Science.gov

Sample records for soils annual crops

  1. Managing Claypan Soils: Annual Grain Crops vs. Perennial Switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Topsoil depth and landscape position are important factors in the claypan region of Missouri for agricultural productivity and soil-water conservation. Shallow topsoil reduces grain productivity and causes yield inconsistencies, while traditional grain cropping increases soil erosion and nonpoint so...

  2. The green manure value of seven clover species grown as annual crops on low and high fertility temperate soils.

    SciTech Connect

    Ross, Shirley M.; King, Jane R.; Izaurralde, Roberto C.; O'Donovan, John T.

    2009-05-01

    Annual and perennial clover species may differ in green manure value. Seven clover (Trifolium) species were grown as annual crops on low fertility (Breton) and high fertility 15 (Edmonton) soils in Alberta

  3. Soil Fungal Resources in Annual Cropping Systems and Their Potential for Management

    PubMed Central

    Esmaeili Taheri, Ahmad; Bainard, Luke D.; Yang, Chao; Navarro-Borrell, Adriana; Hamel, Chantal

    2014-01-01

    Soil fungi are a critical component of agroecosystems and provide ecological services that impact the production of food and bioproducts. Effective management of fungal resources is essential to optimize the productivity and sustainability of agricultural ecosystems. In this review, we (i) highlight the functional groups of fungi that play key roles in agricultural ecosystems, (ii) examine the influence of agronomic practices on these fungi, and (iii) propose ways to improve the management and contribution of soil fungi to annual cropping systems. Many of these key soil fungal organisms (i.e., arbuscular mycorrhizal fungi and fungal root endophytes) interact directly with plants and are determinants of the efficiency of agroecosystems. In turn, plants largely control rhizosphere fungi through the production of carbon and energy rich compounds and of bioactive phytochemicals, making them a powerful tool for the management of soil fungal diversity in agriculture. The use of crop rotations and selection of optimal plant genotypes can be used to improve soil biodiversity and promote beneficial soil fungi. In addition, other agronomic practices (e.g., no-till, microbial inoculants, and biochemical amendments) can be used to enhance the effect of beneficial fungi and increase the health and productivity of cultivated soils. PMID:25247177

  4. Effect of Potassium on Uptake of 137Cs in Food Crops Grown on Coral Soils: Annual Crops at Bikini Atoll

    SciTech Connect

    Stone, E R; Robinson, W

    2002-02-01

    In 1954 a radioactive plume from the thermonuclear device code named BRAVO contaminated the principal residential islands, Eneu and Bikini, of Bikini Atoll (11{sup o} 36 minutes N; 165{sup o} 22 minutes E), now part of the Republic of the Marshall Islands. The resulting soil radioactivity diminished greatly over the three decades before the studies discussed below began. By that time the shorter-lived isotopes had all but disappeared, but strontium-90 ({sup 90}Sr), and cesium-137, ({sup 137}Cs) were reduced by only one half-life. Minute amounts of the long-lived isotopes, plutonium-239+240 ({sup 239+240}Pu) and americium-241 ({sup 241}Am), were present in soil, but were found to be inconsequential in the food chain of humans and land animals. Rather, extensive studies demonstrated that the major concern for human health was {sup 137}Cs in the terrestrial food chain (Robison et al., 1983; Robison et al., 1997). The following papers document results from several studies between 1986 and 1997 aimed at minimizing the {sup 137}Cs content of annual food crops. The existing literature on radiocesium in soils and plant uptake is largely a consequence of two events: the worldwide fallout of 1952-58, and the fallout from Chernobyl. The resulting studies have, for the most part, dealt either with soils containing some amount of silicate clays and often with appreciable K, or with the short-term development of plants in nutrient cultures.

  5. An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation.

    PubMed

    Suddick, Emma C; Six, Johan

    2013-11-01

    Agricultural soils are responsible for emitting large quantities of nitrous oxide (N2O). The controlled incomplete thermal decomposition of agricultural wastes to produce biochar, once amended to soils, have been hypothesized to increase crop yield, improve soil quality and reduce N2O emissions. To estimate crop yields, soil quality parameters and N2O emissions following the incorporation of a high temperature (900 °C) walnut shell (HTWS) biochar into soil, a one year field campaign with four treatments (control (CONT), biochar (B), compost (COM), and biochar+compost (B+C)) was conducted in a small scale vegetable rotation system in Northern California. Crop yields from five crops (lettuce, winter cover crop, lettuce, bell pepper and Swiss chard) were determined; there were no significant differences in yield between treatments. Biochar amended soils had significant increases in % total carbon (C) and the retention of potassium (K) and calcium (Ca). Annual cumulative N2O fluxes were not significantly different between the four treatments with emissions ranging from 0.91 to 1.12 kg N2O-N ha(-1) yr(-1). Distinct peaks of N2O occurred upon the application of N fertilizers and the greatest mean emissions, ranging from 67.04 to 151.41 g N2O-N ha(-1) day(-1), were observed following the incorporation of the winter cover crop. In conclusion, HTWS biochar application to soils had a pronounced effect on the retention of exchangeable cations such as K and Ca compared to un-amended soils and composted soils, which in turn could reduce leaching of these plant available cations and could thus improve soils with poor nutrient retention. However, HTWS biochar additions to soil had neither a positive or negative effect on crop yield nor cumulative annual emissions of N2O. PMID:23490323

  6. Soil quality in a pecan – Kura clover alley cropping system in the midwestern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intercropping alleys in agroforestry provides an income source until the tree crop produces harvestable yields. However, cultivation of annual crops decreases soil organic matter and increases soil erosion potential, especially on sloping landscapes. Perennial crops maintain a continuous soil cover,...

  7. CROP RESIDUE AND SOIL WATER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield is greatly influenced by the amount of water that moves from the soil, through the plant, and out into the atmosphere. Winter wheat yield responds linearly to available soil water content at planting (bu/a = 5.56 + 5.34*inches). Therefore, storing precipitation in the soil during non-crop...

  8. Cover Crops Soil Health Forum

    E-print Network

    New Hampshire, University of

    blinking light, onto Silk Farm Road. 4. Entrance to Center and Sanctuary is on the left. See sign. Cover Crops & Soil Health Forum February 18, 2014 NH Audubon Center 84 Silk Farm Road Concord, NH 03301

  9. Soil C sequestration and agronomic yield of diverse crop rotations under no-till soil management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diversified crop rotations, which reduce risk associated with adoption of no-till soil management, may influence soil C sequestration and soil quality. This study measured effects of corn-soybean (C-S), corn-soybean-oat/pea hay (C-S-H), or corn-soybean-oat/pea hay-alfalfa-alfalfa (C-S-H-A-A) annual ...

  10. Nutrients in soil water under three rotational cropping systems, Iowa, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    tSubsurface nutrient losses differ between annual and perennial crops; however, nutrient losses fromcropping systems that rotate annual and perennial crops are poorly documented. This study trackedNO3-N and P in soil water under three cropping systems suited for the U.S. Midwest, includingtwo-year (...

  11. Nutrient concentrations in soil water as influenced by crop rotation in Iowa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient leaching differs between annual and perennial crops, but nutrient losses from rotations containing both annual and perennial crops are not well documented. This study compared NO3-N and total phosphorus (TP) concentrations in soil water under three crop rotations in Iowa, including two-year...

  12. Chemistry and microbial functional diversity differences in biofuel crop and grassland soils in multiple geographies

    EPA Science Inventory

    As crop and non-crop lands are increasingly converted to biofuel feedstock production, it is of interest to identify potential impacts of annual and perennial feedstocks on soil ecosystem services. Soil samples were obtained from diverse regionally distributed biofuel cropping si...

  13. Cover crops to enhance soil biological activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops can be an important component of conservation agricultural systems in the eastern USA. This presentation summarizes some of the benefits derived from cover crops, how cover crops impact soil biological activity, and how soil biological activity can be used to assess the sustainability o...

  14. Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among greenhouse gases, carbon dioxide (CO2) is one of the most significant contributors to regional and global warming as well as climatic change. However, CO2 flux from the soil surface to the atmosphere can be affected by modifications in soil physical properties resulting from changes in land ma...

  15. Tolerance of Soybean Crops to Soil Waterlogging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monoculture of irrigated paddy rice, common in the Mississippi delta of the United States and in Asia, diminishes soil nutrients, compacts soils, contaminates water supplies, and increases pest and diseases. While the addition of soybean crops to this cropping ecosystem can attenuate many of these p...

  16. Soil water evaporation and crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  17. Chemistry and microbial functional diversity differences in biofuel crop and grassland soils in multiple geographies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As crop and non-crop lands are increasingly becoming converted to biofuel feedstock production, it is of interest to identify potential impacts of annual and perennial feedstocks on soil ecosystem services. Soil samples obtained from 6 regional sets of switchgrass (Panicum virgatum L.) and 3 regiona...

  18. Integrating soil solarization into crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil solarization remains one of but a handful of nonchemical soil disinfestation methods suitable for high-value crops such as cut-flowers, strawberry and fresh market tomato and pepper. Recognition of soil solarization within the context of an integrated pest management (IPM) approach is paramoun...

  19. Crop & Soil Science Degree Checklist Name: _______________________________

    E-print Network

    Grünwald, Niklaus J.

    ) _______ COMM (3) _______ Writing Intensive (BOT 323, CROP/SOIL 325 or HORT 318) (3) _______ HHS 231 ­ Lifetime) _______ Western Culture ____________________ _______ Cultural Diversity ____________________ _______ Literature/Arts) Agricultural Science ________ BOT 331 ­ Plant Physiology (4) ________ BOT 350 ­ Introductory Plant Pathology (4

  20. Soil carbon changes for bioenergy crops.

    SciTech Connect

    Andress, D.

    2004-04-22

    Bioenergy crops, which displace fossil fuels when used to produce ethanol, biobased products, and/or electricity, have the potential to further reduce atmospheric carbon levels by building up soil carbon levels, especially when planted on lands where these levels have been reduced by intensive tillage. The purpose of this study is to improve the characterization of the soil carbon (C) sequestration for bioenergy crops (switchgrass, poplars, and willows) in the Greenhouse gases, Regulated Emissions, and Energy Use in Transportation (GREET) model (Wang 1999) by using the latest results reported in the literature and by Oak Ridge National Laboratory (ORNL). Because soil carbon sequestration for bioenergy crops can play a significant role in reducing greenhouse gas (GHG) emissions for cellulosic ethanol, it is important to periodically update the estimates of soil carbon sequestration from bioenergy crops as new and better data become available. We used the three-step process described below to conduct our study.

  1. Soil Moisture as an Estimator for Crop Yield in Germany

    NASA Astrophysics Data System (ADS)

    Peichl, Michael; Meyer, Volker; Samaniego, Luis; Thober, Stephan

    2015-04-01

    Annual crop yield depends on various factors such as soil properties, management decisions, and meteorological conditions. Unfavorable weather conditions, e.g. droughts, have the potential to drastically diminish crop yield in rain-fed agriculture. For example, the drought in 2003 caused direct losses of 1.5 billion EUR only in Germany. Predicting crop yields allows to mitigate negative effects of weather extremes which are assumed to occur more often in the future due to climate change. A standard approach in economics is to predict the impact of climate change on agriculture as a function of temperature and precipitation. This approach has been developed further using concepts like growing degree days. Other econometric models use nonlinear functions of heat or vapor pressure deficit. However, none of these approaches uses soil moisture to predict crop yield. We hypothesize that soil moisture is a better indicator to explain stress on plant growth than estimations based on precipitation and temperature. This is the case because the latter variables do not explicitly account for the available water content in the root zone, which is the primary source of water supply for plant growth. In this study, a reduced form panel approach is applied to estimate a multivariate econometric production function for the years 1999 to 2010. Annual crop yield data of various crops on the administrative district level serve as depending variables. The explanatory variable of major interest is the Soil Moisture Index (SMI), which quantifies anomalies in root zone soil moisture. The SMI is computed by the mesoscale Hydrological Model (mHM, www.ufz.de/mhm). The index represents the monthly soil water quantile at a 4 km2 grid resolution covering entire Germany. A reduced model approach is suitable because the SMI is the result of a stochastic weather process and therefore can be considered exogenous. For the ease of interpretation a linear functionality is preferred. Meteorological, phenological, geological, agronomic, and socio-economic variables are also considered to extend the model in order to reveal the proper causal relation. First results show that dry as well as wet extremes of SMI have a negative impact on crop yield for winter wheat. This indicates that soil moisture has at least a limiting affect on crop production.

  2. Annual Weeds, Alternative Crops for Alternative Fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All cropland acreage in Alabama is infested with one or more species of annual weeds. Weeds are estimated to cost producers in the state approximately 8% of their potential yield, even with the current weed control technology available. Weed management continues to be the most expensive row crop pr...

  3. Soil heterotrophic respiration responses to meteorology, soil types and cropping systems in a temperate agricultural watershed.

    NASA Astrophysics Data System (ADS)

    Buysse, Pauline; Viaud, Valérie; Fléchard, Chris

    2015-04-01

    Within the context of Climate Change, a better understanding of soil organic matter dynamics is of considerable importance in agro-ecosystems, due to their large mitigation potential. This study aims at better understanding the process of soil heterotrophic respiration at the annual scale and at the watershed scale, with these temporal and spatial scales allowing an integration of the most important drivers: cropping systems and management, topography, soil types, soil organic carbon content and meteorological conditions. Twenty-four soil CO2 flux measurement sites - comprising three PVC collars each - were spread over the Naizin-Kervidy catchment (ORE AgrHys, 4.9 km², W. France) in March 2014. These sites were selected in order to represent most of the diversity in drainage classes, soil types and cropping systems. Soil CO2 flux measurements were performed about every ten to fifteen days at each site, starting from 20 March 2014, using the dynamic closed chamber system Li-COR 8100. Soil temperature and soil moisture content down to 5 cm depth were measured simultaneously. An empirical model taking the influence of meteorological drivers (soil temperature and soil water content) on soil CO2 fluxes was applied to each site and the different responses were analyzed with regard to site characteristics (topography, soil organic carbon content, soil microbial biomass, crop type, crop management,…) in order to determine the most important driving variables of soil heterotrophic respiration. The modeling objective is then to scale the fluxes measured at all sites up to the full watershed scale.

  4. Cropping systems and control of soil erosion in a Mediterranean environment

    NASA Astrophysics Data System (ADS)

    Cosentino, Salvatore; Copani, Venera; Testa, Giorgio; Scalici, Giovanni

    2013-04-01

    The research has been carried out over the years 1996-2010 in an area of the internal hill of Sicily region (Enna, c.da Geracello, 550 m a. s. l. 37° 23' N. Lat, 14° 21' E. Long) in the center of Mediterranean Sea, mainly devoted to durum wheat cultivation, using the experimental plots, established in 1996 on a slope of 26-28%, equipped to determine surface runoff and soil losses. The establishment consists of twelve plots, having 40 m length and 8 m width. In order to study the effect of different field crop systems in controlling soil erosion in slopes subjected to water erosion, the following systems were studied: permanent crops, tilled annual crops, no-tilled annual crops, set-aside. The used crops were: durum wheat, faba bean, rapeseed, subterranean clover, Italian ryegrass, alfalfa, sweetvetch, moon trefoil, barley, sweet sorghum, sunflower. The results pointed out that the cropping systems with perennial crops allowed to keep low the soil loss, while annual crop rotation determined a high amount of soil loss. Sod seeding showed promising results also for annual crop rotations.

  5. Blending soil conservation with production: Assessment of diverse crop rotations under no-till soil management for agronomic yield and soil C sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diversified crop rotations, which reduce risk associated with adoption of no-till soil management, may influence soil C sequestration and soil quality. This study measured effects of corn-soybean (C-S), corn-soybean-oat/pea hay (C-S-H), or corn-soybean-oat/pea hay-alfalfa-alfalfa (C-S-H-A-A) annual...

  6. Freeze-thaw effects on phosphorus loss in runoff from manured and catch-cropped soils.

    PubMed

    Bechmann, Marianne E; Kleinman, Peter J A; Sharpley, Andrew N; Saporito, Lou S

    2005-01-01

    Concern over nonpoint source P losses from agricultural lands to surface waters in frigid climates has focused attention on the role of freezing and thawing on P loss from catch crops (cover crops). This study evaluated the effect of freezing and thawing on the fate of P in bare soils, soils mixed with dairy manure, and soils with an established catch crop of annual ryegrass (Lolium multiflorum L.). Experiments were conducted to evaluate changes in P runoff from packed soil boxes (100 by 20 by 5 cm) and P leaching from intact soil columns (30 cm deep). Before freezing and thawing, total P (TP) in runoff from catch-cropped soils was lower than from manured and bare soils due to lower erosion. Repeated freezing and thawing significantly increased water-extractable P (WEP) from catch crop biomass and resulted in significantly elevated concentrations of dissolved P in runoff (9.7 mg L(-1)) compared with manured (0.18 mg L(-1)) and bare soils (0.14 mg L(-1)). Catch crop WEP was strongly correlated with the number of freeze-thaw cycles. Freezing and thawing did not change the WEP of soils mixed with manures, nor were differences observed in subsurface losses of P between catch-cropped and bare soils before or after manure application. This study illustrates the trade-offs of establishing catch crops in frigid climates, which can enhance P uptake by biomass and reduce erosion potential but increase dissolved P runoff. PMID:16275731

  7. Micronutrients in Soils, Crops, and Livestock

    NASA Astrophysics Data System (ADS)

    Gupta, Umesh C.; Wu, Kening; Liang, Siyuan

    Micronutrient concentrations are generally higher in the surface soil and decrease with soil depth. In spite of the high concentration of most micronutrients in soils, only a small fraction is available to plants. Micronutrients, also known as trace elements, are required in microquantities but their lack can cause serious crop production and animal health problems. Crops vary considerably in their response to various micronutrients. Brassicas and legumes are highly responsive to molybdenum (Mo) and boron (B), whereas corn and other cereals are more responsive to zinc (Zn) and copper (Cu). Micronutrient deficiencies are more common in humid temperate regions, as well as in humid tropical regions, because of intense leaching associated with high precipitation. Soil pH is one of the most important factors affecting the availability of micronutrients to plants. With increasing pH, the availability of these nutrients is reduced with the exception of Mo whose availability increases as soil pH increases. In most plant species, leaves contain higher amounts of nutrients than other plant parts. Therefore, whenever possible, leaves should be sampled to characterize the micronutrient status of crops. Deficiency symptoms for most micronutrients appear on the younger leaves at the top of the plant, whereas toxicity symptoms generally appear on the older leaves of plants. As summarized by Deckers and Steinnes, micronutrient deficiencies are widespread in developing countries, which have much poorer soil resources than the fertile soils of Europe and North America. Many of these areas lie in the humid tropics with extremely infertile, highly weathered, and/or highly leached soils, which are intensely deficient in nutrients. The rest of such soils are in the semiarid and areas adjacent to the latter, where alkaline and calcareous soil conditions severely limit the availability of micronutrients to plants. Frequently, the Cu, iron (Fe), manganese (Mn), Zn, and selenium (Se) levels in forages, which are sufficient for optimum crop yields, are not adequate to meet the needs of livestock. Selenium is a trace mineral, which is not required by plants, and maximum forage yields can be obtained on soils with very low amounts of soil Se. However, if animals are fed feed crops and forages with low Se, they could suffer from serious muscular disorders and other diseases. White muscle disease caused by Se deficiency is the most common disorder and is found in calves and lambs. Sufficiency levels of micronutrients for crops have been discussed in relation to the animal requirement.

  8. Aggregate Carbon Pools after 13 Years of Integrated Crop-Livestock Management in Semiarid Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Semi-arid regions have the potential to sequester soil organic carbon (SOC) but the magnitude and rate of sequestration is highly management specific. Integrated crop-livestock (ICL) systems that utilize perennial or high-residue no-till annual forage crops as part of the overall agronomic system ma...

  9. Soil moisture monitoring for crop management

    NASA Astrophysics Data System (ADS)

    Boyd, Dale

    2015-07-01

    The 'Risk management through soil moisture monitoring' project has demonstrated the capability of current technology to remotely monitor and communicate real time soil moisture data. The project investigated whether capacitance probes would assist making informed pre- and in-crop decisions. Crop potential and cropping inputs are increasingly being subject to greater instability and uncertainty due to seasonal variability. In a targeted survey of those who received regular correspondence from the Department of Primary Industries it was found that i) 50% of the audience found the information generated relevant for them and less than 10% indicted with was not relevant; ii) 85% have improved their knowledge/ability to assess soil moisture compared to prior to the project, with the most used indicator of soil moisture still being rain fall records; and iii) 100% have indicated they will continue to use some form of the technology to monitor soil moisture levels in the future. It is hoped that continued access to this information will assist informed input decisions. This will minimise inputs in low decile years with a low soil moisture base and maximise yield potential in more favourable conditions based on soil moisture and positive seasonal forecasts

  10. Influence of crop rotation and tillage intensity on soil physical properties and functions

    NASA Astrophysics Data System (ADS)

    Krümmelbein, Julia

    2013-04-01

    Soil tillage intensity can vary concerning tillage depth, frequency, power input into the soil and degree of soil turn-over. Conventional tillage systems where a plough is regularly used to turn over the soil can be differentiated from reduced tillage systems without ploughing but with loosening the upper soil and no tillage systems. Between conventional tillage and no tillage is a wide range of more or less reduced tillage systems. In our case the different tillage intensities are not induced by different agricultural machinery or techniques, but result from varying crop rotations with more or less perennial crops and therefore lower or higher tillage frequency. Our experimental area constitutes of quite unstructured substrates, partly heavily compacted. The development of a functioning soil structure and accumulation of nutrients and organic matter are of high importance. Three different crop rotations induce varying tillage intensities and frequencies. The first crop rotation (Alfalfa monoculture) has only experienced seed bed preparation once and subsequently is wheeled once a year to cut and chaff the biomass. The second crop rotation contains perennial and annual crops and has therefore been tilled more often, while the third crop rotation consists only of annual crops with annual seedbed preparation. Our results show that reduced tillage intensity/frequency combined with the intense root growth of Alfalfa creates the most favourable soil physical state of the substrate compared to increased tillage and lower root growth intensity of the other crop rotations. Soil tillage disturbs soil structure development, especially when the substrate is mechanically unstable as in our case. For such problematic locations it is recommendable to reduce tillage intensity and/or frequency to allow the development of soil structure enhanced by root growth and thereby the accumulation of organic matter and nutrients within the rooting zone.

  11. The use of cover crops to manage soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are used to manage soils for many different reasons. Inserting cover crops into fallow periods and spaces in cropping systems is a beneficial soil management practice. Natural ecosystems typically have some plants growing, covering the soil, transpiring water, taking up nutrients, fixing...

  12. Tillage Management and Previous Crop Effects on Soil Physical Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the potential positive effects of diverse crop rotations and no-till soil management on crop productivity and soil resource conservation, research to remove the constraints to widespread adoption of these crop and soil management practices in eastern South Dakota and western Minnesota is ...

  13. Soil quality and the solar corridor crop system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solar corridor crop system (SCCS) is designed for improved crop productivity based on highly efficient use of solar radiation by integrating row crops with drilled or solid-seeded crops in broad strips (corridors) that also facilitate establishment of cover crops for year-round soil cover. The S...

  14. Soil Quality and the Solar Corridor Crop System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solar corridor crop system (SCCS) is designed for improved crop productivity based on highly efficient use of solar radiation by integrating row crops with drilled or solid-seeded crops in broad strips (corridors) that also facilitate establishment of cover crops for year-round soil cover. The S...

  15. Soil and crop nitrogen as influenced by tillage, cover crops, and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and crop management practices may influence soil mineral N, crop N uptake, and N leaching. We evaluated the effects of three tillage practices [no-till (NT), strip till (ST), and chisel till (CT)], four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secale cereale L.)],...

  16. No-till bioenergy cropping systems effect on soil aeration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy cropping systems have been proposed as a way to enhance United States energy security. However, research on soil quality, such as the effects of maize stover harvesting on soil aeration and the relationships to soil structure and water, associated with bioenergy cropping systems has been l...

  17. Effect of Cover Crops on Soil Fungal Diversity and Biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of various cover crops (sordan, mustard, canola, honeysweet, and fallow) to influence soil fungal biomass and diversity were tested in a potato field in the San Luis Valley, Colorado. Soil samples (0-5 cm depth) were randomly selected from each cover crop plot and soil fungal communitie...

  18. REDUCTION OF HIGH SOIL TEST PHOSPHORUS BY CROP REMOVAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils with high phosphorus (P) level can contribute to excess P in runoff and the subsequent pollution of surface water. Excess P in the soil can be removed from the system by harvesting crops. The objectives of this study were to evaluate crop P removal effects on soil P reduction and to evaluate v...

  19. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations.

    PubMed

    Dias, Teresa; Dukes, Angela; Antunes, Pedro M

    2015-02-01

    There is an urgent need for novel agronomic improvements capable of boosting crop yields while alleviating environmental impacts. One such approach is the use of optimized crop rotations. However, a set of measurements that can serve as guiding principles for the design of crop rotations is lacking. Crop rotations take advantage of niche complementarity, enabling the optimization of nutrient use and the reduction of pests and specialist pathogen loads. However, despite the recognized importance of plant-soil microbial interactions and feedbacks for crop yield and soil health, this is ignored in the selection and management of crops for rotation systems. We review the literature and propose criteria for the design of crop rotations focusing on the roles of soil biota and feedback on crop productivity and soil health. We consider that identifying specific key organisms or consortia capable of influencing plant productivity is more important as a predictor of soil health and crop productivity than assessing the overall soil microbial diversity per se. As such, we propose that setting up soil feedback studies and applying genetic sequencing tools towards the development of soil biotic community databases has a strong potential to enable the establishment of improved soil health indicators for optimized crop rotations. PMID:24408021

  20. Environmental Filtering of Microbial Communities in Agricultural Soil Shifts with Crop Growth

    PubMed Central

    Hargreaves, Sarah K.; Williams, Ryan J.; Hofmockel, Kirsten S.

    2015-01-01

    Plant and soil properties cooperatively structure soil microbial communities, with implications for ecosystem functioning. However, the extent to which each factor contributes to community structuring is not fully understood. To quantify the influence of plants and soil properties on microbial diversity and composition in an agricultural context, we conducted an experiment within a corn-based annual cropping system and a perennial switchgrass cropping system across three topographic positions. We sequenced barcoded 16S ribosomal RNA genes from whole soil three times throughout a single growing season and across two years in July. To target the belowground effects of plants, we also sampled rhizosphere soil in July. We hypothesized that microbial community ?-diversity and composition (?-diversity) would be more sensitive to cropping system effects (annual vs. perennial inputs) than edaphic differences among topographic positions, with greater differences occurring in the rhizosphere compared to whole soil. We found that microbial community composition consistently varied with topographic position, and cropping system and the rhizosphere influenced ?-diversity. In July, cropping system and rhizosphere structured a small but specific group of microbes implying a subset of microbial taxa, rather than broad shifts in community composition, may explain previously observed differences in resource cycling between treatments. Using rank abundance analysis, we detected enrichment of Saprospirales and Actinomycetales, including cellulose and chitin degraders, in the rhizosphere soil and enrichment of Nitrospirales, Syntrophobacterales, and MND1 in the whole soil. Overall, these findings support environmental filtering for the soil microbial community first by soil and second by the rhizosphere. Across cropping systems, plants selected for a general rhizosphere community with evidence for plant-specific effects related to time of sampling. PMID:26226508

  1. SOIL WATER USE AND SOIL RESIDUE COVERAGE BY SUNFLOWER COMPARED TO OTHER CROPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous crop rotations with a diversity of species are essential for improving soil health and decreasing the impact of disease, weeds and insects. Soil water content and soil surface coverage by crop residues were studied in a crop sequence study carried out using no-till management. The exper...

  2. Global patterns of the trends in satellite-derived crop yield proxy, temperature and soil moisture

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Iizumi, T.; Sakurai, G.; Okada, M.; Nishimori, M.

    2014-12-01

    Crop productivity (yield) is sensitive to climate variability and change. To inform stakeholders, including food agencies in food-importing countries, about future variations in food supply associated with climate variability and change, understanding major climatic drivers of the spatiotemporal variations in crop yield over global cropland during the last few decades is crucial. Although remote sensing has difficulty distinguishing individual crops and misses entire cropping cycles in areas where extensive cloud cover during the monsoon limits satellite observations, it is still useful in deriving a proxy of crop yield over large spatial domain and estimating the impacts on crop yield proxy due to climate, including land-surface temperature and surface-layer soil moisture. This study presents an attempt to globally depict the impact of climate change on crop yield proxy by applying a time series analysis to MODIS and AMSR-E satellite images. The crop yield proxy used was the annual maximum or integrated MODIS-derived NDVI during the growing period predefined on the basis of the global crop calendar. The trends in the crop yield proxy in the interval 2001-2013 appeared positive in higher latitudes and negative in lower latitudes. In higher latitudes (and thus colder regions), the increased land-surface temperature led to an increase in crop yield in part due to the enhanced photosynthesis rate. In contrast, the crop yield proxy showed negative correlation with land-surface temperature in lower latitudes. The increased temperature might decrease crop yield by increasing evapotranspiration rate, plant respiration and/or heat stress. The crop yield proxy was also correlated with the AMSR-E-derived soil moisture, although the geographical distribution of soil moisture was highly heterogeneous.

  3. Department of Crop and Soil Sciences PhD Graduate Research Assistantship: Soil Science/Soil Quality/Soil Physics

    E-print Network

    Flury, Markus

    Department of Crop and Soil Sciences PhD Graduate Research Assistantship: Soil Science/Soil Quality/Soil Physics Position Summary: Plastic mulches are used in agriculture to conserve water, suppress Qualifications: · MS in Soil Science, Environmental Science, Environmental Engineering, or closely related field

  4. Soil physical aspects of integrated crop-livestock systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrated crop-livestock systems are inherently more complex than the current model of specialized agricultural production in industrialized countries with clear separation of crops and animals. A movement towards integrating crops and livestock will have impacts on soils and the environment; the ...

  5. Site-Specific Compaction, Soil Physical Property, and Crop Yield Relationships for Claypan Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil compaction is a concern in crop production and environmental protection. Compaction is most often quantified in the field, albeit indirectly, using cone penetrometer measurements of soil strength. The objective of this research was to relate soil compaction to soil physical properties and crop ...

  6. Managing Soil Properties through Dryland Cropping System Intensities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modification of soil functioning/quality parameters (i.e., organic matter content) is important to improve the capacity of soil as a water storage-reservoir for crop production in dryland. A long-term dryland cropping research study was established at the USDA-ARS farm near Lubbock, Texas in 2003, ...

  7. ORGANIC VEGETABLE CROPPING SYSTEM EFFECTS ON SOIL PROPERTIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic vegetable crop production practices, suitable for small-scale farms, can improve soil properties and provide conditions for optimal crop production; however, little research has been conducted. This study investigates short-term changes in soil biological properties of 12 management schemes....

  8. Soil carbon dioxide emission and carbon content under dryland crops. I. Effects of tillage and crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil CO2 emission and C content can be influenced by types of tillage and crops. The CO2 flux at the soil surface, soil total C at 0- to 120-cm depth, and soil temperature and water content at 0- to 15-cm were measured under dryland no-tilled malt barley (NTB), no-tilled pea (NTP), no-tilled fallow ...

  9. Soil carbon and crop yields affected by irrigation, tillage, crop rotation, and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  10. Cropping sequence and nitrogen fertilization impact on surface residue, soil carbon sequestration, and crop yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information is needed on the effect of management practices on soil C storage for obtaining C credit. The effects of tillage, cropping sequence, and N fertilization were evaluated on dryland crop and surface residue C and soil organic C (SOC) at the 0-120 cm depth in a Williams loam from 2006 to 201...

  11. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)].

    PubMed

    Dinesh, R; Srinivasan, V; Hamza, S; Manjusha, A

    2010-06-01

    The study was conducted to determine whether short-term incorporation of organic manures and biofertilizers influence biochemical and microbial variables reflecting soil quality. For the study, soils were collected from a field experiment conducted on turmeric (Curcuma longa L.) involving organic nutrient management (ONM), chemical nutrient management (CNM) and integrated nutrient management (INM). The findings revealed that application of organic manures and biofertilizers (ONM and INM) positively influenced microbial biomass C, N mineralization, soil respiration and enzymes activities. Contrarily, greater metabolic quotient levels in CNM indicated a stressed soil microbial community. Principal component analysis indicated the strong relationship between microbial activity and the availability of labile and easily mineralizable organic matter. The findings imply that even short-term incorporation of organic manures and biofertilizers promoted soil microbial and enzyme activities and these parameters are sensitive enough to detect changes in soil quality due to short-term incorporation of biological fertilizers. PMID:20163953

  12. Psyllids as vectors of emerging bacterial diseases of annual crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Psyllids are important pests of agricultural crops worldwide. These insects may cause damage to plants by direct feeding and/or vectoring plant pathogens. Psyllid-transmitted bacterial diseases are increasingly becoming important in perennial and annual crops. Several reports have shown that the fas...

  13. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under cover crop management had lower N2O fluxes than soils that did not have a cover crop. Results from this study concluded that it is important to allow crop residues to return to the soil as they help to improve soil quality indicators. The presence of cover crops also will contribute to the improvement of these indicators once established and may help mitigate greenhouse gas emissions.

  14. Crop & Soil Science Degree Checklist Name: ____________________________

    E-print Network

    Grünwald, Niklaus J.

    ) Experiential Learning ________ CROP 401, 403 or 410 ­ Research/Thesis/Internship (3 or more credits) _______ CROP 420 ­ Seed Science & Technology (3) (E-campus only) _______ CROP 460 ­ Seed Production (3

  15. Impacts of crop rotations on soil organic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe

    2013-04-01

    Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore suited for further scenario analysis and impact assessment in order to support agri-environmental policy decisions.

  16. Crop rotation and soil temperature influence the community structure of Aspergillus flavus in soil

    E-print Network

    Cotty, Peter J.

    Crop rotation and soil temperature influence the community structure of Aspergillus flavus in soil temperature increased. The results suggest it may be possible to manipulate crop rotations in order to reduce CFU gÀ1 and 16.9% incidence). Previous crop influenced both the quantity of A. flavus and S strains

  17. Aerobic decomposition of crop residues improves N availability and grain yield for three rice soils of the Mekong Delta, Vietnam: A screenhouse study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Mekong Delta of Vietnam, rice (Oryza sativa, L.) is usually planted two to three times annually. Limited evidence elsewhere suggests that rice crop uptake of soil nitrogen (N) under such intensive cropping can be increased by replacing the customary anaerobic decomposition of crop residues wi...

  18. Sustainable biochar effects for low carbon crop production: A 5-crop season field experiment on a low fertility soil from Central China

    NASA Astrophysics Data System (ADS)

    Liu, X.

    2014-12-01

    Biochar's effects on improving soil fertility, enhancing crop productivity and reducing greenhouse gases (GHGs) emission from croplands had been well addressed in numerous short-term experiments with biochar soil amendment (BSA) mostly in a single crop season / cropping year. However, the persistence of these effects, after a single biochar application, has not yet been well known due to limited long-term field studies so far. Large scale BSA in agriculture is often commented on the high cost due to large amount of biochar in a single application. Here, we try to show the persistence of biochar effects on soil fertility and crop productivity improvement as well as GHGs emission reduction, using data from a field experiment with BSA for 5 crop seasons in central North China. A single amendment of biochar was performed at rates of 0 (C0), 20 (C20) and 40 t ha-1 (C40) before sowing of the first crop season. Emissions of CO2, CH4 and N2O were monitored with static closed chamber method throughout the crop growing season for the 1st, 2nd and 5th cropping. Crop yield was measured and topsoil samples were collected at harvest of each crop season. BSA altered most of the soil physic-chemical properties with a significant increase over control in soil organic carbon (SOC) and available potassium (K) content. The increase in SOC and available K was consistent over the 5 crop seasons after BSA. Despite a significant yield increase in the first maize season, enhancement of crop yield was not consistent over crop seasons without corresponding to the changes in soil nutrient availability. BSA did not change seasonal total CO2 efflux but greatly reduced N2O emissions throughout the five seasons. This supported a stable nature of biochar carbon in soil, which played a consistent role in reducing N2O emission, which showed inter-annual variation with changes in temperature and soil moisture conditions. The biochar effect was much more consistent under C40 than under C20 and with GHGs emission than with soil property and crop yield. Thus, our study suggested that biochar amended in dry land could sustain a low carbon production both of maize and wheat in terms of its efficient carbon sequestration, lower GHGs emission intensity and soil improvement over 5 crop seasons after a single amendment.

  19. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...Requirements § 205.203 Soil fertility and crop nutrient...chemical, and biological condition of soil and minimize soil erosion...A crop nutrient or soil amendment included on...in compliance with the conditions established on the...

  20. REDUCTION OF HIGH SOIL TEST PHOSPHORUS BY CROP REMOVAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils with high phosphorus (P) level can contribute to excess P in runoff. The objectives of this study were to evaluate crop P removal effects on soil P reduction and to evaluate various corn hybrids and soybean varieties for differences in P removal. Soil with varying P level as a result of beef c...

  1. Electrical spectra of undisturbed soil from a crop rotation study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil permittivity can be determined across a range of frequencies, but little is known about how the factors derived from the frequency spectra are related to soil pore structure or crop management. The purpose of this study was to test the use of a 12-wire, quasi-coaxial probe for determining soil ...

  2. SOIL HYDRAULIC AND ELECTRICAL PROPERTIES FOR DIFFERENT SOILS, SLOPES, AND CROP ROTATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop management can alter soil physical properties, but variability of these properties may mask treatment effects. The purpose of this study was to compare soil physical property variation under two crop rotations, and to examine interrelations among different soil physical properties. A six-year r...

  3. Crop and Soil Science Degree Checklist Name: ____________________________

    E-print Network

    Grünwald, Niklaus J.

    and Soil Science Degree Checklist Name: ____________________________ ID Intensive (SOIL 325) (3) _______ HHS 231 ­ Lifetime Fitness for Health (2. Global Issues (3) (*soil science electives meeting requirement) _______ Science

  4. Biomass Crop Production: Benefits for Soil Quality and Carbon Sequestration

    SciTech Connect

    Bandaranayake, W.; Bock, B.R.; Houston, A.; Joslin, J.D.; Pettry, D.E.; Schoenholtz, S.; Thornton, F.C.; Tolbert, V.R.; Tyler, D.

    1999-08-29

    Research at three locations in the southeastern US is quantifying changes in soil quality and soil carbon storage that occur during production of biomass crops compared with row crops. After three growing seasons, soil quality improved and soil carbon storage increased on plots planted to cottonwood, sycamore, sweetgum with a cover crop, switchgrass, and no-till corn. For tree crops, sequestered belowground carbon was found mainly in stumps and large roots. At the TN site, the coarse woody organic matter storage belowground was 1.3 Mg ha{sup {minus}1}yr{sup {minus}1}, of which 79% was stumps and large roots and 21% fine roots. Switchgrass at the AL site also stored considerable carbon belowground as coarse roots. Most of the carbon storage occurred mainly in the upper 30 cw although coarse roots were found to depths of greater than 60 cm. Biomass crops contributed to improvements in soil physical quality as well as increasing belowground carbon sequestration. The distribution and extent of carbon sequestration depends on the growth characteristics and age of the individual biomass crop species. Time and increasing crop maturity will determine the potential of these biomass crops to significantly contribute to the overall national goal of increasing carbon sequestration and reducing greenhouse gas emissions.

  5. Heavy metals in the soil-crop system

    NASA Astrophysics Data System (ADS)

    Il'in, V. B.

    2007-09-01

    Data on the bulk contents of heavy metals in polluted soils are not quite suitable to judge the ecological situation in an agrocenosis. According to the results of model experiments with artificial contamination of soil, the flux of zinc and lead from the starting point (from a medium loamy leached chernozem) to the final point (wheat grains) sharply decreases. It is possible to obtain an ecologically pure (uncontaminated) grain yield even on a strongly contaminated soil due to the buffering capacity of the latter and due to the self-protective capacity of agricultural crops. The ecological potential of the soil-crop system is formed mostly at the expense of the buffering capacity of soil to heavy metals; the barrier function of plants is less significant. It is argued that the existing ecological standards based on the total contents of heavy metals in soil are of little use for predicting the quality of crops.

  6. Guidelines for graduate students in Soil and Crop Sciences, Cornell University

    E-print Network

    Pawlowski, Wojtek

    1 Guidelines for graduate students in Soil and Crop Sciences, Cornell University Table of Contents and concentrations. About 33 faculty have been drawn together into the field of Soil and Crop Sciences by mutual, Field Crop Science, Soil Science, and Agronomy. The field of Soil and Crop Sciences is closely linked

  7. Soil carbon levels in irrigated Western Corn Belt cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An irrigated monoculture corn, monoculture soybean, and soybean-corn cropping systems study was initiated in 1991 on a uniform site in the Platte Valley near Shelton, Nebraska. The objective was to determine the long-term effects of these cropping systems on soil organic carbon levels. Four corn hyb...

  8. CROP SEQUENCES AND DYNAMIC CROPPING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dynamic cropping system is defined as a long-term strategy of annual crop sequencing that optimizes crop and soil use options and the attainment of production, economic, and resource conservation goals by using sound ecological management principles. Development of a dynamic cropping systems rese...

  9. Relating soil biochemistry to sustainable crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino acids, amino sugars, carbohydrates, phenols, and fatty acids together comprise appreciable proportions of soil organic matter (SOM). Their cycling contribute to soil processes, including nitrogen availability, carbon sequestration and aggregation. For example, soil accumulation of phenols has ...

  10. Soil carbon and soil organic matter quality in soil size fractions from crop and livestock systems in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton based rotations and monocultures in the Southern High Plains have resulted in soil quality degradation because the semiarid environment combined with low crop residue returns has diminished soil C. Integrated crop-livestock systems and no-till based rotations can increase soil C when used as ...

  11. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    PubMed

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems. PMID:26600462

  12. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    PubMed Central

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3—N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems. PMID:26600462

  13. Soil carbon dioxide emission and carbon content under dryland crops. II. Effects of tillage, cropping sequence, and nitrogen fertilization.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices are needed to reduce soil CO2 emission and increase C sequestration under dryland cropping system. The effects of tillage, cropping sequence, and N fertilization were evaluated on soil surface CO2 flux, soil total C content at 0- to 120-cm depth, and soil temperature and water c...

  14. RESPONSE OF THE SOIL MICROBIAL COMMUNITY TO SOIL FUMIGATION AND MUSTARD COVER CROPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil fumigants such as metam-sodium, used in potato production of the Columbia Basin of WA, are very effective for the control of soil borne pathogens, weeds, and nematodes that reduce crop yield and quality. Soil fumigation has been assumed to have minor impacts on the general soil microbial commun...

  15. Broiler litter fertilization and cropping system impacts on soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 3-year study was conducted at the Mississippi Agricultural and Forestry Experiment Station, Verona, MS, in a Catalpa silty clay loam soil (Fine, smectitic, thermic Fluvaquentic Hapludolls) to evaluate soil chemical, physical, and biological changes resulting from cropping systems along with broile...

  16. Replacing fallow with cover crops in a semiarid soil:Effects on soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Replacement of fallow in crop–fallow systems with cover crops (CCs) may improve soil properties. We assessed whether replacing fallow in no-till winter wheat (Triticum aestivum L.)–fallow with winter and spring CCs for 5 years reduced wind and water erosion, increased soil organic carbon (SOC), and ...

  17. INFLUENCE OF COVER CROPS AND SOIL AMENDMENTS ON OKRA (ABELMOSCHUS ESCULENTUS L.) PRODUCTION AND SOIL NEMATODES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A pot experiment to determine the effects of summer cover crops and soil amendments on okra yield and population densities of various soil nematode taxa was conducted in two consecutive growing seasons in a subtropical region. Two cover crops, sunn hemp (Crotalaria juncea) and sorghum sudangrass (So...

  18. ESTIMATION OF SOIL WATER CONTENT AND EVAPOTRANSPIRATION OF DRYLAND CROPS USING NEUTRON MOISTURE METER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In semi-arid regions, crop yield is often more correlated with soil water availability than any other soil or meteorological factor. Thus, quantification of soil water depletion by crops is important in estimating seasonal water use and evaluating alternative dryland cropping strategies, crop specie...

  19. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...2011-01-01 2011-01-01 false Soil fertility and crop nutrient management practice...Handling Requirements § 205.203 Soil fertility and crop nutrient management practice...producer must manage crop nutrients and soil fertility through rotations, cover crops,...

  20. Crop and Soil Science Sequence This concentration emphasizes the scientific aspects of agronomy including

    E-print Network

    Branoff, Theodore J.

    Crop and Soil Science Sequence This concentration emphasizes the scientific aspects of agronomy and improving the soil physical, chemical and microbial characteristics to enhance crop production breeding, soil and crop management, cropping systems, and plant nutrition. Agronomists are employed by seed

  1. ESTIMATION OF SOIL WATER CONTENT AND EVAPOTRANSPIRATION OF DRYLAND CROPS USING THE NEUTRON MOISTURE METER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In semi-arid regions, soil water availability is often more correlated with crop yields than any other soil or meteorological factor. Thus, quantification of soil water depletion by crops is important in estimating seasonal water use and evaluating alternative dryland cropping strategies, crop speci...

  2. ACCUMULATION AND CROP UPTAKE OF SOIL MINERAL NITROGEN AS INFLUEMCED BY TILLAGE, COVER CROPS, AND NITROGEN FERTILIZATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and crop management practices may influence soil mineral N, crop N uptake, and N leaching. We evaluated the effects of three tillage practices [no-till (NT), strip till (ST), and chisel till (CT)], four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)]...

  3. Collection Policy: Crop and Soil Sciences Introduction

    E-print Network

    Angenent, Lars T.

    forage quality, production, and animal performance including the optimization of perennial grass and corn and water management o Analytical soil chemistry- tests for trace elements in soil and plant uptake

  4. Non-Traditional Soil Additives: Can They Improve Crop Production? 

    E-print Network

    McFarland, Mark L.; Stichler, Charles; Lemon, Robert G.

    2002-06-26

    . D. Robertson. 1984. Report of research results. Supplement 1. Compendium of research reports on use of non-tradition- al materials for crop produc- tion. NCR-103 Committee. Iowa State Press, Ames, Iowa. 2. Bauder, J.W. 1976. Soil condi... of research reports on use of non- traditional materials for crop production. NCR-103 Committee. Iowa State Press, Ames, Iowa. 4. Elegba, M. S. and R. J. Rennie. 1984. Agrispon: microbial and elemental analysis and evalua- tion of its effect...

  5. [Use of Remote Sensing for Crop and Soil Analysis

    NASA Technical Reports Server (NTRS)

    Johannsen, Chris J.

    1997-01-01

    The primary agricultural objective of this research is to determine what soil and crop information can be verified from remotely sensed images during the growing season. Specifically: (1) Elements of crop stress due to drought, weeds, disease and nutrient deficiencies will be documented with ground truth over specific agricultural sites and (2) Use of remote sensing with GPS and GIS technology for providing a safe and environmentally friendly application of fertilizers and chemicals will be documented.

  6. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    SciTech Connect

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen

    2014-06-01

    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

  7. Anaerobic Soil Disinfestation (ASD) Combined with Soil Solarization as a Methyl Bromide Alternative: Vegetable Crop Performance and Soil Nutrient Dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil treatment by anaerobic soil disinfestation (ASD) combined with soil solarization can effectively control soilborne plant pathogens and plant-parasitic nematodes in specialty crop production systems. At the same time, research is limited on the impact of soil treatment by ASD + solarization on c...

  8. Haiti Soil Fertility Analysis and Crop Interpretations for Principal Crops in the Five WINNER Watershed Zones of Intervention

    E-print Network

    Ma, Lena

    1 Haiti Soil Fertility Analysis and Crop Interpretations for Principal Crops in the Five WINNER degradation dominate the landscape in Haiti and there is little accurate soil-fertility research available-specific fertilization recommendations calibrated for the Mehlich-3 (M-3) extractant. Fifteen hundred soil samples were

  9. Estimating Annual Soil Carbon Loss in Agricultural Peatland Soils Using a Nitrogen Budget Approach

    PubMed Central

    Kirk, Emilie R.; van Kessel, Chris; Horwath, William R.; Linquist, Bruce A.

    2015-01-01

    Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta) has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM) oxidation and physical compaction. Rice (Oryza sativa) production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 – 4 % combined). Shallow groundwater contributed 24 – 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 – 81 % of plant N uptake (129 – 149 kg N ha-1) was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 – 70 %, estimated net C loss ranged from 1149 – 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices. PMID:25822494

  10. Estimating annual soil carbon loss in agricultural peatland soils using a nitrogen budget approach.

    PubMed

    Kirk, Emilie R; van Kessel, Chris; Horwath, William R; Linquist, Bruce A

    2015-01-01

    Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta) has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM) oxidation and physical compaction. Rice (Oryza sativa) production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 - 4 % combined). Shallow groundwater contributed 24 - 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 - 81 % of plant N uptake (129 - 149 kg N ha-1) was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 - 70 %, estimated net C loss ranged from 1149 - 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices. PMID:25822494

  11. RELATING SPATIAL VARIATIONS IN SOIL COMPACTION TO SOIL PHYSICAL PROPERTIES AND CROP YIELDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil compaction is a concern in crop production and environmental protection. Compaction is most often quantified in the field, albeit indirectly, using cone penetrometer measurements of soil strength, reported as cone index (CI). The objective of this research was to relate soil compaction, measure...

  12. Chemical Features of Soil: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the fifth of six modules in advanced crop and soil science and introduces the agriculture student to chemical features of the soil. Upon completing the four day lesson, the student will be able to: (1) list macro- and micro-nutrients, (2) define pH and its effect on plants, (3) outline Cation Exchange of the soil,…

  13. Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil

    NASA Astrophysics Data System (ADS)

    Lind, S. E.; Shurpali, N. J.; Peltola, O.; Mammarella, I.; Hyvönen, N.; Maljanen, M.; Räty, M.; Virkajärvi, P.; Martikainen, P. J.

    2015-10-01

    One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinaceae L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured during three years using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha-1 in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was -262 and -256 g C m-2 in 2010 and 2011, respectively. Throughout the studied period, cumulative NEE was -575 g C m-2. When compared to the published data for RCG on an organic soil, the cultivation of this crop on a mineral soil had higher capacity to take up CO2 from the atmosphere.

  14. Remote sensing of agricultural crops and soils

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (principal investigator)

    1983-01-01

    Research in the correlative and noncorrelative approaches to image registration and the spectral estimation of corn canopy phytomass and water content is reported. Scene radiation research results discussed include: corn and soybean LANDSAT MSS classification performance as a function of scene characteristics; estimating crop development stages from MSS data; the interception of photosynthetically active radiation in corn and soybean canopies; costs of measuring leaf area index of corn; LANDSAT spectral inputs to crop models including the use of the greenness index to assess crop stress and the evaluation of MSS data for estimating corn and soybean development stages; field research experiment design data acquisition and preprocessing; and Sun-view angles studies of corn and soybean canopies in support of vegetation canopy reflection modeling.

  15. Soil type influences crop mineral composition in Malawi.

    PubMed

    Joy, Edward J M; Broadley, Martin R; Young, Scott D; Black, Colin R; Chilimba, Allan D C; Ander, E Louise; Barlow, Thomas S; Watts, Michael J

    2015-02-01

    Food supply and composition data can be combined to estimate micronutrient intakes and deficiency risks among populations. These estimates can be improved by using local crop composition data that can capture environmental influences including soil type. This study aimed to provide spatially resolved crop composition data for Malawi, where information is currently limited. Six hundred and fifty-two plant samples, representing 97 edible food items, were sampled from >150 sites in Malawi between 2011 and 2013. Samples were analysed by ICP-MS for up to 58 elements, including the essential minerals calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), selenium (Se) and zinc (Zn). Maize grain Ca, Cu, Fe, Mg, Se and Zn concentrations were greater from plants grown on calcareous soils than those from the more widespread low-pH soils. Leafy vegetables from calcareous soils had elevated leaf Ca, Cu, Fe and Se concentrations, but lower Zn concentrations. Several foods were found to accumulate high levels of Se, including the leaves of Moringa, a crop not previously been reported in East African food composition data sets. New estimates of national dietary mineral supplies were obtained for non-calcareous and calcareous soils. High risks of Ca (100%), Se (100%) and Zn (57%) dietary deficiencies are likely on non-calcareous soils. Deficiency risks on calcareous soils are high for Ca (97%), but lower for Se (34%) and Zn (31%). Risks of Cu, Fe and Mg deficiencies appear to be low on the basis of dietary supply levels. PMID:25461061

  16. Evaluating Transpiration in an Annual Crop and Perennial Prairie Species Using the Heat Balance Method in Central Iowa, U.S.A.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incorporation of native perennial plants into landscapes dominated by annual cropping systems in the Midwestern United States may enhance water quality and promote stable provision of water supply by regulating water flows in the soil-plant-atmosphere continuum. Design of mixed annual-perennial...

  17. Detection of anomalous crop condition and soil variability mapping using a 26 year Landsat record and the Palmer crop moisture index

    NASA Astrophysics Data System (ADS)

    Venteris, E. R.; Tagestad, J. D.; Downs, J. L.; Murray, C. J.

    2015-07-01

    Cost-effective and reliable vegetation monitoring methods are needed for applications ranging from traditional agronomic mapping, to verifying the safety of geologic injection activities. A particular challenge is defining baseline crop conditions and subsequent anomalies from long term imagery records (Landsat) in the face of large spatiotemporal variability. We develop a new method for defining baseline crop response (near peak growth) using the normalized difference vegetation index (NDVI) from 26 years (1986-2011) of Landsat data for 400 km2 surrounding a planned geologic carbon sequestration site near Jacksonville, Illinois. The normal score transform (yNDVI) was applied on a field by field basis to accentuate spatial patterns and level differences due to planting times. We tested crop type and soil moisture (Palmer crop moisture index (CMI)) as predictors of expected crop condition. Spatial patterns in yNDVI were similar between corn and soybeans - the two major crops. Linear regressions between yNDVI and the cumulative CMI (CCMI) exposed complex interactions between crop condition, field location (topography and soils), and annual moisture. Wet toposequence positions (depressions) were negatively correlated to CCMI and dry positions (crests) positively correlated. However, only 21% of the landscape showed a statistically significant (p < 0.05) linear relationship. To map anomalous crop conditions, we defined a tolerance interval based on yNDVI statistics. Tested on an independent image (2013), 63 of 1483 possible fields showed unusual crop condition. While the method is not directly suitable for crop health assessment, the spatial patterns in correlation between yNDVI and CCMI have potential applications for pest damage detection and edaphological soil mapping, especially in the developing world.

  18. Soil, Plant, and Crop Science. Teacher Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This package contains an instructor's manual, an instructor's resource package, and a student workbook for a course in agricultural production and management as it relates to crop production. The module contains 17 units of instruction, each of which contains some or all of the following components: objective sheet, instructor's guide, information…

  19. TILLAGE AND GRAZING EFFECTS ON SOIL PHYSICAL PROPERTIES AND CROP YIELD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water conservation using deficit irrigation and dryland cropping systems are being implemented where the Ogallala aquifer limits irrigation capacity. Decreased crop productivity and profitability has encouraged integration of cattle grazing to supplement crop income, but potential soil compaction ma...

  20. Cover crops influence soil microorganisms and phytoextraction of copper from a moderately contaminated vineyard.

    PubMed

    Mackie, K A; Schmidt, H P; Müller, T; Kandeler, E

    2014-12-01

    We investigated the ability of summer (Avena sativa [oat], Trifolium incarnatum [crimson clover], Chenopodium [goosefoot]) and winter (Vicia villosa [hairy vetch], Secale Cereale L. [Rye], Brassica napus L. partim [rape]) cover crops, including a mixed species treatment, to extract copper from an organic vineyard soil in situ and the microbial communities that may support it. Clover had the highest copper content (14.3mgCukg(-1) DM). However, it was the amount of total biomass production that determined which species was most effective at overall copper removal per hectare. The winter crop rye produced significantly higher amounts of biomass (3532kgDMha(-1)) and, therefore, removed significantly higher amounts of copper (14,920mgCuha(-1)), despite less accumulation of copper in plant shoots. The maximum annual removal rate, a summation of best performing summer and winter crops, would be 0.033kgCuha(-1)y(-1). Due to this low annual extraction efficiency, which is less than the 6kgCuha(-1)y(-1) permitted for application, phytoextraction cannot be recommended as a general method of copper extraction from vineyards. Copper concentration did not influence aboveground or belowground properties, as indicated by sampling at two distances from the grapevine row with different soil copper concentrations. Soil microorganisms may have become tolerant to the copper levels at this site. Microbial biomass and soil enzyme activities (arylsulfatase and phosphatase) were instead driven by seasonal fluxes of resource pools. Gram+ bacteria were associated with high soil moisture, while fungi seemed to be driven by extractable carbon, which was linked to high plant biomass. There was no microbial group associated with the increased phytoextraction of copper. Moreover, treatment did not influence the abundance, activity or community structure of soil microorganisms. PMID:25217742

  1. Spectral properties of agricultural crops and soils measured from space, aerial, field, and laboratory sensors

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (principal investigator); Vanderbilt, V. C.; Robinson, B. F.; Daughtry, C. S. T.

    1981-01-01

    Investigations of the multispectral reflectance characteristics of crops and soils as measured from laboratory, field, aerial, and satellite sensor systems are reviewed. The relationships of important biological and physical characteristics to the spectral properties of crops and soils are addressed.

  2. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...contamination of crops, soil, or water by plant nutrients, pathogenic organisms, heavy metals, or residues of prohibited...contamination of crops, soil, or water by plant nutrients, pathogenic organisms, heavy metals, or residues of...

  3. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...contamination of crops, soil, or water by plant nutrients, pathogenic organisms, heavy metals, or residues of prohibited...contamination of crops, soil, or water by plant nutrients, pathogenic organisms, heavy metals, or residues of...

  4. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...contamination of crops, soil, or water by plant nutrients, pathogenic organisms, heavy metals, or residues of prohibited...contamination of crops, soil, or water by plant nutrients, pathogenic organisms, heavy metals, or residues of...

  5. Evaluation of soil quality indicators in paddy soils under different crop rotation systems

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; Haefele, Stephan; Abooei, Monireh

    2013-04-01

    Evaluation of soil quality indicators in paddy soils under different crop rotation systems Soil quality, by definition, reflects the capacity to sustain plant and animal productivity, maintain or enhance water and air quality, and promote plant and animal health. Soil quality assessment is an essential issue in soil management for agriculture and natural resource protection. This study was conducted to detect the effects of four crop rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) on soil quality indicators (soil moisture, porosity, bulk density, water-filled pore space, pH, extractable P, CEC, OC, OM, microbial respiration, active carbon) in paddy soils of Verona area, Northern Italy. Four adjacent plots which managed almost similarly, over five years were selected. Surface soil samples were collected from each four rotation systems in four times, during growing season. Each soil sample was a composite of sub-samples taken from 3 points within 350 m2 of agricultural land. A total of 48 samples were air-dried and passed through 2mm sieve, for some chemical, biological, and physical measurements. Statistical analysis was done using SPSS. Statistical results revealed that frequency distribution of most data was normal. The lowest CV% was related to pH. Analysis of variance (ANOVA) and comparison test showed that there are significant differences in soil quality indicators among crop rotation systems and sampling times. Results of multivariable regression analysis revealed that soil respiration had positively correlation coefficient with soil organic matter, soil moisture and cation exchange capacity. Overall results indicated that the rice rotation with legumes such as bean and soybean improved soil quality over a long time in comparison to rice-fallow rotation, and this is reflected in rice yield. Keywords: Soil quality, Crop Rotation System, Paddy Soils, Italy

  6. TILLAGE AND CROPPING EFFECTS ON SOIL QUALITY INDICATORS IN THE NORTHERN GREAT PLAINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extreme climate of the Northern Great Plains necessitates cropping systems in the region to possess a resilient soil resource in order to be sustainable. This paper summarizes the effects of tillage, crop sequence, and cropping intensity on soil quality indicators for two long-term cropping syst...

  7. Soil Carbon and Nitrogen Fractions and Crop Yields Affected by Residue Placement and Crop Types

    PubMed Central

    Wang, Jun; Sainju, Upendra M.

    2014-01-01

    Soil labile C and N fractions can change rapidly in response to management practices compared to non-labile fractions. High variability in soil properties in the field, however, results in nonresponse to management practices on these parameters. We evaluated the effects of residue placement (surface application [or simulated no-tillage] and incorporation into the soil [or simulated conventional tillage]) and crop types (spring wheat [Triticum aestivum L.], pea [Pisum sativum L.], and fallow) on crop yields and soil C and N fractions at the 0–20 cm depth within a crop growing season in the greenhouse and the field. Soil C and N fractions were soil organic C (SOC), total N (STN), particulate organic C and N (POC and PON), microbial biomass C and N (MBC and MBN), potential C and N mineralization (PCM and PNM), NH4-N, and NO3-N concentrations. Yields of both wheat and pea varied with residue placement in the greenhouse as well as in the field. In the greenhouse, SOC, PCM, STN, MBN, and NH4-N concentrations were greater in surface placement than incorporation of residue and greater under wheat than pea or fallow. In the field, MBN and NH4-N concentrations were greater in no-tillage than conventional tillage, but the trend reversed for NO3-N. The PNM was greater under pea or fallow than wheat in the greenhouse and the field. Average SOC, POC, MBC, PON, PNM, MBN, and NO3-N concentrations across treatments were higher, but STN, PCM and NH4-N concentrations were lower in the greenhouse than the field. The coefficient of variation for soil parameters ranged from 2.6 to 15.9% in the greenhouse and 8.0 to 36.7% in the field. Although crop yields varied, most soil C and N fractions were greater in surface placement than incorporation of residue and greater under wheat than pea or fallow in the greenhouse than the field within a crop growing season. Short-term management effect on soil C and N fractions were readily obtained with reduced variability under controlled soil and environmental conditions in the greenhouse compared to the field. Changes occurred more in soil labile than non-labile C and N fractions in the greenhouse than the field. PMID:25119381

  8. LINKING WITHIN-FIELD CROP RESPONSE WITH SOIL CHARACTERISTICS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management zones for precision farming can be determined by identifying areas where soil, water, and management factors result in similar crop responses. Given the spatial distribution of LAI of a field, factors determining response patterns may be obtained via inversion of a model linking environme...

  9. Soil surface carbon dioxide efflux of bioenergy cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy cropping systems have been proposed as a way to enhance United States energy security. However, research on greenhouse gas emissions from such systems is needed to ensure environmental sustainability in the field. Since soil aeration properties are dynamic, high-resolution data are needed ...

  10. Matrices to Revise Crop, Soil, and Environmental Sciences Undergraduate Curricula

    ERIC Educational Resources Information Center

    Savin, Mary C.; Longer, David; Miller, David M.

    2005-01-01

    Undergraduate curricula for natural resource and agronomic programs have been introduced and revised during the past several decades with a desire to stay current with emerging issues and technologies relevant to constituents. For the past decade, the Department of Crop, Soil, and Environmental Sciences (CSES) faculty at the University of Arkansas…

  11. Aminopyralid soil residues affect rotational vegetable crops in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted to determine the sensitivity of bell pepper, eggplant, tomato, muskmelon, and watermelon to aminopyralid soil residues. Aminopyralid was applied at six rates ranging from 0.0014 kg ae ha 1 to 0.0448 kg ae ha 1, and vegetable crops were planted in the treated areas. ...

  12. Winter crop sensitivity to inter-annual climate variability in central India

    E-print Network

    DeFries, Ruth S.

    Winter crop sensitivity to inter-annual climate variability in central India Pinki Mondal & Meha climate changes. Here, we examined the sensitivity of winter cropping systems to inter-annual climate-rich validation site, in order to identify the climate parameters to which winter crops ­ mainly wheat and pulses

  13. RELATIONSHIP OF SOIL PROFILE STRENGTH AND APPARENT SOIL ELECTRICAL CONDUCTIVITY TO CROP YIELD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding characteristics of claypan soils has long been an issue for researchers and farmers because the high-clay subsoil has a pronounced effect on grain crop productivity. The claypan restricts water infiltration and storage within the crop root zone, but these effects are not uniform within...

  14. Lignin biochemistry and soil N determine crop residue decomposition and soil priming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping history can affect soil properties, including available N, but little is known about the interactive effects of residue biochemistry, temperature and cropping history on residue decomposition. A laboratory incubation examined the role of residue biochemistry and temperature on the decomposi...

  15. IRRIGATED CROPPING SYSTEM EFFECTS ON SOIL CARBON AND NITROGEN IN NORTHERN TEXAS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimizing crop yields and reducing soil erosion can enhance soil organic carbon (SOC) sequestration. The influence of management practices on crop residue C and N inputs to the soil, SOC sequestration, and NO3-N leaching potential under irrigated, continuous crop production in northern Texas was e...

  16. Long-term tillage frequency and cropping intensity effects on dryland residue and soil carbon fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term soil and crop management practices are needed to increase dryland C sequestration for C trading and C fractions to improve soil quality. We evaluated the 21-yr effects of combinations of three tillage frequencies and three cropping systems on dryland crop biomass returned to the soil, resi...

  17. Effects of soil composition and mineralogy on remote sensing of crop residue cover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The management of crop residues in agricultural fields influences soil erosion and soil carbon sequestration. Remote sensing methods can efficiently assess crop residue cover and tillaje intensity over many fields in a region. Although the reflectance spectra of soils and crop residues are often s...

  18. SOIL COVERAGE BY RESIDUE IN DIVERSE CROP SEQUENCES UNDER NO-TILLAGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil coverage by crop residue protects soil health and prevents damaging soil erosion. Coverage was studied in a central North Dakota (400 mm avg. precip.) crop sequence experiment under no-till management in which all possible combinations of 10 crops (safflower, sunflower (Sun), flax, spring wheat...

  19. Crop Management Effects on Soil Carbon and Nitrogen in Northern Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimizing crop yields and reducing soil erosion can enhance soil organic carbon (SOC) sequestration. The influence of management practices on crop residue C and N inputs to the soil, SOC sequestration, and NO3-N leaching potential under irrigated, continuous crop production in northern Texas was e...

  20. Research Master's Degree in Soil and Crop Sciences A candidate for a research master's degree in Soil and Crop Sciences is expected to

    E-print Network

    Chen, Tsuhan

    ___________________________________________________________________________________ ________________________________________________________________________________ Research Master's Degree in Soil and Crop Sciences A candidate for a research master's degree in Soil Sciences. Recipients of the research master's degree will demonstrate the ability to conduct original research in the field of soil and crop sciences. Candidates are expected to synthesize and create new

  1. Influence of cover crops and crop residue treatment on soil organic carbon stocks evaluated in Swedish long-term field experiments

    NASA Astrophysics Data System (ADS)

    Poeplau, Christopher; Bolinder, Martin A.; Börjesson, Gunnar; Kätterer, Thomas

    2015-04-01

    Soil organic carbon (SOC) stocks in agricultural soils are strongly controlled by management. In this study we quantified the effect of cover crops and crop residue management on SOC stocks in Swedish long-term experiments. Eight pairs of cover crop (undersown ryegrass) vs. no cover crop were investigated in Swedish long-term field experiments (16 to 24 years). Yields of the main crop were not affected by the cover crop. Cover crops significantly increased SOC stocks, with a mean carbon sequestration rate in all experiments (excluding one) of 0.32±0.29 Mg C ha-1 yr-1. Interestingly, this sequestration is similar to that estimated for a U.S.experiment, where ryegrass growth is much less temperature- and light-limited than under Swedish conditions. This sequestration rate is also the same as that recently reported for many other cover crops in a global meta-analysis but less than SOC changes in ley-dominated rotations which under Nordic conditions were shown to accumulate in average 0.5 Mg C ha-1 yr-1 more carbon compared to exclusively annual cropping systems. Thus, originally introduced in agricultural rotations to reduce nitrate leaching, cover crops are also an effective practice to increase SOC stocks, even at relatively high latitudes. The effect of crop residue treatment was studied in 16 pairs of straw incorporated (SI) vs. straw removed (SR) treatments in six Swedish long-term field experiments. Data series on SOC with 5-28 sampling dates during 27-53 years were analysed using ICBM, a dynamic SOC model. At five out of six sites, the humification coefficient for straw (hlitter; the fraction of straw C that is entering the slow C pool) was much smaller (0-0.09) than the ICBM default h-value for plant material estimated in previous studies (0.125). The derived hlitter-values and thus the stabilization of straw-derived carbon increased significantly with clay content. For an Italian site (with five pairs of SI vs. SR) that was used for model validation we found the best model fits with hlitter-values ranging from 0 to 0.05, increasing with nitrogen fertilization. We explained this with increased substrate use efficiency of microbes due to increasing N availability. We conclude that i) the efficiency of incorporating straw to increase SOC stocks depends on soil texture and nitrogen availability, ii) using straw for bioenergy production could be a more sustainable and climate-smart option, especially in coarse textured soils, and iii) the introduction of cover crops may be a more efficient strategy for C sequestration in cereal-dominated rotations rather than incorporation of crop residues.

  2. Evaluating Soil Compaction for an Annual Winter Grazing/Vegetable Production Rotation in North-Central

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Degraded soils of Alabama have demonstrated the ability to respond well to conservation tillage in a large variety of crops. Winter annual grazing/sod-based rotations with summer vegetable production can offer reduced economic risks for producers but may change tillage requirements for vegetable pro...

  3. Remote sensing of agricultural crops and soils

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (principal investigator)

    1982-01-01

    Research results and accomplishments of sixteen tasks in the following areas are described: (1) corn and soybean scene radiation research; (2) soil moisture research; (3) sampling and aggregation research; (4) pattern recognition and image registration research; and (5) computer and data base services.

  4. Soil aggregates and their associated carbon and nitrogen content in winter annual pastures using different tillage management options

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally, winter annual pastures are established on grazing areas that are steeply sloping and not regarded as suitable for row-crop production. Using conventional (CT) tillage methods to prepare these fragile lands for winter annual pastures leads to increased erosion and rapid soil degradatio...

  5. Lime effects on soil acidity, crop yield and aluminum chemistry in inland Pacific Northwest direct-seed cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pH of agricultural soils in the Inland Pacific Northwest (IPNW) has declined below established critical levels for cereal and grain legume crops. Our objective was to assess the effects of broadcast or subsurface banded lime treatments on soil acidity, crop yield, and aluminum (Al) chemistry in ...

  6. Residue and soil carbon sequestration in relation to crop yield as affected by irrigation, tillage, cropping system and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  7. Litter Inputs and Soil Aggregation in Midwestern Biofuel Crops

    NASA Astrophysics Data System (ADS)

    Kantola, I. B.; Masters, M. D.; Smyth, E. M.; DeLucia, E. H.

    2014-12-01

    Perennial C4 grasses represent alternatives to corn for the production of ethanol because of low management costs and high biomass production. To evaluate the effects of perennial grasses on the agricultural soils of the Midwest, native switchgrass and a sterile hybrid of the Asian grass Miscanthus were planted at the University of Illinois Energy Farm in 2008. Through five years of growth, above and belowground plant biomass, litter, and soil were compared with soils in plots growing a corn-corn-soy rotation typical of the area. Above- and belowground plant biomass in Miscanthus and switchgrass averaged higher than corn/soy following two years of perennial establishment, with belowground biomass exceeding corn/soy by approximately 5-fold in the year after establishment (2010) and 25-fold by 2012. Measurements of root distribution and turnover rates indicate that roots are the primary contribution of new carbon to soils under perennial crops. Physical fractionation of the soils into water stable aggregates showed 4-14% increases in macroaggregate fractions under perennial crops; the large aggregates are adhered together by organic material and indicative of the increased presence of labile carbon forms like plant roots, fungi, and plant and microbial exudates. Carbon and nitrogen analyses of the fractions show that while overall carbon has not increased significantly in whole soil, soils under perennial grasses are concentrating carbon by 5-17% in the macroaggregates after just 5 years. Native switchgrass roots (buried) and litter (surface-applied) decompose faster than Miscanthus roots and litter, but slower than corn roots and litter buried to simulate incorporation by tillage. Switchgrass soil shows the highest degree of macroaggregate formation, pointing to a high rate of litter and root decomposition and incorporation into soil structure. While macroaggregates are relatively labile soil structures compared to microaggregates and free silt and clay, they offer physical protection to the organic matter and smaller particles contained within them, particularly in soils that are not subject to cultivation. Therefore untilled soils under long-term perennial crop production provide an important environment for the protection of labile carbon.

  8. [Effects of different cropping patterns on soil enzyme activities and soil microbial community diversity in oasis farmland].

    PubMed

    Li, Rui; Liu, Yu; Chu, Gui-xin

    2015-02-01

    Effects of long-term cropping patterns on the activities of peroxidase, invertase, arylsulfatase, dehydrogenase and protease were investigated in this paper. Four long-term cropping patterns included (1) 10 years continuous cropping of corn, (2) 8 years continuous cropping of wheat followed by 10 years continuous cropping of cotton, (3) 15 years continuous cropping of cotton, and (4) 6 years continuous cropping of cotton followed by 6 years of wheat/sunflower rotation. The responses of soil bacteria, fungi, ammonia oxidizing bacteria (AOB) , and the ammonia oxidizing archaea (AOA) to different copping patterns were analyzed. The results showed that cropping patterns significantly affected the activities of soil peroxidase, arylsulfatase, dehydrogenase and protease, while had no significant effect on soil invertase activity. The cropping patterns significantly influenced the diversity index of AOA, but had no significant influence on that of soil bacteria, fungi and AOB. The community structures of soil fungi and AOB were more sensitive to cropping patterns than soil bacteria and AOA. In conclusion, long-term continuous cropping of cotton decreased the activities of soil enzymes activities and soil microbial diversity in oasis farmland, while crop rotation could alleviate the negative influence. PMID:26094465

  9. Soil quality differences in a mature alley cropping system in temperate North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alley cropping in agroforestry practices has been shown to improve soil quality, however information on long-term effects (>10 years) of alley cropping on soils in the temperate zone is very limited. The objective of this study was to examine effects of management, landscape, and soil depth on soil...

  10. Multi-Seasonal Nitrogen Recoveries from Crop Residue in Soil and Crop in a Temperate Agro-Ecosystem

    PubMed Central

    Hu, Guoqing; Liu, Xiao; He, Hongbo; Zhang, Wei; Xie, Hongtu; Wu, Yeye; Cui, Jiehua; Sun, Ci; Zhang, Xudong

    2015-01-01

    In conservation tillage systems, at least 30% of the soil surface was covered by crop residues which generally contain significant amounts of nitrogen (N). However, little is known about the multi-seasonal recoveries of the N derived from these crop residues in soil-crop systems, notably in northeastern China. In a temperate agro-ecosystem, 15N-labeled maize residue was applied to field surfaces in the 1st year (2009). From the 2nd to 4th year (2010-2012), one treatment halted the application of maize residue, whereas the soil in the second treatment was re-applied with unlabeled maize residue. Crop and soil samples were collected after each harvest, and their 15N enrichments were determined on an isotope ratio mass spectrometer to trace the allocation of N derived from the initially applied maize residue in the soil-crop systems. On average, 8.4% of the maize residue N was recovered in the soil-crop in the 1st year, and the vast majority (61.9%-91.9%) was recovered during subsequent years. Throughout the experiment, the cumulative recovery of the residue N in the crop increased gradually (18.2%-20.9%), but most of the residue N was retained in the soil, notably in the 0-10 cm soil layer. Compared to the single application, the sequential residue application significantly increased the recovery of the residue N in the soil profile (73.8% vs. 40.9%) and remarkably decreased the total and the initially applied residue derived mineral N along the soil profile. Our results suggested that the residue N was actively involved in N cycling, and its release and recovery in crop and soil profile were controlled by the decomposition process. Sequential residue application significantly enhanced the retention and stabilization of the initially applied residue N in the soil and retarded its translocation along the soil profile. PMID:26192436

  11. Effects of agricultural practices of three crops on the soil communities under Mediterranean conditions: field evaluation.

    NASA Astrophysics Data System (ADS)

    Leitão, Sara; José Cerejeira, Maria; Abreu, Manuela; Sousa, José Paulo

    2014-05-01

    Sustainable agricultural production relies on soil communities as the main actors in key soil processes necessary to maintain sustainable soil functioning. Soil biodiversity influences soil physical and chemical characteristics and thus the sustainability of crop and agro-ecosystems functioning. Agricultural practices (e.g.: soil tillage, pesticides and fertilizer applications, irrigation) may affects negatively or positively soil biodiversity and abundances by modifying the relationships between organisms in the soil ecosystem. The present study aimed to study the influence of agricultural practices of three crops (potato, onion and maize) under Mediterranean climate conditions on soil macro- and mesofauna during their entire crop cycles. Effects on soil communities were assessed at a higher tier of environmental risk assessment comprising field testing of indigenous edaphic communities in a selected study-site located in a major agriculture region of Central Portugal, Ribatejo e Oeste, neighbouring protected wetlands. A reference site near the agricultural field site was selected as a Control site to compare the terrestrial communities' composition and variation along the crop cycle. The field soil and Control site soil are sandy loam soils. Crops irrigation was performed by center-pivot (automated sprinkler that rotates in a half a circle area) and by sprinklers. Soil macro- and mesofauna were collected at both sites (field and Control) using two methodologies through pitfall trapping and soil sampling. The community of soil macro- and mesofauna of the three crops field varied versus control site along the crops cycles. Main differences were due to arachnids, coleopterans, ants and adult Diptera presence and abundance. The feeding activity of soil fauna between control site and crop areas varied only for potato and onion crops vs. control site but not among crops. Concentration of pesticides residues in soil did not cause apparent negative effects on the soil communities. Significant differences of soil communities from potato and onion crops with the one from control site were observed at the beginning and during the crop cycle, but similarities were observed at the last sampling date after harvesting. The same was observed for the maize crop, indicating that soil communities recovered from the agricultural disturbances associated with crops management. An integrated approach such as the one adopted in present study, taking into consideration soil community's abundances, feeding activity and time variations along entire crop cycles of several crops under Mediterranean conditions, as well as soil exposure to pesticides residues, may contribute to decision making towards a sustainability of crop areas, including pesticide use and management practices.

  12. Impact of rapeseed cropping on the soil carbon balance

    NASA Astrophysics Data System (ADS)

    Moffat, Antje Maria; Herbst, Mathias; Huth, Vytas; Andres, Monique; Augustin, Jürgen

    2015-04-01

    Winter oilseed rape is the dominant biofuel crop in the young moraine landscape in Northern Germany. Since the cultivation of biofuel crops requires sustainability compared to fossil fuels by law, detailed knowledge about their green house gas (GHG) balance is necessary. The soil carbon balance is one of the key contributors to the total GHG balance and also very important for the assessment of soil fertility. However, the knowledge about the impact of different management practices on the soil carbon balance is very limited up to now. Therefore, we investigated the carbon fluxes of winter oilseed rape at field plots near Dedelow/Uckermark in NE Germany with different treatments of fertilization (mineral versus organic) and tillage (no-till and mulch-till versus ploughing). The dynamics of the carbon fluxes are mainly driven by the current climatic conditions but the overall response depends strongly on the ecosystem state (with its physiological and microbiological properties) which is affected by management. To get the full carbon flux dynamics but also the impact of the different management practices, two different approaches were used: The eddy covariance technique to get continuous fluxes throughout the year and the manual chamber technique to detect flux differences between specific management practices. The manual chamber measurements were conducted four-weekly as all-day campaigns using a flow-through non-steady-state closed chamber system. The fluxes in-between campaigns were gap-filled based on functional relationships with soil and air temperature (for the ecosystem respiration) and photosynthetic active radiation (for the gross primary production). All results presented refer to the cropping season 2012-2013. The combination of the two measurement techniques allows the evaluation of chamber fluxes including an independent estimate of the error on the overall balances. Despite the considerable errors, there are significant differences in the soil carbon balance between the tillage and fertilization treatments - ranging from net losses to net gains in the soil carbon stock.

  13. ECONOMICS OF ANNUAL CROPPING VERSUS CROP-FALLOW IN THE NORTHERN GREAT PLAINS AS INFLUENCED BY TILLAGE AND NITROGEN.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annual yields with more intensive cropping (IC) systems tend to be greater than those of spring wheat-fallow (SW-F), however, little economic comparison information is available. The long-term (12 yr) effects of tillage system and N fertilization on the economic returns from two dryland cropping s...

  14. Toxicity of naturally-contaminated manganese soil to selected crops.

    PubMed

    Ková?ik, Jozef; Št?rbová, Dagmar; Babula, Petr; Švec, Pavel; Hedbavny, Josef

    2014-07-23

    The impact of manganese excess using naturally contaminated soil (Mn-soil, pseudototal Mn 6494 vs 675 ?g g(-1) DW in control soil) in the shoots of four crops was studied. Mn content decreased in the order Brassica napus > Hordeum vulgare > Zea mays > Triticum aestivum. Growth was strongly depressed just in Brassica (containing 13696 ?g Mn g(-1) DW). Some essential metals (Zn, Fe) increased in Mn-cultured Brassica and Zea, while macronutrients (K, Ca, Mg) decreased in almost all species. Toxic metals (Ni and Cd) were rather elevated in Mn-soil. Microscopy of ROS, NO, lipid peroxidation, and thiols revealed stimulation in all Mn-cultured crops, but changes were less visible in Triticum, a species with low shoot Mn (2363 ?g g(-1) DW). Antioxidative enzyme activities were typically enhanced in Mn-cultured plants. Soluble phenols increased in Brassica only while proteins rather decreased in response to Mn excess. Inorganic anions (chloride, sulfate, and phosphate) were less accumulated in almost all Mn-cultured crops, while the nitrate level rather increased. Organic anions (malate, citrate, oxalate, acetate, and formate) decreased or remained unaffected in response to Mn-soil culture in Brassica, Hordeum, and Triticum but not in Zea. However, the role of organic acids in Mn uptake in these species is not assumed. Because control and Mn-soil differed in pH (6.5 and 3.7), we further studied its impact on Mn uptake in solution culture (using Mn concentration ?5 mM deducted from water-soluble fraction of Mn-soil). Shoot Mn contents in Mn-treated plants were similar to those observed in soil culture (high in Brassica and low in Triticum) and pH had negligible impact. Fluorescence indicator of "general ROS" revealed no extensive or pH-dependent impact either in control or Mn-cultured roots. Observed toxicity of Mn excess to common crops urges for selection of cultivars with higher tolerance. PMID:24965550

  15. Effect of different crops on soil organic matter and biological activity in Oxisols under three different crops

    NASA Astrophysics Data System (ADS)

    Toledo, Diana Marcela; Arzuaga, Silvia; Dalurzo, Humberto; Zornoza, Raúl; Vazquez, Sara

    2015-04-01

    The objective of this work was to evaluate changes in soil organic matter in Oxisols under different crops compared to native rainforest, and to assess if acid phosphatase activity (APA) could be a good indicator for SOC changes and soil quality. The experimental design consisted of four completely randomized blocks with four treatments: subtropical rainforest (F); yerba mate crop (I) (Ilex paraguariensis SH.); citrus crop (C) (Citrus unshiu Marc); and tobacco crop (T) (Nicotiana tabacum L.). Soil samples were taken at 0-10; 10-20 and 20-30 cm depths. The variables measured were soil organic carbon (SOC), APA, clay content, pH, total nitrogen (Nt), available phosphorus (P) and CO2 emissions. All data were analyzed by ANOVA to assess the effects of land-use changes. The treatment means were compared through Duncan's multiple range tests (p<0.05). The relationship between variables was determined with a simple correlation analysis and with a multiple linear regression analysis through the stepwise method. These soils showed an acid reaction and their clay content was over 650 g kg-1 for the three depths. SOC and N contents were higher in native soils, intermediate for the citrus crop, and lower under both tobacco and yerba mate crops. CO2 emissions were higher in the rainforest (47.32 kg ha-1 of CO2) than in cultivated soils, which indicates that biological activity is enhanced in rainforest soils where substrates for soil biota and fauna are more readily available. The variability of 76% in APA was explained by total nitrogen, which is closely related to soil organic matter, and by available P. Conversion of subtropical rainforests into agricultural lands reduced SOC content and acid phosphatase activity, thereby lowering soil quality. In this study, acid phosphatase activity proved to be a sensitive indicator to detect changes from pristine to cropped soils, but it failed to distinguish differences among crop systems.

  16. Response of soil respiration to climate across biofuel crops and land use histories

    NASA Astrophysics Data System (ADS)

    Su, Y.; Chen, J.; Shao, C.; Shen, W.; Zenone, T.; John, R.; Deal, M.; Hamilton, S. K.; Robertson, G. P.

    2013-12-01

    Land use change (LUC) due to the worldwide increasing production of biofuel crops creates carbon debt that would require decades to repay. The payback time depends on the net ecosystem exchange (NEE) of CO2 and more determined by the carbon loss, such as soil respiration, than photosynthesis offset. Soil respiration is not only an important part of ecosystem respiration, but is also highly correlated with ecosystem production, via substrate subsidies from plants. Both autotrophic and heterotrophic soil respiration were regulated by climated-induced factors (e.g. soil temperature and soil water content) and also affected by substrate supply. In 2009, three sites in conservation reserve program (CRP) and conventional corn-soybean rotation agricultural lands (AG), were converted to soybean production, in experimental sites at Kellogg Biological Station, MI. In 2010, the three sites of differential previous land uses were then converted to corn (Cr), switchgrass (Sw) and prairie mixture (Pr) production. A reference site has been maintained CRP status since then. We used chamber-based method to assess total and heterotrophic soil respirations rate (SRRt and SRRh) from control treatment (C) and root exclusion treatment (E) at all sites, in 2011 and 2012, to explore how soil respiration rate (SRR) respond to the change of abiotic and biotic factors. Our results show that soil temperature (Ts) are important factors that affect SRR patterns. At the beginning of growing season, SRRs are low (average SRRt and SRRh are 3.19 and 3.11 umol CO2/m2s, respectively, on April 10th, 2011) when soil temperature is low. SRRs in general increased over time in a year, peaked in late July- early August, 1-2 weeks after soil temperature arrive its peak (maximum average SRRt and SRRh are 8.64 and 5.68, respectively, on August 3rd/4th, 2011). Soil water content (VWC) did not affect the time of SRR peak but limited its amount; when VWCs were extremely low in 2012 (average VWC at C and E treatment decreased 2.25% and 8.55%, respectively, in mid-summer between 2011 and 2012), SRRs were also comparatively low (average SRRt and SRRh decreased 5.57 and 3.12 umol CO2/m2s, respectively, in 2012). Besides, substrate supply importantly regulates SRRs; the patterns of SRR coincide that of crop growth through a growing season. SRRs of annual plan (corn) sites have very narrow peaks while SRRs of perennial crops (all of the rest crops in the experiment) have extended periods of highest SRRs. This may be a consequence of the difference between the phenology of annual and perennial crops. Generally, SRRh are lower than SRRt at all AG and reference sites (the difference between SRRh and SRRt are 5.23, 2.32, 3.87 and 6.03 at AG-Cr, AG-Sw, AG-Pr and reference site, respectively) in mid-summer in 2011, however, the difference between SRRh and SRRt are close at CRP sites (the difference are 1.42, 1.87 and -0.07 at CRP-Cr, CRP-Sw and CRP-Pr site). Large amount of carbon released into soil due to land use change at CRP sites would lead to high SRRh.

  17. Cropping systems modulate the rate and magnitude of soil microbial autotrophic CO2 fixation in soil

    PubMed Central

    Wu, Xiaohong; Ge, Tida; Wang, Wei; Yuan, Hongzhao; Wegner, Carl-Eric; Zhu, Zhenke; Whiteley, Andrew S.; Wu, Jinshui

    2015-01-01

    The effect of different cropping systems on CO2 fixation by soil microorganisms was studied by comparing soils from three exemplary cropping systems after 10 years of agricultural practice. Studied cropping systems included: continuous cropping of paddy rice (rice-rice), rotation of paddy rice and rapeseed (rice-rapeseed), and rotated cropping of rapeseed and corn (rapeseed-corn). Soils from different cropping systems were incubated with continuous 14C-CO2 labeling for 110 days. The CO2-fixing bacterial communities were investigated by analyzing the cbbL gene encoding ribulose-1,5-bisphosphate carboxylase oxygenase (RubisCO). Abundance, diversity and activity of cbbL-carrying bacteria were analyzed by quantitative PCR, cbbL clone libraries and enzyme assays. After 110 days incubation, substantial amounts of 14C-CO2 were incorporated into soil organic carbon (14C-SOC) and microbial biomass carbon (14C-MBC). Rice-rice rotated soil showed stronger incorporation rates when looking at 14C-SOC and 14C-MBC contents. These differences in incorporation rates were also reflected by determined RubisCO activities. 14C-MBC, cbbL gene abundances and RubisCO activity were found to correlate significantly with 14C-SOC, indicating cbbL-carrying bacteria to be key players for CO2 fixation in these soils. The analysis of clone libraries revealed distinct cbbL-carrying bacterial communities for the individual soils analyzed. Most of the identified operational taxonomic units (OTU) were related to Nitrobacter hamburgensis, Methylibium petroleiphilum, Rhodoblastus acidophilus, Bradyrhizobium, Cupriavidus metallidurans, Rubrivivax, Burkholderia, Stappia, and Thiobacillus thiophilus. OTUs related to Rubrivivax gelatinosus were specific for rice-rice soil. OTUs linked to Methylibium petroleiphilum were exclusively found in rice-rapeseed soil. Observed differences could be linked to differences in soil parameters such as SOC. We conclude that the long-term application of cropping systems alters underlying soil parameters, which in turn selects for distinct autotrophic communities. PMID:26005435

  18. SOIL WATER USE AND GRAIN YIELD OF THREE DRYLAND CROPS UNDER DIFFERING TILLAGE SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Combining the use of drought-adapted and early maturing crops with reduced tillage practices in dryland cropping systems can increase soil water storage, water-use efficiency and crop yields. The objective of this study was to evaluate soil water use by cowpeas (Vigna unguiculata), grain sorghum [So...

  19. Early response of soil organic fractions to tillage and integrated crop-livestock production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage, cropping system, and cover cropping are important management variables that control the quantity, quality, and placement of organic matter inputs to soil. How soil organic matter and its different fractions respond to management has not been comprehensively studied in integrated crop-lives...

  20. Ruminant Grazing of Cover Crops: Effects on Soil Properties and Agricultural Production

    ERIC Educational Resources Information Center

    Poffenbarger, Hanna

    2010-01-01

    Integrating livestock into a cropping system by allowing ruminant animals to graze cover crops may yield economic and environmental benefits. The effects of grazing on soil physical properties, soil organic matter, nitrogen cycling and agricultural production are presented in this literature review. The review found that grazing cover crops

  1. November 9, 2015 National awards presented to Cornell crop and soil scientists

    E-print Network

    Lim, Seonhee

    and Chair of the Section of Soil & Crop Sciences in the School of Integrative Plant Science at Cornell Professor in the Section of Soil & Crop Sciences in the School of Integrative Plant Science and Associate Sciences in the School of Integrative Plant Science at Cornell University, was presented the Crop Science

  2. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sludge (biosolids) as defined in 40 CFR part 503; and (3) Burning as a means of disposal for crop... 7 Agriculture 3 2012-01-01 2012-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer...

  3. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... sludge (biosolids) as defined in 40 CFR part 503; and (3) Burning as a means of disposal for crop... 7 Agriculture 3 2013-01-01 2013-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer...

  4. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... sludge (biosolids) as defined in 40 CFR part 503; and (3) Burning as a means of disposal for crop... 7 Agriculture 3 2011-01-01 2011-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer...

  5. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... sludge (biosolids) as defined in 40 CFR part 503; and (3) Burning as a means of disposal for crop... 7 Agriculture 3 2014-01-01 2014-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer...

  6. Mapping crop Residue Cover and Soil Tillage Intensity Using Remote Sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Until recently crop residues were managed primarily to reduce soil erosion and increase soil organic carbon, but demands for biofuels may remove much of the residue. Current methods of measuring crop residue cover are inadequate for characterizing the temporal and spatial variability of crop residu...

  7. Winter Cover Crop Biomass for Biofuel Production, Implications for Soil Coverage and Profitability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High residue winter cover crops are critical for maximizing conservation tillage system benefits, including reductions in soil erosion, improved soil productivity, higher crop yields and greater net returns from crop production. With the increasing demand for biofuel production, the potential to har...

  8. Water use efficiency of perennial and annual bioenergy crops in central Illinois

    NASA Astrophysics Data System (ADS)

    Zeri, Marcelo; Hussain, Mir Zaman; Anderson-Teixeira, Kristina J.; Delucia, Evan; Bernacchi, Carl J.

    2013-06-01

    Sustainable bioenergy production depends upon the efficiency with which crops use available water to produce biomass and store carbon belowground. Therefore, water use efficiency (WUE; productivity vs. annual evapotranspiration, ET) is a key metric of bioenergy crop performance. We evaluate WUE of three potential perennial grass bioenergy crops, Miscanthus × giganteus (miscanthus), Panicum virgatum (switchgrass), and an assemblage of prairie species (28 species), and Zea mays-Glycine max rotation, during the establishment phase in Illinois. Ecosystem WUE (EWUE; net ecosystem productivity vs. ET) was highest in miscanthus, reaching a maximum value of 12.8 ± 0.3 kg ha-1 mm-1 in the third year, followed by switchgrass (7.5 ± 0.3 kg ha-1 mm-1) and prairie (3.9 ± 0.3 kg ha-1 mm-1); the row crop was the lowest. Besides EWUE, harvest-WUE (HWUE, harvested biomass vs. ET) and net biome productivity-WUE (BWUE, calculated as net ecosystem production - harvest vs. ET) were also estimated for all crops and years. After three years of establishment, HWUE and BWUE were highest in miscanthus (9.0 ± 2 and 3.8 ± 2.9 kg ha-1 mm-1, respectively) providing a net benefit to the carbon balance, while the row crops had a negative carbon balance and a negative BWUE. BWUE for maize/soybean indicate that this ecosystem would deplete the soil carbon stocks while using the water resources. Switchgrass had the second highest BWUE, while prairie was almost neutral indicating that long-term carbon sequestration for this agro-ecosystem would be sensitive to harvest timing with an early harvest removing more biomass, and thus carbon, from the field.

  9. Crop rotation effect on soil carbon and nitrogen stocks under limited irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited irrigation management practices are being used in the Central Great Plains to conserve water by optimizing crop water use efficiency. Limited irrigation may reduce total crop biomass production and amount of crop residue returned to the soil. Crop residue production within four no-till (NT...

  10. CROPS AND SOILS RESEARCH PAPER Improved weather-based late blight risk management

    E-print Network

    Douches, David S.

    CROPS AND SOILS RESEARCH PAPER Improved weather-based late blight risk management: comparing models increased dramatically in recent years. For those with a goal of consistently submitting crop disease number of early warning systems for crop disease risk that integrate with crop- specific decision support

  11. Evaluation of antibiotic mobility in soil associated with swine-slurry soil amendment under cropping conditions.

    PubMed

    Domínguez, C; Flores, C; Caixach, J; Mita, L; Piña, B; Comas, J; Bayona, J M

    2014-11-01

    Interest in identifying pools of antibacterial-resistance genes has grown over the last decade, with veterinary antibiotics (VAs) receiving particular attention. In this paper, a mesoscale study aimed at evaluating the vertical transport of common VAs-namely, fluoroquinolones, tetracyclines, sulfonamides, and lincosamides in agricultural soil subjected to drip irrigation-was performed under greenhouse conditions. Accordingly, leachates of cropped and uncropped soil, amended with swine-slurry leading to 19-38 ?g kg(-1) (dry mass) antibiotics in the soil, were analyzed over the course of the productive cycle of a lettuce (42 days) with three sampling campaigns (N?=?24). High lincomycin (LCM) concentrations (30-39 ?g L(-1)) were detected in the leachates collected from the swine-slurry-amended soil. The highest LCM mass recovered in the leachates (30.1?±?1.63 %) was obtained from cropped experimental units. In addition, the LCM leaching constant and its leaching potential as obtained from the first-order model were higher in the leachates from the cropped experimental units. Lower concentrations of sulfadimethoxine were also detected in leachates and in soil. Enrofloxacin and oxytetracycline occurred only in soil, which is consistent with high soil interaction. PMID:24938815

  12. Effects of irrigation on crops and soils with Raft River geothermal water

    SciTech Connect

    Stanley, N.E.; Schmitt, R.C.

    1980-01-01

    The Raft River Irrigation Experiment investigated the suitability of using energy-expended geothermal water for irrigation of selected field-grown crops. Crop and soil behavior on plots sprinkled or surface irrigated with geothermal water was compared to crop and soil behavior on plots receiving water from shallow irrigation wells and the Raft River. In addition, selected crops were produced, using both geothermal irrigation water and special management techniques. Crops irrigated with geothermal water exhibited growth rates, yields, and nutritional values similar to comparison crops. Cereal grains and surface-irrigated forage crops did not exhibit elevated fluoride levels or accumulations of heavy metals. However, forage crops sprinkled with geothermal water did accumulate fluorides, and leaching experiments indicate that new soils receiving geothermal water may experience increased salinity, exchangeable sodium, and decreased permeability. Soil productivity may be maintained by leaching irrigations.

  13. Improved Remotely-Sensed Estimates of Crop Residue Cover by Incorporating Soils Information.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage (CT) methods, which include reduced- and no-till methods, leave substantial quantities of crop residues on the soil surface. These crop residues act as a barrier to wind and water to reduce soil erosion and evaporation. Long-term CT also increases soil organic carbon (SOC) cont...

  14. PRODUCTION AND SOIL RERSPONSES TO TWO INTEGRATED CROP AND LIVESTOCK STRATEGIES IN THE SOUTHERN PIEDMONT USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of crops and livestock could provide benefits to both production systems, as well as be detrimental or beneficial to soil properties, depending upon timing and intensity of animal traffic and initial condition of the soil surface. We evaluated crop and animal production and soil properti...

  15. COVER CROPS ENHANCE SOIL ORGANIC MATTER, CARBON DYNAMICS AND MICROBIOLOGICAL FUNCTION IN A MEDITERRANEAN VINEYARD AGROECOSYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Impacts of soil tillage and cover crops on soil carbon (C) dynamics and microbiological function were investigated in a vineyard grown in California’s Mediterranean climate. We 1) compared soil organic matter (SOM), C dynamics and microbiological activity of two cover crops [Trios 102 (Triticale x T...

  16. Summer cover crops and soil amendments to improve growth and nutrient uptake of okra

    SciTech Connect

    Wang, Q.R.; Li, Y.C.; Klassen, W.

    2006-04-15

    A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on 'Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudan-grass (Sorghum bicolor x S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash), coal ash (a combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. The results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.

  17. Using stable isotopes to characterize differential depth of water uptake based on environmental conditions in perennial biofuel and traditional annual crops

    NASA Astrophysics Data System (ADS)

    Miller, J. N.; Nystrom, R.; Bernacchi, C.

    2013-12-01

    Global climate change related to fossil fuel consumption coupled with the necessity for secure, cost-effective, and renewable domestic energy is continuing to drive the development of a bioenergy industry. Numerous second-generation biofuel crops have been identified that hold promise as sustainable feedstocks for the industry, including perennial grasses that utilize the highly water and energy efficient C4 photosynthetic pathway. Among the perennial grasses, miscanthus (Miscanthus × giganteus) and switchgrass (Panicum virgatum) stand out as having high biomass, minimal maintenance, low nutrient input requirements, and positive environmental benefits. These grasses are able to withstand a wide range of growing season temperatures and precipitation regimes, particularly in reference to the annual row crops that they are likely to replace. During the drought of 2012 traditional row crops suffered major reductions in yield whereas the perennial grasses retained relatively high biomass yields. We hypothesize that this is due to the ability of the perennial grasses to access water from deeper soil water relative to the annual row crops. To test this hypothesis, we use isotopic techniques to determine the soil depth from which the various species obtain water. Data from summer 2013 suggests that the perennial grasses preferentially use surface water when available but can extract water from depths that the annual row crops are unable to reach. These results indicate that perennial grasses, with deeper roots, will likely sustain growth under conditions when annual row crops are unable.

  18. Sequence effects among crops on alluvial-derived soil compared with those on glacial till-derived soil in the northern Great Plains, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To implement the dynamic cropping systems concept, agriculturalists need information about how crop species affect following years’ crops. Little research exists about how soil type affects crop sequence dynamics. Sandy loam, alluvial soil in North Dakota was the site of a crop sequence experiment u...

  19. Crop Sheets section of Soil Test Handbook (PDF) Commercial Crop Codes Commercial Crop Codes

    E-print Network

    Radcliffe, David

    Southern Peas 152 Spinach, fresh market 161 Squash 181 Staked Tomatoes 158 Sweet Corn 178 Sweet Potatoes Sugar Cane 009 Sunflower 007 Sweet Sorghum 019 Tobacco (Average Pebble Soil) 018 Tobacco (Low Moisture Cucumbers 164 Eggplant 183 Endive 173 English Peas 180 Greenhouse Tomatoes 177 Irish Potatoes 150 Kale

  20. Dryland Crop Yields and Soil Organic Matter as Influenced by Long-Term Tillage and Cropping Sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel management practices are needed to improve the declining dryland crop yields and soil organic matter using conventional farming practices in the northern Great Plains. We evaluated the 21-yr effect of tillage and cropping sequence on dryland grain and biomass (stems + leaves) yields of spring ...

  1. The Potato Systems Planner: Integrating Cropping System Impacts on Crop Yield and Quality, Soil Biology, Nutrient Cycling, Diseases, and Economics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Finding and developing profitable cropping systems is a high priority for the potato industry. Consequently, an interdisciplinary team of ARS scientists from the New England Plant, Soil, & Water Laboratory evaluated 14 different rotations for their impacts on crop yield and quality, nutrient availa...

  2. Crop Rotation and Straw Residue Effects on Soil Carbon In Three Grass Seed Cropping Systems Of Western Oregon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As grass seed crop field burning in western Oregon was phased-out, alternative non-thermal practices, such as post harvest straw residue removal or incorporation to the soil, and crop rotations were being developed. There is little information available on the practicality and impacts of non-thermal...

  3. Integrating pasture-based livestock production with annual crop production on the Great Plains to reduce loss of grassland wildlife

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tallgrass prairie has been replaced by corn and soybeans and mixed-grass prairie is being replaced by various annual crops. Annual crop fields support vegetarian diets but not much wildlife. Alternatively, integrating pastured livestock farming with annual crops can provide wildlife habitat. For ...

  4. Integrating soil conservation practices and glyphosate-resistant crops: impacts on soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From an environmental perspective, conservation management (CM) practices such as reduced tillage help improve soil conditions. Literature concerning effects of CM on the environment is building, and many of those studies include glyphosate resistant crops (GRC) or glyphosate as a management compon...

  5. Soil and water quality implications of production of herbaceous and woody energy crops

    SciTech Connect

    Tolbert, V.R.; Lindberg, J.E.; Green, T.H.

    1997-10-01

    Field-scale studies in three physiographic regions of the Tennessee Valley in the Southeastern US are being used to address the environmental effects of producing biomass energy crops on former agricultural lands. Comparison of erosion, surface water quality and quantity, and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops began with crop establishment in 1994. Nutrient cycling, soil physical changes, and productivity of the different crops are also being monitored at the three sites.

  6. Estimating the Soil Thermal Conductivity in a Agricultural Crop Site in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Zimmer, Tamíres; Roberti, Debora; Moreira, Virnei; Silveira, Marcos

    The thermal conductivity is higher when the heat storage is higher and the soil surface temperature is lower. The soil thermal conductivity is also dependant on the soil texture, porosity and moisture. Therefore, it varies from soil to soil and in the same soil, depending on its soil moisture. In the present work, it is shown soil thermal conductivity estimates in a agricultural crop located at the Cruz Alta city in southern Brazil. Also the dynamic of soil heat flux (G) is analyzed and the soil thermal conductivity (Ks) is estimated using experimental data form soil heat flux and soil temperature in a agricultural crop farm in a subtropical location in Southern Brazil. In this specific site, there is a crop rotation scheme along the year. The soil type is Rhodic Hapludox (FAO) or Typic Haplorthox (US Soil Taxonomy), characterized as a deep, clay soil. The experimental soil heat flux was compared with estimated soil heat flux by two forms: (1) using a known Ks from literature for this type of soil; (2) using Ks estimated using the inversion of the equation Qg=-ks* ((T2-T1)/ (Z2-Z1)), where T1 and T2 are the temperature in different layers above the soil and Z2-Z1 is the difference between the positions in temperature measurement. The general results agree with the literature for the specific agricultural crop for Ks values in the current study for the measurement period.

  7. Neural network simulation of soil NO3 dynamic under potato crop system

    NASA Astrophysics Data System (ADS)

    Goulet-Fortin, Jérôme; Morais, Anne; Anctil, François; Parent, Léon-Étienne; Bolinder, Martin

    2013-04-01

    Nitrate leaching is a major issue in sandy soils intensively cropped to potato. Modelling could test and improve management practices, particularly as regard to the optimal N application rates. Lack of input data is an important barrier for the application of classical process-based models to predict soil NO3 content (SNOC) and NO3 leaching (NOL). Alternatively, data driven models such as neural networks (NN) could better take into account indicators of spatial soil heterogeneity and plant growth pattern such as the leaf area index (LAI), hence reducing the amount of soil information required. The first objective of this study was to evaluate NN and hybrid models to simulate SNOC in the 0-40 cm soil layer considering inter-annual variations, spatial soil heterogeneity and differential N application rates. The second objective was to evaluate the same methodology to simulate seasonal NOL dynamic at 1 m deep. To this aim, multilayer perceptrons with different combinations of driving meteorological variables, functions of the LAI and state variables of external deterministic models have been trained and evaluated. The state variables from external models were: drainage estimated by the CLASS model and the soil temperature estimated by an ICBM subroutine. Results of SNOC simulations were compared to field data collected between 2004 and 2011 at several experimental plots under potato cropping systems in Québec, Eastern Canada. Results of NOL simulation were compared to data obtained in 2012 from 11 suction lysimeters installed in 2 experimental plots under potato cropping systems in the same region. The most performing model for SNOC simulation was obtained using a 4-input hybrid model composed of 1) cumulative LAI, 2) cumulative drainage, 3) soil temperature and 4) day of year. The most performing model for NOL simulation was obtained using a 5-input NN model composed of 1) N fertilization rate at spring, 2) LAI, 3) cumulative rainfall, 4) the day of year and 5) the percentage of clay content. The MAE was 22% for SNOC simulation and 23% for NOL simulation. High sensitivity to LAI suggests that the model may take into account field and sub-field spatial variability and support N management. Further studies are needed to fully validate the method, particularly in the case of NOL simulation.

  8. The role of irrigation in the soil-crop system

    NASA Astrophysics Data System (ADS)

    Széles, Adrienn; Ragán, Péter; Nagy, János

    2015-04-01

    Agricultural production is performed in 85.5% of the total area of Hungary. Yearly average precipitation is 550-600 mm. Due to global warming, flooding, inland inundation and drought are frequent within a year. Extreme weather circumstances pose new challenges for crop producers. The results of long-term field experiments provide guidance to how each production technological intervention affects crop production, average yield and yield security. Examinations were performed on mid-heavy calcareous chenozem soil in a multifactorial small plot long-term field experiment under natural precipitation supply and irrigated circumstances to analyse the effect of irrigation and N fertilisation on soil moisture and maize grain yield. Drought and optimal years were involved in the examination. Six fertiliser treatments were used (0, 30, 60, 90, 120, 150 kg N ha-1) each year. Irrigation was performed with a Valmont linear equipment. Changes in soil moisture balance were examined with TDR-based soil moisture probes in the 0-120 cm profile. Evaluation was performed with SPSS. The moisture profiles of the 1.2 m soil profile show contrasting tendencies in different crop years in both irrigation treatments. In drought years, the 0-0.15 m layer showed the lowest moisture values (8.3-9.6 v/v%), increasing towards deeper layers. The significant (p<0.05) moisture content difference of 11-12 v/v% measured at the 12-leaf-stage constantly decreased by the end of the growing season as soil moisture stock decreased. In wet years, the highest moisture content was observed in the 0.15-0.30 m layer (37-39v/v%), decreasing towards deeper layers (13-16 v/v%). At natural precipitation supply, yield linearly increased until 60 kg ha-1 N in both years, but no yield surplus was obtained above this dose. Our results show that increasing N doses do not always cause yield increase if the water needed for nutrient uptake is limited. In irrigated treatments, the highest statistically significant yield was observed at 120 kg ha-1 N in dry years. Irrigation had a significant yield-increasing effect (4.2 t ha-1) (P<0.001). However, in wet years, irrigation caused yield decrease (-1.8 t ha-1), significance level: 0.1%. Yield decrease caused by irrigation was the highest on plots with natural nutrient supply and the lowest N dose (30 kg ha-1) (2.6-2.7 t ha-1) and constantly decreased with decreasing fertiliser doses. Severe water deficit was observed in the environment of the seedling without irrigation and under dry circumstances, but there was favourable water supply in deeper layers. From the silking stage and especially during grain filling, the water deficit of the examined profile greatly reduced yield. Optimum water supply was observed in wet crop years. In irrigated treatments, the impact of irrigation water could be shown until early grain filling, but the resulting yield surplus seemingly contradicts this fact. Moisture content is lower from the last third of grain filling in the upper soil layers as opposed to non-irrigated treatments, showing the increased water uptake of irrigated maize. In wet years, the irrigated soil profile had lower moisture from sowing to harvesting, similarly to the end of the previous year.

  9. [Effect of earthworm inoculation on soil carbon and nitrogen dynamics and on crop yield with application of corn residues].

    PubMed

    Li, Huixin; Hu, Feng; Shen, Qirong; Chen, Xiaoyun; Cang, Long; Wang, Xia

    2002-12-01

    This study was carried out in the Experimental Station of Nanjing Agricultural University, which is in a subtropical monsoon region characterized by a warm-wet spring and a hot-dry summer. The annual average temperature, precipitation and evaporation are 15.6 degrees C, 1010 mm and 1560 mm, respectively. In 1999, the experimental plots (2.8 m x 1.0 m x 0.6 m) were established by concrete frame. Soil in the plots was orthic aquisols collected from Rugao County, Jiangsu Province. Crop rotation was upland rice and winter wheat. At the beginning of the first crop (rice) season, earthworms (Pheretima sp.) were inoculated at a density of 10.m-2 and 20.m-2, respectively, in the plots with an application of corn residues at the rate of 1500 g.m-2(750 g.m-2 in the following seasons). The responses of soil carbon and nitrogen and crop yield to earthworm activity were investigated from 1999 to 2001. The results showed that earthworms had no significant influences on total soil carbon and nitrogen content, which implied that there was no depletion of soil carbon and nitrogen pools in the presence of earthworms. The maintenance of soil carbon might be explained by low assimilation efficiency of organic matter by earthworms, and by the compensation of carbon returning from plant production enhancement. Soil mineral nitrogen, soil microbial biomass carbon and microbial biomass nitrogen were increased, and nitrogen mineralization was strengthened by earthworm activities, which was more obvious at jointing/booting and heading stages. In comparison with no-worm treatments, the yield of rice wheat increased by 9.3% and 5.1%, respectively, in the treatments inoculated with earthworms. It was concluded that earthworm was very important in promoting nitrogen recycling of crop residues and plant productivity, and in keeping the balance of soil carbon pool as well. PMID:12682972

  10. Interaction between soil mineralogy and the application of crop residues on aggregate stability and hydraulic conductivity of the soil

    NASA Astrophysics Data System (ADS)

    Lado, M.; Kiptoon, R.; Bar-Tal, A.; Wakindiki, I. I. C.; Ben-Hur, M.

    2012-04-01

    One of the main goals of modern agriculture is to achieve sustainability by maintaining crop productivity while avoiding soil degradation. Intensive cultivation could lead to a reduction in soil organic matter that could affect the structure stability and hydraulic conductivity of the soil. Moreover, crops extract nutrients from the soil that are taken away from the field when harvested, and as a consequence, the addition of fertilizers to the soil is necessary to maintain crop productivity. One way to deal with these problems is to incorporate crop residues into the soil after harvest. Crop residues are a source of organic matter that could improve soil physical properties, such as aggregate stability and soil hydraulic conductivity. However, this effect could vary according to other soil properties, such as clay content, clay mineralogy, and the presence of other cementing materials in the soil (mainly carbonates and aluminum and iron oxides). In the present work, the interaction between the addition of chickpea crop residues to the soil and clay mineralogy on aggregate stability and saturated hydraulic conductivity were studied. Chickpea plant residues were added at a rate of 0.5% (w/w) to smectitic, kaolinitic, illitic and non-phyllosilicate soils from different regions. The soils without (control) and with chickpea residues were incubated for 0, 3, 7 and 30 days, and the saturated hydraulic conductivity of the soils was measured in columns after each incubation time. The response of hydraulic conductivity to the addition of residues and incubation time was different in the soils with various mineralogies, although in general, the addition of chickpea residues increased the saturated hydraulic conductivity as compared with the control soils. This positive effect of crop residues on hydraulic conductivity was mainly a result of improved aggregate stability and resistance to slaking during wetting.

  11. Long-term tillage, cropping sequence, and nitrogen fertilization effects on soil carbon and nitrogen dynamics 

    E-print Network

    Dou, Fugen

    2006-08-16

    Management practices that may increase soil organic matter (SOM) storage include conservation tillage, especially no till (NT), enhanced cropping intensity, and fertilization. My objectives were to evaluate management effects on labile [soil...

  12. Threshold Dynamics in Soil Carbon Storage for Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Woo, D.; Quijano, J.; Kumar, P.; Chaoka, S.; Bernacchi, C.

    2014-12-01

    Due to increasing demands for bioenergy, a considerable amount of land in the Midwestern United States could be devoted to the cultivation of second-generation bioenergy crops, such as switchgrass and miscanthus. In this study, we attempt to explore and analyze how different amounts of above-ground biomass returned to the soil at harvest affect the below-ground dynamics of carbon and nitrogen as a comparative study between miscanthus, swichgrass, and corn-corn-soybean rotation. The simulation results show that there is a threshold effect in the amount of above-ground litter input in the soil after harvest that will reach a critical organic matter C:N ratio in the soil, triggering a reduction of the soil microbial population, with significant consequences in other microbe-related processes such as decomposition and mineralization. These thresholds are approximately 25% and 15% of above-ground biomass for switchgrass and miscanthus, respectively. However, we do not observe such threshold effects for corn-corn-soybean rotation. These results suggest that values above these thresholds could result in a significant reduction of decomposition and mineralization, which in turn would enhance the sequestration of atmospheric carbon dioxide in the topsoil and reduce inorganic nitrogen losses when compared with a corn-corn-soybean rotation.

  13. Microbial community structure and abundance in the rhizosphere and bulk soil of a tomato cropping system that includes cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this report we use Terminal Restriction Fragment Length Polymorphisms (TRFLP) in a tomato production system to “finger printing” the soil microbial community structure with Phylum specific primer sets. Factors influencing the soil microbes are a cover crop of Hairy Vetch (Vicia villosa) or Rye (...

  14. Regional estimation of soil C stocks and CO2 emissions as influenced by cropping systems and soil type

    NASA Astrophysics Data System (ADS)

    Farina, Roberta; Marchetti, Alessandro; Di Bene, Claudia

    2015-04-01

    Soil organic matter (SOM) is of crucial importance for agricultural soil quality and fertility. At global level soil contains about three times the carbon stored in the vegetation and about twice that present in the atmosphere. Soil could act as source and sink of carbon, influencing the balance of CO2 concentration and consequently the global climate. The sink/source ratio depends on many factors that encompass climate, soil characteristics and different land management practices. Thus, the relatively large gross exchange of GHGs between atmosphere and soils and the significant stocks of carbon in soils, may have significant impact on climate and on soil quality. To quantify the dynamics of C induced by land cover change and the spatial and temporal dynamics of C sources and sinks at regional and, potentially, at national and global scales, we propose a methodology, based on a bio-physical model combined with a spatial explicit database to estimate C stock changes and emissions/removals. The study has been conducted in a pilot region in Italy (Apulia, Foggia province), considering the typical cropping systems of the area, namely rainfed cereals, tomato, vineyard and olives. For this purpose, the model RothC10N (Farina et al., 2013), that simulates soil C dynamics, has been modified to work directly in batch using data of climate, soil (over 290 georeferenced soil profiles), annual agriculture land use (1200 observations) The C inputs from crops have been estimated using statistics and data from literature. The model was run to equilibrium for each point of soil, in order to make all the data homogeneous in terms of time. The obtained data were interpolate with geostatisical procedures, obtaining a set of 30x30 km grid with the initial soil C. The new layer produced, together with soil and land use layers, were used for a long-term run (12 years). Results showed that olive groves and vineyards were able to stock a considerable amount of C (from 0.4 to 1.5 t ha-1 y-1). The continuous wheat lead to a reduction of C stock, ranging from 0.1 to 0.2 t ha-1 y-1, in sandy and clayey soils respectively. When the cereal rotation included irrigated tomato the C stock decline was about 0.4 t ha-1 y-1. In terms of emissions of CO2 the release to atmosphere was in average 6.5, 4.4, 3.6 and 3.3 t ha-1 y-1 for wheat-irrigated tomato rotation, continuous wheat, vineyards and olive groves respectively. The method proposed to estimate at regional level the C stocks and emissions has proved to be efficient and could be used to supply key information for climate and agricultural policies.

  15. Soil nutrient removal by four potential bioenergy crops: Zea mays, Panicum virgatum, Miscanthus giganteus, and prairie

    E-print Network

    DeLucia, Evan H.

    Soil nutrient removal by four potential bioenergy crops: Zea mays, Panicum virgatum, Miscanthus  crops with perennial grasses for bioenergy represents a landscape-level change in species composition the concentration of ten essential nutrients in harvested material from three potential perennial bioenergy crops

  16. IRRIGATED CROPPING SYSTEM EFFECTS ON SOIL ORGANIC MATTER VALUES DETERMINED BY WEIGHT-LOSS-ON-IGNITION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding N fertility and crop rotation effects on changes in soil organic matter in irrigated cropping systems is required before producers or regulators can make informed decisions regarding management or policy. An experiment initiated in 1991 with 3 cropping systems, (i) continuous corn, (ii...

  17. Effect of soil spectral properties on remote sensing of crop residue cover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage practices have been shown to improve soil structure, enhance soil organic carbon content (SOC), and reduce soil erosion. Conservation tillage practices include reduced- and no-till methods, which often leave appreciable amounts of crop residues over the soil surfaces after harv...

  18. EPIC Simulations of Crop Yields and Soil Organic Carbon in Iowa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Depending on management, soil organic carbon is source or sink of atmospheric carbon dioxide. The Environmental Policy Integrated Climate (EPIC) model is a useful tool for predicting impacts of soil management on crop yields and soil organic carbon. We used EPIC-Century to simulate changes in soil o...

  19. Soil quality in integrated crop-livestock systems with conservation and conventional tillage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of crops and livestock could be either detrimental or beneficial to soil quality, depending upon timing and intensity of animal traffic and residue cover of the soil surface. Key soil properties (reflective of soil quality) of a Typic Kanhapludult in Georgia USA were analyzed in a 12-ha...

  20. Soil quality parameters for row-crop and grazed pasture systems with agroforestry buffers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation of trees and establishment of buffers are practices that can improve soil quality. Soil enzyme activities and water stable aggregates are sensitive indices for assessing soil quality by detecting early changes in soil management. However, studies comparing grazed pasture and row crop...

  1. Soil organic carbon and water content effects on remote crop residue cover estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage (CT) systems help protect the soil and environment, and improve net farm profitability. CT methods leave increased amounts of crop residue cover (CRC) on the soil surface, minimizing soil erosion and evaporation. CT uses less fuel, disturbs soil less, and requires less fertili...

  2. HOW DO CROP PLANTS TOLERATE ACID SOILS? MECHANISMS OF ALUMINUM TOLERANCE AND PHOSPHOROUS EFFICIENCY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acid soils are a significant limitation to crop production worldwide, as approximately 50% of the world's potentially arable soils are acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring tolerance to acid soil stress has been ...

  3. Tillage, cropping systems,and nitrogen fertilizer source effects on soil carbon sequestration and fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of soil C cycling as influenced by management practices is needed for C sequestration, greenhouse gas mitigation, soil quality improvement, and crop production. We evaluated the 10-yr effect of combinations of tillage (no-tillage, mulch tillage, and conventional tillage), cover crop [...

  4. Impacts of organic conservation tillage systems on crops, weeds, and soil quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic farming has been identified as promoting soil quality even though tillage is used for weed suppression. Adopting conservation tillage practices can enhance soil quality in cropping systems where synthetic agrichemicals are used for crop nutrition and weed control. Attempts have been made t...

  5. Dryland soil carbon dioxide emission and carbon storage as influenced by tillage, cropping, and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and crop management practices may influence dryland soil CO2 emission and C sequestration. We evaluated the combined effects of tillage, cropping system, and N fertilization [no-till barley with 78 kg N ha-1 (NTBFN), no-till pea with 0 kg N ha-1 (NTPON), no-till fallow with 0 kg N ha-1 (NTFON),...

  6. Early Changes Due to Sorghum Biofuel Cropping Systems in Soil Microbial Communities and Metabolic Functioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of biofuel production cropping systems needs to address not only energy yields but also the impacts on soil attributes important for long-term sustainability. In this study, forage sorghum (Sorghum bicolor L. Moench) cropping systems were initiated on a low organic matter soil (<0.9%) wi...

  7. Quantifying crop water stress factors from soil water measurements in a limited irrigation experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying crop water stress factors from soil water measurements in a limited irrigation experiment. A correct simulation of crop responses to water stress is essential for a system model. In this study, we investigated three methods of quantifying water deficit stresses based on soil water meas...

  8. Developing a Foundation for Constructing New Curricula in Soil, Crop, and Turfgrass Sciences

    ERIC Educational Resources Information Center

    Jarvis, Holly D.; Collett, Ryan; Wingenbach, Gary; Heilman, James L.; Fowler, Debra

    2012-01-01

    Some soil and crop science university programs undergo curricula revision to maintain relevancy with their profession and/or to attract the best students to such programs. The Department of Soil and Crop Sciences at Texas A&M University completed a thorough data gathering process as part of its revision of the undergraduate curriculum and degree…

  9. Soil Carbon and Enzyme Activities as affected by Cropping Intensity and Tillage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter wheat-fallow (W-F) rotation is the predominant cropping system in the Central Great Plains and it is not sustainable. Alternative cropping systems with reduced tillage are being suggested to improve soil organic matter (SOM) content and other parameters related to soil quality. Our study ev...

  10. Integrated crops and livestock in central North Dakota, USA: Agroecosystem management to buffer soil change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrated crop-livestock systems have been purported to have numerous agronomic and environmental benefits, yet information documenting their long-term impact on the soil resource is lacking. This study sought to quantify the effects of an integrated crop-livestock system on near-surface soil prop...

  11. Best management practices: Managing cropping systems for soil protection and bioenergy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in renewable alternatives to fossil fuels has increased. Crop residue such as corn stover or wheat straw can be used for bioenergy including a substitution for natural gas or coal. Harvesting crop residue needs to be managed to protect the soil and future soil productivity. The amount of bi...

  12. Dryland crop root biomass and carbon and nitrogen contents and their relationships with soil water content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop roots are important C and N inputs for soil C and N sequestration and are essential for water and nutrient uptake. In semiarid regions, root growth, which depends on soil water availability, may influence C and N sequestration. We quantified root biomass and C and N contents of dryland crops i...

  13. Rye cover crop effects on soil properties in no-till corn silage/soybean agroecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers in the U.S. Corn Belt are showing increasing interest in winter cover crops. The known benefits of winter cover crops include reduced nitrate leaching, soil erosion, and weed germination, but evidence of improvements in soil productivity would provide further incentive for famers to implemen...

  14. SOIL CHEMICAL CHANGES OVER 16 YEARS AS INFLUENCED BY NITROGEN FERTILIZATION, TILLAGE, AND CROP SEQUENCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in soil chemical properties due to long-term management can influence plant nutrient availability, crop yield, and environmental quality. The objective of this study was to determine the effects of N fertilzation, tillage, and crop sequence on selected soil chemical properties for a long-te...

  15. Annual Medicago: From a Model Crop Challenged by a Spectrum of Necrotrophic Pathogens to a Model Plant to Explore the Nature of Disease Resistance

    PubMed Central

    TIVOLI, B.; BARANGER, A.; SIVASITHAMPARAM, K.; BARBETTI, M. J.

    2006-01-01

    • Background Annual Medicago spp., including M. truncatula, play an important agronomic role in dryland farming regions of the world where they are often an integral component of cropping systems, particularly in regions with a Mediterranean or Mediterranean-type climate where they grow as winter annuals that provide both nitrogen and disease breaks for rotational crops. Necrotrophic foliar and soil-borne pathogens dominate these regions and challenge the productivity of annual Medicago and crop legume species. • Scope This review outlines some of the major and/or widespread diseases these necrotrophic pathogens cause on Medicago spp. It then explores the potential for using the spectrum of necrotrophic pathogen–host interactions, with annual Medicago as the host plant, to better understand and model pathosystems within the diseases caused by nectrotrophic pathogens across forage and grain legume crops. • Conclusions Host resistance clearly offers the best strategy for cost-effective, long-term control of necrotrophic foliar and soil-borne pathogens, particularly as useful resistance to a number of these diseases has been identified. Recently and initially, the annual M. truncatula has emerged as a more appropriate and agronomically relevant substitute to Arabidopsis thaliana as a model plant for legumes, and is proving an excellent model to understand the mechanisms of resistance both to individual pathogens and more generally to most forage and grain legume necrotrophic pathogens. PMID:16803846

  16. Analysis of soil moisture probability in a tree cropped watershed

    NASA Astrophysics Data System (ADS)

    Espejo-Perez, Antonio Jesus; Giraldez Cervera, Juan Vicente; Pedrera, Aura; Vanderlinden, Karl

    2015-04-01

    Probability density functions (pdfs) of soil moisture were estimated for an experimental watershed in Southern Spain, cropped with olive trees. Measurements were made using a capacitance sensors network from June 2011 until May 2013. The network consisted of 22 profiles of sensors, installed close to the tree trunk under the canopy and in the adjacent inter-row area, at 11 locations across the watershed to assess the influence of rain interception and root-water uptake on the soil moisture distribution. A bimodal pdf described the moisture dynamics at the 11 sites, both under and in-between the trees. Each mode represented the moisture status during either the dry or the wet period of the year. The observed histograms could be decomposed into a Lognormal pdf for dry period and a Gaussian pdf for the wet period. The pdfs showed a larger variation among the different locations at inter-row positions, as compared to under the canopy, reflecting the strict control of the vegetation on soil moisture. At both positions this variability was smaller during the wet season than during the dry period.

  17. Uptake of cesium-137 by crops from contaminated soils

    SciTech Connect

    Demirel, H.; Oezer, I.; Celenk, I.; Halitligil, M.B.; Oezmen, A.

    1994-11-01

    The Turkish tea crop was contaminated following the Chernobyl nuclear accident. Finding ways to dispose of the contaminated tea (Camellia sinensis L.) without damaging the environment was the goal of this research conducted at the Turkish Atomic Energy Authority (TAEA). In this study, an investigation was made of {sup 137}Cs activities of the plants and the ratios of transfer of {sup 137}Cs activity to plants when the contaminated tea was applied to the soil. Experiments were conducted in the field and in pots under greenhouse conditions. The activities of the tea applied in the field ranged from 12 500 to 72 800 Bq/m{sup 2}, whereas this activity was constant at 8000 Bq/pot in the greenhouse experiment. The transfer of {sup 137}Cs from soil to the plants was between 0.037 and 1.057% for wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), corn (Zea mays indentata Sturt), bean (Phaseolus vulgaris L.), lettuce (Lactuca sativa L.), and grass (Lolium perenne L.). The ratio of the transfer of {sup 137}Cs activity to plants increased as the activity {sup 137}Cs in tea applied to soil was increased. The activity in the plants increased due to increased uptake of {sup 137}Cs by plants. 12 refs., 2 figs., 2 tabs.

  18. Effects of long-term soil and crop management on soil hydraulic properties for claypan soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regional and national soil maps have been developed along with associated soil property databases to assist users in making land management decisions based on soil characteristics. These soil properties include average values from soil characterization for each soil series. In reality, these propert...

  19. Isotopic Tracer Study of Hydraulic Transfer Between Native Woody Shrubs and Associated Annual Crops Under Dry Conditions in the Sahel

    NASA Astrophysics Data System (ADS)

    Bogie, Nathaniel; Bayala, Roger; Diedhiou, Ibrahima; Fogel, Marilyn; Dick, Richard; Ghezzehei, Teamrat A.

    2015-04-01

    Erratic precipitation at the beginning and end of the rainy season combined with short drought periods during the cropping season pose a major challenge for rain-fed agriculture and food security in the Sahel. Research has shown that intercropping annual crops with native evergreen woody shrubs in Senegal can greatly increase crop productivity. Hydraulic redistribution (HR), or the diurnal rewetting of dry soil by the pathway of the root system that extends into wetter soil has been found in many plants and climates worldwide. The HR pathway could be a factor in Senegal where water provided by shrubs aids crop growth during dry periods but this has not been confirmed. Therefore, the objective was to determine the ability of shrubs to provide water to millet plants using the deuterium tracer. Penisetum glaucum (Pearl Millet) was grown in association with the native woody shrub Guiera senegalensis under drip irrigation until 68 days after sowing, followed by a with holding of water during late flowering and early grain-filling stage. Within 10 days the soils in the stressed plots became extremely dry with water potentials ranging from -0.5 Mpa to -3.0 Mpa at 20cm depth. Twenty days after the initiation of water stress, vials of isotopically enriched deuterium tracer was sealed around cut roots of three separate shrubs at a depth of 1.0 m followed by sampling of aboveground tissue from injection shrubs and closely growing crop plants over a period of five days. Using cryogenic vacuum distillation, plant water samples were extracted from plant tissue. With lab work completed on two replications, a highly enriched deuterium signal was observed in the tissue water of the shrub beginning twelve hours after the injection. In the same replication thirty-six hours after the beginning of injection, a highly enriched pulse of deuterium in the crop growing directly adjacent to the injection shrub was observed. In a concurrent injection to a nearby shrub under much drier conditions, slight pulses of enrichment were found in the shrub and crop, though with much lower magnitudes. Although this was a simulated drought experiment, we were able to recreate conditions similar to those experienced at this site under rain-fed conditions, where the presence of drought is a constant threat at the beginning and the end of the season. These findings support the hypothesis that there is transfer of hydraulically lifted water from native woody shrubs to annual food crops in the region.

  20. [Influence of paddy rice-upland crop rotation of cold-waterlogged paddy field on crops produc- tion and soil characteristics].

    PubMed

    Wang, Fei; Li, Qing-hua; Lin, Cheng; He, Chun-mei; Zhong, Shao-jie; Li, Yu; Lin, Xin-jian; Huang, Jian-cheng

    2015-05-01

    Two consecutive years (4-crop) experiments were conducted to study the influence of different paddy rice-upland crop rotation in cold-waterlogged paddy field on the growth of crops and soil characteristics. The result showed that compared with the rice-winter fallow (CK) pattern, the two-year average yield of paddy rice under four rotation modes, including rape-rice (R-R), spring corn-rice (C-R), Chinese milk vetch-rice (M-R) and bean-rice (B-R), were increased by 5.3%-26.7%, with significant difference observed in C-R and R-R patterns. Except for M-R pattern, the annual average total economic benefits were improved by 79.0%-392.4% in all rotation pattern compared with the CK, and the ration of output/input was enhanced by 0.06-0.72 unit, with the most significant effect found in the C-R pattern. Likewise, compared with the CK, the contents of chlorophyll and carotenoid, and net photosynthetic rate (Pn) of rice plant were all increased during the full-tillering stage of rice in all rotation patterns. The rusty lines and rusty spots of soils were more obvious compared with the CK during the rice harvest, particularly in R-R, C-R and B-R patterns. The ratio of water-stable soil macro aggregates of plough layer of soil (> 2 mm) decreased at different levels in all rotation patterns while the ratios of middle aggregate (0.25-2 mm, expect for M-R) and micro aggregate of soil (< 0.25 mm) were opposite. There was a decreasing trend for soil active reducing agents in all rotation patterns, whereas the available nutrient increased. The amounts of soil bacteria in C-R and B-R patterns, fungi in B-R rotation pattern, cellulose bacteria in R-R, C-R and B-R patterns and N-fixing bacteria in B-R pattern were improved by 285.7%-403.0%, 221.7%, 64.6-92.2% and 162.2%, respectively. Moreover, the differences in all microorganisms were significant. Thus, based on the experimental results of cold-waterlogged paddy field, it was concluded that changing from single cropping rice system to C-R, R-R and B-R rotation patterns had good effect in terms of improving total yield and economic benefits, and soil physical and chemical properties were improved. PMID:26571667

  1. COVER CROP SYSTEM EFFECTS ON CARBON/NITROGEN SEQUESTRATION AND THE PHYSICAL PROPERTIES OF COASTAL PLAIN SOILS UNDER CONSERVATION TILLAGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop growth and water/solute movement are affected by soil properties. Crop growth is affected by soil moisture retention, which relates to soil structure (particle and pore size distribution), which is greatly affected by soil C levels. Soil hydraulic conductivity depends on particle size distrib...

  2. Effects of Different Soil and Crop Management Strategies on Soil Microbial Communities and Soilborne Diseases of Potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different potato cropping systems, designed to address specific management goals of soil conservation (SC), soil improvement (SI), disease suppression (DS), and a standard rotation control (SR), were evaluated for their effects on soilborne diseases of potato and soil microbial community charac...

  3. Developing High-resolution Soil Database for Regional Crop Modeling in East Africa

    NASA Astrophysics Data System (ADS)

    Han, E.; Ines, A. V. M.

    2014-12-01

    The most readily available soil data for regional crop modeling in Africa is the World Inventory of Soil Emission potentials (WISE) dataset, which has 1125 soil profiles for the world, but does not extensively cover countries Ethiopia, Kenya, Uganda and Tanzania in East Africa. Another dataset available is the HC27 (Harvest Choice by IFPRI) in a gridded format (10km) but composed of generic soil profiles based on only three criteria (texture, rooting depth, and organic carbon content). In this paper, we present a development and application of a high-resolution (1km), gridded soil database for regional crop modeling in East Africa. Basic soil information is extracted from Africa Soil Information Service (AfSIS), which provides essential soil properties (bulk density, soil organic carbon, soil PH and percentages of sand, silt and clay) for 6 different standardized soil layers (5, 15, 30, 60, 100 and 200 cm) in 1km resolution. Soil hydraulic properties (e.g., field capacity and wilting point) are derived from the AfSIS soil dataset using well-proven pedo-transfer functions and are customized for DSSAT-CSM soil data requirements. The crop model is used to evaluate crop yield forecasts using the new high resolution soil database and compared with WISE and HC27. In this paper we will present also the results of DSSAT loosely coupled with a hydrologic model (VIC) to assimilate root-zone soil moisture. Creating a grid-based soil database, which provides a consistent soil input for two different models (DSSAT and VIC) is a critical part of this work. The created soil database is expected to contribute to future applications of DSSAT crop simulation in East Africa where food security is highly vulnerable.

  4. Organic amendment of crop soil and its relation to hotspots of bacterial nitrogen cycling

    NASA Astrophysics Data System (ADS)

    Pereg, Lily; McMillan, Mary

    2015-04-01

    Crop production in Australian soils requires a high use of fertilisers, including N, P and K for continues utilisation of the soil. Growers often grow crops in rotation of summer crop, such as cotton with winter crop, such as wheat in the same field. Growers are getting more and more aware about sustainability of the soil resources and the more adventurous ones use soil amendments, such as organic supplements in addition to the chemical fertilisers. We have collected soil samples from fields that were cultivated in preparation for planting cotton and tested the soil for its bacterial populations with potential to perform different functions, including those related to the nitrogen cycling. One of our aims was to determine whether organic amendments create hotspots for bacterial functions related to bacterial nitrogen cycling. This pan of the project will be discussed in this presentation.

  5. Water use efficiency of perennial and annual bioenergy crops in central Illinois

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable bioenergy production depends upon the efficiency with which crops use available water to produce biomass and store carbon belowground. Therefore, water use efficiency (WUE; productivity vs. annual evapotranspiration, ET) is a key metric of bioenergy crop performance. We evaluate WUE of t...

  6. Eight Years of Annual No-Till Cropping in Washington's Winter Wheat- Summer Fallow Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tillage-based winter wheat – summer fallow (WW-SF) cropping system has dominated dryland farming in the Pacific Northwest for 125 years. We conducted a large-scale multidisciplinary 8-year study of annual no-till cropping systems as an alternative to WW-SF. Soft white and hard white classes of w...

  7. NATIONAL CROP LOSS ASSESSMENT NETWORK (NCLAN) 1985 ANNUAL REPORT

    EPA Science Inventory

    The National Crop Loss Assessment Network (NCLAN) consists of a group of organizations cooperating in field work, crop modeling, and economic studies to assess the immediate and long-term economic consequences of air pollution on crop production. Two primary objectives are (1) to...

  8. NATIONAL CROP LOSS ASSESSMENT NETWORK (NCLAN) 1981 ANNUAL REPORT

    EPA Science Inventory

    The National Crop Loss Assessment Network (NCLAN) consists of a group of cooperating organizations engaged in field work, crop modeling, and economic studies to assess the immediate and long-term economic consequences of the effects of air pollution on crop production. The progra...

  9. NATIONAL CROP LOSS ASSESSMENT NETWORK (NCLAN) 1983 ANNUAL REPORT

    EPA Science Inventory

    The National Crop Loss Assessment Network (NCLAN) consists of a group of organizations cooperating in field work, crop modeling, and economic studies to assess the immediate and long-term consequences of air pollution on crop production. Two primary objectives are (1) to define r...

  10. Short Rotation Woody Crops Program: Annual progress report for 1987

    SciTech Connect

    Ranney, J.W.; Ehrenshaft, A.R.; Layton, P.A.; McNabb, W.A.; Wright, L.L.

    1988-08-01

    This report describes the technical progress of the individual research projects in the Short Rotation Woody Crops Program (SRWCP) as well as synthesizing the results for an overview of the program. The program is sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division and has the goal of developing a viable technology for producing renewable feedstocks for biofuels such as gasoline, diesel fuel, alcohol, and medium Btu gas in the United States. The most significant accomplishments have been the productivity rates achieved with Populus hybrids in the Pacific Northwest, the establishment of monoculture viability trials, the bioengineering developments of Populus spp. (hybrid poplar), and the initiation of wood-energy quality definitions in cooperation with biofuel conversion specialists. The most serious challenges are now seen as control of diseases in Populus, lowering cutting and handling costs, increasing productivity on moderate to poor soils in the South and Midwest, local matching and development of clones with sites in monoculture trials, and identifying and learning about the physiological and genetic variability of important growth qualities within model species for genetic improvement. 39 refs.

  11. Annual Crop Type Classification of the U.S. Great Plains for 2000 - 2011: An Application of Classification Tree Modeling using Remote Sensing and Ancillary Environmental Data (Invited)

    NASA Astrophysics Data System (ADS)

    Howard, D. M.; Wylie, B. K.

    2013-12-01

    The purpose of this study was to increase spatial and temporal availability of crop classification data using reliable source data that have the potential of being applied on local, regional, national, and global levels. This study implemented classification tree modeling to map annual crop types throughout the U.S. Great Plains from 2000 - 2011. Classification tree modeling has been shown in numerous studies to be an effective tool for developing classification models. In this study, nearly 18 million crop observation points, derived from annual U.S. Department of Agriculture (USDA) National Agriculture Statistics Service (NASS) Cropland Data Layers (CDLs), were used in the training, development, and validation of a classification tree crop type model (CTM). Each observation point was further defined by weekly Normalized Differential Vegetation Index (NDVI) readings, annual climatic conditions, soil conditions, and a number of other biogeophysical environmental characteristics. The CTM accounted for the most prevalent crop types in the area, including, corn, soybeans, winter wheat, spring wheat, cotton, sorghum, and alfalfa. Other crops that did not fit into any of these classes were identified and grouped into a miscellaneous class. An 87% success rate was achieved on the classification of 1.8 million observation points (10% of total observation points) that were withheld from training. The CTM was applied to create annual crop maps of the U.S. Great Plains for 2000 - 2011 at a spatial resolution of 250 meters. Product validation was performed by comparing county acreage derived from the modeled crop maps and county acreage data from the USDA NASS Survey Program for each crop type and each year. Greater than 15,000 county records from 2001 - 2010 were compared with a Pearson's correlation coefficient of r = 0.87.

  12. Biochar application to temperate soils - effects on soil fertility and crop yield

    NASA Astrophysics Data System (ADS)

    Kloss, S.; Zehetner, F.; Feichtmair, S.; Wimmer, B.; Zechmeister-Boltenstern, S.; Kitzler, B.; Watzinger, A.; Soja, G.

    2012-04-01

    Biochar (BC) application to soil as a potential soil amendment is currently intensively explored. Depending on feedstock and highest treatment temperature (HTT), BC application to soil may contribute to the soil nutrient status by directly adding nutrients to the soil as well as by increasing pH, cation exchange and water holding capacity. These parameters are known to play an important role in the soil nutrient status and nutrient availability. A positive effect on plant growth after BC application to tropical soils has been observed repeatedly; however, the effect of BC application to soils in temperate climate regions is much less explored. We investigated the effect of BC to temperate soils and crop yield using a randomized pot experiment in a greenhouse with three agricultural soils (Planosol, Cambisol, Chernozem) and four BC types (from straw, mixed woodchips and vineyard pruning, all pyrolyzed at 525°C). In order to analyze the effect of pyrolysis temperature, we additionally applied vineyard pruning BC pyrolyzed at 400°C. Selected treatments were planted with mustard (Sinapis alba L.), followed by barley (Hordeum vulgare). Soil sampling was carried out after barley harvest. Investigated soil parameters included pH, electrical conductivity (EC), C/N ratio, cation exchange capacity (CEC), CAL-extractable P and K, EDTA extractable Cu, Fe, Mn, Zn as well as nitrogen supplying potential (NSP). Biomass production of the two crops was determined as well as its elemental composition. Biochar application (3% wood-based BC) caused a considerable pH increase for the acidic Planosol. The effect of BC application on CEC was dependent on the original status of the soil, notably soil pH and texture. 3 % BC application (wood) decreased CEC by 3.5 % and 10 % for the Chernozem and Cambisol, respectively, but increased CEC by 35 % for the acidic, sandy Planosol, which may be due to the strong liming effect found for the Planosol. BC application significantly raised CAL-extractable K for all soils. CAL-extractable P only increased in the Planosol and Cambisol at 3% application rate. Mustard yield decreased by 67% for vineyard pruning BC if nitrogen deficiency was not compensated for, straw-derived BC only caused a 2 % decrease of mustard yield. Barley yield was still significantly lower in most BC-treated pots compared to the controls, however, plant yields were less reduced for the second crop. Only straw-derived BC treatments showed a significantly higher barley yield (1955 ± 40 g m-2) compared to the control (1837 ± 70 g m-2). The results of the elemental composition of the barley grains showed that Al uptake in the Planosol significantly decreased after application of wood and straw BC, which may be due to the pH increase after BC application. In addition, Ca uptake in barley grains was significantly higher in the 3% wood BC treatment compared to the control. This may be caused by a higher Ca content of the wood BC as revealed by XRF. Mn uptake, on the other hand, was significantly reduced after BC application.

  13. Effects of Potato Cropping Systems and Irrigation on Soil Organic Matter Composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic matter (SOM) plays an important role in soil fertility, thus in sustaining potato production. To investigate the impact of crop rotation on SOM composition, we sequentially extracted organic matter by water (WEOM) and sodium pyrophosphate solution (PEOM) from 10 potato field soils whic...

  14. Evaluation of Spectral Indices for Estimating Crop Residue Cover and Soil Carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long term use of conservation tillage practices can lead to increased soil organic carbon (SOC) compared to intensively tilled soils. However, monitoring soil tillage intensity over large areas for assessing changes in SOC is difficult. Remote sensing can potentially estimate crop residue cover, a...

  15. Soil greenhouse gas emissions affected by sheep grazing under dryland cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheep grazing to control weeds during fallow may influence soil greenhouse gas (CO2, N2O, and CH4) emissions by consuming crop residue and returning feces and urine to the soil. An experiment was conducted to evaluate the effect of sheep grazing compared to herbicide application on soil temperature ...

  16. TILLAGE, COVER CROPS, AND NITROGEN FERTILIZATION EFFECTS ON SOIL NITROGEN AND COTTON AND SORGHUM YIELDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till, and chisel till ), four cover c...

  17. Soil quality indicators of a mature alley-cropping agroforestry system in temperate North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although agroforestry practices are believed to improve soil quality, reports on long-term effects of alley cropping on soils within agroforestry in the temperate zone are limited. The objective of this study was to examine effects of management, landscape, and soil depth of an established agrofores...

  18. Soil Carbon and Nitrogen Pools as Influenced by Tillage, Cover Crop, Poultry Manure, and Nitrogen Fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of soil C and N cycling as influenced by management practices is needed for C and N sequestration and soil quality and productivity improvement. We evaluated the 10-yr effects of tillage, cropping system, and N source on soil C and N fractions at 0- to 20-cm depth in Decatur silt loam...

  19. SOIL PHYSICAL AND BIOLOGICAL RESPONSES TO CATTLE GRAZING OF COVER CROPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of crops and livestock could be either detrimental or beneficial to soil properties, depending upon timing and intensity of animal traffic and residue cover of the soil surface. We determined surface-soil properties of a Typic Kanhapludult in northeastern Georgia USA during the first thr...

  20. Soil sustainability as measured by carbon sequestration using carbon isotopes from crop-livestock management systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil Organic Carbon (SOC) is an integral part of maintaining and measuring soil sustainability. This study was undertaken to document and better understand the relationships between two livestock-crop-forage systems and the sequestration of SOC with regards to soil sustainability and was conducted o...

  1. Accounting for green vegetation and soil spectral properties to improve remote sensing of crop residue cover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage methods are beneficial as they disturb soil less and leaves increased crop residue cover (CRC) after planting on the soil surface. CRC helps reduce soil erosion, evaporation, and the need for tillage operations in fields. Greenhouse gas emissions are reduced to due to less fos...

  2. Variability of soil properties and crop yield in landscapes affected by long-term tillage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive tillage moves large quantities of soil, resulting in a pattern of soil redistribution where topsoil is depleted from convex slope positions and deposited in concave positions. In these experiments, the variation in erosion estimates, soil properties and crop yield were determined in a hill...

  3. Predicting Greenhouse Gas Emissions and Soil Carbon from Changing Pasture to an Energy Crop

    PubMed Central

    Duval, Benjamin D.; Anderson-Teixeira, Kristina J.; Davis, Sarah C.; Keogh, Cindy; Long, Stephen P.; Parton, William J.; DeLucia, Evan H.

    2013-01-01

    Bioenergy related land use change would likely alter biogeochemical cycles and global greenhouse gas budgets. Energy cane (Saccharum officinarum L.) is a sugarcane variety and an emerging biofuel feedstock for cellulosic bio-ethanol production. It has potential for high yields and can be grown on marginal land, which minimizes competition with grain and vegetable production. The DayCent biogeochemical model was parameterized to infer potential yields of energy cane and how changing land from grazed pasture to energy cane would affect greenhouse gas (CO2, CH4 and N2O) fluxes and soil C pools. The model was used to simulate energy cane production on two soil types in central Florida, nutrient poor Spodosols and organic Histosols. Energy cane was productive on both soil types (yielding 46–76 Mg dry mass?ha?1). Yields were maintained through three annual cropping cycles on Histosols but declined with each harvest on Spodosols. Overall, converting pasture to energy cane created a sink for GHGs on Spodosols and reduced the size of the GHG source on Histosols. This change was driven on both soil types by eliminating CH4 emissions from cattle and by the large increase in C uptake by greater biomass production in energy cane relative to pasture. However, the change from pasture to energy cane caused Histosols to lose 4493 g CO2 eq?m?2 over 15 years of energy cane production. Cultivation of energy cane on former pasture on Spodosol soils in the southeast US has the potential for high biomass yield and the mitigation of GHG emissions. PMID:23991028

  4. Establishment of five cover crops and total soil nutrient extraction in a humid tropical soil in the Peruvian Amazon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to evaluate the establishment of five cover crops and their potential to increase soil fertility through nutrient extraction, an experiment was installed in the Research Station of Choclino, San Martin, Peru. Five cover crops were planted: Arachis pintoi Krapov. & W.C. Greg, Calopogonium m...

  5. Annual crop type classification of the U.S. Great Plains for 2000 to 2011

    USGS Publications Warehouse

    Howard, Daniel M.; Wylie, Bruce K.

    2014-01-01

    The purpose of this study was to increase the spatial and temporal availability of crop classification data. In this study, nearly 16.2 million crop observation points were used in the training of the US Great Plains classification tree crop type model (CTM). Each observation point was further defined by weekly Normalized Difference Vegetation Index, annual climate, and a number of other biogeophysical environmental characteristics. This study accounted for the most prevalent crop types in the region, including, corn, soybeans, winter wheat, spring wheat, cotton, sorghum, and alfalfa. Annual CTM crop maps of the US Great Plains were created for 2000 to 2011 at a spatial resolution of 250 meters. The CTM achieved an 87 percent classification success rate on 1.8 million observation points that were withheld from model training. Product validation was performed on greater than 15,000 county records with a coefficient of determination of R2 = 0.76.

  6. Thermography for estimating near-surface soil moisture under developing crop canopies

    NASA Technical Reports Server (NTRS)

    Heilman, J. L.; Moore, D. G.

    1980-01-01

    Previous investigations of thermal infrared techniques using remote sensors (thermography) for estimating soil water content have been limited primarily to bare soil. Ground-based and aircraft investigations were conducted to evaluate the potential for extending the thermography approach to developing crop canopies. A significant exponential relationship was found between the volumetric soil water content in the 0-4 cm soil layer and the diurnal difference between surface soil temperature measured at 0230 and 1330 LST (satellite overpass times of NASA's Heat Capacity Mapping Mission - HCMM). Surface soil temperatures were estimated using minimum air temperature, percent cover of the canopy and remote measurements of canopy temperature. Results of the investigation demonstrated that thermography can potentially be used to estimate soil temperature and soil moisture throughout a complete growing season for a number of different crops and soils.

  7. [Effects of crop rotation and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system].

    PubMed

    Xiao, Xin; Zhu, Wei; Du, Chao; Shi, Ya-dong; Wang, Jian-fei

    2015-06-01

    We conducted a field experiment to evaluate the effects of rotation system and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system. Taking Chrysanthemum morifolium Ramat and wheat as experimental plants, treatments under Chrysanthemum continuous cropping system (M1), conventional Chrysanthemum-wheat rotation system (M2), and Chrysanthemum-wheat rotation system receiving bio-organic manure application of 200 kg · 667 m(-2) (M3) were designed. Soil chemical properties, soil microbial biomass carbon (MBC) and nitrogen (MBN), and the amounts of different types of soil microorganisms were determined. Results showed that compared with M1, treatments of M2 and M3 significantly increased soil pH, organic matter, available N, P, and K, MBC, MBN, and the amounts of bacteria, fungi and actinomycetes, but decreased the ratio of MBC/MBN, and the relative percentage of fungi in the total amount of microorganisms. Treatment of M3 had the highest contents of soil organic matter, available N, available P, available K, MBC, MBN, and the amounts of bacteria, fungi and actinomycetes, with the values being 15.62 g · kg(-1), 64.75 mg · kg(-1), 83.26 mg · kg(-1), 96.72 mg · kg(-1), 217.40 mg · kg(-1), 38.41 mg · kg(-1), 22.31 x 10(6) cfu · g(-1), 56.36 x 10(3) cfu · g(-1), 15.90 x 10(5) cfu · g(-1), respectively. We concluded that rational crop rotation and bio-organic manure application could weaken soil acidification, improve soil fertility and microbial community structure, increase the efficiency of nutrition supply, and have a positive effect on reducing the obstacles of continuous cropping. PMID:26572032

  8. Spectral properties of agricultural crops and soils measured from space, aerial, field and laboratory sensors

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Vanderbilt, V. C.; Robinson, B. F.; Daughtry, C. S. T.

    1980-01-01

    It is pointed out that in order to develop the full potential of multispectral measurements acquired from satellite or aircraft sensors to monitor, map, and inventory agricultural resources, increased knowledge and understanding of the spectral properties of crops and soils are needed. The present state of knowledge is reviewed, emphasizing current investigations of the multispectral reflectance characteristics of crops and soils as measured from laboratory, field, aerial, and satellite sensor systems. The relationships of important biological and physical characteristics to their spectral properties of crops and soils are discussed. Future research needs are also indicated.

  9. Measurement of the fluorescence of crop residues: A tool for controlling soil erosion

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Mcmurtrey, J. E., III; Chappelle, E. W.; Hunter, W. J.

    1994-01-01

    Management of crop residues, the portion of a crop left in the field after harvest, is an important conservation practice for minimizing soil erosion and for improving water quality. Quantification of crop residue cover is required to evaluate the effectiveness of conservation tillage practices. Methods are needed to quantify residue cover that are rapid, accurate, and objective. The fluorescence of crop residue was found to be a broadband phenomenon with emission maxima at 420 to 495 nm for excitations of 350 to 420 nm. Soils had low intensity broadband emissions over the 400 to 690 nm region for excitations of 300 to 600 nm. The range of relative fluorescence intensities for the crop residues was much greater than the fluorescence observed of the soils. As the crop residues decompose their blue fluorescence values approach the fluorescence of the soil. Fluorescence techniques are concluded to be less ambiguous and better suited for discriminating crop residues and soils than reflectance methods. If properly implemented, fluorescence techniques can be used to quantify, not only crop residue cover, but also photosynthetic efficiency in the field.

  10. [Continuous remediation of heavy metal contaminated soil by co-cropping system enhanced with chelator].

    PubMed

    Wei, Ze-Bin; Guo, Xiao-Fang; Wu, Qi-Tang; Long, Xin-Xian

    2014-11-01

    In order to elucidate the continuous effectiveness of co-cropping system coupling with chelator enhancement in remediating heavy metal contaminated soils and its environmental risk towards underground water, soil lysimeter (0.9 m x 0.9 m x 0.9 m) experiments were conducted using a paddy soil affected by Pb and Zn mining in Lechang district of Guangdong Province, 7 successive crops were conducted for about 2.5 years. The treatments included mono-crop of Sedum alfredii Hance (Zn and Cd hyperaccumulator), mono-crop of corn (Zea mays, cv. Yunshi-5, a low-accumulating cultivar), co-crop of S. alfredii and corn, and co-crop + MC (Mixture of Chelators, comprised of citric acid, monosodium glutamate waste liquid, EDTA and KCI with molar ratio of 10: 1:2:3 at the concentration of 5 mmol x kg(-1) soil). The changes of heavy metal concentrations in plants, soil and underground water were monitored. Results showed that the co-cropping system was suitable only in spring-summer seasons and significantly increased Zn and Cd phytoextraction. In autumn-winter seasons, the growth of S. alfredii and its phytoextraction of Zn and Cd were reduced by co-cropping and MC application. In total, the mono-crops of S. alfredii recorded a highest phytoextraction of Zn and Cd. However, the greatest reduction of soil Zn, Cd and Pb was observed with the co-crop + MC treatment, the reduction rates were 28%, 50%, and 22%, respectively, relative to the initial soil metal content. The reduction of this treatment was mainly attributed to the downwards leaching of metals to the subsoil caused by MC application. The continuous monitoring of leachates during 2. 5 year's experiment also revealed that the addition of MC increased heavy metal concentrations in the leaching water, but they did not significantly exceed the III grade limits of the underground water standard of China. PMID:25639110

  11. Predicting Soil Moisture Dynamics and Crop Yield Using Electrical Geophysical Methods

    NASA Astrophysics Data System (ADS)

    Lesmes, D.; Wertz, D.; Gish, T.; Dulaney, W.

    2004-05-01

    Our research at the USDA's Agricultural Research Center (OPE3 field site) located in Beltsville, MD is motivated by the need to develop efficient and non-invasive methods for characterizing the soil properties that control soil moisture dynamics and crop yield. Soil moisture dynamics are controlled by hydraulic conductivity and soil water retention rate, which in turn are controlled by the soil texture (sand and clay content). In this study, we use time-domain reflectometery (TDR) and ground-penetrating radar (GPR) to measure the spatial and temporal variability in soil moisture on an experimental corn field. Electromagnetic induction (EM) and induced polarization (IP) measurements are observed to be highly correlated with soil texture, and can therefore be used to make high-resolution soil texture maps. We have found that the correlation of crop yield with the geophysically derived soil texture maps depends on the overall soil water availability. For example, the crop yield is positively correlated with clay content in 1999 (drought year), but is negatively correlated with clay content in 2000 (wet year). This ground based geophysical methodology provides a framework for the prediction of soil moisture dynamics and its effects on crop yield, and may allow for the optimization of fertilizer and pesticide applications so as to minimize non-point source pollution.

  12. Microbial metabolic profiles in Australian soils with varying crop management strategies

    NASA Astrophysics Data System (ADS)

    Aldorri, Sind; McMillan, Mary; Pereg, Lily

    2015-04-01

    Cotton production belt in Australia is covering vast areas from subtropical to temperate and grassland. Soil types are mostly different variations of clay with mainly black, grey and red clay soil containing variable proportions of sand in it. Growers often grow cotton in rotation with other crops, such as wheat, beans and corn, and soil fertilization vary with a number of growers using organic amendments as a main or supplementary source of nutrients. We have collected soil samples from farms in different regions and with different crop management strategies and studied the metabolic signature of microbial communities using the Biolog Ecoplate system. The metabolic patterns, supplemented with molecular analysis of the community will further the understanding of the influence of crop and soil management on soil functions carried out by microbes.

  13. [Effects of planting system on soil and water conservation and crop output value in a sloping land of Southwest China].

    PubMed

    Xiang, Da-Bing; Yong, Tai-Wen; Yang, Wen-Yu; Yu, Xiao-Bo; Guo, Kai

    2010-06-01

    A three-year experiment was conducted to study the effects of wheat/maize/soybean with total no-tillage and mulching (NTM), wheat/maize/soybean with part no-tillage and part mulching (PTM), wheat/maize/soybean with total tillage without mulching (TWM), and wheat/maize/ sweet potato with total tillage without mulching (TWMS) on the soil and water conservation, soil fertility, and crop output value in a sloping land of Southwest China. The average soil erosion amount and surface runoff of NTM were significantly lower than those of the other three planting systems, being 1189 kg x hm(-2) and 215 m3 x hm(-2), and 10.6% and 84.7% lower than those of TWMS, respectively. The soil organic matter, total N, available K and available N contents of NTM were increased by 15.7%, 18.2%, 55.2%, and 25.9%, respectively, being the highest among the test planting systems. PTM and TWM took the second place, and TWMS pattern had the least. NTM had the highest annual crop output value (18809 yuan x hm(-2)) and net income (12619 yuan x hm(-2)) in three years, being 2.2% -20.6% and 3.8% -32.9% higher than other three planting systems, respectively. In a word, the planting system wheat/maize/soybean was more beneficial to the water and soil conservation and the improvement of soil fertility and crop output value, compared with the traditional planting system wheat/maize/sweet potato. PMID:20873621

  14. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils.

    PubMed

    Blaine, Andrea C; Rich, Courtney D; Sedlacko, Erin M; Hundal, Lakhwinder S; Kumar, Kuldip; Lau, Christopher; Mills, Marc A; Harris, Kimberly M; Higgins, Christopher P

    2014-07-15

    Crop uptake of perfluoroalkyl acids (PFAAs) from biosolids-amended soil has been identified as a potential pathway for PFAA entry into the terrestrial food chain. This study compared the uptake of PFAAs in greenhouse-grown radish (Raphanus sativus), celery (Apium graveolens var. dulce), tomato (Lycopersicon lycopersicum), and sugar snap pea (Pisum sativum var. macrocarpon) from an industrially impacted biosolids-amended soil, a municipal biosolids-amended soil, and a control soil. Individual concentrations of PFAAs, on a dry weight basis, in mature, edible portions of crops grown in soil amended with PFAA industrially impacted biosolids were highest for perfluorooctanoate (PFOA; 67 ng/g) in radish root, perfluorobutanoate (PFBA; 232 ng/g) in celery shoot, and PFBA (150 ng/g) in pea fruit. Comparatively, PFAA concentrations in edible compartments of crops grown in the municipal biosolids-amended soil and in the control soil were less than 25 ng/g. Bioaccumulation factors (BAFs) were calculated for the root, shoot, and fruit compartments (as applicable) of all crops grown in the industrially impacted soil. BAFs were highest for PFBA in the shoots of all crops, as well as in the fruit compartment of pea. Root-soil concentration factors (RCFs) for tomato and pea were independent of PFAA chain length, while radish and celery RCFs showed a slight decrease with increasing chain length. Shoot-soil concentration factors (SCFs) for all crops showed a decrease with increasing chain length (0.11 to 0.36 log decrease per CF2 group). The biggest decrease (0.54-0.58 log decrease per CF2 group) was seen in fruit-soil concentration factors (FCFs). Crop anatomy and PFAA properties were utilized to explain data trends. In general, fruit crops were found to accumulate fewer long-chain PFAAs than shoot or root crops presumably due to an increasing number of biological barriers as the contaminant is transported throughout the plant (roots to shoots to fruits). These data were incorporated into a preliminary conceptual framework for PFAA accumulation in edible crops. In addition, these data suggest that edible crops grown in soils conventionally amended for nutrients with biosolids (that are not impacted by PFAA industries) are unlikely a significant source of long-chain PFAA exposure to humans. PMID:24918303

  15. Impact of cover crops and tillage on porosity of podzolic soil

    NASA Astrophysics Data System (ADS)

    B?a?ewicz-Wo?niak, M.; Konopiñski, M.

    2013-09-01

    The aim of the study was to determine the influence of cover crops biomass, mixed with the soil on different dates and with the use of different tools in field conditions. The cover crop biomass had a beneficial influence on the total porosity of the 0-20 cm layer of the soil after winter. The highest porosity was achievedwith cover crops of buckwheat, phacelia and mustard, the lowest with rye. During the vegetation period the highest porosity of soil was observed in the ridges. Among the remaining non-ploughing cultivations, pre-winter use of stubble cultivator proved to have a beneficial influence on the soil porosity, providing results comparable to those achieved in conventional tillage. The differential porosity of the soil was modified not only by the catch crops and the cultivation methods applied, but also by the sample collection dates, and it did change during the vegetation period. The highest content of macropores after winter was observed for the phacelia cover crop, and the lowest in the case of cultivation without any cover crops. Pre-winter tillage with the use of a stubble cultivator increased the amount of macropores in soil in spring, and caused the biggest participation of mesopores as compared with other non-ploughing cultivation treatments of the soil. The smallest amount of mesopores was found in the ridges.

  16. Effects of crop management, soil type, and climate on N2O emissions from Austrian Soils

    NASA Astrophysics Data System (ADS)

    Zechmeister-Boltenstern, Sophie; Sigmund, Elisabeth; Kasper, Martina; Kitzler, Barbara; Haas, Edwin; Wandl, Michael; Strauss, Peter; Poetzelsberger, Elisabeth; Dersch, Georg; Winiwarter, Wilfried; Amon, Barbara

    2015-04-01

    Within the project FarmClim ("Farming for a better climate") we assessed recent N2O emissions from two selected regions in Austria. Our aim was to deepen the understanding of Austrian N2O fluxes regarding region specific properties. Currently, N2O emissions are estimated with the IPCC default emission factor which only considers the amount of N-input as an influencing factor for N2O emissions. We evaluated the IPCC default emission factor for its validity under spatially distinct environmental conditions. For this two regions for modeling with LandscapeDNDC have been identified in this project. The benefit of using LandscapeDNDC is the detailed illustration of microbial processes in the soil. Required input data to run the model included daily climate data, vegetation properties, soil characteristics and land management. The analysis of present agricultural practices was basis for assessing the hot spots and hot moments of nitrogen emissions on a regional scale. During our work with LandscapeDNDC we were able to adapt specific model algorithms to Austrian agricultural conditions. The model revealed a strong dependency of N2O emissions on soil type. We could estimate how strongly soil texture affects N2O emissions. Based on detailed soil maps with high spatial resolution we calculated region specific contribution to N2O emissions. Accordingly we differentiated regions with deviating gas fluxes compared to the predictions by the IPCC inventory methodology. Taking region specific management practices into account (tillage, irrigation, residuals) calculation of crop rotation (fallow, catch crop, winter wheat, barley, winter barley, sugar beet, corn, potato, onion and rapeseed) resulted in N2O emissions differing by a factor of 30 depending on preceding crop and climate. A maximum of 2% of N fertilizer input was emitted as N2O. Residual N in the soil was a major factor stimulating N2O emissions. Interannual variability was affected by varying N-deposition even in case of constant management practices. High temporal resolution of model outputs enabled us to identify hot moments of N-turnover and total N2O emissions according to extreme weather events. We analysed how strongly these event based emissions, which are not accounted for by classical inventories, affect emission factors. The evaluation of the IPCC default emission factor for its validity under spatially distinct environmental conditions revealed which environmental conditions are responsible for major deviations of actual emissions from the theoretical values. Scrutinizing these conditions can help to improve climate reporting and greenhouse gas mitigation measures.

  17. Can Impacts of Climate Change and Agricultural Adaptation Strategies Be Accurately Quantified if Crop Models Are Annually Re-Initialized?

    PubMed Central

    Basso, Bruno; Hyndman, David W.; Kendall, Anthony D.; Grace, Peter R.; Robertson, G. Philip

    2015-01-01

    Estimates of climate change impacts on global food production are generally based on statistical or process-based models. Process-based models can provide robust predictions of agricultural yield responses to changing climate and management. However, applications of these models often suffer from bias due to the common practice of re-initializing soil conditions to the same state for each year of the forecast period. If simulations neglect to include year-to-year changes in initial soil conditions and water content related to agronomic management, adaptation and mitigation strategies designed to maintain stable yields under climate change cannot be properly evaluated. We apply a process-based crop system model that avoids re-initialization bias to demonstrate the importance of simulating both year-to-year and cumulative changes in pre-season soil carbon, nutrient, and water availability. Results are contrasted with simulations using annual re-initialization, and differences are striking. We then demonstrate the potential for the most likely adaptation strategy to offset climate change impacts on yields using continuous simulations through the end of the 21st century. Simulations that annually re-initialize pre-season soil carbon and water contents introduce an inappropriate yield bias that obscures the potential for agricultural management to ameliorate the deleterious effects of rising temperatures and greater rainfall variability. PMID:26043188

  18. NATIONAL CROP LOSS ASSESSMENT NETWORK (NCLAN) 1982 ANNUAL REPORT

    EPA Science Inventory

    The National Crop Loss Assessment Network (NCLAN) is a group of organizations cooperating in research to assess the short- and long-term economic impact of air pollution on crop production. The primary objectives are (1) to define relationships between yield of major agricultural...

  19. Collection Policy: SOIL, CROP AND ATMOSPHERIC SCIENCES Subject Scope | Priority Tables | Other policies . . .

    E-print Network

    Angenent, Lars T.

    genetic engineering of crop and microbial species, simulation modeling and data acquisition, storage statistics, soil mechanics, engineering related to flow in porous media, groundwater hydrology, microbiology. q Microclimatology. q Air pollution. q Atmospheric modeling. q The Engineering Library has

  20. Influence of Cover Crops in Rotation on Populations of Soil Nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A pot experiment was carried out in south Florida to elucidate suppressive or antagonistic effects of several cover crops grown in rotation on soil nematode populations. The crops were two marigolds, Tagetes patula L. 'Dwarf Double French Mix' (MI), and Tagetes patula L. 'Lemon Drop' (MII), Indian m...

  1. SITE-SPECIFIC EVALUATION OF CROP MODELS ON MISSOURI CLAYPAN SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield is affected by many factors, primarily encompassing soil and weather conditions, and agronomic management practices. Crop modeling can be used to help understand how multiple factors interact and impact yield. The objectives of this study were to evaluate the performance of the CERES-Mai...

  2. COVER CROP EFFECTS ON THE FATE OF SWINE MANURE-N APPLIED TO SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal grain cover crops increase surface cover, anchor corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] residues, increase infiltration, reduce both rill and interrill erosion, scavenge excess nutrients from the soil, and are easily obtained and inexpensive compared to other cover crop optio...

  3. VINEYARD FLOOR MANAGEMENT STRATEGIES AFFECT SOIL PROPERTIES & MICROBIOLOGY, WATER RELATIONS, AND CROP NUTRITION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A long-term comparison of various vineyard floor management practices (weed control and cover crops) indicates that weed control treatments had no impact on soil microbial biomass, but had a significant interactive effect with the rye cover crop on mycorrhizal colonization of grapevine roots, presum...

  4. Soil and rainfall factors influencing yields of a dryland cropping system in Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The semi-arid Great Plains of the United States experience a large variation in crop yields due to variability in rainfall, soil, and other factors. We analyzed crop yields (24-year period) from a no-till rotation of wheat(Triticum aestivum)-corn (Zea mays L.) or sorghum[Sorghum bicolor (L.) Moench]...

  5. The Potato Systems Planner: Cropping System Impacts on Soilborne Diseases and Soil Microorganisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different 2-yr and 3-yr crop rotations, consisting of barley/clover, canola, green bean, millet, soybean, and sweet corn in various combinations followed by potato, were evaluated for their effects on the development of soilborne potato diseases and soil microbial communities over several cropping s...

  6. Integrating choice of variety, soil amendments, and cover crops to optimize organic rice production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have completed our first year of this project to determine the impact of winter cover crops, soil amendments, and rice varieties on organic rice production at Beaumont, TX. Two winter cover crops were established successfully and the amounts of dry biomass produced were 4,690 and 5,157 lb/acre f...

  7. SOIL CARBON DIOXIDE EMISSION AS INFLUENCED BY IRRIGATION, TILLAGE, CROPPING SYSTEM, AND NITROGEN FERTILIZATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and crop management practices can influence CO2 emission from crop and grasslands and therefore on global warming. We examined the effects of two irrigation systems (irrigated vs. non-irrigated) and six management practices [no-till malt barley (Hordeum vulgaris L.) with 67 or 134 kg N ha-1 (NT...

  8. CONSERVATION TILLAGE AND COVER CROP INFLUENCES ON COTTON PRODUCTION ON SOUTHEASTERN USA COASTAL PLAIN SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A majority of the 2.9 million acres of cotton (Gossypium hirsutum L.) produced in the Southeastern USA is located on Coastal Plain sandy soils that can benefit from conservation cropping systems. An understanding of cover crop and tillage system interactions is needed within specific environments to...

  9. Dryland residue and soil orgranic matter as influenced by tillage, crop rotation, and cultural practice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel management practices are needed to increase dryland soil organic matter and crop yields that have been declining due to long-term conventional tillage with spring wheat (Triticum aestivum L.)-fallow system in the northern Great Plains, USA. The effects of tillage, crop rotation, and cultural p...

  10. The impact of fall cover crops on soil nitrate and corn growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporating cover crops into current production systems can have many beneficial impacts on the current cropping system including decreasing erosion, improving water infiltration, increasing soil organic matter and biological activity but in water limited areas caution should be utilized. A fiel...

  11. TILLAGE, COVER CROP, AND NITROGEN FERTILIZER SOURCE EFFECTS ON SOIL CARBON AND NITROGEN SEQUESTRATION.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 10-yr effect of combinations of tillage (no-till, mulch till, and conventional till), cover crop (rye vs. none), and N fertilization source and rate (0 and 100 kg N ha-1 from NH4NO3 and 100 and 200 kg N ha-1 from poultry manure) was evaluated on crop residues and soil organic C (SOC) and organic...

  12. Fertilizer Facts: January 1997, Number 9 Nitrates in Soil and Ground Water Under Irrigated Crops

    E-print Network

    Lawrence, Rick L.

    , and safflower cropping systems after recommended fertilization. The crops were planted in three fields of about 20 acres each with a rotation of sugarbeet -- safflower -- small grain. Conventional procedures/bu for barley, and 240 lb N/a for irrigated safflower. Fields were irrigated as needed based on soil core

  13. Long-term tillage and cropping sequence effects on dryland residue and soil carbon fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dryland soil N conservation and mineralization as influenced by long-term management practices is needed to reduce N fertilization rate, N leaching, and N2O (a greenhouse gas) emission. We evaluated the 21-yr effects of combinations of tillage and cropping sequences on dryland crop biomass (stems + ...

  14. Effects of gully erosion and gully filling on soil depth and crop production in the black soil region, northeast China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gully erosion has affected the crop yield in the black soil region of China and become a potential threat to Chan’s food security. This paper aimed to quantify the effects of gully erosion on soil depth and soybean yield. An ephemeral gully (74 m) and a classic gully (52 m) connected at the gully’s ...

  15. Crop productivity and soil resilience observed on short-term corn stover or cob harvest on several northern soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly productive soils are found throughout the US Corn Belt, in part due to their inherently high soil organic matter. Their productivity contributes to the high corn grain and stover yields; hence, this crop residue is predicted to be a significant bioenergy feedstock within this region. The obje...

  16. Spatial variation of corn canopy temperature as dependent upon soil texture and crop rooting characteristics

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1983-01-01

    A soil plant atmosphere model for corn (Zea mays L.) together with the scaling theory for soil hydraulic heterogeneity are used to study the sensitivity of spatial variation of canopy temperature to field averaged soil texture and crop rooting characteristics. The soil plant atmosphere model explicitly solves a continuity equation for water flux resulting from root water uptake, changes in plant water storage and transpirational flux. Dynamical equations for root zone soil water potential and the plant water storage models the progressive drying of soil, and day time dehydration and night time hydration of the crop. The statistic of scaling parameter which describes the spatial variation of soil hydraulic conductivity and matric potential is assumed to be independent of soil texture class. The field averaged soil hydraulic characteristics are chosen to be representative of loamy sand and clay loam soils. Two rooting characteristics are chosen, one shallow and the other deep rooted. The simulation shows that the range of canopy temperatures in the clayey soil is less than 1K, but for the sandy soil the range is about 2.5 and 5.0 K, respectively, for the shallow and deep rooted crops.

  17. Machine-assisted analysis of Landsat data in the study of crop-soils relationships

    USGS Publications Warehouse

    Draeger, William C.

    1976-01-01

    To date, relatively few studies have dealt with crop-soil interactions as they affect the appearance of agricultural areas on Landsatimagery, and hence crop and soil classification or the analysis of agricultural land use.The Image 100, a computer-based data analysis system which allows an interpreter to interact directly and rapidly with Landsat computercompatible tape data, provided a tool to assist in the evaluation of the extent and significance of these interactions. Used with timely and accurate ground data, the system made possible a determination of the variability in crop spectral appearance, from soil type to soil type, as recorded on Landsat data. Information was provided in the form of spectral distribution histrograms for each crop-soil class on each Landsat band. Several crop categories in a test area in Brookings County, South Dakota, were classified using training fields that were selected to be representative of each major crop-soil class. Accuracies in each case, on a total acreage basis, were greater than 90 percent.

  18. Soil carbon and nitrogen sequestration as affected by long-term tillage, cropping system, and nitrogen fertilizer sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry litter application in no-tilled intensive cropping system could increase soil C and N sequestration compared with conventional management practices. We evaluated the 10-year effects of tillage, cropping systems, and N sources on crop residue (stems + leaves) production and soil organic C (SO...

  19. METHODOLOGIES TO ASSESS THE IMPACT OF GENETICALLY-MODIFIED CROPS ON SOIL BIOLOGICAL PROPERTIES USING DIAGNOSTIC TECHNIQUES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecological assessment of genetically-modified (GM) crop impacts on microbial communities has received little attention. GM crops may release exudates into soil causing changes in rhizosphere microorganisms. How GM crops influence microorganisms is important in evaluating effects on soil biological p...

  20. Cover crops tillage and glyphosate effects on chemical and biological properties of a Lower Mississippi Delta soil and soybean yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adoption of sustainable cropping systems, including cover crops and no-tillage practices can promote soil conservation and improve soil quality. However, the selection of the best management practices to increase crop production is needed. A field study was conducted from 2001 to 2005 at Stone...

  1. Cover Crops, Tillage, and Glyphosate Effects on Chemical and Biological Properties of a Lower Mississippi Delta Soil and Soybean Yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adoption of sustainable cropping systems, including cover crops and no-tillage practices can promote soil conservation and improve soil quality. However, the selection of the best management practices to increase crop production is needed. A field study was conducted from 2001 to 2005 at Stone...

  2. Impact of climate, vegetation, soil and crop management variables on multi-year ISBA-A-gs simulations of evapotranspiration over a Mediterranean crop site

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Carrer, D.; Decharme, B.; Calvet, J.-C.; Martin, E.; Moulin, S.; Marloie, O.

    2015-10-01

    Generic land surface models are generally driven by large-scale data sets to describe the climate, the soil properties, the vegetation dynamic and the cropland management (irrigation). This paper investigates the uncertainties in these drivers and their impacts on the evapotranspiration (ET) simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface model over a 12-year Mediterranean crop succession. We evaluate the forcing data sets used in the standard implementation of ISBA over France where the model is driven by the SAFRAN (Système d'Analyse Fournissant des Renseignements Adaptés à la Nivologie) high spatial resolution atmospheric reanalysis, the leaf area index (LAI) time courses derived from the ECOCLIMAP-II land surface parameter database and the soil texture derived from the French soil database. For climate, we focus on the radiations and rainfall variables and we test additional data sets which include the ERA-Interim (ERA-I) low spatial resolution reanalysis, the Global Precipitation Climatology Centre data set (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave radiations. The evaluation of the drivers indicates very low bias in daily downwelling shortwave radiation for ERA-I (2.5 W m-2) compared to the negative biases found for SAFRAN (-10 W m-2) and the MSG satellite (-12 W m-2). Both SAFRAN and ERA-I underestimate downwelling longwave radiations by -12 and -16 W m-2, respectively. The SAFRAN and ERA-I/GPCC rainfall are slightly biased at daily and longer timescales (1 and 0.5 % of the mean rainfall measurement). The SAFRAN rainfall is more precise than the ERA-I/GPCC estimate which shows larger inter-annual variability in yearly rainfall error (up to 100 mm). The ECOCLIMAP-II LAI climatology does not properly resolve Mediterranean crop phenology and underestimates the bare soil period which leads to an overall overestimation of LAI over the crop succession. The simulation of irrigation by the model provides an accurate irrigation amount over the crop cycle but the timing of irrigation occurrences is frequently unrealistic. Errors in the soil hydrodynamic parameters and the lack of irrigation in the simulation have the largest influence on ET compared to uncertainties in the large-scale climate reanalysis and the LAI climatology. Among climate variables, the errors in yearly ET are mainly related to the errors in yearly rainfall. The underestimation of the available water capacity and the soil hydraulic diffusivity induce a large underestimation of ET over 12 years. The underestimation of radiations by the reanalyses and the absence of irrigation in the simulation lead to the underestimation of ET while the overall overestimation of LAI by the ECOCLIMAP-II climatology induces an overestimation of ET over 12 years. This work shows that the key challenges to monitor the water balance of cropland at regional scale concern the representation of the spatial distribution of the soil hydrodynamic parameters, the variability of the irrigation practices, the seasonal and inter-annual dynamics of vegetation and the spatiotemporal heterogeneity of rainfall.

  3. Herbaceous energy crops program: Annual progress report for FY 1987

    SciTech Connect

    Cushman, J.H.; Turhollow, A.F.; Johnston, J.W.

    1989-01-01

    This report describes the activities and accomplishments of the Herbaceous Energy Crops Program (HECP) for the year ending September 30, 1987. The HECP is one of three research programs on the production of biomass energy crops supported by the US Department of Energy's Biofuels and Municipal Waste Technology Division. It is devoted to research on the development of terrestrial, nonwoody plant species for use as energy feedstocks. Oak Ridge National Laboratory provides field management for the HECP and has overall responsibility for its research. The HECP focuses on the types of crops that appear most promising for producing fuels or feedstocks for fuels. The research program emphasizes lignocellulosic energy crops as feedstocks for biochemical and thermochemical conversion to liquid and gaseous fuels. In FY 1987 screening and selection trials continued for a third year at five institutions in the Southeast and Midwest/Lake States, and two new projects were initiated in the Great Plains. 18 refs., 7 figs., 15 tabs.

  4. Changes in Soil Moisture, Microbial Biomass, Mineralization and Nitrification Explain Increases in N2O Emissions from a Spring Barley Crop Under Combined Reduced Tillage and Cover Crop Management

    NASA Astrophysics Data System (ADS)

    Rueangritsarakul, K.; Jones, M.; Roth, B.; Abdalla, M.; Williams, M.

    2012-04-01

    This study investigated the effect of conventional tillage (CT), combined reduced tillage-cover crop (RT-CC), and reduced N application on crop yield and N2O emissions from spring barley. Reduced tillage plots were established for seven years, the final four incorporating a mustard cover crop. Higher N2O fluxes were from fertilized, RT-CC plots due to higher WFPS, soil nitrate, and soil carbon. Fluxes during the non-growing season were variable and the main source of cumulative emissions. Emission factors were in the range of IPCC default values. Low N fertilization reduced cumulative emissions, however during the wetter growing season this reduction was smaller than the reduction in barley production particular in the conventional tillage plots. Adopting RT-CC management for cereal crops may be problematic in reducing GHG emissions due to high N2O fluxes. Reducing N fertilizer in order to reduce N2O emissions is not feasible due to high inter-annual variation in crop yield. N2O flux in all plots was positively correlated with microbial biomass carbon, net nitrification and mineralization determined in the field. Increased emissions of N2O in the RT-CC plots are accounted for by increases in organic carbon in the soil and increases in mineralization.

  5. GREAT PLAINS CROPPING SYSTEM STUDIES FOR SOIL QUALITY ASSESSMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interactions between environmental conditions and management practices can significantly affect soil function. Soil quality assessments may improve our understanding of how soils interact with the hydrosphere and atmosphere. This information can then be used to develop management practices that impr...

  6. [Effects of tobacco garlic crop rotation and intercropping on tobacco yield and rhizosphere soil phosphorus fractions].

    PubMed

    Tang, Biao; Zhang, Xi-zhou; Yang, Xian-bin

    2015-07-01

    A field plot experiment was conducted to investigate the tobacco yield and different forms of soil phosphorus under tobacco garlic crop rotation and intercropping patterns. The results showed that compared with tobacco monoculture, the tobacco yield and proportion of middle/high class of tobacco leaves to total leaves were significantly increased in tobacco garlic crop rotation and intercropping, and the rhizosphere soil available phosphorus contents were 1.3 and 1.7 times as high as that of tobacco monoculture at mature stage of lower leaf. For the inorganic phosphorus in rhizosphere and non-rhizosphere soil in different treatments, the contents of O-P and Fe-P were the highest, followed by Ca2-P and Al-P, and Ca8-P and Ca10-P were the lowest. Compared with tobacco monoculture and tobacco garlic crop intercropping, the Ca2-P concentration in rhizosphere soil under tobacco garlic crop rotation at mature stage of upper leaf, the Ca8-P concentration at mature stage of lower leaf, and the Ca10-P concentration at mature stage of middle leaf were lowest. The Al-P concentrations under tobacco garlic crop rotation and intercropping were 1.6 and 1.9 times, and 1.2 and 1.9 times as much as that under tobacco monoculture in rhizosphere soil at mature stages of lower leaf and middle leaf, respectively. The O-P concentrations in rhizosphere soil under tobacco garlic crop rotation and intercropping were significantly lower than that under tobacco monoculture. Compared with tobacco garlic crop intercropping, the tobacco garlic crop rotation could better improve tobacco yield and the proportion of high and middle class leaf by activating O-P, Ca10-P and resistant organic phosphorus in soil. PMID:26710622

  7. Effect of crop residue incorporation on soil organic carbon (SOC) and greenhouse gas (GHG) emissions in European agricultural soils

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Schlatter, Norman; Baumgarten, Andreas; Bechini, Luca; Krüger, Janine; Grignani, Carlo; Zavattaro, Laura; Costamagna, Chiara; Spiegel, Heide

    2014-05-01

    Soil organic matter (SOM) improves soil physical (e.g. increased aggregate stability), chemical (e.g. cation exchange capacity) and biological (e.g. biodiversity, earthworms) properties. The sequestration of soil organic carbon (SOC) may mitigate climate change. However, as much as 25-75% of the initial SOC in world agricultural soils may have been lost due to intensive agriculture (Lal, 2013). The European Commission has described the decline of organic matter (OM) as one of the major threats to soils (COM(2006) 231). Incorporation of crop residues may be a sustainable and cost-efficient management practice to maintain the SOC levels and to increase soil fertility in European agricultural soils. Especially Mediterranean soils that have low initial SOC concentrations, and areas where stockless croplands predominate may be suitable for crop residue incorporation. In this study, we aim to quantify the effects of crop residue incorporation on SOC and GHG emissions (CO2 and N2O) in different environmental zones (ENZs, Metzger et al., 2005) in Europe. Response ratios for SOC and GHG emissions were calculated from pairwise comparisons between crop residue incorporation and removal. Specifically, we investigated whether ENZs, clay content and experiment duration influence the response ratios. In addition, we studied how response ratios of SOM and crop yields were correlated. A total of 718 response ratios (RR) were derived from a total of 39 publications, representing 50 experiments (46 field and 4 laboratory) and 15 countries. The SOC concentrations and stocks increased by approximately 10% following crop residue incorporation. In contrast, CO2 emissions were approximately six times and N2O emissions 12 times higher following crop residue incorporation. The effect of ENZ on the response ratios was not significant. For SOC concentration, the >35% clay content had significantly approximately 8% higher response ratios compared to 18-35% clay content. As the duration of the experiment rose, RR for SOC concentration and stock increased. For N2O emissions, RR was significantly higher in <5 years experiment duration compared to 11-15 years experiment duration. For GHG emissions, the RRs were significantly higher when vegetable crop residues were incorporated instead of cereal crop residues. No significant correlations were found between RR for SOC concentration and yields, but differences between sites could be detected. We conclude that crop residue incorporation is an important management practice for maintaining SOC concentrations and stocks. Its influence in increasing GHG emissions should not be overlooked as the data availability from field experiments on GHG emissions is still scarce.

  8. Impact of Location, Cropping History, Tillage, and Chlorpyrifos on Soil Arthropods in Peanut.

    PubMed

    Cardoza, Yasmin J; Drake, Wendy L; Jordan, David L; Schroeder-Moreno, Michelle S; Arellano, Consuelo; Brandenburg, Rick L

    2015-08-01

    Demand for agricultural production systems that are both economically viable and environmentally conscious continues to increase. In recent years, reduced tillage systems, and grass and pasture rotations have been investigated to help maintain or improve soil quality, increase crop yield, and decrease labor requirements for production. However, documentation of the effects of reduced tillage, fescue rotation systems as well as other management practices, including pesticides, on pest damage and soil arthropod activity in peanut production for the Mid-Atlantic US region is still limited. Therefore, this project was implemented to assess impacts of fescue-based rotation systems on pests and other soil organisms when compared with cash crop rotation systems over four locations in eastern North Carolina. In addition, the effects of tillage (strip vs. conventional) and soil chlorpyrifos application on pod damage and soil-dwelling organisms were also evaluated. Soil arthropod populations were assessed by deploying pitfall traps containing 50% ethanol in each of the sampled plots. Results from the present study provide evidence that location significantly impacts pest damage and soil arthropod diversity in peanut fields. Cropping history also influenced arthropod diversity, with higher diversity in fescue compared with cash crop fields. Corn rootworm damage to pods was higher at one of our locations (Rocky Mount) compared with all others. Cropping history (fescue vs. cash crop) did not have an effect on rootworm damage, but increased numbers of hymenopterans, acarina, heteropterans, and collembolans in fescue compared with cash crop fields. Interestingly, there was an overall tendency for higher number of soil arthropods in traps placed in chlorpyrifos-treated plots compared with nontreated controls. PMID:26314040

  9. Conservation tillage, rotations, and cover crop affect soil quality in the Tennessee Valley: Particulate organic matter, organic matter, and microbial biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monocropping cotton (Gossypium hirsutum L.) with conventional tillage provides little carbon input to soil, increases erosion and promotes rapid oxidation of existing soil organic carbon (SOC). Management practices like conservation tillage, crop rotation, and cover cropping can impact soil carbon, ...

  10. Seasonal Soil Nitrogen Mineralization within an Integrated Crop and Livestock System in Western North Dakota, USA

    NASA Astrophysics Data System (ADS)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Pfenning, Lauren; Brevik, Eric C.

    2015-04-01

    Protecting natural resources while maintaining or maximizing crop yield potential is of utmost importance for sustainable crop and livestock production systems. Since soil organic matter and its decomposition by soil organisms is at the very foundation of healthy productive soils, systems research at the North Dakota State University Dickinson Research Extension Center is evaluating seasonal soil nitrogen fertility within an integrated crop and livestock production system. The 5-year diverse crop rotation is: sunflower (SF) - hard red spring wheat (HRSW) - fall seeded winter triticale-hairy vetch (THV; spring harvested for hay)/spring seeded 7-species cover crop (CC) - Corn (C) (85-90 day var.) - field pea-barley intercrop (PBY). The HRSW and SF are harvested as cash crops and the PBY, C, and CC are harvested by grazing cattle. In the system, yearling beef steers graze the PBY and C before feedlot entry and after weaning, gestating beef cows graze the CC. Since rotation establishment, four crop years have been harvested from the crop rotation. All crops have been seeded using a JD 1590 no-till drill except C and SF. Corn and SF were planted using a JD 7000 no-till planter. The HRSW, PBY, and CC were seeded at a soil depth of 3.8 cm and a row width of 19.1 cm. Seed placement for the C and SF crops was at a soil depth of 5.1 cm and the row spacing was 0.762 m. The plant population goal/ha for C, SF, and wheat was 7,689, 50,587, and 7,244 p/ha, respectively. During the 3rd cropping year, soil bulk density was measured and during the 4th cropping year, seasonal nitrogen fertility was monitored throughout the growing season from June to October. Seasonal nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total season mineral nitrogen (NO3-N + NH4-N), cropping system NO3-N, and bulk density were measured in 3 replicated non-fertilized field plot areas within each 10.6 ha triple replicated crop fields. Within each plot area, 6 - 20.3 cm x 0.61 m aluminum irrigation pipes were pressed into the soil as enclosures to restrict root access to soil nitrogen. Soil samples were taken as close to 2-week intervals as possible from both inside and outside the enclosures. The crop rotation N values were also compared to triple replicated perennial native grassland plot areas (predominate sp. Western wheatgrass - Pascopyrum smithii, Blue grama - Bouteloua gracilis, Little bluestem - Schizachyrium scoparium, Switchgrass - Panicum virgatum). Trends identified for both NH4-N and NO3-N indicate that the values are relatively similar with respect to seasonal change over time. There was a greater amount of soil nitrogen accumulation inside the enclosures indicating that outside the enclosures roots scavenge nitrogen for plant growth and production. Seasonally, comparing the cropping system crops, NO3-N declined mid-July and then rebounded by mid-August and continued to increase until leveling off in September. Corn NO3-N, however, did not follow this pattern, but increased from early June to the end of June and remained high until the first of September. We will present the results of bulk density data and seasonal N fertility data providing evidence for the impact of previous CC on corn production. Probable explanation for the mid-summer nitrogen decline will be presented and justification for reduced fertilizer application will be discussed.

  11. Salt and N leaching and soil accumulation due to cover cropping practices

    NASA Astrophysics Data System (ADS)

    Gabriel, J. L.; Quemada, M.

    2012-04-01

    Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. Cover crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. Cover crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many areas of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of cover cropping. A study of the soil salinity and nitrate leaching was conducted during 4 years in a semiarid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Cover crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and cover crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth, using daily soil water content measurements, based on calibrated capacitance probes. Our results showed that drainage during the irrigated period was minimized, because irrigation water was adjusted to crop needs, leading to soil salt and nitrate accumulation on the upper layers after maize harvest. Then, during the intercrop period, most of salt and nitrate leaching occurred. Cover crops use led to shorter drainage period, lower drainage water amount and lower nitrate and salt leaching than treatment with fallow. These effects were related with a larger nitrate accumulation in the upper layers of the soil after cover crop treatments. But there was not soil salt accumulation increase in treatments with cover crops, and even decreased after years with a large cover crop biomass production. Then, adoption of cover crops in this kind of irrigated cropping system reduced water drainage beyond the root zone, salt and nitrate leaching diminished as a consequence but did not lead to salt accumulation in the upper soil layers. Acknowledgements: Financial support by CICYT, Spain (ref. AGL2005-00163 and AGL 2011-24732) and Comunidad de Madrid (project AGRISOST, S2009/AGR-1630).

  12. Effects of cropping and tillage systems on soil erosion under climate change in Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion under future climate change is very likely to increase due to projected increases in frequency and magnitude of heavy storms. The objective of this study is to quantify the effects of common cropping and tillage systems on soil erosion and surface runoff during 2010-2039 in central Okl...

  13. Long term effects of profile-modifying deep plowing on soil properties and crop yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insufficient plant available soil water limits dryland crop yields on the semiarid Southern Great Plains. Deep plowing to eliminate dense subsoil layers may increase soil water by increased infiltration and rooting, but the duration of treatment effects must be sufficiently long to recoup plowing co...

  14. Long-term tillage and cropping system effects on dryland soil carbon sequestration and fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices are needed to increase dryland soil C sequestration for C trading to reduce greenhouse gas emission and C fractions to improve soil quality. We evaluated the 21-yr effect of a combination of tillage frequency and cropping intensity [No-till continuous spring wheat (NTCW), spring...

  15. Impacts of an integrated crop-livestock system on soil properties to enhance precipitation capture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping/Livestock systems alter soil properties that are important in enhancing capture of precipitation by developing and maintaining water infiltration and storage. In this paper we will relate soil hydraulic conductivity and other physical properties on managed Old World Bluestem grassland, whea...

  16. Soil test and microbial biomass phosphorus levels impacted by potato cropping system and water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato crops generally require high amounts of phosphorus (P) fertilizer to reach economically acceptable yields. However, high inputs of P not only increase production cost, but also may increase the environmental risk of P runoff. We evaluated soil test P and microbial biomass P in soils from fiv...

  17. Responses of Enzyme Activities in Sandy Soils to Cropping System Changes in a Semiarid Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sandy soils in the semi-arid Southern High Plains of the United States are inherently low organic matter, and when agricultural practices such as intensively tilled, low-residue cropping (e.g., monoculture cotton) are practiced, soil of organic matter becomes further depleted. Although alternative ...

  18. Members of soil bacterial communities sensitive to tillage and crop rotation.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microorganisms play a major role in soil fertility and agricultural practices are known to exert influences on the community diversity of soil microorganisms. By using high-throughput sequencing approaches, we examined microbial populations in four cultivation and crop rotation treatments from a lon...

  19. Lower limits of crop water use in three soil textural classes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate knowledge of the amount of soil water available for crop use allows better management of limited water supplies. Using neutron scattering, we determined the mean lower limit of field soil water use (LL*F, m**3 m**-3) to a depth of 2.2 m at harvest (three seasons each) of short-season maize...

  20. Tillage and crop rotation effects on soil quality in two Iowa fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil quality is affected by inherent (parent material, climate, and topography) and anthropogenic (tillage and crop rotation) factors. We evaluated effects of five tillage treatments on 23 potential soil quality indicators after 31 years in a corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] rotat...

  1. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The composition and structure of bacterial communities was examined in soil subjected to a range of diverse agricultural land management and crop production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of bacterial DNA extracted from soil was used to generate amplicon profile...

  2. DEEP TILLAGE EFFECTS ON CROP PRODUCTIVITY AND SOIL PROPERTIES 30 YEARS AFTER TREATMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited plant available soil water decreases dryland crop yields on the southern Great Plains. Deep tillage to disrupt dense subsoil layers may increase rooting and infiltration for greater soil water availability, but the duration of treatment efficacy may not offset costs. Objectives were to quant...

  3. Changes in Soil Organic Carbon of Crop Rotations in the Northern Corn Belt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diversified crop rotation may reduce fertilizer nitrogen (N) input for corn (Zea mays L.) and increase soil organic carbon (SOC) storage. Objectives were to determine effect of rotation and N on soil C sequestration. The experiment, started in 1990, was on a Barnes sandy clay loam near Brookings, SD...

  4. Soil carbon fractions as influenced by tillage, cropping system, and nitrogen fertilization source

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of soil C cycling as influenced by management practices is needed for C sequestration, greenhouse gas mitigation, and soil quality improvement. We evaluated the 10-yr effect of combinations of tillage (no-till, mulch till, and conventional till), cropping systems (cotton-cotton-corn a...

  5. Cover crops and nitrogen fertilization effects of nitrogen conservation in tilled and non-tilled soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Higher cost of N fertilization due to increase in the price of petroleum and increased N leaching from croplands necessitate that soil N be conserved and N fertilization rate be reduced. Proper crop and N management practices may increase soil N conservation and reduce N fertilization rate. We exami...

  6. Long-term tillage and cropping sequence influence on dryland soil aggregate-carbon dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sequestration and transformation of soil C as a result of long-term management practices occur mainly in aggregates. This study evaluated the 21-yr effect of tillage and cropping sequence combinations on dryland soil C sequestration and transformation into various C fractions in aggregates at the 0-...

  7. Nitrogen storage with cover crops and nitrogen fertilization in tilled and non-tilled soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Higher cost of nitrogen (N) fertilization due to increase in the price of gasoline and increased N leaching from croplands necessitate that soil N be conserved and N fertilization rate be reduced. Proper crop and N management practices may increase soil N conservation and reduce N fertilization rate...

  8. Effects of cover cropping on soil and rhizosphere microbial community structure in tomato production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black polyethylene film is frequently used in vegetable farming systems to promote rapid warming of the soil in spring, conserve soil moisture, and suppress weeds. Alternative systems have been developed using cover cropping with legumes to provide a weed-suppressive mulch while also fixing nitrogen...

  9. Microbial community structure and functionality under peanut based cropping systems in a sandy soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is little information on soil microbial and biochemical properties, important for nutrient cycling and organic matter dynamics, as affected by different peanut (Arachis hypogaea L.) cropping systems and how they relate to soil quality and functioning and system sustainability. We studied a sa...

  10. Tillage Management and Previous Crop Effects on Soil Physical Properties and Maize Grain Yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize (Zea mays L.) grown in rotation with high residue crops generally has lower grain yield under no-till than under tilled soil management in the northern US maize belt. Hence, the research objectives were to further characterize soil physical properties and maize grain yield under tilled and no-...

  11. COVER CROP EFFECT ON SOIL CARBON FRACTIONS UNDER CONSERVATION TILLAGE COTTON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops may influence soil carbon (C) sequestration and microbial activities by providing additional residue C to soil. We examined the influence of legume [crimson clover (Trifolium incarnatum L.)], nonlegume [rye (Secaele cereale L.)], blend [a mixture of legumes containing balansa clover (Tri...

  12. CARBON STORAGE IN SOILS OF THE NORTH AMERICAN GREAT PLAINS: EFFECT OF CROPPING FREQUENCY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Summer fallow (fallow) is still widely used on the North American Great Plains to replenish soil moisture between crops. Our objective was to examine how fallowing affects soil organic carbon (SOC) in various agronomic and climate settings by reviewing long-term studies in the midwestern USA (five s...

  13. Improved Remote Crop Residue Cover Estimation by Incorporation of Soil and Residue Information

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern agricultural practices are increasingly making use of conservation (reduced- and no-till) methods, in order to minimize soil erosion and increase soil organic carbon (SOC) content. These methods result in increased crop residue cover after planting when compared to conventional tillage metho...

  14. Tillage, Cropping Sequence, and Nitrogen Fertilization Effects on Dryland Soil Carbon Dioxide Emission and Carbon Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices are needed to reduce dryland soil CO2 emission and increase C sequestration that can influence global warming. We evaluated the effects of tillage and cropping sequence combination and N fertilization on dryland soil surface CO2 flux, temperature and water content at the 0- to 1...

  15. Enhancing Potato System Sustainability: Crop Rotation Impacts on Soil Phosphatase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato is a species with a low efficiency of acquiring soil P. Rotation crops may potentially influence P uptake by potato by increasing soil organic acids, phosphatase activity, and microbial biomass. However, this kind of information is very limited. We measured the activities of acid phosphatase,...

  16. Hyperspectral remote sensing estimation of crop residue cover: Soil mineralogy, surface conditions, and their effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage practices can enhance soil organic carbon content (SOC), improve soil structure, and reduce erosion. However, direct assessment of tillage practice for monitoring SOC change over large regions is difficult. Remote sensing of crop residue cover (CRC) can help assess tillage pra...

  17. Cropping and tillage systems effects on soil erosion under climate change in Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion under future climate change is very likely to increase due to projected increases in frequency and magnitude of heavy storms. The objective of this study is to quantify the effects of common cropping and tillage systems on soil erosion and surface runoff during 2010-2039 in central Okl...

  18. Thirty-year tillage effects on crop yield and soil fertility indicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term studies are crucial for quantifying tillage system effects on crop productivity and soil fertility status. We examined 30 years of data for five tillage systems evaluated on two glacial till soils in central Iowa, USA from 1975 through 2006. Moldboard plow, chisel plow, spring disk, ridge-...

  19. Priming of soil organic carbon decomposition induced by corn compared to soybean crops

    E-print Network

    Jackson, Robert B.

    Priming of soil organic carbon decomposition induced by corn compared to soybean crops Sebastián R in field conditions Soil organic carbon decomposition Humification rate Corn Soybean a b s t r a c composition of different residues, (corn and soybean) controls k and h under field conditions in a no

  20. Tillage Management and Previous Crop Effects on Soil Physical Properties, Maize Grain Yield, and Seed Composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize (Zea mays L.) grown in rotation with high residue crops generally has lower grain yield under no-till than under tilled soil management in the northern US maize belt. Hence, the research objectives were to further characterize soil physical properties, maize grain yield, and seed composition u...

  1. SOIL AGGREGATE STABILITY AND ENZYME ACTIVITY IN AGROFORESTRY AND ROW-CROP SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The proportion of water-stable aggregates (WSA) influences soil quality, crop growth, nutrient retention, water infiltration, and surface runoff. Roots, fungi, and bacteria as well as numerous chemical substances secreted by these agents play important roles in soil aggregate formation, persistence...

  2. Microbial community composition as affected by dryland cropping systems and tillage in a semiarid sandy soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated microbial communities of soil (0-10 cm) as affected by dryland cropping systems under different tillage practices after 5 years. The soil is an Olton sandy loam (Fine, mixed, superactive, thermic Aridic Paleustolls) with an average of 16.4% clay, 67.6% sand and 0.65 g kg-1 of O...

  3. COVER CROPS AND CULTIVATION: IMPACTS ON SOIL N DYNAMICS, NITROUS OXIDE EFFLUX, AND MICROBIOLOGICAL FUNCTION IN A MEDITERRANEAN VINEYARD AGROECOSYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Impacts of soil tillage and cover crops on soil nitrogen (N) dynamics and microbiological function were investigated in a vineyard grown in California’s Mediterranean climate. We compared soil N dynamics, N availability and N2O emissions in a vineyard agroecosystem of two cover crops [Trios 102 (Tri...

  4. Effects of cropping-system-related soil moisture and nutrient dynamics on the sustainability of semiarid dryland agriculture

    E-print Network

    Norton, Jay B.

    Effects of cropping-system-related soil moisture and nutrient dynamics on the sustainability that reduce or eliminate fallow have potential for both, but altered soil moisture and nutrient dynamics of semiarid dryland agriculture Project Summary We propose to investigate cropping-system-related soil

  5. Farmers' Perception of Integrated Soil Fertility and Nutrient Management for Sustainable Crop Production: A Study of Rural Areas in Bangladesh

    ERIC Educational Resources Information Center

    Farouque, Md. Golam; Takeya, Hiroyuki

    2007-01-01

    This study aimed to determine farmers' perception of integrated soil fertility and nutrient management for sustainable crop production. Integrated soil fertility (ISF) and nutrient management (NM) is an advanced approach to maintain soil fertility and to enhance crop productivity. A total number of 120 farmers from eight villages in four districts…

  6. Effect of soil acidity factors on yields and foliar composition of tropical root crops

    SciTech Connect

    Abruna-Rodriguez, F.; Vicente-Chandler, J.I. Rivera, E.; Rodriguez, J.

    1982-09-01

    Tropical root crops, a major source of food for subsistence farmers, varied in their sensitivity to soil acidity factors. Tolerance to soil acidity is an important characteristic of crops for the humid tropics where soils are often very acid and lime-scarce and expensive. Experiments on two Ultisols and an Oxisol showed that three tropical root crops differed markedly in sensitivity to soil acicity factors. Yams (Dioscorea alata L.) were very sensitive to soil acidity with yields on a Ultisol decreasing from 70% of maximum when Al saturation of the effective cation exchange capacity of the soil was 10 to 25% of maximum when Al saturation was 40%. On the other hand, cassava (Manihot esculenta Crantz) was very tolerant to high levels of soil acidity, yielding about 85% of maximum with 60% Al saturation. Taniers (Xanthosoma sp.) were intermediate between yams and cassava in their tolerance to soil acidity yielding about 60% of maximum with 50% Al saturation of the soil. Foliar composition of cassava was not affected by soil acidity levels and that of yams and taniers was also unaffected except for Ca content which decreased with decreasing soil pH and increasing Al saturation.Response of these tropical root crops to soil acidity components was far more striking on Ultisols than on the Oxisol. For yams, soils should be limed to about pH 5.5 with essentially no exhangeable Al/sup 3 +/ present whereas high yields of taniers can be obtained at about pH 4.8 with 20% exchangeable Al/sup 3 +/ and of cassava at pH as low as 4.5 with 60% exchangeable Al/sup 3 +/.

  7. Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping.

    PubMed

    Zhao, Mengxin; Xue, Kai; Wang, Feng; Liu, Shanshan; Bai, Shijie; Sun, Bo; Zhou, Jizhong; Yang, Yunfeng

    2014-10-01

    Despite microbes' key roles in driving biogeochemical cycles, the mechanism of microbe-mediated feedbacks to global changes remains elusive. Recently, soil transplant has been successfully established as a proxy to simulate climate changes, as the current trend of global warming coherently causes range shifts toward higher latitudes. Four years after southward soil transplant over large transects in China, we found that microbial functional diversity was increased, in addition to concurrent changes in microbial biomass, soil nutrient content and functional processes involved in the nitrogen cycle. However, soil transplant effects could be overridden by maize cropping, which was attributed to a negative interaction. Strikingly, abundances of nitrogen and carbon cycle genes were increased by these field experiments simulating global change, coinciding with higher soil nitrification potential and carbon dioxide (CO2) efflux. Further investigation revealed strong correlations between carbon cycle genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycle genes and nitrification. These findings suggest that changes of soil carbon and nitrogen cycles by soil transplant and cropping were predictable by measuring microbial functional potentials, contributing to a better mechanistic understanding of these soil functional processes and suggesting a potential to incorporate microbial communities in greenhouse gas emission modeling. PMID:24694714

  8. Soil properties and not inputs control carbon, nitrogen, phosphorus ratios in cropped soils in the long-term

    NASA Astrophysics Data System (ADS)

    Frossard, E.; Buchmann, N.; Bünemann, E. K.; Kiba, D. I.; Lompo, F.; Oberson, A.; Tamburini, F.; Traoré, O. Y. A.

    2015-09-01

    Stoichiometric approaches have been applied to understand the relationship between soil organic matter dynamics and biological nutrient transformations. However, very few studies explicitly considered the effects of agricultural management practices on soil C : N : P ratio. The aim of this study was to assess how different input types and rates would affect the C : N : P molar ratios of bulk soil, organic matter and microbial biomass in cropped soils in the long-term. Thus, we analysed the C, N and P inputs and budgets as well as soil properties in three long-term experiments established on different soil types: the Saria soil fertility trial (Burkina Faso), the Wagga Wagga rotation/stubble management/soil preparation trial (Australia), and the DOK cropping system trial (Switzerland). In each of these trials, there was a large range of C, N and P inputs which had a strong impact on element concentrations in soils. However, although C : N : P ratios of the inputs were highly variable, they had only weak effects on soil C : N : P ratios. At Saria, a positive correlation was found between the N : P ratio of inputs and microbial biomass, while no relation was observed between the nutrient ratios of inputs and soil organic matter. At Wagga Wagga, the C : P ratio of inputs was significantly correlated to total soil C : P, N : P and C : N ratios, but had no impact on the elemental composition of microbial biomass. In the DOK trial, a positive correlation was found between the C budget and the C to organic P ratio in soils, while the nutrient ratios of inputs were not related to those in the microbial biomass. We argue that these responses are due to differences in soil properties among sites. At Saria, the soil is dominated by quartz and some kaolinite, has a coarse texture, a fragile structure and a low nutrient content. Thus, microorganisms feed on inputs (plant residues, manure). In contrast, the soil at Wagga Wagga contains illite and haematite, is richer in clay and nutrients and has a stable structure. Thus, organic matter is protected from mineralization and can therefore accumulate, allowing microorganisms to feed on soil nutrients and to keep a constant C : N : P ratio. The DOK soil represents an intermediate situation, with high nutrient concentrations, but a rather fragile soil structure, where organic matter does not accumulate. We conclude that the study of C, N, and P ratios is important to understand the functioning of cropped soils in the long-term, but that it must be coupled with a precise assessment of element inputs and budgets in the system and a good understanding of the ability of soils to stabilize C, N and P compounds.

  9. Organic farming and cover crops as an alternative to mineral fertilizers to improve soil physical properties

    NASA Astrophysics Data System (ADS)

    Sánchez de Cima, Diego; Luik, Anne; Reintam, Endla

    2015-10-01

    For testing how cover crops and different fertilization managements affect the soil physical properties in a plough based tillage system, a five-year crop rotation experiment (field pea, white potato, common barley undersown with red clover, red clover, and winter wheat) was set. The rotation was managed under four different farming systems: two conventional: with and without mineral fertilizers and two organic, both with winter cover crops (later ploughed and used as green manure) and one where cattle manure was added yearly. The measurements conducted were penetration resistance, soil water content, porosity, water permeability, and organic carbon. Yearly variations were linked to the number of tillage operations, and a cumulative effect of soil organic carbon in the soil as a result of the different fertilization amendments, organic or mineral. All the systems showed similar tendencies along the three years of study and differences were only found between the control and the other systems. Mineral fertilizers enhanced the overall physical soil conditions due to the higher yield in the system. In the organic systems, cover crops and cattle manure did not have a significant effect on soil physical properties in comparison with the conventional ones, which were kept bare during the winter period. The extra organic matter boosted the positive effect of crop rotation, but the higher number of tillage operations in both organic systems counteracted this effect to a greater or lesser extent.

  10. Yields, Growth, and Management Requirements of Selected Crops as Influenced by Soil Properties. 

    E-print Network

    Gerard, C.J.; Hipp, B.W.; Reeves, S.A.

    1977-01-01

    irrigations and special management. Yields, Growth, and Management ~equirements of Selected Crops as Influenced by Soil Properties C. J. Gerard, B. W. Hipp and S. A. Reeves* The effect of soil properties on performance of many crops has been frequently...-textured s is indicated in Table 7. Soil depletion studies by iya, Namken, and Gerard (1) (Figure 4) and root distribu- studies indicate that cotton irrigated during the early of plant growth appears to develop a shallower root than cotton that is not irrigated prior...

  11. CROP ROTATION, SOIL WATER CONTENT AND WHEAT YIELDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reduced and no-till dryland cropping systems in the central Great Plains have led to increased precipitation storage efficiency and more frequent cropping than the traditional wheat (Triticum aestivum L.)-fallow (W-F) system. Many producers express concern regarding the effect that more frequent cro...

  12. NATIONAL CROP LOSS ASSESSMENT NETWORK (NCLAN) 1984 ANNUAL REPORT

    EPA Science Inventory

    Research for 1984 involved performance of a preliminary economic assessment of simulated changes in ambient O3 on U.S. agriculture using recent NCLAN response data for six major crops. Four hypothetical ambient O3 levels are measured and compared with a 1980 base situation. The r...

  13. Effects of soil tillage and management of crop residues on soil properties: abundance, biomass and diversity of earthworms, soil structure and nutrient evolutions

    NASA Astrophysics Data System (ADS)

    lemtiri, Aboulkacem

    2013-04-01

    The living soil is represented by soil biota that interacts with aboveground biota and with the abiotic environment, soil structure, soil reaction, organic matter, nutrient contents, aso. Maintenance of soil organic matter through integrated soil fertility management is an important issue to conciliate soil quality and agricultural productivity. Earthworms are key actors in soil structure formation through the production of casts and the incorporation of soil organic matter in the soil. Research is still needed about the interactive effects of various tillage and crop residue management practices on earthworm populations and physical and chemical properties of soil. To investigate the impacts of two tillage management systems and two cropping systems on earthworm populations, soil structure evolution and nutrient dynamics, we carried out a three years study in an experimental field. The aims of this experimentation, were to assess the effects of the tillage systems (ploughing versus reduced tillage) and the availability of crop residues (export versus no export) on (i) the abundance, biomass and diversity of earthworms, on the soil structure and on the temporal variation of water extractable nutrients and organic carbon. The first results show that tillage management did significantly affect earthworm abundance and biomass. However, crop residue management did not affect abundance, biomass and diversity of earthworms. Regarding soil physical properties, the tillage affected the compaction profiles within the top 30cm. The analysis of nutrient and organic carbon dynamics show divergent trends (decrease of calcium and magnesium, increase of hot water extractable carbon and phosphorus…) but no clear effect of the studied factors could be identified. The question of the initial soil variability raised as a crucial point in the discussion.

  14. Copper and lead levels in crops and soils of the Holland Marsh Area-Ontario

    SciTech Connect

    Czuba, M.; Hutchinson, T.C.

    1980-01-01

    A study was made of the occurrence, distribution, and concentrations of the heavy metals copper (Cu) and lead (Pb) in the soils and crops of the important horticultural area north of Toronto known as the Holland Marsh. The soils are deep organic mucks (> 85% organic matter), derived by the drainage of black marshland soils, which has been carried out over the past 40 years. A comparison is made between the Pb and Cu concentrations in undrained, uncultivated areas of the marsh and in the intensively used horticultural area. Analyses show a marked accumulation of Cu in surface layers of cultivated soils, with a mean surface concentration of 130 ppM, declining to 20 ppM at a 32-cm depth. Undrained (virgin) soils of the same marshes had < 20 ppM at all depths. Lead concentrations also declined through the profile, from concentrations of 22 to 10 ppM. In comparison, undrained areas had elevated Pb levels. Cultivation appeared to have increased Cu, but lowered Pb in the marsh. Copper and lead levels found in the crops were generally higher in the young spring vegetables than in the mature fall ones. Leafy crops, especially lettuce (Lactuca L.) and celery (Apium graveolens), accumulated higher Pb levels in their foliage compared with levels in root crops. Cultivation procedures, including past pesticide applications and fertilizer additions, appeared to be principal sources of Cu. Mobility from the soil and into the plant for these elements in the marsh muck soils is discussed.

  15. Crop response to localized organic amendment in soils with limiting physical properties

    NASA Astrophysics Data System (ADS)

    Lordan, Joan; Pascual, Miquel; Fonseca, Francisco; Villar, Josep Maria; Montilla, Victor; Papió, Josep; Rufat, Josep

    2013-04-01

    This 2-year study evaluated the use of rice husk as a localized organic amendment in a soil with limiting physical properties. The research was conducted in a commercial peach orchard planted in 2011 using a ridge planting system. Six soil and water management treatments were evaluated in 18 experimental units, which were set up in the field using a randomized complete block design. The treatments were compared both in terms of soil physical properties and crop response. Soil amendment with rice husk was the most effective technique. It improved soil conditions (soil infiltration and soil porosity), providing a better soil environment for root activity and thereby resulted in better crop performance. Concerning growth parameters, the amended treatment presented the highest overall values without negatively affecting crop water status. These techniques were suitable for mitigating the effects of soils with limiting physical conditions. Localized applications of amendments, as proposed in this work, imply an important reduction in application rates. It is important to consider an efficient use of by-products since there is a growing interest in industrial and agronomical exploitations.

  16. Aggregating available soil water holding capacity data for crop yield models

    NASA Technical Reports Server (NTRS)

    Seubert, C. E.; Daughtry, C. S. T.; Holt, D. A.; Baumgardner, M. F.

    1984-01-01

    The total amount of water available to plants that is held against gravity in a soil is usually estimated as the amount present at -0.03 MPa average water potential minus the amount present at -1.5 MPa water potential. This value, designated available water-holding capacity (AWHC), is a very important soil characteristic that is strongly and positively correlated to the inherent productivity of soils. In various applications, including assessing soil moisture status over large areas, it is necessary to group soil types or series as to their productivity. Current methods to classify AWHC of soils consider only total capacity of soil profiles and thus may group together soils which differ greatly in AWHC as a function of depth in the profile. A general approach for evaluating quantitatively the multidimensional nature of AWHC in soils is described. Data for 902 soil profiles, representing 184 soil series, in Indiana were obtained from the Soil Characterization Laboratory at Purdue University. The AWHC for each of ten 150-mm layers in each soil was established, based on soil texture and parent material. A multivariate clustering procedure was used to classify each soil profile into one of 4, 8, or 12 classes based upon ten-dimensional AWHC values. The optimum number of classes depends on the range of AWHC in the population of oil profiles analyzed and on the sensitivity of a crop to differences in distribution of water within the soil profile.

  17. Mapping crop evapotranspiration by integrating vegetation indices into a soil water balance model

    NASA Astrophysics Data System (ADS)

    Consoli, Simona; Vanella, Daniela

    2015-04-01

    The approach combines the basal crop coefficient (Kcb) derived from vegetation indices (VIs) with the daily soil water balance, as proposed in the FAO-56 paper, to estimate daily crop evapotranspiration (ETc) rates of orange trees. The reliability of the approach to detect water stress was also assessed. VIs were simultaneously retrieved from WorldView-2 imagery and hyper-spectral data collected in the field for comparison. ETc estimated were analysed at the light of independent measurements of the same fluxes by an eddy covariance (EC) system located in the study area. The soil water depletion in the root zone of the crop simulated by the model was also validated by using an in situ soil water monitoring. Average overestimate of daily ETc of 6% was obtained from the proposed approach with respect to EC measurements, evidencing a quite satisfactory agreement between data. The model also detected several periods of light stress for the crop under study, corresponding to an increase of the root zone water deficit matching quite well the in situ soil water monitoring. The overall outcomes of this study showed that the FAO-56 approach with remote sensing-derived basal crop coefficient can have the potential to be applied for estimating crop water requirements and enhancing water management strategies in agricultural contexts.

  18. Effect of plastic mulching on mycotoxin occurrence and mycobiome abundance in soil samples from asparagus crops.

    PubMed

    Muñoz, K; Schmidt-Heydt, M; Stoll, D; Diehl, D; Ziegler, J; Geisen, R; Schaumann, G E

    2015-11-01

    Plastic mulching (PM) is widely used in modern agriculture because of its advantageous effects on soil temperature and water conservation, factors which strongly influence the microbiology of the soil. The aim of this study was to assess the effect of PM on mycotoxin occurrence in relation with mycobiome abundance/diversity and soil physicochemical properties. Soil samples were collected from green (GA) and white asparagus (WA) crops, the last under PM. Both crops were cultivated in a ridge-furrow-ridge system without irrigation. Samples were analyzed for mycotoxin occurrence via liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Total colony-forming unit was indicative of mycobiome abundance, and analysis of mycobiome diversity was performed by internal transcribed spacer (ITS) sequencing. PM avoided the drop of soil temperature in winter and allowed higher soil temperature in early spring compared to non-covered soil. Moreover, the use of PM provided controlled conditions for water content in soil. This was enough to generate a dissimilar mycotoxin occurrence and mycobiome diversity/abundance in covered and non-covered soil. Mycotoxin soil contamination was confirmed for deoxynivalenol (DON), range LOD to 32.1 ng/g (LOD?=?1.1 ng/g). The DON values were higher under PM (average 16.9?±?10.1 ng/g) than in non-covered soil (9.1?±?7.9 ng/g); however, this difference was not statically significant (p?=?0.09). Mycobiome analysis showed a fungal compartment up to fivefold higher in soil under PM compared to GA. The diversity of the mycobiome varied between crops and also along the soil column, with an important dominance of Fusarium species at the root zone in covered soils. PMID:26412448

  19. Effect of Tillage Practices on Soil Properties and Crop Productivity in Wheat-Mungbean-Rice Cropping System under Subtropical Climatic Conditions

    PubMed Central

    Islam, Md. Monirul; Hasanuzzaman, Mirza

    2014-01-01

    This study was conducted to know cropping cycles required to improve OM status in soil and to investigate the effects of medium-term tillage practices on soil properties and crop yields in Grey Terrace soil of Bangladesh under wheat-mungbean-T. aman cropping system. Four different tillage practices, namely, zero tillage (ZT), minimum tillage (MT), conventional tillage (CT), and deep tillage (DT), were studied in a randomized complete block (RCB) design with four replications. Tillage practices showed positive effects on soil properties and crop yields. After four cropping cycles, the highest OM accumulation, the maximum root mass density (0–15?cm soil depth), and the improved physical and chemical properties were recorded in the conservational tillage practices. Bulk and particle densities were decreased due to tillage practices, having the highest reduction of these properties and the highest increase of porosity and field capacity in zero tillage. The highest total N, P, K, and S in their available forms were recorded in zero tillage. All tillage practices showed similar yield after four years of cropping cycles. Therefore, we conclude that zero tillage with 20% residue retention was found to be suitable for soil health and achieving optimum yield under the cropping system in Grey Terrace soil (Aeric Albaquept). PMID:25197702

  20. Landscape context and habitat type as drivers of bee diversity in European annual crops

    E-print Network

    Petanidou, Theodora

    practice used extensively by farmers worldwide. The contribution of wild bees to the pollination of a large; Zhang et al., 2007). Insect pollination is also a management tool in that colonies of managed bees (e 2009 Keywords: Bee biodiversity Annual crops Landscape ecology Apiformes Pollinators Europe A B S T R

  1. Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are a beneficial tool for use in conservation tillage systems. Cover crop residues reduce soil erosion from water and wind, increase soil water availability for subsequent crops, enhance soil organic matter and biological activity, and can decrease labor and energy inputs. Cover crop...

  2. The effect of native and introduced biofuel crops on the composition of soil biota communities

    NASA Astrophysics Data System (ADS)

    Hed?nec, Petr; Ustak, Sergej; Novotný, David; Frouz, Jan

    2015-04-01

    Biofuel crops are an accepted alternative to fossil fuels, but little is known about the ecological impact of their production. The aim of this contribution is to study the effect of native (Salix viminalis and Phalaris arundinacea) and introduced (Helianthus tuberosus, Reynoutria sachalinensis and Silphium perfoliatum) biofuel crop plantations on the soil biota in comparison with cultural meadow vegetation used as control. The study was performed as part of a split plot field experiment of the Crop Research Institute in the city of Chomutov (Czech Republic). The composition of the soil meso- and macrofauna community, composition of the cultivable fraction of the soil fungal community, cellulose decomposition (using litter bags), microbial biomass, basal soil respiration and PLFA composition (incl. F/B ratio) were studied in each site. The C:N ratio and content of polyphenols differed among plant species, but these results could not be considered significant between introduced and native plant species. Abundance of the soil meso- and macrofauna was higher in field sites planted with S. viminalis and P. arundinacea than those planted with S. perfoliatum, H. tuberosus and R. sachalinensis. RDA and Monte Carlo Permutation Test showed that the composition of the faunal community differed significantly between various native and introduced plants. Significantly different basal soil respiration was found in sites planted with various energy crops; however, this difference was not significant between native and introduced species. Microbial biomass carbon and cellulose decomposition did not exhibit any statistical differences among the biofuel crops. The largest statistically significant difference we found was in the content of actinobacterial and bacterial (bacteria, G+ bacteria and G- bacteria) PLFA in sites overgrown by P. arundinacea compared to introduced as well as native biofuel crops. In conclusion, certain parameters significantly differ between various native and introduced species of biofuel crops; however, the functional importance of these differences requires further research.

  3. [Crop-soil nitrogen cycling and soil organic carbon balance in black soil zone of Jilin Province based on DSSAT model].

    PubMed

    Yang, Jing-min; Dou, Sen; Yang, Jing-yi; Hoogenboom, Gerrit; Jiang, Xu; Zhang, Zhong-qing; Jiang, Hong-wei; Jia, Li-hui

    2011-08-01

    By using the CERES-Maize crop model and Century soil model in Decision Support System of Agrotechnology Transfer (DSSAT) model, this paper studied the effects of crop management parameters, fertilizer N application rate, soil initial N supply, and crop residue application on the maize growth, crop-soil N cycling, and soil organic C and N ecological balance in black soil (Mollisol) zone of Jilin Province, Northeast China. Taking 12,000-15,000 kg x hm(-2) as the target yield of maize, the optimum N application rate was 200-240 kg N x hm(-2). Under this fertilization, the aboveground part N uptake was 250-290 kg N x hm(-2), among which, 120-140 kg N x hm(-2) came from soil, and 130-150 kg N x hm(-2) came from fertilizer. Increasing the N application rate (250-420 kg N x hm(-2)) induced an obvious increase of soil residual N (63-183 kg x hm(-2)); delaying the N topdressing date also induced the increase of the residual N. When the crop residue application exceeded 6000 kg x hm(-2), the soil active organic C and N could maintain the supply/demand balance during maize growth season. To achieve the target maize yield and maintain the ecological balance of soil organic C and N in black soil zone of Jilin Province, the chemical N application rate would be controlled in the range of 200-240 kg N x hm(-2), topdressing N should be at proper date, and the application amount of crop residue would be up to 6000 kg x hm(-2). PMID:22097370

  4. Calibration approaches of cosmic-ray neutron sensing for soil moisture measurement in cropped fields

    NASA Astrophysics Data System (ADS)

    Rivera Villarreyes, C. A.; Baroni, G.; Oswald, S. E.

    2013-04-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose-zone hydrology and catchment hydrology. This study evaluates the applicability of the cosmic-ray neutron sensing for soil moisture in cropped fields. Measurements of cosmic-ray neutrons (fast neutrons) were performed at a lowland farmland in Bornim (Brandenburg, Germany) cropped with sunflower and winter rye. Three field calibration approaches and four different ways of integration the soil moisture profile to an integral value for cosmic-ray neutron sensing were evaluated in this study. The cosmic-ray sensing (CRS) probe was calibrated against a network of classical point-scale soil moisture measurements. A large CRS parameter variability was observed by choosing calibration periods within the different growing stages of sunflower and winter rye. Therefore, it was not possible to identify a single set of parameters perfectly estimating soil moisture for both sunflower and winter rye periods. On the other hand, CRS signal and its parameter variability could be understood by some crop characteristics and by predicting the attenuated neutrons by crop presence. This study proves the potentiality of the cosmic-ray neutron sensing at the field scale; however, its calibration needs to be adapted for seasonal vegetation in cropped fields.

  5. Soil moisture mapping in an alley cropping system in Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Hallema, D. W.; Rousseau, A. N.; Gumiere, S. J.

    2012-12-01

    Alley cropping is an agroforestry practice whereby trees are planted in rows, thus creating alleyways within which companion crops are grown. The alley cropping systems as we call them may not only influence the local thermal energy balance by changes in airflow and solar irradiance, but also affect water uptake in plant roots and evapotranspiration. However, our understanding of the soil water balance and regulating mechanisms in alley cropping systems is very limited compared to what we know about the more common monoculture farming. Root systems of the trees are known to interact with soil water dynamics, in that they tend to grow in the direction of soil layers with a water content corresponding to a pF between 2-2.4, and conversely, water flows in the direction of decreasing hydraulic head, which, close to the root system, is in the direction of the roots when the trees absorb water by applying a suction gradient. As such, the trees in alley cropping systems either improve the resilience to drought by retaining more water in the upper soil layers, or they compete with the crops for water. With the eye on the future environmental conditions that may result from a shift in the local climate in southern Quebec, Canada, our objective is to characterize and evaluate the influence of alley cropping systems on soil water dynamics under various climate conditions. In order to evaluate the interaction between root system and soil water dynamics, we adopt an approach divided into three steps: (i) a field campaign where we monitor soil water patterns on an alley cropping site during the growing season; (ii) simulation of these soil water patterns with the HYDRUS model for two-dimensional movement of water; and (iii) the evolution of these patterns for a given scenario of climate change. Our submission focuses on the field campaign in which we used forty-five frequency domain reflectometers (FDR) along a 25-m transect perpendicular to the tree rows in order to monitor moisture patterns within the first 100 cm of the soil. Analysis showed that the presence of trees has a pronounced influence on the water distribution within the soil. (This submission is part of Climate Change Action Plan 26 funded by Ouranos-ICAR.)

  6. CROP MANAGEMENT EFFECTS ON WATER INFILTRATION FOR CLAYPAN SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant water and nutrient use for claypan soils are restricted by an argillic horizon (clay content > 500 g/kg) that typically occurs 20 to 40 cm below the soil surface. Identifying water infiltration characteristics for claypan soils under different management provides crucial information needed to ...

  7. Soil health benefits using cover crops across the Southeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils in the southeastern U.S. are very low in organic matter, which can be attributed to high temperatures, humidity, and rainfall that oxidizes organic residues very quickly. Conventional tillage exacerbates this condition and generally contributes to poor soil health. As a result, soils in the r...

  8. Effect of long-term phosphorus fertilization on soil Se and transfer of soil Se to crops in northern Japan.

    PubMed

    Altansuvd, Javkhlantuya; Nakamaru, Yasuo M; Kasajima, Shinya; Ito, Hirotake; Yoshida, Hozumi

    2014-07-01

    Phosphorus (P) fertilizer can potentially serve as a source for Se accumulation in croplands. Furthermore, it has been reported that the addition of P fertilizer to soil may enhance Se availability. Japanese agricultural soils are typically enriched in P as a result of long-term, excessive P fertilization. Therefore, we conducted a three-year field experiment in order to evaluate the effect of P fertilization on the Se content of soils and crops. Potato, wheat and barley were cultivated with and without P fertilization at two field sites in Hokkaido (northern Japan) with different levels of historical P accumulation. The first field site consisted of an Andosol soil with low available P and the second site, a Cambisol soil with high available P. The three years of continuous P fertilization over the course of the experiment did not result in a significant increase in the Se content of soils or plants. The Se content of soils and plants, however, was higher in soil samples from the Cambisol field site than from the Andosol field site, and total soil Se was significantly correlated with available soil P. Soluble soil Se and the soil-plant transfer factor for Se were not affected by P fertilization. Thus, we concluded that the higher plant Se content at the Cambisol field site was primarily due to the higher levels of accumulated Se in the soil at the site and that historical excess P fertilization typical of agricultural soils in Japan contributes to increased Se uptake by crops. PMID:24875865

  9. CROP RESIDUE PRODUCTION AFTER CONVERSION FROM PERENNIAL VEGETATION TO ANNUAL CROPPING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Conservation Reserve Program (CRP) was established by the Food Security Act of 1985 to assist producers with highly erodible land (HEL). After ten years in permanent vegetation, these lands could be put into crop production. One of the concerns was whether CRP lands could be managed to conserv...

  10. The Importance of Soil Protein Fate to PIP Crop Registration

    EPA Science Inventory

    Plant Incorporated Protectant (PIP) crops are registered under the authority of the Federal Insecticide Fungicide and Rodenticide Act (FIFRA) and as part of this registration certain environmental fate information is required to properly judge the environmental compatibility of n...

  11. Intercropping Enhances Productivity and Maintains the Most Soil Fertility Properties Relative to Sole Cropping

    PubMed Central

    Wang, Zhi-Gang; Jin, Xin; Bao, Xing-Guo; Li, Xiao-Fei; Zhao, Jian-Hua; Sun, Jian-Hao; Christie, Peter; Li, Long

    2014-01-01

    Yield and nutrient acquisition advantages are frequently found in intercropping systems. However, there are few published reports on soil fertility in intercropping relative to monocultures. A field experiment was therefore established in 2009 in Gansu province, northwest China. The treatments comprised maize/faba bean, maize/soybean, maize/chickpea and maize/turnip intercropping, and their correspoding monocropping. In 2011 (the 3rd year) and 2012 (the 4th year) the yields and some soil chemical properties and enzyme activities were examined after all crop species were harvested or at later growth stages. Both grain yields and nutrient acquisition were significantly greater in all four intercropping systems than corresponding monocropping over two years. Generally, soil organic matter (OM) did not differ significantly from monocropping but did increase in maize/chickpea in 2012 and maize/turnip in both years. Soil total N (TN) did not differ between intercropping and monocropping in either year with the sole exception of maize/faba bean intercropping receiving 80 kg P ha?1 in 2011. Intercropping significantly reduced soil Olsen-P only in 2012, soil exchangeable K in both years, soil cation exchangeable capacity (CEC) in 2012, and soil pH in 2012. In the majority of cases soil enzyme activities did not differ across all the cropping systems at different P application rates compared to monocrops, with the exception of soil acid phosphatase activity which was higher in maize/legume intercropping than in the corresponding monocrops at 40 kg ha?1 P in 2011. P fertilization can alleviate the decline in soil Olsen-P and in soil CEC to some extent. In summary, intercropping enhanced productivity and maintained the majority of soil fertility properties for at least three to four years, especially at suitable P application rates. The results indicate that maize-based intercropping may be an efficient cropping system for sustainable agriculture with carefully managed fertilizer inputs. PMID:25486249

  12. Assessment of soil biological quality index (QBS-ar) in different crop rotation systems in paddy soils

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; haefele, Stephan

    2013-04-01

    New methods, based on soil microarthropods for soil quality evaluation have been proposed by some Authors. Soil microarthropods demonstrated to respond sensitively to land management practices and to be correlated with beneficial soil functions. QBS Index (QBS-ar) is calculated on the basis of microarthropod groups present in a soil sample. Each biological form found in the sample receives a score from 1 to 20 (eco-morphological index, EMI), according to its adaptation to soil environment. The objective of this study was to evaluate the effect of various rotation systems and sampling periods on soil biological quality index, in paddy soils. For the purpose of this study surface soil samples (0-15 cm depth) were collected from different rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) with three replications, and four sampling times in April (after field preparation), June (after seedling), August (after tillering stage) and October (after rice harvesting). The study area is located in paddy soils of Verona area, Northern Italy. Soil microarthropods from a total of 48 samples were extracted and classified according to the Biological Quality of Soil Index (QBS-ar) method. In addition soil moisture, Cumulative Soil Respiration and pH were measured in each site. More diversity of microarthropod groups was found in June and August sampling times. T-test results between different rotations did not show significant differences while the mean difference between rotation and different sampling times is statistically different. The highest QBS-ar value was found in the fallow-rice rotation in the forth soil sampling time. Similar value was found in soya-rice-rice rotation. Result of linear regression analysis indicated that there is significant correlation between QBS-ar values and Cumulative Soil Respiration. Keywords: soil biological quality index (QBS-ar), Crop Rotation System, paddy soils, Italy

  13. Strip-tilled cover cropping for managing nematodes, soil mesoarthropods, and weeds in a bitter melon agroecosystem.

    PubMed

    Marahatta, Sharadchandra P; Wang, Koon-Hui; Sipes, Brent S; Hooks, Cerruti R R

    2010-06-01

    A field trial was conducted to examine whether strip-tilled cover cropping followed by living mulch practice could suppress root-knot nematode (Meloidogyne incognita) and enhance beneficial nematodes and other soil mesofauna, while suppressing weeds throughout two vegetable cropping seasons. Sunn hemp (SH), Crotalaria juncea, and French marigold (MG), Tagetes patula, were grown for three months, strip-tilled, and bitter melon (Momordica charantia) seedlings were transplanted into the tilled strips; the experiment was conducted twice (Season I and II). Strip-tilled cover cropping with SH prolonged M. incognita suppression in Season I but not in Season II where suppression was counteracted with enhanced crop growth. Sunn hemp also consistently enhanced bacterivorous and fungivorous nematode population densities prior to cash crop planting, prolonged enhancement of the Enrichment Index towards the end of both cash crop cycles, and increased numbers of soil mesoarthropods. Strip-tilled cover cropping of SH followed by clipping of the living mulch as surface mulch also reduced broadleaf weed populations up to 3 to 4 weeks after cash crop planting. However, SH failed to reduce soil disturbance as indicated by the Structure Index. Marigold suppressed M. incognita efficiently when planted immediately following a M. incognita-susceptible crop, but did not enhance beneficial soil mesofauna including free-living nematodes and soil mesoarthropods. Strip-tilled cover cropping of MG reduced broadleaf weed populations prior to cash crop planting in Season II, but this weed suppression did not last beyond the initial cash crop cycle. PMID:22736847

  14. Strip-tilled Cover Cropping for Managing Nematodes, Soil Mesoarthropods, and Weeds in a Bitter Melon Agroecosystem

    PubMed Central

    Wang, Koon-Hui; Sipes, Brent S.; Hooks, Cerruti R.R.

    2010-01-01

    A field trial was conducted to examine whether strip-tilled cover cropping followed by living mulch practice could suppress root-knot nematode (Meloidogyne incognita) and enhance beneficial nematodes and other soil mesofauna, while suppressing weeds throughout two vegetable cropping seasons. Sunn hemp (SH), Crotalaria juncea, and French marigold (MG), Tagetes patula, were grown for three months, strip-tilled, and bitter melon (Momordica charantia) seedlings were transplanted into the tilled strips; the experiment was conducted twice (Season I and II). Strip-tilled cover cropping with SH prolonged M. incognita suppression in Season I but not in Season II where suppression was counteracted with enhanced crop growth. Sunn hemp also consistently enhanced bacterivorous and fungivorous nematode population densities prior to cash crop planting, prolonged enhancement of the Enrichment Index towards the end of both cash crop cycles, and increased numbers of soil mesoarthropods. Strip-tilled cover cropping of SH followed by clipping of the living mulch as surface mulch also reduced broadleaf weed populations up to 3 to 4 weeks after cash crop planting. However, SH failed to reduce soil disturbance as indicated by the Structure Index. Marigold suppressed M. incognita efficiently when planted immediately following a M. incognita-susceptible crop, but did not enhance beneficial soil mesofauna including free-living nematodes and soil mesoarthropods. Strip-tilled cover cropping of MG reduced broadleaf weed populations prior to cash crop planting in Season II, but this weed suppression did not last beyond the initial cash crop cycle. PMID:22736847

  15. Effect of cropping systems on adsorption of metals by soils: I. Single-metal adsorption

    SciTech Connect

    Basta, N.T.; Tabatabai, M.A. )

    1992-02-01

    The effect of long-term cropping systems on adsorption of metals was studied for soils obtained from two sites, Clarion-Webster Research Center (CWRC site) at Kanawha and Galva-Primghar Research Center (GPRC site) at Sutherland, under long-term rotation experiments in Iowa. Each experiment consisted of three cropping systems: continuous corn (CCCC), corn-soybean-corn-soybean (CSCS), and corn-oats-meadow-meadow (COMM), and treated with (+N) and without (0 N) ammoniacal fertilizer. In general, CSCS and COMM cropping systems did not significantly affect the metal adsorption maxima of soils obtained from both sites. Cadmium, Cu, and Pb adsorption were significantly correlated with pH and percentage base saturation for soils from both sites.

  16. Soil coverage evolution and wind erosion risk on summer crops under contrasting tillage systems

    NASA Astrophysics Data System (ADS)

    Mendez, Mariano J.; Buschiazzo, Daniel E.

    2015-03-01

    The effectiveness of wind erosion control by soil surface conditions and crop and weed canopy has been well studied in wind tunnel experiments. The aim of this study is to assess the combined effects of these variables under field conditions. Soil surface conditions, crop and weed coverage, plant residue, and non-erodible aggregates (NEA) were measured in the field between the fallow start and the growth period of sunflower (Helianthus annuus) and corn (Zea mays). Both crops were planted on a sandy-loam Entic Haplustoll with conventional-(CT), vertical-(VT) and no-till (NT) tillage systems. Wind erosion was estimated by means of the spreadsheet version the Revised Wind Erosion Equation and the soil coverage was measured each 15 days. Results indicated that wind erosion was mostly negligible in NT, exceeding the tolerable levels (estimated between 300 and 1400 kg ha-1 year-1 by Verheijen et al. (2009)) only in an year with high climatic erosivity. Wind erosion exceeded the tolerable levels in most cases in CT and VT, reaching values of 17,400 kg ha-1. Wind erosion was 2-10 times higher after planting of both crops than during fallows. During the fallows, the soil was mostly well covered with plant residues and NEA in CT and VT and with residues and weeds in NT. High wind erosion amounts occurring 30 days after planting in all tillage systems were produced by the destruction of coarse aggregates and the burying of plant residues during planting operations and rains. Differences in soil protection after planting were given by residues of previous crops and growing weeds. The growth of weeds 2-4 weeks after crop planting contributed to reduce wind erosion without impacting in crops yields. An accurate weeds management in semiarid lands can contribute significantly to control wind erosion. More field studies are needed in order to develop management strategies to reduce wind erosion.

  17. Management of Lignite Fly Ash for Improving Soil Fertility and Crop Productivity

    NASA Astrophysics Data System (ADS)

    Ram, Lal C.; Srivastava, Nishant K.; Jha, Sangeet K.; Sinha, Awadhesh K.; Masto, Reginald E.; Selvi, Vetrivel A.

    2007-09-01

    Lignite fly ash (LFA), being alkaline and endowed with excellent pozzolanic properties, a silt loam texture, and plant nutrients, has the potential to improve soil quality and productivity. Long-term field trials with groundnut, maize, and sun hemp were carried out to study the effect of LFA on growth and yield. Before crop I was sown, LFA was applied at various doses with and without press mud (an organic waste from the sugar industry, used as an amendment and source of nutrients). LFA with and without press mud was also applied before crops III and V were cultivated. Chemical fertilizer, along with gypsum, humic acid, and biofertilizer, was applied in all treatments, including the control. With one-time and repeat applications of LFA (with and without press mud), yield increased significantly (7.0-89.0%) in relation to the control crop. The press mud enhanced the yield (3.0-15.0%) with different LFA applications. The highest yield LFA dose was 200 t/ha for one-time and repeat applications, the maximum yield being with crop III (combination treatment). One-time and repeat application of LFA (alone and in combination with press mud) improved soil quality and the nutrient content of the produce. The highest dose of LFA (200 t/ha) with and without press mud showed the best residual effects (eco-friendly increases in the yield of succeeding crops). Some increase in trace- and heavy-metal contents and in the level of ?-emitters in soil and crop produce, but well within permissible limits, was observed. Thus, LFA can be used on a large scale to boost soil fertility and productivity with no adverse effects on the soil or crops, which may solve the problem of bulk disposal of fly ash in an eco-friendly manner.

  18. Management of lignite fly ash for improving soil fertility and crop productivity.

    PubMed

    Ram, Lal C; Srivastava, Nishant K; Jha, Sangeet K; Sinha, Awadhesh K; Masto, Reginald E; Selvi, Vetrivel A

    2007-09-01

    Lignite fly ash (LFA), being alkaline and endowed with excellent pozzolanic properties, a silt loam texture, and plant nutrients, has the potential to improve soil quality and productivity. Long-term field trials with groundnut, maize, and sun hemp were carried out to study the effect of LFA on growth and yield. Before crop I was sown, LFA was applied at various doses with and without press mud (an organic waste from the sugar industry, used as an amendment and source of nutrients). LFA with and without press mud was also applied before crops III and V were cultivated. Chemical fertilizer, along with gypsum, humic acid, and biofertilizer, was applied in all treatments, including the control. With one-time and repeat applications of LFA (with and without press mud), yield increased significantly (7.0-89.0%) in relation to the control crop. The press mud enhanced the yield (3.0-15.0%) with different LFA applications. The highest yield LFA dose was 200 t/ha for one-time and repeat applications, the maximum yield being with crop III (combination treatment). One-time and repeat application of LFA (alone and in combination with press mud) improved soil quality and the nutrient content of the produce. The highest dose of LFA (200 t/ha) with and without press mud showed the best residual effects (eco-friendly increases in the yield of succeeding crops). Some increase in trace- and heavy-metal contents and in the level of gamma-emitters in soil and crop produce, but well within permissible limits, was observed. Thus, LFA can be used on a large scale to boost soil fertility and productivity with no adverse effects on the soil or crops, which may solve the problem of bulk disposal of fly ash in an eco-friendly manner. PMID:17705037

  19. Distribution of natural and artificial radioactivity in soils, water and tuber crops.

    PubMed

    Darko, Godfred; Faanu, Augustine; Akoto, Osei; Acheampong, Akwasi; Goode, Eric Jude; Gyamfi, Opoku

    2015-06-01

    Activity concentrations of radionuclides in water, soil and tuber crops of a major food-producing area in Ghana were investigated. The average gross alpha and beta activities were 0.021 and 0.094 Bq/L, respectively, and are below the guidelines for drinking water and therefore not expected to pose any significant health risk. The average annual effective dose due to ingestion of radionuclide in water ranged from 20.08 to 53.45 ?Sv/year. The average activity concentration of (238)U, (232)Th, (40)K and (137)Cs in the soil from different farmlands in the study area was 23.19, 31.10, 143.78 and 2.88 Bq/kg, respectively, which is lower than world averages. The determined absorbed dose rate for the farmlands ranged from 23.63 to 50.51 nGy/year, which is within worldwide range of 18 to 93 nGy/year. The activity concentration of (238)U, (232)Th, (40)K and (137)Cs in cassava ranges from 0.38 to 6.73, 1.82 to 10.32, 17.65 to 41.01 and 0.38 to 1.02 Bq/kg, respectively. Additionally, the activity concentration of (238)U, (232)Th, (40)K and (137)Cs in yam also ranges from 0.47 to 4.89, 0.93 to 5.03, 14.19 to 35.07 and 0.34 to 0.89 Bq/kg, respectively. The average concentration ratio for (238)U, (232)Th and (40)K in yam was 0.12, 0.11 and 0.17, respectively, and in cassava was 0.11, 0.12 and 0.2, respectively. None of the radioactivity is expected to cause significant health problems to human beings. PMID:25958087

  20. Effects of Tillage, Rotation and Cover Crop on the Physical Properties of a Silt-Loam Soil

    NASA Astrophysics Data System (ADS)

    Haruna, Samuel Idoko; Nkongolo, Nsalambi Vakanda

    2015-04-01

    Soil and crop management practices can affect the physical properties and have a direct impact on soil sustainability and crop performance. The objective of this study was to investigate how soil physical properties were affected by three years of tillage, cover crop and crop rotation treatments in a corn and soybean field. The study was conducted on a Waldron siltyloam soil at Lincoln University of Missouri. Soil physical properties studied were soil bulk density, volumetric and gravimetric water contents, volumetric air content, total pore space, air-filled and water-filled pore space, gas diffusion coefficient and pore tortuosity factor. Results showed significant interactions (p<0.05) between cover crop and crop rotation for bulk density, gravimetric and total pore space in 2013. In addition, cover crop also significantly interacted (p<0.05) with tillage for bulk density and total pore space. All soil physical properties studied were significantly affected by the depth of sampling (p<0.0001), except for bulk density, the pore tortuosity factor and total pore space in 2012, and gravimetric and volumetric in 2013. Overall, soil physical properties were significantly affected by the treatments, with the effects changing from one year to another. Addition of a cover crop improved soil physical properties better in rotation than in monoculture.

  1. Soil and Crop management: Lessons from the laboratory biosphere 2002-2004

    NASA Astrophysics Data System (ADS)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation with "Hoyt" Soy Beans, USU Apogee Wheat and TU-82-155 sweet potato using a 5.37 m2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching and returning crop residues to the soil after each experiment. Between experiment #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. Soil analyses for all three experiments are presented to show how the soils have changed with time and how the changes relate to crop selection and rotation, soil selection and management, water management and pest control. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth facility.

  2. Soil Modification by Native Shrubs Boosts Crop Productivity in Sudano-Sahelian Agroforestry System

    NASA Astrophysics Data System (ADS)

    Bogie, N. A.; Bayala, R.; Diedhiou, I.; Ghezzehei, T. A.; Dick, R.

    2014-12-01

    A changing climate along with human and animal population pressure can have a devastating effect on crop yields and food security in the Sudano-Sahel. Agricultural solutions to address soil degradation and crop water stress are needed to combat this increasingly difficult situation. Significant differences in crop success have been observed in peanut and millet grown in association with two native evergreen shrubs Piliostigma reticulatum, and Guiera senegalensis at the sites of Nioro du Rip and Keur Matar, respectively.We investigate how farmers can increase crop productivity by capitalizing on the evolutionary adaptation of native shrubs to the harsh Sudano-Sahelian environment as well as the physical mechanisms at work in the system that can lead to more robust yields. Soil moisture and water potential data were collected during a dry season millet irrigation experiment where stress was imposed in the intercropped system. Despite lower soil moisture content, crops grown in association with shrubs have increased biomass production and a faster development cycle. Hydraulic redistribution is thought to exist in this system and we found diurnal fluctuations in water potential within the intercropped system that increased in magnitude of to 0.4 Mpa per day as the soil dried below 1.0 Mpa during the stress treatment. An isotopic tracer study investigating hydraulic redistribution was carried out by injecting labeled water into shrub roots and sampling shrubs and nearby crops for isotopic analysis of plant water. These findings build on work that was completed in 2004 at the site, but point to lower overall magnitude of diurnal soil water potential fluctuations in dry soils. Using even the limited resources that farmers possess, this agroforestry technique can be expanded over wide swaths of the Sahel.

  3. Crop systems and plant roots can modify the soil water holding capacity

    NASA Astrophysics Data System (ADS)

    Doussan, Claude; Cousin, Isabelle; Berard, Annette; Chabbi, Abad; Legendre, Laurent; Czarnes, Sonia; Toussaint, Bruce; Ruy, Stéphane

    2015-04-01

    At the interface between atmosphere and deep sub-soil, the root zone plays a major role in regulating the flow of water between major compartments: groundwater / surface / atmosphere (drainage, runoff, evapotranspiration). This role of soil as regulator/control of water fluxes, but also as a supporting medium to plant growth, is strongly dependent on the hydric properties of the soil. In turn, the plant roots growing in the soil can change its structure; both in the plow layer and in the deeper horizons and, therefore, could change the soil properties, particularly hydric properties. Such root-related alteration of soil properties can be linked to direct effect of roots such as soil perforation during growth, aggregation of soil particles or indirect effects such as the release of exudates by roots that could modify the properties of water or of soil particles. On an another hand, the rhizosphere, the zone around roots influenced by the activity of root and associated microorganisms, could have a high influence on hydric properties, particularly the water retention. To test if crops and plant roots rhizosphere may have a significant effect on water retention, we conducted various experiment from laboratory to field scales. In the lab, we tested different soil and species for rhizospheric effect on soil water retention. Variation in available water content (AWC) between bulk and rhizospheric soil varied from non-significant to a significant increase (to about 16% increase) depending on plant species and soil type. In the field, the alteration of water retention by root systems was tested in different pedological settings for a Maize crop inoculated or not with the bacteria Azospirillum spp., known to alter root structure, growth and morphology. Again, a range of variation in AWC was evidenced, with significant increase (~30%) in some soil types, but more linked to innoculated/non-innoculated plants rather than to a difference between rhizospheric and bulk soil. Finally, in field condition, on a larger time scale, we investigated the effect of crop alternations on the Lusignan ACBB SOERE site. That site presents on the same soil type different crop alternation treatments: an old, continuous grassland, a 8-year continuous cereal rotation and an alternation of cereal/grassland (3-years cereals and 3 to 6 years grassland). Measurements of AWC in these different crop systems setting, 8 years after implementation of the SOERE, show that AWC was different in the cereal/grassland alternation compared to the continuous cereal or grassland cropping systems (~15-20% increase). If such alteration of AWC may seem modest, modeling (in the case of ACBB SOERE) shows that this increase in AWC would increase the cereal yield but also decrease the water drainage out of the root zone, and the possible associated loss of nitrate and pesticides. As a conclusion, in line with some other literature data, roots can influence soil hydric properties and this opens a way to use plants as "soil engineers" to modulate the properties of the root zone, and thus the components of water balance, to mitigate effects of drought on crops… However, how and how much plants will modify the hydric properties, a question which mixes physics, biology, microbiology, crop system settings, is still in infancy and needs further research.

  4. Effects of Estimating Soil Hydraulic Properties and Root Growth Factor on Soil Water Balance and Crop Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing water use efficiency (WUE) is one of the oldest goals in agricultural sciences, yet it is still not fully understood and achieved due to the complexity of soil-weather-management interactions. System models that quantify these interactions are increasingly used for optimizing crop WUE, es...

  5. Influence of crop rotation, intermediate crops, and organic fertilizers on the soil enzymatic activity and humus content in organic farming systems

    NASA Astrophysics Data System (ADS)

    Marcinkeviciene, A.; Boguzas, V.; Balnyte, S.; Pupaliene, R.; Velicka, R.

    2013-02-01

    The influence of crop rotation systems with different portions of nitrogen-fixing crops, intermediate crops, and organic fertilizers on the enzymatic activity and humus content of soils in organic farming was studied. The highest activity of the urease and invertase enzymes was determined in the soil under the crop rotation with 43% nitrogen-fixing crops and with perennial grasses applied twice per rotation. The application of manure and the growing of intermediate crops for green fertilizers did not provide any significant increase in the content of humus. The activity of urease slightly correlated with the humus content ( r = 0.30 at the significance level of 0.05 and r = 0.39 at the significance level of 0.01).

  6. Modelling soil borne fungal pathogens of arable crops under climate change.

    PubMed

    Manici, L M; Bregaglio, S; Fumagalli, D; Donatelli, M

    2014-12-01

    Soil-borne fungal plant pathogens, agents of crown and root rot, are seldom considered in studies on climate change and agriculture due both to the complexity of the soil system and to the incomplete knowledge of their response to environmental drivers. A controlled chamber set of experiments was carried out to quantify the response of six soil-borne fungi to temperature, and a species-generic model to simulate their response was developed. The model was linked to a soil temperature model inclusive of components able to simulate soil water content also as resulting from crop water uptake. Pathogen relative growth was simulated over Europe using the IPCC A1B emission scenario derived from the Hadley-CM3 global climate model. Climate scenarios of soil temperature in 2020 and 2030 were compared to the baseline centred in the year 2000. The general trend of the response of soil-borne pathogens shows increasing growth in the coldest areas of Europe; however, a larger rate of increase is shown from 2020 to 2030 compared to that of 2000 to 2020. Projections of pathogens of winter cereals indicate a marked increase of growth rate in the soils of northern European and Baltic states. Fungal pathogens of spring sowing crops show unchanged conditions for their growth in soils of the Mediterranean countries, whereas an increase of suitable conditions was estimated for the areals of central Europe which represent the coldest limit areas where the host crops are currently grown. Differences across fungal species are shown, indicating that crop-specific analyses should be ran. PMID:24615638

  7. Effects of crop residue on soil and plant water evaporation in a dryland cotton system

    NASA Astrophysics Data System (ADS)

    Lascano, R. J.; Baumhardt, R. L.

    1996-03-01

    Dryland agricultural cropping systems emphasize sustaining crop yields with limited use of fertilizer while conserving both rain water and the soil. Conservation of these resources may be achieved with management systems that retain residues at the soil surface simultaneously modifying both its energy and water balance. A conservation practice used with cotton grown on erodible soils of the Texas High Plains is to plant cotton into chemically terminated wheat residues. In this study, the partitioning of daily and seasonal evapotranspiration ( E t) into soil and plant water evaporation was compared for a conventional and a terminated-wheat cotton crop using the numerical model ENWATBAL. The model was configured to account for the effects of residue on the radiative fluxes and by introducing an additional resistance to latent and sensible heat fluxes derived from measurements of wind speed and vapor conductance from a soil covered with wheat-stubble. Our results showed that seasonal E t was similar in both systems and that cumulative soil water evaporation was 50% of E t in conventional cotton and 31% of E t in the wheat-stubble cotton. Calculated values of E t were in agreement with measured values. The main benefit of the wheat residues was to suppress soil water evaporation by intercepting irradiance early in the growing season when the crop leaf area index (LAI) was low. In semiarid regions LAI of dryland cotton seldom exceeds 2 and residues can improve water conservation. Measured soil temperatures showed that early in the season residues reduced temperature at 0.1 m depth by as much as 5°C and that differences between systems diminished with depth and over time. Residues increased lint yield per unit of E t while not modifying seasonal E t and reducing cumulative soil water evaporation.

  8. Modelling soil borne fungal pathogens of arable crops under climate change

    NASA Astrophysics Data System (ADS)

    Manici, L. M.; Bregaglio, S.; Fumagalli, D.; Donatelli, M.

    2014-12-01

    Soil-borne fungal plant pathogens, agents of crown and root rot, are seldom considered in studies on climate change and agriculture due both to the complexity of the soil system and to the incomplete knowledge of their response to environmental drivers. A controlled chamber set of experiments was carried out to quantify the response of six soil-borne fungi to temperature, and a species-generic model to simulate their response was developed. The model was linked to a soil temperature model inclusive of components able to simulate soil water content also as resulting from crop water uptake. Pathogen relative growth was simulated over Europe using the IPCC A1B emission scenario derived from the Hadley-CM3 global climate model. Climate scenarios of soil temperature in 2020 and 2030 were compared to the baseline centred in the year 2000. The general trend of the response of soil-borne pathogens shows increasing growth in the coldest areas of Europe; however, a larger rate of increase is shown from 2020 to 2030 compared to that of 2000 to 2020. Projections of pathogens of winter cereals indicate a marked increase of growth rate in the soils of northern European and Baltic states. Fungal pathogens of spring sowing crops show unchanged conditions for their growth in soils of the Mediterranean countries, whereas an increase of suitable conditions was estimated for the areals of central Europe which represent the coldest limit areas where the host crops are currently grown. Differences across fungal species are shown, indicating that crop-specific analyses should be ran.

  9. Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement.

    PubMed

    Lynch, Jonathan P; Chimungu, Joseph G; Brown, Kathleen M

    2014-11-01

    Several root anatomical phenes affect water acquisition from drying soil, and may therefore have utility in breeding more drought-tolerant crops. Anatomical phenes that reduce the metabolic cost of the root cortex ('cortical burden') improve soil exploration and therefore water acquisition from drying soil. The best evidence for this is for root cortical aerenchyma; cortical cell file number and cortical senescence may also be useful in this context. Variation in the number and diameter of xylem vessels strongly affects axial water conductance. Reduced axial conductance may be useful in conserving soil water so that a crop may complete its life cycle under terminal drought. Variation in the suberization and lignification of the endodermis and exodermis affects radial water conductance, and may therefore be important in reducing water loss from mature roots into dry soil. Rhizosheaths may protect the water status of young root tissue. Root hairs and larger diameter root tips improve root penetration of hard, drying soil. Many of these phenes show substantial genotypic variation. The utility of these phenes for water acquisition has only rarely been validated, and may have strong interactions with the spatiotemporal dynamics of soil water availability, and with root architecture and other aspects of the root phenotype. This complexity calls for structural-functional plant modelling and 3D imaging methods. Root anatomical phenes represent a promising yet underexplored and untapped source of crop breeding targets. PMID:24759880

  10. Perennial crop growth in oil-contaminated soil in a boreal climate.

    PubMed

    Yan, Lijuan; Penttinen, Petri; Simojoki, Asko; Stoddard, Frederick L; Lindström, Kristina

    2015-11-01

    Soil contamination by petroleum hydrocarbons is a global problem. Phytoremediation by plants and their associated microorganisms is a cost-effective strategy to degrade soil contaminants. In boreal regions the cool climate limits the efficiency of phytoremediation. The planting of oil-tolerant perennial crops, especially legumes, in oil-contaminated soil holds promise for great economic benefits for bioenergy and bio-fertilizer production while accelerating the oil degradation process. We established a multi-year field experiment to study the ecological and agronomic feasibility of phytoremediation by a legume (fodder galega) and a grass (smooth brome) in a boreal climate. In 40 months, soil oil content decreased by 73%-92%, depending on the crop type. The oil degradation followed first-order kinetics with the reduction rates decreasing as follows: bare fallow > galega-brome grass mixture > brome grass > galega. Surprisingly, the presence of oil enhanced crop dry matter and nitrogen yield, particularly in the fourth year. The unfertilized galega-brome grass mixture out-yielded the N-fertilized pure grass swards over years by an average of 33%. Thus, a perennial legume-grass mixture is both ecologically and agronomically sustainable as a cropping system to alleviate soil contamination in the boreal zone, with considerable potential for bioenergy and bio-fertilizer production. PMID:26124012

  11. Assessment of Crop Water Requirement Methods for Annual Agricultural Water Allocation Planning

    NASA Astrophysics Data System (ADS)

    Aghdasi, F.; Sharifi, M. A.; van der Tol, C.

    2010-05-01

    The potential use of remote sensing in water resource and in particular in irrigation management has been widely acknowledged. However, in reality, operational applications of remote sensing in irrigation management are few. In this study, the applicability of the main available remote sensing based techniques of irrigation management is evaluated in a pilot area in Iran. The evaluated techniques include so called Crop Water Requirement "CWR" methods for the planning of annual water allocation in irrigated agriculture. A total of 40 years of historical weather data were classified into wet, normal, and dry years using a Standardised Precipitation Index (SPI). For each of these three classes the average CWR was calculated. Next, by applying Markov Chain Process to the time series of precipitation, the expected CWR for the forthcoming planning year was estimated. Using proper interpolation techniques the expected CWR at each station was converted to CWR map of the area, which was then used for annual water allocation planning. To estimate the crop water requirement, methods developed for the DEMETER project (DEMonstration of Earth observation Technologies in Routine irrigation advisory services) and Surface Energy Balance System "SEBS" algorithm were used, and their results were compared with conventional methods, including FAO-56 and lysimeter data amongst others. Use was made of both ASTER and MODIS images to determine crop water requirement at local and regional scales. Four methods of estimating crop coefficients were used: DEMETER Kc-NDVI, DEMETER Kc-analytical, FAO-56 and SEBS algorithm. Results showed that DEMETER (analytical approach) and FAO methods with lowest RMSE are more suitable methods for determination of crop coefficient than SEBS, which gives actual rather than potential evapotranspiration. The use of ASTER and MODIS images did not result in significantly different crop coefficients in the pilot area for the DEMETER analytical approach (?=0.05). This is promising, as it implies that MODIS can be used for determination of CWR at regional "water user association" level. Sensitivity analysis of crop coefficient to crop height, leaf area index, incoming shortwave radiation, wind speed, relative humidity and temperature was carried out as well. The results showed that the crop coefficient is sensitive to (in order of most to least sensitive), temperature, leaf area index, incoming shortwave radiation and relative humidity, wind speed and crop height. Comparison between the planned values of crop water requirement and the realised values in 2004 were not significantly different (?=0.05).

  12. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China)

    E-print Network

    Mailhes, Corinne

    Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China from mining tailing spills (JTC), and (4) a background site (REF). Metal concentrations in the crops by 24 times for As and 13 times for Cd at GYB. Generally, the edible leaves or stems of crops were more

  13. Factors Affecting Soil Microbial Community Structure in Tomato Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and rhizosphere microbial communities in agroecosystems may be affected by soil, climate, plant species, and management. We identified some of the most important factors controlling microbial biomass and community structure in an agroecosystem utilizing tomato plants with the following nine tre...

  14. Topographic and soil influences on root productivity of three bioenergy cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Successful modeling of the carbon (C) cycle requires empirical data regarding species-specific root responses to edaphic characteristics. We address this challenge by quantifying annual root production of three bioenergy cropping systems (continuous corn, sorghum-triticale, switchgrass) arrayed acro...

  15. Mapping Surface Soil Organic Carbon for Crop Fields with Remote Sensing

    NASA Technical Reports Server (NTRS)

    Chen, Feng; Kissel, David E.; West, Larry T.; Rickman, Doug; Luvall, J. C.; Adkins, Wayne

    2004-01-01

    The organic C concentration of surface soil can be used in agricultural fields to vary crop production inputs. Organic C is often highly spatially variable, so that maps of soil organic C can be used to vary crop production inputs using precision farming technology. The objective of this research was to demonstrate the feasibility of mapping soil organic C on three fields, using remotely sensed images of the fields with a bare surface. Enough soil samples covering the range in soil organic C must be taken from each field to develop a satisfactory relationship between soil organic C content and image reflectance values. The number of soil samples analyzed in the three fields varied from 22 to 26. The regression equations differed between fields, but gave highly significant relationships with R2 values of 0.93, 0.95, and 0.89 for the three fields. A comparison of predicted and measured values of soil organic C for an independent set of 2 soil samples taken on one of the fields gave highly satisfactory results, with a comparison equation of % organic C measured + 1.02% organic C predicted, with r2 = 0.87.

  16. Crop and Soil Science. A Curriculum Guide for Idaho Vocational Agriculture Instructors. Volume 1 and Volume 2.

    ERIC Educational Resources Information Center

    Ledington, Richard L.

    The 24 units that comprise this crop and soil science curriculum guide are not geared to a particular age level and must be adapted to the students for whom they are used. Units 1 through 6 are general units covering topics common to soil science. Units 7 through 24 are units covering topics common to crop production. Each unit includes objectives…

  17. SURFACE-SOIL RESPONSES TO SILAGE CROPPING INTENSITY ON A TYPIC KANHAPLUDULT IN THE PIEDMONT OF NORTH CAROLINA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although reduced tillage itself is beneficial to soil quality and farm economics, the amount of crop residues returned to the soil will likely alter the success of a particular conservation tillage system within a farm operation. We investigated the impact of three cropping systems (a gradient in s...

  18. High retention of N P nutrients, soil organic carbon, and fine particles by cover crops under tropical climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover cropping system has shown a potential to improve soil quality and carbon sequestration but the residue decomposition rates determined by biotic and abiotic factors play a crucial role to reach such objectives. Legume and non-legume cover crop residues were applied to the surface of two soils i...

  19. CARBON AND NITROGEN STORAGE IN DRYLAND SOIL AGGREGATES AS INFLUNCED BY LONG-TERM TILLAGE AND CROPPING SYSTEM.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 21-yr influence of combinations of tillage and cropping systems were determined on soil organic C (SOC) and organic N (SON) contents in whole-soil and aggregates at the 0-20 cm depth in the drylands of Montana, USA. Tillage and cropping systems were no-till with continuous spring wheat (NTCW), s...

  20. No-till cropping system effects on soil profile organic carbon and total N after seven years of drought

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensified no-till cropping systems have been shown to increase soil organic carbon (SOC) and total N (TN) in surface soils (0-20 cm). Changes in SOC and TN are coupled to crop inputs and decomposition rates. Drought has negatively impacted dryland yields in the Central Great Plains in recent yea...

  1. Tillage Systems Influence Glyphosate Degradation in Soils Cropped to Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of herbicide glyphosate has increased significantly in recent years due to the widespread use of Roundup Ready crop varieties and increased adoption of conservation tillage systems. In this study, we evaluated glyphosate mineralization as affected by tillage system, cotton variety, and row ...

  2. Potential soil quality impact of harvesting crop residues for biofuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humankind is in the midst of one of the greatest technological, environmental and social transitions since the industrial revolution, as we strive to replace fossil energy with renewable biomass resources. This presentation will (1) briefly review increased public interest in harvesting crop residue...

  3. The impact of long-term nitrogen fertilizer applications on soil organic carbon in a dryland cereal cropping system of the Loess Plateau

    NASA Astrophysics Data System (ADS)

    Guo, S.

    2011-12-01

    Concerns over food security and global climate change require an improved understanding of how to achieve optimal crop yields whilst minimizing net greenhouse gas emissions from agriculture. In the semi-arid Loess Plateau region of China, as elsewhere, fertilizer nitrogen (N) inputs are necessary to increase yields and improve local food security. In a dryland annual cropping system, we evaluated the effects of N fertilizers on crop yield, its long term impact on soil organic carbon (SOC) concentrations and stock sizes, and the distribution of carbon (C) within various aggregate-size fractions. A current version (RothC) of the Rothamsted model for the turnover of organic C in soil was used to simulate SOC measurements. Five N application rates [0 (N0), 45 (N45), 90 (N90), 135 (N135), and 180 (N180) kg N ha-1] were applied to plots for 25 years (1984-2009) on a loam soil (Cumulic Haplustoll) at the Changwu State Key Agro-Ecological Experimental Station, Shaanxi, China. Crop yield varied with year, but increased over time in the fertilized plots. Average annual grain yields were 1.15, 2.46, 3.11, 3.49, and 3.55 Mg ha-1 with the increasing N application rates, respectively. Long-term N fertilizer application significantly (P<0.05) increased SOC concentrations and stocks in the 0-20 cm horizon. Using RothC, the calculated annual inputs of plant C (in roots, stubble, root exudates, etc.) to the soil were 0.61, 0.74, 0.78, 0.86, and 0.97 t C ha-1 year-1 in N0, N45, N90, N135 and N180 treatments, respectively. The modeled turnover time of SOC (excluding inert organic C) in the continuous wheat cropping system was 26 years. The SOC accumulation rate was estimated to be 40.0, 48.0, 68.0, and 100.0 kg C ha-1 year-1 for the N45, N90, N135 and N180 treatments over 25 years, respectively. As aboveground biomass was removed, the increases in SOC stocks with higher N application are attributed to increased inputs of root biomass and root exudates. Increasing N application rates significantly improved C concentrations in the macroaggregate fractions (>1 mm). The increase in SOC with N fertilizer applications contributed to improved soil quality as well as crop productivity.

  4. Legacy Phosphorus Effect and Need to Re-calibrate Soil Test P Methods for Organic Crop Production.

    NASA Astrophysics Data System (ADS)

    Dao, Thanh H.; Schomberg, Harry H.; Cavigelli, Michel A.

    2015-04-01

    Phosphorus (P) is a required nutrient for the normal development and growth of plants and supplemental P is needed in most cultivated soils. Large inputs of cover crop residues and nutrient-rich animal manure are added to supply needed nutrients to promote the optimal production of organic grain crops and forages. The effects of crop rotations and tillage management of the near-surface zone on labile phosphorus (P) forms were studied in soil under conventional and organic crop management systems in the mid-Atlantic region of the U.S. after 18 years due to the increased interest in these alternative systems. Soil nutrient surpluses likely caused by low grain yields resulted in large pools of exchangeable phosphate-P and equally large pools of enzyme-labile organic P (Po) in soils under organic management. In addition, the difference in the P loading rates between the conventional and organic treatments as guided by routine soil test recommendations suggested that overestimating plant P requirements contributed to soil P surpluses because routine soil testing procedures did not account for the presence and size of the soil enzyme-labile Po pool. The effect of large P additions is long-lasting as they continued to contribute to elevated soil total bioactive P concentrations 12 or more years later. Consequently, accurate estimates of crop P requirements, P turnover in soil, and real-time plant and soil sensing systems are critical considerations to optimally manage manure-derived nutrients in organic crop production.

  5. Management of lignite fly ash for improving soil fertility and crop productivity

    SciTech Connect

    Ram, L.C.; Srivastava, N.K.; Jha, S.K.; Sinha, A.K.; Masto, R.E.; Selvi, V.A.

    2007-09-15

    Lignite fly ash (LFA), being alkaline and endowed with excellent pozzolanic properties, a silt loam texture, and plant nutrients, has the potential to improve soil quality and productivity. Long-term field trials with groundnut, maize, and sun hemp were carried out to study the effect of LFA on growth and yield. Before crop I was sown, LFA was applied at various doses with and without press mud (an organic waste from the sugar industry, used as an amendment and source of nutrients). LFA with and without press mud was also applied before crops III and V were cultivated. Chemical fertilizer, along with gypsum, humic acid, and bioferfertilizer, was applied in all treatments, including the control. With one-time and repeat applications of LFA (with and without press mud), yield increased significantly (7.0-89.0%) in relation to the control crop. The press mud enhanced the yield (3.0-15.0%) with different LFA applications. One-time and repeat application of LFA (alone and in combination with press mud) improved soil quality and the nutrient content of the produce. The highest dose of LFA (200 t/ha) with and without press mud showed the best residual effects (eco-friendly increases in the yield of succeeding crops). Some increase in trace- and heavy metal contents and in the level of gamma-emitters in soil and crop produce, but well within permissible limits, was observed. Thus, LFA can be used on a large scale to boost soil fertility and productivity with no adverse effects on the soil or crops, which may solve the problem of bulk disposal of fly ash in an eco-friendly manner.

  6. Crop water use efficiency following biochar application on maize cropping systems on sandy soils of tropical semiarid eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Sukartono, S.; Utomo, W.

    2012-04-01

    A field study was conducted to evaluate the effect of biochar on crop water use efficiency under three consecutive maize cropping system on sandy loam of Lombok, eastern Indonesia from December 2010 to October 2011.The treatments tested were: coconut shell- biochar (CSB), cattle dung-biochar (CDB), cattle manure applied at only early first crop (CM1) and cattle manure applied at every planting time (CM2) and no organic amendment as the control. Evaluation after the end of third maize, the application of organic amendments (biochar and cattle manure) slightly altered the pore size distribution resulting changes in water retention and the available water capacity. The available water capacity was relatively comparable between biochar treated soils (0.206 cm3 cm-3) and soil treated with cattle manure applied at every planting time (0.220 cm3 cm-3). Water use efficiency (WUE) of maize under biochars were 9.44 kg/mm (CSB) and 9.24 kg/mm (CDB) while WUE for CM1 and CM2 were 8.54 and 9.97 kg/mm respectively, and control was 8.08 kg/mm. Thus, biochars as well as cattle manure applied at every planting time improved water use efficiency by 16.83% and 23.39 respectively compared to control. Overall, this study confirms that biochar and cattle manure are both valuable amendments for improving water use efficiency and to sustain maize production in the sandy loam soils of semiarid North Lombok, eastern Indonesia. However, unlike bicohar, in order to maintain its posivtive effect, cattle manure should be applied at every planting time, and this make cattle manure application is more costly. Keywords: Biochar, organic management, catle manure, water retention, maize yield

  7. Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives.

    PubMed

    Rodriguez, Luis; Rincón, Jesusa; Asencio, Isaac; Rodríguez-Castellanos, Laura

    2007-01-01

    High-biomass crops can be considered as an alternative to hyperaccumulator plants to phytoremediate soils contaminated by heavy metals. In order to assess their practical capability for the absorption and accumulation of Hg in shoots, barley, white lupine, lentil, and chickpea were tested in pot experiments using several growth substrates. In the first experimental series, plants were grown in a mixture of vermiculite and perlite spiked with 8.35 microg g(-1) d.w. of soluble Hg. The mercury concentration of the plants' aerial tissues ranged from 1.51 to 5.13 microg g(-1) d.w. with lentil and lupine showing the highest values. In a second experiment carried out using a Hg-polluted soil (32.16 microg g(-1) d.w.) collected from a historical mining area (Almadén, Spain), the crop plants tested only reached shoot Hg concentration up to 1.13 microg g(-1) d.w. In the third experimental series, the Almadén soil was spiked with 1 microg g(-1) d.w. of soluble Hg; as a result, mercury concentrations in the plant shoots increased approximately 6 times for lupine, 5 times for chickpea, and 3.5 times for barley and lentil, with respect to those obtained with the original soil without Hg added. This marked difference was attributed to the low availability of Hg in the original Almadin soil and its subsequent increase in the Hg-spiked soil. The low mercury accumulation yields obtained for all plants do not make a successful decontamination of the Almadén soils possible byphytoremediation using crop plants. However, since the crops tested can effectively decrease the plant-available Hg level in this soil, their use could, to some extent, reduce the environmental risk of Hg pollution in the area. PMID:18246711

  8. Gap filling strategies and error in estimating annual soil respiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil respiration (Rsoil) is one of the largest CO2 fluxes in the global carbon (C) cycle. Estimation of annual Rsoil requires extrapolation of survey measurements or gap-filling of automated records to produce a complete time series. While many gap-filling methodologies have been employed, there is ...

  9. Enzyme dynamics in paddy soils of the rice district (NE Italy) under different cropping patterns

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Nadimi-Goki, Mandana; Kato, Yoichi; Fornasier, Flavio; Wahsha, Mohammad; Spiandorello, Massimo

    2014-05-01

    The recent widespread interest on soil enzymes is due to the need to develop sensitive indicators of soil quality that reflect the effects of land management on soil and assist land managers in promoting long-term sustainability of terrestrial ecosystems. The activities of six important enzymes involved in C, N, P, and S cycling were investigated in a paddy soil from the Veneto region, Italy, in four different rotation systems (rice-rice-rice: R-R-R; soya-rice-rice: S-R-R; fallow-rice: F-R; pea-soya-rice: P-S-R) with three replications in April (after field preparation, field moist condition), June (after seedling, waterlogged soil condition), August (after tillering stage of rice, waterlogged soil condition) and October (after rice harvesting, drained soil condition) over the 2012 growing season. Our results demonstrated that enzyme activities varied with rotation systems and growth stages in paddy soil. Compared with field moist soil, drained soil condition resulted in a significant increase (P < 0.05) of ?-glucosidase, arylsulfatase, alkaline and acid phosphatases, leucine aminopeptidase (except of fallow-rice), and chitinase activities in all rotations, while compared with drained soil, early waterlogging (in month of June) significantly decreased (P moist soil> late waterlogged>early waterlogged. There was an inhibitory effect of waterlogging (except P-S-R rotation) for both alkaline and acid phosphatases due to high pH and redox conditions. However, the response of enzymes to waterlogging differed with the chemical species and the cropping pattern. The best rotation system for chitinase, leucine aminopeptidase and ?-glucosidase activity (C and N cycles) proved R-R-R, while for arylsulfatase, alkaline and acid phosphatases (P and S cycles) it was the S-R-R. Key Words: enzyme activity, paddy soil, Crop Rotation System, Italy __ Corresponding Author: Mandana Nadimi-Goki, Tel.: +39 3891356251 E-mail address: mandy.nadimi@gmail.com

  10. How do soil physical conditions for crop growth vary over time under established contrasting tillage regimes?

    NASA Astrophysics Data System (ADS)

    Hallett, Paul; Stobart, Ron; Valentine, Tracy; George, Timothy; Morris, Nathan; Newton, Adrian; McKenzie, Blair

    2014-05-01

    When plant breeders develop modern cereal varieties for the sustainable intensification of agriculture, insufficient thought is given to the impact of tillage on soil physical conditions for crop production. In earlier work, we demonstrated that barley varieties that perform best in ploughed soil (the approach traditionally used for breeding trials) were not the same as those performing best under shallow non-inversion or zero-tillage. We also found that the Quantitative Trait Loci (QTL) associated with improved phosphorus uptake, and hence useful for marker assisted breeding, were not robust between different tillage regimes. The impact of the soil environment had greater impact than the genetics in GxE interactions. It is obvious that soil tillage should be considered when breeding the next generation of crops. Tillage may also have important impacts on carbon storage, but we found that despite greater soil carbon at shallow depths under non-inversion tillage, the carbon stored throughout the soil profile was not affected by tillage. Studies on soil tillage impacts to crop productivity and soil quality are often performed in one season, on single sites that have had insufficient time to develop. Our current research explores multiple sites, on different soils, with temporal measurements of soil physical conditions under contrasting tillage regimes. We use the oldest established contemporary tillage experiments in the United Kingdom, with all sites sharing ploughed and shallow (7cm) non-inversion tillage treatments. In eastern Scotland (Mid Pilmore), the site also has zero tillage and deep ploughing (40 cm) treatments, and was established 11 years ago. In east England there are two sites, both also having a deep non-inversion tillage treatment, and they were established 6 (New Farm Systems) and 8 (STAR) years ago. We measure a range of crop and soil properties at sowing, one month after sowing and post-harvest, including rapid lab based assays that allow high-throughput. Samples are taken over the rooting zone in the topsoil, plough pan and subsoil. The first year's dataset from this comprehensive project will be presented. Early data identified plough pans under shallow non-inversion tillage that will limit root growth at all sites. Aggregate stabilities vary as expected, with plough soils at shallow depth being less stable than non-inversion tillage, but greater stability in plough soils at greater depth due to incorporated organic matter. Very rapidly following cultivation, the seedbeds coalesce, resulting in a more challenging physical environment for crop growth. We are exploring the mechanisms in soil structure temporal dynamics in greater detail, including the resilience of seedbeds to structural degradation through natural weathering and the action of plants. These profound differences in soil conditions will impact the root ideotype of crops for these different conditions. This has implications for the way in which breeding and genotype selection is performed in the future. Ultimately, we aim to identify crop varieties suited to local soil conditions and management, possibly with root traits that boost yields and soil physical quality.

  11. Impact of climate, vegetation, soil and crop management variables on multi-year ISBA-A-gs simulations of evapotranspiration over a Mediterranean crop site

    NASA Astrophysics Data System (ADS)

    Garrigues, S.; Olioso, A.; Carrer, D.; Decharme, B.; Martin, E.; Calvet, J.-C.; Moulin, S.; Marloie, O.

    2015-02-01

    Generic land surface models are generally driven by large-scale forcing datasets to describe the climate, the surface characteristics (soil texture, vegetation dynamic) and the cropland management (irrigation). This paper investigates the errors in these forcing variables and their impacts on the evapotranspiration (ET) simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface model over a 12 year Mediterranean crop succession. We evaluate the forcing datasets used in the standard implementation of ISBA over France where the model is driven by the SAFRAN high spatial resolution atmospheric reanalysis, the Leaf Area Index (LAI) cycles derived from the Ecoclimap-II land surface parameter database and the soil texture derived from the French soil database. For climate, we focus on the radiations and rainfall variables and we test additional datasets which includes the ERA-Interim low spatial resolution reanalysis, the Global Precipitation Climatology Centre dataset (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave radiations. The methodology consists in comparing the simulation achieved using large-scale forcing datasets with the simulation achieved using local observations for each forcing variable. The relative impacts of the forcing variables on simulated ET are compared with each other and with the model uncertainties triggered by errors in soil parameters. LAI and the lack of irrigation in the simulation generate the largest mean deviations in ET between the large-scale and the local-scale simulations (equivalent to 24 and 19 months of ET over 12 yr). The climate induces smaller mean deviations equivalent to 7-8 months of ET over 12 yr. The soil texture has the lowest impact (equivalent to 3 months of ET). However, the impact of errors in the forcing variables is smaller than the impact triggered by errors in the soil parameters (equivalent to 27 months of ET). The absence of irrigation which represents 18% of cumulative rainfall over 12 years induces a deficit in ET of 14%. It generates much larger variations in incoming water for the model than the differences in rainfall between the reanalysis datasets. ET simulated with the Ecoclimap-II LAI climatology is overestimated by 18% over 12 years. This is related to the overestimation of the mean LAI over the crop cycle which reveals inaccurate representation of Mediterranean crop cycles. Compared to SAFRAN, the use of the ERA-I reanalysis, the GPCC rainfall and the downwelling shortwave radiation derived from the MSG satellite have little influence on the ET simulation performances. The error in yearly ET is mainly driven by the error in yearly rainfall and to a less extent by radiations. The SAFRAN and MSG satellite shortwave radiation estimates show similar negative biases (-9 and -11 W m-2). The ERA-I bias in shortwave radiations is 4 times smaller at daily time scale. Both SAFRAN and ERA-I underestimate longwave downwelling radiations by -12 and -16 W m-2, respectively. The biases in shortwave and longwave radiations show larger inter-annual variation for SAFRAN than for ERA-I. Regarding rainfall, SAFRAN and ERA-I/GPCC are slightly biased at daily and longer time scales (1 and 0.5% of the mean rainfall measurement). The SAFRAN rainfall estimates are more precise due to the use of the in situ daily rainfall measurements of the Avignon site in the reanalysis.

  12. Diversity of entomopathogenic Hypocreales in soil and phylloplanes of five Mediterranean cropping systems.

    PubMed

    Garrido-Jurado, Inmaculada; Fernández-Bravo, María; Campos, Carlos; Quesada-Moraga, Enrique

    2015-09-01

    The diversity of entomopathogenic Hypocreales from the soil and phylloplanes in five Mediterranean cropping systems with different degrees of management [organic olive orchard conventional olive orchard, holm oak reforestation, holm oak dehesa (a multifunctional agro-sylvo-pastoral system), and sunflower plantation] was studied during four seasons. A total of 697 entomopathogenic fungal isolates were obtained from 272 soil samples, 1608 crop phylloplane samples and 1368 weed phylloplane samples. The following nine species were identified: Beauveria amorpha, B. bassiana, B. pseudobassiana, B. varroae, Metarhizium brunneum, M. guizhoense, M. robertsii, Paecilomyces marquandii and lilacinum using EF-1? gene sequences. All the fungal entomopathogenic species were found in both the soil and phylloplane samples, with the exception of M. robertsii, which was only isolated from the soil. The species richness, diversity (Shannon-Wiener index) and evenness (Pielou index) were calculated for each cropping system, yielding the following species ranking, which was correlated with the crop management intensity: holm oak reforestation>organic olive orchard>conventional olive orchard>holm oak dehesa>sunflower plantation. The number of fungal species isolated was similar in both phylloplane habitats and dissimilar between the soil and the crop phylloplane habitats. The ISSR analysis revealed high genotypic diversity among the B. bassiana isolates on the neighbourhood scale, and the isolates were clustered according to the habitat. These results suggest that the entomopathogenic Hypocreales in the phylloplane could result from the dispersal of fungal propagules from the soil, which might be their habitat of origin; a few isolates, including EABb 09/28-Fil of Beauveria bassiana, inhabit only the phylloplane. PMID:26146223

  13. Diversity of Rhizosphere Soil Arbuscular Mycorrhizal Fungi in Various Soybean Cultivars under Different Continuous Cropping Regimes

    PubMed Central

    Jie, Weiguang; Liu, Xiaorui; Cai, Baiyan

    2013-01-01

    Recent studies have shown that continuous cropping in soybean causes substantial changes to the microbial community in rhizosphere soil. In this study, we investigated the effects of continuous cropping for various time periods on the diversity of rhizosphere soil arbuscular mycorrhizal (AM) fungi in various soybean cultivars at the branching stage. The soybean cultivars Heinong 37 (an intermediate cultivar), Heinong 44 (a high-fat cultivar) and Heinong 48 (a high-protein cultivar) were seeded in a field and continuously cropped for two or three years. We analyzed the diversity of rhizosphere soil AM fungi of these soybean plants at the branching stage using morphological and denaturing gradient gel electrophoresis (DGGE) techniques. The clustering analysis of unweighted pair-group method with arithmetic averages (UPGMA) was then used to investigate the AM fungal community shifts. The results showed that increasing the number of years of continuous cropping can improve the colonization rate of AM fungi in different soybean cultivars at the branching stage. The dominant AM fungi in the experimental fields were Funneliformismosseae and Glomus spp. The number of years of continuous cropping and the soybean cultivar both had obvious effects on the diversity of AM fungi, which was consistent with the results of colonization rate analysis. This study establishes a basis for screening dominant AM fungi of soybean. In addition, the results of this study may be useful for the development of AM fungal inoculants. PMID:23977368

  14. Changes of multispectral soil patterns with increasing crop canopy

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Baumgardner, M. F.

    1972-01-01

    Multispectral data and automatic data processing were used to map surface soil patterns and to follow the changes in multispectral radiation from a field of maize (Zea mays L.) during a period from seeding to maturity. Panchromatic aerial photography was obtained in early May 1970 and multispectral scanner missions were flown on May 6, June 30, August 11 and September 5, 1970 to obtain energy measurements in 13 wavelength bands. The orange portion of the visible spectrum was used in analyzing the May and June data to cluster relative radiance of the soils into eight different radiance levels. The reflective infrared spectral band was used in analyzing the August and September data to cluster maize into different spectral categories. The computer-produced soil patterns had a striking similarity to the soil pattern of the aerial photograph. These patterns became less distinct as the maize canopy increased.

  15. ANNUAL PROGRESS REPORT Background Concentrations of Trace Metals in Florida Surface Soils

    E-print Network

    Ma, Lena

    ANNUAL PROGRESS REPORT Background Concentrations of Trace Metals in Florida Surface Soils, and Willie Harris Soil and Water Science Department University of Florida, Gainesville, FL 32611 May 31, 1998 .........................................................................................................................9 1. Baseline Concentrations of 15 Trace Metals fn Florida Soils

  16. Improved Remotely-Sensed Estimates of Crop Residue Cover by Incorporating Soils Information

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing allows for the rapid determination of crop residue cover. The Cellulose Absorption Index (CAI) has been shown to more accurately estimate residue cover and non-photosynthetic vegetation than other indices. CAI is useful as values are linear areal mixtures of soil and residue spectra...

  17. Feasibility of cuphea as a new oilseed crop to climate and soil environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cuphea, a new oilseed crop rich in medium-chain fatty acids (C8:0 to C14:0), may serve as a renewable, biodegradable source of oil for lubricants, motor oil, and aircraft fuel. Impacts of climate and soil environment on cuphea growth and development are not well understood. The objective of this stu...

  18. Stream Behavior Videos Deborah G. Grantham, Soil and Crop Sciences Section, dgg3@cornell.edu

    E-print Network

    Walter, M.Todd

    Stream Behavior Videos Deborah G. Grantham, Soil and Crop Sciences Section, dgg3@cornell.edu Amy three videos on stream behavior using footage from the Cornell Environmental Hydraulics Laboratory, landscape shots, and stock footage. The narrated videos illustrate concepts of stream energy and upstream

  19. Adaptability of cuphea, a new oilseed crop, to climate and soil environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cuphea, a new oilseed crop rich in medium-chain fatty acids (C8:0 to C14:0), may serve as a renewable, biodegradable source of oil for lubricants, motor oil, and aircraft fuel. Impacts of climate and soil environment on cuphea growth and development are not well understood. The objective of this stu...

  20. Soil microbial activity under different grass species: Underground impacts of biofuel cropping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial and plant communities interact to determine local nutrient cycling rates. As lands are converted to bioenergy crops, including corn and cellulosic grasses, focus has been on changes in soil carbon sequestration. Little attention has been paid to impacts of such land conversion on the acti...

  1. Long-term effects of compost and cover crops on soil phosphorus in two California agroecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inefficient P use in agriculture results in soil P accumulation and losses to surrounding ecosystems, highlighting the need to reduce external inputs and use them more efficiently. Composts reduce the need for mineral fertilizers by recycling P from wastes at the regional scale, whereas cover crops ...

  2. Effect of shifting crop production for biofuel demand on soil and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of shifting cropping systems to dominantly corn for biofuels, in particular ethanol production, could have serious implications on soil and water quality. Proper land management for biofuels production in agriculture is critical to achieve because of maintaining the sustainability of lan...

  3. CARBON SEQUESTRATION IN DRYLAND SOILS AND PLANT RESIDUE AS INFLUENCED BY TILLAGE AND CROP ROTATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term use of conventional tillage and wheat (Triticum aestivum L.)-fallow systems in the Northern Great Plains have resulted in low soil organic C (SOC) levels. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)], five crop rotations [continuous spring whea...

  4. SUITABILITY OF SELECTED CROPS AND SOIL FOR GARDEN SYMPHYLAN (SYMPHYLA, SCUTIGERELLIDAE: SCUTIGERELLA IMMACULATA NEWPORT) POPULATION GROWTH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The suitability of selected crops and soil for garden symphylan (Scutigerella immaculata Newport) population growth was studied in the laboratory and field. In the laboratory, we measured the population increase of S. immaculata after 8 w from a starting density of 35 in pots of spinach (Spinacia o...

  5. Use of a Cropping System Model for Soil-Specific Optimization of Limited Water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the arena of modern agriculture, system models capable of simulating the complex interactions of all the relevant processes in the soil-water-plant-atmosphere continuum are widely accepted as potential tools for decision support to optimize crop inputs of water to achieve location specific yield ...

  6. Chapter 28: Chemigation and PAM – delivering chemicals to crops and soils using irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemicals are injected into irrigation systems in order to prevent microbial growth in drip emitters, fertilize crops, reduce pests, apply soil amendments, and for several other reasons. Advantages of chemigation include reduced traffic, reduced dosing of fertilizers and pesticides, reduced operator...

  7. Responses of Enzyme Activities in Sandy Soils to Cropping System Changes in a Semiarid Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sandy soils under agricultural production found in the Southern High Plains of the United States are typically low in organic matter (<1%) due to the low organic inputs of intensively-tilled continuous cotton (Gossypium hirsutum) monoculture cropping over the last 50 years. This has resulted in soi...

  8. Evaluating the Removal of Corn Residue on Crop Production and Soil Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Removal for corn residue as a possible feedstock for the biofuels industry has left many producers with a number of unanswered questions. These include what impact will this have on the following crop and also the impact on soil quality associated with this practice. A field study was established ...

  9. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sludge (biosolids) as defined in 40 CFR part 503; and (3) Burning as a means of disposal for crop...) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE... prior to the harvest of a product whose edible portion has direct contact with the soil surface or...

  10. Cover crops alter phosphorus soil fractions and organic matter accumulation in a Peruvian cacao agroforestry system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many tropical soils, excessive weathering of primary minerals confounded by intense agricultural production has resulted in the depletion of organic matter and plant available forms of phosphorus (P). Long-term growth of cover crops in tropical agroforestry systems have been shown to influence nu...

  11. Members of soil bacterial communities sensitive to tillage and crop rotation Chuntao Yin a

    E-print Network

    Garrett, Karen A.

    Members of soil bacterial communities sensitive to tillage and crop rotation Chuntao Yin Tillage Rotation 16S rDNA Acidobacteria Gemmatimonadetes Wheat Soybean Triticum aestivum Glycine max a b s t r a c t Pyrosequencing was used to study the effect of rotation and tillage on total bacterial

  12. 24 Crops & Soils magazine | NovemberDecember 2013 As the last of the corn and

    E-print Network

    Isaacs, Rufus

    24 Crops & Soils magazine | November­December 2013 As the last of the corn and soybean harvest this season. Fungicide applications to corn and soybean have been increasing in recent years as a result with higher yields this year putting downward pressure on corn prices, "Producers need to look

  13. Addition of cover crops enhances no-till potential for improving soil physical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in the use of cover crops (CC) is growing. Inclusion of CC may be a potential strategy to boost no-till performance by improving soil physical properties. To assess this potential, we utilized a wheat [Triticum aestivum (L.)]-grain sorghum [Sorghum bicolor (L.) Moench] rotation, four N rate...

  14. Improving soybean performance in the Northern Great Plains through the use of cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are capable of providing “multiple services” for improving soil quality and enhancing annual crop growth. Maintaining continuous plant cover on agricultural fields with cover crop is of great interest to improve nutrient cycling, prevent soil degradation, and promote further adoption of...

  15. Short Rotation Woody Crops Program: Annual progress report for 1988

    SciTech Connect

    Wright, L.L.; Doyle, T.W.; Layton, P.A.; Ranney, J.W.

    1989-10-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program (SRWCP) for the year ending September 30, 1988. The program is sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division and has the goal of developing a viable technology for producing renewable feedstocks for conversion to biofuels. The most significant accomplishment has been the attainment of outstanding productivity rates by a Populus hybrid in the Pacific Northwest (43.5 Mg{center dot}ha{sup {minus}1}{center dot}year{sup {minus}1}), highlighting the potential gains achievable with breeding. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. The implications of global warming and climate-change effects on SRWC technology and applications are discussed. The early success of several monoculture viability trials is also presented. 43 refs., 12 figs., 10 tabs.

  16. Stagnating crop yields: An overlooked risk for the carbon balance of agricultural soils?

    PubMed

    Wiesmeier, Martin; Hübner, Rico; Kögel-Knabner, Ingrid

    2015-12-01

    The carbon (C) balance of agricultural soils may be largely affected by climate change. Increasing temperatures are discussed to cause a loss of soil organic carbon (SOC) due to enhanced decomposition of soil organic matter, which has a high intrinsic temperature sensitivity. On the other hand, several modeling studies assumed that potential SOC losses would be compensated or even outperformed by an increased C input by crop residues into agricultural soils. This assumption was based on a predicted general increase of net primary productivity (NPP) as a result of the CO2 fertilization effect and prolonged growing seasons. However, it is questionable if the crop C input into agricultural soils can be derived from NPP predictions of vegetation models. The C input in European croplands is largely controlled by the agricultural management and was strongly related to the development of crop yields in the last decades. Thus, a glance at past yield development will probably be more instructive for future estimations of the C input than previous modeling approaches based on NPP predictions. An analysis of European yield statistics indicated that yields of wheat, barley and maize are stagnating in Central and Northern Europe since the 1990s. The stagnation of crop yields can probably be related to a fundamental change of the agricultural management and to climate change effects. It is assumed that the soil C input is concurrently stagnating which would necessarily lead to a decrease of agricultural SOC stocks in the long-term given a constant temperature increase. Remarkably, for almost all European countries that are faced with yield stagnation indications for agricultural SOC decreases were already found. Potentially adverse effects of yield stagnation on the C balance of croplands call for an interdisciplinary investigation of its causes and a comprehensive monitoring of SOC stocks in agricultural soils of Europe. PMID:26235605

  17. Dynamics of verticillium species microsclerotia in field soils in response to fumigation, cropping patterns, and flooding.

    PubMed

    Short, Dylan P G; Sandoya, German; Vallad, Gary E; Koike, Steven T; Xiao, Chang-Lin; Wu, Bo-Ming; Gurung, Suraj; Hayes, Ryan J; Subbarao, Krishna V

    2015-05-01

    Verticillium dahliae is a soilborne, economically significant fungal plant pathogen that persists in the soil for up to 14 years as melanized microsclerotia (ms). Similarly, V. longisporum is a very significant production constraint on members of the family Brassicaceae. Management of Verticillium wilt has relied on methods that reduce ms below crop-specific thresholds at which little or no disease develops. Methyl bromide, a broad-spectrum biocide, has been used as a preplant soil fumigant for over 50 years to reduce V. dahliae ms. However, reductions in the number of ms in the vertical and horizontal soil profiles and the rate at which soil recolonization occurs has not been studied. The dynamics of ms in soil before and after methyl bromide+chloropicrin fumigation were followed over 3 years in six 8-by-8-m sites in two fields. In separate fields, the dynamics of ms in the 60-cm-deep vertical soil profile pre- and postfumigation with methyl bromide+chloropicrin followed by various cropping patterns were studied over 4 years. Finally, ms densities were assessed in six 8-by-8-m sites in a separate field prior to and following a natural 6-week flood. Methyl bromide+chloripicrin significantly reduced but did not eliminate V. dahliae ms in either the vertical or horizontal soil profiles. In field studies, increases in ms were highly dependent upon the crop rotation pattern followed postfumigation. In the vertical soil profile, densities of ms were highest in the top 5 to 20 cm of soil but were consistently detected at 60-cm depths. Six weeks of natural flooding significantly reduced (on average, approximately 65% in the total viable counts of ms) but did not eliminate viable ms of V. longisporum. PMID:25626074

  18. The influence of cover crops and tillage on actual and potential soil erosion in an olive grove

    NASA Astrophysics Data System (ADS)

    Sastre, Blanca; Bienes, Ramón; García-Díaz, Andrés; Panagopoulos, Thomas; José Marqués, Maria

    2014-05-01

    The study was carried out in an olive grove in central Spain (South of Madrid; Tagus River Basin). In this semi-arid zone, the annual mean temperature is 13.8 ºC and the annual precipitation is 395 mm. Olive groves are planted in an erosion prone area due to steep slopes up to 15%. Soil is classified as Typic Haploxerept with clay loam texture. The land studied was formerly a vineyard, but it was replaced by the studied olive grove in 2004. It covers approximately 3 ha and olive trees are planted every 6 x 7 metres. They were usually managed by tillage to decrease weed competition. This conventional practice results in a wide surface of bare soil prone to erosion processes. In the long term soil degradation may lead to increase the desertification risk in the area. Storms have important consequences in this shallow and vulnerable soil, as more than 90 Mg ha-1 have been measured after one day with 40 mm of rainfall. In order to avoid this situation, cover crops between the olive trees were planted three years ago: sainfoin (Onobrychis viciifolia), barley (Hordeum vulgare), and purple false brome (Brachypodium distachyon), and they were compared with annual spontaneous vegetation after a minimum tillage treatment (ASV). The results regarding erosion control were positive. We observed (Oct. 2012/Sept. 2013) annual soil loss up to 11 Mg ha-1 in ASV, but this figure was reduced in the sown covers, being 8 Mg ha-1 in sainfoin treatment, 3,7 Mg ha-1 in barley treatment, and only 1,5 Mg ha-1 in false brome treatment. Those results are used to predict the risk of erosion in long term. Moreover, soil organic carbon (SOC) increased with treatments, this is significant as it reduces soil erodibility. The increases were found both in topsoil (up to 5 cm) and more in depth, in the root zone (from 5 to 10 cm depth). From higher to lower SOC values we found the false brome (1.05%), barley (0.92%), ASV (0.79%) and sainfoin (0.71%) regarding topsoil. In the root zone (5-10 cm depth) we found 0.76% in false brome and ASV, 0.70% in barley and 0.58% in sainfoin. Other important variable to estimate erosion processes is soil permeability. During the period of study there were no significant differences between treatments. An average of 45±20 mm h-1 was measured. This study addresses the comparison between soil erosion rates measured on the ground with soil erosion risk estimated by models. Mapping soil risk can provide the evidence to demonstrate that economic investments in research, good practices and agri-environment payments are worth to achieve sustainable land management. The use of case studies is usually recommended to help in the dissemination of research. This case also includes the influence of treatments in production and quality of olive oil to respond to the needs of land users.

  19. Microbial activity, organic C accumulation and 13C abundance in soils under alley cropping systems after 9 years of recultivation of quaternary deposits

    NASA Astrophysics Data System (ADS)

    Nii-Annang, S.; Grünewald, H.; Freese, D.; Hüttl, R. F.; Dilly, O.

    2009-04-01

    The impact of alley cropping on post lignite mine soils developing from quaternary deposits after 9 years of recultivation was evaluated on the basis of microbial indicators, organic C and total N contents, and the isotope characteristics of soil C. Soils were sampled at the 0 to 3, 3 to 10 and 10 to 30 cm depths under black locust (Robinia pseudoacacia L.), poplar clone (Populus spp.), the transition zone and in the middle of alley under rye (Secale cereale). There was no significant effect of vegetation on microbial properties presumably, due to the high spatial variability, whereas organic C and total N contents at the 0 to 3 cm layer were significantly higher under black locust and poplar than in the transition zone and rye field. Organic C total N contents, and basal respiration, microbial biomass and microbial quotient decreased with soil depth. Soil organic C and total N contents were more than doubled after 9 years of recultivation, with annual C and N accretion rate of 162 g Corg m-2 yr-1 and 6 g Nt m-2 yr-1. Microbial properties indicated that the soils are in early stages of development; the C isotope characteristics confirmed that the sequestered C was predominantly from C3 plants of the alley cropping.

  20. Effects of coal-fired thermal power plant discharges on agricultural soil and crop plants

    SciTech Connect

    Ajmal, M.; Khan, M.A.

    1986-04-01

    The physicochemical properties of the upstream and downstream waters from the Upper Ganga canal, discharged cooling tower water, machine washings, and scrubber and bottom ash effluents of a 530 MW Kasimpur coal-fired thermal power plant have been determined, and their effects directly on fertile soil and indirectly on pea (Pisum sativam) and wheat (Triticum aestivum) crops have also been studied. The effluents were alkaline in nature. The scrubber and bottom ash effluent contained large amounts of solids and had high biochemical and chemical oxygen demands. The soils irrigated with the different effluents exhibited an increase in pH, organic matter, calcium carbonate, water-soluble salts, cation exchange capacity, electrical conductivity, and nitrogen and phosphorus contents while potassium content decreased. The effects of 100, 50, and 0% (tap water control) dilutions of cooling tower, machine washings, and scrubber and bottom ash effluents on the germination and growth of pea and wheat crops were also monitored. Using the undiluted effluents, there was 100% germination for both crops when irrigation was done with cooling tower effluent. Germination was restricted to 90% for the two crops when irrigated with machine washings effluent, and to 80 and 70% for pea and wheat, respectively, when irrigated with scrubber and bottom ash effluent. Samples of upstream and downstream canal water were also used for irrigating soils with and without crop plants in order to ascertain the impact of effluents on canal water and its subsequent effect on crops. The soils irrigated with downstream canal water were found to contain slightly more calcium carbonate, phosphorus, and ammonia-nitrogen than those receiving upstream canal water. Though 100% germination was obtained in both cases, the growth of plants irrigated with the downstream canal water was slightly reduced.

  1. Soil Microbial Substrate Properties and Microbial Community Responses under Irrigated Organic and Reduced-Tillage Crop and Forage Production Systems

    PubMed Central

    Ghimire, Rajan; Norton, Jay B.; Stahl, Peter D.; Norton, Urszula

    2014-01-01

    Changes in soil microbiotic properties such as microbial biomass and community structure in response to alternative management systems are driven by microbial substrate quality and substrate utilization. We evaluated irrigated crop and forage production in two separate four-year experiments for differences in microbial substrate quality, microbial biomass and community structure, and microbial substrate utilization under conventional, organic, and reduced-tillage management systems. The six different management systems were imposed on fields previously under long-term, intensively tilled maize production. Soils under crop and forage production responded to conversion from monocropping to crop rotation, as well as to the three different management systems, but in different ways. Under crop production, four years of organic management resulted in the highest soil organic C (SOC) and microbial biomass concentrations, while under forage production, reduced-tillage management most effectively increased SOC and microbial biomass. There were significant increases in relative abundance of bacteria, fungi, and protozoa, with two- to 36-fold increases in biomarker phospholipid fatty acids (PLFAs). Under crop production, dissolved organic C (DOC) content was higher under organic management than under reduced-tillage and conventional management. Perennial legume crops and organic soil amendments in the organic crop rotation system apparently favored greater soil microbial substrate availability, as well as more microbial biomass compared with other management systems that had fewer legume crops in rotation and synthetic fertilizer applications. Among the forage production management systems with equivalent crop rotations, reduced-tillage management had higher microbial substrate availability and greater microbial biomass than other management systems. Combined crop rotation, tillage management, soil amendments, and legume crops in rotations considerably influenced soil microbiotic properties. More research will expand our understanding of combined effects of these alternatives on feedbacks between soil microbiotic properties and SOC accrual. PMID:25090235

  2. The impact of roots on soil organic carbon dynamics in annual and perennial agricultural systems

    NASA Astrophysics Data System (ADS)

    Beniston, J.; Dupont, T.; Glover, J.; Lal, R.

    2012-12-01

    Identifying and developing agricultural systems capable of transferring large quantities of carbon (C) to the soil and sustaining ecosystem processes and services is a priority for ecological researchers and land managers. Temperate grasslands have extensive root systems and transfer large quantities of C to the soil organic C (SOC) pool, which has lead to widespread interest in utilizing perennial grasses as both bioenergy crops and as a model for perennial grains. This study examined five sites in north central Kansas (U.S.A.) that contain the unique land use pairing of tall grass prairie meadows (PM) that have been harvested annually for hay for the past 75 years and annual grain (wheat) production fields (AG) that have been cultivated for a similar length of time, all on deep alluvial soils. Specific research objectives included: 1) To quantify below-ground biomass pools and root C contributions in the two systems; 2) To analyze and compare SOC pools and SOC concentration in primary particle size fractions in the two systems; 3) To utilize natural abundance ?13C signatures to determine the source and turnover of SOC in the soils of the AG sites; and 4) To elucidate the relationship of roots to both SOC pools and nematode food webs. Soil core samples were collected to a depth of 1 m in May and June 2008. Soil samples were analyzed for SOC, microbial biomass C (MBC), nematodes, and a particle size fractionation of SOC in coarse (>250 ?m), particulate organic matter (POM) (53-250 ?m), silt (2-53 ?m), and clay (<2 ?m) sized fractions. Root biomass, root length and root C were also analyzed to a depth of 1 m. Natural abundance ?13C values were obtained for all C parameters. Soils under PM had 4 times as much root C as AG soils to 1 m depth in mid May (PM 2.8 Mg ha-1 and AG 0.7 Mg ha-1) and 7 times as much root C to 1 m depth in late June (PM 3.5 Mg ha-1 and AG 0.5 Mg ha-1). The MBC pools were significantly larger in grassland soils to a depth of 60 cm in May and 80 cm in June and MBC/SOC ratios in soils under PM averaged 0.0275 across all sampling depths, while those under AG averaged 0.013. Natural abundance ?13C signatures indicated significant turnover of SOC sources to 80 cm across all particle size fractions after 75 years of annual agriculture and recent inputs of root C to significant depth in the cropland soils, suggesting that some subsoil C is actively turning over and is influenced by root growth. Non-metric multidimensional scaling and regression analyses both suggest that roots play a primary role in both SOC and nematode food web dynamics at these sites. Collectively, the data presented in this study demonstrate the potential of production systems based on perennial grasses to transfer greater quantities of C to SOC pools than annual crops, through larger C allocations to root and microbial pools.

  3. Horizontal soil water potential heterogeneity: simplifying approaches for crop water dynamics models

    NASA Astrophysics Data System (ADS)

    Couvreur, V.; Vanderborght, J.; Beff, L.; Javaux, M.

    2014-05-01

    Soil water potential (SWP) is known to affect plant water status, and even though observations demonstrate that SWP distribution around roots may limit plant water availability, its horizontal heterogeneity within the root zone is often neglected in hydrological models. As motive, using a horizontal discretisation significantly larger than one centimetre is often essential for computing time considerations, especially for large-scale hydrodynamics models. In this paper, we simulate soil and root system hydrodynamics at the centimetre scale and evaluate approaches to upscale variables and parameters related to root water uptake (RWU) for two crop systems: a densely seeded crop with an average uniform distribution of roots in the horizontal direction (winter wheat) and a wide-row crop with lateral variations in root density (maize). In a first approach, the upscaled water potential at soil-root interfaces was assumed to equal the bulk SWP of the upscaled soil element. Using this assumption, the 3-D high-resolution model could be accurately upscaled to a 2-D model for maize and a 1-D model for wheat. The accuracy of the upscaled models generally increased with soil hydraulic conductivity, lateral homogeneity of root distribution, and low transpiration rate. The link between horizontal upscaling and an implicit assumption on soil water redistribution was demonstrated in quantitative terms, and explained upscaling accuracy. In a second approach, the soil-root interface water potential was estimated by using a constant rate analytical solution of the axisymmetric soil water flow towards individual roots. In addition to the theoretical model properties, effective properties were tested in order to account for unfulfilled assumptions of the analytical solution: non-uniform lateral root distributions and transient RWU rates. Significant improvements were however only noticed for winter wheat, for which the first approach was already satisfying. This study confirms that the use of 1-D spatial discretisation to represent soil-plant water dynamics is a worthy choice for densely seeded crops. For wide-row crops, e.g. maize, further theoretical developments that better account for horizontal SWP heterogeneity might be needed in order to properly predict soil-plant hydrodynamics in 1-D.

  4. Removal of arsenic from Janghang smelter site and energy crops-grown soil with soil washing using magnetic iron oxide

    NASA Astrophysics Data System (ADS)

    Han, Jaemaro; Zhao, Xin; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Arsenic compounds are considered carcinogen and easily enter drinking water supplies with their natural abundance. US Environmental Protection Agency is finalizing a regulation to reduce the public health risks from arsenic in drinking water by revising the current drinking water standard for arsenic from 50 ppb to 10 ppb in 2001 (USEPA, 2001). Therefore, soil remediation is also growing field to prevent contamination of groundwater as well as crop cultivation. Soil washing is adjusted as ex-situ soil remediation technique which reduces volume of the contaminated soil. The technique is composed of physical separation and chemical extraction to extract target metal contamination in the soil. Chemical extraction methods have been developed solubilizing contaminants containing reagents such as acids or chelating agents. And acid extraction is proven as the most commonly used technology to treat heavy metals in soil, sediment, and sludge (FRTR, 2007). Due to the unique physical and chemical properties, magnetic iron oxide have been used in diverse areas including information technology and biomedicine. Magnetic iron oxides also can be used as adsorbent to heavy metal enhancing removal efficiency of arsenic concentration. In this study, magnetite is used as the washing agent with acid extraction condition so that the injected oxide can be separated by magnetic field. Soil samples were collected from three separate areas in the Janghang smelter site and energy crops-grown soil to have synergy effect with phytoremediation. Each sample was air-dried and sieved (2mm). Soil washing condition was adjusted on pH in the range of 0-12 with hydrogen chloride and sodium hydroxide. After performing soil washing procedure, arsenic-extracted samples were analyzed for arsenic concentration by inductively coupled plasma optical emission spectrometer (ICP-OES). All the soils have exceeded worrisome level of soil contamination for region 1 (25mg/kg) so the soil remediation techniques are needed to be applied. The objective of this study is to investigate soil washing efficiency using magnetic iron oxide and derive the availability of the washing technique to the arsenic-contaminated field soils. Acknowledgement This study was supported by Korea Ministry of Environment as 'Knowledge-based environmental service (Waste to Energy) Human Resource Development Project'.

  5. Long-term Annual No-Till Cropping in Washington’s Winter Wheat – Summer Fallow Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tillage-based winter wheat – summer fallow (WW-SF) cropping system has dominated dryland farming in the Pacific Northwest for 125 years. We conducted a large-scale multidisciplinary 8-year study of annual no-till cropping systems as an alternative to WW-SF. Soft white and hard white classes of w...

  6. Summer squash planting systems following a rye cover crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial organic vegetable production requires using soil improvement practices and effective weed control measures. Rye (Secale cereale) cover crops are known to suppress annual weeds. Research was begun in 2004 to measure crop yield, annual weed infestation and weed control requirements for ve...

  7. Impact of different bioenergy crops on N-cycling bacterial and archaeal communities in soil.

    PubMed

    Mao, Yuejian; Yannarell, Anthony C; Davis, Sarah C; Mackie, Roderick I

    2013-03-01

    Biomass production for bioenergy may change soil microbes and influence ecosystem properties. To explore the impact of different bioenergy cropping systems on soil microorganisms, the compositions and quantities of soil microbial communities (16S rRNA gene) and N-cycling functional groups (nifH, bacterial amoA, archaeal amoA and nosZ genes) were assessed under maize, switchgrass and Miscanthus x giganteus at seven sites representing a climate gradient (precipitation and temperature) in Illinois, USA. Overall, the site-to-site variation in community composition surpassed the variation due to plant type, and microbial communities under each crop did not converge on a 'typical' species assemblage. Fewer than 5% of archaeal amoA, bacterial amoA, nifH and nosZ OTUs were significantly different among these crops, but the largest differences observed at each site were found between maize and the two perennial grasses. Quantitative PCR revealed that the abundance of the nifH gene was significantly higher in the perennial grasses than in maize, and we also found significantly higher total N in the perennial grass soils than in maize. Thus, we conclude that cultivation of these perennial grasses, instead of maize, as bioenergy feedstocks can improve soil ecosystem nitrogen sustainability by increasing the population size of N-fixing bacteria. PMID:22891790

  8. Soil physical and hydrological properties under three biofuel crops in Ohio

    SciTech Connect

    Bonin, Catherine; Lal, Dr. Rattan; Schmitz, Matthias

    2012-01-01

    While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60% lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended to be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.

  9. Towards a Process-based Representation of Annual Crops Within the Land Surface Model JULES

    NASA Astrophysics Data System (ADS)

    van den Hoof, C.; Vidale, P.

    2008-05-01

    The purpose of this work is to introduce a generic crop structure within the Joint UK Land surface Exchange Scheme JULES (Cox, 1998) that is able to evaluate the interaction between growing crops and the environment at large scales for a wide range of atmospheric conditions. JULES was designed to simulate land surface processes in natural ecosystems. The importance of representing agricultural land within global biosphere models has been pointed out in many studies (De Noblet-Ducoudre et al., 2004; Bondeau 2005 et al.). Prior to any model development, the sensitivity of JULES to morphological and physiological differences between natural vegetation and crops has been investigated by reparameterising a natural C3 grass into a C3 crop. For a case study of fallow versus wheat at Grignon (France), the model output shows important soil water savings after crop harvest at the beginning of the summer. Owing to the lack of a rooting system, the deeper soil moisture cannot contribute anymore to the moisture flux to the atmosphere. On a shorter timescale, the harvest, and by consequence the sudden appearance of bare soil, also disrupt the energy and momentum fluxes between surface and atmosphere. Having established the sensitivity of the JULES system to a crop-like forcing, some components from the crop model SUCROS (Goudriaan and van Laar, 1994) that are relevant to the global water, energy and carbon cycles, have been introduced in JULES. The new version of JULES, denoted by JULES-SUCROS, incorporates crops and natural vegetation within a single modelling framework, without discontinuity in the photosynthesis-assimilation scheme between both vegetation types. Simulations have been performed with JULES-SUCROS for wheat at the Grignon site in current and doubled CO2 atmospheric conditions. Changing atmospheric conditions in JULES-SUCROS affects the sowing date and the length of the growing season. The results show that the positive effect of the CO2 fertilisation partly counterbalances the negative effect on biomass production of a shorter season due to higher temperatures. Each plant organ however responds differently to these changes. The growth of an organ is affected by the environmental conditions, such as moisture availablity, temperature, atmospheric humudity deficit, amount of photosynthetic active radiation, at the time of its development, which is organ specific. The energy and momentum fluxes respond also to the faster and earlier crop development. Finally important water savings are noticed in the deeper soil layers; the crop is now harvested before the evaporative demand of the atmosphere becomes very large. This model structure allows for further development into crop management and environmental change impact studies. Once coupled back to a General Circulation Model, the fully calibrated and validated JULES-SUCROS can be used to analyse the feedback of crop production on the ecosystem with an emphasis on water availability and sustainability.

  10. AgRISTARS: Soil moisture/early warning and crop condition assessment. Interface control document

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The interactions and support functions required between the early warning/crop condition assessment (EW/CCA) project and soil moisture (SM) project are defined. The EW Project aims to develop, test and evaluate techniques and procedures for adapting remote sensing technology to provide early warning of events and the timely assessment of those factors which affect the quality and quantity of production of economically important crops. Those techniques to augment and reinforce the current assessment activities are to be developed to improve the definition of the relationship between the plant(s) and its environment. This assessment and evaluation will certainly include the need for soil moisture measurement and estimation. The SM Project aims to develop, test, and evaluate techniques and procedures to measure or predict soil moisture in the root zone using both contact and remote sensors.

  11. Implementation of Sustainable Soil Management Practices to Improve Crop Production in the Different Ethiopian Agro Systems

    NASA Astrophysics Data System (ADS)

    García Moreno, R.; Gameda, S.; Diaz Alvarez, M. C.; Selasie, Y. G.

    2012-04-01

    Agriculture in Ethiopia is one of first priority since close to 10 In this context, the Ethiopian crop production faces to the following soil management challenges: lack of updated soil data, macro and micro nutrient depletion, acidity, salinity and soil surface erosion and crusting. One of the biggest issues is the loss of arable land, above 137 T/yr, reaching during some particularly dried periods until 300 T/yr. In this context, the authors constituted a working group of experts from Spanish and Ethiopian universities, local producers and international and governmental organisms to analyse the problems related to the different agro ecological zones found in Ethiopia and the management practices of different local producers. The study produced the trends to implement in the different areas to improve soil management practices in order to contribute to increase the crop production mainly to achieve food security problems. The analyse produced different working fields for the next years for addressing soil degradation, improving land resources management practices, increasing agricultural productivity, updating the available soil data, developing an international program of education, transferring of knowledge from similar study cases and implementing economical tools to help producers to assure income after severe edapho-climatic events. The practical work and the projects developed for the next period is addressed to smallholder farms belonging to the different 34 agro ecological zones identified in Ethiopia, each of them with very specific environmental, cultural and soil management practices.

  12. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-06-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for the rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emission) over a complete year, as well as the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40% and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.087 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effect from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4 and N2O and increased soil carbon sequestration, resulting in the lowest NEGE (3.05-5.00 Mg CO2-eq ha-1 yr-1). Accordingly, water-saving GCRPS with organic fertilizer amendments was considered the most promising management regime for simultaneously achieving relatively high grain yield and reduced net greenhouse gas emission.

  13. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-11-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emissions) over a complete year, and the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), and solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40 and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.09 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effects from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4 and N2O and increased soil carbon sequestration, resulting in the lowest NEGE (3.05-5.00 Mg CO2-eq ha-1 yr-1). Accordingly, water-saving GCRPS with organic fertilizer amendments was considered the most promising management regime for simultaneously achieving relatively high grain yield and reduced net greenhouse gas emission.

  14. Sulfamethazine sorption to vegetative filter strip and row crop soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Veterinary antibiotic (VA) presence in the environment, often associated with land application of manure, has generated significant interest in VA fate and transport in soil. However, few studies have focused on land management practices, such as vegetative filter strips, that might mitigate VA loss...

  15. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    SciTech Connect

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practices [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].

  16. Evaluating energy sorghum harvest thresholds and tillage cropping systems to offset negative environmental impacts and harvesting equipment-induced soil compaction

    NASA Astrophysics Data System (ADS)

    Meki, M. N.; Snider, J. L.; Kiniry, J. R.; Raper, R. L.; Rocateli, A. C.

    2011-12-01

    Energy sorghum (Sorghum bicolor L. Moench) could be the ideal feedstock for the cellulosic ethanol industry because of its robust establishment, broader adaptability and drought tolerance, water and nutrient use efficiency, and the relatively high annual biomass yields. Of concern, however, is the limited research data on harvest thresholds, subsequent environmental impacts and the potential cumulative effects of harvesting equipment-induced soil compaction. Indiscriminate harvests of the high volume wet energy sorghum biomass, coupled with repeated field passes, could cause irreparable damage to the soil due to compaction. Furthermore, biomass harvests result in lower soil organic matter returns to the soil, making the soil even more susceptible to soil compaction. Compacted soils result in poor root zone aeration and drainage, more losses of nitrogen from denitrification, and restricted root growth, which reduces yields. Given the many positive attributes of conservation tillage and crop residue retention, our research and extension expectations are that sustainable energy sorghum cropping systems ought to include some form of conservation tillage. The challenge is to select cropping and harvesting systems that optimize feedstock production while ensuring adequate residue biomass to sustainably maintain soil structure and productivity. Producers may have to periodically subsoil-till or plow-back their lands to alleviate problems of soil compaction and drainage, weeds, insects and disease infestations. Little, however, is known about the potential impact of these tillage changes on soil productivity, environmental integrity, and sustainability of bioenergy agro-ecosystems. Furthermore, 'safe' energy sorghum feedstock removal thresholds have yet to be established. We will apply the ALMANAC biophysical model to evaluate permissible energy sorghum feedstock harvest thresholds and the effects of subsoil tillage and periodically plowing no-tilled (NT) energy sorghum fields. The presentation will provide long-term insights into the sustainability of the proposed interventions with regards to 'safe' harvest thresholds, feedstock yields, SOC storage and rate of change, and sediment and nutrient (N&P) losses. Model calibration and validation datasets have already been compiled from rainfed and irrigated energy sorghum field studies conducted in Arkansas and Alabama during the years: 2008 to 2010. We compiled energy sorghum crop parameters based on data extracted from the literature, expert judgment and field experiments. Simulations will be made for combinations of biomass harvest rates, tillage systems, weather, soil type, and dryland production over a 51-year time series (1960-2010).

  17. The Effect of Long-Term Continuous Cropping of Black Pepper on Soil Bacterial Communities as Determined by 454 Pyrosequencing

    PubMed Central

    Xiong, Wu; Li, Zhigang; Liu, Hongjun; Xue, Chao; Zhang, Ruifu; Wu, Huasong; Li, Rong; Shen, Qirong

    2015-01-01

    In the present study, 3 replanted black pepper orchards with continuously cropping histories for 10, 21, and 55 years in tropical China, were selected for investigating the effect of monoculture on soil physiochemical properties, enzyme activities, bacterial abundance, and bacterial community structures. Results showed long-term continuous cropping led to a significant decline in soil pH, organic matter contents, enzymatic activities, and resulted in a decrease in soil bacterial abundance. 454 pyrosequencing analysis of 16S rRNA genes revealed that the Acidobacteria and Proteobacteria were the main phyla in the replanted black pepper orchard soils, comprising up to 73.82% of the total sequences; the relative abundances of Bacteroidetes and Firmicutes phyla decreased with long-term continuous cropping; and at genus level, the Pseudomonas abundance significantly depleted after 21 years continuous cropping. In addition, bacterial diversity significantly decreased after 55 years black pepper continuous cropping; obvious variations for community structures across the 3 time-scale replanted black pepper orchards were observed, suggesting monoculture duration was the major determinant for bacterial community structure. Overall, continuous cropping during black pepper cultivation led to a significant decline in soil pH, organic matter contents, enzymatic activities, resulted a decrease in soil bacterial abundance, and altered soil microbial community membership and structure, which in turn resulted in black pepper poor growth in the continuous cropping system. PMID:26317364

  18. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China.

    PubMed

    Zhao, Jun; Zhang, Ruifu; Xue, Chao; Xun, Weibing; Sun, Li; Xu, Yangchun; Shen, Qirong

    2014-02-01

    Microbes are key components of the soil environment, playing an important role in maintaining soil health, sustainability, and productivity. The composition and structure of soil bacterial communities were examined in winter wheat-rice (WR) and winter wheat-maize (WM) cropping systems derived from five locations in the Low-Middle Yangtze River plain and the Huang-Huai-Hai plain by pyrosequencing of the 16S ribosomal RNA gene amplicons. A total of 102,367 high quality sequences were used for multivariate statistical analysis and to test for correlation between community structure and environmental variables such as crop rotations, soil properties, and locations. The most abundant phyla across all soil samples were Proteobacteria, Acidobacteria, and Bacteroidetes. Similar patterns of bacterial diversity and community structure were observed within the same cropping systems, and a higher relative abundance of anaerobic bacteria was found in WR compared to WM cropping systems. Variance partitioning analysis revealed complex relationships between bacterial community and environmental variables. The effect of crop rotations was low but significant, and interactions among soil properties, locations, and crop rotations accounted for most of the explained variation in the structure of bacterial communities. Soil properties such as pH, available P, and available K showed higher correlations (positive or negative) with the majority of the abundant taxa. Bacterial diversity (the Shannon index) and richness (Chao1 and ACE) were higher under WR than WM cropping systems. PMID:24276539

  19. PRESERVING SOIL AND CROP RESOURCES BY INCREASING CROPPING INTENSITY AND DECREASING TILLAGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This editorial introduces a special issue of the journal dealing with soil management in the Great Plains. Five of the papers in this issue are the result of a multi-location study comparing traditional and alternative management practices at eight locations in the Great Plains, two of the papers co...

  20. Soil, Water, and Greenhouse-gas Impacts of Alternative Biomass Cropping Systems

    NASA Astrophysics Data System (ADS)

    Schulte Moore, L. A.; Bach, E.; Cambardella, C.; Hargreaves, S.; Helmers, M.; Hofmockel, K.; Isenhart, T.; Kolka, R. K.; Ontl, T.; Welsh, W.; Williams, R.; Landscape Biomass Team

    2010-12-01

    Through the 2008 Energy Independence and Security Act and other state and federal mandates, the U.S. is embarking on an aggressive agenda to reduce dependency on fossil fuels. While grain-derived ethanol will be used to largely meet initial renewable fuels targets, advanced biofuels derived from lignocellulosic materials are expected to comprise a growing proportion of the renewable energy portfolio and provide a more sustainable solution. As part of our interdisciplinary research, we are assessing the environmental impacts of four lignocellulosic biomass cropping systems and comparing them to a conventional corn cropping system. This comparison is conducted using a randomized, replicated experiment initiated in fall 2008, which compares the five cropping systems across a toposequence (i.e., floodplain, toeslope, backslope, shoulder, summit). In addition to assessing herbaceous and woody biomass yields, we are evaluating the environmental performance of these systems through changes in water quality, greenhouse-gas emissions, and carbon pools. Initial results document baseline soil parameters, including the capacity of the soils to sequester carbon across the toposequence, and the impacts of landscape heterogeneity and cropping system on soil moisture and nitrate-nitrogen levels in the vadose zone. Additional results on greenhouse-gas emissions and carbon dynamics are forthcoming from this year’s field research. The fuller understanding of the environmental performance of these systems will help inform federal and state policies seeking to incentivize the development of a sustainable bioenergy industry.

  1. Biogas digestates affect crop P uptake and soil microbial community composition.

    PubMed

    Hupfauf, Sebastian; Bachmann, Silvia; Fernández-Delgado Juárez, Marina; Insam, Heribert; Eichler-Löbermann, Bettina

    2016-01-15

    Fermentation residues from biogas production are known as valuable organic fertilisers. This study deals with the effect of cattle slurry, co-digested cattle slurry, co-digested energy crops and mineral fertilisers on the activity and composition of soil microbiota. Furthermore, the effect of solid-liquid separation as a common pre-treatment of digestate was tested. The fertilising effects were analysed in an 8-week pot experiment on loamy sand using two crops, Amaranthus cruentus and Sorghum bicolor. Amaranth, as a crop with significantly higher P uptake, triggered stress for occurring soil microbes and thereby caused a reduction of microbial biomass C in the soil. Irrespective of the crop, microbial basal respiration and metabolic quotient were higher with the digestates than with the untreated slurry or the mineral treatments. Community level physiological profiles with MicroResp showed considerable differences among the treatments, with particularly strong effects of solid-liquid separation. Similar results were also found on a structural level (PCR-DGGE). Alkaline phosphatase gene analyses revealed high sensitivity to different fertilisation regimes. PMID:26410342

  2. Effects of long-term irrigation with untreated municipal wastewater on soil properties and crop quality.

    PubMed

    Aydin, Mehmet Emin; Aydin, Senar; Beduk, Fatma; Tor, Ali; Tekinay, Arzu; Kolb, Marit; Bahadir, Müfit

    2015-12-01

    Irrigating crops with untreated wastewater leads to elevated concentrations of heavy metals both in soil and cultivated crops. The current study was designed to determine heavy metal (i.e., Pb, Cd, Cr, Cu, Ni, Zn, Hg) accumulation in Konya soils in selected nine sites irrigated with wastewater for over 40 years. Non-irrigated soil samples and soil samples irrigated with well water were taken as control samples. Transport of these pollutants to the wheat samples cultivated in the investigated site was also examined. The obtained results reveal that high alkaline properties and clay structure of Konya soil reduce the mobility of contaminants and cause accumulation in the top layer of soil. Intense effect of wastewater irrigation on soil EC was determined. The highest concentrations of Pb, Cr, Cu, Cd, Zn, Ni, and Hg in wastewater irrigated soil were 5.32, 37.1, 31.5, 11.4, 91.5, 134, and 0.34 mg kg(-1), respectively. Wastewater irrigated soils were strongly polluted by means of Cd (8.23-11.6 mg kg(-1)) and moderately to strongly polluted by means of Ni (47.7-134 mg kg(-1)), exceeding Maximum Admissible Concentrations for Trace Elements in Agricultural Soils and Sewage Sludge Regulation limit values of Turkey. Maximum concentrations found for Pb, Cr, Cu, Cd, Zn, and Ni in wastewater irrigated wheat grain were 8.44, 1.30, 9.10, n.d, 29.31, and 0.94 mg kg(-1), respectively. Besides, Hg was not detected in any samples of wheat grain. Based on the regulation of Turkish Food Codex, Pb contamination in wheat samples grown in the sampling site was evidenced. PMID:26250819

  3. The potential of agricultural practices to increase C storage in cropped soils: an assessment for France

    NASA Astrophysics Data System (ADS)

    Chenu, Claire; Angers, Denis; Métay, Aurélie; Colnenne, Caroline; Klumpp, Katja; Bamière, Laure; Pardon, Lenaic; Pellerin, Sylvain

    2014-05-01

    Though large progress has been achieved in the last decades, net GHG emissions from the agricultural sector are still more poorly quantified than in other sectors. In this study, we examined i) technical mitigation options likely to store carbon in agricultural soils, ii) their potential of additional C storage per unit surface area and iii) applicable areas in mainland France. We considered only agricultural practices being technically feasible by farmers and involving no major change in either production systems or production levels. Moreover, only currently available techniques with validated efficiencies and presenting no major negative environmental impacts were taken into account. Four measures were expected to store additional C in agricultural soils: - Reducing tillage: either a switch to continuous direct seeding, direct seeding with occasional tillage once every five years, or continuous superficial (<15 cm) tillage. - Introducing cover crops in cropping systems: sown between two cash crops on arable farms, in orchards and vineyards (permanent or temporary cover cropping) . - Expanding agroforestry systems; planting of tree lines in cultivated fields and grasslands, and hedges around the field edges. - Increasing the life time of temporary sown grasslands: increase of life time to 5 years. The recent literature was reviewed in order to determine long term (>20yrs) C storage rates (MgC ha-1 y-1,) of cropping systems with and without the proposed practice. Then we analysed the conditions for potential application, in terms of feasibility, acceptance, limitation of yield losses and of other GHG emissions. According to the literature, additional C storage rates were 0.15 (0-0.3) MgC ha-1 y-1 for continuous direct seeding, 0.10 (0-0.2) MgC ha-1 y-1for occasional tillage one year in five, and 0.0 MgC ha-1 y-1 for superficial tillage. Cover crops were estimated to store 0.24 (0.13-0.37) MgC ha-1 y-1 between cash crops and 0.49 (0.23-0.72) MgC ha-1 y-1 when associated with vineyards. Hedges (i.e 60 m ha-1) stored 0.15 (0.05-0.26) Mg C ha-1 y-1. Very few estimates were available for temperate agroforestry system, and we proposed a value of 1.01 (0.11-1.36) Mg C ha-1 y-1for C stored in soil and in the tree biomass for systems comprising 30-50 trees ha-1. Increasing the life time of temporary sown grassland increased C stocls by 0.11 (0.07-0.22) Mg C ha-1 y-1. In general, practices with increased C inputs to soil through additional plant biomass (agroforestry, hedges and cover crops) resulted in higher additional C storage rates, while the reduction of soil organic matter mineralisation through reduced tillage seemed less effective. When applied to the French agricultural sector, excluding areas with soils with major technical constraints or negative environmental consequences (e.g. poorly aerated soils with high N2O emissions), the measures considered here allowed to increase French soil C stocks by 0 to more than 1 Tg C y-1. However, our estimates are associated with high uncertainties, due to the high variability in soil C storage associated with pedo-climatic conditions and cropping systems, and on the very few studies available for some practices such as agroforestry under temperate conditions.

  4. Anaerobic Soil Disinfestation (ASD) Combined with Soil Solarization for Root-Knot Nematode Control in Vegetable and Ornamental Crops in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic soil disinfestation (ASD) combined with soil solarization continues to be evaluated for management of plant-parasitic nematodes in vegetable and ornamental crops in Florida. ASD combines organic amendments and soil saturation to stimulate microbial activity and create anaerobic conditions...

  5. Soil microbial biomass and mineralizable carbon as a function of crop rotation and soil acidity amendment in a no-tillage system in Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical climate and weathered soil conditions create significant challenges for increasing soil organic matter content. However, crop management strategies could affect short-term dynamics of active fractions of soil organic matter. Thus, our aim was to evaluate the microbial biomass and mineraliza...

  6. Improvement of remote sensing of crop residue cover by accounting for green vegetation and soil spectral properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage methods are beneficial as they disturb soil less and leaves increased crop residue cover (CRC) after planting on the soil surface. CRC helps reduce soil erosion, evaporation, and the need for tillage operations in fields. Greenhouse gas emissions are reduced to due to less fos...

  7. SOIL CARBON DIOXIDE EMISSION AND CARBON SEQUESTRATION AS AFFECTED BY IRRIGATION, TILLAGE, CROPPING SYSTEM, AND NITROGEN FERTILIZATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices can influence soil CO2 emission and C sequestration in cropland and therefore on global warming. We examined the effects of irrigation systems (irrigated vs. non-irrigated) and soil and crop management practices on soil CO2 flux, temperature, and water and C contents at the 0 to...

  8. This guide discusses how to establish a successful alfalfa crop, including soil requirements, seedbed preparation, seeding, the pros

    E-print Network

    Dyer, Bill

    for Montana Crops" (EB 161), available at your local Extension office or on the web at http and early vigorous seedling growth. Firm seedbeds also reduce the possibility of planting too deep and hold to erosion. Soil requirements Alfalfa grows best on deep soils with adequate internal drainage. Deep soils

  9. MODELING EFFECTS OF TILL/NO-TILL AND SURFACE CROP RESIDUES ON SOIL WATER, TEMPERATURE AND ENERGY BALANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No-tillage and crop residue management is an important practice for conserving soil and water. Surface residue amount and architecture (flat vs. standing) significantly impact infiltration, runoff, and erosion, as well as evaporation, soil water storage, and soil temperature.Residue effects on the s...

  10. Wheat varietal selection and annual vs. perennial growth habit impact soil microbes and apple replant disease supression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat can be grown as a cover crop to disrupt soil-borne pathogens and reduce disease in subsequent crops. Modification of the soil microbial community resulting from cover crop cultivation is believed to contribute to decreases in disease incidence. Varietal differences can impact soil microbial co...

  11. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    SciTech Connect

    Ian Bonner; David Muth

    2013-09-01

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented. The analysis has shown that the feedstock production systems are capable of simultaneously increasing productivity and soil sustainability.

  12. DEPTH DISTRIBUTION OF SOIL ORGANIC MATTER AND ITS CONSEQUENCES ON SOIL PROPERTIES AND CROP PRODUCTIVITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic matter is a key component of soil quality that sustains many key soil functions by providing the energy, substrates, and biological diversity to support biological activity, which affects aggregation (important for habitat space, oxygen supply, and preventing soil erosion), infiltration...

  13. Effects of coal-fired thermal power plant discharges on agricultural soil and crop plants.

    PubMed

    Ajmal, M; Khan, M A

    1986-04-01

    The physicochemical properties of the upstream and downstream waters from the Upper Ganga canal, discharged cooling tower water, machine washings, and scrubber and bottom ash effluents of a 530 MW Kasimpur coal-fired thermal power plant have been determined, and their effects directly on fertile soil and indirectly on pea (Pisum sativam) and wheat (Triticum aestivum) crops have also been studied. The effluents were found to be alkaline in nature. The scrubber and bottom ash effluent was found to contain large amounts of solids and had high biochemical and chemical oxygen demands. All the effluents were found to be responsible for altering the chemical composition of the soil. The soils irrigated with the different effluents exhibited an increase in pH, organic matter, calcium carbonate, water-soluble salts, cation exchange capacity, electrical conductivity, and nitrogen and phosphorus contents while potassium content decreased, probably due to being leached to the lower layers of the soil. The effects of 100, 50, and 0% (tap water control) dilutions of cooling tower, machine washings, and scrubber and bottom ash effluents on the germination and growth of pea and wheat crops were also monitored. Using the undiluted effluents, there was 100% germination for both the crops when the irrigation was done with cooling tower effluent. The germination was restricted to 90% for the two crops when irrigated with machine washings effluent, and to 80 and 70% for pea and wheat, respectively, when irrigated with scrubber and bottom ash effluent. The samples of upstream and downstream canal water were also used for irrigating soils with and without crop plants in order to ascertain the impact of the effluents on the canal water and its subsequent effect on the crops. The soils irrigated with downstream canal water were found to contain slightly more calcium carbonate, phosphorus, and ammonia-nitrogen than those receiving upstream canal water. Though 100% germination was obtained in both the cases, the growth of the plants irrigated with the downstream canal water was found to be slightly reduced. PMID:3956466

  14. Soil Quality in a Pecan Agroforestry System is Improved with Intercropped Kura Clover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intercropping alleys of agroforestry systems provides an income source until the tree crop produces harvestable yields. However, cultivation of annual crops decreases soil organic matter and increases soil erosion, especially on sloping landscapes. Perennial crops maintain a continuous soil cover, m...

  15. The drought of 2012: Effects on photosynthesis and soil respiration in bioenergy cropping systems of the Midwest USA

    NASA Astrophysics Data System (ADS)

    Cruse, M.; Kucharik, C. J.

    2012-12-01

    Climate change is predicted to increase the frequency and severity of drought conditions across the central US. This heightened risk on producers and economies alike also supports the need to improve our understanding of how extreme environmental conditions impact other ecosystem services such as carbon sequestration, which is directly linked to net ecosystem exchange (NEE). In doing so, the scientific community aims to improve the realism of ecosystem models that are relied upon to project changes in large scale and long-term land surface-atmosphere carbon exchange as they are affected by continued land management change and climate change. One such large-scale land management change of the next several decades in the Midwest US could be the expansion of bioenergy cropping systems across the landscape. A wide range of bioenergy cropping systems (e.g., miscanthus, switchgrass, diverse prairie, hybrid poplar) are now targeted to support a feedstock supply chain for production of cellulosic biofuels. Many of these agroecosystems have only recently begun to appear as functional types in dynamic ecosystem models, and a general lack of observational data across a wide range of soils and climate has hampered model development and validation. In response to this shortcoming, from 2009 through 2012, component measurements of ecosystem carbon exchange (total soil respiration and leaf level photosynthetic rates) have been made along with measurements of other soil and meteorological variables in three model bioenergy cropping systems (continuous corn, hybrid poplar and switchgrass) at the Great Lakes Bioenergy Research Center (GLBRC) field trial at Arlington, Wisconsin. The three cropping systems encompass a wide range of growth (e.g. C3 vs. C4, annual vs. perennial) and management (e.g., tillage, harvesting) strategies that are predicted to impart different controls on NEE given likely varying biological responses to extreme weather events. Throughout the study period, the field site has been exposed to extreme variations in precipitation and temperature, from what might be considered an ideal/wet year in 2010 to a catastrophic drought in 2012. Measurements of soil temperature during the growing season of 2012 show an increase of 1.7°C to 4.6°C when compared to 2010 and concurrent measurements of volumetric water content decreased from 0.34 in 2010 to 0.05 in 2012. We compare and contrast component measurements of NEE (i.e. soil respiration and leaf level photosynthesis), using chamber-based methods in the field, and their responses to environmental conditions. Some preliminary results show that soil respiration measurements during summer 2012 exhibited a 20% increase to a 43% decrease compared to similar measurements taken in 2010. During the middle of the growing season, the maximum rate of photosynthesis was reduced in 2012 in comparison to 2010 by 36%, 53% and 66% for corn, switchgrass and hybrid poplar, respectively, for light saturated leaves with a temperature near 30°C. These data will aid in the development of better numerical functions in ecosystem models that aim to represent the influence of temperature and soil water potential on the exchange of CO2 between the land surface and the atmosphere in agroecosystems.

  16. Anaerobic digestate from biogas production as a resource for improving soil fertility: effects on crop yield and soil properties

    NASA Astrophysics Data System (ADS)

    Pastorelli, Roberta; Lagomarsino, Alessandra; Vignozzi, Nadia; Valboa, Giuseppe; Papini, Rossella; Fabiani, Arturo; Simoncini, Stefania; Mocali, Stefano; Piccolo, Raimondo

    2013-04-01

    Soil fertility is fundamental in determining crops productivity in all farming systems. Production of biogas through anaerobic digestion of energy crops generates residues that can represent a valuable resource to sustain and improve soil fertility and to increase soil organic matter content. Residues from anaerobic digestion contain organic fractions and available nutrients, that can thus be returned to the cultivation soil as fertilizer and soil conditioner. However, some unknown aspects of digested residues utilization remain to explore: i) the nutrient supply and the real potential for mineral fertilization substitution, ii) the impact on the structure and functioning of soil microbial communities, iii) the direct and indirect effects on soil structure, organic matter and C mineralization. The aim of the present research was to gain a better understanding of these aspects, evaluating the effects of anaerobic digestate application on soil properties and maize yield. With the main focus of comparing mineral fertilization (250 Kg N ha-1) with digested residues addition (at the dose of 25 % and 50 % of mineral fertilizer), a triplicate sets of plots were designed in a field experiment on a silty-clay loam soil in the southern Po Valley (Italy). The amount of applied residues was calculated according to its N content in order to fertilizer each plots with the same amount of total nitrogen. Residues from digestion showed a N content of 0.4 % (60 % as N-NH4) and a C/N ratio of 3. Changes in soil quality after residues application were studied with a holistic approach, involving microbiological, physical and chemical aspects of soil fertility. In particular, we determined: the abundance and diversity of bacterial and fungal soil communities; the soil organic matter content, its distribution within soil aggregates and the C mineralization potential; cation exchange capacity; the main macro and micro nutrients; bulk density; aggregate stability. No significant differences among treatments were registered in the above ground maize biomass. Molecular analysis conducted on microbial soil communities suggested that the application of digested residues to soil contributes to substantial modifications of both bacterial and fungal community structure. Soil organic C and total N increased in soils treated with digested residues addition, with no significant differences between the two doses of digestate. Cation exchange capacity did not show significant differences among treatments, remaining stable during the maize vegetative cycle. Differently, some variations occurred in the exchangeable cation pool. In particular, K content increased under digestate treatments, while Na and Mg contents increased with time irrespective of the fertilization treatment. No significant variations were observed in soil microelement levels, except for an increase in Zn content at the highest digestate dose. Moreover, digested residue addition had a positive impact on aggregates stability. From the first results, the absence of negative effects in plant productivity and soil fertility after residues application, at both doses, is a promising indication for the potential use of anaerobic digestate as substitute of mineral fertilizers.

  17. Scenarios of organic amendment use to increase soil carbon stocks and nitrogen availability in cropped soils at the territory scale: spatial and temporal simulations with the NCSOIL/CERES-EGC crop model

    NASA Astrophysics Data System (ADS)

    Noirot-Cosson, Paul-Emile; Vaudour, Emmanuelle; Aubry, Christine; Gilliot, Jean-Marc; Gabrielle, Benoît; Houot, Sabine

    2014-05-01

    The application of Exogenous Organic Matter (EOM) on cropped soils is a promising way to increase soil organic carbon and available nitrogen for crops while recycling organic agricultural and urban wastes. In peri-urban territories where the specialization of agriculture limits the resource in organic amendments since livestock farming is scarce, a better management of EOM land application from all origins at the territory scale could be thought to maximize their benefits. The objective was to predict the effect of various EOM types and uses on C and N fluxes and crop production for each homogeneous spatial unit of the territory, first step for the territorial optimization of EOM land application. The study area, located 30km west of Paris, covers 221km² and is mostly characterized by croplands. The effects of repeated EOM applications were studied using a mechanistic crop model: CERES-EGC accounting for soil characteristics, crop production systems, and climate. The whole territory was divided into homogeneous spatial units, each defined by soil and crop production system characteristics. Four different soil types were characterized, mapped and parameterized in the model. Kinetics of C and N mineralization during soil incubations were used to optimize soil organic matter characteristics and parameters in the sub-model NCSOIL of CERES-EGC. Crop production systems were defined and spatially inferred using the French land parcel identification system. Climatic data measured on the territory were used to make a 20 year-meteorological scenario. Based on these initial informations, crop yields and C and N fluxes were simulated for the actual crop productions and soil type combinations of the territory. Then, different scenarios of EOM uses were also simulated based on different EOM types, added quantities and frequencies of application within the crop successions respecting the 170kgN/ha/yr legal limit. All the parameters studied, crop yields, N outputs, carbon storage increased with increasing amounts of applied EOM but to different extents depending on added EOM, soil type and crop production system. Based on all the simulated results obtained, the EOM land application will be optimized to maximize carbon storage, crop production and limit N pollutions at the territory scale, taking into account other constraints such as EOM availability.

  18. Assessment of the Impacts of Rice Cropping through a Soil Quality Index

    NASA Astrophysics Data System (ADS)

    Sione, S. M.; Wilson, M. G.; Paz González, A.

    2012-04-01

    In Entre Ríos (Argentina), rice cultivation is carried out mainly in Vertisols. Several factors, such as the use of sodium bicarbonate waters for irrigation, the excessive tillage required, and the lack of proper planning for land use, mainly regarding the crop sequence, cause serious impacts on the soil and have an effect on sustainable agriculture. Thus, the development of methodologies to detect these impacts has become a priority. The aim of this study was to standardize soil quality indicators (SQI) and integrate them into an index to evaluate the impacts of the rice production system on soil, at the farm scale. The study was conducted in farms of the traditional rice cultivation area of Entre Ríos province, Argentina. We evaluated a minimum data set consisting of six indicators: structural stability and percolation, total organic matter content (TOM), exchangeable sodium content (ESC), electrical conductivity of saturation extract (ECe) and reaction of the soil (pH). From a database from 75 production lots, we determined the reference values, i.e. limits to ensure the maintenance of long-term productivity and the allowable thresholds for each indicator. The indicators were standardized and integrated into a soil quality index. Five ranges of soil quality were established: very low, low, moderate, high and very high, depending on the values assigned to each SQI. This index allowed differentiating the impact of different crop sequences and showed that the increased participation of rice crop in the rotation resulted in a deterioration of the soil structure due to the decrease in the TOM and to the cumulative increase in ESC caused by the sodium bicarbonate water used for irrigation. Soil management strategies should aim to increase TOM values and to reduce the input of sodium to the exchange complex. A rotation with 50% to 60% of pasture and 40 to 50% of agriculture with a participation of rice lower than 20 to 25% would allow the sustainability of the production system. The use of the so called SQI, i.e. soil quality index, for rice crop production will allow generating early warning of degradation and thus adopting recovery measures.

  19. The Effects of Manure and Nitrogen Fertilizer Applications on Soil Organic Carbon and Nitrogen in a High-Input Cropping System

    PubMed Central

    Ren, Tao; Wang, Jingguo; Chen, Qing; Zhang, Fusuo; Lu, Shuchang

    2014-01-01

    With the goal of improving N fertilizer management to maximize soil organic carbon (SOC) storage and minimize N losses in high-intensity cropping system, a 6-years greenhouse vegetable experiment was conducted from 2004 to 2010 in Shouguang, northern China. Treatment tested the effects of organic manure and N fertilizer on SOC, total N (TN) pool and annual apparent N losses. The results demonstrated that SOC and TN concentrations in the 0-10cm soil layer decreased significantly without organic manure and mineral N applications, primarily because of the decomposition of stable C. Increasing C inputs through wheat straw and chicken manure incorporation couldn't increase SOC pools over the 4 year duration of the experiment. In contrast to the organic manure treatment, the SOC and TN pools were not increased with the combination of organic manure and N fertilizer. However, the soil labile carbon fractions increased significantly when both chicken manure and N fertilizer were applied together. Additionally, lower optimized N fertilizer inputs did not decrease SOC and TN accumulation compared with conventional N applications. Despite the annual apparent N losses for the optimized N treatment were significantly lower than that for the conventional N treatment, the unchanged SOC over the past 6 years might limit N storage in the soil and more surplus N were lost to the environment. Consequently, optimized N fertilizer inputs according to root-zone N management did not influence the accumulation of SOC and TN in soil; but beneficial in reducing apparent N losses. N fertilizer management in a greenhouse cropping system should not only identify how to reduce N fertilizer input but should also be more attentive to improving soil fertility with better management of organic manure. PMID:24830463

  20. Pesticide fate modeling in soils with the crop model STICS: Feasibility for assessment of agricultural practices.

    PubMed

    Queyrel, Wilfried; Habets, Florence; Blanchoud, Hélène; Ripoche, Dominique; Launay, Marie

    2016-01-15

    Numerous pesticide fate models are available, but few of them are able to take into account specific agricultural practices, such as catch crop, mixing crops or tillage in their predictions. In order to better integrate crop management and crop growth in the simulation of diffuse agricultural pollutions, and to manage both pesticide and nitrogen pollution, a pesticide fate module was implemented in the crop model STICS. The objectives of the study were: (i) to implement a pesticide fate module in the crop model STICS; (ii) to evaluate the model performance using experimental data from three sites with different pedoclimatic contexts, one in The Netherlands and two in northern France; (iii) to compare the simulations with several pesticide fate models; and (iv) to test the impact of specific agricultural practices on the transfer of the dissolved fraction of pesticides. The evaluations were carried out with three herbicides: bentazone, isoproturon, and atrazine. The strategy applied in this study relies on a noncalibration approach and sensitivity test to assess the operating limits of the model. To this end, the evaluation was performed with default values found in the literature and completed by sensitivity tests. The extended version of the STICS named STICS-Pest, shows similar results with other pesticide fate models widely used in the literature. Moreover, STICS-Pest was able to estimate realistic crop growth and catch crop dynamic, which thus illustrate agricultural practices leading to a reduction of nitrate and a change in pesticide leaching. The dynamic plot-scale model, STICS-Pest is able to simulate nitrogen and pesticide fluxes, when the hydrologic context is in the validity range of the reservoir (or capacity) model. According to these initial results, the model may be a relevant tool for studying the effect of long-term agricultural practices on pesticide residue dynamics in soil and the associated diffuse pollution transfer. PMID:26556743

  1. Effect of different kinds of crop residues on aggregate-protected soil organic matter fractions.

    NASA Astrophysics Data System (ADS)

    Huisz, A.

    2009-04-01

    Organic matter content of soils determines many important soil properties, such as soil structure, fertility and water-management. To improve its fertility and quality, returning different kinds of organic matter to soil has a long historical tradition. Ameliorating of soil and enhancing its fertility by enhancing its carbon stock with organic matter incorporation (like farmyard manure, crop residues or green manure) are general practices, but the extent of the amelioration depends much on several factors such as quantity, quality of the used organic matters. Quality of soil organic matters is affected by their chemical build-up, which differs by their origin (i.e. plant species); and their decomposability is affected by particle-size, protection by soil aggregates and the extent of their association to mineral surfaces. In our paper we investigated the effect of three different kinds of organic matter incorporation on aggregate-protected organic matter fractions: (1) Maize stem (M), (2) Wheat straw (W), and (3) Maize stem & Wheat straw (MW). Our samples were originated from Keszthely, Western Hungary, where the texture of the investigated soil is Sandy loam, the type of soil is Eutric Cambisol (soil type FAO), or Alfisol (soil type USDA). SOM fractions might be isolated and measured by physical fractionation of soil (Cambardella and Elliott (1992), Jensen et al. (1992)). Firstly, microaggregates were separated according to their particle-size with physical fractionation (i.e. wet sieving) (Six et al. (2000a)). Each sample was pre-treated by capillary wetting and was sieved for 2 min in an analytic sieve shaker machine with the following aperture sizes: 2 mm, 250 ?m, 53 ?m. Therefore 4 fractions were resulted: (1) the >2000 ?m large macro-, (2) the 250-2000 ?m small macro-, (3) the 53-250 ?m microaggregates, and (4) the

  2. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    PubMed

    Bu, Rongyan; Lu, Jianwei; Ren, Tao; Liu, Bo; Li, Xiaokun; Cong, Rihuan

    2015-01-01

    Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils. PMID:26647157

  3. [Effects of rotations and different green manure utilizations on crop yield and soil fertility].

    PubMed

    Yao, Zhi-yuan; Wang, Zheng; Li, Jing; Yu, Chang-wei; Cao, Qun-hu; Cao, Wei-dong; Gao, Ya-jun

    2015-08-01

    A 4-year field experiment was conducted to investigate the influence of three rotation systems and three corresponding leguminous green manure (LGM) application methods on wheat yield and soil properties. The rotation patterns were summer fallow--winter wheat (SW), LGM-- winter wheat (LW) and LGM--spring maize--winter wheat (LMW). The three LGM application methods of LW included: early mulch, early incorporation and late incorporation while the three LGM application methods of LMW were: stalk mulch, stalk incorporation and stalk move-away. The results indicated that for LW, LGM consumed more soil water, thus the wheat yield was not stable. The nitrate storage in 0-200 cm soil after wheat harvest was significantly higher than that of the others, indicating an increasing risk of nitrate leaching. Early mulch under LW had the highest soil organic carbon (SOC) content and storage of SOC (SSOC) in 0-20 cm soil. For LMW, wheat yield was comparatively stable among years, because of higher water storage before wheat seeding, and the nitrate storage in 0-200 cm soil after wheat harvest was significantly lower than LW, which decreased the risk of nitrate leaching. Stalk mulch had higher SOC content in 0-20 cm soil after wheat harvest compared with move-away. In addition, compared with the soil when the experiment started, stalk much also increased SSOC in 0-20 cm soil. In conclusion, LMW with stalk mulch could increase soil water storage, stabilize crop yield, improve soil fertility and decrease 0-200 cm soil nitrate storage. This system could be treated as a good alternative for areas with similar climate. PMID:26685595

  4. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems

    PubMed Central

    Bu, Rongyan; Lu, Jianwei; Ren, Tao; Liu, Bo; Li, Xiaokun; Cong, Rihuan

    2015-01-01

    Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils. PMID:26647157

  5. Cadmium and lead uptake by edible crops grown in a silt loam soil

    SciTech Connect

    Nwosu, J.U.; Linder, G.; Harding, A.K.

    1995-04-01

    There is increasing public concern about health effects resulting from ingestion of food containing toxic metals such as Cd and Pb. For example, a wide range of metabolic disorders and neuropsychological deficits in children have been noted, and chronic exposure to Cd has been linked to kidney failure and bone disease. The potential harm posed by the uptake of heavy metals such as Cd and Pb by plants is dependent on their abundance, mobility and bioaccumulation. Plant uptake of heavy metals was also influenced by soil pH. There is a linear relationship between soil concentrations of heavy metal and concentrations in vegetation around a zinc-lead tailing pond. The ability of the soil to retain metals depends on several factors; pH, cation exchange capacity (CEC), organic matter content, and their specific geochemical properties. Overall, the metal burden of a crop depends on: (a) uptake via the root system; (b) direct foliar uptake and translocation within the plant; and (c) surface deposition of particulate matter. Numerous studies have been conducted with agronomic crops regarding heavy metals in soils and plant uptake from sewage sludge, but only a few studies have dealt with the uptake of heavy metal mixtures in vegetables. This paper reports on germination/emergence, biomass and uptake of Cd and Pb in lettuce and radish grown in a loam soil spiked with known mixtures of CdCl{sub 2} and Pb(NO{sub 3}){sub 2}. Lettuce and radish have been used in this study because they are among the two groups of vegetable crops (leafy and root) consumed by humans. Also, earlier studies have reported that lettuce and radish bioaccumulate Cd and Pb from heavy metal polluted soils. 38 refs., 7 tabs.

  6. Managing soil microbial communities in grain production systems through cropping practices

    NASA Astrophysics Data System (ADS)

    Gupta, Vadakattu

    2013-04-01

    Cropping practices can significantly influence the composition and activity of soil microbial communities with consequences to plant growth and production. Plant type can affect functional capacity of different groups of biota in the soil surrounding their roots, rhizosphere, influencing plant nutrition, beneficial symbioses, pests and diseases and overall plant health and crop production. The interaction between different players in the rhizosphere is due to the plethora of carbon and nutritional compounds, root-specific chemical signals and growth regulators that originate from the plant and are modulated by the physico-chemical properties of soils. A number of plant and environmental factors and management practices can influence the quantity and quality of rhizodeposition and in turn affect the composition of rhizosphere biota communities, microbe-fauna interactions and biological processes. Some of the examples of rhizosphere interactions that are currently considered important are: proliferation of plant and variety specific genera or groups of microbiota, induction of genes involved in symbiosis and virulence, promoter activity in biocontrol agents and genes correlated with root adhesion and border cell quality and quantity. The observation of variety-based differences in rhizodeposition and associated changes in rhizosphere microbial diversity and function suggests the possibility for the development of varieties with specific root-microbe interactions targeted for soil type and environment i.e. designer rhizospheres. Spatial location of microorganisms in the heterogeneous field soil matrix can have significant impacts on biological processes. Therefore, for rhizosphere research to be effective in variable seasonal climate and soil conditions, it must be evaluated in the field and within a farming systems context. With the current focus on security of food to feed the growing global populations through sustainable agricultural production systems there is a need to develop innovative cropping systems that are both economically and environmentally sustainable.

  7. Mapping soils, crops, and rangelands by machine analysis of multitemporal ERTS-1 data. [Kansas and Texas

    NASA Technical Reports Server (NTRS)

    Baumgardner, M. F.; Henderson, J. A., Jr.

    1974-01-01

    ERTS-1 data, obtained during the period 25 August 1972 to 5 September 1973 over a range of test sites in the Central United States, have been used for identifying and mapping differences in soil patterns, species and conditions of cultivated crops, and conditions of rangelands. Multispectral scanner data from multiple ERTS passes over certain test sites have provided the opportunity to study temporal changes in the scene. Multispectral classifications delineating soils boundaries in different test sites compared well with existing soil association maps prepared by conventional means. Spectral analysis of ERTS data was used to identify, maps, and make areal measurements of wheat in western Kansas. Multispectral analysis of ERTS-1 data provided patterns in rangelands which can be related to soils differences, range management practices, and the extent of infestation of grasslands by mesquite (prosopis fuliflora) and juniper (juniperus spp.).

  8. Calculating crop water requirement satisfaction in the West Africa Sahel with remotely sensed soil moisture

    USGS Publications Warehouse

    McNally, Amy; Gregory J. Husak; Molly Brown; Mark Carroll; Funk, Christopher C.; Soni Yatheendradas; Kristi Arsenault; Christa Peters-Lidard; Verdin, James

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission will provide soil moisture data with unprecedented accuracy, resolution, and coverage, enabling models to better track agricultural drought and estimate yields. In turn, this information can be used to shape policy related to food and water from commodity markets to humanitarian relief efforts. New data alone, however, do not translate to improvements in drought and yield forecasts. New tools will be needed to transform SMAP data into agriculturally meaningful products. The objective of this study is to evaluate the possibility and efficiency of replacing the rainfall-derived soil moisture component of a crop water stress index with SMAP data. The approach is demonstrated with 0.1°-resolution, ~10-day microwave soil moisture from the European Space Agency and simulated soil moisture from the Famine Early Warning Systems Network Land Data Assimilation System. Over a West Africa domain, the approach is evaluated by comparing the different soil moisture estimates and their resulting Water Requirement Satisfaction Index values from 2000 to 2010. This study highlights how the ensemble of indices performs during wet versus dry years, over different land-cover types, and the correlation with national-level millet yields. The new approach is a feasible and useful way to quantitatively assess how satellite-derived rainfall and soil moisture track agricultural water deficits. Given the importance of soil moisture in many applications, ranging from agriculture to public health to fire, this study should inspire other modeling communities to reformulate existing tools to take advantage of SMAP data.

  9. Interacting Effects of Heat Stress and Soil Moisture Stress on Crop Yield Losses in Dryland Agriculture

    NASA Astrophysics Data System (ADS)

    Debats, S. R.; Caylor, K. K.; Estes, L. D.; Chaney, N.; Sheffield, J.

    2012-12-01

    Increased interannual variability and greater frequency of extreme events place new pressures on subsistence farmers as a direct result of climate change. Of particular concern are farmers practicing rainfed agriculture in dryland ecosytems, where food security is closely linked to climate. In these areas, an improved understanding of the occurrence of extreme events as well as their effects on crop yields is essential. The main goals of this research are to identify the relative importance and possible coupling of heat stress and soil moisture stress in determining dryland crop yield losses. In particular, we are interested in determining the extent to which irrigation is an effective buffer against drought and heat stress in dryland regions. While irrigation can protect against soil moisture stress, its ability to mitigate heat stress, or the combined effects of the two stresses, is uncertain. Our study focuses on the Eastern and Southern provinces of Zambia as characteristic regions of dryland agriculture. Sites in the study area are identified based on farming type (irrigated versus rainfed). As irrigation is assumed to negate soil moisture stress, this approach enables separate analysis of heat stress and soil moisture stress, as well as their combined effects. To quantify the effects of heat stress, distributions of daily minimum and maximum temperatures are used to identify the frequency and severity of anomalously warm periods and their correlation with resulting crop yield losses. We also utilize Standardized Precipitation Index (SPI) data and soil moisture data derived from the Variable Infiltration Capacity (VIC) macroscale hydrologic model to examine the effects of meteorological drought and hydrological drought, respectively, on crop yields. To quantify crop yield losses, we employ yield estimates derived from the integration of time series of 250 meter resolution Normalized Difference Vegetation Index (NDVI) images collected by the Moderate Resolution Imaging Spectrometer (MODIS) for 11 consecutive growing seasons, beginning in the 2000-2001 season and ending in 2011-2012. The NDVI data also allows us to study the sensitivity of crops to extreme events during particular stages of their lifecycle, as well as triggers for early senescence.

  10. Procedures for the description of agricultural crops and soils in optical and microwave remote sensing studies

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Dobson, M. C.; Schmugge, T.; Hoogeboom, P.; Janse, A. R. P.

    1987-01-01

    This paper describes procedures for characterizing agricultural crops and soils in remote sensing studies. The procedures are based on the accumulated experience of a number of researchers active in this field. Therefore, they represent a compromise between the theoretically desirable and the practically feasible, and should thus be an effective aid in further studies of this type. Although the guidelines were prepared specifically for microwave studies, adjustments were made to render the procedures applicable to optical studies as well. Given the increasing number of research teams involved in remote sensing applied to agriculture, there is an opportunity to acquire a broad data base on soils and crops in various geographic regions. To allow intercomparisons of such data, they must be obtained in a consistent manner. By following the proposed procedures and reporting results using the parameters described here, such intercomparisons should be possible on a continental or a global scale.

  11. Reducing soil erosion and nutrient loss on sloping land under crop-mulberry management system.

    PubMed

    Fan, Fangling; Xie, Deti; Wei, Chaofu; Ni, Jiupai; Yang, John; Tang, Zhenya; Zhou, Chuan

    2015-09-01

    Sloping croplands could result in soil erosion, which leads to non-point source pollution of the aquatic system in the Three Gorges Reservoir Region. Mulberry, a commonly grown cash plant in the region, is traditionally planted in contour hedgerows as an effective management practice to control soil erosion and non-point source pollution. In this field study, surface runoff and soil N and P loss on sloping land under crop-mulberry management were investigated. The experiments consisted of six crop-mulberry treatments: Control (no mulberry hedgerow with mustard-corn rotation); T1 (two-row contour mulberry with mustard-corn rotation); T2 (three-row contour mulberry with mustard-corn rotation); T3 (border mulberry and one-row contour mulberry with mustard-corn rotation); T4 (border mulberry with mustard-corn rotation); T5 (two-row longitudinal mulberry with mustard). The results indicated that crop-mulberry systems could effectively reduce surface runoff and soil and nutrient loss from arable slope land. Surface runoff from T1 (342.13 m(3) hm(-2)), T2 (260.6 m(3) hm(-2)), T3 (113.13 m(3) hm(-2)), T4 (114 m(3) hm(-2)), and T5 (129 m(3) hm(-2)) was reduced by 15.4, 35.6, 72.0, 71.8, and 68.1%, respectively, while soil loss from T1 (0.21 t hm(-2)), T2 (0.13 t hm(-2)), T3 (0.08 t hm(-2)), T4 (0.11 t hm(-2)), and T5 (0.12 t hm(-2)) was reduced by 52.3, 70.5, 81.8, 75.0, and 72.7%, respectively, as compared with the control. Crop-mulberry ecosystem would also elevate soil N by 22.3% and soil P by 57.4%, and soil nutrient status was contour-line dependent. PMID:25957753

  12. Modeling the impact of conservation agriculture on crop production and soil properties in Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed

    2015-04-01

    In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.

  13. Greenhouse gases emission from soils under major crops in Northwest India.

    PubMed

    Jain, N; Arora, P; Tomer, R; Mishra, Shashi Vind; Bhatia, A; Pathak, H; Chakraborty, D; Kumar, Vinod; Dubey, D S; Harit, R C; Singh, J P

    2016-01-15

    Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008-2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N2O emissions were significantly different (P>0.05) among the crop types. Emission of N2O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r(2)=0.74, P<0.05). The cumulative flux of CH4 from the rice crop was 28.64±4.40kgha(-1), while the mean seasonal integrated flux of CO2 from soils ranged from 3058±236 to 3616±157kgCO2ha(-1) under different crops. The global warming potential (GWP) of crops varied between 3053kgCO2eq.ha(-1) (pigeon pea) and 3968kgCO2eq.ha(-1) (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833kgCha(-1)) and largest in wheat (1042kgCha(-1)). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture. PMID:26540602

  14. Bacterial Indicator of Agricultural Management for Soil under No-Till Crop Production

    PubMed Central

    Rosa, Silvina M.; Simonetti, Leandro; Duval, Matías E.; Galantini, Juan A.; Bedano, José C.; Wall, Luis G.; Erijman, Leonardo

    2012-01-01

    The rise in the world demand for food poses a challenge to our ability to sustain soil fertility and sustainability. The increasing use of no-till agriculture, adopted in many areas of the world as an alternative to conventional farming, may contribute to reduce the erosion of soils and the increase in the soil carbon pool. However, the advantages of no-till agriculture are jeopardized when its use is linked to the expansion of crop monoculture. The aim of this study was to survey bacterial communities to find indicators of soil quality related to contrasting agriculture management in soils under no-till farming. Four sites in production agriculture, with different soil properties, situated across a west-east transect in the most productive region in the Argentinean pampas, were taken as the basis for replication. Working definitions of Good no-till Agricultural Practices (GAP) and Poor no-till Agricultural Practices (PAP) were adopted for two distinct scenarios in terms of crop rotation, fertilization, agrochemicals use and pest control. Non-cultivated soils nearby the agricultural sites were taken as additional control treatments. Tag-encoded pyrosequencing was used to deeply sample the 16S rRNA gene from bacteria residing in soils corresponding to the three treatments at the four locations. Although bacterial communities as a whole appeared to be structured chiefly by a marked biogeographic provincialism, the distribution of a few taxa was shaped as well by environmental conditions related to agricultural management practices. A statistically supported approach was used to define candidates for management-indicator organisms, subsequently validated using quantitative PCR. We suggest that the ratio between the normalized abundance of a selected group of bacteria within the GP1 group of the phylum Acidobacteria and the genus Rubellimicrobium of the Alphaproteobacteria may serve as a potential management-indicator to discriminate between sustainable vs. non-sustainable agricultural practices in the Pampa region. PMID:23226466

  15. Assessing the effect of soil management on soil functioning: a meta-regression analysis on European crop yields under conservation agriculture.

    NASA Astrophysics Data System (ADS)

    van den Putte, An; Govers, Gerard; Diels, Jan; Gillijns, Katleen; Demuzere, Matthias

    2010-05-01

    Many strategies exist to combat soil degradation through erosion and compaction on agricultural fields. One of these strategies is conservation agriculture (CA). Reduced or zero tillage techniques, together with crop residue management and crop rotation are the pillars of CA. The term reduced tillage covers a range of tillage practices but it never involves inverting the soil. In this way, soil disturbance is minimised and crop residues are left on the soil. As CA also requires less wheel traffic that can increase soil bulk density and reduces infiltration rates, CA has the potential to reduce degradation and improve soil functioning. Studies in many European countries have shown that CA can indeed be very effective in combating soil erosion. However, soil and water conservation do not appear as main drivers in farmers' decisions to shift or not to CA. Economic factors tend to be more important, but there are a lot of uncertainties on this domain. Studies show that production costs are mostly reduced, mainly by reduced fuel costs. However, on production outcome, i.e. crop yield, a lot of uncertainties exist. To ensure proper functioning of agricultural soils that are prone to degradation, it is clear that these uncertainties have to be quantified. Many European studies have investigated the effect of reduced soil tillage on crop yields. However, the anecdotic evidence is often contradictory and therefore difficult to interpret. Most of them only cover a small range of field experiments, in one region. We present a meta-regression analysis (47 European studies, 565 observations) that compares crop yields under conventional tillage (CT), reduced tillage (RT) and zero tillage (ZT) techniques. We analysed the possible influence on the relative yield ((RT or ZT)/CT) of crop type, tillage depth, climate, CT yield and length of application of RT/ZT. ZT reduces crop yield on average with 8.5%. However, RT leads to a reduction in crop yields for maize and winter cereals only. By applying a linear mixed model, the importance of tillage depth and crop type as classification effects could be confirmed. Our analysis also allowed to identify some effects that are not always in agreement with common beliefs. For instance, yields under CA tend to decline with time, especially for monoculture maize. An effect of climate on relative crop yields could only be distinguished in the case of zero tillage: there is a positive relationship between crop yield and the seasonal water balance, contradicting the idea that CA is more efficient in dry areas due to more efficient water conservation.

  16. Impact of the spatial resolution of climatic data and soil physical properties on regional corn yield predictions using the STICS crop model

    NASA Astrophysics Data System (ADS)

    Jégo, Guillaume; Pattey, Elizabeth; Mesbah, S. Morteza; Liu, Jiangui; Duchesne, Isabelle

    2015-09-01

    The assimilation of Earth observation (EO) data into crop models has proven to be an efficient way to improve yield prediction at a regional scale by estimating key unknown crop management practices. However, the efficiency of prediction depends on the uncertainty associated with the data provided to crop models, particularly climatic data and soil physical properties. In this study, the performance of the STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard) crop model for predicting corn yield after assimilation of leaf area index derived from EO data was evaluated under different scenarios. The scenarios were designed to examine the impact of using fine-resolution soil physical properties, as well as the impact of using climatic data from either one or four weather stations across the region of interest. The results indicate that when only one weather station was used, the average annual yield by producer was predicted well (absolute error <5%), but the spatial variability lacked accuracy (root mean square error = 1.3 t ha-1). The model root mean square error for yield prediction was highly correlated with the distance between the weather stations and the fields, for distances smaller than 10 km, and reached 0.5 t ha-1 for a 5-km distance when fine-resolution soil properties were used. When four weather stations were used, no significant improvement in model performance was observed. This was because of a marginal decrease (30%) in the average distance between fields and weather stations (from 10 to 7 km). However, the yield predictions were improved by approximately 15% with fine-resolution soil properties regardless of the number of weather stations used. The impact of the uncertainty associated with the EO-derived soil textures and the impact of alterations in rainfall distribution were also evaluated. A variation of about 10% in any of the soil physical textures resulted in a change in dry yield of 0.4 t ha-1. Changes in rainfall distribution between two abundant rainfalls during the growing season led to a significant change in yield (0.5 t ha-1 on average). Our results highlight the importance of using fine-resolution gridded daily precipitation data to capture spatial variations of rainfall as well as using fine-resolution soil properties instead of coarse-resolution soil properties from the Canadian soil dataset, especially for regions with high pedodiversity.

  17. Soil Organic Matter Quality of an Oxisol Affected by Plant Residues and Crop Sequence under No-Tillage

    NASA Astrophysics Data System (ADS)

    Cora, Jose; Marcelo, Adolfo

    2013-04-01

    Plant residues are considered the primarily resource for soil organic matter (SOM) formation and the amounts and properties of plant litter are important controlling factors for the SOM quality. We determined the amounts, quality and decomposition rate of plant residues and the effects of summer and winter crop sequences on soil organic C (TOC) content, both particulate organic C (POC) and mineral-associated organic C (MOC) pools and humic substances in a Brazilian Rhodic Eutrudox soil under a no-tillage system. The organic C analysis in specifics pools used in this study was effective and should be adopted in tropical climates to evaluate the soil quality and the sustainability of various cropping systems. Continuous growth of soybean (Glycine max L. Merrill) on summer provided higher contents of soil POC and continuous growth of maize (Zea mays L.) provided higher soil humic acid and MOC contents. Summer soybean-maize rotation provided the higher plant diversity, which likely improved the soil microbial activity and the soil organic C consumption. The winter sunn hemp (Crotalaria juncea L.), pigeon pea (Cajanus cajan (L.) Millsp), oilseed radish (Raphanus sativus L.) and pearl millet (Pennisetum americanum (L.) Leeke) enhanced the soil MOC, a finding that is attributable to the higher N content of the crop residue. Sunn hemp and pigeon pea provided the higher soil POC content. Sunn hemp showed better performance and positive effects on the SOM quality, making it a suitable winter crop choice for tropical conditions with a warm and dry winter.

  18. Role of forage crops and soil microbes in promoting soil health and productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United Nations General Assembly has declared 2015 the International Year of Soils (IYS 2015). The IYS 2015 aims to increase awareness and understanding of the importance of soil for food security and essential ecosystem functions. Although often taken for granted, soils are key to human civiliza...

  19. Carbon supply and storage in tilled and non-tilled soils as influenced by cover crops and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of four cover crops (hairy vetch, rye, biculture of vetch and rye, and winter weeds)and three N fertilization rates (0, 60 to 65, and 120 to 130 kg N ha-1) was examined on plant C input from cover crops, cotton, and sorghum and soi organic C (SOC) in tilled and non-tilled soils in cent...

  20. Potential Biofuel Crop Sorghum bicolor Germination and Growth on Florida Agricultural Soils Previously Treated with the Herbicides Simazine, Norflurazon or

    E-print Network

    Ma, Lena

    Potential Biofuel Crop Sorghum bicolor Germination and Growth on Florida Agricultural Soils of their land. One potential alternative crop is Sorghum bicolor, which can be used as a biofuel of this study was to identify the effect of each herbicide on sweet sorghum (Sorghum bicolor), which

  1. Evaluation of Cover Crops with Potential for Use in Anaerobic Soil Disinfestation (ASD) for Susceptibility to Three Species of Meloidogyne

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several cover crops with potential for use in tropical and subtropical regions were assessed for susceptibility to three common species of root-knot nematode, Meloidogyne arenaria, M. incognita, and M. javanica. Crops were selected based on potential use as organic amendments in anaerobic soil disin...

  2. Ground Albedo Neutron Sensing (GANS) method for measurements of soil moisture in cropped fields

    NASA Astrophysics Data System (ADS)

    Andres Rivera Villarreyes, Carlos; Baroni, Gabriele; Oswald, Sascha E.

    2013-04-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. This study evaluates the applicability of the Ground Albedo Neutron Sensing (GANS) for integral quantification of seasonal soil moisture in the root zone at the scale of a field or small watershed, making use of the crucial role of hydrogen as neutron moderator relative to other landscape materials. GANS measurements were performed at two locations in Germany under different vegetative situations and seasonal conditions. Ground albedo neutrons were measured at (i) a lowland Bornim farmland (Brandenburg) cropped with sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. At both sites depth profiles of soil moisture were measured at several locations in parallel by frequency domain reflectometry (FDR) for comparison and calibration. Initially, calibration parameters derived from a previous study with corn cover were tested under sunflower and winter rye periods at the same farmland. GANS soil moisture based on these parameters showed a large discrepancy compared to classical soil moisture measurements. Therefore, two new calibration approaches and four different ways of integration the soil moisture profile to an integral value for GANS were evaluated in this study. This included different sets of calibration parameters based on different growing periods of sunflower. New calibration parameters showed a good agreement with FDR network during sunflower period (RMSE = 0.023 m3 m-3), but they underestimated soil moisture in the winter rye period. The GANS approach resulted to be highly affected by temporal changes of biomass and crop types which suggest the need of neutron corrections for long-term observations with crop rotation. Finally, Bornim sunflower parameters were transferred to Schaefertal catchment for further evaluation. This study proves GANS potential to close the measurement gap between point scale and remote sensing scale; however, its calibration needs to be adapted for vegetation in cropped fields.

  3. Allelopathic effect of new introduced biofuel crops on the soil biota: A comparative study

    NASA Astrophysics Data System (ADS)

    Hed?nec, Petr; Frouz, Jan; Ustak, Sergej; Novotny, David

    2015-04-01

    Biofuel crops as an alternative to fossil fuels are a component of the energy mix in many countries. Many of them are introduced plants, so they pose a serious threat of biological invasions. Production of allelopathic compounds can increase invasion success by limiting co-occurring species in the invaded environment (novel weapons hypothesis). In this study, we focused on plant chemistry and production of allelopathic compounds by biofuel crops (hybrid sorrel Rumex tianschanicus x Rumex patientia and miscanthus Miscanthus sinensis) in comparison with invasive knotweed (Fallopia sachalinensis) and cultural meadow species. First, we tested the impact of leachates isolated from hybrid sorrel, miscanthus, knotweed and cultural meadow species compared to deionized water, used as a control, on seed germination of mustard (Sinapis arvensis) and wheat (Triticum aestivum) cultivated on sand and soil. Secondly, we studied the effect of leachates on the growth of soil fungal pathogens Fusarium culmorum, Rhizoctonia solani, Sclerotinia solani and Cochliobolus sativus. Finally, we tested the effect of litter of hybrid sorrel, miscanthus, knotweed and cultural meadow litter mixed with soil on population growth of Enchytraeus crypticus and Folsomia candida. Miscanthus and knotweed litter had a higher C:N ratio than the control meadow and hybrid sorrel litter. Miscanthus and hybrid sorrel litter had a higher content of phenols than knotweed and cultural meadow litter. Leachates from hybrid sorrel, miscanthus and knotweed biomass significantly decreased seed germination of wheat and mustard in both substrates. Soil fungal pathogens grew less vigorously on agar enriched by leachates from both biofuel crops than on agar enriched by knotweed and leachates. Litter from hybrid sorrel, miscanthus and knotweed significantly altered (both ways) the population growth of the soil mesofauna.

  4. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering.

    PubMed

    Robson, T C; Braungardt, C B; Rieuwerts, J; Worsfold, P

    2014-01-01

    The biogeochemistry and bioavailability of cadmium, released during sphalerite weathering in soils, were investigated under contrasting agricultural scenarios to assess health risks associated with sphalerite dust transport to productive soils from mining. Laboratory experiments (365 d) on temperate and sub-tropical soils amended with sphalerite (<63 ?m, 0.92 wt.% Cd) showed continuous, slow dissolution (0.6-1.2% y(-1)). Wheat grown in spiked temperate soil accumulated ?38% (29 ?mol kg(-1)) of the liberated Cd, exceeding food safety limits. In contrast, rice grown in flooded sub-tropical soil accumulated far less Cd (0.60 ?mol kg(-1)) due to neutral soil pH and Cd bioavailability was possibly also controlled by secondary sulfide formation. The results demonstrate long-term release of Cd to soil porewaters during sphalerite weathering. Under oxic conditions, Cd may be sufficiently bioavailable to contaminate crops destined for human consumption; however flooded rice production limits the impact of sphalerite contamination. PMID:24077256

  5. Precision of farmer based fertility ratings and soil organic carbon for crop production on a Ferralsol

    NASA Astrophysics Data System (ADS)

    Musinguzi, P.; Ebanyat, P.; Tenywa, J. S.; Basamba, T. A.; Tenywa, M. M.; Mubiru, D.

    2015-03-01

    Simple and affordable soil fertility ratings are essential, particularly for the resource-constrained farmers in sub-Saharan Africa (SSA) in planning and implementing prudent interventions. A study was conducted on Ferralsols in Uganda, to evaluate farmer-field-based soil fertility assessment procedures, hereafter referred to as farmer' field experiences (FFE), for ease of use (simplicity) and precision, against more formal scientific quantitative ratings using soil organic carbon (SQR-SOC). A total of 30 fields were investigated and rated using both approaches, as low, medium and high in terms of soil fertility, with maize as the test crop. Based on maize yield, both rating techniques were fairly precise in delineating soil fertility classes, though the FFE approach showed mixed responses. Soil organic carbon in the top soil (0-15 cm) was exceptionally influential, explaining > 70% in yield variance. Each unit rise in SOC concentration resulted in 966-1223 kg ha-1 yield gain. The FFE approach was effective in identifying low fertility fields, which was coherent with the fields categorized as low (SOC < 1.2%). Beyond this level, its precision can be remarkably increased when supplemented with the SOC procedure.

  6. [Modeling transfer and partitioning of potentially toxic pollutants in soil-crop system for human food security].

    PubMed

    Pan, Genxing; Chang, Andrew C; Page, Albert L

    2002-07-01

    Human exposure to potential toxic pollutants and the associated health risk is a focus of current environmental and medical studies. However, the transfer and partitioning of the pollutants in the soil-crop systems turns to be a key problem for evaluating the food intake of the pollutants. This paper deals with the methodology and the approach of computer modeling of the soil-crop partitioning of the pollutants under agricultural systems for human food security and the elaboration of guidelines for soil protection. Two major models, crop ecological model and soil environmental chemical model, are discussed respectively. These models may be valuable for the research of agricultural environment protection and the development of guidelines for soil protection in China. PMID:12385218

  7. Water Quality and Toxic Element Effects on Isohumic Soil Properties and Crops in Semi-arid Regions.

    PubMed

    Azouzi, Rim; Charef, Abdelkrim; Ayed, Lamia

    2015-06-01

    Treated wastewater (TWW) and freshwater used separately or within the same agricultural soil is a key element in soil parameter evolution, soil-plant pollution and crop yields. The long-term application of TWW increased CaCO3, P, N, K, TOC, metal contents, pH and salinity in isohumic soil in semi-arid and arid climates. Also, it was found that using freshwater after TWW within the same land leached soil compounds and pollutants. Consequently, a clear decline of salinity, pH, macronutrient and pollutant concentrations occured. Therefore, the economic profitability in topsoil decreased. TWW contributed to crop production increase, despite high fertilizer and metal concentrations in TWW and soil. Also, no toxic metal trace was detected in cultivated plants despite soil pollution. Occasional rainwater removed the stable part of fertilizers in topsoil and slightly improved plant development. PMID:25661007

  8. Modeling the annual soil erosion rate in the mouth of river Pineios' sub-basin in Thessaly County, Greece.

    NASA Astrophysics Data System (ADS)

    Ilia, Ioanna; Loupasakis, Constantinos; Tsangaratos, Paraskevas

    2015-04-01

    Erosion is a natural - geomorphological phenomenon, active through geological time that is considered as one of the main agents that forms the earth surface. Soil erosion models estimate the rates of soil erosion and provide useful information and guidance for the development of appropriate intervention and soil conservation practices and strategies. A significant number of soil erosion models can be found in literature; however, the most extensively applied model is the Revised Universal Soil Loss Equation (RUSLE) established in 1997 by Renard KG, Foster GR, Weesies GA, McCool DK and Yoder DC. RUSLE is an empirically based model that enables the estimation of the average annual rate of soil erosion for an area of interest providing several alternative scenarios involving cropping systems, management methods and erosion control strategies. According to RUSLE model's specifications five major factors (rainfall pattern, soil type, topography, crop system, and management practices) are utilized for estimating the average annual erosion through the following equation: A=RxKxLxSxCxP, PIC where A is the computed spatial average soil loss and temporal average soil loss per unit area (tons ha-1 year-1), R the rainfall-runoff erosivity factor (MJ mm ha-1h-1 year-1), K the soil erodibility factor (tons h MJ-1 mm-1), L the slope - length factor, S the slope steepness factor, C the cover management factor and P the conservation support practice factor. L, S, C and P factors are all dimensionless. The present study aims to utilize a GIS-based RUSLE model in order to estimate the average annual soil loss rate in the sub-basin extending at the mouth of Pineios river in Thessaly County, Greece. The area covers approximate 775.9 km2 with a mean slope angle of 7.8o. The rainfall data of 39 gauge station from 1980 to 2000 where used in order to predict the rainfall-runoff erosivity factor (R). The K-factor was estimated using soil maps available from the European Soil Portal with a grid cell size of 500 m and a soil map of Thessaly at a scale of 1:150.000. The LS-factor was calculated from a 30-m digital elevation model. The C-factor was calculated by processing a Landsat ETM satellite image, acquired on 11 November of 2014, with a spatial resolution of 30 m. The P-factor in absence of available data was set to 1. The outcomes of the analysis, in the form of annual soil loss rate maps, indicated that an extended part of the area is undergoing moderate erosion. The maximum soil loss in the area of interest was estimated to have a value of 42.86 (tons ha-1 year-1), with a close relation to areas with high LS values covered by Natural grasslands and Sclerophyllous vegetation. The results of the presented model can be used as a simple but efficient tool assisting local resource planners to optimize land management in terms of identifying areas of high erosion probability. Also the results constitute an effective tool of predicting possible future changes in land-use as well as in soil erosion evolution.

  9. Major Fusarium diseases on crops and their control management with soil solarisation in northwest Iran.

    PubMed

    Saremi, H; Saremi, Ha; Okhovvat, S M

    2008-01-01

    Fusarium species are the most frequently soil-borne fungal pathogens on crops that make high economical damages in Iran. Studies showed that Fusarium species cause significant yield losses in main crops especially potato, pea, bean, wheat, corn and rice in northwest Iran. The diseases resulted in yield losses to the extent of 30% to 70% in the fields and made economical problems for growers. Infected plants were collected and cultured common medium (PDA) and selective media (PPA, CLA) for Fusarium species after surface sterilization. The dominant species were F. solani, F. oxysporum, F. graminearum, F. moniliforme, F. sambucinum, F. culmorum, and F. equiseti in area studied. Soil solarisation method was carried at the summer season in three soil infested locations to assess the control management of the pathogens. Application of this method reduced population density of the pathogen from 1900 CFU -g/soil to 500 after 4 week. This proper method was simple, effective, non negative side and economic which can be used in nearly different farming areas at warm season. PMID:19226756

  10. Illinois biomass resources: annual crops and residues; canning and food-processing wastes. Preliminary assessment

    SciTech Connect

    Antonopoulos, A A

    1980-06-01

    Illinois, a major agricultural and food-processing state, produces vast amounts of renewable plant material having potential for energy production. This biomass, in the form of annual crops, crop residues, and food-processing wastes, can be converted to alternative fuels (such as ethanol) and industrial chemicals (such as furfural, ethylene, and xylene). The present study provides a preliminary assessment of these Illinois biomass resources, including (a) an appraisal of the effects of their use on both agriculture and industry; (b) an analysis of biomass conversion systems; and (c) an environmental and economic evaluation of products that could be generated from biomass. It is estimated that, of the 39 x 10/sup 6/ tons of residues generated in 1978 in Illinois from seven main crops, about 85% was collectible. The thermal energy equivalent of this material is 658 x 10/sup 6/ Btu, or 0.66 quad. And by fermenting 10% of the corn grain grown in Illinois, some 323 million gallons of ethanol could have been produced in 1978. Another 3 million gallons of ethanol could have been produced in the same year from wastes generated by the state's food-processing establishments. Clearly, Illinois can strengthen its economy substantially by the development of industries that produce biomass-derived fuels and chemicals. In addition, a thorough evaluation should be made of the potential for using the state's less-exploitable land for the growing of additional biomass.

  11. Energy crop (Sida hermaphrodita) fertilization using digestate under marginal soil conditions: A dose-response experiment

    NASA Astrophysics Data System (ADS)

    Nabel, Moritz; Bueno Piaz Barbosa, Daniela; Horsch, David; Jablonowski, Nicolai David

    2014-05-01

    The global demand for energy security and the mitigation of climate change are the main drivers pushing energy-plant production in Germany. However, the cultivation of these plants can cause land use conflicts since agricultural soil is mostly used for plant production. A sustainable alternative to the conventional cultivation of food-based energy-crops is the cultivation of special adopted energy-plants on marginal lands. To further increase the sustainability of energy-plant cultivation systems the dependency on synthetic fertilizers needs to be reduced via closed nutrient loops. In the presented study the energy-plant Sida hermaphrodita (Malvaceae) will be used to evaluate the potential to grow this high potential energy-crop on a marginal sandy soil in combination with fertilization via digestate from biogas production. With this dose-response experiment we will further identify an optimum dose, which will be compared to equivalent doses of NPK-fertilizer. Further, lethal doses and deficiency doses will be observed. Two weeks old Sida seedlings were transplanted to 1L pots and fertilized with six doses of digestate (equivalent to a field application of 5, 10, 20, 40, 80, 160t/ha) and three equivalent doses of NPK-fertilizer. Control plants were left untreated. Sida plants will grow for 45 days under greenhouse conditions. We hypothesize that the nutrient status of the marginal soil can be increased and maintained by defined digestate applications, compared to control plants suffering of nutrient deficiency due to the low nutrient status in the marginal substrate. The dose of 40t/ha is expected to give a maximum biomass yield without causing toxicity symptoms. Results shall be used as basis for further experiments on the field scale in a field trial that was set up to investigate sustainable production systems for energy crop production under marginal soil conditions.

  12. Soil Chemical Property Changes in Eggplant/Garlic Relay Intercropping Systems under Continuous Cropping

    PubMed Central

    Wang, Mengyi; Wu, Cuinan; Cheng, Zhihui; Meng, Huanwen; Zhang, Mengru; Zhang, Hongjing

    2014-01-01

    Soil sickness is a critical problem for eggplant (Solanum melongena L.) under continuous cropping that affects sustainable eggplant production. Relay intercropping is a significant technique on promoting soil quality, improving eco-environment, and raising output. Field experiments were conducted from September 2010 to November 2012 in northwest China to determine the effects of relay intercropping eggplant with garlic (Allium sativum L.) on soil enzyme activities, available nutrient contents, and pH value under a plastic tunnel. Three treatments were in triplicate using randomized block design: eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG) and eggplant relay intercropping with green garlic (GG). The major results are as follows: (1) the activities of soil invertase, urease, and alkaline phosphatase were generally enhanced in NG and GG treatments; (2) relay intercropping significantly increased the soil available nutrient contents, and they were mostly higher in GG than NG. On April 11, 2011, the eggplant/garlic co-growth stage, the available nitrogen content in GG was 76.30 mg·kg?1, significantly higher than 61.95 mg·kg?1 in NG. For available potassium on April 17, 2012, they were 398.48 and 387.97 mg·kg?1 in NG and GG, both were significantly higher than 314.84 mg·kg?1 in CK; (3) the soil pH showed a significantly higher level in NG treatment, but lower in GG treatment compared with CK. For the last samples in 2012, soil pH in NG and GG were 7.70 and 7.46, the highest and lowest one among them; (4) the alkaline phosphatase activity and pH displayed a similar decreasing trend with continuous cropping. These findings indicate that relay intercropping eggplant with garlic could be an ideal farming system to effectively improve soil nutrient content, increase soil fertility, and alleviate soil sickness to some extent. These findings are important in helping to develop sustainable eggplant production. PMID:25340875

  13. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices.

    PubMed

    Wu, Tiehang; Chellemi, Dan O; Graham, Jim H; Martin, Kendall J; Rosskopf, Erin N

    2008-02-01

    The composition and structure of bacterial communities were examined in soil subjected to a range of diverse agricultural land management and crop production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of bacterial DNA extracted from soil was used to generate amplicon profiles that were analyzed with univariate and multivariate statistical methods. Five land management programs were initiated in July 2000: conventional, organic, continuous removal of vegetation (disk fallow), undisturbed (weed fallow), and bahiagrass pasture (Paspalum notatum var Argentine). Similar levels in the diversity of bacterial 16S rDNA amplicons were detected in soil samples collected from organically and conventionally managed plots 3 and 4 years after initiation of land management programs, whereas significantly lower levels of diversity were observed in samples collected from bahiagrass pasture. Differences in diversity were attributed to effects on how the relative abundance of individual amplicons were distributed (evenness) and not on the total numbers of bacterial 16S rDNA amplicons detected (richness). Similar levels of diversity were detected among all land management programs in soil samples collected after successive years of tomato (Lycopersicon esculentum) cultivation. A different trend was observed after a multivariate examination of the similarities in genetic composition among soil bacterial communities. After 3 years of land management, similarities in genetic composition of soil bacterial communities were observed in plots where disturbance was minimized (bahiagrass and weed fallow). The genetic compositions in plots managed organically were similar to each other and distinct from bacterial communities in other land management programs. After successive years of tomato cultivation and damage from two major hurricanes, only the composition of soil bacterial communities within organically managed plots continued to maintain a high degree of similarity to each other and remain distinct from other bacterial communities. This study reveals the effects of agricultural land management practices on soil bacterial community composition and diversity in a large-scale, long-term replicated study where the effect of soil type on community attributes was removed. PMID:17619214

  14. Estimating water and nitrate leaching in tree crops using inverse modelled plant and soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Couvreur, Valentin; Kandelous, Maziar; Mairesse, Harmony; Baram, Shahar; Moradi, Ahmad; Pope, Katrin; Hopmans, Jan

    2015-04-01

    Groundwater quality is specifically vulnerable in irrigated agricultural lands in California and many other (semi-)arid regions of the world. The routine application of nitrogen fertilizers with irrigation water in California is likely responsible for the high nitrate concentrations in groundwater, underlying much of its main agricultural areas. To optimize irrigation/fertigation practices, it is essential that irrigation and fertilizers are applied at the optimal concentration, place, and time to ensure maximum root uptake and minimize leaching losses to the groundwater. The applied irrigation water and dissolved fertilizer, root nitrate and water uptake interact with soil and root properties in a complex manner that cannot easily be resolved. It is therefore that coupled experimental-modelling studies are required to allow for unravelling of the relevant complexities that result from typical variations of crop properties, soil texture and layering across farmer-managed fields. A combined field monitoring and modelling approach was developed to quantify from simple measurements the leaching of water and nitrate below the root zone. The monitored state variables are soil water content within the root zone, soil matric potential below the root zone, and nitrate concentration in the soil solution. Plant and soil properties of incremented complexity are optimized with the software HYDRUS in an inverse modelling scheme, which allows estimating leaching under constraint of hydraulic principles. Questions of optimal irrigation and fertilization timing can then be addressed using predictive results and global optimization algorithms.

  15. Use of arsenic contaminated irrigation water for lettuce cropping: effects on soil, groundwater, and vegetal.

    PubMed

    Beni, Claudio; Marconi, Simona; Boccia, Priscilla; Ciampa, Alessandra; Diana, Giampietro; Aromolo, Rita; Sturchio, Elena; Neri, Ulderico; Sequi, Paolo; Valentini, Massimiliano

    2011-10-01

    The present study investigated the effects of using arsenic (As) contaminated irrigation water in Lactuca sativa L. cropping. Two different arsenic concentrations, i.e., 25 and 85 ?g L(-1) and two different soils, i.e., sandy and clay loam, were taken into account. We determined the arsenic mobility in the different soil fractions, its amount in groundwater, and the phytotoxicity and genotoxicity. Nuclear magnetic resonance (NMR) and inductively coupled plasma (ICP) were used to assess the lettuce metabolic profile changes and the arsenic uptake by the plant, respectively, as a function of the various conditions studied, i.e., As content and type of soil. Data indicated that at both concentrations in sandy soil, arsenic is in part quickly leached and thus present in groundwater and in part absorbed by the vegetable, being therefore readily available for assimilation by consumption. NMR results reported a large modification of the metabolic pattern, which was depending on the pollutant amount. In clay loam soil, the groundwater had a low As content with respect to sandy soil, and NMR and ICP performed on the lettuce did not reveal severe changes related to As, most likely because the metalloid is bound to the colloidal fraction. PMID:20882365

  16. Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn

    E-print Network

    Lehmann, Johannes

    Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn Xavier Domene a,b,c,*, Stefania Mattana a , Kelly Hanley c , Akio Enders c to corn and the consequences for their main functions, litter decomposition and mineralization. Biochar

  17. Soil-crop dynamic depth response determined from TDR of a corn silage field compared to EMI measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electromagnetic induction (EMI) mapping techniques have been used to monitor seasonal soil-crop electrical conductivity (EC) dynamics. These mapping techniques can be affected by many confounding seasonal changes in the soil profile, such as water content or salt leaching. Time domain reflectometry ...

  18. Selection pressure, cropping system and rhizosphere proximity affect atrazine degrader populations and activity in s-triazine adapted soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atrazine degrader populations and activity in s-triazine adapted soils are likely affected by interactions among and (or) between s-triazine application frequency, crop production system, and proximity to the rhizosphere. A field study was conducted on an s-triazine adapted soil to determine the ef...

  19. A COMPARISON OF EXPLICIT AND IMPLICIT SPATIAL DOWNSCALING OF GCM OUTPUT FOR SOIL EROSION AND CROP PRODUCTION ASSESSMENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial downscaling of climate change scenarios can be a significant source of uncertainty in simulating climatic impact on soil erosion, hydrology, and crop production. The objective of this study is to compare responses of simulated soil erosion, surface hydrology, and wheat and maize yields to t...

  20. POTENTIAL LONG-TERM BENEFITS OF SELECTED NO-TILLAGE AND ORGANIC CROPPING SYSTEMS FOR GRAIN PRODUCTION AND SOIL IMPROVEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There have been few comparisons of the performance of no-tillage cropping systems versus organic farming systems, particularly on erodible, droughty soils where reduced-tillage systems are recommended. In particular, there is skepticism whether organic farming can improve soils as well as conventio...

  1. FT-IR and C-13 NMR analysis of soil humic fractions from a long term cropping systems study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased knowledge of humic fractions is important due to its involvement in many soil ecosystem processes. Soil humic acid (HA) and fulvic acid (FA) from a nine-year agroecosystem study with different tillage, cropping system, and N source treatments were characterized using FT-IR andsolid-state ...

  2. Cover crops and sampling date effect on on-farm soil carbon pools under conservation tillage cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops may influence soil C sequestration and microbial activities by providing additional residue C to soil. We examined the influence of legume (crimson clover), nonlegume (rye), blend (a mixture of legumes containing balansa clover, hairy vetch, and crimson clover], and rye + blend mixture c...

  3. Method to calculate soil heat flux that accounts for sunlit and shaded soil beneath row crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil heat flux (G) is a component of the soil-plant-atmosphere energy balance, and can have significant impact on evapotranspiration (ET), especially for incomplete canopies. Most ET models calculate G as a fraction of net radiation (Rn), which is usually suitable for full canopy cover and spatial s...

  4. Effects of multiple rolling cover crops on their termination, soil water and soil strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of multiple rolling rye and mixture (rye, crimson clover and hairy vetch) using two rollers (straight bar, and two-stage) on termination rate, soil strength and soil moisture were evaluated in northern Alabama. In 2007 and 2008 growing seasons, both roller types effectively terminated rye...

  5. Use of domestic greywater for small-scale irrigation of food crops: Effects on plants and soil

    NASA Astrophysics Data System (ADS)

    Rodda, N.; Salukazana, L.; Jackson, S. A. F.; Smith, M. T.

    Disposal of greywater presents a problem in areas served with on-site sanitation or in areas with poor service provision. Such areas often also face challenges with respect to food security. Use of greywater for irrigation of food crops represents a possible beneficial use of greywater which can contribute to household food supply and to informal income generation. In this study, an above-ground crop (Swiss chard, Betavulgaris var. cicla) and a below-ground crop (carrot, Daucus carota) were irrigated in pots with mixed greywater sourced from households in an informal settlement. A simple form of sub-surface irrigation was used. Plant growth, crop yield, and levels of macro- and micronutrients in crops and soil were monitored through six growth cycles. Equivalent treatments, irrigated with either tap water or a hydroponic nutrient solution, were conducted for comparison. The same soil was used throughout to allow accumulation of greywater-derived substances in soil to be detected. The results indicated that: (i) irrigation with greywater increased plant growth and yield relative to crops irrigated with tap water only, although crops irrigated with hydroponic nutrient solution yielded the highest growth and yield; (ii) irrigation with greywater improved plant nutrient content relative to crops irrigated with tap water; (iii) soil irrigated with greywater showed increased electrical conductivity and increased concentrations of metals over time, coupled with an increase in sodium and metal concentrations in crops. Thus, provided precautions are taken with regard to salt and metal accumulation, greywater offers a potential source of water for household crop irrigation which additionally shows some fertiliser properties.

  6. Simulation of nitrous oxide effluxes, crop yields and soil physical properties using the LandscapeDNDC model in managed ecosystem

    NASA Astrophysics Data System (ADS)

    Nyckowiak, Jedrzej; Lesny, Jacek; Haas, Edwin; Juszczak, Radoslaw; Kiese, Ralf; Butterbach-Bahl, Klaus; Olejnik, Janusz

    2014-05-01

    Modeling of nitrous oxide emissions from soil is very complex. Many different biological and chemical processes take place in soils which determine the amount of emitted nitrous oxide. Additionaly, biogeochemical models contain many detailed factors which may determine fluxes and other simulated variables. We used the LandscapeDNDC model in order to simulate N2O emissions, crop yields and soil physical properties from mineral cultivated soils in Poland. Nitrous oxide emissions from soils were modeled for fields with winter wheat, winter rye, spring barley, triticale, potatoes and alfalfa crops. Simulations were carried out for the plots of the Brody arable experimental station of Poznan University of Life Science in western Poland and covered the period 2003 - 2012. The model accuracy and its efficiency was determined by comparing simulations result with measurements of nitrous oxide emissions (measured with static chambers) from about 40 field campaigns. N2O emissions are strongly dependent on temperature and soil water content, hence we compared also simulated soil temperature at 10cm depth and soil water content at the same depth with the daily measured values of these driving variables. We compared also simulated yield quantities for each individual experimental plots with yield quantities which were measured in the period 2003-2012. We conclude that the LandscapeDNDC model is capable to simulate soil N2O emissions, crop yields and physical properties of soil with satisfactorily good accuracy and efficiency.

  7. Residual phytotoxicity of parthenium: Impact on some winter crops, weeds and soil properties.

    PubMed

    Khaliq, Abdul; Aslam, Farhena; Matloob, Amar; Hussain, Saddam; Tanveer, Asif; Alsaadawi, Ibrahim; Geng, Mingjian

    2015-12-01

    Phytotoxic effects of parthenium residues incorporation and parthenium-infested rhizospheric soil on emergence and seedling growth of winter crops (wheat and canola) and weed species (wild oat and canary grass) were examined in different pot studies. In first experiment, parthenium whole plant residues were incorporated at 6 and 8gkg(-1) soil five days prior to sowing. Pots without residues incorporation were maintained as control. In a second study, parthenium-infested rhizospheric soil collected from different depths (15 and 22.5cm) and collar regions (horizontal distance away from plant trunk, 15 and 22.5cm), was used as growing medium. Parthenium-free soil was used as control. Parthenium residues amendment as well as its rhizospheric soil was detrimental for emergence and seedling growth of all test species. Incorporation of parthenium residues reduced the final emergence of canola, wild oat and canary grass by 11-20%, 20-29% and 20-27%, respectively; however wheat emergence was unaffected. Moreover, seedling biomass of wheat, canola, wild oat and canary grass was reduced in the range of 41-48%, 53-61%, 31-45% and 30-45% by parthenium residues incorporation. In second study, soil collected from a rhizospheric depth of 15cm and collar distance of 15cm reduced the emergence and seedling growth by 15% and 40%, respectively averaged across different test species. Parthenium residues incorporation and infested rhizospheric soil increased the soil phenolics, electrical conductivity, organic carbon and nitrogen contents over control soils with the exception of pH that was declined. All test species manifested reduced chlorophyll and increased phenolic contents in response to parthenium residues incorporation and infested rhizospheric soil. The inhibition in emergence and seedling growth of all test species was associated with increase in phenolic contents. Parthenium residues incorporation at 8gkg(-1) soil and upper parthenium-infested rhizospheric soil (15cm soil depth and 15cm collar distance) were more phytotoxic for all test species. PMID:26318970

  8. Maximum temperature accounts for annual soil CO2 efflux in temperate forests of Northern China

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiyong; Xu, Meili; Kang, Fengfeng; Jianxin Sun, Osbert

    2015-07-01

    It will help understand the representation legality of soil temperature to explore the correlations of soil respiration with variant properties of soil temperature. Soil temperature at 10?cm depth was hourly logged through twelve months. Basing on the measured soil temperature, soil respiration at different temporal scales were calculated using empirical functions for temperate forests. On monthly scale, soil respiration significantly correlated with maximum, minimum, mean and accumulated effective soil temperatures. Annual soil respiration varied from 409?g C m-2 in coniferous forest to 570?g C m-2 in mixed forest and to 692?g C m-2 in broadleaved forest, and was markedly explained by mean soil temperatures of the warmest day, July and summer, separately. These three soil temperatures reflected the maximum values on diurnal, monthly and annual scales. In accordance with their higher temperatures, summer soil respiration accounted for 51% of annual soil respiration across forest types, and broadleaved forest also had higher soil organic carbon content (SOC) and soil microbial biomass carbon content (SMBC), but a lower contribution of SMBC to SOC. This added proof to the findings that maximum soil temperature may accelerate the transformation of SOC to CO2-C via stimulating activities of soil microorganisms.

  9. Groundwater-soil-crop relationship with respect to arsenic contamination in farming villages of Bangladesh--a preliminary study.

    PubMed

    Kurosawa, Kiyoshi; Egashira, Kazuhiko; Tani, Masakazu; Jahiruddin, M; Moslehuddin, Abu Zofar Md; Rahman, Zulfikar Md

    2008-11-01

    To clarify the groundwater-soil-crop relationship with respect to arsenic (As) contamination, As concentration was measured in tubewell (TW) water, surface soil from farmyards and paddy fields, and fresh taro (Colocasia esculenta) leaves from farmyards in the farming villages of Bangladesh. The As concentration in TW water from farmyards was at least four times higher than the Bangladesh drinking water standard, and the concentration in fresh taro leaves was equal to or higher than those reported previously for leafy vegetables in Bangladesh. As concentration of surface soils in both farmyards and paddy fields was positively correlated with that of the TW water. Further, the concentration in surface soil was positively correlated with levels in fresh taro leaves in the farmyard. This study, therefore, clarified the groundwater-soil-crop relationship in farmyards and the relationship between groundwater-soil in paddy fields to assess the extent of As contamination in Bangladeshi villages. PMID:18395311

  10. Ecosystem-Service Tradeoffs Associated with Switching from Annual to Perennial Energy Crops in Riparian Zones of the US Midwest

    PubMed Central

    Meehan, Timothy D.; Gratton, Claudio; Diehl, Erica; Hunt, Natalie D.; Mooney, Daniel F.; Ventura, Stephen J.; Barham, Bradford L.; Jackson, Randall D.

    2013-01-01

    Integration of energy crops into agricultural landscapes could promote sustainability if they are placed in ways that foster multiple ecosystem services and mitigate ecosystem disservices from existing crops. We conducted a modeling study to investigate how replacing annual energy crops with perennial energy crops along Wisconsin waterways could affect a variety of provisioning and regulating ecosystem services. We found that a switch from continuous corn production to perennial-grass production decreased annual income provisioning by 75%, although it increased annual energy provisioning by 33%, decreased annual phosphorous loading to surface water by 29%, increased below-ground carbon sequestration by 30%, decreased annual nitrous oxide emissions by 84%, increased an index of pollinator abundance by an average of 11%, and increased an index of biocontrol potential by an average of 6%. We expressed the tradeoffs between income provisioning and other ecosystem services as benefit-cost ratios. Benefit-cost ratios averaged 12.06 GJ of additional net energy, 0.84 kg of avoided phosphorus pollution, 18.97 Mg of sequestered carbon, and 1.99 kg of avoided nitrous oxide emissions for every $1,000 reduction in income. These ratios varied spatially, from 2- to 70-fold depending on the ecosystem service. Benefit-cost ratios for different ecosystem services were generally correlated within watersheds, suggesting the presence of hotspots – watersheds where increases in multiple ecosystem services would come at lower-than-average opportunity costs. When assessing the monetary value of ecosystem services relative to existing conservation programs and environmental markets, the overall value of enhanced services associated with adoption of perennial energy crops was far lower than the opportunity cost. However, when we monitized services using estimates for the social costs of pollution, the value of enhanced services far exceeded the opportunity cost. This disparity between recoverable costs and social value represents a fundamental challenge to expansion of perennial energy crops and sustainable agricultural landscapes. PMID:24223215

  11. Impact of land management system on crop yields and soil fertility in Cameroon

    NASA Astrophysics Data System (ADS)

    Tsozué, D.; Nghonda, J. P.; Mekem, D. L.

    2015-06-01

    The impact of direct-seeding mulch-based cropping systems (DMC), direct seeding (DS) and tillage seeding (TS) on Sorghum yields, soil fertility and the rehabilitation of degraded soils was evaluated in northern Cameroon. Field work consisted of visual examination, soil sampling, yield and rainfall data collection. Three fertilization rates (F1: 100 kg ha-1 NPK + 25 kg ha-1 of urea in DMC, F2: 200 kg ha-1 NPK + 50 kg ha-1 of urea in DMC and F3: 300 kg ha-1 NPK + 100 kg ha-1 of urea in DMC) were applied to each cropping system (DS, TS and DMC), resulting in nine experimental plots. Two types of chemical fertilizer were used (NPK 22.10.15 and urea) and applied each year from 2002 to 2012. Average Sorghum yields were 1239, 863 and 960 kg ha-1 respectively in DMC, DS and TS at F1, 1658, 1139 and 1192 kg ha-1 respectively in DMC, DS and TS at F2, and 2270, 2138 and 1780 kg ha-1 respectively in DMC, DS and TS at F3. pH values were 5.2 to 5.7 under DMC, 4.9 to 5.3 under DS and TS, and 5.6 in the control sample. High values of cation exchange capacity were recorded in the control sample, TS system and F1 of DMC. Base saturation rates, total nitrogen and organic matter contents were high in the control sample and the DMC than in the others systems. All studied soils were permanently not suitable for Sorghum due to the high percentage of nodules. F1 and F2 of the DS were currently not suitable, while F1 and F3 of DMC, F3 of DS and F1, F2 and F3 of TS were marginally suitable for Sorghum due to low soil pH values.

  12. Palmarosa [Cymbopogon martinii (Roxb.) Wats.] as a putative crop for phytoremediation, in tannery sludge polluted soil.

    PubMed

    Pandey, Janhvi; Chand, Sukhmal; Pandey, Shipra; Rajkumari; Patra, D D

    2015-12-01

    A field experiment using tannery sludge as a soil amendment material and palmarosa (Cymbopogon martinii) as a potential phytostabilizer was conducted to investigate their synergistic effect in relation to the improvement in soil quality/property. Three consecutive harvests of two cultivars of palmarosa-PRC-1 and Trishna, were examined to find out the influence of different tannery sludge doses on their herb, dry matter, essential oil yield and heavy metal accumulation. Soil fertility parameters (N, P, K, Organic carbon) were markedly affected by different doses of sludge. Enhanced soil nitrogen was positively correlated with herb yield (0.719*) and plant height (0.797*). The highest dose of tannery sludge (100tha(-1)) exhibited best performance than other treatments with respect to herb, dry matter and oil yield in all three harvests. Trishna was found to be superior to PRC-1 in relation to same studied traits. Quality of oil varied, but was insignificant statistically. Uptake of heavy metals followed same order (Cr>Ni>Pb>Cd) in roots and shoots. Translocation factor <1 for all trace elements and Bioconcentration factor >1 was observed in case of all heavy metals. Overall, tannery sludge enhanced the productivity of crop and metal accumulation occurred in roots with a meager translocation to shoots, hence it can be used as a phytostabiliser. The major advantage of taking palmarosa in metal polluted soil is that unlike food and agricultural crops, the product (essential oil) is extracted by hydro-distillation and there is no chance of oil contamination, thus is commercially acceptable. PMID:26298512

  13. Sustainability of soil fertility and the use of lignocellulosic crop harvest residues for the production of biofuels: a literature review.

    PubMed

    Reijnders, L

    2013-01-01

    Use of lignocellulosic crop harvest residues for liquid or gaseous biofuel production may impact soil quality, long-term soil fertility and the major determinants of the latter, stocks of soil organic carbon and nutrients. When soil organic carbon stocks of mineral cropland soils are to be maintained, there is scope for the removal of lignocellulosic harvest residues in several systems with much reduced tillage or no tillage. The scope for such removal might be increased when suitably treated residues from the conversion of harvest residues into biofuel are returned to cropland soils. For mineral cropland soils under conventional tillage, the scope for the production of liquid biofuels from harvest residues is likely to be less than in the case of no-till systems. When fertility of cropland soils is to be sustainable, nutrients present in suitably treated biofuel production residues have to be returned to these soils. Apparently, the actual return of carbon and nutrients present in residues of biofuel production from crop harvest residues to arable soils currently predominantly concerns the application of digestates of anaerobic digestion. The effects thereof on soil fertility and quality need further clarification. Further clarification about the effects on soil fertility and quality of chars and of co-products of lignocellulosic ethanol production is also needed. PMID:24350430

  14. Effects of soil and water conservation on crop productivity: Evidences from Anjenie watershed, Ethiopia

    NASA Astrophysics Data System (ADS)

    Adgo, Enyew; Teshome, Akalu

    2014-05-01

    Widespread soil and water conservation activities have been implemented in many parts of eastern Africa to control soil erosion by water and improve land productivity for the last few decades. Following the 1974 severe drought, soil and water conservation became more important to Ethiopia and the approach shifted to watershed based land management initiatives since the 1980s. To capture long-term impacts of these initiatives, a study was conducted in Anjenie Watershed of Ethiopia, assessing fanya juu terraces and grass strips constructed in a pilot project in 1984, and which are still functional nearly 30 years later. Data were collected from government records, field observations and questionnaire surveys administered to 60 farmers. Half of the respondents had terraced farms in the watershed former project area (with terrace technology) and the rest were outside the terraced area. The crops assessed were teff, barley and maize. Cost-benefit analyses were used to determine the economic benefits with and without terraces, including gross and net profit values, returns on labour, water productivity and impacts on poverty. The results indicated that soil and water conservation had improved crop productivity. The average yield on terraced fields was 0.95 t ha-1 for teff (control 0.49), 1.86 t ha-1 for barley (control 0.61), and 1.73 t ha-1 for maize (control 0.77). The net benefit was significantly higher on terraced fields, recording US 20.9 (US -112 control) for teff, US 185 (US -41 control) for barley and US -34.5 (US - 101 control) ha-1 yr-1 for maize. The returns on family labour were 2.33 for barley, 1.01 for teff, and 0.739 US per person-day for maize grown on terraced plots, compared to US 0.44, 0.27 and 0.16 per person-day for plots without terraces, respectively. Using a discount rate of 10%, the average net present value (NPV) of barley production with terrace was found to be about US 1542 over a period of 50 years. In addition, the average financial internal rate of return (FIRR) was 301%. Other long-term impacts of terracing included farmers' growing of maize on terraced fields as a result of water conservation. Currently, farmers also grow barley on terraced fields for two crop seasons per year unlike the experiences on farms without terraces. Household incomes and food security had improved and soil erosion drastically reduced. Many farmers had adopted terracing doubling the original area under the soil conservation pilot project and consequently improving environmental conservation in the watershed.

  15. Cover crops impact on excess rainfall and soil erosion rates in orchards and potato fields, Israel

    NASA Astrophysics Data System (ADS)

    Egozi, Roey; Gil, Eshel

    2015-04-01

    Bare soil and high drainage densities are common characteristics of intensive agriculture land. The couplings of these characteristics lead to high runoff and eroded soil volumes leaving the field or the orchard via the local drainage system into the fluvial system. This process increase flood risk due to massive deposition of the coarse fraction of the eroded soil and therefore reduces channel capacity to discharge the increase volumes of concentrated runoff. As a result drainage basin authorities are forced to invest large amount of money in maintaining and enlarging the drainage network. However this approach is un-sustainable. On the other hand, implementing cover crops (CC) and modification to current agricultural practices over the contributing area of the watershed seems to have more benefits and provide sustainable solution. A multi-disciplinary approach applied in commercial potatoes fields and orchards that utilize the benefit of CC shows great success as means of soil and water conservation and weed disinfestation without reduction in the yield, its quality or its profitability. The results indicate that it is possible to grow potatoes and citrus trees under CC with no reduction in yield or nutrient uptake, with more than 95% reduction in soil loss and more than 60% in runoff volumes and peak discharges.

  16. Humic fractions of forest, pasture and maize crop soils resulting from microbial activity

    PubMed Central

    Tavares, Rose Luiza Moraes; Nahas, Ely

    2014-01-01

    Humic substances result from the degradation of biopolymers of organic residues in the soil due to microbial activity. The objective of this study was to evaluate the influence of three different ecosystems: forest, pasture and maize crop on the formation of soil humic substances relating to their biological and chemical attributes. Microbial biomass carbon (MBC), microbial respiratory activity, nitrification potential, total organic carbon, soluble carbon, humic and fulvic acid fractions and the rate and degree of humification were determined. Organic carbon and soluble carbon contents decreased in the order: forest > pasture > maize; humic and fulvic acids decreased in the order forest > pasture=maize. The MBC and respiratory activity were not influenced by the ecosystems; however, the nitrification potential was higher in the forest than in other soils. The rate and degree of humification were higher in maize soil indicating greater humification of organic matter in this system. All attributes studied decreased significantly with increasing soil depth, with the exception of the rate and degree of humification. Significant and positive correlations were found between humic and fulvic acids contents with MBC, microbial respiration and nitrification potential, suggesting the microbial influence on the differential formation of humic substances of the different ecosystems. PMID:25477932

  17. Incorporation of Decomposed Crop Straw Affects Potential Phytoavailability of Mercury in a Mining-Contaminated Farming Soil.

    PubMed

    Zhu, Huike; Zhong, Huan; Fu, Fangjing; Zeng, Zhen

    2015-08-01

    Recently, incorporation of crop straw into soils is being largely encouraged worldwide. To explore the possible influence of incorporation of decomposed crop straw on the speciation (i.e., inorganic mercury/IHg, and methylmercury/MMHg) and phytoavailability of mercury, mercury-contaminated farming soil was amended with different amounts (i.e., low, medium or high) of straw organic fertilizer (SF, mainly consisting of decomposed rice straw) or humus (HU) and incubated for a month. Potential phytoavailability of IHg, assessed by CaCl2 extraction, was significantly lower in soils amended with low/medium SF, possibly due to the immobilization effect of SF-organic matter on IHg. In contrast, phytoavailability of IHg was significantly higher in soils incorporated with high HU, possibly explained by the leaching effect of dissolved HU on soil-bound IHg. For MMHg, incorporation of medium/high HU significantly increased MMHg phytoavailability, while SF addition had little effect. Interestingly, MMHg levels in SF/HU amended soils were generally lower than that in soil receiving no amendment, probably because complexation of IHg with SF/HU organics decreased IHg availability to methylation microorganisms. Overall, current results suggested that incorporation of decomposed crop straw may have multiple effects on mercury biogeochemistry in soils, which should be considered when applying SF into mercury-contaminated farming soils. PMID:25855528

  18. DISPERSION OF REACTIVE FUMIGANT GASES IN SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil fumigation is often used for control of soilborne diseases and plant pathogens in perennial nursery and orchard/vineyard crops. Because perennial crops have relatively deeper rooting depth than annual crops and, in replant situations, may be in close proximity to existing growing plants, there...

  19. Understanding the potential impact of climate change on long term soil carbon dynamics in tropical cropping systems - evidence from West Africa

    NASA Astrophysics Data System (ADS)

    Cretenet, Michel; Tittonell, Pablo; Guibert, Herve

    2010-05-01

    Long term experiments offer a unique opportunity to assess sustainability and temporal dynamics of biogeochemical cycles in agriculture, as well as the gradual impact on these of relatively slow processes such as climate change. Two long term experiments on annual cropping systems representing locally common crop rotations and cultural practices were established on two contrasting agroecological zones in Ivory Coast (in 1971) and in Mali (in 1965). These experiments were designed to assess the long-term productivity of these systems under different organic matter and nutrient management regimes, applying organic and mineral soil amendments alone or in combination. Organic soil amendments - such as animal manure, compost or plant material collected from the surroundings - were included in the experiments with the double purpose of adding nutrients for immediate crop production and adding organic matter inputs to the soil to restore (or maintain) its organic C content. Here, we provide an overview of the major trends in crop productivity and soil organic C observed in these experiments that illustrates the potential impact of climate change on the effectiveness of different measures to sustain agricultural productivity. Materials and methods Both experiments compared crop productivity on control plots without any soil amendment versus plots receiving organic matter, mineral fertilisers or both combined. The experiment at Gagnoa (southern Ivory Coast) was conducted during 23 years in a zone characterised by a bimodal rainfall regime (c. 1300 mm year-1) that allows two cropping seasons per year (Alfisols 15% clay). Every year maize was planted during the first rainy season. Organic matter was added as compost at a rate of 10 t ha-1 year-1, with or without application of 160 kg N ha-1 year-1 in mineral fertiliser (Chabalier, 1986). The experiment at N'Tarla (southern Mali) was conducted during 24 years in a zone of mono-modal rainfall (c. 900 mm year-1); Alfisols 5% clay), and consisted of quadrennial/triennial rotations of cotton (2x), sorghum and groundnuts. Organic matter was added as straw collected from adjacent fallow fields at a rate of 15 t ha-1 every three years, with and without application of N-P-K mineral fertilisers at an average rate of 30, 20 and 40 kg ha-1 year-1, respectively (Kone, 1989). In both experiments crop residues were incorporated in the soil every year. Results At both sites yields of the main crops were larger than the control on plots receiving organic and/or mineral soil amendments, and in both experiments crop yields were comparable when either organic or mineral fertilisers were applied. In the case of maize, partial additive effects of organic and mineral fertilisers applied in combination were observed. In the case of cotton, plots receiving only mineral fertilisers tended to yield less than those receiving organic amendments during the second half of the experiment. Soil organic C declined in control plots and in those receiving only mineral fertilisers in Gagnoa (Ivory Coast), and less markedly also in N'Tarla (Mali). Addition of 10 t ha-1 year-1 of organic matter with or without addition of mineral N led to greater soil C contents in Gagnoa, but yet a decline was observed over the 23 years. Addition of 15 t ha-1 year-1 of organic matter with or without fertilisers in N'Tarla had only a marginal effect on soil C content. In spite of the observed decline in soil C contents, maize yields tended to increase in Gagnoa in the last years of the experiment. Discussion Important differences were observed between sites in the size of the stocks and flows of carbon in and through the cropping system, which were the result of a different agroecological potential. Maize is a C4 species that produces large amounts of biomass; two cropping seasons per year allow fixing greater amounts of C from the atmosphere through photosynthesis. Although soil C inputs via crop residues were thus larger in Gagnoa, climatic conditions at this site favoured also a faster mineralisation of soil organic matter. The addit

  20. Water Erosion in Relation with Soil Management System and Crop Sequence during 20 Years on an Inceptisol in South Brazil

    NASA Astrophysics Data System (ADS)

    Bertol, I.; Schick, J.; Barbosa, F. T.; Paz-Ferreiro, J.; Flores, M. T.; Paz González, A.

    2012-04-01

    Soil erosion still remains persistent at the world scale, even if big efforts have been done to control and reduce it, mainly using soil crop residues to protect soil surface. Although in South Brazil the main management system for most crops is no tillage and direct drilling, water erosion prevails as the most important soil erosion type, which is due both, to the high erosivity and the evenly distribution of rainfall over the year. Moreover, some crops are still grown under soil tillage systems consisting of ploughing, harrowing and less frequently chiselling. Starting 1992, a field experiment under natural rainfall has been conducted on an Inceptisol located in Lages, Santa Catarina State, Brazil, which objective was to assess rainfall water erosion. Two soil cover conditions and four soil management systems were studied: I) a crop rotation, which included oats (Avena strigosa), soybean (Glycine max), common vetch (Vicia sativa), maize (Zea mays), fodder radish (Raphanus sativus) and common bean (Phaseolus vulgaris) under the following soil management types: 1) ploughing plus two levelling operations (CT), chiselling plus levelling (RT) and direct drilling with no tillage (NT), and II) bare soil (BS) without crop cover tilled by ploughing plus two levelling. In more than 90% of the study cases, soil losses were collected for single rain events with erosive power, whose erosivity was calculated. Total rain recorded during the 20 year experimental period was approximately 66,400 mm, which is equivalent to roughly 105,700, MJ mm ha-1 h-1 (EI30), whereas soil losses in the BS treatment were higher than 1,700 t.ha-1. On average, soil losses under RT treatment showed a 92% reduction in relation with BS, whereas under CT the reduction in relation to BS was about 66%. Soil management by direct drilling (NT) was the most efficient system to minimize water erosion, as soil losses decreased about 98% when compared with BS. Moreover, soil management systems with a crop rotation, i.e., RT, CT, and NT, showed a lower efficiency in the reduction of water losses with regard to the efficiency of soil losses decrease. So many rainfall events during our experimental period showed similar water losses for all the management and crop systems, which was mainly true for rainfalls causing high volumes of runoff and with a small time interval between successive events. During the autumn-winter seasons water losses were lower than in the spring-summer seasons, whereas greater soil losses in the spring-summer season were solely recorded in the CT and BS treatments. Heavy water losses by runoff recorder under conservation tillage, specifically in the NT management system suggest the need for adoption of additional structural conservation practices, such as for example terracing, in order to supplement the positive effect of soil cover by crop residues in controlling water erosion. Soil losses showed a positive correlation with rainfall erosivity and the significance of this relationship decreased as the efficiency of soil management system for the control of soil erosion increased.