiration (DR). The control samples remained at the same stable level for both NP and DR over time. The chlorophyll content of the treatment samples was significantly lower than that of the controls. This supports our assumption that water extracts of F. fulgens may indeed cause a dieback of the host moss. In a next step of the project, the substances responsible for this detrimental effect on the moss will be identified. The accelerated dieback of the moss probably causes increased CO2 concentrations below the lichen thalli, improving their overall photosynthetic performance. Thus, both dead and living biomass in biocrusts increase upon this association, promoting microbial activity and the growth of vascular plant vegetation.

  12. Assessment of produced water contaminated soils to determine remediation requirements

    SciTech Connect

    Clodfelter, C.

    1995-12-31

    Produced water and drilling fluids can impact the agricultural properties of soil and result in potential regulatory and legal liabilities. Produced water typically is classified as saline or a brine and affects surface soils by increasing the sodium and chloride content. Sources of produced water which can lead to problems include spills from flowlines and tank batteries, permitted surface water discharges and pit areas, particularly the larger pits including reserve pits, emergency pits and saltwater disposal pits. Methods to assess produced water spills include soil sampling with various chemical analyses and surface geophysical methods. A variety of laboratory analytical methods are available for soil assessment which include electrical conductivity, sodium adsorption ratio, cation exchange capacity, exchangeable sodium percent and others. Limiting the list of analytical parameters to reduce cost and still obtain the data necessary to assess the extent of contamination and determine remediation requirements can be difficult. The advantage to using analytical techniques is that often regulatory remediation standards are tied to soil properties determined from laboratory analysis. Surface geophysical techniques can be an inexpensive method to rapidly determine the extent and relative magnitude of saline soils. Data interpretations can also provide an indication of the horizontal as well as the vertical extent of impacted soils. The following discussion focuses on produced water spills on soil and assessment of the impacted soil. Produced water typically contains dissolved hydrocarbons which are not addressed in this discussion.

  13. EFFECTIVENESS OF SOIL AND WATER CONSERVATION PRACTICES FOR POLLUTION CONTROL

    EPA Science Inventory

    The potential water quality effects and economic implications of soil and water conservation practices (SWCPs) are identified. Method for estimating the effects of SWCPs on pollutant losses from croplands are presented. Mathematical simulation and linear programming models were u...

  14. Interaction between reinforcing geosynthetics and soil-tire chip mixtures

    SciTech Connect

    Tatlisoz, N.; Edil, T.B.; Benson, C.H.

    1998-11-01

    The objective of the present study was to evaluate the mechanical properties of tire chips and soil-tire chip mixtures relevant to geosynthetic-reinforced earthworks. Tests were conducted to evaluate shear strength and pull-out capacity with a woven geotextile and two geogrids. Soil-tire chip mixtures made with clean sand and sandy silt were tested. These properties were then used to assess the potential advantages of using soil-tire chip backfills for geosynthetic-reinforced retaining walls and embankments. The test results show that the geosynthetic pull-out force in tire chip and soil-tire chip backfills increases with displacement--i.e., no peak pull-out force is generally obtained, at least for displacements {le}100 mm. Pull-out interaction coefficients for the chip backfills are typically greater than 1, whereas for soil-tire chip backfills are typically greater than 1, whereas for soil-tire chip backfills they typically range between 0.2 and 0.7, even though the pull-out capacity for soil-tire chip backfills is generally similar to or greater than the pull-out capacity in a soil backfill. The higher strength, lower unit weight and good backfill-geosynthetic interaction obtained with soil-tire chip backfills can result in walls requiring less geosynthetic reinforcement than walls backfilled with soil. In addition, embankments can potentially be constructed with steeper slopes and a smaller volume of material when soil-tire chip fill is used, while providing greater resistance against lateral sliding and foundation settlement.

  15. Measuring and Modelling water related soil - vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, Nadia; Cassiani, Giorgio; Deiana, Rita; Vignoli, Giulio; Boaga, Jacopo

    2013-04-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field scale water balance. The objective of this study was to test the potential of integrated non invasive geophysics and ground-image analysis and to quantify the effect of the soil vegetation interaction on the water balance of a fallow land at the local and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during an infiltration experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of the experimental data evidenced a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the site.

  16. Principles of Water Flow in Real-World Soils and Related Imbalances

    NASA Astrophysics Data System (ADS)

    Lin, H.

    2012-12-01

    Heterogeneities, structures, interfaces, roughness, and organisms in multiphase soil systems make the real-world soil deviated significantly from the continuum assumption. The first principle of water flow in porous media came to light in the 19th century, known as the Darcy's law, which was later modified by E. Buckingham to describe unsaturated water flow in soils. This principle is essentially a macroscopic view of steady-state water flux being linearly proportional to hydraulic gradient and hydraulic conductivity. The second principle was proposed by L.A. Richards in the 20th century, which describes the minimum pressure gradient needed to initiate water flow through the soil-air interface. This principle can be extended to provide a more cohesive explanation to a number of soil hydrologic phenomena related to various interfaces and microscopic features (such as hysteresis, hydrophobicity, and flow through layered soils). The third principle is emerging in the 21st century, where a combined macroscopic and microscopic view portrays mosaic-like complex flow regimes in heterogeneous soils in which imbalance seems to be common leading to widespread preferential flow. The dynamic interaction between preferential flow and matrix flow under changing conditions results in complex, evolving flow networks that are embedded in the matrix of land surface and subsurface. Quantification and integration of these flow principles can lead to improved prediction of water flow in real-world soils and landscapes.

  17. SOIL WATER USE AND SOIL RESIDUE COVERAGE BY SUNFLOWER COMPARED TO OTHER CROPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous crop rotations with a diversity of species are essential for improving soil health and decreasing the impact of disease, weeds and insects. Soil water content and soil surface coverage by crop residues were studied in a crop sequence study carried out using no-till management. The exper...

  18. EFFICIENCY OF SOIL CORE AND SOIL-PORE WATER SAMPLING SYSTEMS

    EPA Science Inventory

    A laboratory column and field lysimeter study were conducted to evaluate the efficiency of soil core and soil-pore water samples to detect the migration of the organic components of land treated wastes through soil. In the laboratory, column leaching studies were performed by pac...

  19. Soil water fluctuations: microbial community responses and CO2 production

    NASA Astrophysics Data System (ADS)

    Placella, S.; Brodie, E. L.; Firestone, M. K.; Lennon, J. T.

    2012-12-01

    Water availability is one of the primary controllers of microbial activity in soils. Likely even more important to microbial activity than static values of soil water potential are changes in soil water potential; changes in soil water potential may trigger pulses of or cross thresholds for microbial activity. How do increases and declines in soil water potential affect microbial activity and rates of carbon dioxide (CO2) production from soil? While extremely dry soils have very low rates of CO2 production, wetting of dry soil is known to initiate a large CO2 pulse known as the Birch effect. We studied this pulse in two California annual grassland soils while concurrently monitoring microbial resuscitation. We also examined the impacts of reduced rainfall in a successional grassland in Michigan, with a focus on changes in microbial activity during a dry down period. In both systems we used relative RNA quantity to identify when different microorganisms were relatively more active. Upon wetting of dry soil, we found that the large CO2 pulse occurred during the resuscitation of the microbial community. We identified three resuscitation strategies (rapid, intermediate and delayed responders) and found that they are phylogenetically conserved, with related organisms displaying the same strategy. During a soil dry down event, we found a decline in the rate of CO2 production from soils and examined the concurrent change in the microbial community during this 7-day period. We also investigated how a summer of greater water potential fluctuation, due to reduced rainfall, impacted the stability of the microbial community. Our results demonstrate that changes in water potential can drive changes in microbial activity, leading to serious implications for soil CO2 production.

  20. Fractal behavior of soil water storage at multiple depths

    NASA Astrophysics Data System (ADS)

    Ji, Wenjun; Lin, Mi; Biswas, Asim; Si, Bing C.; Chau, Henry W.; Cresswell, Hamish P.

    2016-02-01

    Spatio-temporal behavior of soil water is essential to understand the science of hydrodynamics. Data intensive measurement of surface soil water using remote sensing has established that the spatial variability of soil water can be described using the principle of self-similarity (scaling properties) or fractal theory. This information can be used in determining land management practices provided the surface scaling properties hold at deep layer. Current study examined the scaling properties of sub-surface soil water and its relationship to surface soil water, thereby serving as the supporting information for the plant root and vadose zone models. Soil water storage (SWS) down to 1.4 m depth at seven equal intervals was measured along a transect of 576 m for 5 years. The surface SWS showed multifractal nature only during the wet period (from snowmelt until mid to late June with large SWS) indicating the need of multiple scaling indices in transferring soil water variability information over multiple scales. However, with increasing depth, the SWS became monofractal in nature indicating the need of single scaling index to upscale/downscale soil water variability information. The dynamic nature made the surface layer soil water in the wet period highly variable compared to the deep layers. In contrast, all soil layers during the dry period (from late June to the end of the growing season with low SWS) were monofractal in nature, probably resulting from the high evapotranspirative demand of the growing vegetation that surpassed other effects. This strong similarity between the scaling properties at the surface layer and deep layers provides the possibility of inferring about the whole profile soil water dynamics using the scaling properties of the easy-to-measure surface SWS data.

  1. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    NASA Astrophysics Data System (ADS)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  2. Improving Water Quality and Conserving Soil Using Soil Amendments.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage such a no-tillage has widely been shown to control soil erosion compared to other forms of management that involved some extent of tillage. However, in no-tillage most if not all the chemicals are placed near or on the soil surface which makes their movement more likely to occu...

  3. The interactive effects of soil transplant into colder regions and cropping on soil microbiology and biogeochemistry.

    PubMed

    Liu, Shanshan; Wang, Feng; Xue, Kai; Sun, Bo; Zhang, Yuguang; He, Zhili; Van Nostrand, Joy D; Zhou, Jizhong; Yang, Yunfeng

    2015-03-01

    Soil transplant into warmer regions has been shown to alter soil microbiology. In contrast, little is known about the effects of soil transplant into colder regions, albeit that climate cooling has solicited attention in recent years. To address this question, we transplanted bare fallow soil over large transects from southern China (subtropical climate zone) to central (warm temperate climate zone) and northern China (cold temperate climate zone). After an adaptation period of 4 years, soil nitrogen components, microbial biomass and community structures were altered. However, the effects of soil transplant on microbial communities were dampened by maize cropping, unveiling a negative interaction between cropping and transplant. Further statistical analyses with Canonical correspondence analysis and Mantel tests unveiled annual average temperature, relative humidity, aboveground biomass, soil pH and NH4 (+) -N content as environmental attributes closely correlated with microbial functional structures. In addition, average abundances of amoA-AOA (ammonia-oxidizing archaea) and amoA-AOB (ammonia-oxidizing bacteria) genes were significantly (P < 0.05) correlated with soil nitrification capacity, hence both AOA and AOB contributed to the soil functional process of nitrification. These results suggested that the soil nitrogen cycle was intimately linked with microbial community structure, and both were subjected to disturbance by soil transplant to colder regions and plant cropping. PMID:24548455

  4. Soil warming, carbon-nitrogen interactions, and forest carbon budgets.

    PubMed

    Melillo, Jerry M; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-06-01

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon-nitrogen interactions in atmosphere-ocean-land earth system models to accurately simulate land feedbacks to the climate system. PMID:21606374

  5. EFFECT OF SOIL AGGREGATE SIZE DISTRIBUTION ON WATER RETENTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil aggregate distribution is an important characteristic of soil structure and, as such, has been expected to affect water retention. Our objective was to see whether and how aggregate size distributions affect water retention from saturation to the wilting point. Cumulative particle size and aggr...

  6. Automated soil water balance sensing: From layers to control volumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous sensing of soil water status has been possible in some ways since the advent of chart recorders, but the widespread adoption of soil water sensing systems did not occur until relatively inexpensive dataloggers became available in the late 1970s and early 1980s. Early systems relied on pre...

  7. Comparison of corn transpiration, eddy covariance, and soil water loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem flow gages are used to estimate plant transpiration, but only a few studies compare transpiration with other measures of soil water loss. The purpose of this study was to compare transpiration from stem flow measurements with soil water changes estimated by daily neutron probe readings. Monitor...

  8. Soil and Water Challenges for Pacific Northwest Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and water conservation has been a major concern in the Inland Pacific Northwest since the onset of farming 125 years ago. Some of the highest historic water erosion rates in the USA have occurred on steep slopes in the Palouse region where soil loss averaged 45 Mg ha-1 yr-1 and could reach 450 ...

  9. POLYACRYLAMIDE EFFECTS ON WATER INFILTRATION IN SANDY LOAM SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some sandy soils of the California San Joaquin Valley have low water infiltration. Electrical conductivity (EC) and sodium adsorption ratio (SAR) of irrigation water greatly affect infiltration rate and hydraulic conductivity of soils. High molecular weight polyacrylamides (PAM) have been shown to i...

  10. Erosion effects on water and DOC/DIC fluxes in soils from a hummocky ground moraine landscape

    NASA Astrophysics Data System (ADS)

    Herbrich, Marcus; Gerke, Horst H.; Sommer, Michael

    2015-04-01

    In the arable hummocky ground moraine soil landscape, an erosion-induced spatial differentiation of soil types can be observed. Unknown is how the water flow and solute transport is affected by soil-crop interactions depending on properties of differently-developed soil horizons. The objective was to analyze these interactions and by comparing lysimeter-based measured water and solute balances for Luvisol soil monoliths extracted from differently-eroded slope locations. For a 3-years measurement period, differences in cumulative seepage water drainage of more than 76 % were observed between most and least eroded Luvisol. Although the soil types were identical, these data indicated characteristic erosion-induced spatial differentiation in the water balance of the landscape. Because the concentrations of dissolved organic carbon (DOC) and of dissolved inorganic carbon (DIC) were relatively similar for all lysimeters at the bottom (1.4 m soil depth), the DOC/DIC leaching was dominated by differences in water fluxes in this observation period (04/2011-04/2014). Results suggest that water and solute balances are depending on the degree of erosion-induced soil profile modifications. Hence for the landscape scale analysis of the landscape water and solute balances, not only the distributed soil types but also erosion-induced modifications with a single soil type should be considered.

  11. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models, but also improve the description of the rooting environment. Until now there have been no attempts to couple root architecture and pore network models. In our work we present a first attempt to join both types of models using the root architecture model of Leitner et al., (2010) and a pore network model presented by Raoof et al. (2010). The two main objectives of coupling both models are: (i) Representing the effect of root induced biopores on flow and transport processes: For this purpose a fixed root architecture created by the root model is superimposed as a secondary root induced pore network to the primary soil network, thus influencing the final pore topology in the network generation. (ii) Representing the influence of pre-existing pores on root branching: Using a given network of (rigid) pores, the root architecture model allocates its root axes into these preexisting pores as preferential growth paths with thereby shape the final root architecture. The main objective of our study is to reveal the potential of using a pore scale description of the plant growth medium for an improved representation of interaction processes at the interface of root and soil. References Raoof, A., Hassanizadeh, S.M. 2010. A New Method for Generating Pore-Network Models. Transp. Porous Med. 81, 391-407. Leitner, D, Klepsch, S., Bodner, G., Schnepf, S. 2010. A dynamic root system growth model based on L-Systems. Tropisms and coupling to nutrient uptake from soil. Plant Soil 332, 177-192.

  12. Soil permeability as a function of vegetation type and soil water content

    SciTech Connect

    Morris, R.C.; Fraley, L. Jr.

    1994-06-01

    Soil permeability is important for estimating the rate of mass transport of {sup 222}Rn through soils and into basements. We measured permeability and soil water content on a set of nine plots consisting of three plots vegetated with common barley (Hordeum vulgare), three plots vegetated with Russian thistle (Salsola kali), and three bare plots. Soil moisture was consistently highest on the bare plots and lowest on the Russian thistle plots. Plots with vegetation had lower soil water content during the growing season. Permeability was consistently higher on Russian thistle plots. ANOVA showed that both soil water content and presence of Russian thistle had a significant impact on permeability but that presence of barley did not. The effect of vegetation and moisture on permeability may have significant effects on {sup 222}Rn transport in soils. 18 refs., 8 figs., 1 tab.

  13. Rhizosphere: a leverage for tolerance to water deficits of soil microflora ?

    NASA Astrophysics Data System (ADS)

    Bérard, Annette; Ruy, Stéphane; Coronel, Anaïs; Toussaint, Bruce; Czarnes, Sonia; Legendre, Laurent; Doussan, Claude

    2015-04-01

    Microbial soil communities play a fundamental role in soil organic matter mineralization, which is a key process for plant nutrition, growth and production in agro-ecosystems. A number of these microbial processes take place in the rhizosphere: the soil zone influenced by plant roots activity, which is a "hotspot " of biological and physico-chemical activity, transfers and biomass production. The knowledge of rhizosphere processes is however still scanty, especially regarding the interactions between physico-chemical processes occurring there and soil microorganisms. The rhizosphere is a place where soil aggregates are more stable, and where bulk density, porosity, water and nutrients transfer are modified with respect to the bulk soil (e.g. because of production of mucilage, of which exo-polysaccharides (EPS) produced by roots and microorganisms. During a maize field experiment, rhizospheric soil (i.e. soil strongly adhering to maize roots) and bulk soil were sampled twice in spring and summer. These soil samples were characterized for physicochemical parameters (water retention curves and analysis of exopolysaccarides) and microflora (microbial biomass, catabolic capacities of the microbial communities assessed with the MicroRespTM technique, stability of soil microbial respiration faced to a heat-drought disturbance). We observed differences between rhizospheric and bulk soils for all parameters studied: Rhizospheric soils showed higher microbial biomasses, higher quantities of exopolysaccarides and a higher water retention capacity compared to bulk soil measurements. Moreover, microbial soil respiration showed a higher stability confronted to heat-drought stress in the rhizospheric soils compared to bulk soils. Results were more pronounced during summer compared to spring. Globally these data obtained from field suggest that in a changing climate conditions, the specific physico-biological conditions in the rhizosphere partially linked to exopolysaccarides, could induce stability (Resistance, Resilience) of soil microbial communities towards stresses, in particular severe drought. The knowledge of these interactions in the rhizosphere between local hydric soil properties and microbial behaviour facing drought, could allow a better understanding of the functioning of agro-ecosystems for their management in a changing climate.

  14. Changes in sulphate retention, soil chemistry and drainage water quality along an upland soil transect.

    PubMed

    Sanger, L J; Billett, M F; Cresser, M S

    1994-01-01

    Soils sampled along an altitudinal transect in an upland area of North East Scotland have been used to investigate downslope changes in the capacity of soils to retain sulphate. Simulated laboratory experiments involving the leaching of reconstituted cores with 'rainfall' containing low (1.85 mg litre(-1) and high (51.90 mg litre(-1) concentrations of sulphate indicate that soils developed on upper slopes have a limited capacity to adsorb sulphate, whereas soils on lower slopes have a much greater sulphate adsorption capacity. Soil drainage water, produced from 'sensitive' upper slope soils may therefore be significantly modified by physico-chemical reactions in lower slopes before reaching watercourses. PMID:15091628

  15. Effects of water addition on soil arthropods and soil characteristics in a precipitation-limited environment

    NASA Astrophysics Data System (ADS)

    Chikoski, Jennifer M.; Ferguson, Steven H.; Meyer, Lense

    2006-09-01

    We investigated the effect of water addition and season on soil arthropod abundance and soil characteristics (%C, %N, C:N, moisture, pH). The experimental design consisted of 24 groups of five boxes distributed within a small aspen stand in Saskatchewan, Canada. The boxes depressed the soil to create a habitat with suitable microclimate for soil arthropods, and by overturning boxes we counted soil arthropods during weekly surveys from April to September 1999. Soil samples were collected at two-month intervals and water was added once per week to half of the plots. Of the eleven recognizable taxonomic units identified, only mites (Acari) and springtails (Collembola) responded to water addition by increasing abundance, whereas ants decreased in abundance with water addition. During summer, springtail numbers increased with water addition, whereas pH was a stronger determinant of mite abundance. In autumn, springtails were positively correlated with water and negatively correlated with mites, whereas mite abundance was negatively correlated with increasing C:N ratio, positively correlated to water addition, and negatively correlated with springtail abundance. Although both mite and springtail numbers decreased in autumn with a decrease in soil moisture, mites became more abundant than springtails suggesting a predator-prey (mite-springtail) relationship. Water had a significant effect on both springtails and mites in summer and autumn supporting the assertion that prairie soil communities are water limited.

  16. Coupled Oxygen and Hydrogen Isotope Analysis of Water Along the Soil-Plant- Atmosphere Continuum

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Webb, E. A.; Longstaffe, F. J.

    2008-12-01

    The oxygen and hydrogen isotope compositions of water within a plant vary with transpiration rates and the isotopic composition of soil water. Both of these parameters are affected by temperature and relative humidity. A controlled-temperature, growth-chamber experiment was conducted to determine the relationships among temperature, relative humidity, soil water evaporation and plant-water isotope composition in cattails and horsetails. Typha, a cattail species that grows in wetland conditions, and Equisetum, a horsetail species that prefers dry soils, were each grown in four chambers at 15, 20, 25 and 30 degrees Celsius. The oxygen and hydrogen isotope compositions of watering water, soil water, vapour in the growth chambers and plant water from the leaves and stems were analyzed throughout the eight-month long artificial growing season. Although the oxygen isotope composition of the watering water remained constant, the soil water, atmospheric vapour and plant water were progressively enriched in oxygen-18 and deuterium in each of the four chambers from low to high temperatures as a result of increasing evaporation. The oxygen isotope composition of plant water along the length of a single stem or leaf was increasingly enriched in the heavier isotopes towards the apex. There was no significant difference in the magnitude of this trend between species. These results indicate that the isotopic composition of plant water is primarily controlled by environmental conditions. The oxygen isotope composition of the water vapour in the growing chamber increased with temperature, consistent with equilibration between the vapour and the oxygen-18 enriched soil and plant water reservoirs. The magnitude and interaction of these variables, as measured for these modern samples of cattails and horsetails, should be useful in calibrating paleoclimate proxies based on fossilized plant materials (e.g., cellulose, phytoliths).

  17. Iron clad wetlands: Soil iron-sulfur buffering determines coastal wetland response to salt water incursion

    NASA Astrophysics Data System (ADS)

    Schoepfer, Valerie A.; Bernhardt, Emily S.; Burgin, Amy J.

    2014-12-01

    Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0-3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase.

  18. Quantification of the inevitable: the influence of soil macrofauna on soil water movement in rehabilitated open-cut mine land

    NASA Astrophysics Data System (ADS)

    Arnold, S.; Williams, E. R.

    2015-08-01

    Recolonisation of soil by macrofauna (especially ants and termites) in rehabilitated open-cut mine sites is inevitable. In these highly disturbed landscapes, soil invertebrates play a major role in soil development (macropore configuration, nutrient cycling, bioturbation, etc.) and can influence hydrological processes such as infiltration and seepage. Understanding and quantifying these ecosystem processes is important in rehabilitation design, establishment and subsequent management to ensure progress to the desired end-goal, especially in waste cover systems designed to prevent water reaching and transporting underlying hazardous waste materials. However, soil macrofauna are typically overlooked during hydrological modelling, possibly due to uncertainties on the extent of their influence, which can lead to failure of waste cover systems or rehabilitation activities. We propose that scientific experiments under controlled conditions are required to quantify (i) macrofauna - soil structure interactions, (ii) functional dynamics of macrofauna taxa, and (iii) their effects on macrofauna and soil development over time. Such knowledge would provide crucial information for soil water models, which would increase confidence in mine waste cover design recommendations and eventually lead to higher likelihood of rehabilitation success of open-cut mining land.

  19. Beyond extreme temperatures: soil water supply and yield variability

    NASA Astrophysics Data System (ADS)

    Urban, D.; Lobell, D. B.

    2014-12-01

    Extreme weather events have profound consequences for both the mean and interannual variability of agricultural production, but while the role of extreme heat has been convincingly demonstrated, soil water supply has received less attention. In particular, there is debate over the extent to which damages attributed to extreme heat are confounded with drought conditions. In a pair of studies, we examine the effect of extreme moisture conditions, both wet and dry, on maize and soybean yields in the U.S. We find significant effects of waterlogging during the planting season, when crops are most vulnerable to excess moisture, as well as evidence for a strong interaction between high temperatures and low moisture during during the critical stages of the summer growing season. Using both precipitation and model-derived soil moisture data, our results suggest that considering temperature and moisture independently will underestimate yield damages during hot, dry conditions. Many warming scenarios project increases in both extreme summer temperatures and soil dryness, and considering these effects jointly can be important in estimating future yield variability.

  20. Soil water availability as controlling factor for actual evapotranspiration in urban soil-vegetation-systems

    NASA Astrophysics Data System (ADS)

    Thomsen, Simon; Reisdorff, Christoph; Gröngröft, Alexander; Jensen, Kai; Eschenbach, Annette

    2015-04-01

    The City of Hamburg is characterized by a large number of greens, parks and roadside trees: 600.000 trees cover about 14% of the city area, and moreover, 245.000 roadside trees can be found here. Urban vegetation is generally known to positively contribute to the urban micro-climate via cooling by evapotranspiration (ET). The water for ET is predominantly stored in the urban soils. Hence, the actual evapotranspiration (ETa) is - beside atmospheric drivers - determined by soil water availability at the soil surface and in the rooting zones of the respective vegetation. The overall aim of this study is to characterize soil water availability as a regulative factor for ETa in urban soil-vegetation systems. The specific questions addressed are: i) What is the spatio-temporal variation in soil water availability at the study sites? ii) Which soil depths are predominantly used for water uptake by the vegetation forms investigated? and iii) Which are the threshold values of soil water tension and soil water content (Θ), respectively, that limit ETa under dry conditions on both grass-dominated and tree-dominated sites? Three study areas were established in the urban region of Hamburg, Germany. We selected areas featuring both single tree stands and grass-dominated sites, both representing typical vegetation forms in Hamburg. The areas are characterized by relatively dry soil conditions. However, they differ in regard to soil water availability. At each area we selected one site dominated by Common Oak (Quercus ruber L.) with ages from 40 to 120 years, and paired each oak tree site with a neighboring grass-dominated site. All field measurements were performed during the years 2013 and 2014. At each site, we continuously measured soil water tension and Θ up to 160 cm depth, and xylem sap flux of each of three oak trees per site in a 15 min-resolution. Furthermore, we measured soil hydraulic properties as pF-curve, saturated and unsaturated conductivity at all sites. Automated weather stations for the continuous measurement of all relevant climatic factors were established at all grass-dominated sites. Based on the field data, soil water balances were simulated for all sites with the HYDRUS model. Potential ET for the grass-dominated sites was calculated using the Penman-Monteith equation. Results regarding the spatio-temporal variability of available soil water of the study sites will be shown and discussed in this contribution. Moreover, correlations between soil water availability and ETa will be presented.

  1. Crop water stress indices correlated with soil water storage: Implications for variable rate irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water sensing methods are now coming to be used for irrigation scheduling of whole fields. However, newly introduced variable rate irrigation (VRI) systems require information about soil water content in many areas of a field, each called an irrigation management zone. Commonly available soil w...

  2. Soil-root mechanical interactions within bundles of roots

    NASA Astrophysics Data System (ADS)

    Giadrossich, Filippo; Schwarz, Massimiliano; Preti, Federico; Or, Dani

    2010-05-01

    Root-soil mechanical interactions play an important role in strength and force redistribution in rooted soil. Recent advances in root reinforcement modeling implement detailed representation of root geometry and mechanical properties as well as root-soil mechanical interactions. Nevertheless, root-soil mechanical interactions are often considered at the single root scale ignoring interactions between neighboring roots and root bundles known to play important role in similar applications such as engineered composite material reinforcement. The objective was to quantify mechanical interactions among neighboring roots or roots network using pullout laboratory experiments and modeling. We focus on the on effects of such interactions on global pull out force of a bundle of roots via better understanding of transmission of radial stresses to soil matrix due to the friction at the interface soil-root. Additionally, we wish to predict how cumulative friction changes along a single root axis with and without branching points during the slipping out. Analytical models of fiber reinforced materials show the magnitude of bonded friction depends on three key parameters: bond modulus, maximal bond strength and difference between the Young moduli of fiber and Young moduli of matrix. Debonded friction is calculated assuming failure follows Coulomb failure that includes apparent cohesion, effective normal stress and residual root soil friction angle. We used a pullout device to measure displacement and force of individual roots and for the bundle of roots. Additionally, we monitored and detected activation of root-soil friction by six acoustic emission sensors placed on waveguide in contact with the soil matrix. Results from experiments with parallel and crossing roots demonstrated the importance of considering factors such as distance of root axis, branching points, crossing of roots and roots diameter for the behavior of bundle of roots and inclined roots during pullout. Acoustic emission measurements provided interesting insights into progressive activation of root-soil friction. These results enhance understanding of root reinforcement mechanism and enable more realistic implementation of root reinforcement modeling for stability calculation of vegetated slopes.

  3. Soil water characteristics of two soil catenas in Illinois: Implications for irrigation

    SciTech Connect

    Schaetzl, R.J. ); Kirsch, S.W. ); Hendrie, L.K.

    1989-10-01

    Soil water was monitored by neutron scattering in six soils, three each within two drainage catenas in east-central Illinois, over a 15-month time span. The prairie soils have formed in: (1) 76-152 cm of silt loam, eolian sediments (loess) over glacial till (Catlin-Flanagan-Drummer catena), and (2) loess greater than 152 cm in thickness (Tama-Ipava-Sable catena). The authors characterized the water content of these soils over the total time span and for wet and dry climatic subsets, as an aid to potential irrigation decisions. Soils of the thin loess, C-F-D catena dried out to lower water contents and had greater soil water variability than did the thick loess soils. Under wet conditions, soil water contents in the two catenas were quite similar. Alleviation of surface and subsurface drying via irrigation would thus be more advantageous to yields on the C-F-D soils than on the T-I-S soils.

  4. Effect of soil water content on soil thermal conductivity under field conditions

    NASA Astrophysics Data System (ADS)

    Vico, G.; Daly, E.; Manzoni, S.; Porporato, A.

    2008-12-01

    Knowledge of the thermal properties of soils is required in many areas of engineering, meteorology, agronomy, and ecosystem and soil science. Soil thermal conductivity varies in time and space, since it is influenced by soil properties as well as soil temperature and moisture conditions. We use the one dimensional heat conduction equation in conjunction with two-year data measured in a grass-covered field in North Carolina Piedmont to estimate soil thermal conductivity and to investigate how it is impacted by water content. In agreement with laboratory experiments reported in the literature, our results suggest that under dry conditions soil thermal conductivity increases across a relatively narrow range of soil water contents, above which a further increase in water content does not significantly change thermal conductivity. However, when soil approaches saturation, heat transfer is further improved, a fact not previously noted. This nonlinear behavior is consistent with the formation at high water contents of a continuous film of liquid water in soil aggregates of mineral and organic matter.

  5. Tillage effects on soil water redistribution and bare soil evaporation throughout a season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage-induced changes in soil properties are difficult to predict, yet can influence evaporation, infiltration, and how water is redistributed within the profile after precipitation. We evaluated the effects of sweep tillage (ST) on near surface soil water dynamics as compared with an untilled (UT...

  6. Wood chip mulch thickness effects on soil water, soil temperature, weed growth, and landscape plant growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wood chip mulches are used in landscapes to reduce soil water evaporation and competition from weeds. A study was conducted over a three-year period to determine soil water content at various depths under four wood chip mulch treatments and to evaluate the effects of wood chip thickness on growth of...

  7. EVALUATION OF SOIL WATER RETENTION MODELS BASED ON BASIC SOIL PHYSICAL PROPERTIES

    EPA Science Inventory

    Algorithms to model soil water retention are needed to study the response of vegetation and hydrologic systems to climate change. he objective of this study was to evaluate some soil water retention models to identify minimum input data requirements. ix models that function with ...

  8. Tillage effects on soil water redistribution and bare soil evaporation throughout a season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage-induced changes in soil properties are difficult to predict, yet can influence how water is redistributed within the profile after precipitation and subsequent evaporation rates. We evaluated the effects of sweep tillage (ST) on near surface soil water dynamics as compared with an untilled (...

  9. Soil surfactant products for improving hydrologic function in post-fire water repellent soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are a wide range of soil surfactant chemistries on the market today that are primarily designed for the treatment of water repellent soils in cropping and turfgrass systems. These chemicals may also have potential in treating the deleterious effects associated with post-fire water repellent so...

  10. Volatilization of lindance from water in soil-free and flooded soil systems.

    PubMed

    Siddaramppa, R; Sethunathan, N

    1976-01-01

    Volatilization of 14C-lindane from water in planchets and under flooded soil ecosystem was investigated. Lindane disappeared faster than parathion from planchets. More rapid loss of both insecticides occurred from water than from chloroform. Loss of lindane and parathion was related to measured losses of water by evaporation. During 5-day incubation under flooded soil conditions, disappearance of lindane was faster from open vials than from sealed vials, whereas in nonflooded soil, no volatile loss of the insecticide was evident despite water evaporation. Over 5 day incubation under flooded conditions, greater volatile loss of lindane occurred in sandy soil than in alluvial soil apparanetly due to greater adsorption to the soil colloids decreasing the insecticide concentration in the standing water on the laterite soil. Under identical conditions of water evaporation, lindane loss was directly proportional to its initial concentration in the water. These results suggest that considerable loss of soil applied pesticides can occur by volatilization from the standing water in flooded rice fields, particularly under tropical conditions. PMID:57974

  11. How can climate, soil, and monitoring schedule affect temporal stability of soil water contents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal stability (TS) of soil water content (SWC) reflects the spatio-temporal organization of soil water. The TS SWC was originally recognized as a phenomenon that can be used to provide temporal average SWC of an area of interest from observations at a representative location(s). Currently appli...

  12. Impact of particle nanotopology on water transport through hydrophobic soils.

    PubMed

    Truong, Vi Khanh; Owuor, Elizabeth A; Murugaraj, Pandiyan; Crawford, Russell J; Mainwaring, David E

    2015-12-15

    The impact of non- and poorly wetting soils has become increasingly important, due to its direct influence on the water-limited potential yield of rain-fed grain crops at a time of enhanced global competition for fresh water. This study investigates the physical and compositional mechanisms underlying the influence of soil organic matter (SOM) on the wetting processes of model systems. These model systems are directly related to two sandy wheat-producing soils that have contrasting hydrophobicities. Atomic force microscopy (AFM), contact angle and Raman micro-spectroscopy measurements on model planar and particulate SOM-containing surfaces demonstrated the role of the hierarchical surface structure on the wetting dynamics of packed particulate beds. It was found that a nanoscale surface topology is superimposed over the microscale roughness of the packed particles, and this controls the extent of water ingress into particulate packed beds of these particles. Using two of the dominant component organic species found in the SOM of the two soils used in this study, it was found that the specific interactions taking place between the SOM components, rather than their absolute quantities, dictated the formation of highly hydrophobic surface nanotopologies. This hydrophobicity was demonstrated, using micro-Raman imaging, to arise from the surface being in a composite Cassie-Baxter wetting state. Raman imaging demonstrated that the particle surface nanotopography influenced the degree of air entrapment in the interstices within the particle bed. The influence of a conventional surfactant on the wetting kinetics of both the model planar surfaces and packed particulate beds was quantified in terms of their respective advancing contact angles and the capillary wetting force vector. The information obtained for all of the planar and particulate surfaces, together with that obtained for the two soils, allowed linear relationships to be obtained in plots of the contact angle data as a function of the wetting liquid surface tensions. These linear relationships were found to reflect the mechanisms underlying the surface energy parameter requirements for wetting. PMID:26319321

  13. Genotypic Diversity of Escherichia coli in the Water and Soil of Tropical Watersheds in Hawaii ▿

    PubMed Central

    Goto, Dustin K.; Yan, Tao

    2011-01-01

    High levels of Escherichia coli were frequently detected in tropical soils in Hawaii, which present important environmental sources of E. coli to water bodies. This study systematically examined E. coli isolates from water and soil of several watersheds in Hawaii and observed high overall genotypic diversity (35.5% unique genotypes). In the Manoa watershed, fewer than 9.3% of the observed E. coli genotypes in water and 6.6% in soil were shared between different sampling sites, suggesting the lack of dominant fecal sources in the watershed. High temporal variability of E. coli genotypes in soil was also observed, which suggests a dynamic E. coli population corresponding with the frequently observed high concentrations in tropical soils. When E. coli genotypes detected from the same sampling events were compared, limited sharing between the soil and water samples was observed in the majority of comparisons (73.5%). However, several comparisons reported up to 33.3% overlap of E. coli genotypes between soil and water, illustrating the potential for soil-water interactions under favorable environmental conditions. In addition, genotype accumulation curves for E. coli from water and soil indicated that the sampling efforts in the Manoa watershed could not exhaust the overall genotypic diversity. Comparisons of E. coli genotypes from other watersheds on Oahu, Hawaii, identified no apparent grouping according to sampling locations. The results of the present study demonstrate the complexity of using E. coli as a fecal indicator bacterium in tropical watersheds and highlight the need to differentiate environmental sources of E. coli from fecal sources in water quality monitoring. PMID:21515724

  14. Scaling Infiltration and Other Soil Water Processes Across Diverse Soil textural Classes

    NASA Astrophysics Data System (ADS)

    Kozak, J.; Ahuja, L.; Green, T.

    2005-12-01

    Our studies showed that the pore-size distribution index (lambda) can scale Brooks-Corey (B-C) formulation of the soil-water retention curves below the air-entry pressure head across dissimilar (Sandy to clayey) soils, and other key B-C hydraulic parameters ( Ksat, air-entry pressure head, and dependant) were also strongly related to lambda. We then examined how these relationships to lambda led to relationships for infiltration across soil textural classes using three different approaches, as well as the subsequent soil water contents during redistribution, evaporation, and transpiration. The Root Zone Water Quality Model was used to generate data for infiltration under four rainfall intensities, redistribution for four initial wetting depths, and evaporation and transpiration under different potential rates in eleven textural class mean soils. Cumulative infiltration could be scaled quite well across textural classes based on knowledge of lamda using the Green-Ampt normalization equations. There were also strong empirical functional relationships between cumulative infiltration at fixed times across soils and the soils' lamda, and between the parameters of the empirical Kostiakov (Lewis) infiltration equation and lamda as well as Ksat. The Kostiakov parameters vs. lamda or Ksat (Ksat was better) provided more compact and explicit relationships across diverse soil classes both for instantaneous ponding and non-instantaneous ponding (e.g., rainfall) infiltration conditions, and could be used to scale and estimate infiltration across these classes. Similar strong relations were found between lamda (and by inference Ksat) and soil water contents across soil types during redistribution, and for evapotranspiration and transpiration. This study is a breakthrough in our understanding of the soil water relationships and scaling among soil textural classes, that could serve as a basis for describing spatial variability of soil water on the landscape for site-specific management and for scaling up results in modeling from plots to fields to watersheds.

  15. Citrus orchards management and soil water repellency in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; González Peñaloza, F. A.; Jordán, A.; Zavala, L. M.

    2012-04-01

    Water repellent soils are found around the world, although originally was found on fire affected soil (DeBano, 1981). However, for decades, water repellency was found to be a rare soil property. One of the pioneer research that shown that water repellency was a common soil property is the Wander (1949) publication in Science. Wander researched the water repellency on citrus groves, and since then, no information is available about the water repellency on citrus plantations. The Mediterranean soils are prone to water repellency due to the summer dry conditions (Cerdà and Doerr, 2007). And Land Use and Land Management are key factors (Harper et al., 2000; Urbanek et al., 2007) to understand the water repellency behaviour of agriculture soils. Valencia region (Eastern Spain) is the largest exporter in the world and citrus plantations located in the alluvial plains and fluvial terraces are moving to alluvial fans and slopes where the surface wash is very active (Cerdà et al., 2009). This research aims to show the water repellency on citrus orchards located on the sloping terrain (< 15 % angle slope). Measurement were conducted in four experimental plots located in the Canyoles River watershed to assess the soil water repellency in citrus orchards under different managements: annual addition of plant residues and manure with no tilling and no fertilizer (MNT), annual addition of plant residues with no tillage (NT), application of conventional herbicides and no tilling (HNT) and conventional tillage in June (CT). The period for each type of management ranged from 2 and 27 (MNT), 1 and 25 (NT), 2 and 27 (HNT) and 3 and 29 years (CT). At each plot, a ten points were selected every 10 cm along inter-rows and water drop penetration time test (WDTP; DeBano, 1981) was performed. The results show that the MNT treatment induced slight water repellency in citrus-cropped soils compared to other treatments. Small but significant soil water repellency was observed under NT and HNT treatments (mean WDTP 4 ± 4 s and 2 ± 2 s, respectively), which may be regarded as subcritical soil water repellency. Slight water repellency observed in soils under MNT treatment may be attributed to the input of hydrophobic organic compounds as a consequence of the addition of plant residues and organic manure. A further issue to be achieved is the study of geomorphological processes associated to sub-critical soil water repellency. The experimental setup within the citrus plantation is being supported by the research project CGL2008-02879/BTE

  16. Water Dynamics and Interactions in Water-Polyether Binary Mixtures

    PubMed Central

    Fenn, Emily E.; Moilanen, David E.; Levinger, Nancy E.; Fayer, Michael D.

    2009-01-01

    Poly(ethylene) oxide (PEO) is a technologically important polymer with a wide range of applications including ion-exchange membranes, protein crystallization, and medical devices. PEO’s versatility arises from its special interactions with water. Water molecules may form hydrogen bond bridges between the ether oxygens of the backbone. While steady-state measurements and theoretical studies of PEO’s interactions with water abound, experiments measuring dynamic observables are quite sparse. A major question is the nature of the interactions of water with the ether oxygens as opposed to the highly hydrophilic PEO terminal hydroxyls. Here, we examine a wide range of mixtures of water and tetraethylene glycol dimethyl ether (TEGDE), a methyl-terminated derivative of PEO with 4 repeat units (5 ether oxygens) using ultrafast infrared polarization selective pump-probe measurements on water’s hydroxyl stretching mode to determine vibrational relaxation and orientational relaxation dynamics. The experiments focus on the dynamical interactions of water with the ether backbone because TEGDE does not have the PEO terminal hydroxyls. The experiments observe two distinct subensembles of water molecules: those that are hydrogen bonded to other waters and those that are associated with TEGDE molecules. The water orientational relaxation has a fast component of a few ps (water-like) followed by much slower decay of ∼20 ps (TEGDE associated). The two decay times vary only mildly with the water concentration. The two subensembles are evident even in very low water content samples, indicating pooling of water molecules. Structural change as water content is lowered either through conformational changes in the backbone or increasing hydrophobic interactions is discussed. PMID:19323522

  17. Observed soil moisture-atmosphere interactions in the contiguous US from the Soil Climate Analysis Network (SCAN)

    NASA Astrophysics Data System (ADS)

    Xu, R.; Sheffield, J.

    2013-12-01

    The interactions of water and energy between the land and atmosphere are important in many aspects such as understanding the role of the land in weather and climate, improving seasonal forecasts, and evaluating climate models and their projections. Past studies on land-atmosphere interactions over large regions have generally been carried out with reanalysis, satellite remote sensing and model data. This study focuses on observational data from the Soil Climate Analysis Network (SCAN) to investigate the coupling of air temperature, precipitation and soil moisture at different time scales across the contiguous United States. SCAN data from over 80 sites across the U.S. with data between 2002 and 2012 are quality controlled to remove measurement errors and spurious values. Two main hypotheses regarding land-atmosphere interactions are explored: 1) precipitation is the main driver of soil moisture variation with the strength of coupling dependent on location, soil depth and time scale; 2) lack of soil moisture is related to high temperatures through sensible heating with relationships also dependent on location and scale. The statistical correlation between precipitation and soil moisture at daily, sub-monthly, and monthly scales is examined, and a positive relationship is prominent. Daily and monthly air temperature and soil moisture observations suggest that a control of air temperature by soil moisture exists. Further analysis shows significant negative relationships between the number of hot days (NHD) in summer months and soil moisture. The extent of this relationship (quantified by the slope of linear regression) varies across the U.S., with stronger relationships moving from the humid east to the drier central U.S.. In order to differentiate the sources of temperature changes between local coupling and advection, temperature advection is estimated using data from the North American Land Data Assimilation System-2 (NLDAS-2). The results suggest that local feedbacks may account for up to about 50% of local temperature changes in dry periods. This study shows that coupling between the land and atmosphere can be seen in observations, and regions of strongest coupling between soil moisture and temperature extremes tend to occur in the drier central U.S..

  18. Rock fragments induce patchy distribution of soil water repellency in burned soils

    NASA Astrophysics Data System (ADS)

    Gordillo-Rivero, Ángel; García-Moreno, Jorge; Bárcenas-Moreno, Gema; Jiménez-Morillo, Nicasio T.; Mataix-Solera, Jorge; Jordán, Antonio; Zavala, Lorena M.

    2013-04-01

    Forest fires are recurrent phenomena in the Mediterranean area and are one of the main causes of changes in the Mediterranean ecosystems, increasing the risk of soil erosion and desertification. Fire is an important agent which can induce important changes in the chemical and physical characteristics of soils. During wildfires, only a small part of the heat generated is transmitted to the first centimetres of the soil profile. The intensity of the changes produced in the physical and chemical characteristics of the soil depends on the temperatures reached at different soil depths, the time of residence of temperature peaks, and the stability of the different soil components. One of the soil physical properties strongly affected by fire is soil water repellency (WR). Depending on temperature, time of heating, type of soil and fuel, fire can induce, enhance or destroy soil WR. Soil WR is a key factor in controlling soil hydrology and water availability in burnt soils together with other factors as texture or aggregation. Although the occurrence and consequences of fire-induced soil WR have been deeply studied, some gaps still exist, as the influence of rock fragment cover during burning. During combustion of litter and aerial biomass, the soil surface under rock fragments is heated and reachs temperature peaks after a certain delay respect to exposed areas. In contrast, temperature peaks are longer, increasing the time of residence of high temperature. In consequence, rock fragments may change the expected spatial distribution of soil WR. Up to date, very scarce research concerns the effect of rock fragments at the soil surface on the fire-induced pattern of soil water repellency. METHODS Two experiments were carried out in this research. In the first case, an experiment was conducted in an experimental farm in Sevilla (southern Spain). The effect of a low severity prescribed fire was studied in soil plots under different rock fragment covers (0, 15, 30, 45 and 60%). Soil WR was assessed in soil samples (0-10 cm) collected monthly during 6 monhts after burning. In the second case, a fire-affected forest soil from Calañas (Huelva, southweastern Spain) was studied. Soil plots under different fire severities (low, medium and high severity burning) and rock fragment cover classes (20-40 and 60-80%) were analyzed. Soil WR was assessed in the soil surface immediately under the vertical projection of randomly selected stones and in the middle point between these and the nearest stones. Unburned adjacent soils under similar rock fragment cover classes were used as control. All soil WR assessments were carried out using the WDPT method. RESULTS In both cases, soil WR was induced in the soil surface contacting rock fragments after burning. Severity of WR ranged between subcritical or slight (low severity burning) and strong (high severity burning). Soil WR was also found to increase with rock fragment cover, especially after moderate or high severity burning, both under and between rock fragments. It is suggested that high density of rock fragments on the soil surface create a continuous surface of high residence of temperature peaks (in agreement with García-Moreno et al., 2013). Combustion of plant residues in oxygen depletion conditions between adjacent nearby rock fragments contributes to heat transfer to the soil surface and consequent enhanced soil WR. REFERENCES García-Moreno, J., Gordillo-Rivero, A.J., Gil, J., Jiménez-Morillo, N.T., Mataix-Solera, J., González-Peñaloza, F.A., Granged, A.J.P., Bárcenas-Moreno, G., Jiménez-Pinilla, P., Lozano, E., Jordán, A., Zavala, L.M. 2013. Do stones modify the spatial distribution of fire-induced soil water repellency? Preliminary data. Flamma, 4:76-80.

  19. Protection of ground water by immobilization of heavy metals in industrial-waste-impacted soil systems

    SciTech Connect

    McLean, J.E.; Dudley, L.M.; Sims, R.C.

    1986-09-01

    Immobilization processes in soil/waste systems impacted by hazardous wastes containing heavy metals were investigated. Samples of contaminated material (soil and/or waste) from nine sites in the Intermountain West and California included milling, electroplating, cement kiln dust, petroleum, and tailing and waste rock from mining operations. A sequential extraction procedure, originally developed to fractionate metals in sludge-amended soils into water soluble, mobile, and plant-available forms, was used to obtain preliminary identification of the leachable-metal fraction for the hazardous-waste-contaminated soils studied. Sorption kinetics and batch sorption/desorption studies were performed to determine the interaction of Cu and Cd, from an acidic leachate of a mine waste, with calcareous soils. Solid phase diagrams, exchange models, and GEOCHEM were used to define the mechanisms of metal attenuation of these soils.

  20. Estimation of water saturated permeability of soils, using 3D soil tomographic images and pore-level transport phenomena modelling

    NASA Astrophysics Data System (ADS)

    Lamorski, Krzysztof; Sławiński, Cezary; Barna, Gyöngyi

    2014-05-01

    There are some important macroscopic properties of the soil porous media such as: saturated permeability and water retention characteristics. These soil characteristics are very important as they determine soil transport processes and are commonly used as a parameters of general models of soil transport processes used extensively for scientific developments and engineering practise. These characteristics are usually measured or estimated using some statistical or phenomenological modelling, i.e. pedotransfer functions. On the physical basis, saturated soil permeability arises from physical transport processes occurring at the pore level. Current progress in modelling techniques, computational methods and X-ray micro-tomographic technology gives opportunity to use direct methods of physical modelling for pore level transport processes. Physically valid description of transport processes at micro-scale based on Navier-Stokes type modelling approach gives chance to recover macroscopic porous medium characteristics from micro-flow modelling. Water microflow transport processes occurring at the pore level are dependent on the microstructure of porous body and interactions between the fluid and the medium. In case of soils, i.e. the medium there exist relatively big pores in which water can move easily but also finer pores are present in which water transport processes are dominated by strong interactions between the medium and the fluid - full physical description of these phenomena is a challenge. Ten samples of different soils were scanned using X-ray computational microtomograph. The diameter of samples was 5 mm. The voxel resolution of CT scan was 2.5 µm. Resulting 3D soil samples images were used for reconstruction of the pore space for further modelling. 3D image threshholding was made to determine the soil grain surface. This surface was triangulated and used for computational mesh construction for the pore space. Numerical modelling of water flow through the sample was performed. Steady-state Navier-Stokes equations for incompressible laminar flows were used for that purpose. Resulting from modelling values of the soil saturated permeabilities were compared with results from measurements, made using constant head permeameter. Differences in this results were discussed. The study was partially funded from the National Science Centre (Poland) upon the contract: UMO-2011/01/B/ST10/07544.

  1. Ehenge: marginalized soil with high water use efficiency

    NASA Astrophysics Data System (ADS)

    Prudat, Brice; Bloemertz, Lena; Kuhn, Nikolaus J.

    2015-04-01

    Ehenge is a soil that has been described by the communities of North-Central Namibia during different studies. Farmers consider this soil as nutrient-poor with a deep loose sand layer over a hardpan, called olumha. Despite its low nutrient content, this soil is usually cultivated because it holds water for a longer period than some more nutrient-rich soils. This characteristic is an advantage during growing season with scarce rains. It has been described so far as a (hypoluvic hyperalbic) Arenosol. The sequence of characteristic horizons is as follows: sandy A and E; thin accumulation horizon Bt on top of a Bg horizon. The latter is important for water storage during dry periods (as shown by water soil monitoring data). Management practices for this soil type are very different from other Arenosols, because the water dynamics are very specific, with high percolation rates combined with a high risk of waterlogging. The evolution of agriculture in North-Central Namibia will determine the future use and preservation of these soils, as the presence of hardpan is considered to be a limiting factor for agricultural development. The author demonstrates that this soil has a large potential for agricultural water use efficiency, in an area with very limited water resources and that might face longer dry period as an effect of climate change.

  2. Wet Clay Technology decrease water repellency in sandy soil

    NASA Astrophysics Data System (ADS)

    Diamantis, Vasileios; Gazani, Eleutheria; Pagorogon, Lorvi; Gkiougkis, Ioannis; Pliakas, Fotios; Diamantis, Ioannis

    2010-05-01

    Clay has been traditionally used to mitigate water repellency in sandy soils. However, the quantities required (10-15%) are often prohibitive for use in large-scale projects. The application of clay in suspension (wet clay technology, WCT) was therefore proposed as an alternative mean for clay amendment. For this reason the required quantity of a clayey soil was mixed with freshwater (at 1:5 soil:water). After 2 min of settling time, the supernatant was applied to a water repellent sandy soil using a watering can. The use of wet clay at a rate of 1 kg/m2 was effective to decrease soil water repellency immediately after application. The number of wettable samples during the 5 week monitoring period, was maintained between 38-50%, compared to 9-31% after conventional dry application, and 13-21% for the control soil. Therefore, WCT was beneficial in decreasing soil water repellency. By this way, it is possible to significantly decrease the amount of clay required for soil reclamation. This is especially important for regions were clay is expensive and/or not abundant. A compact and portable equipment for WCT preparation is therefore proposed for field application.

  3. Perchlorate levels in soil and waters from the Atacama Desert.

    PubMed

    Calderón, R; Palma, P; Parker, D; Molina, M; Godoy, F A; Escudey, M

    2014-02-01

    Perchlorate is an anion that originates as a contaminant in ground and surface waters. The presence of perchlorate in soil and water samples from northern Chile (Atacama Desert) was investigated by ion chromatography-electrospray mass spectrometry. Results indicated that perchlorate was found in five of seven soils (cultivated and uncultivated) ranging from 290 ± 1 to 2,565 ± 2 μg/kg. The greatest concentration of perchlorate was detected in Humberstone soil (2,565 ± 2 μg/kg) associated with nitrate deposits. Perchlorate levels in Chilean soils are greater than those reported for uncultivated soils in the United States. Perchlorate was also found in superficial running water ranging from 744 ± 0.01 to 1,480 ± 0.02 μg/L. Perchlorate water concentration is 30-60 times greater than levels established by the United States Environmental Protection Agency (24.5 μg/L) for drinking. PMID:24165784

  4. Coupled Soil-Plant Water Dynamics During Drought-Rewetting Transitions

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H.; Haberer, K.; Gessler, A.; Weiler, M.

    2013-12-01

    The predicted climate and land-use changes could have dramatic effects on the water balance of the soil-vegetation system, particularly under frequent drought and subsequent rewetting conditions. Yet, estimation of these effects and associated consequences for the structure and functioning of ecosystems, groundwater recharge, drinking water availability, and the water cycle is currently impeded by gaps in our understanding of the spatiotemporal dynamics of soil water in the rooted soil horizons, the dynamics and driving physiological processes of plant water acquisition, and the transpiration from plant leaves under changing environmental conditions. Combining approaches from the disciplines of plant ecophysiology and soil and isotope hydrology, this work aims to fill this gap by quantitatively characterizing the interaction between plant water use - as affected by rooting patterns and ecophysiology of different plant functional groups - and the water balance of variably complex ecosystems with emphasis on drought and rewetting phases. Results from artificial drought and subsequent rewetting in field experiments using isotopically and dye (Brilliant Blue FCF) labeled water conducted on plots of various surface cover (bare soil, grass, beech, oak, vine) established on luvisol on loess in southwestern Germany are presented. Detailed spatiotemporal insights into the coupled short-term (hours to days) dynamics of soil and plant water during the experiments is facilitated by the application of newly developed techniques for high-frequency in-situ monitoring of stable isotope signatures in both pore water and transpired water using commercial laser-based spectrometers in conjunction with plant ecophysiological, soil physical state, and dye staining observations. On the one hand, the spatiotemporal patterns of plant water uptake are assessed and related to morphological and physiological traits driving plant water uptake, functional adaptations of plants to changes of soil water availability, and intra- and interspecies competition for water resources access. On the other hand, the effects of vegetation cover on infiltration, preferential flow paths characteristics, and soil water storage in the rooted soil horizons are investigated. The results of the experiments and the developed methodology will contribute to an improved understanding of ecosystem response and adaptation to drought and short-term changes in environmental conditions.

  5. Measuring Low Concentrations of Liquid Water in Soil

    NASA Technical Reports Server (NTRS)

    Buehler, Martin

    2009-01-01

    An apparatus has been developed for measuring the low concentrations of liquid water and ice in relatively dry soil samples. Designed as a prototype of instruments for measuring the liquidwater and ice contents of Lunar and Martian soils, the apparatus could also be applied similarly to terrestrial desert soils and sands. The apparatus is a special-purpose impedance spectrometer: Its design is based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and, hence, the magnitude of impedance decreases) with increasing water content.

  6. Spatial and temporal soil water variability in the plowing horizon of agriculturally used soils in two regions of Southwest Germany

    NASA Astrophysics Data System (ADS)

    Poltoradnev, Maxim; Ingwersen, Joachim; Streck, Thilo

    2015-04-01

    Soil water dynamics plays an important role in soil-plant-atmosphere interactions. There is a lack of long-term continuous measurements of topsoil water content at the regional scale. The objective of the present study was to quantify and elucidate the seasonal dynamics of spatial soil water content variability in the plowing horizon (Ap) of agricultural soils at the regional scale. The study was conducted in the central part of the Kraichgau and the Mid Swabian Alb in Southwest Germany. In each region a soil water network embracing 21 stations was set up. All stations were installed on cropped agricultural sites and distributed across three spatial domains: an inner domain 3 km × 3 km (5 stations), a middle 9 km × 9 km (8 stations), and an outer domain 27 km × 27 km (8 stations). Each station consists of a TDT sensor (SI.99 Aquaflex Soil Moisture Sensor, Streat Instruments Ltd, New Zealand), which senses both soil water content and soil temperature, a rain gauge, and a remote transfer unit (RTU, datalogger + GSM modem), which stores and transfers data via GPRS modem to the central data server (Adcon Telemetry GmbH, Austria) located at the University of Hohenheim. The TDT sensors were installed at 0.15 m depth. A sensor consists of a three meter long and three centimeter wide flat transmission line. The relationship between the standard deviation (σθ) of the soil water content (SWC) and mean spatial soil water content (<θ>) formed combinations of concave and convex hyperbolas. However, it strongly depended on SWC state and season. Generally, σθ was found to be changing along a convex trend during dry out and rewetting phases with a maximum in the intermediate SWC range. At the rain event scale, σθ(<θ>) was either ascending or converging with decreasing <θ>. A concave shape was observed when <θ> approached to dry state. The majority of σθ(<θ>) hysteresis loops were observed in intermediate and intermediate/wet state of SWC. All hysteretic loops were clockwise oriented. Rainfall intensity and distribution were identified as main factors driving SWC variability at the regional scale.

  7. Evaluation of different field methods for measuring soil water infiltration

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso; Fonseca, Francisco

    2010-05-01

    Soil infiltrability, together with rainfall characteristics, is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the direct measurement of water infiltration rates or its indirect deduction from other soil characteristics or properties has become indispensable for the evaluation and modelling of the previously mentioned processes. Indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, have demonstrated to be of limited value in most of the cases. Direct "in situ" field evaluations have to be preferred in any case. In this contribution we present the results of past experiences in the measurement of soil water infiltration rates in many different soils and land conditions, and their use for deducing soil water balances under variable climates. There are also presented and discussed recent results obtained in comparing different methods, using double and single ring infiltrometers, rainfall simulators, and disc permeameters, of different sizes, in soils with very contrasting surface and profile characteristics and conditions, including stony soils and very sloping lands. It is concluded that there are not methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the surface soil before and during the measurement. Due to the commonly found high variability, natural or induced by land management, of the soil surface and subsurface hydrological properties, and to the limitations imposed by the requirements of water for the measurements, there is proposed a simple and handy method, which do not use high volumes of water, adaptable to very different soil and land conditions, and that allow many repeated measurements with acceptable accuracy for most of the purposes. References Pla, I., 1997. A soil water balance model for monitoring soil erosion processes and effects on steep lands in the tropics. Soil Technology. 11(1):17-30. Elsevier Pla, I., 2006. Hydrological approach for assessing desertification processes in the Mediterranean region. In W.G. Kepner et al. (Editors), Desertification in the Mediterranean Region. A Security Issue. 579-600 Springer. Heidelberg (Germany) Reynolds W.D., B.T. Bowman, R.R. Brunke, C.F. Drury and C.S. Tan. 2000. Comparison of Tension Infiltrometer, Pressure Infiltrometer, and Soil Core Estimates of Saturated Hydraulic Conductivity . Soil Science Society of America Journal 64:478-484 Segal, E., S.A.Bradford, P. Shouse; N. Lazarovich, and D. Corwin. 2008. Integration of Hard and Soft Data to Characterize Field-Scale Hydraulic Properties for Flow and Transport Studies. Vadose Zone J 7:878-889 Young, E. 1991. Infiltration measurements, a review. Hydrological processes 5: 309-320.

  8. Effects of soil water availability on water fluxes in winter wheat

    NASA Astrophysics Data System (ADS)

    Cai, G.; Vanderborght, J.; Langensiepen, M.; Vereecken, H.

    2014-12-01

    Quantifying soil water availability in water-limited ecosystems on plant water use continues to be a practical problem in agronomy. Transpiration which represents plant water demand is closely in relation to root water uptake in the root zone and sap flow in plant stems. However, few studies have been concentrated on influences of soil moisture on root water uptake and sap flow in crops. This study was undertaken to investigate (i) whether root water uptake and sap flow correlate with the transpiration estimated by the Penman-Monteith model for winter wheat(Triticum aestivum), and (ii) for which soil water potentials in the root zone, the root water uptake and sap flow rates in crop stems would be reduced. Therefore, we measured sap flow velocities by an improved heat-balance approach (Langensiepen et al., 2014), calculated crop transpiration by Penman-Monteith model, and simulated root water uptake by HYDRUS-1D on an hourly scale for different soil water status in winter wheat. In order to assess the effects of soil water potential on root water uptake and sap flow, an average soil water potential was calculated by weighting the soil water potential at a certain depth with the root length density. The temporal evolution of root length density was measured using horizontal rhizotubes that were installed at different depths.The results showed that root water uptake and sap flow matched well with the computed transpiration by Penman-Monteith model in winter wheat when the soil water potential was not limiting root water uptake. However, low soil water content restrained root water uptake, especially when soil water potential was lower than -90 kPa in the top soil. Sap flow in wheat was not affected by the observed soil water conditions, suggesting that stomatal conductance was not sensitive to soil water potentials. The effect of drought stress on root water uptake and sap flow in winter wheat was only investigated in a short time (after anthesis). Further research could focus on a long time (e.g. from vegetation to maturity) effect under different soil water conditions, such as irrigated, sheltered and normal status. Langensiepen, M., Kupisch, M., Graf, A., Schmidt, M. and Ewert, F., 2014. Improving the stem heat balance method for determining sap-flow in wheat. Agricultural and Forest Meteorology, 186: 34-42.

  9. Impact of interspecific interactions on antimicrobial activity among soil bacteria

    PubMed Central

    Tyc, Olaf; van den Berg, Marlies; Gerards, Saskia; van Veen, Johannes A.; Raaijmakers, Jos M.; de Boer, Wietse; Garbeva, Paolina

    2014-01-01

    Certain bacterial species produce antimicrobial compounds only in the presence of a competing species. However, little is known on the frequency of interaction-mediated induction of antibiotic compound production in natural communities of soil bacteria. Here we developed a high-throughput method to screen for the production of antimicrobial activity by monocultures and pair-wise combinations of 146 phylogenetically different bacteria isolated from similar soil habitats. Growth responses of two human pathogenic model organisms, Escherichia coli WA321 and Staphylococcus aureus 533R4, were used to monitor antimicrobial activity. From all isolates, 33% showed antimicrobial activity only in monoculture and 42% showed activity only when tested in interactions. More bacterial isolates were active against S. aureus than against E. coli. The frequency of interaction-mediated induction of antimicrobial activity was 6% (154 interactions out of 2798) indicating that only a limited set of species combinations showed such activity. The screening revealed also interaction-mediated suppression of antimicrobial activity for 22% of all combinations tested. Whereas all patterns of antimicrobial activity (non-induced production, induced production and suppression) were seen for various bacterial classes, interaction-mediated induction of antimicrobial activity was more frequent for combinations of Flavobacteria and alpha- Proteobacteria. The results of our study give a first indication on the frequency of interference competitive interactions in natural soil bacterial communities which may forms a basis for selection of bacterial groups that are promising for the discovery of novel, cryptic antibiotics. PMID:25389421

  10. Biotic interactions mediate soil microbial feedbacks to climate change.

    PubMed

    Crowther, Thomas W; Thomas, Stephen M; Maynard, Daniel S; Baldrian, Petr; Covey, Kristofer; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A

    2015-06-01

    Decomposition of organic material by soil microbes generates an annual global release of 50-75 Pg carbon to the atmosphere, ∼7.5-9 times that of anthropogenic emissions worldwide. This process is sensitive to global change factors, which can drive carbon cycle-climate feedbacks with the potential to enhance atmospheric warming. Although the effects of interacting global change factors on soil microbial activity have been a widespread ecological focus, the regulatory effects of interspecific interactions are rarely considered in climate feedback studies. We explore the potential of soil animals to mediate microbial responses to warming and nitrogen enrichment within a long-term, field-based global change study. The combination of global change factors alleviated the bottom-up limitations on fungal growth, stimulating enzyme production and decomposition rates in the absence of soil animals. However, increased fungal biomass also stimulated consumption rates by soil invertebrates, restoring microbial process rates to levels observed under ambient conditions. Our results support the contemporary theory that top-down control in soil food webs is apparent only in the absence of bottom-up limitation. As such, when global change factors alleviate the bottom-up limitations on microbial activity, top-down control becomes an increasingly important regulatory force with the capacity to dampen the strength of positive carbon cycle-climate feedbacks. PMID:26038557

  11. Biotic interactions mediate soil microbial feedbacks to climate change

    PubMed Central

    Crowther, Thomas W.; Thomas, Stephen M.; Maynard, Daniel S.; Baldrian, Petr; Covey, Kristofer; Frey, Serita D.; van Diepen, Linda T. A.; Bradford, Mark A.

    2015-01-01

    Decomposition of organic material by soil microbes generates an annual global release of 50–75 Pg carbon to the atmosphere, ∼7.5–9 times that of anthropogenic emissions worldwide. This process is sensitive to global change factors, which can drive carbon cycle–climate feedbacks with the potential to enhance atmospheric warming. Although the effects of interacting global change factors on soil microbial activity have been a widespread ecological focus, the regulatory effects of interspecific interactions are rarely considered in climate feedback studies. We explore the potential of soil animals to mediate microbial responses to warming and nitrogen enrichment within a long-term, field-based global change study. The combination of global change factors alleviated the bottom-up limitations on fungal growth, stimulating enzyme production and decomposition rates in the absence of soil animals. However, increased fungal biomass also stimulated consumption rates by soil invertebrates, restoring microbial process rates to levels observed under ambient conditions. Our results support the contemporary theory that top-down control in soil food webs is apparent only in the absence of bottom-up limitation. As such, when global change factors alleviate the bottom-up limitations on microbial activity, top-down control becomes an increasingly important regulatory force with the capacity to dampen the strength of positive carbon cycle–climate feedbacks. PMID:26038557

  12. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    NASA Astrophysics Data System (ADS)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone, the DE model denoted an anomalous behavior depending on the used formulation for the 'chi' parameter, with decreasing FS as soil moisture decreases.

  13. [Effects of soil texture and water content on the mineralization of soil organic carbon in paddy soils].

    PubMed

    Sun, Zhong-lin; Wu, Jin-shui; Ge, Ti-da; Tang, Guo-yong; Tong, Cheng-li

    2009-01-01

    To understand how soil texture and water content affect the mineralization of organic C in paddy soil, 3 selected soils (sandy loam, clay loam, and silty clay) were incubated (25 degrees C) with 14 C-labelled rice straw (1.0 g x kg(-1)) at water content varied from 45% to 105% of water holding capacity (WHC). Data indicated that, in the sandy loam and clay loam, the mineralization rate of 14 C-labelled rice straw reached the maximum at 75% WHC, as 53% and 58% of the straw C mineralized in the incubation period of 160 d, whereas in the silty clay, it increased gradually (from 41.8% to 49.0%) as water content increased up to 105% WHC. For all of the three soils, the mineralization rate of soil native organic C reached the maximum at 75% WHC, with 5.8% of the organic C mineralized in the same period for the sandy loam, and 8.0% and 4.8% for the clay loam and silty clay, respectively. As water content increased further, the mineralization rate of native organic C in the three soils significantly declined. The mineralization rate of added rice straw and native organic C in all the three soils, was well fitted with a conic curve. These results suggest that water-logging can decrease the mineralization of organic C in paddy soils. PMID:19353883

  14. Relation between L-band soil emittance and soil water content

    NASA Technical Reports Server (NTRS)

    Stroosnijder, L.; Lascano, R. J.; Van Bavel, C. H. M.; Newton, R. W.

    1986-01-01

    An experimental relation between soil emittance (E) at L-band and soil surface moisture content (M) is compared with a theoretical one. The latter depends on the soil dielectric constant, which is a function of both soil moisture content and of soil texture. It appears that a difference of 10 percent in the surface clay content causes a change in the estimate of M on the order of 0.02 cu m/cu m. This is based on calculations with a model that simulates the flow of water and energy, in combination with a radiative transfer model. It is concluded that an experimental determination of the E-M relation for each soil type is not required, and that a rough estimate of the soil texture will lead to a sufficiently accurate estimate of soil moisture from a general, theoretical relationship obtained by numerical simulation.

  15. Cosmic Ray Neutron Probe Soil Water Measurements over Complex Terrain in Austria

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; Weltin, Georg; Kheng Heng, Lee; Wahbi, Ammar; Oismueller, Markus; Dercon, Gerd

    2014-05-01

    The importance of surface soil water (rooting zone) has become evident with climate change affecting rainfall patterns and crop production. The use of Cosmic Ray Neutron Probe (CRNP) for measuring surface soil water has become increasingly popular. The advantage of CRNP is that it is a non-invasive technique for measuring soil water content at an area-wide scale, in contrast to more conventional, techniques which measure mainly at field scale (point level). The CRNP integrates over a circular area of ca. 600 meters in diameter, to a depth of 70 cm, giving an average value for soil water content. Cosmic radiation interacting with the Earth's atmosphere continuously generates neutrons. At Earth's surface, these neutrons interact with surface water, and are slowed down. At sub-micrometer geometrics, these neutrons affect semiconductor devices, so they can be counted, slow and fast ones separately. From the difference in numbers between fast and slow neutrons, soil water content is calculated. As first in Austria, a CRNP (CRS 1000/B model) consisting of two neutron counters (one tuned for slow, the other one for fast neutrons), data logger and an Iridium modem, has been installed at Petzenkirchen research station of the Doctoral Programme for Water Resource Systems (TU Vienna) at 48.14 latitude and 15.17 longitude, 100 km west of Vienna, in late autumn 2013. The research station is located in an undulating agricultural landscape, characterized by heavy Cambisols and Planosols, and winter wheat and barley as main crops in winter, and maize and sunflower in summer. In addition, an in-situ soil moisture network consisting of 32 stations of Time Domain Transmissivity (TDT) sensors measuring soil water at 4 depths (0.05, 0.10,0.20 and 0.50 m) over an area of 64 ha has been established. This TDT network is currently being used to validate the use of the innovative CRNP technique. First results will be shown at the EGU 2014.

  16. The role of waste thermal water in the soil degradation

    NASA Astrophysics Data System (ADS)

    Balog, Kitti; Farsang, Andrea

    2010-05-01

    Thermal water exploitation is widespread, because it is considered to a "green" renewable energy source, the transporter of the Earth crust's heat. It is suitable for very diverse purposes: balneology, heating, mineral water, municipal hot water supply, technological water, etc. After usage, large amount of thermal water becomes sewage water with high concentrations of salts, heavy metals, ammonia, nitrate, and high temperature. Besides that, most of these waters have an unfavourable ion composition. Na+ (and in some cases Mg+) is predominant among cations. A common way of treatment is to let off the waste thermal water in unlined ground channels to leak into the soil. This can cause physical and chemical soil degradation. Continouos Na+ supply occurs, that occupies the place of Ca2+ on the ion exchange surfaces. Thus, adverse effects of Na+ can appear, like formation of extreme moisture regime, peptization, liquefaction. Beside Na+, Mg2+ also helps the formation of physical degradation in the soil. High water retain and unfavourable structure evolves. Not only the physical features of the soil are touched, fertility of production sites as well. Namely sorrounding the unlined ground channels, agricultural areas are seated, so it is important to protect productivity of the soil to maintain yield. Because of the seepage of high salt concentration waters, salt accumulation can be observed near to the channel lines. The investigated sample sites are located in the Great Hungarian Plane. We determined the main pollutants of the thermal waters, and the effects to the sorrounding soils. On two selected investigation areas (Cserkeszőlő, Tiszakécske) salt profiles and Na+ adsorption isotherms are presented to characterize soil degradation. Genetic soil types are differ on the investigated areas, so the aspect of impact is different, as well.

  17. Numerical analysis of kinematic soil-pile interaction

    SciTech Connect

    Castelli, Francesco; Maugeri, Michele; Mylonakis, George

    2008-07-08

    In the present study, the response of singles pile to kinematic seismic loading is investigated using the computer program SAP2000. The objectives of the study are: (1) to develop a numerical model that can realistically simulate kinematic soil-structure interaction for piles accounting for discontinuity conditions at the pile-soil interface, energy dissipation and wave propagation; (2) to use the model for evaluating kinematic interaction effects on pile response as function of input ground motion; and (3) to present a case study in which theoretical predictions are compared with results obtained from other formulations. To evaluate the effects of kinematic loading, the responses of both the free-field soil (with no piles) and the pile were compared. Time history and static pushover analyses were conducted to estimate the displacement and kinematic pile bending under seismic loadings.

  18. Soil-Earthquake Interactions in Buyukada/ Prinkipo (Istanbul)

    NASA Astrophysics Data System (ADS)

    Ozcep, Ferhat; Karabulut, Savas; Caglak, Faruk; Ozel, Oguz

    2014-05-01

    As the largest one of the nine islands comprising the Princes' Islands in the Marmara Sea, close to Istanbul, Buyukada ("Large Isle") consist of with an area of 5.46 km2. The main factor controlling the earthquake hazard for Istanbul is a complex fault system, i.e. the North Anatolian Fault zone, which in the Marmara Sea region. Recent geophysical studies have carried out that this hazard is mainly associated within two active seismogenic areas: the Central Marmara Basin and the Adalar Fault zone, located about 15-30 km south-west and south of Istanbul. Eartquake ground motion affects the structures via the state of the soils. There are several historical buildings on Büyükada, such as the Ayia Yorgi Church and Monastery dating back to the sixth century, the Ayios Dimitrios Church, and the Hamidiye Mosque built by Abdul Hamid II and Greek Orphanage, a huge wooden building etc. The soils and buildings with characteristics of earthquakes could be caused an earthquake damage / loss. One of the most important factors in reducing the earthquake risk in urban areas due to the earthquake ground motion is to estimate gound motion level with interaction of soils. When we look at the geological structure of Buyukada, Paleozoic unites and alluvial deposit are located. Site response of alluvial deposits in Buyukada is also important for the behavior during an earthquake. Geophysical study in the study area in order to estimate the behavior of soils is carried out to obtain the dominant period (microtremor measurements) and shear wave velocity ( MASW - MAM measurements) data. Soil geophysical results is input to earthquake motion for bedrock sites, and is important to the interaction with the ground movement and the soils to estimate Büyükaada's earthquake ground motion. In the earthquake-soil interaction, spectral acceleration is an important criterion. In this study, spectral acceleration are also estiamted for ground motion level in Princes' Islands by using several approaches.

  19. Cooperative water-SOM interactions derived from the organic compound effect on SOM hydration

    NASA Astrophysics Data System (ADS)

    Borisover, Mikhail

    2014-05-01

    Interactions of water molecules with soil organic matter (SOM) may affect the ability of SOM to participate in multiple physical, chemical and biological processes. Specifically, water-SOM interactions may have a profound effect on interactions of organic compounds with SOM which is often considered as a major natural sorbent controlling the environmental fate of organic pollutants in the soil environment. Quantification of water - SOM interactions may be carried out by using water vapor sorption isotherms. However, water sorption isotherms providing macroscopic thermodynamic data do not allow examining water-SOM interactions on a microenvironment scale. The examination of water-SOM interactions in a local SOM environment may be carried out by determining the response of the SOM hydration to sorption of probe organic compounds. Recently, the model-free approach was proposed which allows quantifying effects of sorbing organic molecules on water - SOM interactions, by using relatively more available data on the effect of water activity on organic compound - SOM interactions. Therefore, this thermodynamic approach was applied to the experimental data describing sorption of organic compounds by SOM, both from the vapor and liquid phases, at various water activities. Hence, the response of water interactions with the model SOM materials such as a humic acid and an organic matter-rich peat soil to the presence of various organic sorbates was evaluated. Depending on a molecular structure of organic sorbates probing various molecular environments in SOM, the SOM-bound water may be driven in or out of the SOM sorbents. Organic compounds containing the atoms of oxygen, nitrogen or sulfur and preferring a relatively "polar" SOM microenvironment demonstrate the distinct enhancing effect on water-SOM interactions. In contrast, the "low-polarity" organic compounds, e.g., hydrocarbons or their halogen-substituted derivatives, produce a weakening effect on water-SOM interactions. Importantly, the changes in water-SOM interactions induced by the presence of organic compounds may demonstrate the cooperative behavior: (1) several water molecules may be involved in an enhanced hydration of SOM, (2) at the presence of an organic sorbate, interactions of water molecules with SOM enhance the uptake of the following water molecules. The proposed cooperative water-SOM interactions may result from a perturbation of the SOM matrix due to a sorption of organic and water molecules where a partial disrupting of molecular contacts in SOM makes easier the following SOM-water interactions thus promoting the enhanced SOM hydration.

  20. Formation of Soil Water Repellency by Laboratory Burning and Its Effect on Soil Evaporation

    NASA Astrophysics Data System (ADS)

    Ahn, Sujung; Im, Sangjun

    2010-05-01

    Fire-induced soil water repellency can vary with burning conditions, and may lead to significant changes in soil hydraulic properties. However, isolation of the effects of soil water repellency from other factors is difficult, particularly under field conditions. This study was conducted to (i) investigate the effects of burning using different plant leaf materials and (ii) of different burning conditions on the formation of soil water repellency, and (iii) isolate the effects of the resulting soil water repellency on soil evaporation from other factors. Burning treatments were performed on the surface of homogeneous fully wettable sand soil contained in a steel frame (60 x 60 cm; 40 cm depth). As controls a sample without a heat treatment, and a heated sample without fuel, were also used. Ignition and heat treatments were carried out with a gas torch. For comparing the effects of different burning conditions, fuel types included oven-dried pine needles (fresh needles of Pinus densiflora), pine needle litter (litter on a coniferous forest floor, P. densiflora + P. rigida), and broad-leaf litter (Quercus mongolica + Q. aliena + Prunus serrulata var. spontanea + other species); fuel loads were 200 g, 300 g, and 500 g; and heating duration was 40 s, 90 s and 180 s. The heating duration was adjusted to control the temperature, based on previous experiments. The temperature was measured continuously at 3-second intervals and logged with two thermometers. After burning, undisturbed soil columns were sampled for subsequent experiments. Water Drop Penetration Time (WDPT) test was performed at every 1 mm depth of the soil columns to measure the severity of soil water repellency and its vertical extent. Soil water repellency was detected following all treatments. As the duration of heating increased, the thickness of the water repellent layer increased, whilst the severity of soil water repellency decreased. As regards fuel amount, the most severe soil water repellency was formed at a fuel load of 300 g. Pine needle litter formed the most severe soil water repellency and fresh pine needle formed the thickest water repellent layer, whilst broad-leaf litter did only cause water repellency on the surface of the sand. The soil evaporation rate was measured by a gravitational method at an isothermal condition. Undisturbed soil columns were sealed after adding 50 ml of tap water through the bottom. After twelve hours of stabilization, the columns were opened and covered with filter paper. The rate of soil evaporation through the soil surface was measured by the hourly weight change at 45° C. The initial 65 hours' evaporation rate was analyzed, while the slope of cumulative evaporation over time maintained its linearity. It was found that as the thickness of the water repellent layer increased, the evaporation rate tended to decrease. These two variables showed a good correlation (Pearson's correlation coefficient =-0.8916, p=0.0170) and a large coefficient of determination (R2=0.795) in the linear regression. This suggests that a layer of water repellent soil can affect water evaporation rate and that the rate is negatively correlated with the thickness of the repellent layer.

  1. SEISMIC RESPONSE OF DAM WITH SOIL-STRUCTURE INTERACTION.

    USGS Publications Warehouse

    Bycroft, G.N.; Mork, P.N.

    1987-01-01

    An analytical solution to the response of a long trapezoidal-section dam on a foundation consisting of an elastic half-space and subjected to simulated earthquake motion is developed. An optimum seismic design is achieved when the cross section of the dam is triangular. The effect of soil structure interaction is to lower the strain occurring in the dam.

  2. Numerical and Experimental Quantification of coupled water and water vapor fluxes in very dry soils.

    NASA Astrophysics Data System (ADS)

    Madi, Raneem; de Rooij, Gerrit

    2015-04-01

    In arid and semi-arid regions with deep groundwater and very dry soils, vapor movement in the vadose zone may be a major component in the total water flux. Therefore, the coupled movement of liquid water, water vapor and heat transport in the unsaturated zone should be explicitly considered to quantify subsurface water fluxes in such regions. Only few studies focused on the importance of vapor water diffusion in dry soils and in many water flow studies in soil it was neglected. We are interested in the importance of water vapor diffusion and condensation in very dry sand. A version of Hydrus-1D capable of solving the coupled water vapor and heat transport equations will be used to do the numerical modeling. The soil hydraulic properties will be experimentally determined. A soil column experiment was developed with negligible liquid flow in order to isolate vapor flux for testing. We have used different values of initial water contents trying to generate different scenarios to assess the role of the water vapor transport in arid and semi-arid soils and how it changes the soil water content using different soil hydraulic parametrization functions. In the session a preliminary experimental and modelling results of vapor and water fluxes will be presented.

  3. Soil Moisture-Ecosystem-Climate Interactions in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Seneviratne, S. I.; Davin, E.; Hirschi, M.; Mueller, B.; Orlowsky, B.; Teuling, A.

    2011-12-01

    Soil moisture is a key variable of the climate system. It constrains plant transpiration and photosynthesis in several regions of the world, with consequent impacts on the water, energy and biogeochemical cycles (e.g. Seneviratne et al. 2010). Moreover it is a storage component for precipitation and radiation anomalies, inducing persistence in the climate system. Finally, it is involved in a number of feedbacks at the local, regional and global scales, and plays a major role in climate-change projections. This presentation will provide an overview on these interactions, based on several recent publications (e.g. Seneviratne et al. 2006, Orlowsky and Seneviratne 2010, Teuling et al. 2010, Hirschi et al. 2011). In particular, it will highlight possible impacts of soil moisture-ecosystem coupling for climate extremes such as heat waves and droughts, and the resulting interconnections between biophysical and biogeochemical feedbacks in the context of climate change. Finally, it will also address recent regional- to global-scale trends in land hydrology and ecosystem functioning, as well as issues and potential avenues for investigating these trends (e.g. Jung et al. 2010, Mueller et al. 2011). References Hirschi, M., S.I. Seneviratne, V. Alexandrov, F. Boberg, C. Boroneant, O.B. Christensen, H. Formayer, B. Orlowsky, and P. Stepanek, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geoscience, 4, 17-21, doi:10.1038/ngeo1032. Jung, M., et al., 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951-954. doi:10.1038/nature09396 Mueller, B., S.I. Seneviratne, et al.: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations, Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230 Orlowsky, B., and S.I. Seneviratne, 2010: Statistical analyses of land-atmosphere feedbacks and their possible pitfalls. J. Climate, 23(14), 3918-3932 Seneviratne, S.I., T. Corti, E.L. Davin, M. Hirschi, E.B. Jaeger, I. Lehner, B. Orlowsky, and A.J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 3-4, 125-161, doi:10.1016/j.earscirev.2010.02.004 Seneviratne, S.I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land-atmosphere coupling and climate change in Europe. Nature, 443, 205-209. Teuling, A.J., S.I. Seneviratne, et al. 2010: Contrasting response of European forest and grassland energy exchange to heatwaves. Nature Geoscience, 3, 722-727, doi:10.1038/ngeo950.

  4. Dynamic aspects of soil water availability for isohydric plants: Focus on root hydraulic resistances

    NASA Astrophysics Data System (ADS)

    Couvreur, V.; Vanderborght, J.; Draye, X.; Javaux, M.

    2014-11-01

    Soil water availability for plant transpiration is a key concept in agronomy. The objective of this study is to revisit this concept and discuss how it may be affected by processes locally influencing root hydraulic properties. A physical limitation to soil water availability in terms of maximal flow rate available to plant leaves (Qavail) is defined. It is expressed for isohydric plants, in terms of plant-centered variables and properties (the equivalent soil water potential sensed by the plant, ψs eq; the root system equivalent conductance, Krs; and a threshold leaf water potential, ψleaf lim). The resulting limitation to plant transpiration is compared to commonly used empirical stress functions. Similarities suggest that the slope of empirical functions might correspond to the ratio of Krs to the plant potential transpiration rate. The sensitivity of Qavail to local changes of root hydraulic conductances in response to soil matric potential is investigated using model simulations. A decrease of radial conductances when the soil dries induces earlier water stress, but allows maintaining higher night plant water potentials and higher Qavail during the last week of a simulated 1 month drought. In opposition, an increase of radial conductances during soil drying provokes an increase of hydraulic redistribution and Qavail at short term. This study offers a first insight on the effect of dynamic local root hydraulic properties on soil water availability. By better understanding complex interactions between hydraulic processes involved in soil-plant hydrodynamics, better prospects on how root hydraulic traits mitigate plant water stress might be achieved.

  5. (Field-scale water and solute flux in soils)

    SciTech Connect

    Luxmoore, R.J.

    1989-10-19

    The traveler evaluated and discussed research results of Mr. Andreas Papritz, a graduate student in soil physics, at the request of the Department Head, Professor Dr. Hannes Fluhler of the Swiss Federal Institute of Technology. He also participated in an international workshop on water and solute transport in field soils by giving an invited presentation, chairing a session, and contributing to a discussion group dealing with preferential flow processes in field soils. 10 refs.

  6. Soil Water Retention as Indicator for Soil Physical Quality - Examples from Two SoilTrEC European Critical Zone Observatories

    NASA Astrophysics Data System (ADS)

    Rousseva, Svetla; Kercheva, Milena; Shishkov, Toma; Dimitrov, Emil; Nenov, Martin; Lair, Georg J.; Moraetis, Daniel

    2014-05-01

    Soil water retention is of primary importance for majority of soil functions. The characteristics derived from Soil Water Retention Curve (SWRC) are directly related to soil structure and soil water regime and can be used as indicators for soil physical quality. The aim of this study is to present some parameters and relationships based on the SWRC data from the soil profiles characterising the European SoilTrEC Critical Zone Observatories Fuchsenbigl and Koiliaris. The studied soils are representative for highly productive soils managed as arable land in the frame of soil formation chronosequence at "Marchfeld" (Fuchsenbigl CZO), Austria and heavily impacted soils during centuries through intensive grazing and farming, under severe risk of desertification in context of climatic and lithological gradient at Koiliaris, Crete, Greece. Soil water retention at pF ≤ 2.52 was determined using the undisturbed soil cores (100 cm3 and 50 cm3) by a suction plate method. Water retention at pF = 4.2 was determined by a membrane press method and at pF ≥ 5.6 - by adsorption of water vapour at controlled relative humidity, both using ground soil samples. The soil physical quality parameter (S-parameter) was defined as the slope of the water retention curve at its inflection point (Dexter, 2006), determined with the obtained parameters of van Genuhten (1980) water retention equation. The S-parameter values were categorised to assess soil physical quality as follows: S < 0.020 very poor, 0.020 ≤ S < 0.035 poor, 0.035 ≤ S < 0.050 good, S ≥ 0.050 very good (Dexter, 2004). The results showed that most of the studied topsoil horizons have good physical quality according to both the S-parameter and the Plant-Available Water content (PAW), with the exception of the soils from croplands at CZO Fuxenbigl (F4, F5) which are with poor soil structure. The link between the S-parameter and the indicator of soil structure stability (water stable soil aggregates with size 1-3 mm) is not well defined. The scattering is due to high values of S in subsoil, which does not always coincide with favourable physical properties, as it can be seen from the relationship with the PAW content. It was found that values of S ≥ 0.05 correspond to PAW > 20 % vol. in the topsoil horizons. The high values of S in subsoil horizons are due to the low PAW and restrict the application of the S categories in these cases. Well defined links are found between the PAW content and the S-parameter when the data from the topsoil horizons are grouped in 2 groups according to the ratio between air-filled pores (at pF 2.52) and plant available water: <2 and ≥ 2. The authors acknowledge gratefully the European Commission Research Directorate-General for funding the SoilTrEC project (Contract No 244118) under its 7th Framework Programme.

  7. Unity of mechanisms of water and wind erosion of soils

    NASA Astrophysics Data System (ADS)

    Gendugov, V. M.; Glazunov, G. P.

    2009-05-01

    An equation for the threshold velocity of the water or wind flow at which erosion of a homogeneous model soil begins was derived on the basis of accepted and explicitly formulated suppositions and limitations and tested using experimental data. The validity of the proposed mechanisms and equations describing the lifting force of the soil-eroding water or wind flow and the interaggregate cohesion in a model homogeneous incoherent soil was confirmed. The limit for the decrease in the threshold flow velocity with decreasing size of the soil particles (aggregates) was theoretically substantiated. The first unified equation of the threshold velocity of the water or wind flow for a homogeneous model soil in dimensionless variables was derived and experimentally justified.

  8. Vegetation Dynamics and Soil Water Balance in a Water-limited Mediterranean Ecosystem on Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Montaldo, N.; Albertson, J. D.; Mancini, M.

    2007-12-01

    Semi-arid regions, such as around the Mediterranean, suffer from broad desertification processes produced by both natural and human influences. Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems, with contrasting plant functional types (PFTs, e.g., grass and woody vegetation) competing for the water use. At the same time the structure and function of the vegetation regulates the exchange of mass, energy and momentum across the biosphere-atmosphere interface, influencing strongly the soil water budget. With the objective to investigate vegetation dynamics, soil water budget and land-surface fluxes interactions in a water-limited ecosystem, an extensive field campaign in a Mediterranean water-limited field is performed, and a parsimonious and robust vegetation dynamic model (VDM) is coupled to a 3-component (bare soil, grass and woody vegetation) LSM. The case study is in Orroli, situated in the mid-west of Sardegna within the Flumendosa river watershed. Sardinia is a region that suffers from water scarcity, and the Flumendosa basin plays a primary role in the water supply for much of southern Sardinia, including the island's biggest city, Cagliari. The site landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and cork oaks, different shrubs and herbaceous species. An extensive field campaign started in April 2003. More than three years of data are available. Interestingly, hydrometeorological conditions of the monitored years strongly differ, with dry and wet years in turn, and a wide range of hydrometeorological conditions can be analyzed. Land-surface fluxes and CO2 fluxes are estimated by an eddy correlation technique based micrometeorological tower. Soil moisture profiles were also continuously estimated using water content reflectometers and gravimetric method, and periodically leaf area index (LAI) estimates of both plant types are made using the Accupar LP-80 by Decagon Devices Inc. Furthermore, two high spatial resolution (2.8 m) Quickbird satellite images were acquired in August of 2003 and March 2004 for defining the spatial organization of the main land cover types around the tower for two contrasting seasons of the year (Summer and Spring). A parsimonious ecohydrologic model is developed. The VDM computes the change in biomass over time as difference between the rate of production (e.g., photosynthesis) and the rate of destruction (e.g., respiration and senescence). VDM incorporates two PFTs using basic rules regarding competition for a limiting resource. The VDM is then coupled to a 3-component LSM, with the VDM providing the green biomass and the LAI evolution through time, and the LSM using this information in the computation of the land surface fluxes and updating the soil water content in the root-zone. The coupled VDM-LSM model is successfully tested for the case study, demonstrating high model performance for the wide range of eco-hydrologic conditions. The inclusion of the VDM in the LSM is demonstrated to be essential when studying the climate-soil-vegetation interactions of these water-limited ecosystems. Results demonstrate also that vegetation dynamics are strongly influenced by the inter-annual variability of atmospheric forcing, with grass leaf area index changing significantly each spring season according to seasonal rainfall amount.

  9. Field-measured, hourly soil water evaporation stages in relation to reference evapotranspiration rate and soil to air temperature ratio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water evaporation takes critical water supplies away from crops, especially in areas where both rainfall and irrigation water are limited. This study measured bare soil water evaporation from clay loam, silt loam, sandy loam, and fine sand soils. It found that on average almost half of the ir...

  10. Soil-structure interaction analysis of jack-up platforms subjected to monochrome and irregular waves

    NASA Astrophysics Data System (ADS)

    Korzani, Maziar Gholami; Aghakouchak, Ali Akbar

    2015-03-01

    As jack-up platforms have recently been used in deeper and harsher waters, there has been an increasing demand to understand their behaviour more accurately to develop more sophisticated analysis techniques. One of the areas of significant development has been the modelling of spudcan performance, where the load-displacement behaviour of the foundation is required to be included in any numerical model of the structure. In this study, beam on nonlinear winkler foundation (BNWF) modeling—which is based on using nonlinear springs and dampers instead of a continuum soil media—is employed for this purpose. A regular monochrome design wave and an irregular wave representing a design sea state are applied to the platform as lateral loading. By using the BNWF model and assuming a granular soil under spudcans, properties such as soil nonlinear behaviour near the structure, contact phenomena at the interface of soil and spudcan (such as uplifting and rocking), and geometrical nonlinear behaviour of the structure are studied. Results of this study show that inelastic behaviour of the soil causes an increase in the lateral displacement at the hull elevation and permanent unequal settlement in soil below the spudcans, which are increased by decreasing the friction angle of the sandy soil. In fact, spudcans and the underlying soil cause a relative fixity at the platform support, which changes the dynamic response of the structure compared with the case where the structure is assumed to have a fixed support or pinned support. For simulating this behaviour without explicit modelling of soil-structure interaction (SSI), moment-rotation curves at the end of platform legs, which are dependent on foundation dimensions and soil characteristics, are obtained. These curves can be used in a simplified model of the platform for considering the relative fixity at the soil-foundation interface.

  11. Integrated use of soil physical and water isotope methods for ecohydrological characterization of desertified areas

    NASA Astrophysics Data System (ADS)

    Külls, Christoph; Nunes, Alice; Köbel-Batista, Melanie; Branquinho, Cristina; Bianconi, Nadja; Costantini, Eduardo

    2014-05-01

    Measures for monitoring desertification and soil degradation require a thorough understanding of soil physical properties and of the water balance in order to guide restoration efforts (Costantini et al. 2009). It is hypothesized that long term restoration success on degraded land depends on a series of interacting factors such as exposition, soil type, soil hydrology including lateral flow on hill-slope catenae. Recently, new soil water isotope measurement techniques have been developed (Garvelmann et al. 2012) that provide much faster and reliable stable water isotope profiles in soils. This technique yield information on groundwater recharge, soil water balance and on the origin of water available for plants, which in combination with conservative chemical tracers (chloride) can be validated. A multidisciplinary study including ecologists, soil physicists and hydrologists of the COST Action Desert Restoration Hub was carried out on four semi-arid sites in Portugal. A comparative characterization of soil physical parameters, soil water isotope and chloride profiles was performed in order to estimate pedoclimate, soil aridity, soil water balance and groundwater recharge. In combination with soil physical data a comprehensive and cross-validated characterization of pedoclimate and soil aridity was obtained. These indicators were then integrated and related to plant cover. The long-term rainfall of the four sites ranges from 512 to 638 mm, whereas air temperature is from 15.8 to 17.0°C. The De Martonne index of aridity spans from 19.3 to 24.6, pointing to semiarid to moderately arid climatic conditions. The long-term average number of days when the first 0.50 m of soil is dry ranges from 110 to 134, while the mean annual soil temperature at 0.50 m spans from 15.8 and 19.1°C. The studied profiles show different hydrological characteristics, in particular, the estimated hydraulic conductivity ranges from 0.1-1 to 10-100 µm/s. Three out of four profiles show a marked decrease in water permeability at 0.04, 0.20, or 0.40 m depth. Soil isotope profiles indicated that percolation beneath the root zone and groundwater recharge ranges from 21.7 mm/y to 29.7 mm/y. The recharge rate was positively related to mean annual rainfall and soil organic matter, and interestingly, increased with aridity and desertification. The difference between mean annual rainfall and percolation was positively related to plant cover and in inverse proportion to the aridity index. Our results highlight the importance of combining different methods of site characterization by soil physics, soil water isotopes and soil water chemistry (chloride) with vegetation data, providing a more specific analysis of ecohydrological conditions and their relation to ecosystem functioning and recovery potential. The field protocol applied can provide relevant information for guiding restoration strategies. Costantini, E. A. C., Urbano, F., Aramini, G., Barbetti, R., Bellino, F., Bocci, M., & Tascone, F. (2009). Rationale and methods for compiling an atlas of desertification in Italy. Land Degradation & Development, 20(3), 261-276. Garvelmann, J., Külls, C., & Weiler, M. (2012). A porewater-based stable isotope approach for the investigation of subsurface hydrological processes. Hydrology and Earth System Sciences, 16(2), 631-640.

  12. Soil and water conservation: Productivity and environmental protection. 3. edition

    SciTech Connect

    Troeh, F.R.; Hobbs, J.A.; Donahue, R.L.

    1999-08-01

    This book is a revision of a landmark book offering a broad coverage of the field of soil and water conservation while fully exploring the hazards posed by erosion, sedimentation, and pollution. Scope includes agriculture, engineering, mining, and other uses of land along with the techniques needed to conserve soil while maintaining environmental quality.

  13. Infiltration characteristics of bare soil under sequential water application events

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The marked reduction in infiltration rate caused by formation of a soil surface seal is a well known phenomenon but often ignored in infiltration models. The effect sequential water application events have on infiltration rate and soil surface seal formation has rarely been investigated. The objecti...

  14. Measurement of soil water content with dielectric dispersion frequency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Frequency domain reflectometry (FDR) is an inexpensive and attractive methodology for repeated measurements of soil water content (SWC). Although there are some known measurement limitations for dry soil and sand, a fixed-frequency method is commonly employed using commercially available FDR probes....

  15. The chemistry of salt-affected soils and waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  16. Augmenting soil water storage using uncharred switchgrass and pyrolyzed biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is an amendment that can augment soil water storage; however, its projected cost per ton could be financially limiting at field application scales. It may be more monetarily convenient if an alternate amendment were available that could deliver similar soil enhancements. We compared two swi...

  17. Toward improving global estimates of field soil water capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field capacity or field water capacity (FC) is defined as the water content of a soil after having been wetted with water and after free drainage is negligible. Different recommendations exist world-wide on which, if any, pressure head should be used in laboratory measurements to approximate the FC ...

  18. The estimation of soil water fluxes using lysimeter data

    NASA Astrophysics Data System (ADS)

    Wegehenkel, M.

    2009-04-01

    The validation of soil water balance models regarding soil water fluxes in the field is still a problem. This requires time series of measured model outputs. In our study, a soil water balance model was validated using lysimeter time series of measured model outputs. The soil water balance model used in our study was the Hydrus-1D-model. This model was tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin, Germany. One potential source of error in lysimeter experiments is preferential flow caused by an artificial channeling of water due to the occurrence of air space between the soil monolith and the inside wall of the lysimeters. To analyse such sources of errors, Hydrus-1D was applied with different modelling procedures. The first procedure consists of a general uncalibrated appli-cation of Hydrus-1D. The second one includes a calibration of soil hydraulic parameters via inverse modelling of different percolation events with Hydrus-1D. In the third procedure, the model DUALP_1D was applied with the optimized hydraulic parameter set to test the hy-pothesis of the existence of preferential flow paths in the lysimeters. The results of the different modelling procedures indicated that, in addition to a precise determination of the soil water retention functions, vegetation parameters such as rooting depth should also be taken into account. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.

  19. Corn yield response to nitrogen and soil water content variability along a hillslope

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A better understanding of the interaction of corn response to N fertilizer and soil water availability should improve N fertilizer use efficiency in corn (Zea mays L.) through spatially variable N applications. The objective of this study was to determine whether the within-field spatial variability...

  20. Volatile-mediated interactions between phylogenetically different soil bacteria

    PubMed Central

    Garbeva, Paolina; Hordijk, Cornelis; Gerards, Saskia; de Boer, Wietse

    2014-01-01

    There is increasing evidence that organic volatiles play an important role in interactions between micro-organisms in the porous soil matrix. Here we report that volatile compounds emitted by different soil bacteria can affect the growth, antibiotic production and gene expression of the soil bacterium Pseudomonas fluorescens Pf0–1. We applied a novel cultivation approach that mimics the natural nutritional heterogeneity in soil in which P. fluorescens grown on nutrient-limited agar was exposed to volatiles produced by 4 phylogenetically different bacterial isolates (Collimonas pratensis, Serratia plymuthica, Paenibacillus sp., and Pedobacter sp.) growing in sand containing artificial root exudates. Contrary to our expectation, the produced volatiles stimulated rather than inhibited the growth of P. fluorescens. A genome-wide, microarray-based analysis revealed that volatiles of all four bacterial strains affected gene expression of P. fluorescens, but with a different pattern of gene expression for each strain. Based on the annotation of the differently expressed genes, bacterial volatiles appear to induce a chemotactic motility response in P. fluorescens, but also an oxidative stress response. A more detailed study revealed that volatiles produced by C. pratensis triggered, antimicrobial secondary metabolite production in P. fluorescens. Our results indicate that bacterial volatiles can have an important role in communication, trophic - and antagonistic interactions within the soil bacterial community. PMID:24966854

  1. Prion protein interaction with soil humic substances: environmental implications.

    PubMed

    Giachin, Gabriele; Narkiewicz, Joanna; Scaini, Denis; Ngoc, Ai Tran; Margon, Alja; Sequi, Paolo; Leita, Liviana; Legname, Giuseppe

    2014-01-01

    Transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative disorders caused by prions. Animal TSE include scrapie in sheep and goats, and chronic wasting disease (CWD) in cervids. Effective management of scrapie in many parts of the world, and of CWD in North American deer population is complicated by the persistence of prions in the environment. After shedding from diseased animals, prions persist in soil, withstanding biotic and abiotic degradation. As soil is a complex, multi-component system of both mineral and organic components, it is important to understand which soil compounds may interact with prions and thus contribute to disease transmission. Several studies have investigated the role of different soil minerals in prion adsorption and infectivity; we focused our attention on the interaction of soil organic components, the humic substances (HS), with recombinant prion protein (recPrP) material. We evaluated the kinetics of recPrP adsorption, providing a structural and biochemical characterization of chemical adducts using different experimental approaches. Here we show that HS act as potent anti-prion agents in prion infected neuronal cells and in the amyloid seeding assays: HS adsorb both recPrP and prions, thus sequestering them from the prion replication process. We interpreted our findings as highly relevant from an environmental point of view, as the adsorption of prions in HS may affect their availability and consequently hinder the environmental transmission of prion diseases in ruminants. PMID:24937266

  2. Survey of Microbial Enzymes in Soil, Water, and Plant Microenvironments

    PubMed Central

    Alves, Priscila Divina Diniz; Siqueira, Flávia de Faria; Facchin, Susanne; Horta, Carolina Campolina Rebello; Victória, Júnia Maria Netto; Kalapothakis, Evanguedes

    2014-01-01

    Detection of microbial enzymes in natural environments is important to understand biochemical activities and to verify the biotechnological potential of the microorganisms. In the present report, 346 isolates from soil, water, and plants were screened for enzyme production (caseinase, gelatinase, amylase, carboxymethyl cellulase, and esterase). Our results showed that 89.6% of isolates produced at least one tested enzyme. A predominance of amylase in soil samples, carboxymethyl cellulase in plants, as well as esterase and gelatinase in water was observed. Interesting enzymatic profiles were found in some microenvironments, suggesting specificity of available nutrients and/or natural selection. This study revealed the potential of microorganisms present in water, soil, and plant to produce important enzymes for biotechnological exploration. A predominance of certain enzymes was found, depending on the type of environmental sample. The distribution of microbial enzymes in soil, water and plants has been little exploited in previous reports. PMID:24847390

  3. Human interactions with ground-water

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily modifies the natural conditions and the total natural system must be successfully blended with the unnatural stresses placed upon it. This can be accomplished by introducing new methods (such as ground-water zoning) in and by developing alternative strategies for ground-water management and protection. ?? 1983 D. Reidel Publishing Company.

  4. Effect of gypsum content on soil water retention

    NASA Astrophysics Data System (ADS)

    Moret-Fernández, D.; Herrero, J.

    2015-09-01

    Many gypsiferous soils occur in arid lands, where the water retention capacity of the soil is vital to plant life and crop production. This study investigated the effect of gypsum content on the gravimetric soil water retention curve (WRC). We analyzed calcium carbonate equivalent (CCE), equivalent gypsum content (EG), soil organic carbon content (SOC), and electrical conductivity of 43 samples collected from various horizons in soils in the Ebro Valley, NE Spain. The WRC of the fine earth was determined using the pressure-plate method (pressure heads = 0, -33, -100, -200, -500, and -1500 kPa), and the gravimetric water retention curves were fitted to the unimodal van Genuchten function. Soil gypsum content had a significant effect on water retention. Soils that had high gypsum content made WRC with higher water retention at near saturation conditions, and steeper WRC slopes. The EG threshold at which gypsum content had an effect on WRC was about 40%, and EG was positively and negatively correlated with the α and n parameters of the WRC, respectively.

  5. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions

    NASA Astrophysics Data System (ADS)

    Collison, E. J.; Riutta, T.; Slade, E. M.

    2013-02-01

    Changing climatic conditions and habitat fragmentation are predicted to alter the soil moisture conditions of temperate forests. It is not well understood how the soil macrofauna community will respond to changes in soil moisture, and how changes to species diversity and community composition may affect ecosystem functions, such as litter decomposition and soil fluxes. Moreover, few studies have considered the interactions between the abiotic and biotic factors that regulate soil processes. Here we attempt to disentangle the interactive effects of two of the main factors that regulate soil processes at small scales - moisture and macrofauna assemblage composition. The response of assemblages of three common temperate soil invertebrates (Glomeris marginata Villers, Porcellio scaber Latreille and Philoscia muscorum Scopoli) to two contrasting soil moisture levels was examined in a series of laboratory mesocosm experiments. The contribution of the invertebrates to the leaf litter mass loss of two common temperate tree species of contrasting litter quality (easily decomposing Fraxinus excelsior L. and recalcitrant Quercus robur L.) and to soil CO2 fluxes were measured. Both moisture conditions and litter type influenced the functioning of the invertebrate assemblages, which was greater in high moisture conditions compared with low moisture conditions and on good quality vs. recalcitrant litter. In high moisture conditions, all macrofauna assemblages functioned at equal rates, whereas in low moisture conditions there were pronounced differences in litter mass loss among the assemblages. This indicates that species identity and assemblage composition are more important when moisture is limited. We suggest that complementarity between macrofauna species may mitigate the reduced functioning of some species, highlighting the importance of maintaining macrofauna species richness.

  6. Estimating water and nitrate leaching in tree crops using inverse modelled plant and soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Couvreur, Valentin; Kandelous, Maziar; Mairesse, Harmony; Baram, Shahar; Moradi, Ahmad; Pope, Katrin; Hopmans, Jan

    2015-04-01

    Groundwater quality is specifically vulnerable in irrigated agricultural lands in California and many other (semi-)arid regions of the world. The routine application of nitrogen fertilizers with irrigation water in California is likely responsible for the high nitrate concentrations in groundwater, underlying much of its main agricultural areas. To optimize irrigation/fertigation practices, it is essential that irrigation and fertilizers are applied at the optimal concentration, place, and time to ensure maximum root uptake and minimize leaching losses to the groundwater. The applied irrigation water and dissolved fertilizer, root nitrate and water uptake interact with soil and root properties in a complex manner that cannot easily be resolved. It is therefore that coupled experimental-modelling studies are required to allow for unravelling of the relevant complexities that result from typical variations of crop properties, soil texture and layering across farmer-managed fields. A combined field monitoring and modelling approach was developed to quantify from simple measurements the leaching of water and nitrate below the root zone. The monitored state variables are soil water content within the root zone, soil matric potential below the root zone, and nitrate concentration in the soil solution. Plant and soil properties of incremented complexity are optimized with the software HYDRUS in an inverse modelling scheme, which allows estimating leaching under constraint of hydraulic principles. Questions of optimal irrigation and fertilization timing can then be addressed using predictive results and global optimization algorithms.

  7. Soil water samplers in ion balance studies on acidic forest soils

    SciTech Connect

    Rasmussen, L.; Joergensen, P.; Kruse, S.

    1986-04-01

    During the last years an increasing consciousness has appeared of the injurious effects of acid rain on the forest ecosystems both in Europe and North America. At several localities ion balance studies have been implemented in order to evaluate the impact of the atmospheric deposition of acidic substances and heavy metals on the forest ecosystem. In many localities the leaching of material to the ground water or output from the ecosystem has to be determined by means of tensiometer measurements and soil water sampling. Many different soil water samplers are available on the market and they show useful applicability under the given circumstances. But in many cases soil water samples taken with different equipment give incommensurable results leading to differing explanations of the effects of acid precipitation on elements and their cycling in the ecosystem. The purpose of the present study is twofold. Firstly, the sorption characteristics of different types of soil water samplers are examined under acidic soil conditions both by installation in the field and by laboratory experiments. Secondly, a new method is introduced for current and constant soil water sampling under varying soil suctions in the unsaturated zone.

  8. Soil Management Plan For The Potable Water System Upgrades Project

    SciTech Connect

    Field, S. M.

    2007-04-01

    This plan describes and applies to the handling and management of soils excavated in support of the Y-12 Potable Water Systems Upgrades (PWSU) Project. The plan is specific to the PWSU Project and is intended as a working document that provides guidance consistent with the 'Soil Management Plan for the Oak Ridge Y-12 National Security Complex' (Y/SUB/92-28B99923C-Y05) and the 'Record of Decision for Phase II Interim Remedial Actions for Contaminated Soils and Scrapyard in Upper East Fork Popular Creek, Oak Ridge, Tennessee' (DOE/OR/01-2229&D2). The purpose of this plan is to prevent and/or limit the spread of contamination when moving soil within the Y-12 complex. The major feature of the soil management plan is the decision tree. The intent of the decision tree is to provide step-by-step guidance for the handling and management of soil from excavation of soil through final disposition. The decision tree provides a framework of decisions and actions to facilitate Y-12 or subcontractor decisions on the reuse of excavated soil on site and whether excavated soil can be reused on site or managed as waste. Soil characterization results from soil sampling in support of the project are also presented.

  9. Soil Surface Structure: A key factor for the degree of soil water repellency

    NASA Astrophysics Data System (ADS)

    Ahn, S.; Doerr, S. H.; Douglas, P.; Bryant, R.; Hamlett, C.; McHale, G.; Newton, M.; Shirtcliffe, N.

    2012-04-01

    Despite of considerable efforts, the degree of water repellency has not always been fully explained by chemical property of soil (termed hydrophobicity). That might be because the structure of a soil surface was not considered properly, which is another main factor determining the severity of soil water repellency. Surface structure has only recently been considered in soil science, whilst it has been paid attention for several decades in materials science due to its relevance to industrial applications. In this contribution, comparison of critical contact angles measured on different surface structures (made with glass beads, glass shards and beach sands) is presented and the effect of surface structure on manifestation of soil water repellency is discussed in terms of several different variables such as the individual particles shape, and areal and structural factors of the actual surface.

  10. Soil water repellency characteristic curves for soil profiles with natural organic carbon gradients

    NASA Astrophysics Data System (ADS)

    Kawamoto, Ken; Müller, Karin; Moldrup, Per; de Jonge, Lis; Clothier, Brent; Hiradate, Syuntaro; Komatsu, Toshiko

    2014-05-01

    Soil water repellency (SWR) is a phenomenon that influences many soil hydrologic processes such as reduction of infiltration, increase in overland flow, and enhanced preferential flow. SWR has been observed in various soil types and textures, and the degree of SWR is greatly controlled by soil moisture content and levels of organic matter and clay. One of the key topics in SWR research is how to describe accurately the seasonal and temporal variation of SWR with the controlling factors such as soil moisture, organic matter, and clay contents for soil profiles with natural organic carbon gradients. In the present study, we summarize measured SWR data for soil profiles under different land uses and vegetation in Japan and New Zealand, and compared these with literature data. We introduce the contact angle-based evaluation of SWR and predictive models for soil water repellency characteristic curves, in which the contact angle is a function of the moisture content. We also discuss a number of novel concepts, including i) the reduction in the contact angle with soil-water contact time to describe the time dependence of SWR, ii) the relationship between the contact angles from the measured scanning curves under controlled wetting and drying cycles, and iii) the initial contact angles measured by the sessile drop method.

  11. Difficulties in the evaluation and measuring of soil water infiltration

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2013-04-01

    Soil water infiltration is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the evaluation and measurement of water infiltration rates has become indispensable for the evaluation and modeling of the previously mentioned processes. Infiltration is one of the most difficult hydrological parameters to evaluate or measure accurately. Although the theoretical aspects of the process of soil water infiltration are well known since the middle of the past century, when several methods and models were already proposed for the evaluation of infiltration, still nowadays such evaluation is not frequently enough accurate for the purposes being used. This is partially due to deficiencies in the methodology being used for measuring infiltration, including some newly proposed methods and equipments, and in the use of non appropriate empirical models and approaches. In this contribution we present an analysis and discussion about the main difficulties found in the evaluation and measurement of soil water infiltration rates, and the more commonly committed errors, based on the past experiences of the author in the evaluation of soil water infiltration in many different soils and land conditions, and in their use for deducing soil water balances under variable and changing climates. It is concluded that there are not models or methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the soil before and during the measurement. Direct "in situ" field evaluations have to be preferred in any case to indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, or through the use of stochastic models such as the SCS Curve Number Method, or of other models using empirical or physical approaches, which have demonstrated to be of limited value in most of the cases. References Philip, J. R., 1954., An infiltration equation with physical significance: Soil Sci..,v. 77, p. 153-157. Philip, J. R., 1958. The theory of infiltration, pt. 7: Soil Sci., v. 85, no. 6, p. 333-337. Pla, I.1981. Simuladores de lluvia para el estudio de relaciones suelo-agua bajo agricultura de secano en los trópicos. Rev. Fac. Agron. XII(1-2):81-93.Maracay (Venezuela) Pla, I. 1986. A routine laboratory index to predict the effects of soil sealing on soil and water conservation. En "Assesment of Soil Surface Sealing and Crusting". 154-162.State Univ. of Ghent.Gante (Bélgica Pla, I., 1997. A soil water balance model for monitoring soil erosion processes and effects on steep lands in the tropics. Soil Technology. 11(1):17-30. Elsevier Pla, I., M.C. Ramos, S. Nacci, F. Fonseca y X. Abreu. 2005. Soil moisture regime in dryland vineyards of Catalunya (Spain) as influenced by climate, soil and land management. "Integrated Soil and Water Management for Orchard Development". FAO Land and Water Bulletin 10. 41-49. Roma (Italia). Pla, I., 2006. Hydrological approach for assessing desertification processes in the Mediterranean region. In W.G. Kepner et al. (Editors), Desertification in the Mediterranean Region. A Security Issue. 579-600 Springer. Heidelberg (Germany) Pla, I. 2011. Evaluación y Modelización Hidrológica para el Diagnóstico y Prevención de "Desastres Naturales". Gestión y Ambiente 14 (3): 17-22. UN-Medellín (Colombia). ISSN 0124.177X Pla, I. 2011. Medición y evaluación de propiedades físicas de los suelos: dificultades y errores más frecuentes. II-Propiedades hidrológicas. Suelos Ecuatoriales 40 (2): 94-127 Reynolds W.D., B.T. Bowman, R.R. Brunke, C.F. Drury and C.S. Tan. 2000. Comparison of Tension Infiltrometer, Pressure Infiltrometer, and Soil Core Estimates of Saturated Hydraulic Conductivity . Soil Science Society of America Journal 64:478-484 Richards, L. A., 1952. Report of the Subcommittee on Permeability and Infiltration, Committee on Terminology, Soil Science Society of America: Soil Sci. Soc.America Proc., v. 16, p. 85-88. Segal, E., S.A.Bradford, P. Shouse; N. Lazarovich, and D. Corwin. 2008. Integration of Hard and Soft Data to Characterize Field-Scale Hydraulic Properties for Flow and Transport Studies. Vadose Zone J 7:878-889 Young, E. 1991. Infiltration measurements, a review. Hydrological processes 5: 309-320

  12. Pore-water chemistry explains zinc phytotoxicity in soil.

    PubMed

    Kader, Mohammed; Lamb, Dane T; Correll, Ray; Megharaj, Mallavarapu; Naidu, Ravi

    2015-12-01

    Zinc (Zn) is a widespread soil contaminant arising from a numerous anthropogenic sources. However, adequately predicting toxicity of Zn to ecological receptors remains difficult due to the complexity of soil characteristics. In this study, we examined solid-solution partitioning using pore-water data and toxicity of Zn to cucumber (Cucumis sativus L.) in spiked soils. Pore-water effective concentration (ECx, x=10%, 20% and 50% reduction) values were negatively related to pH, indicating lower Zn pore water concentration were needed to cause phytotoxicity at high pH soils. Total dissolved zinc (Znpw) and free zinc (Zn(2+)) in soil-pore water successfully described 78% and 80.3% of the variation in relative growth (%) in the full dataset. When the complete data set was used (10 soils), the estimated EC50pw was 450 and 79.2 µM for Znpw and Zn(2+), respectively. Total added Zn, soil pore water pH (pHpw) and dissolve organic carbon (DOC) were the best predictors of Znpw and Zn(2+) in pore-water. The EC10 (total loading) values ranged from 179 to 5214 mg/kg, depending on soil type. Only pH measurements in soil were related to ECx total Zn data. The strongest relationship to ECx overall was pHca, although pHw and pHpw were in general related to Zn ECx. Similarly, when a solution-only model was used to predict Zn in shoot, DOC was negatively related to Zn in shoot, indicating a reduction in uptake/ translocation of Zn from solution with increasing DOC. PMID:26283289

  13. Microbial interaction networks in soil and in silico

    NASA Astrophysics Data System (ADS)

    Vetsigian, Kalin

    2012-02-01

    Soil harbors a huge number of microbial species interacting through secretion of antibiotics and other chemicals. What patterns of species interactions allow for this astonishing biodiversity to be sustained, and how do these interactions evolve? I used a combined experimental-theoretical approach to tackle these questions. Focusing on bacteria from the genus Steptomyces, known for their diverse secondary metabolism, I isolated 64 natural strains from several individual grains of soil and systematically measured all pairwise interactions among them. Quantitative measurements on such scale were enabled by a novel experimental platform based on robotic handling, a custom scanner array and automatic image analysis. This unique platform allowed the simultaneous capturing of ˜15,000 time-lapse movies of growing colonies of each isolate on media conditioned by each of the other isolates. The data revealed a rich network of strong negative (inhibitory) and positive (stimulating) interactions. Analysis of this network and the phylogeny of the isolates, together with mathematical modeling of microbial communities, revealed that: 1) The network of interactions has three special properties: ``balance'', ``bi- modality'' and ``reciprocity''; 2) The interaction network is fast evolving; 3) Mathematical modeling explains how rapid evolution can give rise to the three special properties through an interplay between ecology and evolution. These properties are not a result of stable co-existence, but rather of continuous evolutionary turnover of strains with different production and resistance capabilities.

  14. Soil permittivity response to bulk electrical conductivity for selected soil water sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bulk electrical conductivity can dominate the low frequency dielectric loss spectrum in soils, masking changes in the real permittivity and causing errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on bulk electrical conductivity in contrasting soil...

  15. Measurement and modeling of soil-water dynamics and evapotranspiration of drained peatland soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural peat soils serve as important sinks for nutrients, organic components, and water. Peat soils can pose major environmental problems when they are drained for agricultural production, which may change their role in the landscape from a sink to a source. To successfully restore and conserve pea...

  16. Effect of soil water repellency on soil hydraulic properties estimated under dynamic conditions

    NASA Astrophysics Data System (ADS)

    Diamantopoulos, E.; Durner, W.; Reszkowska, A.; Bachmann, J.

    2013-04-01

    SummarySoil research done over the past decades has proven that water repellent soils are widespread in all climates. Water repellency enhances the leaching of contaminants in the unsaturated zone by introducing preferential flow. In order to predict soil water fluxes in the unsaturated zone the accurate knowledge of the soil hydraulic properties (SHP) is mandatory. In this study the effect of water repellency on both imbibition and drainage SHP was studied. Inflow/outflow experiments were conducted in the laboratory for two soils and two artificially created hydrophobic mixtures. In the inflow/outflow experiments the pressure head at the bottom of the soil column was increased/decreased and the estimated SHP functions were obtained by means of inverse modeling. Inflow/outflow experiments were also conducted using ethanol instead of water in order to estimate the effect of liquid wetting properties on the estimated characteristic curves of the materials under study. The results showed that the water retention functions and the unsaturated hydraulic conductivity functions estimated from the dynamic experiments are strongly dependent on the degree of water repellency and the wetting/drying process.

  17. A multimedia and interactive approach to teach soil science

    NASA Astrophysics Data System (ADS)

    Badía-Villas, D.; Martí-Dalmau, C.; Iñiguez-Remón, E.

    2012-04-01

    Soil Science is a discipline concerned with a material that has unique features and behaviours (Churchman, 2010). Thus, teachers of Soil Science need to be experienced with Soil Science practices and must appreciate the complexities and relationships inherent within the discipline (Field et al, 2011). But when soil science had to be taught not by specialists, for instance in the introductory courses of earth and environmental sciences Degrees or in Secondary School, adequate material cannot be found. For this reason, multimedia and interactive programmes have been developed and showed here. EDAFOS is an e-learning resource that provides a comprehensive review of the fundamental concepts on soil science and reveals it as the living skin of planet Earth (European Commission, 2006). This programme is available via website (www.cienciadelsuelo.es) both in Spanish and, more recently, also in English. Edafos is a programme with different modules, which after outlining the study of soil components goes on to examine the main factors and processes of soil genesis explaining the mechanisms of soil processes. By the use of animations, the vital functions of soil are explained. The program ends with a section of multiple-choice exercises with self-assessment. To complement this program, virtual visits to the field are showed in the program iARASOL (www.suelosdearagon.es), in a time when field trips are gradually diminishing due to insufficiency in time and budget, as well as safety concerns (Çaliskan, 2011). In this case, the objective of iARASOL is to set out that soil vary from place to place not randomly, but in a systematic way, according to landscape units; therefore, graduates can classify the soils using the WRB system (IUSS, 2007). It presents diverse types of data and images instantly, from a variety of viewpoints, at many different scales and display non-visual information in the field. Both programs provide an additional source of information to supplement lectures, real field visits and other learning activities on soil sciences. The development of these programmes has been sponsored by the Spanish Ministry of Science and Innovation (Fundación Española para la Ciencia y la Tecnología, FECYT) and it has won the "Félix de Azara" Award (2011). Çaliskan, O. (2011). Virtual field trips in education of earth and environmental sciences. Procedia Social and Behavioral Sciences, 15: 3229-3243. Churchman, G. J. (2010). The philosophical status of soil science. Geoderma 157, 214-221. European Commission (2006). Thematic strategy for soil protection. COM (2006) 231. Field D.J., A. J. Koppi, L. E. Jarrett, L. K. Abbott, S. R. Cattle, C. D. Grant, A. B. McBratney, N. W. Menzies, A. J. Weatherley (2011). Soil Science teaching principles. Geoderma, 167-168: 9-14. IUSS Working Group WRB (2007). World Reference Base for Soil Resources 2006, fist update 2007. World Soil Resources Reports n° 103. FAO. Rome.

  18. Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water

    USGS Publications Warehouse

    Kinney, C.A.; Furlong, E.T.; Werner, S.L.; Cahill, J.D.

    2006-01-01

    Three sites in the Front Range of Colorado, USA, were monitored from May through September 2003 to assess the presence and distribution of pharmaceuticals in soil irrigated with reclaimed water derived from urban wastewater. Soil cores were collected monthly, and 19 pharmaceuticals, all of which were detected during the present study, were measured in 5-cm increments of the 30-cm cores. Samples of reclaimed water were analyzed three times during the study to assess the input of pharmaceuticals. Samples collected before the onset of irrigation in 2003 contained numerous pharmaceuticals, likely resulting from the previous year's irrigation. Several of the selected pharmaceuticals increased in total soil concentration at one or more of the sites. The four most commonly detected pharmaceuticals were erythromycin, carbamazepine, fluoxetine, and diphenhydramine. Typical concentrations of the individual pharmaceuticals observed were low (0.02-15 ??g/kg dry soil). The existence of subsurface maximum concentrations and detectable concentrations at the lowest sampled soil depth might indicate interactions of soil components with pharmaceuticals during leaching through the vadose zone. Nevertheless, the present study demonstrates that reclaimed-water irrigation results in soil pharmaceutical concentrations that vary through the irrigation season and that some compounds persist for months after irrigation. ?? 2006 SETAC.

  19. Fates and transport of PPCPs in soil receiving reclaimed water irrigation.

    PubMed

    Chen, Weiping; Xu, Jian; Lu, Sidan; Jiao, Wentao; Wu, Laosheng; Chang, Andrew C

    2013-11-01

    Fates and transport of 9 commonly found PPCPs of the reclaimed water were simulated based on the HYDRUS-1D software that was validated with data generated from field experiments. Under the default scenario in which the model parameters and input data represented the typical conditions of turf grass irrigation in southern California, the adsorption, degradation, and volatilization of clofibric acid, ibuprofen, 4-tert-octylphenol, 4-n-nonylphenol, naproxen, triclosan, diclofenac sodium, bisphenol A and estrone in the receiving soils were tracked for 10 years. At the end, their accumulations in the 90 cm soil profile varied from less than 1 ng g(-1) to about 140 ng g(-1) and their concentrations in the drainage water in the 90 cm soil depth varied from nil to μg L(-1) levels. The adsorption and microbial degradation processes interacted to contain the PPCPs entirely within surface 40 cm of the soil profiles. Leaching and volatilization were not significant processes governing the PPCPs in the soils. The extent of accumulations in the soils did not appear to produce undue ecological risks to the soil biota. PPCPs did not represent any potential environmental harm in reclaimed water irrigation. PMID:24148973

  20. Water table fluctuations and soil biogeochemistry: An experimental approach using an automated soil column system

    NASA Astrophysics Data System (ADS)

    Rezanezhad, F.; Couture, R.-M.; Kovac, R.; O'Connell, D.; Van Cappellen, P.

    2014-02-01

    Water table fluctuations significantly affect the biological and geochemical functioning of soils. Here, we introduce an automated soil column system in which the water table regime is imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The potential of this new system is illustrated by comparing results from two columns filled with 45 cm of the same homogenized riparian soil. In one soil column the water table remained constant at -20 cm below the soil surface, while in the other the water table oscillated between the soil surface and the bottom of the column, at a rate of 4.8 cm d-1. The experiment ran for 75 days at room temperature (25 ± 2 °C). Micro-sensors installed at -10 and -30 cm below the soil surface in the stable water table column recorded constant redox potentials on the order of 600 and -200 mV, respectively. In the fluctuating water table column, redox potentials at the same depths oscillated between oxidizing (∼700 mV) and reducing (∼-100 mV) conditions. Pore waters collected periodically and solid-phase analyses on core material obtained at the end of the experiment highlighted striking geochemical differences between the two columns, especially in the time series and depth distributions of Fe, Mn, K, P and S. Soil CO2 emissions derived from headspace gas analysis exhibited periodic variations in the fluctuating water table column, with peak values during water table drawdown. Transient redox conditions caused by the water table fluctuations enhanced microbial oxidation of soil organic matter, resulting in a pronounced depletion of particulate organic carbon in the midsection of the fluctuating water table column. Denaturing Gradient Gel Electrophoresis (DGGE) revealed the onset of differentiation of the bacterial communities in the upper (oxidizing) and lower (reducing) soil sections, although no systematic differences in microbial community structure between the stable and fluctuating water table columns were detected.

  1. An index for plant water deficit based on root-weighted soil water content

    NASA Astrophysics Data System (ADS)

    Shi, Jianchu; Li, Sen; Zuo, Qiang; Ben-Gal, Alon

    2015-03-01

    Governed by atmospheric demand, soil water conditions and plant characteristics, plant water status is dynamic, complex, and fundamental to efficient agricultural water management. To explore a centralized signal for the evaluation of plant water status based on soil water status, two greenhouse experiments investigating the effect of the relative distribution between soil water and roots on wheat and rice were conducted. Due to the significant offset between the distributions of soil water and roots, wheat receiving subsurface irrigation suffered more from drought than wheat under surface irrigation, even when the arithmetic averaged soil water content (SWC) in the root zone was higher. A significant relationship was found between the plant water deficit index (PWDI) and the root-weighted (rather than the arithmetic) average SWC over root zone. The traditional soil-based approach for the estimation of PWDI was improved by replacing the arithmetic averaged SWC with the root-weighted SWC to take the effect of the relative distribution between soil water and roots into consideration. These results should be beneficial for scheduling irrigation, as well as for evaluating plant water consumption and root density profile.

  2. Vertical variations of soil hydraulic properties within two soil profiles and its relevance for soil water simulations

    NASA Astrophysics Data System (ADS)

    Schwen, Andreas; Zimmermann, Michael; Bodner, Gernot

    2014-08-01

    Numerical simulations of soil water dynamics can be valuable tools for the assessment of different soil and land management practices. For accurate simulations, the soil hydraulic properties (SHP), i.e. the hydraulic conductivity and water retention function have to be properly known. They can be either estimated from physical soil properties by pedotransfer functions (PTF) or measured. In most studies, soil profiles are analyzed and sampled with respect to their pedogenic horizons. While considerable effort has been put on horizontal spatial SHP variations, vertical changes within soil profiles have not been analyzed in detail. Therefore, the objectives of this study were (i) the SHP measurement along vertical transects within two soil profiles, (ii) to evaluate their spatial variation and correlation with physical soil properties, and (iii) to assess the impact of the SHP determination method and its spatial discretization on simulated soil water balance components. Two soils, an agriculturally used silty-loam Chernozem and a forested sandy Cambisol were sampled in 0.05 m increments along vertical transects. The parameters of a dual porosity model were derived using the evaporation method and scaling was applied to derive representative mean SHP parameters and scaling factors as a measure of spatial variability. State-space models described spatial variations of the scaling factors by physical soil properties. Simulations with HYDRUS 1D delivered the soil water balance for different climatic conditions with the SHP being estimated from horizon-wise PTFs, or discretized either sample-wise, according to the pedogenic horizons, or as hydrologically relevant units (hydropedological approach). Considerable SHP variations were found for both soil profiles. In the Chernozem, variations of the hydraulic conductivity were largest within the ploughed Ap-horizon and could be attributed to variations in soil structure (macropores). In the subsoil, soil water retention showed a gradual decrease within each horizon. The observed water retention variations could be described by state-space models that comprised the contents of clay and total carbon, whereas variations of the hydraulic conductivity were described by clay content and total porosity. The hydraulic conductivity in the Cambisol was slightly undulating throughout the profile. Here, water retention was largest in the upper part of the profile and considerably decreased within the lower part of the Bhs-horizon. Simulated soil water balance components differed distinctly between the SHP discretizations. Compared to observed soil water contents, the simulations where the SHP were given by small-scale layers or hydropedological units performed best for both experimental sites. The different SHP discretizations mainly affected the estimated drainage losses and the simulated crop transpiration under medium to dry climatic conditions. The study confirmed the importance of an adequate spatial SHP discretization. The results indicate that SHP estimations by PTFs or the standard horizon-mean sampling strategy might fail to parameterize soil water simulations, especially in structured soils. The presented hydropedological approach showed a way to receive good simulation results by reducing the SHP observation density.

  3. Priming and substrate quality interactions in soil organic matter models

    NASA Astrophysics Data System (ADS)

    Wutzler, T.; Reichstein, M.

    2013-03-01

    Interactions between different qualities of soil organic matter (SOM) affecting their turnover are rarely represented in models. In this study, we propose three mathematical strategies at different levels of abstraction to represent those interactions. By implementing these strategies into the Introductory Carbon Balance Model (ICBM) and applying them to several scenarios of litter input, we show that the different levels of abstraction are applicable at different timescales. We present a simple one-parameter equation of substrate limitation that can straightforwardly be implemented into other models of SOM dynamics at decadal timescale. The study demonstrates how substrate quality interactions can explain patterns of priming effects, accelerate turnover in FACE experiments, and the slowdown of decomposition in long-term bare fallow experiments as an effect of energy limitation of microbial biomass. The mechanisms of those interactions need to be further scrutinized empirically for a more complete understanding. Overall, substrate quality interactions contribute to both understanding and quantitatively modelling SOM dynamics.

  4. Molecular Indicators of Soil Humification and Interaction with Heavy Metals

    SciTech Connect

    Fan, Teresa W.-M.; Higashi, Richard M.; Cassel, Teresa; Green, Peter; Lane, Andrew N.

    2003-03-26

    For stabilization of heavy metals at contaminated sites, interaction of soil organic matter (SOM) with heavy metal ions is critically important for long-term sustainability, a factor that is poorly understood at the molecular level. Using 13C- and 15N-labeled soil humates (HS), we investigated the turnover of five organic amendments (celluose, wheat straw, pine shavings, chitin and bone meal) in relation to heavy metal ion leaching in soil column experiments. The labeled molecular substructures in HS were examined by multinuclear 2-D NMR and pyrolysis GC-MS while the element profile in the leachates was analyzed by ICP-MS. Preliminary analysis revealed that peptidic and polysaccharidic structures were highly enriched, which suggests their microbial origin. Cd(II) leaching was significantly attenuated with humification of lignocellulosic materials. Correlation of 13C and 15N turnovers of HS substructures to metal leaching is underway.

  5. Measuring surface water in soil with light reflectance

    NASA Astrophysics Data System (ADS)

    Whiting, Michael L.

    2009-08-01

    The light absorbed by water in soil and plants is readily determined using hyperspectral full-range imagery and field spectrometers. The full absorption of light can be accounted for by fitting the shape of water absorptions at the same time as other diagnostic bands using multiple Gaussian functions. This research is particularly important in soils due to the loss of mineral band depth with the spread of the fundamental water just beyond the SWIR. The relationship of the albedo lost to band depth, for the same mineral media, is nonlinear. By including water and mineral absorptions in the same fitting, the accuracy of the mineral abundance estimates are shown substantially improved. In addition, measurements of absorption change within the soil surface are so sensitive to water content that these bands as indexes and absorption fitting are excellent predictors of the amount of organic matter. Spectral model is shown for determining water content based water indexes and the fitted SWIR band as a good predictors of soil biological crust, such as lichen and cyanobacteria, in hyperarid soils of the Mojave Desert.

  6. Soil Water Retention Curves and Their Impact on Evaporation

    NASA Astrophysics Data System (ADS)

    Ciocca, F.; Lunati, I.; Parlange, M. B.

    2013-12-01

    An accurate description of soil moisture dynamics in both the liquid and vapor phases is crucial to properly estimate soil evaporation. Soil moisture dynamics are largely dependent on the soil water retention. In the most commonly used models the water retention curve diverges at residual water content, the value below which liquid connectivity is lost and liquid flow stops. Not only this is physically unrealistic but results in incorrect evaporation modeling near dry conditions since the water vapor role is limited. We consider two of the main parametrizations that allow vapor flux below residual water content (modified models): one consists in a re-fit of the standard retention curve with zero residual water content, the other, supported by some laboratory measurements, considers a linear extension (on a semi-log plot) of the standard retention curve in the dry region. For a medium-textured sand and a loam we numerically investigate the effects of both the modified and the standard Van Genuchten models on the liquid and vapor transport during the simulated drying process, with and without surface radiative forcing. In the isothermal case, we show how all the models almost identically describe the capillary-dominated evaporative regime whereas when vapor diffusion is the dominant evaporative mechanism the modified models yield larger and longer sustained vapor fluxes, significantly increasing soil water removal. In the presence of diurnal radiative forcing at the soil surface, we focus on the effects of temperature fluctuations on soil water retention. The impact on liquid and vapor fluxes is analyzed in order to assess whether temperature-dependent and dry-extended retention curves may 'fill the gap' or not between theory and some still debated field experimental evidences (e.g. the midday moisture content rise) without the need of introducing any questionable and ad-hoc empirical terms such as vapor enhancement and/or liquid gain factors.

  7. Water and heat transport in boreal soils: implications for soil response to climate change.

    PubMed

    Fan, Zhaosheng; Neff, Jason C; Harden, Jennifer W; Zhang, Tingjun; Veldhuis, Hugo; Czimczik, Claudia I; Winston, Gregory C; O'Donnell, Jonathan A

    2011-04-15

    Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4°C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30 years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate. PMID:21356544

  8. Water and heat transport in boreal soils: Implications for soil response to climate change

    USGS Publications Warehouse

    Fan, Z.; Neff, J.C.; Harden, J.W.; Zhang, T.; Veldhuis, H.; Czimczik, C.I.; Winston, G.C.; O'Donnell, J. A.

    2011-01-01

    Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4??C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30. years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate. ?? 2011 Elsevier B.V.

  9. Modelling daily soil respiration in lowland oak forest during and after soil water saturation events

    NASA Astrophysics Data System (ADS)

    Marjanovic, Hrvoje; Zorana Ostrogovic, Masa; Alberti, Giorgio; Peressotti, Alessandro

    2013-04-01

    Lowland forests of pedunculate oak (Quercus robur L.) in Croatia are acclimated to high soil water content and flooding during the cold part of the year (November - March). Changes in weather pattern and increasing frequency of extreme events, like high precipitation episodes or flooding events out of dormancy period, are becoming more likely. However, the response of these forest ecosystems to flooding during vegetation period is not well investigated. It is well known that soil respiration (SR) depends on soil water content. Nevertheless, some of the most popular daily time-step SR models, like the one of Reichstein et al (2003), do not take into account the effects of soil water saturation which leads to hypoxia in soil and decline of SR. Therefore, we propose a modification of the SR model of Reichstein et. al (2003) that takes into account the effects of high soil water content on SR. In a 37 years old forest of pedunculate oak, located in Jastrebarsko forest (N45.619, E15.688), we measured soil CO2 efflux, every four hours during years 2009 and 2010, using a closed dynamic system with 2-4 chambers. Measured effluxes were averaged to obtain a daily average CO2 efflux. Measurements have shown that high soil water content (i.e. greater that field capacity) strongly decreases soil CO2 efflux, while subsequent soil draining produces bursts in efflux, particularly in spring. Assuming that the measured CO2 efflux corresponds to the total SR, we parameterized the original Reichstein et al (2003) daily time-step SR model and models based on the original but with different modifications (added seasonality in LAI term, modification in soil water status term, addition of new pulse term due to soil draining) and their combinations. Performance of each model was assessed using standard statistical measures (R2, RMSE, Mean Absolute Error, Nash-Sutcliffe Efficiency). Modification of soil water status term significantly improved daily SR estimate (RMSE 0.67) compared to original model (RMSE 0.82), particularly during flooding and post-flooding periods. Annual SR estimated with new model showed greater variability than the estimates with the original model which could be plausible if differences in meteorological conditions between relatively dry 2009 and very wet 2010 are taken into account. New SR models could find application in wet ecosystems or during flooding events. However, additional validation with an independent dataset would be useful.

  10. COSMOS soil water sensing affected by crop biomass and water status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water sensing methods are widely used to characterize water content in the root zone and below, but only a few are capable of sensing soil volumes larger than a few hundred liters. Scientists with the USDA-ARS Conservation & Production Research Laboratory, Bushland, Texas, evaluated: a) the Cos...

  11. The impact of the soil surface properties in water erosion seen through LandSoil model sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Follain, Stéphane; Cheviron, Bruno; Le Bissonnais, Yves; Couturier, Alain; Walter, Christian

    2014-05-01

    Quantitative models of soil redistribution at the landscape scale are the current tools for understanding space-time processes in soil and landscape evolution. But models use larger and larger numbers of variables and sometimes it becomes difficult to understand their relative importance and model behaviours in critical conditions. Sensitivity analysis (SA) is widely used to clarify models behaviours, their structure giving fundamental information to ameliorate models their selves. We tested the LandSoil model (LANDscape design for SOIL conservation under soil use and climate change) a model designed for the analysis of agricultural landscape evolution at a fine spatial resolution scale [1-10 meters] and a mid-term temporal scale [10-100 years]. LandSoil is suitable for simulations from parcel to catchment scale. It is spatially distributed, event-based, and considers water and tillage erosion processes that use a dynamic representation of the agricultural landscape through parameters such as a monthly representation of soil surface properties. Our aim was to identify most significant parameters driving the model and to highlight potential particular/singular behaviours of parameter combinations and relationships. The approach was to use local sensitivity analysis, also termed 'one-factor-at-time' (OAT) which consists of a deterministic, derivative method, inquiring the local response O to a particular input factor Pi at a specified point P0 within the full input parameter space of the model expressed as: δO/δP = (O2-O1) / (P2-P1) The local sensitivity represents the partial derivatives of O with respect to Pi at the point P0. In the SA procedure the topographical entity is represented by a virtual hillslope on which soil loss and sensitivity are calculated. Virtual hillslope is inspired from the virtual catchment framework proposed by Cheviron at al. (2011): a fixed topology consisting of a 3X3 square pixel structure having 150 m length allowing to test different spatial configurations of the properties within the hillslope. To test the model we identified different parameters. A three-category (P,R,p) sensitivity analysis procedure was therefore found possible and appropriate to control the effects of hydrological factors (P,R) and soil-terrain parameters (p). All the analysis were done with the use of the integration of the ArcGis software structure, on which the LandSoil model is based, and the PEST model (Doherty, 2004). PESTR is an iterative, non-linear parameter analysis software platform based on the Gauss-Marquardt-Levenberg algorithm (Marquardt, 1963). The results show the relevance of the rainfall amount in simulation and some interesting interactions between parameters such soil roughness - soil crusting and soil cover.

  12. Water and heat fluxes in desert soils: 1. Field studies

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.

    1994-03-01

    Soil physics parameters were monitored in a semiarid site in the Chihuahuan Desert of Texas to evaluate unsaturated flow processes under natural conditions. The bed of an ephemeral stream was instrumented with neutron probe access tubes to monitor water content for 3 years and with thermocouple psychrometers to monitor water potential and temperature for 2 years. Soil samples were collected from stream and interstream settings for laboratory measurement of water content, water potential, water retention, and saturated hydraulic conductivity. Absence of temporal variations in water content in deep (41-m) profiles indicated that within the accuracy of the neutron probe measurements, water pulses were not moving through the system. Penetration of water after rainfall was generally restricted to the uppermost 0.2 m of the sediments. During rain-free periods, the surficial sediments were extremely dry, as indicated by laboratory-measured water potentials as low as -16 MPa. After rainfall, water potentials were highest at the surface and decreased sharply at the base of the wetting front, with gradients as steep as -13 MPa in 0.05 m. Water potentials were out of range of the in situ psychrometers down to 0.8 m throughout most of the monitoring period because the soils were very dry (≤-7 to -8 MPa). Seasonal fluctuations in water potential were recorded at depths of 1.1 and 1.4 m. Water potentials at greater depths remained fairly uniform with time. Except in the shallow subsurface after rainfall, water potentials generally decreased upward; this trend indicated an upward driving force for liquid and isothermal vapor movement. Soil temperatures displayed large seasonal and diurnal fluctuations. Temperatures generally increased with depth in the winter and decreased with depth in the summer. Downward summer temperature gradients opposed upward water potential gradients and resulted in a downward driving force for thermal vapor movement.

  13. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in an old-field grassland

    SciTech Connect

    Wan, Shiqiang; Norby, Richard J; Childs, Joanne; Weltzin, Jake

    2007-01-01

    Responses of soil respiration to atmospheric and climatic change will have profound impacts on ecosystem and global C cycling in the future. This study was conducted to examine effects on soil respiration of the concurrent driving factors of elevated atmospheric CO2 concentration, rising temperature, and changing precipitation in a constructed old-field grassland in eastern Tennessee, USA. Model ecosystems of seven old-field species in 12 open-top chambers (4 m in diameter) were treated with two CO2 (ambient and ambient plus 300 ppm) and two temperature (ambient and ambient plus 3 C) levels. Two split plots with each chamber were assigned with high and low soil moisture levels. During the 19-month experimental period from June 2003 to December 2004, higher CO2 concentration and soil water availability significantly increased mean soil respiration by 35.8% and 15.7%, respectively. The effects of air warming on soil respiration varied seasonally from small reductions to significant increases to no response, and there was no significant main effect. In the wet side of elevated CO2 chambers, air warming consistently caused increases in soil respiration, whereas in other three combinations of CO2 and water treatments, warming tended to decrease soil respiration over the growing season but increase it over the winter. There were no interactive effects on soil respiration among any two or three treatment factors irrespective of testing time period. Temperature sensitivity of soil respiration was reduced by air warming, lower in the wet than the dry side, and not affected by CO2 treatment. Variations of soil respiration responses with soil temperature and soil moisture ranges could be primarily attributable to the seasonal dynamics of plant growth and its responses to the three treatments. Using a conceptual model to interpret the significant relationships of treatment-induced changes in soil respiration with changes in soil temperature and moisture observed in this study, we conclude that elevated CO2, air warming, and changing soil water availability had both direct and indirect effects on soil respiration via changes in the three controlling factors: soil temperature, soil moisture, and C substrate. Our results demonstrate that the response of soil respiration to climatic warming should not be represented in models as a simple temperature response function. A more mechanistic understanding of the direct and indirect impacts of concurrent global change drivers on soil respiration is needed to facilitate the interpretation and projection of ecosystem and global C cycling in response to atmospheric and climate change.

  14. Behavior of unsaturated soil and its influence on soil - soil interaction at an interface

    SciTech Connect

    Toufigh, M.M.

    1987-01-01

    The interface failure between caps and natural soil in trenches containing buried low-level nuclear-waste material was investigated in this study. The Casa Grande Highway Farm (CGHF) soil was used for the entire investigation. This soil is described as being a silty sand with approximately 23% by weight passing sieve No. 200. Other preliminary testing was performed on the same soil. Isotropically consolidated drained (CID) tests were performed on the laboratory compacted samples at different degree of saturation including fully saturated specimens. Suction pressure was measured in the laboratory by adopting pressure-plate extractor and compared with determine effective suction in triaxial testing. A generalized failure equation, in terms of strength parameters and suction pressure, was defined for all degrees of saturation. Extensive interface tests were performed in the conventional direct shear machine with some modification. Similar to trench cap soil and natural soil in the field, the test specimens were prepared at different degrees of saturation and density (compaction effort). An interface element and the modified bounding surface model and elasticity model was used in a finite-element program to predict the interface response for the laboratory results and actual field problems.

  15. Water repellency in highly managed soils and turfgrass - How our understanding has changed in the past 20 years.

    NASA Astrophysics Data System (ADS)

    Kostka, Stan; McMillan, Mica; Oostindie, Klaas; Dekker, Louis; Cisar, John; Leinauer, Bernd; Fidanza, Michael; Bigelow, Cale; Ritsema, Coen

    2014-05-01

    Over the past 20 years, a major shift has occurred in how turfgrass managers deal with soil water repellency. Initially, water management strategies focused solely on remediating localized dry spots, the visible effects of hydrophobic soils. Nearly a decade ago at this conference, a group of turfgrass scientists participated in this session on soil water repellency interacting with a broad group of soil physicists setting in motion research, collaborations and discoveries that have resulted in not only a better understanding of the implications of this phenomenon on soil hydraulic properties and plant productivity, but also, development of new strategies, particularly surfactants, to improve water capture, reduce preferential flow, increase irrigation and water use efficiency, improve performance of soil directed pesticides, reduce leaching of nitrogen, increase mineralization of organically bound nitrogen, and enhance plant tolerance to abiotic stress. It also resulted in research utilizing soil moisture measurement tools, specifically, TDR and capacitance probes, which were introduced to and accepted by soil and crop scientists working in amenity turfgrass. Within the past five years, these technologies and strategies for their effective utilization have transitioned from the research community to become accepted by turfgrass managers globally. It is the objective of this presentation to illustrate key discoveries, implications to improved water and resource utilization, and the resulting acceptance of them as new, more sustainable soil management practices.

  16. Mechanical impedance of soil crusts and water content in loamy soils

    NASA Astrophysics Data System (ADS)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows the prediction of the potential mechanical behaviour of soil crusts generated during soil drying, from initial saturated soil conditions (e.g. waterlogging conditions).

  17. Interactions between soil biota and the effects on geomorphological features

    NASA Astrophysics Data System (ADS)

    Zaitlin, Beryl; Hayashi, Masaki

    2012-07-01

    The interaction of animals with abiotic features of their environment has long been known to cause alterations to geomorphic features, and these interactions may cause feedback loops that further alter geomorphic features and animal communities. This paper samples the literature on selected burrowing animals in western North America, and discusses the interactions of animals with abiotic features of the environment and with each other, and the resulting impacts on geomorphic features and each other. As expected, burrowing characteristics of animals influence geomorphological processes. For example, pocket gophers and certain ground squirrels that burrow horizontal tunnels on sloping grounds seem to have significant impacts on horizontal movement of soils, whereas prairie dogs and harvester ants have more impact on vertical movement of soils. Burrowing animals, in general, increase the patchiness of the environment, which creates localized patch habitat for other plants and animals, thereby increasing biodiversity at the landscape scale. Burrowing animals influence and are influenced by microbes: sylvatic plague wiped out large populations of prairie dogs, earthworms cause major changes in soil microflora, pocket gophers and harvester ants cause changes in mycorrhizal communities, which in turn impact plant communities.

  18. REDUCTION IN EXCESS SOIL PHOSPHORUS CONCENTRATIONS USING WATER TREATMENT RESIDUALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Livestock production in the southeastern Coastal Plain region has created environmental concern from the effects of excess soil phosphorus (P) concentrations on water quality. In many Coastal aquatic ecosystems, water quality can be at risk by elevated P transport via runoff, erosion, and leaching f...

  19. Earthworm effects on movement of water and solutes in soil

    SciTech Connect

    Trojan, M.D.

    1993-01-01

    The objectives of this study were to determine and model the effects of earthworms on water and solute movement in soil. Microrelief and rainfall effects on water and solute movement were determined in packed buckets inoculated with earthworms (Aporrectodea tuberculata). A solution of Br[sup [minus

  20. Water Intake by Soil, Experiments for High School Students.

    ERIC Educational Resources Information Center

    1969

    Presented are a variety of surface run-off experiments for high school students. The experiments are analogies to basic concepts about water intake, as related to water delivery, soil properties and management, floods, and conservation measures. The materials needed to perform the experiments are easily obtainable. The experiments are followed by…

  1. NEWLY DEVELOPED TECHNOLOGIES FOR SOIL AND WATER CONSERVATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent discoveries and technological innovations in the field of soil and water conservation can be traced to the works of our predecessors. In this paper, conservation is defined broadly, to include the quality of water lower in watersheds, and is discussed according to contaminants. Within-field s...

  2. Water Intake by Soil, Experiments for High School Students.

    ERIC Educational Resources Information Center

    1969

    Presented are a variety of surface run-off experiments for high school students. The experiments are analogies to basic concepts about water intake, as related to water delivery, soil properties and management, floods, and conservation measures. The materials needed to perform the experiments are easily obtainable. The experiments are followed by

  3. Soil water content and green water estimations in a small farmed semiarid catchment

    NASA Astrophysics Data System (ADS)

    Mekki, I.; Voltz, M.; Ben Mechlia, N.; Albergel, J.

    2012-04-01

    The main objective of this work is to analyze the spatial and temporal variation of soil water content and green water production over a farmed water harvesting catchment, located in north-eastern Tunisia. The area has a typical Mediterranean climate with a hot dry summer and a cool season, extending from October to April, where rainfall normally meets the water requirements of the usually grown cereals and legumes (500mm). The catchment has an area of 2.6 km2 and comprises at its outlet a dam, which retains the runoff water in a reservoir. Soil water balance measurements were carried out, about weekly, over two successive cropping cycles (2000-2002) on a network of eleven plots of 2 m2 each, representing the main land use and soil types. Soil water store investigations targeted the different individual plots as well as the entire catchment. We used a simple water balance model, where the root zone is considered as a single reservoir, to simulate soil water content variations. Results show a fairly good agreement between the calculated and measured water store for all experimental sites. The model reproduces accurately the soil water content during the beginning of the rainy season but underestimates it during the season when heavy rains occur. On heavy soils, simulated soil moisture was lower than measured values, giving differences as high as 25% between simulated water store amounts and the neutron probe measurement values. For the cereals/legume/pasture based cropping systems, most of rainfall water is stored in the soil and returns to the atmosphere by evapotranspiration. The 0-0.3 m soil layer is most active for water uptake by crops and intermittent replenishment by rainfall during the growing period; whereas drying involves the entire soil profile over the summer season (May-Seeptmber). The available water holding capacity of the soil turned out to be about seven times the storage capacity of the reservoir, showing the order of magnitude of rainfall partitioning between green water and blue water for cropped catchments, under semiarid arid climates.

  4. Hexagonal boron nitride and water interaction parameters

    NASA Astrophysics Data System (ADS)

    Wu, Yanbin; Wagner, Lucas K.; Aluru, Narayana R.

    2016-04-01

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.

  5. Hexagonal boron nitride and water interaction parameters.

    PubMed

    Wu, Yanbin; Wagner, Lucas K; Aluru, Narayana R

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems. PMID:27131542

  6. Gas Transport Parameters for Landfill Cover Soils: Effects of Soil Compaction and Water Blockages

    NASA Astrophysics Data System (ADS)

    Wickramarachchi, P. N.; Hamamoto, S.; Kawamoto, K.; Nawagamuwa, U.; Komatsu, T.; Moldrup, P.

    2009-12-01

    Recently, landfill sites have been emerging in greenhouse warming scenarios as a significant source of atmospheric CH4. landfill management strategies have mainly addressed the problem of preventing groundwater contamination and reduction of leachate generation. Being one of the largest source of anthropogenic CH4 emission , the final cover system should also be designed for minimizing the biogas migration into the atmosphere or the areas surrounding the landfill. Compared to the intensive research efforts on hydraulic performances of landfill final cover soil , there are few studies about gas transport characteristics of landfill cover soils. Therefore, the effects of soil physical properties such as bulk density (i.e., compaction level), soil particle size and water blockage effects on the gas exchange in t highly compacted final cover soil are largely unknown. The gas exchange through the final cover soils is controlled by advective and diffusive gas transport. Air permeability (ka) governs the advective gas transport while the soil-gas diffusion coefficient (Dp) governs diffusive gas transport . In this study, the effects of compaction level and water blockage effects on ka and Dp for two landfill final cover soils were investigated. The disturbed soil samples were taken from landfill final covers in Japan and Sri Lanka. A compaction tests were performed for the soil samples with two different size fractions (< 35 mm and < 2.0 mm). In the compaction tests at field water content , the soil samples were repacked into soil cores (i.d. 15-cm, length 12-cm) at two different compaction levels (2700 kN/m2 and 600 kN/m2). After the compaction tests, ka and Dp were measured and then samples were saturated and subsequently drained at different soil-water matric potential (pF; pF equals to log(-ɛ) where ɛ is soil-water matric potential in cm H2O) of 1.5, 2.0, 3.0, 4.1, and with air-dried (pF 6.0) and oven-dried (pF 6.9) conditions. Results showed that measured Dp values increased rather linearly with increasing soil air content (ɛ) for both compacted and repacked samples using different size fractions and compaction levels in Japanese and Sri Lankan soils. This suggests that the gas diffusion was controlled primarily by the air-filled pore space and was less affected by the pore structure variations such as tortuosity and connectivity. On the other hand, measured ka values showed nonlinear relations with ɛ and were highly affected by compaction levels and water blockage effects. For the compacted soils at high energy level, peak values in ka appeared at drier conditions than optimum water contents in the compaction curves. This would be partially caused by the pore structure changes at different water conditions under compaction. Combined effects of soil compaction and water reduction will be further discussed taking pore structure characteristics derived from measured Dp and ka into account.

  7. Effect of Water Content and Soil Texture on Consolidation in Unsaturated Soils

    NASA Astrophysics Data System (ADS)

    Lee, J. W.; Lo, W. C.; Yeh, C. L.

    2014-12-01

    Soil consolidation, involving time-dependent coupling between deformation of a porous medium and interstitial fluid flows within it, is of relevance to many subsurface engineering problems. In the current study, we apply the consolidation theory of poroelasticity developed by Lo et al.(2014) to investigate the effect of soil texture and initial water saturation on one-dimensional consolidation in unsaturated soils. Our model constitutes two coupled diffusion equations, where coupling occurs only in the time-derivative terms with symmetric coefficients. As simplifying to water-saturated soils, these equations exactly reduce to those in the classic Biot (1941) model of consolidation. Closed-form analytical solutions describing the excess pore air and water pressures along with the total settlement in response to external loading are obtained for both permeable and semi-permeable boundary drainage conditions by the application of the Laplace transform. Numerical calculations are then implemented for unsaturated sand, loam, silt, and clay with respect to three initial water saturations (0.7, 0.8, and 0.9) as representative examples. Our results reveal that the excess pore water pressure and total settlement are significantly sensitive to both soil texture and initial water saturation. For a given initial water saturation, the rate of dissipation of excess pore water pressure is smallest in clay, with the highest total settlement being induced, followed by silt, loam, and sand. In the early stage of consolidation, unsaturated soils bear smaller excess pore water pressure, but its dissipation is completed faster in saturated soils. Two important parameters for characterizing consolidation processes are quantitatively examined. The coefficient of consolidation for water is shown to increase with an increase in initial water saturation, taking a value in saturated soils approximately four to five orders of magnitude greater than that in unsaturated ones. The loading efficiency for water exhibits a concave upward relationship with initial water saturation in clay, whereas a positively-correlated relationship between the efficiency and initial water saturation is observed in silt, loam, and sand.

  8. Mulch tillage for conserving soil water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mulching is the practice of maintaining organic or inorganic materials on or applying them to the soil surface. It is an ancient practice, but through the years clean tillage that incorporated crop residues and also controlled weeds became the norm. Frequent and deep tillage often was promoted to co...

  9. Multivariate analyses of water chemistry: surface and ground water interactions.

    PubMed

    Woocay, Arturo; Walton, John

    2008-01-01

    Multivariate statistical methods (MSMs) applied to ground water chemistry provide valuable insight into the main hydrochemical species, hydrochemical processes, and water flowpaths important to ground water evolution. The MSMs of principal component factor analysis (FA) and k-means cluster analysis (CA) were sequentially applied to major ion chemistry from 211 different ground water-sampling locations in the Amargosa Desert. The FA reduces the number of variables describing the system and finds relationships between major ions. The CA of the reduced system produced objective hydrochemical facies, which are independent of, but in good agreement with, lithological data. The derived factors and hydrochemical facies are innovatively presented on biplots, revealing composition of hydrochemical processes and facies, and overlaid on a digital elevation model, displaying flowpaths and interactions with geologic and topographic features in the region. In particular, a distinct ground water chemical signature is observed beneath and surrounding the extended flowpath of Fortymile Wash, presenting some contradiction to contemporary water levels along with potential interaction with a fault line. The signature surrounding the ephemeral Fortymile Wash is believed to represent the relic of water that infiltrated during past pluvial periods when the amount of runoff in the wash was significantly larger than during the current drier period. This hypothesis and aforementioned analyses are supported by the examination of available chloride, oxygen-18, hydrogen-2, and carbon-14 data from the region. PMID:18194324

  10. Water Retention and Structure Stability in Smectitic or Kaolinitic Loam and Clay Soils Affected by Polyacrylamide Addition

    NASA Astrophysics Data System (ADS)

    Mamedov, Amirakh; Levy, Guy

    2015-04-01

    Studying the effects of polyacrylamide (PAM) on soil aggregate and structure stability is important in developing effective soil and water conservation practices and in sustaining soil and water quality. Five concentrations of an anionic PAM (0, 25, 50, 100 and 200 mg L-1) with a high molecular weight were tested on loam and clay soils having either a predominant smectitic or kaolinitic clay mineralogy. The effects of the PAM and of soil texture on soil water retention at near saturation and on aggregate and structure stability were investigated using the high energy moisture characteristic (HEMC) method. The S-shaped water retention curves obtained by the HEMC method were characterized by the modified van Genuchten (1980) model that provided: (i) the model parameters α and n, which represent the location of the inflection point and the steepness of the water retention curve, respectively; and (ii) the soil structure index, SI =VDP/MS, where VDP is the volume of drainable pores, an indicator of the quantity of water released by a soil over the range of applied suctions (0-5 J kg-1), and MS is the modal suction representing the most frequent pore sizes (> 60 μm). In general, the treatments tested (clay mineralogy, soil type and PAM concentration) resulted in: (i) a considerable modification of the shape of the water retention curves as indicated by the changes in the α and n values; and; (ii) substantial effects on the stability indices and other model parameters. The contribution of PAM concentration to soil structure stability depended on the clay mineralogy, being more effective in the smectitic soils than in the kaolinitic ones. Although kaolinitic soils are usually more stable than smectitic soils, when the latter were treated with PAM (25-200 mg L-1) the opposite trend was observed. In the loam soils, increasing the PAM concentration notably decreased the differences between values of the stability indices of the smectitic and kaolinitic samples. The results suggest that determining the efficacy of different PAM applications in the field in improving water retention and soil structure is complex. Therefore soil properties (clay mineralogy, soil texture) and field conditions (moisture content) should be considered when determining the optimal rate of PAM application. The mechanisms responsible for PAM-soil interaction impacts on soil structure, stability indices and model parameters are discussed in the paper.

  11. Saturated hydraulic conductivity and soil water retention properties across a soil-slope transition

    NASA Astrophysics Data System (ADS)

    Mohanty, Binayak P.; Mousli, Zak

    2000-11-01

    The hydraulic properties of soil and their spatial structures are important for understanding soil moisture dynamics, land surface and subsurface hydrology, and contaminant transport. We investigated whether landscape features, including relative position on a slope, contribute to the variability of soil hydraulic properties in a complex terrain of a glacial till material. Using 396 undisturbed soil cores collected along two orthogonal transects, we measured saturated hydraulic conductivity (Ksat) and soil water retention functions at two (15 and 30 cm) depths across a glacial till landscape in central Iowa that encompassed two soil types (Nicollet loam with 1-3% slope on the hilltop position and Clarion loam with 2-5% slope on the shoulder position). The van Genuchten-Mualem model was fitted to the experimental data using the RETC optimization computer code. At the 15 cm depth a statistical comparison indicated significant differences in Ksat, saturated water content (θs), water content at permanent wilting point (θ15,000) and van Genuchten fitting parameters (α and n) between soil types and landscape positions. At the 30 cm depth, θs, θ15,000, and residual water content (θr) were found to be significantly different across the soil-slope transition. Available water content (θ333-15,000) did not show any significant difference across the soil-slope transition for either depth. No clear directional trend was observed, with some exceptions for Ksat, θs, and α on specific transect limbs and depths. Drifts in the soil hydraulic parameters due to soil-slope transition were removed using a mean-polishing approach. Geostatistical analyses of these parameters showed several important characteristics including the following: (1) The spatial correlation lengths and semivariogram patterns of the independently measured (or estimated) loge Ksat and θs at 30-cm depth matched extremely well; (2) better spatial structures with large correlation lengths were observed for (macro and micro) porosity-related loge Ksat, θs, and loge α than for texture-related loge θ333-15,000, loge θ15,000, θr and loge n at 30-cm depth; and (3) a higher nugget effect at 15-cm depth was evident for most soil hydraulic parameters, indicating tillage and other surface disturbances. These novel findings may prove to be critical for modeling and interpreting field-scale or larger-scale soil moisture dynamics, surface and subsurface flow, and solute transport.

  12. Soil water repellency: the knowledge base, advances and challenges

    NASA Astrophysics Data System (ADS)

    Doerr, S. H.

    2012-04-01

    The topic of soil water repellency (SWR or soil hydrophobicity) has moved from being perhaps a little known curiosity a few decades ago to a well established sub-discipline of soil physics and soil hydrology. In terms of the number of journal publications, SWR is comparable with other physical soil properties or processes such as crusting, aggregation or preferential flow. SWR refers to a condition when soil does not wet readily when in contact with water. This may be evident at the soil surface, when SWR leads to prolonged ponding on soils despite the presence of sufficient pore openings, or in the soil matrix, as manifest by enhanced uneven wetting and preferential flow that is not caused by structural in homogeneity. Amongst major milestones advancing the knowledge base of SWR have been the recognition that: (1) many, if not most, soils can exhibit SWR when the soil moisture content falls below a critical threshold, (2) it can be induced (and destroyed) during vegetation fires, but many soils exhibit SWR irrespective of burning, (3) it can be caused, in principle, by a large variety of naturally-abundant chemical compounds, (4) it is typically highly variable in space, time and its degree (severity and persistence), and (5) its impacts on, for example, soil hydrology, erosion and plant growth have the potential to be very substantial, but also that impacts are often minor for naturally vegetated and undisturbed soils. Amongst the key challenges that remain are: (a) predicting accurately the conditions when soils prone to SWR actually develop this property, (b) unravelling, for fire effected environments, to what degree any presence of absence of SWR is due to fire and post-fire recovery, (c) the exact nature and origin the material causing SWR at the molecular level in different environments, (d) understanding the implications of the spatial and temporal variability at different scales, (e) the capability to model and predict under which environmental conditions its impacts are of significance, and (f) what changes to SWR and its implications we can expect under future climatic and land management conditions. This presentation aims to provide a brief overview of the main milestones reached to date in SWR research and of some of the key challenges for future research in this rapidly growing field.

  13. Effects of Water Seal on Reducing 1,3-Dichloropropene Emissions from Different Textured Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil physical conditions can affect diffusion, environmental fate, and pest-control efficacy of fumigants in soil disinfestation treatments. Water seal (applying water using sprinklers to soil following fumigation) has shown effectiveness to reduce fumigant emissions from sandy loam soils. Soil colu...

  14. Collimated neutron probe for soil water content measurements

    USGS Publications Warehouse

    Klenke, J.M.; Flint, A.L.

    1991-01-01

    A collimated neutron probe was designed to enable mesurements in specific directions from the access tube. To determine the size and shape of soil volume affecting the neutron counts, experiments were conducted to evaluate: 1) the vertical distance of soil above and below the probe that influences neutron counts; 2) the horizontal distance away from the probe into the soil that influences neutron counts; 3) the angle of soil viewed by the probe from the collimator; and 4) the three-dimensional thermal-neutron density field. The vertical distance was ~0.5m, the horizontal distance was ~0.2m, and the angle of soil viewed by the probe from the collimator was ~120??. Thermal neutrons detected from distances or angles larger than these values influence the determination of relative water content by 5% or less. -from Authors

  15. Evaluation of the Interactions between Water Extractable Soil Organic Matter and Metal Cations (Cu(II), Eu(III)) Using Excitation-Emission Matrix Combined with Parallel Factor Analysis

    PubMed Central

    Wei, Jing; Han, Lu; Song, Jing; Chen, Mengfang

    2015-01-01

    The objectives of this study were to evaluate the binding behavior of Cu(II) and Eu(III) with water extractable organic matter (WEOM) in soil, and assess the competitive effect of the cations. Excitation-emission matrix (EEM) fluorescence spectrometry was used in combination with parallel factor analysis (PARAFAC) to obtain four WEOM components: fulvic-like, humic-like, microbial degraded humic-like, and protein-like substances. Fluorescence titration experiments were performed to obtain the binding parameters of PARAFAC-derived components with Cu(II) and Eu(III). The conditional complexation stability constants (logKM) of Cu(II) with the four components ranged from 5.49 to 5.94, and the Eu(III) logKM values were between 5.26 to 5.81. The component-specific binding parameters obtained from competitive binding experiments revealed that Cu(II) and Eu(III) competed for the same binding sites on the WEOM components. These results would help understand the molecular binding mechanisms of Cu(II) and Eu(III) with WEOM in soil environment. PMID:26121300

  16. Water quality and surfactant effects on the water repellency of a sandy soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in irrigation water quality may affect the water repellency of soils treated or untreated with surfactants. Using simulated irrigations, we evaluated water quality and surfactant application rate effects upon the water repellency of a Quincy sand (Xeric Torripsamment). We used a split ...

  17. Upscaled soil-water retention using van Genuchten's function

    USGS Publications Warehouse

    Green, T.R.; Constantz, J.E.; Freyberg, D.L.

    1996-01-01

    Soils are often layered at scales smaller than the block size used in numerical and conceptual models of variably saturated flow. Consequently, the small-scale variability in water content within each block must be homogenized (upscaled). Laboratory results have shown that a linear volume average (LVA) of water content at a uniform suction is a good approximation to measured water contents in heterogeneous cores. Here, we upscale water contents using van Genuchten's function for both the local and upscaled soil-water-retention characteristics. The van Genuchten (vG) function compares favorably with LVA results, laboratory experiments under hydrostatic conditions in 3-cm cores, and numerical simulations of large-scale gravity drainage. Our method yields upscaled vG parameter values by fitting the vG curve to the LVA of water contents at various suction values. In practice, it is more efficient to compute direct averages of the local vG parameter values. Nonlinear power averages quantify a feasible range of values for each upscaled vG shape parameter; upscaled values of N are consistently less than the harmonic means, reflecting broad pore-size distributions of the upscaled soils. The vG function is useful for modeling soil-water retention at large scales, and these results provide guidance for its application.

  18. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  19. High Resolution Soil Water from Regional Databases and Satellite Images

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskly, Vadim N.; Coughlin, Joseph; Dungan, Jennifer; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the ways in which plant growth can be inferred from satellite data and can then be used to infer soil water. There are several steps in this process, the first of which is the acquisition of data from satellite observations and relevant information databases such as the State Soil Geographic Database (STATSGO). Then probabilistic analysis and inversion with the Bayes' theorem reveals sources of uncertainty. The Markov chain Monte Carlo method is also used.

  20. STRAFI-NMR studies of water transport in soil.

    PubMed

    Preston, A R; Bird, N R; Kinchesh, P; Randall, E W; Whalley, W R

    2001-01-01

    1-D STRAFI (STRAy FIeld) imaging is used to study water distribution in a sandy loam. The matric potential of the soil can be varied during acquisition of 1-D profiles. Results at a range of potentials are presented showing both the equilibrium distribution and the evolution of the profile following an abrupt change in matric potential. The air breakthrough point and variations in draining behaviour due to differences in soil compaction are identified. PMID:11445357

  1. Zinc movement in sewage-sludge-treated soils as influenced by soil properties, irrigation water quality, and soil moisture level

    USGS Publications Warehouse

    Welch, J.E.; Lund, L.J.

    1989-01-01

    A soil column study was conducted to assess the movement of Zn in sewage-sludge-amended soils. Varables investigated were soil properties, irrigation water quality, and soil moisture level. Bulk samples of the surface layer of six soil series were packed into columns, 10.2 cm in diameter and 110 cm in length. An anaerobically digested municipal sewage sludge was incorporated into the top 20 cm of each column at a rate of 300 mg ha-1. The columns were maintained at moisture levels of saturation and unsaturation and were leached with two waters of different quality. At the termination of leaching, the columns were cut open and the soil was sectioned and analyzed. Zinc movement was evaluated by mass balance accounting and correlation and regression analysis. Zinc movement in the unsaturated columns ranged from 3 to 30 cm, with a mean of 10 cm. The difference in irrigation water quality did not have an effect on Zn movement. Most of the Zn applied to the unsaturated columns remained in the sludge-amended soil layer (96.1 to 99.6%, with a mean of 98.1%). The major portion of Zn leached from the sludge-amended soil layer accumulated in the 0- to 3-cm depth (35.7 to 100%, with a mean of 73.6%). The mean final soil pH values decreased in the order: saturated columns = sludge-amended soil layer > untreated soils > unsaturated columns. Total Zn leached from the sludge-amended soil layer was correlated negatively at P = 0.001 with final pH (r = -0.85). Depth of Zn movement was correlated negatively at P = 0.001 with final pH (r = -0.91). Multiple linear regression analysis showed that the final pH accounted for 72% of the variation in the total amounts of Zn leached from the sludge-amended soil layer of the unsaturated columns and accounted for 82% of the variation in the depth of Zn movement among the unsaturated columns. A significant correlation was not found between Zn and organic carbon in soil solutions, but a negative correlation significant at P = 0.001 was found between pH and Zn (r = -0.61).

  2. SCALING IN SOIL AGGREGATE DISTRIBUTION AS DEPENDENT ON AGGREGATE WATER CONTENT AND SOIL COMPACTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fractal scaling has been documented in literature for mass of dry soil aggregates. Changes in water content are known to cause shrinking or swelling in aggregates. The objective of this work was to determine (a) whether the fractal scaling will hold for aggregates at various water contents, (b) how ...

  3. Visualizing Clogging up of Soil Pores in the Tropical Degraded Soils and Their Impact on Green Water Productivity

    NASA Astrophysics Data System (ADS)

    Tebebu, T.; Baver, C.; Stoof, C.; Steenhuis, T. S.

    2013-12-01

    Abstract Restrictive soil layers commonly known as hardpans restrict water and airflow in the soil profile and impede plant root growth below the plow depth. Preventing hardpans to form or ameliorate existing hardpans will allow plants root more deeply, increase water infiltration and reduce runoff, all resulting in greater amounts of water available for the crop (i.e. green water). However, there has been a lack of research on understanding the influence of transported disturbed soil particles (colloids) from the surface to the subsurface to form restrictive soil layers, which is a common occurrence in degraded soils. In this study we investigated the effect of disturbed soil particles on clogging up of soil pores to form hardpans. Unsaturated sand column experiments were performed by applying 0.04 g/ml soil water solution in two sand textures. For each experiment, soil water solution infiltration process was visualized using a bright field microscope and soil particles remained in the sand column was quantified collecting and measuring leachate at the end of the experiment in the soil and water lab of Cornell University. Preliminary results show that accumulation of significant amount of soil particles occur in between sand particles and at air water interfaces, indicating the clogging of soil pores occurs as a result of disturbed fine soil particles transported from the soil surface to the subsurface. Key Words: Soil pore clogging; Hardpans; Green water productivity Visualization of sand column experiment showing the sand column at the start of the experiment (left) and two hours after the second application in that soil particles were accumulated at the air water interfaces(right).

  4. Observing plants dealing with soil water stress: Daily soil moisture fluctuations derived from polymer tensiometers

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine; de Rooij, Gerrit

    2014-05-01

    Periods of soil water deficit often occur within a plant's life cycle, even in temperate deciduous and rain forests (Wilson et al. 2001, Grace 1999). Various experiments have shown that roots are able to sense the distribution of water in the soil, and produce signals that trigger changes in leaf expansion rate and stomatal conductance (Blackman and Davies 1985, Gollan et al. 1986, Gowing et al. 1990 Davies and Zhang 1991, Mansfield and De Silva 1994, Sadras and Milroy 1996). Partitioning of water and air in the soil, solute distribution in soil water, water flow through the soil, and water availability for plants can be determined according to the distribution of the soil water potential (e.g. Schröder et al. 2013, Kool et al. 2014). Understanding plant water uptake under dry conditions has been compromised by hydrological instrumentation with low accuracy in dry soils due to signal attenuation, or a compromised measurement range (Whalley et al. 2013). Development of polymer tensiometers makes it possible to study the soil water potential over a range meaningful for studying plant responses to water stress (Bakker et al. 2007, Van der Ploeg et al. 2008, 2010). Polymer tensiometer data obtained from a lysimeter experiment (Van der Ploeg et al. 2008) were used to analyse day-night fluctuations of soil moisture in the vicinity of maize roots. To do so, three polymer tensiometers placed in the middle of the lysimeter from a control, dry and very dry treatment (one lysimeter per treatment) were used to calculate water content changes over 12 hours. These 12 hours corresponded with the operation of the growing light. Soil water potential measurements in the hour before the growing light was turned on or off were averaged. The averaged value was used as input for the van Genuchten (1980) model. Parameters for the model were obtained from laboratory determination of water retention, with a separate model parameterization for each lysimeter setup. Results show daily fluctuations in water content changes, with both root water uptake and root water excretion. The magnitude of the water content change was in the same order for all treatments, thus suggesting compensatory uptake. References Bakker G, Van der Ploeg MJ, de Rooij GH, Hoogendam CW, Gooren HPA, Huiskes C, Koopal LK and Kruidhof H. New polymer tensiometers: Measuring matric pressures down to the wilting point. Vadose Zone J. 6: 196-202, 2007. Blackman PG and Davies WJ. Root to shoot communication in maize plants of the effects of soil drying. J. Exp. Bot. 36: 39-48, 1985. Davies WJ and Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 55-76, 1991. Gollan T, Passioura JB and Munns R. Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leafs. Aust. J. Plant Physiol. 13: 459-464, 1986. Gowing DJG, Davies WJ and Jones HG. A Positive Root-sourced Signal as an Indicator of Soil Drying in Apple, Malus x domestica Borkh. J. Exp. Bot. 41: 1535-1540, 1990. Grace J. Environmental controls of gas exchange in tropical rain forests. In: Press, M.C, J.D. Scholes and M.G. Barker (ed.). Physiological plant ecology: the 39th Symposium of the British Ecological Society. Blackwell Science, United Kingdom, 1999. Kool D, Agam N, Lazarovitch N, Heitman JL, Sauer TJ, Ben-Gal A. A review of approaches for evapotranspiration partitioning. Agricultural and Forest Meteorology 184: 56- 70, 2014. Mansfield TA and De Silva DLR. Sensory systems in the roots of plants and their role in controlling stomatal function in the leaves. Physiol. Chem. Phys. & Med. 26: 89-99, 1994. Sadras VO and Milroy SP. Soil-water thresholds for the responses of leaf expansion and gas exchange: a review. Field Crops Res. 47: 253-266, 1996. Schröder N, Lazarovitch N, Vanderborcht J, Vereecken H, Javaux M. Linking transpiration reduction to rhizosphere salinity using a 3D coupled soil-plant model. Plant Soil 2013, doi: 10.1007/s11104-013-1990-8 Van der Ploeg MJ, Gooren HPA, Bakker G and de Rooij GH. Matric potential measurements by polymer tensiometers in cropped lysimeters under water-stressed conditions. Vadose Zone J. 7:1048-1053, 2008. Van der Ploeg MJ, Gooren HPA, Bakker G, Hoohendam CW, Huiskes C, Koopal LK, Kruidhof H and de Rooij GH. Polymer tensiometers with ceramic cones: direct observations of matric pressures in drying soils. Hydrology and Earth System Sciences 14, 1787-1799, 2010. Van Genuchten MTh. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44: 892-898, 1980. Wilson KB, Baldocchi DD and Hanson PJ. Leaf age affects the seasonal pattern of photosysnthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant, cell and the environment 24: 571-583, 2001. Whalley WR, Ober ES, Jenkins M. Measurement of the matric protential of soil water in the rhzosphere. J. Exp. Bot. 64(13) 3951-3963, 2013.

  5. Chromium-microorganism interactions in soils: remediation implications.

    PubMed

    Kamaludeen, Sara P B; Megharaj, Mallavarapu; Juhasz, Albert L; Sethunathan, Nabrattil; Naidu, Ravi

    2003-01-01

    Discharge of Cr waste from many industrial applications such as leather tanning, textile production, electroplating, metallurgy, and petroleum refinery has led to large-scale contamination of land and water. Generally, Cr exists in two stable states: Cr(III) and Cr(VI). Cr(III) is not very soluble and is immobilized by precipitation as hydroxides. Cr(VI) is toxic, soluble, and easily transported to water resources. Cr(VI) undergoes rapid reduction to Cr(III), in the presence of organic sources or other reducing compounds as electron donors, to become precipitated as hydroxides. Cr(VI)-reducing microorganisms are ubiquitous in soil and water. A wide range of microorganisms, including bacteria, yeasts; and algae, with exceptional ability to reduce Cr(VI) to Cr(III) anaerobically and/or aerobically, have been isolated from Cr-contaminated and noncontaminated soils and water. Bioremediation approaches using the Cr(VI)-reducing ability of introduced (in bioreactors) or indigenous (augmented by supplements with organic amendments) microorganisms has been more successful for remediation of Cr-contaminated water than soils. Apart from enzymatic reduction, nonenzymatic reduction of Cr(VI) can also be common and widespread in the environment. For instance, biotic-abiotic coupling reactions involving the microbially formed products, H2S (the end product of sulfate reduction), Fe(II) [formed by Fe(III) reduction], and sulfite (formed during oxidation of elemental sulfur), can mediate the dissimilatory reduction of Cr(VI). Despite the dominant occurrence of enzymatic and nonenzymatic reduction of Cr(VI), natural attenuation of Cr(VI) is not taking place at a long-term contaminated site in South Australia, even 225 years after the last disposal of tannery waste. Evidence suggests that excess moisture conditions leading to saturation or flooded conditions promote the complete removal of Cr(VI) in soil samples from this contaminated site; but Cr(VI) reappears, probably because of oxidation of the Cr(III) by Mn oxides, with a subsequent shift to drying conditions in the soil. In such environments with low natural attenuation capacity resulting from reversible oxidation of Cr(III), bioeremediation of Cr(VI) can be a challenging task. PMID:12868782

  6. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator); Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Gerbermann, A. H.; Torline, R. J.; Gautreaux, M. R.; Everitt, J. H.; Guellar, J. A.; Rodriguez, R. R.

    1974-01-01

    The author has identified the following significant results. Bands 4, 5, and 7 and 5, 6, and 7 were best for distinguishing among crop and soil categories in ERTS-1 SCENES 1182-16322 (1-21-73) and 1308-16323 (5-21-73) respectively. Chlorotic sorghum areas 2.8 acres or larger in size were identified on a computer printout of band 5 data. Reflectance of crop residues was more often different from bare soil in band 4 than in bands 5, 6, and 7. Simultaneously acquired aircraft and spacecraft MSS data indicated that spacecraft surveys are as reliable as aircraft surveys. ERTS-1 data were successfully used to estimate acreage of citrus, cotton, and sorghum as well as idle crop land.

  7. Soil Moisture: The Hydrologic Interface Between Surface and Ground Waters

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1997-01-01

    A hypothesis is presented that many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture. The specific hydrologic processes that may be detected include groundwater recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential evapotranspiration (ET), and information about the hydrologic properties of soils. In basin and hillslope hydrology, soil moisture is the interface between surface and ground waters.

  8. Multiple Interactive Pollutants in Water Quality Trading

    NASA Astrophysics Data System (ADS)

    Sarang, Amin; Lence, Barbara J.; Shamsai, Abolfazl

    2008-10-01

    Efficient environmental management calls for the consideration of multiple pollutants, for which two main types of transferable discharge permit (TDP) program have been described: separate permits that manage each pollutant individually in separate markets, with each permit based on the quantity of the pollutant or its environmental effects, and weighted-sum permits that aggregate several pollutants as a single commodity to be traded in a single market. In this paper, we perform a mathematical analysis of TDP programs for multiple pollutants that jointly affect the environment (i.e., interactive pollutants) and demonstrate the practicality of this approach for cost-efficient maintenance of river water quality. For interactive pollutants, the relative weighting factors are functions of the water quality impacts, marginal damage function, and marginal treatment costs at optimality. We derive the optimal set of weighting factors required by this approach for important scenarios for multiple interactive pollutants and propose using an analytical elasticity of substitution function to estimate damage functions for these scenarios. We evaluate the applicability of this approach using a hypothetical example that considers two interactive pollutants. We compare the weighted-sum permit approach for interactive pollutants with individual permit systems and TDP programs for multiple additive pollutants. We conclude by discussing practical considerations and implementation issues that result from the application of weighted-sum permit programs.

  9. Solute Export Through Transpiration: A Possible Control of Soil Water Chemistry?

    NASA Astrophysics Data System (ADS)

    Alexander, S. C.; Boyle, D. B.; Alexander, E. C.

    2005-12-01

    Recent studies of soil and ground water interactions in western Minnesota have produced seemingly anomalous results. The soil waters beneath highly transpirative plants (Typha sp., Salix sp. and Populus sp.) in a ground water discharge area developed high calcium sulfate concentrations with only minor enrichment of sodium and chloride. It was expected that concentration of solutes by evapo-transpiration would enrich all ions in the originating ground water more equally. Transpired water is generally assumed to be essentially distilled water although there is little analytical data to support this hypothesis. Given the very high evapotranspiration rates of Western Minnesota, greater than 95% of total water movement, even relatively dilute ion concentrations in the transpired water may be significant in the total chemical budget. To investigate the chemistry of transpired water we adapted techniques that have been used to study total transpiration rates as well as isotopic composition of transpired waters. Our initial results from typha sp. have produced waters that while relatively dilute are distinctly not distilled water. Control samples using de-ionized water over dead vegetation produced minor ion enrichment. All results are in ppm. Ion - Ca, Mg, Na, K, P, Mn, Cl , SO4, NO3-N soil water - 18.5, 2.9, 4.8, 3.8, 0.2, 0.2, 5.6, 2.4, 0.5 transpiration - 1.9, 0.6, 1.5, 8.5, 0.3, 0.4, 9.0, 1.6, <0.1 DI control - 0.1, <0.1, 0.1, <0.1, <0.1, <0.1, <0.1, 1.6, <0.1 The observed transpiration chemistries are in rough agreement with reported literature values for plant stem water. While many plants are known to excrete large molecules the expulsion of ions in transpired water would represent a novel chemical plant pathway.

  10. Ammonium, Nitrate, and Total Nitrogen in the Soil Water of Feedlot and Field Soil Profiles1

    PubMed Central

    Elliott, L. F.; McCalla, T. M.; Mielke, L. N.; Travis, T. A.

    1972-01-01

    A level feedlot, located in an area consisting of Wann silt loam changing with depth to sand, appears to contribute no more NO3- nitrogen, NH4+ nitrogen, and total nitrogen to the shallow water table beneath it than an adjacent cropped field. Soil water samples collected at 46, 76, and 107 cm beneath the feedlot surface generally showed NO3- nitrogen concentrations of less than 1 μg/ml. During the summer months, soil water NO3- nitrogen increased at the 15-cm depth, indicating that nitrification took place at the feedlot surface. However, the low soil water NO3- nitrogen values below 15 cm indicate that denitrification takes place beneath the surface. PMID:16349922

  11. Water use, productivity and interactions among desert plants

    SciTech Connect

    Ehleringer, J.R.

    1992-11-17

    Water plays a central role affecting all aspects of the dynamics in aridland ecosystems. Productivity, stability, and competitive interactions among ecosystem components within aridlands are key processes related directly to water in deserts. The ecological studies in this project revolve around one fundamental premise: that integrated aspects of plant metabolism provide insight into the structure and function of plant communities and ecosystems. While it is difficult to extrapolate from instantaneous physiological observations to higher scales, such as whole plant performance or to interactions between plants as components of ecosystems, several key aspects of plant metabolism are scalable. Analyses of stable isotopic composition in plant tissues at natural abundance levels provide a useful tool that can provide insight into the consequences of physiological processes over temporal and spatial scales. Some plant processes continuously fractionate among light and heavy stable isotopic forms of an element; over time this results in integrated measures of plant metabolism. For example, carbon isotope fractionation during photosynthesis results in leaf carbon isotopic composition that is a measure of the set-point for photosynthetic metabolism and of water-use efficiency. Thus it provides information on the temporal scaling of a key physiological process. In contrast, hydrogen is not fractionated during water uptake through the root. Soil water availability in shallow, deep, and/or groundwater layers vary spatially; therefore hydrogen isotope ratios of xylem sap provide a direct measure of the water source currently used by a plant. The longer-term record of carbon and hydrogen isotope ratios is recorded annually in xylem tissues (tree rings). The research in this project addresses variation in stable isotopic composition of aridland plants and its consequences for plant performance and community-level interactions.

  12. Evaluation of Two Soil Water Redistribution Models (Finite Difference and Hourly Cascade Approach) Through The Comparison of Continuous field Sensor-Based Measurements

    NASA Astrophysics Data System (ADS)

    Ferreyra, R.; Stockle, C. O.; Huggins, D. R.

    2014-12-01

    Soil water storage and dynamics are of critical importance for a variety of processes in terrestrial ecosystems, including agriculture. Many of those systems are under significant pressure in terms of water availability and use. Therefore, assessing alternative scenarios through hydrological models is an increasingly valuable exercise. Soil water holding capacity is defined by the concepts of soil field capacity and plant available water, which are directly related to soil physical properties. Both concepts define the energy status of water in the root system and closely interact with plant physiological processes. Furthermore, these concepts play a key role in the environmental transport of nutrients and pollutants. Soil physical parameters (e.g. saturated hydraulic conductivity, total porosity and water release curve) are required as input for field-scale soil water redistribution models. These parameters are normally not easy to measure or monitor, and estimation through pedotransfer functions is often inadequate. Our objectives are to improve field-scale hydrological modeling by: (1) assessing new undisturbed methodologies for determining important soil physical parameters necessary for model inputs; and (2) evaluating model outputs, making a detailed specification of soil parameters and the particular boundary condition that are driving water movement under two contrasting environments. Soil physical properties (saturated hydraulic conductivity and determination of water release curves) were quantified using undisturbed laboratory methodologies for two different soil textural classes (silt loam and sandy loam) and used to evaluate two soil water redistribution models (finite difference solution and hourly cascade approach). We will report on model corroboration results performed using in situ, continuous, field measurements with soil water content capacitance probes and digital tensiometers. Here, natural drainage and water redistribution were monitored following a controlled water application where the study areas were isolated from other water inputs and outputs. We will also report on the assessment of two soil water sensors (Decagon Devices 5TM capacitance probe and UMS T4 tensiometers) for the two soil textural classes in terms of consistency and replicability.

  13. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems.

    PubMed

    F U, Shenglei; Ferris, Howard

    2006-12-01

    Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low- or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63 +/- 0.20 in the early growth stage to 1.47 +/- 0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45 +/- 0.30 to 5.43 +/- 0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting. The shoot-to-root ratios were not significantly different between two CO2 levels. PMID:17313000

  14. Degradation of soils as a result of human-induced transformation of their water regime and soil-protective practice

    NASA Astrophysics Data System (ADS)

    Zaidel'Man, F. R.

    2009-01-01

    The adverse human-induced changes in the water regime of soils leading to their degradation are considered. Factors of the human activity related to the water industry, agriculture, and silviculture are shown to play the most active role in the soil degradation. Among them are the large-scale hydraulic works on rivers, drainage and irrigation of soils, ameliorative and agricultural impacts, road construction, and uncontrolled impacts of industry and silviculture on the environment. The reasons for each case of soil degradation related to changes in the soil water regime are considered, and preventive measures are proposed. The role of secondary soil degradation processes is shown.

  15. Hydrodynamic interactions and swarming of water fleas

    NASA Astrophysics Data System (ADS)

    Eckhardt, Bruno; Vollmer, Juergen; Gergely, Attila

    2004-03-01

    When attracted by a vertical beam of light water fleas tend to move collectively in a swirl-like motion around this vertical axis. We model this as a collective motion of interacting active particles in an attractive potential. The force mimicks attraction towards light, the fleas are active since they tend to swim with a prescribed velocity, and the coupling between the fleas is hydrodynamic interaction that tends to align their motion. For a few particles reversals in the sense of rotation are possible, but with increasing number they become less likely. A strong repulsion enhances the ordering and stabilizes the rotation.

  16. Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes

    PubMed Central

    Gutierrez, Mario; Reynolds, Matthew P.; Klatt, Arthur R.

    2010-01-01

    Spectral reflectance indices can be used to estimate the water status of plants in a rapid, non-destructive manner. Water spectral indices were measured on wheat under a range of water-deficit conditions in field-based yield trials to establish their relationship with water relations parameters as well as available volumetric soil water (AVSW) to indicate soil water extraction patterns. Three types of wheat germplasm were studied which showed a range of drought adaptation; near-isomorphic sister lines from an elite/elite cross, advanced breeding lines, and lines derived from interspecific hybridization with wild relatives (synthetic derivative lines). Five water spectral indices (one water index and four normalized water indices) based on near infrared wavelengths were determined under field conditions between the booting and grain-filling stages of crop development. Among all water spectral indices, one in particular, which was denominated as NWI-3, showed the most consistent associations with water relations parameters and demonstrated the strongest associations in all three germplasm sets. NWI-3 showed a strong linear relationship (r2 >0.6–0.8) with leaf water potential (ψleaf) across a broad range of values (–2.0 to –4.0 MPa) that were determined by natural variation in the environment associated with intra- and inter-seasonal affects. Association observed between NWI-3 and canopy temperature (CT) was consistent with the idea that genotypes with a better hydration status have a larger water flux (increased stomatal conductance) during the day. NWI-3 was also related to soil water potential (ψsoil) and AVSW, indicating that drought-adapted lines could extract more water from deeper soil profiles to maintain favourable water relations. NWI-3 was sufficiently sensitive to detect genotypic differences (indicated by phenotypic and genetic correlations) in water status at the canopy and soil levels indicating its potential application in precision phenotyping. PMID:20639342

  17. Soil water sensors:Problems, advances and potential for irrigation scheduling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands, while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and so...

  18. Temporal and soil management effects on soil infiltration and water content in a hillslope vineyard

    NASA Astrophysics Data System (ADS)

    Biddoccu, Marcella; Ferraris, Stefano; Cavallo, Eugenio

    2015-04-01

    The maintenance of bare soil in the vineyard's inter-rows with tillage, as well as other mechanized operations which increase the vehicle traffic, expose the soil to degradation, favoring overland flow and further threats as compaction, reduction of soil water holding capacity and water infiltration. Water infiltration is strongly controlled by field-saturated hydraulic conductivity, which depends primarily on soil texture and structure, and it is characterized by high spatial and temporal variability. Beyond the currently adopted soil management, some major causes in variability of infiltration rates are the history of cultivation and the structure of the first centimeters of the vineyard's soil. A study was carried out in two experimental vineyard plots included in the 'Tenuta Cannona Experimental Vine and Wine Centre of Regione Piemonte', located in NW Italy. The study was addressed to evaluate the temporal variations of the field-saturated hydraulic conductivity, in relation to the soil management adopted in the inter-rows of a hillslope vineyard. The investigation was carried out in a vineyard comparing the adoption of two different soil managements in the inter-rows: 1) conventional tillage and 2) controlled grass cover. Several series of double-ring of infiltration tests were carried out during a 2-years period of observation, using the simplified falling head technique (SFH). In order to take into account the effect of tractor traffic, the tests were done both inside the the track, the portion of soil affected by the transit of tractor wheels or tracks, and outside the track. Before the execution of each test, bulk density and initial soil water content close to the investigated area were determined. Relations among infiltration behavior and these parameters were analyzed. Field-saturated hydraulic conductivity (Kfs) at different sampling dates showed high variability, especially in the vineyard with cultivated soil. Indeed, highest infiltration rates were measured within a month after the tillage operations (951.0 mm h-1). However, the positive effect of tillage was only temporary, since the lowest mean Kfs was obtained in the tilled plot, for the undisturbed soil conditions, namely when measurements were carried out long time after the execution of tillage operations (107.6 mm h-1). Significant differences between the hydraulic conductivity measured inside the track and outside the track positions were found both in the grass covered and in the tilled vineyard's inter-rows. The results of the investigation show that, in the specific area of study, the maintenance of grass cover in the vineyard inter-rows gives higher water infiltration than tillage throughout the year.

  19. The Soil Stack: An Interactive Computer Program Describing Basic Soil Science and Soil Degradation.

    ERIC Educational Resources Information Center

    Cattle, S. R.; And Others

    1995-01-01

    A computer program dealing with numerous aspects of soil degradation has a target audience of high school and university students (16-20 year olds), and is presented in a series of cards grouped together as stacks. Describes use of the software in Australia. (LZ)

  20. Pore-Scale Effects of Soil Structure And Microbial EPS Production On Soil Water Retention

    NASA Astrophysics Data System (ADS)

    Orner, E.; Anderson, E.; Rubinstein, R. L.; Chau, J. F.; Shor, L. M.; Gage, D. J.

    2013-12-01

    Climate-induced changes to the hydrological cycle will increase the frequency of extreme weather events including powerful storms and prolonged droughts. Moving forward, one of the major factors limiting primary productivity in terrestrial ecosystems will be sub-optimal soil moisture. We focus here on the ability of soils to retain moisture under drying conditions. A soil's ability to retain moisture is influenced by many factors including its texture, its structure, and the activities of soil microbes. In soil microcosms, the addition of small amounts of microbially-produced extracellular polymeric substances (EPS) can dramatically shift moisture retention curves. The objective of this research is to better understand how soil structure and EPS may act together to retain moisture in unsaturated soils. Replicate micromodels with exactly-conserved 2-D physical geometry were initially filled with aqueous suspensions of one of two types of bacteria: one mutant was ultra- muccoid and the other was non-muccoid. Replicate micromodels were held at a fixed, external, relative humidity, and the position of the air-water interface was imaged over time as water evaporates. There was no forced convection of air or water inside the micromodels: drying was achieved by water evaporation and diffusion alone. We used a fully automated, inverted microscope to image replicate drying lanes each with dimensions of 1 mm x 10 mm. A complete set of images was collected every 30 minutes for 30 hours. The results show devices loaded with the highly muccoid strain remained >40% hydrated for 13 h, while devices loaded with the non-muccoid remained >40% hydrated for only 6 h, and were completely dry by 13 h. Current work is comparing interfacial water fluxes in structured and unstructured settings, and is attempting to model the synergistic effects of soil structure and EPS content on moisture retention in real soils. This research may allow more accurate description of naturally-occurring feedbacks between the soil carbon and water cycles, and may enable agriculture biotechnology that enhances natural soil processes for improved resiliency of terrestrial ecosystems.

  1. Stemflow-induced processes of soil water storage

    NASA Astrophysics Data System (ADS)

    Germer, Sonja

    2013-04-01

    Compared to stemflow production studies only few studies deal with the fate of stemflow at the near-stem soil. To investigate stemflow contribution to the root zone soil moisture by young and adult babassu palms (Attalea speciosa Mart.), I studied stemflow generation, subsequent soil water percolation and root distributions. Rainfall, stemflow and perched water tables were monitored on an event basis. Perched water tables were monitored next to adult palms at two depths and three stem distances. Dye tracer experiments monitored stemflow-induced preferential flow paths. Root distributions of fine and coarse roots were related to soil water redistribution. Average rainfall-collecting area per adult palm was 6.4 m², but variability between them was high. Funneling ratios ranged between 16-71 and 4-55 for adult and young palms, respectively. Nonetheless, even very small rainfall events of 1 mm can generate stemflow. On average, 9 liters of adult palm stemflow were intercepted and stemflow tended to decrease for-high intensity rainfall events. Young babassu palms funneled rainfall via their fronds, directly to their subterranean stems. The funneling of rainfall towards adult palm stems, in contrast, led to great stemflow fluxes down to the soil and induced initial horizontal water flows through the soil, leading to perched water tables next to palms, even after small rainfall events. The perched water tables extended, however, only a few decimeters from palm stems. After perched water tables became established, vertical percolation through the soil dominated. To my knowledge, this process has not been described before, and it can be seen as an addition to the two previously described stemflow-induced processes of Horton overland flow and fast, deep percolation along roots. This study has demonstrated that Babassu palms funnel water to their stems and subsequently store it in the soil next to their stems in areas where coarse root length density is very high. This might partly explain the competitive position of babassu palms on pastures or secondary forests.

  2. Impact of reclaimed water irrigation on soil health in urban green areas.

    PubMed

    Chen, Weiping; Lu, Sidan; Pan, Neng; Wang, Yanchun; Wu, Laosheng

    2015-01-01

    Rapid increase of reclaimed water irrigation in urban green areas requires investigating its impact on soil health conditions. In this research, field study was conducted in 7 parks in Beijing with different histories of reclaimed water irrigation. Twenty soil attributes were analyzed to evaluate the effects of reclaimed water irrigation on the soil health conditions. Results showed that soil nutrient conditions were ameliorated by reclaimed water irrigation, as indicated by the increase of soil organic matter content (SOM), total nitrogen (TN), and available phosphorus (AP). No soil salinization but a slight soil alkalization was observed under reclaimed water irrigation. Accumulation of heavy metals in soil was insignificant. It was also observed that reclaimed water irrigation could significantly improve the soil microorganism activities. Overall, the soil health conditions were improved with reclaimed water irrigation, and the improvement increased when the reclaimed water irrigation period became longer. PMID:25150469

  3. Evapotranspiration of soil water movement in small area vegetation

    NASA Astrophysics Data System (ADS)

    Paraskevas, C.; Georgiou, P.; Ilias, A.; Panoras, A.; Babajimopoulos, C.

    2013-12-01

    In Greece, crops are frequently cultivated in small isolated areas in close proximity to roads and bare soils and therefore evapotranspiration is affected by local advection. Under these circumstances, oasis effect conditions are present and evapotranspiration is higher than what is expected. In this paper, the evapotranspiration and soil water dynamics of a cotton crop cultivated in small areas under the oasis effect is studied. To this end, two isolated free-drainage lysimeters cultivated with cotton in the year 2007 were used. Soil moisture of the soil profile of both the lysimeters was monitored with two capacitance water content probes. The soil water balance method was used to estimate crop evapotranspiration and corresponding crop coefficients in one of the two lysimeters. These coefficients were 75% larger than the FAO-56 crop coefficients at the mid-season stage. The FAO-56 and the derived crop coefficients were used for the simulation of the water dynamics in the second lysimeter by the SWBACROS model. The derived crop coefficients for these conditions produced much better results than the FAO-56 crop coefficients. The results were improved when crop coefficient value equal to 2.5 was used for the mid-season stage.

  4. Mediterranean shrub vegetation: soil protection vs. water availability

    NASA Astrophysics Data System (ADS)

    García Estringana, Pablo; Nieves Alonso-Blázquez, M.; Alegre, Alegre; Cerdà, Artemi

    2014-05-01

    Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensiy or slope (Ziadat and Taimeh, 2013) the plant covers is the main factor that controls the soil erosion (Haregeweyn, 2013). Plant cover is the main factor of soil erosion processes as the vegetation control the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012). Vegetation cover acts in a complex way in influencing on the one hand on runoff and soil loss and on the other hand on the amount and the way that rainfall reaches the soil surface. In arid and semiarid regions, where erosion is one of the main degradation processes and water is a scant resource, a minimum percentage of vegetation coverage is necessary to protect the soil from erosion, but without compromising the availability of water (Belmonte Serrato and Romero Diaz, 1998). This is mainly controlled by the vegetation distribution (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). Land abandonment is common in Mediterranean region under extensive land use (Cerdà, 1997b; García-Ruiz, 2010). Abandoned lands typically have a rolling landscape with steep slopes, and are dominated by herbaceous communities that grow on pasture land interspersed by shrubs. Land abandonment use to trigger an increase in soil erosion, but the vegetation recovery reduces the impact of the vegetation. The goal of this work is to assess the effects of different Mediterranean shrub species (Dorycnium pentaphyllum Scop., Medicago strasseri, Colutea arborescens L., Retama sphaerocarpa, L., Pistacia Lentiscus L. and Quercus coccifera L.) on soil protection (runoff and soil losses) and on rainfall reaching soil surface (rainfall partitioning fluxes). To characterize the effects of shrub vegetation and to evaluate their effects on soil protection, two field experiments were carried out. The presence of shrub vegetation reduced runoff by at least 45% and soil loss by at least 59% in relation to an abandoned and degraded soil (bare soil) (Garcia-Estringana et al., 2010a). D. pentaphyllum, M. strasseri and C. arborescens were more effective in reducing runoff and soil loss (at least 83% and 97% respectively) than R. sphaerocarpa (45% and 59% respectively). Pisctacia Lentiscus L reduced the soil losses in 87% and the runoff rates (68%) meanwhile Quercus coccifera L reached a larger reduction (95% and 88 %) in comparison to herbicide treated agriculture soil. So, all shrub species protected the soil, but not in the same way. In relation to rainfall reaching the soil surface, great differences were observed among species, with interception losses varying between 10% for R. sphaerocarpa to greater than 36% for D. pentaphyllum and M. strasseri, and with stemflow percentages changing between less than 11% for D. pentaphyllum and M. strasseri and 20% for R. sphaerocarpa (Garcia-Estringana et al., 2010b). Rainfall interception on Pistacia Lentiscus and Quercus coccifera were 24% and 34% respectively for the two years of measurements. The integration of the effects of Mediterranean shrub vegetation on soil protection and rainfall partitioning fluxes facilitates understanding the effects of changes in vegetation type on soil and water resources. From this perspective, the interesting protective effect of D. pentpahyllum and M. strasseri, reducing intensely runoff and soil loss contrasts with the dangerous reduction in rainfall reaching the soil surface. Soil protection is essential in semiarid and arid environments, but a proper assessment of the effects on water availability is critical because of water is a scant resource in these kinds of environments. Pistacia Lentiscus and Quercus coccifera shown both a high capacity to intercept rainfall, increase infiltration and reduce the soil losses. We suggest to apply similar research programs into recently fire affected land as the role of vegetation after the fire is very dynamic (Cerdà 1998b). Acknowledgements The research projects 07 M/0077/1998, 07 M/0023/2000 and RTA01-078-C2- 2, GL2008-02879/BTE, LEDDRA 243857 and RECARE FP7 project 603498 supported this research. References Belmonte Serrato, F., Romero Díaz, A., López Bermúdez, F., Hernández Laguna, E. 1999. Óptimo de cobertura vegetal en relación a las pérdidas de suelo por erosión hídrica y las pérdidas de lluvia por interceptación. Papeles de Geografía 30, 5-15. Cammeraat, E., Cerdà, A., Imeson, A.C. 2010. Ecohydrological adaptation of soils following land abandonment in a semiarid environment. Ecohydrology, 3: 421-430. 10.1002/eco.161 Cerdà, A. 1997a. The effect of patchy distribution of Stipa tenacissima L. on runoff and erosion. Journal of Arid Environments, 36, 37-51. Cerdà, A. 1998. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science, 78, 321-330. Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12, 1031-1042. Cerdà, A.1997b. Soil erosion after land abandonment in a semiarid environment of Southeastern Spain. Arid Soil Research and Rehabilitation, 11, 163-176. Garcia-Estringana, P., Alonso-Blázquez, N., Alegre, J. 2010b. Water storage capacity, stemflow and water funneling in Mediterranean shrubs. Journal of Hydrology 389, 363-372. Garcia-Estringana, P., Alonso-Blázquez, N., Marques, M.J., Bienes, R., Alegre, J. 2010a. Direct and indirect effects of Mediterranean vegetation on runoff and soil loss. European Journal of Soil Science 61, 174-185. García-Ruiz, J.M. 2010. The effects of land uses on soil erosion in Spain: a review. Catena 81, 1-11. Haregeweyn, N., Poesen, J., Verstraeten, G., Govers, G., de Vente, J., Nyssen, J., Deckers, J., and Moeyersons, J. 2013. Assessing the performance of a spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM in Northern Ethiopia. Land Degradation & Development, 24: 188- 204. DOI 10.1002/ldr.1121 Kakembo, V., Ndlela, S., and Cammeraat, E. 2012. Trends in vegetation patchiness loss and implications for landscape function: the case of Pteronia incana invasion in the Eastern Cape Province, South Africa. Land Degradation & Development, 23: 548- 556. DOI 10.1002/ldr.2175 Kargar Chigani, H., Khajeddin, S. J. and Karimzadeh, H. R. 2012. Soil relationships of three arid land plant species and their use in rehabilitating degraded sites. Land Degradation & Development, 23: 92- 101. DOI 10.1002/ldr.1057 Zhao, G., Mu, X., Wen, Z., Wang, F., and Gao, P. 2013. Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24: 499- 510. DOI 10.1002/ldr.2246 Ziadat, F. M., and Taimeh, A. Y. 2013. Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation & Development, 24: 582- 590. DOI 10.1002/ldr.2239

  5. Impact of regression methods on improved effects of soil structure on soil water retention estimates

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuong Minh; De Pue, Jan; Le, Khoa Van; Cornelis, Wim

    2015-06-01

    Increasing the accuracy of pedotransfer functions (PTFs), an indirect method for predicting non-readily available soil features such as soil water retention characteristics (SWRC), is of crucial importance for large scale agro-hydrological modeling. Adding significant predictors (i.e., soil structure), and implementing more flexible regression algorithms are among the main strategies of PTFs improvement. The aim of this study was to investigate whether the improved effect of categorical soil structure information on estimating soil-water content at various matric potentials, which has been reported in literature, could be enduringly captured by regression techniques other than the usually applied linear regression. Two data mining techniques, i.e., Support Vector Machines (SVM), and k-Nearest Neighbors (kNN), which have been recently introduced as promising tools for PTF development, were utilized to test if the incorporation of soil structure will improve PTF's accuracy under a context of rather limited training data. The results show that incorporating descriptive soil structure information, i.e., massive, structured and structureless, as grouping criterion can improve the accuracy of PTFs derived by SVM approach in the range of matric potential of -6 to -33 kPa (average RMSE decreased up to 0.005 m3 m-3 after grouping, depending on matric potentials). The improvement was primarily attributed to the outperformance of SVM-PTFs calibrated on structureless soils. No improvement was obtained with kNN technique, at least not in our study in which the data set became limited in size after grouping. Since there is an impact of regression techniques on the improved effect of incorporating qualitative soil structure information, selecting a proper technique will help to maximize the combined influence of flexible regression algorithms and soil structure information on PTF accuracy.

  6. Soil water retention dynamics in Luvisols at contrasting slope positions in lysimeter monoliths from an eroded soil landscape

    NASA Astrophysics Data System (ADS)

    Herbrich, Marcus; Gerke, Horst H.; Sommer, Michael

    2015-04-01

    Modeling water flow and solute transport in variably saturated soils requires the proper description of the soil water retention curve. The problem is that under field conditions, water retention may be hysteretic or otherwise changing in time due to changing soil properties. In arable soil landscapes, these changes may depend on the erosion history which created spatial patterns of soil properties such as texture and organic matter content and differences in crop development. The objective of this study was to analyze the dynamics in field-measured water retention data for Luvisols in 10 cm, 30 cm and 50 cm soil depth (Ap, E, and Bt horizons) at two contrasting at slope positions characterized by different degrees of soil erosion under intensive agricultural cultivation. Drying and wetting water retention was obtained from tensiometer/MPS and TDR data in depths representing same soil horizons. For comparison, we used drying retention data obtained from soil cores using the evaporation method (Hyprop). Drying data were fitted to the unconstrained water retention function proposed by van Genuchten (1980) and the bimodal model of Durner (1994). For wetting data, hydraulic model parameters were determined by using the Pedroso-Williams model (2010). The water contents of wetting and drying branches were dynamically changing. These changes in water retention were different for several horizons of the more eroded Luvisol as compared to the less eroded one. Differences in water retention dynamics could be related to soil tillage and the erosion history at the different slope positions. The water differences in retention could be explained by hysteresis and temporal changes in soil water repellency. Field and lab retention data differed as reported earlier. The results suggest that estimation of soil water retention curves without resorting to time-consuming field measurements remains challenging. The results suggest that for erosion-affected arable soils of the hummocky landscape, the soil water retention dynamics is spatially distributed and depending on the erosion gradient.

  7. Farm water budgets for semiarid irrigated floodplains of northern New Mexico: characterizing the surface water-groundwater interactions

    NASA Astrophysics Data System (ADS)

    Gutierrez, K. Y.; Fernald, A.; Ochoa, C. G.; Guldan, S. J.

    2013-12-01

    KEY WORDS - Hydrology, Water budget, Deep percolation, Surface water-Groundwater interactions. With the recent projections for water scarcity, water balances have become an indispensable water management tool. In irrigated floodplains, deep percolation from irrigation can represent one of the main aquifer recharge sources. A better understanding of surface water and groundwater interactions in irrigated valleys is needed for properly assessing the water balances in these systems and estimating potential aquifer recharge. We conducted a study to quantify the parameters and calculate the water budgets in three flood irrigated hay fields with relatively low, intermediate and, high water availability in northern New Mexico. We monitored different hydrologic parameters including total amount of water applied, change in soil moisture, drainage below the effective root zone, and shallow water level fluctuations in response to irrigation. Evapotranspiration was calculated from weather station data collected in-situ using the Samani-Hargreaves. Previous studies in the region have estimated deep percolation as a residual parameter of the water balance equation. In this study, we used both, the water balance method and actual measurements of deep percolation using passive lysimeters. Preliminary analyses for the three fields show a relatively rapid movement of water through the upper 50 cm of the vadose zone and a quick response of the shallow aquifer under flood irrigation. Further results from this study will provide a better understanding of surface water-groundwater interactions in flood irrigated valleys in northern New Mexico.

  8. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1973-01-01

    There are no author-identified significant results in this report. This report deals with the selection of the best channels from the 24-channel aircraft data to represent crop and soil conditions. A three-step procedure has been developed that involves using univariate statistics and an F-ratio test to indicate the best 14 channels. From the 14, the 10 best channels are selected by a multivariate stochastic process. The third step involves the pattern recognition procedures developed in the data analysis plan. Indications are that the procedures in use are satsifactory and will extract the desired information from the data.

  9. Improved Instrument for Detecting Water and Ice in Soil

    NASA Technical Reports Server (NTRS)

    Buehler, Martin; Chin, Keith; Keymeulen, Didler; McCann, Timothy; Seshadri, Suesh; Anderson, Robert

    2009-01-01

    An instrument measures electrical properties of relatively dry soils to determine their liquid water and/or ice contents. Designed as a prototype of instruments for measuring the liquid-water and ice contents of lunar and planetary soils, the apparatus could also be utilized for similar purposes in research and agriculture involving terrestrial desert soils and sands, and perhaps for measuring ice buildup on aircraft surfaces. This instrument is an improved version of the apparatus described in Measuring Low Concentrations of Liquid Water and Ice in Soil (NPO-41822), NASA Tech Briefs, Vol. 33, No. 2 (February 2009), page 22. The designs of both versions are based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and the magnitude and phase angle of impedance changes accordingly) with increasing water content. The previous version included an impedance spectrometer and a jar into which a sample of soil was placed. Four stainless-steel screws at the bottom of the jar were used as electrodes of a fourpoint impedance probe connected to the spectrometer. The present instrument does not include a sample jar and can be operated without acquiring or handling samples. Its impedance probe consists of a compact assembly of electrodes housed near the tip of a cylinder. The electrodes protrude slightly from the cylinder (see Figure 1). In preparation for measurements, the cylinder is simply pushed into the ground to bring the soil into contact with the electrodes.

  10. Interactive Effects of Soil Drainage and Time Since Burn on Transpiration of Boreal Black Spruce Forests

    NASA Astrophysics Data System (ADS)

    Angstmann, J. L.; Ewers, B. E.; Kwon, H.; Bond-Lamberty, B.; Amiro, B.; Gower, S. T.

    2006-12-01

    Boreal forests and their changing fire frequencies are of interest in global climate change because they comprise one-third of the world's forest coverage and store large amounts of carbon. Much of this carbon storage is due to peat formation in cold, poorly-drained boreal soils. Here, evapotranspiration plays a crucial role in the interaction between carbon and water cycles. The main objective of this study is to quantify the amount of water being released through transpiration as boreal forest stands recover from wildfires across well- to poorly-drained soil conditions. Species composition of this region of boreal forest changes during succession in well-drained soils from a mix of Picea mariana (black spruce), Pinus banksiana (jack pine), and Populus tremuloides (trembling aspen) in younger stands to being dominated solely by Picea mariana in older stands. Poorly-drained soils are dominated by Picea mariana throughout the chronosequence. Previous work in well-drained stands recovering from wildfires showed that in all but the oldest black spruce stands 1) tree transpiration changed dramatically with stand age due to sapwood-to-leaf area ratio dynamics and 2) minimum leaf water potential was kept constant to prevent excessive cavitation. Thus, we hypothesized that 1) minimum leaf water potential would be constant and 2) transpiration would be proportional to the sapwood-to- leaf area ratio across both stand age and soil drainage except for the two oldest black spruce stands. We tested these hypotheses by measuring leaf water potential (Psi) of 95 trees and sap flux from 111 trees. Mixed results were found in Picea mariana Psi between well- and poorly-drained areas of each stand age, with only the 17-year-old burn in July (average midday Psi of -0.77 and -1.08 MPa for well- and poorly drained respectively) and the 76-year-old burn in June (average predawn Psi of -0.52 and -0.42 MPa for well- and poorly drained respectively) differing significantly. Growing season averages of Psi for Picea mariana resulted in significantly different values of -0.29, -0.44, -0.42, -0.34 for pre-dawn and -1.09, -1.37, -1.20, -1.25 MPa for mid- day at the17-, 42-, 76-, and 156-year-old burns respectively. Our results show that stand age has more of an influence on black spruce water potentials and, likely, stand transpiration per unit leaf area than soil drainage. Thus, regional scale process models of boreal forest transpiration can be simplified with respect to soil drainage while retaining mechanistic rigor with respect to plant hydraulics.

  11. Grazing impacts on soil carbon fractions and soil water dynamics in subalpine ecosystems

    NASA Astrophysics Data System (ADS)

    Gill, R. A.

    2005-12-01

    The mountain lands of the intermountain west are vital to the wellbeing of human communities in the adjacent valleys, providing these communities with water, important summer forage for wildlife and domestic livestock, and possibly the sequestration of anthropogenic carbon. In this work, I build on a 90-year old grazing experiment in mountain meadows on the Wasatch Plateau in central Utah. Long-term grazing significantly reduced aboveground net primary production (ANPP) in all years compared with plots within grazing exclosures, even though these plots were not grazed during the study period. Livestock grazing had no impacts on total soil C or particulate organic matter stocks, although grazing did alter soil C chemistry and soil water dynamics. Grazing significantly increased the proportion of total soil C stocks that were potentially mineralizable in the laboratory. Volumetric soil moisture was consistently higher in ungrazed plots than grazed plots. In addition, there was a 0.5-1% increase in ^13C in grazed plots compared to paired ungrazed plots, supporting the conclusion that grazing significantly increases periods of water stress. Because grazing has resulted in an accumulation of easily decomposable organic material, if temperatures warm and summer precipitation increases as is anticipated, these soils may become net sources of carbon to the atmosphere creating a positive feedback between climate change and atmospheric CO2.

  12. Organic compounds in hot-water-soluble fractions from water repellent soils

    NASA Astrophysics Data System (ADS)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes < C20) were extracted through desorption of complex colloids stabilized as micelles in dissolved organic carbon (DOC). Water repellency was completely eliminated by hot water under high pressure. The molecular composition of HWSC can play a critical role in stabilization and destabilization of soil organic matter (SOM), particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  13. Onset of perched water in a gradually layered soil: a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Barontini, S.; Belluardo, G.; Bacchi, B.; Ranzi, R.

    2009-04-01

    The genetic layering of the soil hydrological properties can significanly affect a number of processes as the onset of soil-slips, the runoff production and those related to the interaction between soil, water, plants and atmosphere. Therefore, with the aim of better understanding some aspects of these processes, we focused on the effect, during an imbibition process, of the decrease of the soil hydraulic conductivity at saturation Ks. A laboratory experiment was setup in order to observe the conditions and dynamics of the onset of a perched water in a gradually layered soil. A prismatic column was realised and filled with 9 different soil strata, each 0.1 m deep, whose grain-size distribution curve and porosity were such as to reproduce an exponential decay of Ks, on the basis of the application of a modified Kozeny-Carman relatioship. The so-rebuilt soil was artificially wetted by means of a rainfall simulator at a rate previously determined in order to maintain a constant water content on the surface for 9 hours. Istantaneous volumetric water content profiles were measured along the soil profile by means of 9 TDR probes and a multiplexer device. As a result of the experiment we observed and documented the formation of a water content peak at about 0.15 m depth, about 1.5 h after the beginning of the imbibition process. Then the peak emphasised and moved downward and a perched water formed at an intermediate height in the column, about 6 h after the beginning of the experiment. By this experiment we could then verify the formation of a water content peak, as predicted by a previously developed theoretical model and by a finite volume numerical simulation. The peak is then enveloped reaching the saturation as the wetting front moves downward. The perched water depth then rapidly increased upward while the wetting front slowly travelled downward. Before the transition toward saturation, the experiment supported the phoenomenological aspects enlightened by the analytical solution, although the adopted Gardner's constitutive laws tend to overestimate the unsaturated conductivity for most of the soils. A quantitative good agreement was observed between the experimental data and the numerical simulations.

  14. Monitoring of soil water content and quality inside and outside the water curtain cultivation facility

    NASA Astrophysics Data System (ADS)

    Ha, K.; Kim, Y.

    2014-12-01

    Water curtain cultivation system is an energy saving technique for winter season by splashing groundwater on the inner roof of green house. Artificial groundwater recharge application to the water curtain cultivation facilities was adopted and tested to use groundwater sustainably in a rural region of Korea. The groundwater level in the test site shows natural trend corresponding rainfall pattern except during mid-November to early April when groundwater levels decline sharply due to groundwater abstraction for water curtain cultivation. Groundwater levels are also affected by surface water such as stream, small dams in the stream and agricultural ditches. Infiltration data were collected from lysimeter installation and monitoring inside and outside water cultivation facility and compared with each other. The infiltration data were well correlated with rainfall outside the facility, but the data in the facility showed very different from the other. The missing infiltration data were attributed to groundwater level rise and level sensor location below water table. Soil water contents in the unsaturated zone indicated rainfall infiltration propagation at depth and with time outside the facility. According to rainfall amount and water condition at the initial stage of a rainfall event, the variation of soil water content was shown differently. Soil water contents and electrical conductivities were closely correlated with each other, and they reflected rainfall infiltration through the soil and water quality changes. The monitoring results are useful to reveal the hydrological processes from the infiltration to groundwater recharge, and water management planning in the water cultivation areas.

  15. Impact of alfalfa on soil and water quality

    SciTech Connect

    Sharma, P.; Moncrief, J.; Gupta, S.

    1997-10-30

    Dominance of row crop agriculture in rolling landscapes of western and Southwestern Minnesota is identified as a primary, non-point source of sediments and associated pollutants reaching the Minnesota River. Currently as a biomass energy project, alfalfa is being promoted in western Minnesota to harvest the leaves for animal feed and stems to generate electricity. As a perennial, leguminous crop grown with minimum inputs, introduction of alfalfa in row cropped lands has potential to improve both in-situ soil productivity and downstream water quality. A field study was initiated in 1996 to compare the volume of runoff and pollutants coming from alfalfa an com-soybean fields in western Minnesota. Two pair of alfalfa and corn-soybean watersheds were instrumented at Morris in the Fall of 1996 to measure rainfall, runoff, and sample water for sediment load, phosphorus, nitrogen, biochemical oxygen demand, and chemical oxygen demand. Simulated rainfall-runoff experiments were conducted on an existing crop rotation - input management study plots at Lamberton to evaluate soil quality effects of the inclusion of alfalfa in a corn-soybean rotation under manure and fertilization management schemes. Alfalfa soil water use as a function of frequency of harvest was also monitored at Morris to evaluate the effect of cutting schedule on soil water use. During the growing season of 1997, alfalfa under a two-cut management scheme used about 25-mm (an inch) more soil water than under a three-cut schedule. The mean differences between the treatments were not significant. The conclusions drawn in this report come from analysis of data collected during one winter-summer hydrologic and crop management cycle. Continued observations through a period of at least 3-5 years is recommended to improve the instrumentation robustness and discern the variability due to climate, soil, and crop management factors.

  16. USING ENSEMBLE PREDICTIONS TO SIMULATE FIELD-SCALE SOIL WATER TIME SERIES WITH UPSCALED AND DOWNSCALED SOIL HYDRAULIC PROPERTIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simulations of soil water flow require measurements of soil hydraulic properties which are particularly difficult at field scale. Laboratory measurements provide hydraulic properties at scales finer than the field scale, whereas pedotransfer functions (PTFs) integrate information on hydraulic prope...

  17. Soil-water characteristic curves for compacted clays

    SciTech Connect

    Tinjum, J.M.; Benson, C.H.; Blotz, L.R.

    1997-11-01

    Soil-water characteristic curves (SWCCs) are presented for four compacted clay barrier soils that were prepared at different compaction water contents (dry, wet, and optimum water content) and compactive efforts (standard and modified Proctor). The SWCCs were measured in the laboratory using pressure plate extractors. The shape of the SWCC depends on compaction water content and compactive effort, but compaction water content is more important. Compaction at higher compaction water content or with greater compactive effort results in larger air entry. Also, clays with higher plasticity index have greater air-entry suction. Changes in the shape of the SWCC are consistent with changes in pore size that occur by varying compaction conditions and with the mineralogical composition of the soils. These changes in the SWCC also are reflected in the van Genuchten and Brooks-Corey parameters, which were obtained from least-squares fits to the SWCC data. Regression equations are presented that can be used to estimate the van Genuchten parameters {alpha} and n from compaction water content, compactive effort, and plasticity index.

  18. Spatiotemporal Pattern of Root Water Uptake for Locally Differing Soil Water Availability

    NASA Astrophysics Data System (ADS)

    Dara, Abbas; Moradi, Ahmad B.; Oswald, Sascha

    2013-04-01

    One of the important but not well known questions is how the root system of a plant respond to water scarcity, especially if there is a locally heterogeneous distribution of soil moisture or accessibility of water. However, heterogeneous water availability is a typical characteristic of soils, for example by heterogeneity of soil properties, infiltration and evaporation or competition between plant roots. On top of that, water content in soil has a large temporal dynamics. Despite these intrinsic heterogeneities of soil-plant water relations, we know little about the ways how plants respond to local environmental properties. Recently imaging and tomography methods have become available, that facilitate the measurement of spatial and temporal distribution of water content and of the root system itself, which offers the possibility to investigate also the distribution of water uptake in a plant root system. To monitor root water uptake response to local soil water availability, we used neutron radiography especially suited to detect water distribution, to non-invasively image root growth and 2-D soil water distribution as time-lapsed images. We applied a method to hydraulically partition the soil to be able to actively control the level of water available locally and at the same time to locally quantify water uptake for these heterogeneous conditions. The key results for an imaging experiment running full three weeks show topological patterns of water uptake along the root system. Moreover, under water stress, compensatory root water uptake maximizes soil water utilization in response to transpiration demand. Lupin plants were grown in 40*35*1 cm³ aluminum containers. The root zone was partitioned into twenty compartments separated by capillary barriers and divides the root system into taproot and lateral roots, and into young and old later root segments at the top, middle and bottom profile positions. Three weeks after planting, four soil-water treatments in three replaces each, were applied as: no stress (control), %50 stress (water available for 50% of the lateral roots) and 75% stress (water available for 25% of lateral roots in old and young parts in two individual treatments). Two levels of transpiration demand in 5-day periods each were also applied, interrupted by five days of recovering in between. Daily changes in soil water content and root water uptake rate in each compartment have been monitored by neutron radiography four times a day as well as daily transpiration rates. The results show a high compensatory water uptake by the root segments in the wet parts under water stress. This root compensation increases significantly with increasing portion of the root system suffering water scarcity. ; While for low transpiration demand, there was not a significant difference in transpiration rate between 50% and 25% local water availability, for higher transpiration demand transpiration demand cannot be fully compensated when water is provided for the root system locally. In respect to root topology , root segments in the top with less distance to the shoot show higher rates of water uptake then those in the lower position while the difference in local root water uptake between old and young roots is not that high.

  19. The importance of plant-soil interactions for N mineralisation in different soil types

    NASA Astrophysics Data System (ADS)

    Murphy, Conor; Paterson, Eric; Baggs, Elizabeth; Morley, Nicholas; Wall, David; Schulte, Rogier

    2013-04-01

    The last hundred years has seen major advancements in our knowledge of nitrogen mineralisation in soil, but key drivers and controls remain poorly understood. Due to an increase in the global population there is a higher demand on food production. To accommodate this demand agriculture has increased its use of N based fertilizers, but these pose risks for water quality and GHG emissions as N can be lost through nitrate leaching, ammonia volatilization, and denitrification processes (Velthof, et al., 2009). Therefore, understanding the underlying processes that determine the soils ability to supply N to the plant is vital for effective optimisation of N-fertilisation with crop demand. Carbon rich compounds exuded from plant roots to the rhizosphere, which are utilized by the microbial biomass and support activities including nutrient transformations, may be a key unaccounted for driver of N mineralisation. The main aim of this study was to study the impact of root exudates on turnover of C and N in soil, as mediated by the microbial community. Two soil types, known to contrast in N-mineralisation capacity, were used to determine relationships between C inputs, organic matter mineralisation (priming effects) and N fluxes. 15N and 13C stable isotope approaches were used to quantify the importance of rhizosphere processes on C and N mineralisation. Gross nitrogen mineralisation was measured using 15N pool dilution. Total soil CO2 efflux was measured and 13C isotope partitioning was applied to quantify SOM turnover and microbial biomass respiration. Also, 13C was traced through the microbial biomass (chloroform fumigation) to separate pool-substitution effects (apparent priming) from altered microbial utilisation of soil organic matter (real priming effects). Addition of labile carbon resulted in an increase in N-mineralisation from soil organic matter in both soils. Concurrent with this there was an increase in microbial biomass size, indicating that labile C elicited real priming effects that mobilised N from organic matter. The results from this experiment indicate that rhizosphere processes play an important role in mediating rates of C and N mineralisation and should be accounted for in estimating soil N-supply capacities. Velthof, G.L., Oudendag, D., Witzke, H.P., Asman, W.A.H., Klimont, Z., Oenema, O., 2009. Integrated assessment of nitrogen losses from agriculture in EU-27 using MITERRA-EUROPE. Journal of Environmental Quality 38, 402-417.

  20. The impact of soil moisture variability on seasonal convective precipitation simulations via the soil-boundary layer interaction.

    NASA Astrophysics Data System (ADS)

    Khodayar, S.; Kalthoff, N.; Schädler, G.

    2012-04-01

    It is known that besides forcing by synoptic-scale processes, the boundary layer conditions often play a key role for the initiation of convective precipitation. The evolution and conditions of the boundary layer depend considerably on the transformation of the available energy at the Earth's surface into sensible and latent heat fluxes. The soil moisture (SM), besides other factors such as the vegetation coverage, land use and soil type, is one of the main factors governing this energy transformation. Additionally, the availability of humidity in the atmosphere is controlled by a number of processes including land surface processes, which in turn are strongly influenced by spatially variable fields of SM. Thus, an accurate specification of the SM distribution is a critical requirement in the representation of land and surface processes in forecast and climate models. Moreover, soil-atmosphere interactions, in particular, the SM-precipitation feedback, are highly relevant for numerical weather prediction and seasonal forecasting. Despite being a long-standing topic in research, different studies present inconclusive results showing some evidence for positive, negative, and no feedbacks depending on region and investigated period, model characteristics and resolution. Reliable data sets for validation or initialization of model simulations are frequently not at one's disposal; especially the SM is currently one of the least assessed quantities with almost no data from operational monitoring networks available. In summer 2007, the field campaign 'Convective and Orographically-induced Precipitation Study' (COPS) was performed in south-western Germany and eastern France. During COPS an innovative measurement approach using a very high number of different SM sensors was introduced. Each station was equipped with sensors at three different depths (5, 20 and 50cm) simultaneously measuring SM and soil temperature. The COPS data set, which provided suitable observations for model validation, in combination with seasonal climate simulations with the Consortium for Small-Scale modelling (COSMO) model in his climate version (CCLM) were used to investigate the seasonal climatology of the investigation area, as well as the interactions between the soil and the atmosphere in the complex orographic region of western Germany and eastern France. The impact of realistic model initialization with SM measurements from COPS on convective precipitation will be discussed. Additionally, the impact of the prescribed soil type distribution on seasonal climate simulations will be demonstrated. The combination of dense observations with CCLM simulations permitted a rigorous analysis of the water transfer process chain from SM and fluxes to convective initiation and precipitation.

  1. USING ENSEMBLES OF PEDOTRANSFER FUNCTIONS FOR SOIL WATER RETENTION IN FIELD-SCALE WATER FLOW SIMULATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using pedotransfer functions (PTF) to estimate soil hydraulic properties may be necessary in soil water flow simulations for large-scale projects or in pilot studies. The accuracy of a PTF outside of its development dataset is generally unknown. The existence of multiple models that are developed an...

  2. Subsurface drip irrigation emitter spacing effects on soil water redistribution, corn yield, and water productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emitter spacings of 0.3 to 0.6 m are commonly used for subsurface drip irrigation (SDI) of corn on the deep, silt loam soils of the United States Great Plains. Subsurface drip irrigation emitter spacings of 0.3, 0.6, 0.9 and 1.2 m were examined for the resulting differences in soil water redistribut...

  3. Mobility of organic solvents in water-saturated soil materials

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1985-01-01

    This investigation presents an analysis of the mobility of 37 organic solvents in saturated soil-water systems, focusing on adsorption phenomena at the solid-liquid interface This analysis was made, in part, by applying predictive expressions that estimate the potential magnitude of adsorption by soil materials Of the 37 solvents considered, 19 were classified as either "very highly mobile" or "highly mobile" and, thus, would have little tendency to be retained by soils to a significant extent, 12 were considered to have medium mobility and 6 low mobility None of these solvents were in the immobile class The limited information available indicates that these predictive expressions yield satisfactory first approximations of the magnitude of adsorption of these solvents by soil materials ?? 1985 Springer-Verlag New York Inc.

  4. Water transfer between rock fragments and fine earth in remoulded soils

    NASA Astrophysics Data System (ADS)

    Tetegan, Marion; Korboulewsky, Nathalie; Bouthier, Alain; Cousin, Isabelle

    2010-05-01

    Stony soils cover about 30% of the surface soils of Western Europe, and 60% in Mediterranean areas. Rock fragments may alter the physical, chemical and agricultural properties of soils. They are also a potential reservoir of water and nutrients for plants, suggesting that the stony phase of soil can participate in water supply to crops and affect the storage capacity of soil water. This implies the existence of water transfer between rock fragments and fine earth. To better understand the interaction between the fine earth and rock fragments, we studied the water transfer between pebbles and fine earth on remoulded soils in presence and absence of plants. Experiments were conducted on remoulded soils in containers (3 L), under controlled conditions. Pebbles and fine earth were collected separately from the Ap horizon of a calcareous lacustrine limestone silty soil located in the central region of France. Pebbles were mixed with fine earth to reach a bulk density of the fine earth of 1.1 g/cm3. Four modalities with different percentage in volume of pebbles were created: 0%p: 0 % pebbles + 100 % fine earth + plant 20%p: 20 % pebbles + 80% fine earth + plant 40%p: 40 % pebbles + 60% fine earth + plant 40%: 40 % pebbles + 60% fine earth Fifteen containers were created for each modality and cuttings of Populus robusta were planted in the three first modalities. All containers were saturated, then irrigated by capillarity and controlled to maintain a moderate water stress continuously. After three months, the containers were saturated again and then allowed to dry. At that time, plants were from 27 to 43 cm height depending on the modality. Soil samples were collected at 5 dates following this second saturation: D0 = soil water content equal to the Available Water Content, Day 2 = D0 + 2 days, Day 4 = D0 + 4 days, Day 7 = D0 + 7 days, Day 11= D0 + 11 days. At each sampling date, three containers for each modality were used to measure the gravimetric water content separately for fine earth and pebbles, and at five depths. Differences in water content between pebbles and fine earth, and between dates, were analysed by a variance analysis (ANOVA, threshold at 5%). Results showed different behaviours for water loss between fine earth and pebbles during a drying period of 11 days. While water content of fine earth decreased from the beginning and onward, pebbles only started to lose water several days after. To study the effect of pebbles proportion, modalities "0%p", "20%p" and "40%p" were compared. Fine earth of modality without pebbles (0%p) lost water faster compared to modalities with pebbles ("20%p" and "40%p") from the 7th day. Meanwhile, pebbles lose water only from the 4th or 7th day. In addition, comparisons of containers at 40% with and without plants ("40%p" and "40%") showed that the water content decreased at a similar rate for the fine earth while the drying of the rock fragments was more pronounced with a plant at the end of the drying period. The moisture of fine earth reduced on average 1.3 times faster with a plant than without. So, plants enhanced the drying processes due to their transpiration but did not seem to modify the water transfer trends. This study showed a water transfer from pebbles towards fine earth occurs, especially when drought starts to be severe, which could be benefit to plant.

  5. [Ecological effect of hygroscopic and condensate water on biological soil crusts in Shapotou region of China].

    PubMed

    Pan, Yan-Xia; Wang, Xin-Ping; Zhang, Ya-Feng; Hu, Rui

    2013-03-01

    By the method of field experiment combined with laboratory analysis, this paper studied the ecological significance of hygroscopic and condensate water on the biological soil crusts in the vegetation sand-fixing area in Shapotou region of China. In the study area, 90% of hygroscopic and condensate water was within the 3 cm soil depth, which didn' t affect the surface soil water content. The hygroscopic and condensate water generated at night involved in the exchange process of soil surface water and atmosphere water vapor, made up the loss of soil water due to the evaporation during the day, and made the surface soil water not reduced rapidly. The amount of the generated hygroscopic and condensate water had a positive correlation with the chlorophyll content of biological soil crusts, indicating that the hygroscopic and condensate water could improve the growth activity of the biological soil crusts, and thus, benefit the biomass accumulation of the crusts. PMID:23755477

  6. Interactions between soil moisture and Atmospheric Boundary Layer at the Brazilian savana-type vegetation Cerrado

    NASA Astrophysics Data System (ADS)

    Pinheiro, L. R.; Siqueira, M. B.

    2013-05-01

    Before the large people influx and development of the central part of Brazil in the sixties, due to new capital Brasília, Cerrado, a typical Brazilian savanna-type vegetation, used to occupy about 2 million km2, going all the way from the Amazon tropical forest, in the north of the country, to the edges of what used to be of the Atlantic forest in the southeast. Today, somewhat 50% of this area has given place to agriculture, pasture and managed forests. It is forecasted that, at the current rate of this vegetation displacement, Cerrado will be gone by 2030. Understanding how Cerrado interacts with the atmosphere and how this interaction will be modified with this land-use change is a crucial step towards improving predictions of future climate-change scenarios. Cerrado is a vegetation adapted to a climate characterized by two very distinct seasons, a wet season (Nov-Mar) and dry season (May-Ago), with April and October being transitions between seasons. Typically, based on measurements in a weather station located in Brasilia, 75% of precipitation happens in the wet-season months and only 5% during dry-season. Under these circumstances, it is clear that the vegetation will have to cope with long periods of water stress. In this work we studied using numerical simulations, the interactions between soil-moisture, responsible for the water stress, with the Atmospheric Boundary Layer (ABL). The numerical model comprises of a Soil-Vegetation-Atmosphere model where the biophysical processes are represented with a big-leaf approach. Soil water is estimated with a simple logistic model and with water-stress effects on stomatal conductance are parameterized from local measurements of simultaneous latent-heat fluxes and soil moisture. ABL evolution is calculate with a slab model that considers independently surface and entrainment fluxes of sensible- and latent- heat. Temperature tropospheric lapse-rate is taken from soundings at local airport. Simulations of 30-day dry down from saturation to complete water stress were performed and is analyzed as far how ABL respond to soil moisture changes. This provides informations about ABL behavior on the transition states. Future studies will look on how this behavior will change with the new vegetation covers.

  7. Dynamic vertical interaction of a foundation-soil system generated by seismic waves

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Wang, Jun; Cai, Yuanqiang; Gu, Chuan

    2014-05-01

    Based on Biot's dynamic poroelastic theory, a foundation-soil interaction model is established to investigate the vertical vibrations of a rigid circular foundation on poroelastic soil excited by incident plane waves, including the fast P waves and SV waves. Scattering waves caused by the foundation and fluid-solid coupling due to the pore water in the soil are also considered in the model. The solution of the vertical vibrations of the foundation subjected to seismic waves are obtained by solving two sets of dual integral equations derived from the mixed boundary-value conditions. The different vertical vibrations of foundation rest on elastic and saturated half-space are compared. The influences of incident angle, permeability of soil and foundation mass on the vertical vibrations of the foundation are then discussed. The results show that resonant phenomenon of the foundation is observed at certain excitation frequencies; the effects of the pore water on the foundation vertical vibrations are significant. In addition, significant differences are found when the foundation is excited by P waves and SV waves, respectively.

  8. Microbial dynamics and arsenic speciation in rice paddy soil under two water management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenic (As) undergoes several microbial transformations, including oxidation/reduction, methylation/demethylation, and volatilization in soil, which impact As bioavailability. Different water management systems for rice cultivation alter soil-redox conditions and As biogeochemistry. Soil microbial ...

  9. Hysteresis and uncertainty in soil water-retention curve parameters

    USGS Publications Warehouse

    Likos, William J.; Lu, Ning; Godt, Jonathan W.

    2014-01-01

    Accurate estimates of soil hydraulic parameters representing wetting and drying paths are required for predicting hydraulic and mechanical responses in a large number of applications. A comprehensive suite of laboratory experiments was conducted to measure hysteretic soil-water characteristic curves (SWCCs) representing a wide range of soil types. Results were used to quantitatively assess differences and uncertainty in three simplifications frequently adopted to estimate wetting-path SWCC parameters from more easily measured drying curves. They are the following: (1) αw=2αd, (2) nw=nd, and (3) θws=θds, where α, n, and θs are fitting parameters entering van Genuchten’s commonly adopted SWCC model, and the superscripts w and d indicate wetting and drying paths, respectively. The average ratio αw/αd for the data set was 2.24±1.25. Nominally cohesive soils had a lower αw/αd ratio (1.73±0.94) than nominally cohesionless soils (3.14±1.27). The average nw/nd ratio was 1.01±0.11 with no significant dependency on soil type, thus confirming the nw=nd simplification for a wider range of soil types than previously available. Water content at zero suction during wetting (θws) was consistently less than during drying (θds) owing to air entrapment. The θws/θds ratio averaged 0.85±0.10 and was comparable for nominally cohesive (0.87±0.11) and cohesionless (0.81±0.08) soils. Regression statistics are provided to quantitatively account for uncertainty in estimating hysteretic retention curves. Practical consequences are demonstrated for two case studies.

  10. A method to extract soil water for stable isotope analysis

    USGS Publications Warehouse

    Revesz, K.; Woods, P.H.

    1990-01-01

    A method has been developed to extract soil water for determination of deuterium (D) and 18O content. The principle of this method is based on the observation that water and toluene form an azeotropic mixture at 84.1??C, but are completely immiscible at ambient temperature. In a specially designed distillation apparatus, the soil water is distilled at 84.1??C with toluene and is separated quantitatively in the collecting funnel at ambient temperature. Traces of toluene are removed and the sample can be analyzed by mass spectrometry. Kerosene may be substituted for toluene. The accuracy of this technique is ?? 2 and ?? 0.2???, respectively, for ??D and ??18O. Reduced accuracy is obtained at low water contents. ?? 1990.

  11. Soil properties evolution after irrigation with reclaimed water

    NASA Astrophysics Data System (ADS)

    Leal, M.; González-Naranjo, V.; de Miguel, A.; Martínez-Hernández, V.; Lillo, J.

    2012-04-01

    Many arid and semi-arid countries are forced to look for new and alternative water sources. The availability of suitable quality water for agriculture in these regions often is threatened. In this context of water scarcity, the reuse of treated wastewater for crop irrigation could represent a feasible solution. Through rigorous planning and management, irrigation with reclaimed water presents some advantages such as saving freshwater, reducing wastewater discharges into freshwater bodies and decreasing the amount of added fertilizers due to the extra supply of nutrients by reclaimed water. The current study, which involves wastewater reuse in agriculture, has been carried out in the Experimental Plant of Carrión de los Céspedes (Sevile, Spain). Here, two survey parcels equally designed have been cultivated with Jatropha curcas L, a bioenergetic plant and a non-interfering food security crop. The only difference between the two parcels lies on the irrigation water quality: one is irrigated with groundwater and another one with reclaimed water. The main aim of this study focuses on analysing the outstanding differences in soil properties derived from irrigation with two water qualities, due to their implications for plant growth. To control and monitor the soil variables, soil samples were collected before and after irrigation in the two parcels. pH, electrical conductivity, cation exchange capacity, exchangeable cations (Ca2+, Mg2+, Na+ and K+), kjeldahl nitrogen, organic matter content and nutrients (boron, phosphorus, nitrogen, potassium) were measured. Data were statistically analyzed using the R package. To evaluate the variance ANOVA test was used and to obtain the relations between water quality and soil parameters, Pearson correlation coefficient was computed. According to other authors, a decrease in the organic matter content and an increase of parameters such as pH, electrical conductivity and some exchangeable cations were expected. To date and after one year of irrigation, no significant differences have been found among the soil properties of the two parcels. The results show in one hand, a slightly decrease in phosphorus, nitrates and electrical conductivity and on the other hand, an increase of organic matter. These trends should be contrasted by new soil quality measurements. The implications on vegetation growth, oil production and nutrients assimilation derived from the irrigation with reclaimed water should be also evaluated over time.

  12. Interaction effects of selected pesticides on soil enzymes.

    PubMed

    Deborah, B Vineela; Mohiddin, M Jaffer; Madhuri, R Jaya

    2013-09-01

    The laboratory studies were conducted to resolute the effects of imidacloprid (insecticide) and triadimefon (fungicide) singly and in combination on enzymatic activities of soil microorganisms in tomato cultivated soils at different concentrations of 0.2, 0.5 and 0.7 kg/ha. The rate of amylase activity was stimulated by the application of pesticides at field rate. High dosage decreased the activity of amylase. Decline in the activity of cellulase was observed at all concentrations than control. Imidacloprid had an improved activity of cellulase at 0.5 μg/g than tridimefon and combination. At higher concentration (0.7 μg/g), the combination of insecticide and fungicide showed an antagonistic interaction toward cellulase. After 24 h, maximum inhibition was observed in invertase enzyme rate at all examined dosages. After 48 h, the activity was revived to some extent and imidacloprid showed enhanced activity at 0.5 μg/g (field rate). However at 0.7 μg/g, imidacloprid has a noticeable effect on the invertase. The pesticide application in single and in combination (0.2-0.7 μg/g soil) triggered the dehydrogenase activity. At field rate triadimefon significantly quickened the activity. PMID:24403727