Science.gov

Sample records for soja anticarsia gemmatalis

  1. The Pangenome of the Anticarsia gemmatalis Multiple Nucleopolyhedrovirus (AgMNPV)

    PubMed Central

    de Brito, Anderson Fernandes; Braconi, Carla Torres; Weidmann, Manfred; Dilcher, Meik; Alves, João Marcelo Pereira; Gruber, Arthur; Zanotto, Paolo Marinho de Andrade

    2016-01-01

    The alphabaculovirus Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is the world’s most successful viral bioinsecticide. Through the 1980s and 1990s, this virus was extensively used for biological control of populations of Anticarsia gemmatalis (Velvetbean caterpillar) in soybean crops. During this period, genetic studies identified several variable loci in the AgMNPV; however, most of them were not characterized at the sequence level. In this study we report a full genome comparison among 17 wild-type isolates of AgMNPV. We found the pangenome of this virus to contain at least 167 hypothetical genes, 151 of which are shared by all genomes. The gene bro-a that might be involved in host specificity and carrying transporter is absent in some genomes, and new hypothetical genes were observed. Among these genes there is a unique rnf12-like gene, probably implicated in ubiquitination. Events of gene fission and fusion are common, as four genes have been observed as single or split open reading frames. Gains and losses of genomic fragments (from 20 to 900 bp) are observed within tandem repeats, such as in eight direct repeats and four homologous regions. Most AgMNPV genes present low nucleotide diversity, and variable genes are mainly located in a locus known to evolve through homologous recombination. The evolution of AgMNPV is mainly driven by small indels, substitutions, gain and loss of nucleotide stretches or entire coding sequences. These variations may cause relevant phenotypic alterations, which probably affect the infectivity of AgMNPV. This work provides novel information on genomic evolution of the AgMNPV in particular and of baculoviruses in general. PMID:26615220

  2. The Pangenome of the Anticarsia gemmatalis Multiple Nucleopolyhedrovirus (AgMNPV).

    PubMed

    Brito, Anderson Fernandes de; Braconi, Carla Torres; Weidmann, Manfred; Dilcher, Meik; Alves, João Marcelo Pereira; Gruber, Arthur; Zanotto, Paolo Marinho de Andrade

    2016-01-01

    The alphabaculovirus Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is the world's most successful viral bioinsecticide. Through the 1980s and 1990s, this virus was extensively used for biological control of populations of Anticarsia gemmatalis (Velvetbean caterpillar) in soybean crops. During this period, genetic studies identified several variable loci in the AgMNPV; however, most of them were not characterized at the sequence level. In this study we report a full genome comparison among 17 wild-type isolates of AgMNPV. We found the pangenome of this virus to contain at least 167 hypothetical genes, 151 of which are shared by all genomes. The gene bro-a that might be involved in host specificity and carrying transporter is absent in some genomes, and new hypothetical genes were observed. Among these genes there is a unique rnf12-like gene, probably implicated in ubiquitination. Events of gene fission and fusion are common, as four genes have been observed as single or split open reading frames. Gains and losses of genomic fragments (from 20 to 900 bp) are observed within tandem repeats, such as in eight direct repeats and four homologous regions. Most AgMNPV genes present low nucleotide diversity, and variable genes are mainly located in a locus known to evolve through homologous recombination. The evolution of AgMNPV is mainly driven by small indels, substitutions, gain and loss of nucleotide stretches or entire coding sequences. These variations may cause relevant phenotypic alterations, which probably affect the infectivity of AgMNPV. This work provides novel information on genomic evolution of the AgMNPV in particular and of baculoviruses in general. PMID:26615220

  3. Effects of Fetal Bovine Serum deprivation in cell cultures on the production of Anticarsia gemmatalis Multinucleopolyhedrovirus

    PubMed Central

    2010-01-01

    Background Anticarsia gemmatalis is a pest in South America's soybean crops, which could be controlled by the Multinucleopolyhedrovirus of A. gemmatalis (AgMNPV). Currently, its commercial production is based on infected larvae. However, the possibility of using modified baculoviruses in Integrated Pest Management programs has stimulated an interest to develop alternative multiplication processes. This study evaluated the AgMNPV production in UFL-Ag-286 cells previously deprived Fetal Bovine Serum. Results Culture media containing 1% FBS during the previous 48 hours achieved a synchronized condition where 90% of cells were found in G0/G1 stage, showing the presence of non-filamentous actin. All characteristics were estimated from cellular viability tests, cell actin detection trials and flow cytometer cell cycle analysis. AgMNPV production was tested by transcript studies and budded viruses (BVs) and occlusion bodies (OBs) yield quantitation. Results showed that the productivity in FBS deprived cells was 9.8 times more in BVs and 3.8 times more in OBs with respect to non-treated cells. Conclusions UFL-Ag-286 cells previously deprived in FBS shown to be a better host for AgMNPV propagation, increasing the useful for both in vitro bioinsecticide production and applications such as recombinant protein expression or gene delivery. PMID:20843354

  4. Proteomic analyses of baculovirus Anticarsia gemmatalis multiple nucleopolyhedrovirus budded and occluded virus.

    PubMed

    Braconi, Carla Torres; Ardisson-Araújo, Daniel Mendes Pereira; Paes Leme, Adriana Franco; Oliveira, Juliana Velasco de Castro; Pauletti, Bianca Alves; Garcia-Maruniak, Alejandra; Ribeiro, Bergmann Morais; Maruniak, James E; Zanotto, Paolo Marinho de Andrade

    2014-04-01

    Baculoviruses infect insects, producing two distinct phenotypes during the viral life cycle: the budded virus (BV) and the occlusion-derived virus (ODV) for intra- and inter-host spread, respectively. Since the 1980s, several countries have been using Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) as a biological control agent against the velvet bean caterpillar, A. gemmatalis. The genome of AgMNPV isolate 2D (AgMNPV-2D) carries at least 152 potential genes, with 24 that possibly code for structural proteins. Proteomic studies have been carried out on a few baculoviruses, with six ODV and two BV proteomes completed so far. Moreover, there are limited data on virion proteins carried by AgMNPV-2D. Therefore, structural proteins of AgMNPV-2D were analysed by MALDI- quadrupole-TOF and liquid chromatography MS/MS. A total of 44 proteins were associated with the ODV and 33 with the BV of AgMNPV-2D. Although 38 structural proteins were already known, we found six new proteins in the ODV and seven new proteins carried by the AgMNPV-2D BV. Eleven cellular proteins that were found on several other enveloped viruses were also identified, which are possibly carried with the virion. These findings may provide novel insights into baculovirus biology and their host interaction. Moreover, our data may be helpful in subsequent applied studies aiming to improve AgMNPV use as a biopesticide and a biotechnology tool for gene expression or delivery. PMID:24443474

  5. Two's a Crowd: Phenotypic Adjustments and Prophylaxis in Anticarsia gemmatalis Larvae Are Triggered by the Presence of Conspecifics

    PubMed Central

    Silva, Farley W. S.; Viol, Daniel L.; Faria, Sirlene V.; Lima, Eraldo; Valicente, Fernando H.; Elliot, Simon L.

    2013-01-01

    Defence from parasites and pathogens involves a cost. Thus, it is expected that organisms use this only at high population densities, where the risk of pathogen transmission may be high, as proposed by the "density-dependent prophylaxis" (DDP) hypothesis. These predictions have been tested in a wide range of insects, both in comparative and experimental studies. We think it pertinent to consider a continuum between solitarious and gregarious living insects, wherein: (1) solitarious insects are those that are constitutively solitary and do not express any phenotypic plasticity, (2) the middle of the continuum is represented by insects that are subject to fluctuations in local density and show a range of facultative and plastic changes; and (3) constitutively gregarious forms live gregariously and show the gregarious phenotype even in the absence of crowding stimuli. We aimed to chart some of the intermediary continuum with an insect that presents solitarious aspects, but that is subject to fluctuations in density. Thus, Anticarsia gemmatalis (Lepidoptera: Noctuidae) larvae reared at higher densities showed changes in coloration, a greater degree of encapsulation, had higher hemocyte densities and were more resistant to Baculovirus anticarsia, but not to Bacillus thuringiensis. Meanwhile, with increased rearing density there was reduced capsule melanization. Hemocyte density was the only variable that did not vary according to larval phenotype. The observed responses were not a continuous function of larval density, but an all-or-nothing response to the presence of a conspecific. As A. gemmatalis is not known for gregarious living, yet shows these density-dependent changes, it thus seems that this plastic phenotypic adjustment may be a broader phenomenon than previously thought. PMID:23626700

  6. Entomocidal effects of beech apricot, Labramia bojeri, seed extract on a soybean pest, the velvetbean moth, Anticarsia gemmatalis, and its enzymatic activity.

    PubMed

    Macedo, Maria L R; Kubo, Carlos E G; Freire, Maria G M; Júnior, Roberto T A; Parra, José R P

    2014-01-01

    The effects of the beech apricot, Labramia bojeri A. de Candolle (Sapotales: Sapotaceae), seed aqueous extract on the larval development of the velvetbean moth, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), was evaluated. The extract inhibited larval development, pupal weight, and survival and emergence of adults. Digestive proteolytic activity in larval midgut and feces extracts was determined. Larvae fed 10 g/L of the aqueous extract showed a significant reduction in trypsin activity (~64%), when compared with control larvae. Trypsin and chymotrypsin activities were also detected in fecal material in aqueous-extract-fed larvae, with about ~4.5 times more trypsin activity than the controls. The results from dietary utilization experiments with A. gemmatalis larvae showed a reduction in the efficiency of conversion of ingested food and digested food and an increase in approximate digestibility and metabolic cost. The effect of the extract suggests the potential use of L. bojeri seeds to inhibit the development of A. gemmatalis via oral exposure. The L. bojeri extract can be an alternative to other methods of control. PMID:25373174

  7. Entomocidal Effects of Beech Apricot, Labramia bojeri, Seed Extract on a Soybean Pest, the Velvetbean Moth, Anticarsia gemmatalis, and Its Enzymatic Activity

    PubMed Central

    Macedo, Maria L. R.; Kubo, Carlos E. G.; Freire, Maria G. M.; Júnior, Roberto T. A.; Parra, José R. P.

    2014-01-01

    The effects of the beech apricot, Labramia bojeri A. de Candolle (Sapotales: Sapotaceae), seed aqueous extract on the larval development of the velvetbean moth, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), was evaluated. The extract inhibited larval development, pupal weight, and survival and emergence of adults. Digestive proteolytic activity in larval midgut and feces extracts was determined. Larvae fed 10 g/L of the aqueous extract showed a significant reduction in trypsin activity (∼64%), when compared with control larvae. Trypsin and Chymotrypsin activities were also detected in fecal material in aqueous-extract-fed larvae, with about ∼4.5 times more trypsin activity than the controls. The results from dietary utilization experiments with A. gemmatalis larvae showed a reduction in the efficiency of conversion of ingested food and digested food and an increase in approximate digestibility and metabolic cost. The effect of the extract suggests the potential use of L. bojeri seeds to inhibit the development of A. gemmatalis via oral exposure. The L. bojeri extract can be an alternative to other methods of control. PMID:25373174

  8. Interactions among insect-resistant soybean genotypes extracts with populations of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) susceptible and resistant to its nucleopolyhedrovirus.

    PubMed

    Piubelli, Giorla C; Moscardi, Flávio; Hoffmann-Campo, Clara B

    2009-12-01

    Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) is being used in Brazil as a biological insecticide. Host plant resistance of soybean to insects is been searched for and some authors have mentioned the interference of plant chemistry in virus efficiency. Interactions among soybean extracts of genotypes used as a source of resistance (PI 274454 and PI 227687) with different AgMNPV concentrations in populations of A. geatalis susceptible (S) and resistant (R) to the virus were studied at laboratory condition. Higher mortality was observed when larvae fed on diets with extracts of the soybean genotypes compared with those fed on a plain diet (control). The mean lethal concentration (LC50) was reduced about 10 ties in the S-population fed on diets containing PI 274454 extracts and different concentrations of AgMNPV, compared to control diet. Additive effect was predominantly observed when larvae fed on diets with extracts of soybean genotypes (PI 274454 and PI 227687) and AgMNPV for both larval populations. The pupal weight was negatively influenced by the extracts incorporated to the diets compared to control, for both larval populations, notably for R-population. The results suggest that, in general, leaf extracts of soybean resistant genotype did not cause any harmful effect on virus efficiency. PMID:19893908

  9. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae

    PubMed Central

    Shrestha, Sirjana Devi; Chapman, Patrick; Zhang, Yun; Gijzen, Mark

    2016-01-01

    The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076) with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains. PMID:26930612

  10. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    PubMed

    Shrestha, Sirjana Devi; Chapman, Patrick; Zhang, Yun; Gijzen, Mark

    2016-01-01

    The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076) with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains. PMID:26930612

  11. Pre-termination in aflR of Aspergillus sojae inhibits aflatoxin biosynthesis.

    PubMed

    Matsushima, K; Chang, P K; Yu, J; Abe, K; Bhatnagar, D; Cleveland, T E

    2001-05-01

    The aflR gene product is the main transcriptional regulator of aflatoxin biosynthesis in Aspergillus parasiticus and Aspergillus flavus. Although A. sojae strains do not produce aflatoxins, they do have an aflR homologue. When compared with the aflR of A. parasiticus, the A. sojae gene contains two mutations: an HAHA motif and a premature stop codon. To investigate the functionality of the A. sojae aflR gene product, we used a GAL4 one-hybrid system in yeast. The transcription-activating activity of AflR from A. sojae was 15% of that from A. parasiticus. The introduction of an additional aflR from A. sojae into an A. parasiticus strain did not affect aflatoxin productivity. A hybrid aflR comprising the amino-terminal region of A. sojae aflR and the carboxy-terminal region of A. parasiticus aflR suppressed the effect associated with pre-termination of the A. sojae AflR. We conclude that the premature stop codon of the A. sojae aflR is the key to its functionality and leads to prevention of aflatoxin biosynthesis through loss of the transcription of aflatoxin biosynthesis-related genes. PMID:11414325

  12. A Multiplexed, Probe-Based Quantitative PCR Assay for DNA of Phytophthora sojae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora sojae (Kaufm. & Gerd.) causes seed rot, pre- and post-emergence damping off, and sometimes foliar blight in soybean (Glycine max). Crop loss may approach 100% with susceptible cultivars. We report here the development of a unique quantitative PCR assay specific to DNA of P. sojae, and a...

  13. Mitochondrial genome sequences and comparative genomics of Phytophthora ramorum and P. sojae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete sequences of the mitochondrial genomes of the oomycetes Phytophthora ramorum and P. sojae were determined during the course of their complete nuclear genome sequencing (Tyler et al. 2006). Both are circular, with sizes of 39,314 bp for P. ramorum and 42,977 bp for P. sojae. Each contain...

  14. Effects of spinosad and neem on the efficacy of a nucleopolyhedrovirus on pickleworm larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A neem formulation (Neemix® 4.5) and spinosad (SpinTor® 2SC) were tested for their effects when mixed with the multicapsid nucleopolyhedrovirus virus (AgMNPV) from the velvetbean caterpillar, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), for control of pickleworm larvae, Diaphania nitidalis...

  15. Insect pests and yield potential of vegetable soybean (Endamame) produced in Georgia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of replicated field experiments was conducted with vegetable soybean (edamame), Glycine max (L.) Merrill, to assess the impacts of cultivars, planting dates, and insecticidal controls on insect pest abundance, crop damage and yield potential. The velvetbean caterpillar, Anticarsia gemmatali...

  16. Binary floral lure attractive to velvetbean caterpillar adults (Lepidoptera: Noctuidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of combinations of flower odor compounds in northern Florida, revealed that linalool was synergistic in attractiveness with phenylacetaldehyde (PAA) to the migratory moth velvetbean caterpillar (Anticarsia gemmatalis Hübner). This noctuid was the most common species collected from traps w...

  17. Binary floral lure attractive to velvetbean caterpillar adults (Lepidoptera: Noctuidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of moth species responded positively to phenylacetaldehyde (PAA) and to the binary blend of PAA + linalool in tests conducted in peanut fields in northern Florida, USA. Velvetbean caterpillar moths (Anticarsia gemmatalis Hübner) were the most commonly collected species, with almost 13,000 ...

  18. Effect of a benzothiadiazole on inducing resistance of soybean to Phytophthora sojae.

    PubMed

    Han, Qingmei; Feng, Hao; Zhao, Haiyan; Huang, Lili; Wang, Xiaojie; Wang, Xiaodong; Kang, Zhensheng

    2013-04-01

    Effects of benzothidiazole (BTH), an inducer of resistance, were examined in a compatible interaction of soybean seedlings and Phytophthora sojae using electron microscopy and quantitative real-time polymerase chain reaction (qRT-PCR) techniques. Seedlings were sprayed with BTH 2 days before inoculation of hypocotyls with zoospore suspension of P. sojae. In hypocotyls treated with BTH, the infection process of P. sojae was significantly delayed, and also the structures of hyphae and haustorium-like bodies were remarkably altered. These changes included increased vacuolation, plasmolysis, degeneration of cytoplasm, and collapse of hyphae and haustorium-like bodies. Large morphological differences were detected in P. sojae-infected hypocotyl tissue treated with BTH compared with infected but non-treated control tissue. Very thick layers of wall appositions were formed in the host cells contacting with hyphae, whereas such structures were never observed in only P. sojae-infected control hypocotyls. In addition, five pathogenesis-related (PR)-genes were selected to detect their transcription changes using qRT-PCR. Expression of PR-1, PR-3a, PR-3b, PR-9, and PR-10 genes were induced in BTH-treated and P. sojae-inoculated tissue at different times and levels. The up-regulated expression of these genes as well as the morphological defense structures may contribute to disease resistance in soybean hypocotyls to P. sojae. PMID:22777214

  19. Acetylome analysis reveals the involvement of lysine acetylation in diverse biological processes in Phytophthora sojae

    PubMed Central

    Li, Delong; Lv, Binna; Tan, Lingling; Yang, Qianqian; Liang, Wenxing

    2016-01-01

    Lysine acetylation is a dynamic and highly conserved post-translational modification that plays an important regulatory role in almost every aspects of cell metabolism in both eukaryotes and prokaryotes. Phytophthora sojae is one of the most important plant pathogens due to its huge economic impact. However, to date, little is known about the functions of lysine acetylation in this Phytopthora. Here, we conducted a lysine acetylome in P. sojae. Overall, 2197 lysine acetylation sites in 1150 proteins were identified. The modified proteins are involved in diverse biological processes and are localized to multiple cellular compartments. Importantly, 7 proteins involved in the pathogenicity or the secretion pathway of P. sojae were found to be acetylated. These data provide the first comprehensive view of the acetylome of P. sojae and serve as an important resource for functional analysis of lysine acetylation in plant pathogens. PMID:27412925

  20. Acetylome analysis reveals the involvement of lysine acetylation in diverse biological processes in Phytophthora sojae.

    PubMed

    Li, Delong; Lv, Binna; Tan, Lingling; Yang, Qianqian; Liang, Wenxing

    2016-01-01

    Lysine acetylation is a dynamic and highly conserved post-translational modification that plays an important regulatory role in almost every aspects of cell metabolism in both eukaryotes and prokaryotes. Phytophthora sojae is one of the most important plant pathogens due to its huge economic impact. However, to date, little is known about the functions of lysine acetylation in this Phytopthora. Here, we conducted a lysine acetylome in P. sojae. Overall, 2197 lysine acetylation sites in 1150 proteins were identified. The modified proteins are involved in diverse biological processes and are localized to multiple cellular compartments. Importantly, 7 proteins involved in the pathogenicity or the secretion pathway of P. sojae were found to be acetylated. These data provide the first comprehensive view of the acetylome of P. sojae and serve as an important resource for functional analysis of lysine acetylation in plant pathogens. PMID:27412925

  1. Mitochondrial genome sequences and comparative genomics ofPhytophthora ramorum and P. sojae

    SciTech Connect

    Martin, Frank N.; Douda, Bensasson; Tyler, Brett M.; Boore,Jeffrey L.

    2007-01-01

    The complete sequences of the mitochondrial genomes of theoomycetes of Phytophthora ramorum and P. sojae were determined during thecourse of their complete nuclear genome sequencing (Tyler, et al. 2006).Both are circular, with sizes of 39,314 bp for P. ramorum and 42,975 bpfor P. sojae. Each contains a total of 37 identifiable protein-encodinggenes, 25 or 26 tRNAs (P. sojae and P. ramorum, respectively)specifying19 amino acids, and a variable number of ORFs (7 for P. ramorum and 12for P. sojae) which are potentially additional functional genes.Non-coding regions comprise approximately 11.5 percent and 18.4 percentof the genomes of P. ramorum and P. sojae, respectively. Relative to P.sojae, there is an inverted repeat of 1,150 bp in P. ramorum thatincludes an unassigned unique ORF, a tRNA gene, and adjacent non-codingsequences, but otherwise the gene order in both species is identical.Comparisons of these genomes with published sequences of the P. infestansmitochondrial genome reveals a number of similarities, but the gene orderin P. infestans differs in two adjacent locations due to inversions.Sequence alignments of the three genomes indicated sequence conservationranging from 75 to 85 percent and that specific regions were morevariable than others.

  2. Molecular mapping and characterization of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora root and stem rot (PRR), caused by the soil-borne oomycete pathogen Phytophthora sojae, is one of the most destructive diseases of soybean. PRR can be effectively controlled by race-specific genes conferring resistance to P. sojae (Rps). However, the Rps genes are usually non-durable, a...

  3. Genome-wide association mapping of partial resistance to Phytophthora sojae in soybean plant introductions from the Republic of Korea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora root and stem rot is one of the most yield-limiting diseases of soybean [Glycine max (L.) Merr], caused by the oomycete Phytophthora sojae. Partial resistance is controlled by several genes and, compared to single gene (Rps gene) resistance to P. sojae, places less selection pressure on...

  4. Chemotactic Preferences and Strain Variation in the Response of Phytophthora sojae Zoospores to Host Isoflavones

    PubMed Central

    Tyler, B. M.; Wu, M.; Wang, J.; Cheung, W.; Morris, P. F.

    1996-01-01

    The zoospores of Phytophthora sojae are chemotactically attracted to the isoflavones genistein and daidzein that are released by soybean roots. In this study we have examined the response of P. sojae zoospores to a wide range of compounds having some structural similarity to genistein and daidzein, including isoflavones, flavones, chalcones, stilbenes, benzoins, benzoates, benzophenones, acetophenones, and coumarins. Of 59 compounds examined, 43 elicited some response. A comparison of the chemotactic responses elicited by the various compounds revealed a primary role for the phenolic 4(prm1)- and 7-hydroxyl groups on the isoflavone structure. A few compounds acted as repellents, notably methylated flavones with a hydrophobic B ring. The chemotactic response to many of the analogs was markedly different among different strains of P. sojae. PMID:16535375

  5. Identification of α-tocopherol and α-tocopheryl acetate from the cuticle of soybean pods armyworm (Spodoptera cosmioides).

    PubMed

    Fronza, Edegar; Migues, Ignacio; Specht, Alexandre; de Barros, Neiva Monteiro; Heinzen, Horacio

    2013-01-01

    The chemical composition of the soybean pods armyworm Spodoptera cosmioides (Walker, 1858) (Lepidoptera: Noctuidae) and Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Erebidae) larval cuticles was evaluated using gas chromatography coupled to a mass detector (GC-MS). Among the usual lipids found in the insect cuticle, α-tocopherol and α-tocopheryl acetate were also isolated from S. cosmioides. On the other hand, no vitamin E derivative was found in A. gemmatalis exuvia. This is the first report of vitamin E occurrence in the insect's cuticle. PMID:23356865

  6. Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora root and stem rot caused by Phytophthora sojae Kaufmann and Gerdmann is one of the most severe soybean [Glycine max (L.) Merr] diseases in the US. Partial resistance is as effective in managing this disease as single-gene (Rps) mediated resistance and is more durable. The objective of t...

  7. Understanding Nonaflatoxigenicity of Aspergillus sojae: A Windfall of Aflatoxin Biosynthesis Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus section Flavi includes aflatoxin-producing and nonproducing fungi. A. sojae is unable to produce aflatoxins and is generally recognized as safe for food fermentation. However, because of its taxonomical relatedness to aflatoxin-producing A. parasiticus and A. flavus, it is necessary to...

  8. Multi-Year Evaluation of Commercial Soybean Cultivars for Resistance to Phytophthora sojae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora sojae causes damping off, root rot, and stem rot of soybean, particularly in poorly drained soils. The use of resistance has been one of the primary management tools used to control this disease, with the most commonly used genes being Rps1c and Rps1k, followed by Rps1a. The Varietal In...

  9. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora stem and root rot disease, caused by Phytophthora sojae, is one of the most destructive diseases of soybean (Glycine max (L.) Merr.), and has been increasing in several soybean-producing areas around the world. This disease induces serious limitations on soybean production, with yield l...

  10. Amino terminal region of Phytophthora sojae cel12 endoglucanase confers tissue collapse function in Nicotiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora encodes an unusually large number of glycosyl hydrolases (GH), with many large gene families resulting from duplication events. There are ten copies of GH 12 (cel12) present in Phytophthora sojae. This is the only pathogen endoglucanase family to which plants produce an inhibitory pr...

  11. Atypical Aspergillus parasiticus isolates from pistachio with aflR gene nucleotide insertion identical to Aspergillus sojae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are the most toxic and carcinogenic secondary metabolites produced primarily by the filamentous fungi Aspergillus flavus and Aspergillus parasiticus. The toxins cause devastating economic losses because of strict regulations on distribution of contaminated products. Aspergillus sojae are...

  12. Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis

    PubMed Central

    2012-01-01

    Background Phytophthora sojae is the primary pathogen of soybeans that are grown on poorly drained soils. Race-specific resistance to P. sojae in soybean is gene-for-gene, although in many areas of the US and worldwide there are populations that have adapted to the most commonly deployed resistance to P. sojae ( Rps) genes. Hence, this system has received increased attention towards identifying mechanisms and molecular markers associated with partial resistance to this pathogen. Several quantitative trait loci (QTL) have been identified in the soybean cultivar ‘Conrad’ that contributes to the expression of partial resistance to multiple P. sojae isolates. Results In this study, two of the Conrad QTL on chromosome 19 were dissected through sequence and expression analysis of genes in both resistant (Conrad) and susceptible (‘Sloan’) genotypes. There were 1025 single nucleotide polymorphisms (SNPs) in 87 of 153 genes sequenced from Conrad and Sloan. There were 304 SNPs in 54 genes sequenced from Conrad compared to those from both Sloan and Williams 82, of which 11 genes had SNPs unique to Conrad. Eleven of 19 genes in these regions analyzed with qRT-PCR had significant differences in fold change of transcript abundance in response to infection with P. sojae in lines with QTL haplotype from the resistant parent compared to those with the susceptible parent haplotype. From these, 8 of the 11 genes had SNPs in the upstream, untranslated region, exon, intron, and/or downstream region. These 11 candidate genes encode proteins potentially involved in signal transduction, hormone-mediated pathways, plant cell structural modification, ubiquitination, and basal resistance. Conclusions These findings may indicate a complex defense network with multiple mechanisms underlying these two soybean QTL conferring resistance to P. sojae. SNP markers derived from these candidate genes can contribute to fine mapping of QTL and marker assisted breeding for resistance to P. sojae

  13. Improved biomass and protein production in solid-state cultures of an Aspergillus sojae strain harboring the Vitreoscilla hemoglobin.

    PubMed

    Mora-Lugo, Rodrigo; Madrigal, Marvin; Yelemane, Vikas; Fernandez-Lahore, Marcelo

    2015-11-01

    The biotechnological value of Aspergillus sojae ATCC 20235 (A. sojae) for production of pectinases in solid-state fermentation (SSF) has been demonstrated recently. However, a common drawback of fungal solid-state cultures is the poor diffusion of oxygen into the fungi that limits its growth and biological productivity. The bacterial Vitreoscilla hemoglobin (VHb) has favored the metabolism and productivities of various bacterial and yeast strains besides alleviating hypoxic conditions of its native host, but the use of VHb in filamentous fungi still remains poor explored. Based on the known effects of VHb, this study assessed its applicability to improve A. sojae performance in SSF. The VHb gene (vgb) under control of the constitutive Aspergillus nidulants gpdA promoter was introduced into the genome of A. sojae by Agrobacterium-mediated transformation. Successful fungal transformants were identified by fluorescence microscopy and polymerase chain reaction (PCR) analyses. In solid-state cultures, the content of protease, exo-polygalacturonase (exo-PG), and exo-polymethylgalacturonase (exo-PMG) of the transformed fungus (A. sojae vgb+) improved were 26, 60, and 44 % higher, respectively, in comparison to its parental strain (A. sojae wt). Similarly, biomass content was also 1.3 times higher in the transformant strain. No significant difference was observed in endo-polygalacturonase (endo-PG) content between both fungal strains, suggesting dissimilar effects of VHb towards different enzymatic productions. Overall, our results show that biomass, protease, and exo-pectinase content of A. sojae in SSF can be improved by transformation with VHb. PMID:26224427

  14. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean

    PubMed Central

    Cheng, Qun; Li, Ninghui; Dong, Lidong; Zhang, Dayong; Fan, Sujie; Jiang, Liangyu; Wang, Xin; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (placeCityABA), salicylic acid (SA). It is located in the cytoplasm when transiently expressed in soybean protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while the relative content of glyceollins in transgenic plants was significantly higher than that of non-transgenic plants. Furthermore, we found that the relative expression levels of reactive oxygen species (ROS) of transgenic soybean plants were significantly lower than those of non-transgenic plants after incubation with P. sojae, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean. The enzyme activity assay suggested that GmIFR has isoflavone reductase activity. PMID:26635848

  15. Genepool Variation in Genus Glycine Subgenus Soja Revealed by Polymorphic Nuclear and Chloroplast Microsatellites

    PubMed Central

    Powell, W.; Morgante, M.; Doyle, J. J.; McNicol, J. W.; Tingey, S. V.; Rafalski, A. J.

    1996-01-01

    A combination of nuclear and chloroplast simple sequence repeats (SSRs) have been used to investigate the levels and pattern of variability detected in Glycine max and G. soja genotypes. Based on the analysis of 700 soybean genotypes with 115 restriction fragment length polymorphism (RFLP) probes, 12 accessions were identified that represent 92% of the allelic variability detected in this genepool. These 12 core genotypes together with a sample of G. max and G. soja accessions were evaluated with 11 nuclear SSRs that detected 129 alleles. Compared with the other G. max and G. soja genotypes sampled, the core genotypes represent 40% of the allelic variability detected with SSRs. Despite the multi-allelic nature of soybean SSRs, dendrograms representing phenetic relationships between accessions clustered according to their subspecies origin. In addition to biparentally inherited nuclear SSRs, two uniparentally (maternally) transmitted chloroplast SSRs were also studied. A total of seven haplotypes were identified, and diversity indices of 0.405 +/- 0.088 and 0.159 +/- 0.071 were obtained for the two chloroplast SSRs. The availability of polymorphic SSR loci in the chloroplast genome provides new opportunities to investigate cytonuclear interactions in plants. PMID:8889540

  16. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean.

    PubMed

    Cheng, Qun; Li, Ninghui; Dong, Lidong; Zhang, Dayong; Fan, Sujie; Jiang, Liangyu; Wang, Xin; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (placeCityABA), salicylic acid (SA). It is located in the cytoplasm when transiently expressed in soybean protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while the relative content of glyceollins in transgenic plants was significantly higher than that of non-transgenic plants. Furthermore, we found that the relative expression levels of reactive oxygen species (ROS) of transgenic soybean plants were significantly lower than those of non-transgenic plants after incubation with P. sojae, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean. The enzyme activity assay suggested that GmIFR has isoflavone reductase activity. PMID:26635848

  17. Genetic analysis and identification of DNA markers linked to a novel Phytophthora sojae resistance gene in the Japanese soybean cultivar Waseshiroge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycine max (L.) Merr. cv. Waseshiroge is considered to be strongly resistant to several races of Phytophthora sojae in Japan. In order to characterize the inheritance of Waseshiroge resistance to P. sojae isolates, 42 F2 progeny plants and 94 F7:8 families were produced from crosses between the sus...

  18. C239S Mutation in the β-Tubulin of Phytophthora sojae Confers Resistance to Zoxamide.

    PubMed

    Cai, Meng; Miao, Jianqiang; Song, Xi; Lin, Dong; Bi, Yang; Chen, Lei; Liu, Xili; Tyler, Brett M

    2016-01-01

    Zoxamide is the sole β-tubulin inhibitor registered for the control of oomycete pathogens. The current study investigated the activity of zoxamide against Phytophthora sojae and baseline sensitivity was established with a mean EC50 of 0.048 μg/ml. The data is critical for monitoring changes in zoxamide-sensitivity in the field. Three stable resistant mutants with a high resistance level were obtained by selection on zoxamide amended media. Although the development of resistance occurred at a low frequency, there were no apparent fitness penalty in the acquired mutants in terms of growth rate, sporulation, germination and pathogenicity. Based on the biological profiles and low mutagenesis rate, the resistance risk of P. sojae to zoxamide can be estimated as low to medium. Further investigation revealed all the zoxamide-resistant mutants had a point mutation of C239S in their β-tubulin. Zoxamide also exhibited high activity against most species from the genus Pythium in which only Pythium aphanidermatum was found naturally resistant to zoxamide and harboring the natural point mutation S239 in the β-tubulin. Back-transformation in P. sojae with the mutated allele (S239) confirmed the C239S mutation can induce resistance to zoxamide, and the resistance level was positively related to the expression level of the mutated gene. In contrast, the overexpression of the wild type gene was unable to cause zoxamide resistance. It is the first report on the resistance molecular mechanism of zoxamide in oomycetes. Based on our study, C239 is supposed to be a key target site of zoxamide, which distinguishes zoxamide from benzimidazoles and accounts for its low resistance risk. The result can provide advice on the design of new β-tubulin inhibitors in future. PMID:27242773

  19. C239S Mutation in the β-Tubulin of Phytophthora sojae Confers Resistance to Zoxamide

    PubMed Central

    Cai, Meng; Miao, Jianqiang; Song, Xi; Lin, Dong; Bi, Yang; Chen, Lei; Liu, Xili; Tyler, Brett M.

    2016-01-01

    Zoxamide is the sole β-tubulin inhibitor registered for the control of oomycete pathogens. The current study investigated the activity of zoxamide against Phytophthora sojae and baseline sensitivity was established with a mean EC50 of 0.048 μg/ml. The data is critical for monitoring changes in zoxamide-sensitivity in the field. Three stable resistant mutants with a high resistance level were obtained by selection on zoxamide amended media. Although the development of resistance occurred at a low frequency, there were no apparent fitness penalty in the acquired mutants in terms of growth rate, sporulation, germination and pathogenicity. Based on the biological profiles and low mutagenesis rate, the resistance risk of P. sojae to zoxamide can be estimated as low to medium. Further investigation revealed all the zoxamide-resistant mutants had a point mutation of C239S in their β-tubulin. Zoxamide also exhibited high activity against most species from the genus Pythium in which only Pythium aphanidermatum was found naturally resistant to zoxamide and harboring the natural point mutation S239 in the β-tubulin. Back-transformation in P. sojae with the mutated allele (S239) confirmed the C239S mutation can induce resistance to zoxamide, and the resistance level was positively related to the expression level of the mutated gene. In contrast, the overexpression of the wild type gene was unable to cause zoxamide resistance. It is the first report on the resistance molecular mechanism of zoxamide in oomycetes. Based on our study, C239 is supposed to be a key target site of zoxamide, which distinguishes zoxamide from benzimidazoles and accounts for its low resistance risk. The result can provide advice on the design of new β-tubulin inhibitors in future. PMID:27242773

  20. Triptans in the treatment of migraine: drug selection by means of the SOJA method.

    PubMed

    Janknegt, Robert

    2007-10-01

    In this paper, drug selection of triptans for the treatment of migraine is performed by means of the SOJA method, which prospectively defines and scores selection criteria. All drugs available in the Netherlands were included in the analysis. The following selection criteria were used (relative weight between brackets): approved indications (40), number of formulations (50), variability of bioavailability (40), drug interactions (85), clinical efficacy (415), side effects (190), acquisition cost (75) and documentation (105). Almotriptan, rizatriptan and sumatriptan show the highest scores, and are the most suitable triptans for formulary inclusion. PMID:17931075

  1. Mapping of quantitative trait loci associated with partial resistance to phytophthora sojae and flooding tolerance in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora root rot (PRR) caused by Phytophthora sojae Kaufm. & Gerd. and flooding can limit growth and productivity, of soybean [Glycine max (L.) Merr.], especially on poorly drained soils. The primary objective of this research project was to map quantitative trait loci (QTL) associated with f...

  2. Nonfunctionality of Aspergillus sojae aflR in a strain of Aspergillus parasiticus with a disrupted aflR gene.

    PubMed

    Takahashi, Tadashi; Chang, Perng-Kuang; Matsushima, Kenichiro; Yu, Jiujiang; Abe, Keietsu; Bhatnagar, Deepak; Cleveland, Thomas E; Koyama, Yasuji

    2002-08-01

    Aspergillus sojae belongs to the Aspergillus section Flavi but does not produce aflatoxins. The functionality of the A. sojae aflR gene (aflRs) was examined by transforming it into an DeltaaflR strain of A. parasiticus, derived from a nitrate-nonutilizing, versicolorin A (VERA)-accumulating strain. The A. parasiticus aflR gene (aflRp) transformants produced VERA, but the aflRs transformants did not. Even when aflRs was placed under the control of the amylase gene (amyB) promoter of Aspergillus oryzae, the amy(p)::aflRs transformants did not produce VERA. A chimeric construct containing the aflRs promoter plus the aflRs N- and aflRp C-terminal coding regions could restore VERA production, but a construct containing the aflRp promoter plus the aflRp N- and aflRs C-terminal coding regions could not. These results show that the A. sojae aflR promoter is functional in A. parasiticus and that the HAHA motif does not affect the function of the resulting hybrid AflR. We conclude that the lack of aflatoxin production by A. sojae can be attributed, at least partially, to the premature termination defect in aflRs, which deletes the C-terminal transcription activation domain that is critical for the expression of aflatoxin biosynthetic genes. PMID:12147467

  3. Genome re-sequencing of semi-wild soybean reveals a complex Soja population structure and deep introgression.

    PubMed

    Qiu, Jie; Wang, Yu; Wu, Sanling; Wang, Ying-Ying; Ye, Chu-Yu; Bai, Xuefei; Li, Zefeng; Yan, Chenghai; Wang, Weidi; Wang, Ziqiang; Shu, Qingyao; Xie, Jiahua; Lee, Suk-Ha; Fan, Longjiang

    2014-01-01

    Semi-wild soybean is a unique type of soybean that retains both wild and domesticated characteristics, which provides an important intermediate type for understanding the evolution of the subgenus Soja population in the Glycine genus. In this study, a semi-wild soybean line (Maliaodou) and a wild line (Lanxi 1) collected from the lower Yangtze regions were deeply sequenced while nine other semi-wild lines were sequenced to a 3-fold genome coverage. Sequence analysis revealed that (1) no independent phylogenetic branch covering all 10 semi-wild lines was observed in the Soja phylogenetic tree; (2) besides two distinct subpopulations of wild and cultivated soybean in the Soja population structure, all semi-wild lines were mixed with some wild lines into a subpopulation rather than an independent one or an intermediate transition type of soybean domestication; (3) high heterozygous rates (0.19-0.49) were observed in several semi-wild lines; and (4) over 100 putative selective regions were identified by selective sweep analysis, including those related to the development of seed size. Our results suggested a hybridization origin for the semi-wild soybean, which makes a complex Soja population structure. PMID:25265539

  4. Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9.

    PubMed

    Fang, Yufeng; Tyler, Brett M

    2016-01-01

    Phytophthora sojae is an oomycete pathogen of soybean. As a result of its economic importance, P. sojae has become a model for the study of oomycete genetics, physiology and pathology. The lack of efficient techniques for targeted mutagenesis and gene replacement have long hampered genetic studies of pathogenicity in Phytophthora species. Here, we describe a CRISPR/Cas9 system enabling rapid and efficient genome editing in P. sojae. Using the RXLR effector gene Avr4/6 as a target, we observed that, in the absence of a homologous template, the repair of Cas9-induced DNA double-strand breaks (DSBs) in P. sojae was mediated by non-homologous end-joining (NHEJ), primarily resulting in short indels. Most mutants were homozygous, presumably as a result of gene conversion triggered by Cas9-mediated cleavage of non-mutant alleles. When donor DNA was present, homology-directed repair (HDR) was observed, which resulted in the replacement of Avr4/6 with the NPT II gene. By testing the specific virulence of several NHEJ mutants and HDR-mediated gene replacements in soybean, we have validated the contribution of Avr4/6 to recognition by soybean R gene loci, Rps4 and Rps6, but also uncovered additional contributions to resistance by these two loci. Our results establish a powerful tool for the study of functional genomics in Phytophthora, which provides new avenues for better control of this pathogen. PMID:26507366

  5. Genome Re-Sequencing of Semi-Wild Soybean Reveals a Complex Soja Population Structure and Deep Introgression

    PubMed Central

    Wu, Sanling; Wang, Ying-Ying; Ye, Chu-Yu; Bai, Xuefei; Li, Zefeng; Yan, Chenghai; Wang, Weidi; Wang, Ziqiang; Shu, Qingyao; Xie, Jiahua; Lee, Suk-Ha; Fan, Longjiang

    2014-01-01

    Semi-wild soybean is a unique type of soybean that retains both wild and domesticated characteristics, which provides an important intermediate type for understanding the evolution of the subgenus Soja population in the Glycine genus. In this study, a semi-wild soybean line (Maliaodou) and a wild line (Lanxi 1) collected from the lower Yangtze regions were deeply sequenced while nine other semi-wild lines were sequenced to a 3-fold genome coverage. Sequence analysis revealed that (1) no independent phylogenetic branch covering all 10 semi-wild lines was observed in the Soja phylogenetic tree; (2) besides two distinct subpopulations of wild and cultivated soybean in the Soja population structure, all semi-wild lines were mixed with some wild lines into a subpopulation rather than an independent one or an intermediate transition type of soybean domestication; (3) high heterozygous rates (0.19–0.49) were observed in several semi-wild lines; and (4) over 100 putative selective regions were identified by selective sweep analysis, including those related to the development of seed size. Our results suggested a hybridization origin for the semi-wild soybean, which makes a complex Soja population structure. PMID:25265539

  6. Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is effectively controlled by Rps genes in soybean. Rps genes are race-specific, yet the mechanism of resistance, as well as susceptibility, remains largely unclear. Taking advantage of RNA-seq technology, we sequenced the...

  7. Joint QTL analyses for partial resistance to Phytophthora sojae using six nested inbred populations with heterogeneous conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partial resistance to Phytophthora sojae in soybean is controlled by multiple quantitative trait loci (QTL). With traditional QTL mapping approaches, power to detect these QTL, frequently of small effect, can be limited by population size. Joint linkage QTL analysis of nested recombinant inbred li...

  8. Genetic diversity and the conservation priority of Glycine soja populations from Northern China.

    PubMed

    Niu, Y L; Guo, W Y; Bai, L R; Zhao, J C

    2015-01-01

    Knowledge of the spatial patterns of genetic variation in wild populations has significant implications for in situ conservation and the determination of conservation order. To study the levels of genetic diversity, spatial genetic structures, and genetic distances in Glycine soja, 11 natural populations in northern China were analyzed by estimating genetic coefficients using inter-simple sequence repeat (ISSR) fingerprints via mixed sampling strategies. Sixteen ISSR primers generated 98 reproducible polymorphic amplification banding patterns of 172 scored, accounting for 56.98% of the polymorphisms among the populations. The dendrogram based on Nei's genetic distance showed that distinct genetic differentiation occurred in G. soja. The Unweighted Pair-Group Method with Arithmetic Mean cluster analysis indicated two broad groups, and one contained all of the populations except three from Chengde, which formed the smaller second group. The spatial genetic structure evident in the wild soybean populations may be attributed to restricted seed dispersal and the dominant breeding system of this species. The detection of genetic structures in wild soybean populations could be a significant index for the effective conservation of many wild populations, and it could be exploited by soybean breeding programs to increase production. PMID:26681007

  9. PsAAT3, an oomycete-specific aspartate aminotransferase, is required for full pathogenicity of the oomycete pathogen Phytophthora sojae.

    PubMed

    Wang, Rongbo; Zhang, Meixiang; Liu, Hong; Xu, Jing; Yu, Jia; He, Feng; Zhang, Xiong; Dong, Suomeng; Dou, Daolong

    2016-04-01

    Pathogen nutrient acquisition and metabolism are critical for successful infection and colonization. However, the nutrient requirements and metabolic pathways related to pathogenesis in oomycete pathogens are unknown. In this study, we bioinformatically identified Phytophthora sojae aspartate aminotransferases (AATs), which are key enzymes that coordinate carbon and nitrogen metabolism. We demonstrated that P. sojae encodes more AATs than the analysed fungi. Some of the AATs contained additional prephenate dehydratase and/or prephenate dehydrogenase domains in their N-termini, which are unique to oomycetes. Silencing of PsAAT3, an infection-inducible expression gene, reduced P. sojae pathogenicity on soybean plants and affected the growth under N-starving condition, suggesting that PsAAT3 is involved in pathogen pathogenicity and nitrogen utilisation during infection. Our results suggest that P. sojae and other oomycete pathogens may have distinct amino acid metabolism pathways and that PsAAT3 is important for its full pathogenicity. PMID:27020161

  10. A Phytophthora sojae Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP[OPEN

    PubMed Central

    Ma, Zhenchuan; Song, Tianqiao; Zhu, Lin; Ye, Wenwu; Wang, Yang; Shao, Yuanyuan; Dong, Suomeng; Zhang, Zhengguang; Dou, Daolong; Zheng, Xiaobo; Tyler, Brett M.; Wang, Yuanchao

    2015-01-01

    We identified a glycoside hydrolase family 12 (GH12) protein, XEG1, produced by the soybean pathogen Phytophthora sojae that exhibits xyloglucanase and β-glucanase activity. It acts as an important virulence factor during P. sojae infection but also acts as a pathogen-associated molecular pattern (PAMP) in soybean (Glycine max) and solanaceous species, where it can trigger defense responses including cell death. GH12 proteins occur widely across microbial taxa, and many of these GH12 proteins induce cell death in Nicotiana benthamiana. The PAMP activity of XEG1 is independent of its xyloglucanase activity. XEG1 can induce plant defense responses in a BAK1-dependent manner. The perception of XEG1 occurs independently of the perception of ethylene-inducing xylanase. XEG1 is strongly induced in P. sojae within 30 min of infection of soybean and then slowly declines. Both silencing and overexpression of XEG1 in P. sojae severely reduced virulence. Many P. sojae RXLR effectors could suppress defense responses induced by XEG1, including several that are expressed within 30 min of infection. Therefore, our data suggest that PsXEG1 contributes to P. sojae virulence, but soybean recognizes PsXEG1 to induce immune responses, which in turn can be suppressed by RXLR effectors. XEG1 thus represents an apoplastic effector that is recognized via the plant’s PAMP recognition machinery. PMID:26163574

  11. A Phytophthora sojae Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP.

    PubMed

    Ma, Zhenchuan; Song, Tianqiao; Zhu, Lin; Ye, Wenwu; Wang, Yang; Shao, Yuanyuan; Dong, Suomeng; Zhang, Zhengguang; Dou, Daolong; Zheng, Xiaobo; Tyler, Brett M; Wang, Yuanchao

    2015-07-01

    We identified a glycoside hydrolase family 12 (GH12) protein, XEG1, produced by the soybean pathogen Phytophthora sojae that exhibits xyloglucanase and β-glucanase activity. It acts as an important virulence factor during P. sojae infection but also acts as a pathogen-associated molecular pattern (PAMP) in soybean (Glycine max) and solanaceous species, where it can trigger defense responses including cell death. GH12 proteins occur widely across microbial taxa, and many of these GH12 proteins induce cell death in Nicotiana benthamiana. The PAMP activity of XEG1 is independent of its xyloglucanase activity. XEG1 can induce plant defense responses in a BAK1-dependent manner. The perception of XEG1 occurs independently of the perception of ethylene-inducing xylanase. XEG1 is strongly induced in P. sojae within 30 min of infection of soybean and then slowly declines. Both silencing and overexpression of XEG1 in P. sojae severely reduced virulence. Many P. sojae RXLR effectors could suppress defense responses induced by XEG1, including several that are expressed within 30 min of infection. Therefore, our data suggest that PsXEG1 contributes to P. sojae virulence, but soybean recognizes PsXEG1 to induce immune responses, which in turn can be suppressed by RXLR effectors. XEG1 thus represents an apoplastic effector that is recognized via the plant's PAMP recognition machinery. PMID:26163574

  12. Isolation and Characterization of a Novel Pathogenesis-Related Protein Gene (GmPRP) with Induced Expression in Soybean (Glycine max) during Infection with Phytophthora sojae

    PubMed Central

    Jiang, Liangyu; Wu, Junjiang; Fan, Sujie; Li, Wenbin; Dong, Lidong; Cheng, Qun; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Pathogenesis-related proteins (PR proteins) play crucial roles in the plant defense system. A novel PRP gene was isolated from highly resistant soybean infected with Phytophthora sojae (P. sojae) and was named GmPRP (GenBank accession number: KM506762). The amino acid sequences of GmPRP showed identities of 74%, 73%, 72% and 69% with PRP proteins from Vitis vinifera, Populus trichocarpa, Citrus sinensis and Theobroma cacao, respectively. Quantitative real-time reverse transcription PCR (qRT-PCR) data showed that the expression of GmPRP was highest in roots, followed by the stems and leaves. GmPRP expression was upregulated in soybean leaves infected with P. sojae. Similarly, GmPRP expression also responded to defense/stress signaling molecules, including salicylic acid (SA), ethylene (ET), abscisic acid (ABA) and jasmonic acid (JA). GmPRP was localized in the cell plasma membrane and cytoplasm. Recombinant GmPRP protein exhibited ribonuclease activity and significant inhibition of hyphal growth of P. sojae 1 in vitro. Overexpression of the GmPRP gene in T2 transgenic tobacco and T2 soybean plants resulted in enhanced resistance to Phytophthora nicotianae (P. nicotianae) and P. sojae race 1, respectively. These results indicated that the GmPRP protein played an important role in the defense of soybean against P. sojae infection. PMID:26114301

  13. Isolation and Characterization of a Novel Pathogenesis-Related Protein Gene (GmPRP) with Induced Expression in Soybean (Glycine max) during Infection with Phytophthora sojae.

    PubMed

    Jiang, Liangyu; Wu, Junjiang; Fan, Sujie; Li, Wenbin; Dong, Lidong; Cheng, Qun; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Pathogenesis-related proteins (PR proteins) play crucial roles in the plant defense system. A novel PRP gene was isolated from highly resistant soybean infected with Phytophthora sojae (P. sojae) and was named GmPRP (GenBank accession number: KM506762). The amino acid sequences of GmPRP showed identities of 74%, 73%, 72% and 69% with PRP proteins from Vitis vinifera, Populus trichocarpa, Citrus sinensis and Theobroma cacao, respectively. Quantitative real-time reverse transcription PCR (qRT-PCR) data showed that the expression of GmPRP was highest in roots, followed by the stems and leaves. GmPRP expression was upregulated in soybean leaves infected with P. sojae. Similarly, GmPRP expression also responded to defense/stress signaling molecules, including salicylic acid (SA), ethylene (ET), abscisic acid (ABA) and jasmonic acid (JA). GmPRP was localized in the cell plasma membrane and cytoplasm. Recombinant GmPRP protein exhibited ribonuclease activity and significant inhibition of hyphal growth of P. sojae 1 in vitro. Overexpression of the GmPRP gene in T2 transgenic tobacco and T2 soybean plants resulted in enhanced resistance to Phytophthora nicotianae (P. nicotianae) and P. sojae race 1, respectively. These results indicated that the GmPRP protein played an important role in the defense of soybean against P. sojae infection. PMID:26114301

  14. [Genetically determined enzyme polymorphism in soy varieties (Glycine max) and in wild soy (Glycine soja)].

    PubMed

    Glazko, V I

    2000-01-01

    Analysis of 22 genetic-biochemical systems (42 loci) in 18 varieties of domestic soybean (G. max) and in 3 population of wild soybean (G. soja) was carried out. The part of polymorphous loci (P), intraspecies genetic differentiation (genetic distances--DN) were higher in domestic plants in comparison with wild ones (P = 45%, 17%: DN = 0.038-0.269, 0.059-0129). The preferable polymorphism of loci, coding the enzymes of glycolysis and Kreb's cycle was revealed in wild species. Domestic soybean had more polymorphous enzyme loci, which did not participate in glucose metabolism in comparison with wild species. The presence of the specific part of the gene pool in ancestor species, which was involved in soybean domestication and forming of varieties was discussed. PMID:10857206

  15. Glyceollin is an important component of soybean plant defense against Phytophthora sojae and Macrophomina phaseolina.

    PubMed

    Lygin, Anatoliy V; Zernova, Olga V; Hill, Curtis B; Kholina, Nadegda A; Widholm, Jack M; Hartman, Glen L; Lozovaya, Vera V

    2013-10-01

    The response of soybean transgenic plants, with suppressed synthesis of isoflavones, and nontransgenic plants to two common soybean pathogens, Macrophomina phaseolina and Phytophthora sojae, was studied. Transgenic soybean plants of one line used in this study were previously generated via bombardment of embryogenic cultures with the phenylalanine ammonia lyase, chalcone synthase, and isoflavone synthase (IFS2) genes in sense orientation driven by the cotyledon-preferable lectin promoter (to turn genes on in cotyledons), while plants of another line were newly produced using the IFS2 gene in sense orientation driven by the Cassava vein mosaic virus constitutive promoter (to turn genes on in all plant parts). Nearly complete inhibition of isoflavone synthesis was found in the cotyledons of young seedlings of transgenic plants transformed with the IFS2 transgene driven by the cotyledon-preferable lectin promoter compared with the untransformed control during the 10-day observation period, with the precursors of isoflavone synthesis being accumulated in the cotyledons of transgenic plants. These results indicated that the lectin promoter could be active not only during seed development but also during seed germination. Downregulation of isoflavone synthesis only in the seed or in the whole soybean plant caused a strong inhibition of the pathogen-inducible glyceollin in cotyledons after inoculation with P. sojae, which resulted in increased susceptibility of the cotyledons of both transgenic lines to this pathogen compared with inoculated cotyledons of untransformed plants. When stems were inoculated with M. phaseolina, suppression of glyceollin synthesis was found only in stems of transgenic plants expressing the transgene driven by a constitutive promoter, which developed more severe infection. These results provide further evidence that rapid glyceollin accumulation during infection contributes to the innate soybean defense response. PMID:23617338

  16. Levels of Polyamines and Kinetic Characterization of Their Uptake in the Soybean Pathogen Phytophthora sojae

    PubMed Central

    Chibucos, M. Constantine; Morris, Paul F.

    2006-01-01

    Polyamines are ubiquitous biologically active aliphatic cations that are at least transiently available in the soil from decaying organic matter. Our objectives in this study were to characterize polyamine uptake kinetics in Phytophthora sojae zoospores and to quantify endogenous polyamines in hyphae, zoospores, and soybean roots. Zoospores contained 10 times more free putrescine than spermidine, while hyphae contained only 4 times as much free putrescine as spermidine. Zoospores contained no conjugated putrescine, but conjugated spermidine was present. Hyphae contained both conjugated putrescine and spermidine at levels comparable to the hyphal free putrescine and spermidine levels. In soybean roots, cadaverine was the most abundant polyamine, but only putrescine efflux was detected. The selective efflux of putrescine suggests that the regulation of polyamine availability is part of the overall plant strategy to influence microbial growth in the rhizosphere. In zoospores, uptake experiments with [1,4-14C]putrescine and [1,4-14C]spermidine confirmed the existence of high-affinity polyamine transport for both polyamines. Putrescine uptake was reduced by high levels of exogenous spermidine, but spermidine uptake was not reduced by exogenous putrescine. These observations suggest that P. sojae zoospores express at least two high-affinity polyamine transporters, one that is spermidine specific and a second that is putrescine specific or putrescine preferential. Disruption of polyamine uptake or metabolism has major effects on a wide range of cellular activities in other organisms and has been proposed as a potential control strategy for Phytophthora. Inhibition of polyamine uptake may be a means of reducing the fitness of the zoospore along with subsequent developmental stages that precede infection. PMID:16672477

  17. A Novel Pathogenesis-Related Class 10 Protein Gly m 4l, Increases Resistance upon Phytophthora sojae Infection in Soybean (Glycine max [L.] Merr.).

    PubMed

    Fan, Sujie; Jiang, Liangyu; Wu, Junjiang; Dong, Lidong; Cheng, Qun; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Phytophthora root and stem rot of soybean, caused by Phytophthora sojae (P. sojae), is a destructive disease in many soybean planting regions worldwide. In a previous study, an expressed sequence tag (EST) homolog of the major allergen Pru ar 1 in apricot (Prunus armeniaca) was identified up-regulated in the highly resistant soybean 'Suinong 10' infected with P. sojae. Here, the full length of the EST was isolated using rapid amplification of cDNA ends (RACE). It showed the highest homology of 53.46% with Gly m 4 after comparison with the eight soybean allergen families reported and was named Gly m 4-like (Gly m 4l, GenBank accession no. HQ913577.1). The cDNA full length of Gly m 4l was 707 bp containing a 474 bp open reading frame encoding a polypeptide of 157 amino acids. Sequence analysis suggests that Gly m 4l contains a conserved 'P-loop' (phosphate-binding loop) motif at residues 47-55 aa and a Bet v 1 domain at residues 87-120 aa. The transcript abundance of Gly m 4l was significantly induced by P. sojae, salicylic acid (SA), NaCl, and also responded to methyl jasmonic acid (MeJA) and ethylene (ET). The recombinant Gly m 4l protein showed RNase activity and displayed directly antimicrobial activity that inhibited hyphal growth and reduced zoospore release in P. sojae. Further analyses showed that the RNase activity of the recombinant protein to degrading tRNA was significantly affected in the presence of zeatin. Over-expression of Gly m 4l in susceptible 'Dongnong 50' soybean showed enhanced resistance to P. sojae. These results indicated that Gly m 4l protein played an important role in the defense of soybean against P. sojae infection. PMID:26474489

  18. A Novel Pathogenesis-Related Class 10 Protein Gly m 4l, Increases Resistance upon Phytophthora sojae Infection in Soybean (Glycine max [L.] Merr.)

    PubMed Central

    Fan, Sujie; Jiang, Liangyu; Wu, Junjiang; Dong, Lidong; Cheng, Qun; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Phytophthora root and stem rot of soybean, caused by Phytophthora sojae (P. sojae), is a destructive disease in many soybean planting regions worldwide. In a previous study, an expressed sequence tag (EST) homolog of the major allergen Pru ar 1 in apricot (Prunus armeniaca) was identified up-regulated in the highly resistant soybean ‘Suinong 10’ infected with P. sojae. Here, the full length of the EST was isolated using rapid amplification of cDNA ends (RACE). It showed the highest homolgy of 53.46% with Gly m 4 after comparison with the eight soybean allergen families reported and was named Gly m 4-like (Gly m 4l, GenBank accession no. HQ913577.1). The cDNA full length of Gly m 4l was 707 bp containing a 474 bp open reading frame encoding a polypeptide of 157 amino acids. Sequence analysis suggests that Gly m 4l contains a conserved ‘P-loop’ (phosphate-binding loop) motif at residues 47–55 aa and a Bet v 1 domain at residues 87–120 aa. The transcript abundance of Gly m 4l was significantly induced by P. sojae, salicylic acid (SA), NaCl, and also responded to methyl jasmonic acid (MeJA) and ethylene (ET). The recombinant Gly m 4l protein showed RNase activity and displayed directly antimicrobial activity that inhibited hyphal growth and reduced zoospore release in P. sojae. Further analyses showed that the RNase activity of the recombinant protein to degrading tRNA was significantly affected in the presence of zeatin. Over-expression of Gly m 4l in susceptible ‘Dongnong 50’ soybean showed enhanced resistance to P. sojae. These results indicated that Gly m 4l protein played an important role in the defense of soybean against P. sojae infection. PMID:26474489

  19. The Diaporthe sojae species complex: Phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops.

    PubMed

    Udayanga, Dhanushka; Castlebury, Lisa A; Rossman, Amy Y; Chukeatirote, Ekachai; Hyde, Kevin D

    2015-05-01

    Phytopathogenic species of Diaporthe are associated with a number of soybean diseases including seed decay, pod and stem blight and stem canker and lead to considerable crop production losses worldwide. Accurate morphological identification of the species that cause these diseases has been difficult. In this study, we determined the phylogenetic relationships and species boundaries of Diaporthe longicolla, Diaporthe phaseolorum, Diaporthe sojae and closely related taxa. Species boundaries for this complex were determined based on combined phylogenetic analysis of five gene regions: partial sequences of calmodulin (CAL), beta-tubulin (TUB), histone-3 (HIS), translation elongation factor 1-α (EF1-α), and the nuclear ribosomal internal transcribed spacers (ITS). Phylogenetic analyses revealed that this large complex of taxa is comprised of soybean pathogens as well as species associated with herbaceous field crops and weeds. Diaporthe arctii, Diaporthe batatas, D. phaseolorum and D. sojae are epitypified. The seed decay pathogen D. longicolla was determined to be distinct from D. sojae. D. phaseolorum, originally associated with stem and leaf blight of Lima bean, was not found to be associated with soybean. A new species, Diaporthe ueckerae on Cucumis melo, is introduced with description and illustrations. PMID:25937066

  20. Cross-species Global Proteomics Reveals Conserved and Unique Processes in Phytophthora sojae and Phytophthora ramorum*S⃞

    PubMed Central

    Savidor, Alon; Donahoo, Ryan S.; Hurtado-Gonzales, Oscar; Land, Miriam L.; Shah, Manesh B.; Lamour, Kurt H.; McDonald, W. Hayes

    2008-01-01

    Phytophthora ramorum and Phytophthora sojae are destructive plant pathogens. P. sojae has a narrow host range, whereas P. ramorum has a wide host range. A global proteomics comparison of the vegetative (mycelium) and infective (germinating cyst) life stages of P. sojae and P. ramorum was conducted to identify candidate proteins involved in host range, early infection, and vegetative growth. Sixty-two candidates for early infection, 26 candidates for vegetative growth, and numerous proteins that may be involved in defining host specificity were identified. In addition, common life stage proteomic trends between the organisms were observed. In mycelia, proteins involved in transport and metabolism of amino acids, carbohydrates, and other small molecules were up-regulated. In the germinating cysts, up-regulated proteins associated with lipid transport and metabolism, cytoskeleton, and protein synthesis were observed. It appears that the germinating cyst catabolizes lipid reserves through the β-oxidation pathway to drive the extensive protein synthesis necessary to produce the germ tube and initiate infection. Once inside the host, the pathogen switches to vegetative growth in which energy is derived from glycolysis and utilized for synthesis of amino acids and other molecules that assist survival in the plant tissue. PMID:18316789

  1. Genetic diversity of Phytophthora sojae isolates in Heilongjiang Province in China assessed by RAPD and EST-SSR

    NASA Astrophysics Data System (ADS)

    Wu, J. J.; Xu, P. F.; Liu, L. J.; Wang, J. S.; Lin, W. G.; Zhang, S. Z.; Wei, L.

    Random-amplified polymorphic DNA (RAPD) and EST-SSR markers were used to estimate the genetic relationship among thirty-nine P.sojae isolates from three locations in Heilongjiang Province, and nine isolates from Ohio in America were made as reference strains. 10 of 50 RAPD primers and 5 of 33 EST-SSR were polymorphic across 48 P.sojae isolates. Similarity values among P.sojae isolates were from 49% to 82% based on the RAPD data. The similarities based on EST-SSR markers ranged from 47% to 85%. The genetic diversity revealed by EST-SSR marker analysis was higher than that obtained from RAPD. The similarity matrices for the SSR data and the RAPD data were moderately correlated (r = 0.47). Genetic similarity coefficients were also relatively lower, which demonstrated complicated genetic background within each location. The high similarity values range revealed the ability of RAPD/EST-SSR markers to distinguish even among morphological similar phytophthora.

  2. A Phytophthora sojae cytoplasmic effector mediates disease resistance and abiotic stress tolerance in Nicotiana benthamiana.

    PubMed

    Zhang, Meixiang; Ahmed Rajput, Nasir; Shen, Danyu; Sun, Peng; Zeng, Wentao; Liu, Tingli; Juma Mafurah, Joseph; Dou, Daolong

    2015-01-01

    Each oomycete pathogen encodes a large number of effectors. Some effectors can be used in crop disease resistance breeding, such as to accelerate R gene cloning and utilisation. Since cytoplasmic effectors may cause acute physiological changes in host cells at very low concentrations, we assume that some of these effectors can serve as functional genes for transgenic plants. Here, we generated transgenic Nicotiana benthamiana plants that express a Phytophthora sojae CRN (crinkling and necrosis) effector, PsCRN115. We showed that its expression did not significantly affect the growth and development of N. benthamiana, but significantly improved disease resistance and tolerance to salt and drought stresses. Furthermore, we found that expression of heat-shock-protein and cytochrome-P450 encoding genes were unregulated in PsCRN115-transgenic N. benthamiana based on digital gene expression profiling analyses, suggesting the increased plant defence may be achieved by upregulation of these stress-related genes in transgenic plants. Thus, PsCRN115 may be used to improve plant tolerance to biotic and abiotic stresses. PMID:26039925

  3. A Phytophthora sojae cytoplasmic effector mediates disease resistance and abiotic stress tolerance in Nicotiana benthamiana

    PubMed Central

    Zhang, Meixiang; Ahmed Rajput, Nasir; Shen, Danyu; Sun, Peng; Zeng, Wentao; Liu, Tingli; Juma Mafurah, Joseph; Dou, Daolong

    2015-01-01

    Each oomycete pathogen encodes a large number of effectors. Some effectors can be used in crop disease resistance breeding, such as to accelerate R gene cloning and utilisation. Since cytoplasmic effectors may cause acute physiological changes in host cells at very low concentrations, we assume that some of these effectors can serve as functional genes for transgenic plants. Here, we generated transgenic Nicotiana benthamiana plants that express a Phytophthora sojae CRN (crinkling and necrosis) effector, PsCRN115. We showed that its expression did not significantly affect the growth and development of N. benthamiana, but significantly improved disease resistance and tolerance to salt and drought stresses. Furthermore, we found that expression of heat-shock-protein and cytochrome-P450 encoding genes were unregulated in PsCRN115-transgenic N. benthamiana based on digital gene expression profiling analyses, suggesting the increased plant defence may be achieved by upregulation of these stress-related genes in transgenic plants. Thus, PsCRN115 may be used to improve plant tolerance to biotic and abiotic stresses. PMID:26039925

  4. Functional characterization of a Glycine soja Ca(2+)ATPase in salt-alkaline stress responses.

    PubMed

    Sun, Mingzhe; Jia, Bowei; Cui, Na; Wen, Yidong; Duanmu, Huizi; Yu, Qingyue; Xiao, Jialei; Sun, Xiaoli; Zhu, Yanming

    2016-03-01

    It is widely accepted that Ca(2+)ATPase family proteins play important roles in plant environmental stress responses. However, up to now, most researches are limited in the reference plants Arabidopsis and rice. The function of Ca(2+)ATPases from non-reference plants was rarely reported, especially its regulatory role in carbonate alkaline stress responses. Hence, in this study, we identified the P-type II Ca(2+)ATPase family genes in soybean genome, determined their chromosomal location and gene architecture, and analyzed their amino acid sequence and evolutionary relationship. Based on above results, we pointed out the existence of gene duplication for soybean Ca(2+)ATPases. Then, we investigated the expression profiles of the ACA subfamily genes in wild soybean (Glycine soja) under carbonate alkaline stress, and functionally characterized one representative gene GsACA1 by using transgenic alfalfa. Our results suggested that GsACA1 overexpression in alfalfa obviously increased plant tolerance to both carbonate alkaline and neutral salt stresses, as evidenced by lower levels of membrane permeability and MDA content, but higher levels of SOD activity, proline concentration and chlorophyll content under stress conditions. Taken together, for the first time, we reported a P-type II Ca(2+)ATPase from wild soybean, GsACA1, which could positively regulate plant tolerance to both carbonate alkaline and neutral salt stresses. PMID:26801329

  5. Effects of microgravity on the susceptibility of soybean to Phytophthora sojae.

    PubMed

    Nedukha, O M; Leach, J E; Ryba-White, M; Hilaire, E; Guikema, J; Kordyum, E L

    1998-07-01

    The study of pathogenicity of higher plants under conditions of microgravity is of great importance for the future production of food in space. Previous work suggests that microgravity affects both microbes and plants. Bacterial numbers increased after 17 days in an algae-bacterium association on the biosatellite "Kosmos-1887". This was speculated to result from an increase in the multiplication rate of the bacteria. Sporangia of both Actinomices brevis, in the shuttles "Soyuz-19" and "Appolon", and Phycomyces blakes, in biosatellite "Kosmos-936", formed after 10 days in microgravity. Sporangia did not form in the ground controls in the same time suggesting that the rate of fungal development is enhanced in microgravity. Plant responses to pathogens in microgravity have not been studied, however, microgravity profoundly impacts plant cell development, cytology, and physiology. In microgravity, developing cell walls are thinner and contain less lignin than ground-grown plants. The demonstrated effects of microgravity on both plants and microbes lead us to hypothesize that plants may be more susceptible to pathogens under conditions of microgravity. The aim of this study was to determine the influence of microgravity on the susceptibility of soybean to the fungal root rot pathogen, Phytophthora sojae. PMID:11542328

  6. Novel glucose dehydrogenase from Mucor prainii: Purification, characterization, molecular cloning and gene expression in Aspergillus sojae.

    PubMed

    Satake, Ryoko; Ichiyanagi, Atsushi; Ichikawa, Keiichi; Hirokawa, Kozo; Araki, Yasuko; Yoshimura, Taro; Gomi, Keiko

    2015-11-01

    Glucose dehydrogenase (GDH) is of interest for its potential applications in the field of glucose sensors. To improve the performance of glucose sensors, GDH is required to have strict substrate specificity. A novel flavin adenine dinucleotide (FAD)-dependent GDH was isolated from Mucor prainii NISL0103 and its enzymatic properties were characterized. This FAD-dependent GDH (MpGDH) exhibited high specificity toward glucose. High specificity for glucose was also observed even in the presence of saccharides such as maltose, galactose and xylose. The molecular masses of the glycoforms of GDH ranged from 90 to 130 kDa. After deglycosylation, a single 80 kDa band was observed. The gene encoding MpGDH was cloned and expressed in Aspergillus sojae. The apparent kcat and Km values of recombinant enzyme for glucose were found to be 749.7 s(-1) and 28.3 mM, respectively. The results indicated that the characteristics of MpGDH were suitable for assaying blood glucose levels. PMID:25912449

  7. Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics

    PubMed Central

    2014-01-01

    Background Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is controlled by Rps genes. However, little is known regarding the Rps-induced molecular responses to P. sojae and how they actually overlap. We thus sequenced, analyzed, and compared the transcriptomes of 10 near isogenic lines (NILs), each with a unique Rps gene/allele, and the susceptible parent Williams, pre- and post-inoculation with the pathogen. Results A total of 4,330 differentially expressed genes (DEGs) were identified in Williams versus 2,014 to 5,499 DEGs in individual NILs upon inoculation with the pathogen. Comparisons of the DEGs between the NILs and Williams identified incompatible interaction genes (IIGs) and compatible interaction genes (CIGs). Hierarchical cluster and heatmap analyses consistently grouped the NILs into three clusters: Cluster I (Rps1-a), Cluster II (Rps1-b, 1-c and 1-k) and Cluster III (Rps3-a, 3-b, 3-c, 4, 5, and 6), suggesting an overlap in Rps-induced defense signaling among certain NILs. Gene ontology (GO) analysis revealed associations between members of the WRKY family and incompatible reactions and between a number of phytohormone signaling pathways and incompatible/compatible interactions. These associations appear to be distinguished according to the NIL clusters. Conclusions This study characterized genes and multiple branches of putative regulatory networks associated with resistance to P. sojae in ten soybean NILs, and depicted functional “fingerprints” of individual Rps-mediated resistance responses through comparative transcriptomic analysis. Of particular interest are dramatic variations of detected DEGs, putatively involved in ethylene (ET)-, jasmonic acid (JA)-, (reactive oxygen species) ROS-, and (MAP-kinase) MAPK- signaling, among these soybean NILs, implicating their important roles of these signaling in differentiating molecular defense responses. We hypothesize that different timing and robustness in defense

  8. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance

    SciTech Connect

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K.; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer We isolated and characterized a novel JAZ family gene, GsJAZ2, from Glycine soja. Black-Right-Pointing-Pointer Overexpression of GsJAZ2 enhanced plant tolerance to salt and alkali stress. Black-Right-Pointing-Pointer The transcriptions of stress marker genes were higher in GsJAZ2 overexpression lines. Black-Right-Pointing-Pointer GsJAZ2 was localized to nucleus. -- Abstract: Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

  9. Survival and behavior of the insecticide-exposed predators Podisus nigrispinus and Supputius cincticeps (Heteroptera: Pentatomidae).

    PubMed

    de Castro, A A; Corrêa, A S; Legaspi, J C; Guedes, R N C; Serrão, J E; Zanuncio, J C

    2013-10-01

    Pentatomid stinkbugs are important predators of defoliating caterpillars in agricultural and forestry systems, and knowledge of the impact of insecticides on natural enemies is important information for integrated pest management (IPM) programs. Thus, we assessed the toxicity and behavioral sublethal response of the predators Podisus nigrispinus and Supputius cincticeps exposed to deltamethrin, methamidophos, spinosad and chlorantraniliprole, insecticides commonly used to control the velvetbean caterpillar (Anticarsia gemmatalis) in soybean crops. With the exception of deltamethrin for S. cincticeps, all insecticides showed higher acute toxicity to the prey than to these natural enemies providing effective control of A. gemmatalis. The recommended field concentration of deltamethrin, methamidophos and spinosad for controlling A. gemmatalis caused 100% mortality of P. nigrispinus and S. cincticeps nymphs. Chlorantraniliprole was the less toxic and the most selective insecticide to these predators resulting in mortalities of less than 10% when exposed to 10× the recommended field concentration for a period of 72 h. Behavioral pattern changes in predators were found for all insecticides, especially methamidophos and spinosad, which exhibited irritability (i.e., avoidance after contact) to both predator species. However, insecticide repellence (i.e., avoidance without contact) was not observed in any of the insects tested. The lethal and sublethal effects of pesticides on natural enemies is of great importance for IPM, and our results indicate that substitution of pyrethroid and organophosphate insecticides at their field rates by chlorantraniliprole may be a key factor for the success of IPM programs of A. gemmatalis in soybeans. PMID:23880241

  10. The Effect of Potassium Nitrate on the Reduction of Phytophthora Stem Rot Disease of Soybeans, the Growth Rate and Zoospore Release of Phytophthora Sojae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of potassium nitrate (KNO3) application on Phytophthora stem rot disease reduction of Glycine max (L.) Merr. cvs. Chusei-Hikarikuro and Sachiyutaka, and fungal growth and zoospore release of a Phytophthora sojae isolate were investigated under laboratory conditions. The application of 4-...

  11. Identification of Candidate Signaling Genes Including Regulators of Chromosome Condensation 1 Protein Family Differentially Expressed in the Soybean - Phytophthora Sojae Interaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem and root rot caused by the oomycete pathogen, Phytopthora sojae, is a serious soybean disease. Use of Phytophthora resistance genes (Rps) in soybean cultivars has been very effective in controlling this pathogen. Resistance encoded by Rps genes is manifested through activation of defense resp...

  12. De Novo Assembly of Candida sojae and Candida boidinii Genomes, Unexplored Xylose-Consuming Yeasts with Potential for Renewable Biochemical Production.

    PubMed

    Borelli, Guilherme; José, Juliana; Teixeira, Paulo José Pereira Lima; Dos Santos, Leandro Vieira; Pereira, Gonçalo Amarante Guimarães

    2016-01-01

    Candida boidinii and Candida sojae yeasts were isolated from energy cane bagasse and plague-insects. Both have fast xylose uptake rate and produce great amounts of xylitol, which are interesting features for food and 2G ethanol industries. Because they lack published genomes, we have sequenced and assembled them, offering new possibilities for gene prospection. PMID:26769937

  13. De Novo Assembly of Candida sojae and Candida boidinii Genomes, Unexplored Xylose-Consuming Yeasts with Potential for Renewable Biochemical Production

    PubMed Central

    Borelli, Guilherme; José, Juliana; Teixeira, Paulo José Pereira Lima; dos Santos, Leandro Vieira

    2016-01-01

    Candida boidinii and Candida sojae yeasts were isolated from energy cane bagasse and plague-insects. Both have fast xylose uptake rate and produce great amounts of xylitol, which are interesting features for food and 2G ethanol industries. Because they lack published genomes, we have sequenced and assembled them, offering new possibilities for gene prospection. PMID:26769937

  14. Production of antioomycete compounds active against the phytopathogens Phytophthora sojae and Aphanomyces cochlioides by clavicipitoid entomopathogenic fungi.

    PubMed

    Putri, Sastia Prama; Ishido, Kei-Ichi; Kinoshita, Hiroshi; Kitani, Shigeru; Ihara, Fumio; Sakihama, Yasuko; Igarashi, Yasuhiro; Nihira, Takuya

    2014-05-01

    A total of 412 strains belonging to 14 genera of clavicipitoid entomopathogenic fungi (EPF) were screened for activities against two economically important plant pathogenic oomycetes, Phytophthora sojae and Aphanomyces cochlioides. To identify the antioomycete compounds produced by EPF, the extracts of 13 highly active EPF strains were characterized in detail by high performance liquid chromatography with diode array detection and high-resolution mass spectrometric detection and antioomycete assay. The antioomycete activity of several Metarhizium extracts was associated with previously isolated aurovertins, fungerin, N-(methyl-3-oxodec-6-enoyl)-2-pyrroline, and N-(methyl-3-oxodecanoyl)-2-pyrroline. The depsipeptide beauvericin was confirmed to be one of the active principles of three strains of Isaria tenuipes, which strongly inhibited mycelial growth of both P. sojae and A. cochlioides. Two known bioactive metabolites, paecilosetin and aranorosinol A, together with a novel and potent antioomycete compound, farinomalein, were isolated from the extracts of Isaria farinosa and all compounds were confirmed to have antioomycete activity. Identification of 8 antioomycete compounds from 13 clavicipitioid EPF demonstrated a new potential use of EPF as a source of compounds for the control of soil-borne plant pathogenic oomycetes. PMID:24268864

  15. Environmental Association Analyses Identify Candidates for Abiotic Stress Tolerance in Glycine soja, the Wild Progenitor of Cultivated Soybeans.

    PubMed

    Anderson, Justin E; Kono, Thomas J Y; Stupar, Robert M; Kantar, Michael B; Morrell, Peter L

    2016-01-01

    Natural populations across a species range demonstrate population structure owing to neutral processes such as localized origins of mutations and migration limitations. Selection also acts on a subset of loci, contributing to local adaptation. An understanding of the genetic basis of adaptation to local environmental conditions is a fundamental goal in basic biological research. When applied to crop wild relatives, this same research provides the opportunity to identify adaptive genetic variation that may be used to breed for crops better adapted to novel or changing environments. The present study explores an ex situ conservation collection, the USDA germplasm collection, genotyped at 32,416 SNPs to identify population structure and test for associations with bioclimatic and biophysical variables in Glycine soja, the wild progenitor of Glycine max (soybean). Candidate loci were detected that putatively contribute to adaptation to abiotic stresses. The identification of potentially adaptive variants in this ex situ collection may permit a more targeted use of germplasm collections. PMID:26818076

  16. Environmental Association Analyses Identify Candidates for Abiotic Stress Tolerance in Glycine soja, the Wild Progenitor of Cultivated Soybeans

    PubMed Central

    Anderson, Justin E.; Kono, Thomas J. Y.; Stupar, Robert M.; Kantar, Michael B.; Morrell, Peter L.

    2016-01-01

    Natural populations across a species range demonstrate population structure owing to neutral processes such as localized origins of mutations and migration limitations. Selection also acts on a subset of loci, contributing to local adaptation. An understanding of the genetic basis of adaptation to local environmental conditions is a fundamental goal in basic biological research. When applied to crop wild relatives, this same research provides the opportunity to identify adaptive genetic variation that may be used to breed for crops better adapted to novel or changing environments. The present study explores an ex situ conservation collection, the USDA germplasm collection, genotyped at 32,416 SNPs to identify population structure and test for associations with bioclimatic and biophysical variables in Glycine soja, the wild progenitor of Glycine max (soybean). Candidate loci were detected that putatively contribute to adaptation to abiotic stresses. The identification of potentially adaptive variants in this ex situ collection may permit a more targeted use of germplasm collections. PMID:26818076

  17. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins.

    PubMed

    Jing, Maofeng; Guo, Baodian; Li, Haiyang; Yang, Bo; Wang, Haonan; Kong, Guanghui; Zhao, Yao; Xu, Huawei; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Qiao, Yongli; Tyler, Brett M; Ma, Wenbo; Wang, Yuanchao

    2016-01-01

    Phytophthora pathogens secrete an array of specific effector proteins to manipulate host innate immunity to promote pathogen colonization. However, little is known about the host targets of effectors and the specific mechanisms by which effectors increase susceptibility. Here we report that the soybean pathogen Phytophthora sojae uses an essential effector PsAvh262 to stabilize endoplasmic reticulum (ER)-luminal binding immunoglobulin proteins (BiPs), which act as negative regulators of plant resistance to Phytophthora. By stabilizing BiPs, PsAvh262 suppresses ER stress-triggered cell death and facilitates Phytophthora infection. The direct targeting of ER stress regulators may represent a common mechanism of host manipulation by microbes. PMID:27256489

  18. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins

    PubMed Central

    Jing, Maofeng; Guo, Baodian; Li, Haiyang; Yang, Bo; Wang, Haonan; Kong, Guanghui; Zhao, Yao; Xu, Huawei; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Qiao, Yongli; Tyler, Brett M.; Ma, Wenbo; Wang, Yuanchao

    2016-01-01

    Phytophthora pathogens secrete an array of specific effector proteins to manipulate host innate immunity to promote pathogen colonization. However, little is known about the host targets of effectors and the specific mechanisms by which effectors increase susceptibility. Here we report that the soybean pathogen Phytophthora sojae uses an essential effector PsAvh262 to stabilize endoplasmic reticulum (ER)-luminal binding immunoglobulin proteins (BiPs), which act as negative regulators of plant resistance to Phytophthora. By stabilizing BiPs, PsAvh262 suppresses ER stress-triggered cell death and facilitates Phytophthora infection. The direct targeting of ER stress regulators may represent a common mechanism of host manipulation by microbes. PMID:27256489

  19. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis

    PubMed Central

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis. PMID:26717241

  20. Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean.

    PubMed

    Dong, Lidong; Cheng, Yingxin; Wu, Junjiang; Cheng, Qun; Li, Wenbin; Fan, Sujie; Jiang, Liangyu; Xu, Zhaolong; Kong, Fanjiang; Zhang, Dayong; Xu, Pengfei; Zhang, Shuzhen

    2015-05-01

    Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.], caused by Phytophthora sojae Kaufmann and Gerdemann, is a destructive disease throughout the soybean planting regions in the world. Here, we report insights into the function and underlying mechanisms of a novel ethylene response factor (ERF) in soybean, namely GmERF5, in host responses to P. sojae. GmERF5-overexpressing transgenic soybean exhibited significantly enhanced resistance to P. sojae and positively regulated the expression of the PR10, PR1-1, and PR10-1 genes. Sequence analysis suggested that GmERF5 contains an AP2/ERF domain of 58 aa and a conserved ERF-associated amphiphilic repression (EAR) motif in its C-terminal region. Following stress treatments, GmERF5 was significantly induced by P. sojae, ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). The activity of the GmERF5 promoter (GmERF5P) was upregulated in tobacco leaves with ET, ABA, Phytophthora nicotianae, salt, and drought treatments, suggesting that GmERF5 could be involved not only in the induced defence response but also in the ABA-mediated pathway of salt and drought tolerance. GmERF5 could bind to the GCC-box element and act as a repressor of gene transcription. It was targeted to the nucleus when transiently expressed in Arabidopsis protoplasts. GmERF5 interacted with a basic helix-loop-helix transcription factor (GmbHLH) and eukaryotic translation initiation factor (GmEIF) both in yeast cells and in planta. To the best of our knowledge, GmERF5 is the first soybean EAR motif-containing ERF transcription factor demonstrated to be involved in the response to pathogen infection. PMID:25779701

  1. PsHint1, associated with the G-protein α subunit PsGPA1, is required for the chemotaxis and pathogenicity of Phytophthora sojae.

    PubMed

    Zhang, Xin; Zhai, Chunhua; Hua, Chenlei; Qiu, Min; Hao, Yujuan; Nie, Pingping; Ye, Wenwu; Wang, Yuanchao

    2016-02-01

    Zoospore chemotaxis to soybean isoflavones is essential in the early stages of infection by the oomycete pathogen Phytophthora sojae. Previously, we have identified a G-protein α subunit encoded by PsGPA1 which regulates the chemotaxis and pathogenicity of P. sojae. In the present study, we used affinity purification to identify PsGPA1-interacting proteins, including PsHint1, a histidine triad (HIT) domain-containing protein orthologous to human HIT nucleotide-binding protein 1 (HINT1). PsHint1 interacted with both the guanosine triphosphate (GTP)- and guanosine diphosphate (GDP)-bound forms of PsGPA1. An analysis of the gene-silenced transformants revealed that PsHint1 was involved in the chemotropic response of zoospores to the isoflavone daidzein. During interaction with a susceptible soybean cultivar, PsHint1-silenced transformants displayed significantly reduced infectious hyphal extension and caused a strong cell death in plants. In addition, the transformants displayed defective cyst germination, forming abnormal germ tubes that were highly branched and exhibited apical swelling. These results suggest that PsHint1 not only regulates chemotaxis by interacting with PsGPA1, but also participates in a Gα-independent pathway involved in the pathogenicity of P. sojae. PMID:25976113

  2. [Isolation and functional analysis of GsTIFY11b relevant to salt and alkaline stress from Glycine soja].

    PubMed

    Zhu, Dan; Bai, Xi; Zhu, Yan-Ming; Cai, Hua; Li, Yong; Ji, Wei; Chen, Chao; An, Lin; Zhu, Yi

    2012-02-01

    Using homologous cloning and RT-PCR technology, we isolated a novel TIFY family gene, GsTIFY11b, from Glycine soja L. G07256, a species that is tolerant to saline and alkaline environments. Phylogenetic analysis indicated that GsTIFY11b was closely related to AtTIFY11a with 56% similarity in amino acid identity. Protein sequence analysis showed that GsTIFY11b protein also had conserved TIFY domain, N-terminal domain, and a C-terminal Jas motif. Quantitative realtime PCR analysis indicated that the expression of GsTIFY11b was induced by both saline and alkaline stresses. Two homozygous GsTIFY11b over-expressing transgenic Arabidopsis lines were obtained. Phenotypic analysis of the transgenic and wild-type Arabidopsis indicated that over-expressing GsTIFY11b in Arabidopsis did not enhance plant tolerance to saline and alkaline stresses, whereas it showed an increased sensitivity to saline stress during seed germination and seedling development. Expression analysis of saline stress response marker genes in transgenic and wild-type plants under stress condition indicated that GsTIFY11b regulated the expression of RD29B, KIN1, and DREB. The transient expression of a GsTIFY11b-GFP fusion protein in onion epidermal cells showed that GsTIFY11b was localized to the nucleus, suggesting a role as a transcriptional regulator in the saline stress response pathway. PMID:22382065

  3. A Comparison of Soybean Agglutinin in Cultivars Resistant and Susceptible to Phytophthora megasperma var. sojae (Race 1) 1

    PubMed Central

    Gibson, Donna M.; Stack, Sharon; Krell, Kathryne; House, Jan

    1982-01-01

    The amount of soybean agglutinin (SBA) detectable by radioimmunoassay in seeds of resistant cultivars to Phytophthora megasperma var. sojae was approximately twice that of susceptible cultivars. SBA was preferentially released at earlier times (6-9 hours) and in higher amounts in the imbibate from resistant cultivars as compared to susceptible cultivars. The lectin in the imbibate was immunologically identical to the seed lectin, indicating little or no proteolysis had occurred, and was active in hemagglutination. Binding of fluorescein isothiocyanate-labeled SBA to mycelial cell walls could be abolished by adding N-acetyl galactosamine or galactose. Purified SBA at concentrations of 150 to 300 micrograms inhibited mycelial growth by 50%, and the imbibate from Govan (resistant) cultivar was more inhibitory than the imbibate from Shore (susceptible) cultivar. Removal of SBA from the imbibate by affinity chromatography abolished the inhibition of mycelial growth, but the inhibition could be recovered from the eluant containing lectin. Images Fig. 1 Fig. 4 Fig. 5 PMID:16662534

  4. Soybean Stem Fly, Melanagromyza sojae (Diptera: Agromyzidae), in the New World: detection of high genetic diversity from soybean fields in Brazil.

    PubMed

    Arnemann, J A; Tay, W T; Walsh, T K; Brier, H; Gordon, K; Hickmann, F; Ugalde, G; Guedes, J V C

    2016-01-01

    Soybean Stem Fly (SSF), Melanagromyza sojae (Zehntner), belongs to the family Agromyzidae and is highly polyphagous, attacking many plant species of the family Fabaceae, including soybean and other beans. SSF is regarded as one of the most important pests in soybean fields of Asia (e.g., China, India), North East Africa (e.g., Egypt), parts of Russia, and South East Asia. Despite reports of Agromyzidae flies infesting soybean fields in Rio Grande do Sul State (Brazil) in 1983 and 2009 and periodic interceptions of SSF since the 1940s by the USA quarantine authorities, SSF has not been officially reported to have successfully established in the North and South Americas. In South America, M. sojae was recently confirmed using morphology and its complete mitochondrial DNA (mtDNA) was characterized. In the present study, we surveyed the genetic diversity of M. sojae, collected directly from soybean host plants, using partial mtDNA cytochrome oxidase I (COI) gene, and provide evidence of multiple (>10) maternal lineages in SSF populations in South America, potentially representing multiple incursion events. However, a single incursion involving multiple-female founders could not be ruled out. We identified a haplotype that was common in the fields of two Brazilian states and the individuals collected from Australia in 2013. The implications of SSF incursions in southern Brazil are discussed in relation to the current soybean agricultural practices, highlighting an urgent need for better understanding of SSF population movements in the New World, which is necessary for developing effective management options for this significant soybean pest. PMID:27420989

  5. A new allele of flower color gene W1 encoding flavonoid 3'5'-hydroxylase is responsible for light purple flowers in wild soybean Glycine soja

    PubMed Central

    2010-01-01

    Background Glycine soja is a wild relative of soybean that has purple flowers. No flower color variant of Glycine soja has been found in the natural habitat. Results B09121, an accession with light purple flowers, was discovered in southern Japan. Genetic analysis revealed that the gene responsible for the light purple flowers was allelic to the W1 locus encoding flavonoid 3'5'-hydroxylase (F3'5'H). The new allele was designated as w1-lp. The dominance relationship of the locus was W1 >w1-lp >w1. One F2 plant and four F3 plants with purple flowers were generated in the cross between B09121 and a Clark near-isogenic line with w1 allele. Flower petals of B09121 contained lower amounts of four major anthocyanins (malvidin 3,5-di-O-glucoside, petunidin 3,5-di-O-glucoside, delphinidin 3,5-di-O-glucoside and delphinidin 3-O-glucoside) common in purple flowers and contained small amounts of the 5'-unsubstituted versions of the above anthocyanins, peonidin 3,5-di-O-glucoside, cyanidin 3,5-di-O-glucoside and cyanidin 3-O-glucoside, suggesting that F3'5'H activity was reduced and flavonoid 3'-hydroxylase activity was increased. F3'5'H cDNAs were cloned from Clark and B09121 by RT-PCR. The cDNA of B09121 had a unique base substitution resulting in the substitution of valine with methionine at amino acid position 210. The base substitution was ascertained by dCAPS analysis. The polymorphism associated with the dCAPS markers co-segregated with flower color in the F2 population. F3 progeny test, and dCAPS and indel analyses suggested that the plants with purple flowers might be due to intragenic recombination and that the 65 bp insertion responsible for gene dysfunction might have been eliminated in such plants. Conclusions B09121 may be the first example of a flower color variant found in nature. The light purple flower was controlled by a new allele of the W1 locus encoding F3'5'H. The flower petals contained unique anthocyanins not found in soybean and G. soja. B09121 may be

  6. The importin α subunit PsIMPA1 mediates the oxidative stress response and is required for the pathogenicity of Phytophthora sojae.

    PubMed

    Yang, Xinyu; Ding, Fa; Zhang, Lei; Sheng, Yuting; Zheng, Xiaobo; Wang, Yuanchao

    2015-09-01

    The sensing of extracellular signals and their transduction into an appropriate response are crucial for the survival and virulence of plant pathogens. Eukaryotic plant pathogens must overcome the obstacles posed by nuclear membranes to manipulate gene expression to adapt to the host challenge. A highly sophisticated mechanism is the use of importins to transport proteins into the nucleus. In this study, we identified a conserved importin α gene, PsIMPA1, in Phytophthora sojae that was differentially expressed during the life cycle of this soybean pathogen. PsIMPA1 expression was lowest in zoospores and cysts but relatively consistent during the other life cycle stages, except for a slight increase at 6h post infection. Silenced mutants Psimpa1 had a decreased growth rate, an aberrant mycelial morphology, and a severely impaired ability to form oospores and sporangia. In addition, the Psimpa1 mutants exhibited reduced pathogenicity compared to the wild type. 3,3-Diaminobenzidine (DAB) staining and in vitro hydrogen peroxide tolerance assays showed that the scavenging of reactive oxygen species by these mutants was significantly impaired. Taken together, these results indicate that PsIMPA1 regulates multiple processes during the life cycle of P. sojae. PMID:26159511

  7. RNA Interference of Soybean Isoflavone Synthase Genes Leads to Silencing in Tissues Distal to the Transformation Site and to Enhanced Susceptibility to Phytophthora sojae1

    PubMed Central

    Subramanian, Senthil; Graham, Madge Y.; Yu, Oliver; Graham, Terrence L.

    2005-01-01

    Isoflavones are thought to play diverse roles in plant-microbe interactions and are also potentially important to human nutrition and medicine. Isoflavone synthase (IFS) is a key enzyme for the formation of the isoflavones. Here, we examined the consequences of RNAi silencing of genes for this enzyme in soybean (Glycine max). Soybean cotyledon tissues were transformed with Agrobacterium rhizogenes carrying an RNAi silencing construct designed to silence expression of both copies of IFS genes. Approximately 50% of emerging roots were transformed with the RNAi construct, and most transformed roots exhibited >95% silencing of isoflavone accumulation. Silencing of IFS was also demonstrated throughout the entire cotyledon (in tissues distal to the transformation site) both by high-performance liquid chromatography analysis of isoflavones and by real-time reverse transcription-PCR. This distal silencing led to a nearly complete suppression of mRNA accumulation for both the IFS1 and IFS2 genes and of isoflavone accumulations induced by wounding or treatment with the cell wall glucan elicitor from Phytophthora sojae. Preformed isoflavone conjugates were not reduced in distal tissues, suggesting little turnover of these stored isoflavone pools. Distal silencing was established within just 5 d of transformation and was highly efficient for a 3- to 4-d period, after which it was no longer apparent in most experiments. Silencing of IFS was effective in at least two genotypes and led to enhanced susceptibility to P. sojae, disrupting both R gene-mediated resistance in roots and nonrace-specific resistance in cotyledon tissues. The soybean cotyledon system, already a model system for defense signal-response and cell-to-cell signaling, may provide a convenient and effective system for functional analysis of plant genes through gene silencing. PMID:15778457

  8. The silencing suppressor (NSs) protein of the plant virus Tomato spotted wilt virus enhances heterologous protein expression and baculovirus pathogenicity in cells and lepidopteran insects.

    PubMed

    de Oliveira, Virgínia Carla; da Silva Morgado, Fabricio; Ardisson-Araújo, Daniel Mendes Pereira; Resende, Renato Oliveira; Ribeiro, Bergmann Morais

    2015-11-01

    In this work, we showed that cell death induced by a recombinant (vAcNSs) Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressing the silencing suppressor (NSs) protein of Tomato spotted wilt virus (TSWV) was enhanced on permissive and semipermissive cell lines. The expression of a heterologous gene (firefly luciferase) during co-infection of insect cells with vAcNSs and a second recombinant baculovirus (vAgppolhfluc) was shown to increase when compared to single vAgppolhfluc infections. Furthermore, the vAcNSs mean time-to-death values were significantly lower than those for wild-type AcMNPV on larvae of Spodoptera frugiperda and Anticarsia gemmatalis. These results showed that the TSWV-NSs protein could efficiently increase heterologous protein expression in insect cells as well as baculovirus pathogenicity and virulence, probably by suppressing the gene-silencing machinery in insects. PMID:26323262

  9. Ectopic Expression of a Glycine soja myo-Inositol Oxygenase Gene (GsMIOX1a) in Arabidopsis Enhances Tolerance to Alkaline Stress

    PubMed Central

    Chen, Chen; Sun, Xiaoli; Duanmu, Huizi; Yu, Yang; Liu, Ailin; Xiao, Jialei; Zhu, Yanming

    2015-01-01

    Myo-inositol participates in various aspects of plant physiology, and myo-inositol oxygenase is the key enzyme of the myo-inositol oxygenation pathway. Previous studies indicated that myo-inositol oxygenase may play a role in plant responses to abiotic stresses. In this study, we focused on the functional characterization of GsMIOX1a, a remarkable alkaline stress-responsive gene of Glycine soja 07256, based on RNA-seq data. Using quantitative real-time PCR, we demonstrated that GsMIOX1a is rapidly induced by alkaline stress and expressed predominantly in flowers. We also elucidated the positive function of GsMIOX1a in the alkaline response in the wild type, atmiox1 mutant as well as GsMIOX1a-overexpressing Arabidopsis. We determined that atmiox1 mutant decreased Arabidopsis tolerance to alkaline stress, whereas GsMIOX1a overexpression increased tolerance. Moreover, the expression levels of some alkaline stress-responsive and inducible marker genes, including H+-Ppase, NADP-ME, KIN1 and RD29B, were also up-regulated in GsMIOX1a overexpression lines compared with the wild type and atmiox1 mutant. Together, these results suggest that the GsMIOX1a gene positively regulates plant tolerance to alkaline stress. This is the first report to demonstrate that ectopic expression of myo-inositol oxygenase improves alkaline tolerance in plants. PMID:26091094

  10. A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner

    PubMed Central

    Li, Qi; Zhang, Meixiang; Shen, Danyu; Liu, Tingli; Chen, Yanyu; Zhou, Jian-Min; Dou, Daolong

    2016-01-01

    Oomycete pathogens produce a large number of effectors to promote infection. Their mode of action are largely unknown. Here we show that a Phytophthora sojae effector, PsCRN63, suppresses flg22-induced expression of FRK1 gene, a molecular marker in pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI). However, PsCRN63 does not suppress upstream signaling events including flg22-induced MAPK activation and BIK1 phosphorylation, indicating that it acts downstream of MAPK cascades. The PsCRN63-transgenic Arabidopsis plants showed increased susceptibility to bacterial pathogen Pseudomonas syringae pathovar tomato (Pst) DC3000 and oomycete pathogen Phytophthora capsici. The callose deposition were suppressed in PsCRN63-transgenic plants compared with the wild-type control plants. Genes involved in PTI were also down-regulated in PsCRN63-transgenic plants. Interestingly, we found that PsCRN63 forms an dimer that is mediated by inter-molecular interactions between N-terminal and C-terminal domains in an inverted association manner. Furthermore, the N-terminal and C-terminal domains required for the dimerization are widely conserved among CRN effectors, suggesting that homo-/hetero-dimerization of Phytophthora CRN effectors is required to exert biological functions. Indeed, the dimerization was required for PTI suppression and cell death-induction activities of PsCRN63. PMID:27243217

  11. A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner.

    PubMed

    Li, Qi; Zhang, Meixiang; Shen, Danyu; Liu, Tingli; Chen, Yanyu; Zhou, Jian-Min; Dou, Daolong

    2016-01-01

    Oomycete pathogens produce a large number of effectors to promote infection. Their mode of action are largely unknown. Here we show that a Phytophthora sojae effector, PsCRN63, suppresses flg22-induced expression of FRK1 gene, a molecular marker in pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI). However, PsCRN63 does not suppress upstream signaling events including flg22-induced MAPK activation and BIK1 phosphorylation, indicating that it acts downstream of MAPK cascades. The PsCRN63-transgenic Arabidopsis plants showed increased susceptibility to bacterial pathogen Pseudomonas syringae pathovar tomato (Pst) DC3000 and oomycete pathogen Phytophthora capsici. The callose deposition were suppressed in PsCRN63-transgenic plants compared with the wild-type control plants. Genes involved in PTI were also down-regulated in PsCRN63-transgenic plants. Interestingly, we found that PsCRN63 forms an dimer that is mediated by inter-molecular interactions between N-terminal and C-terminal domains in an inverted association manner. Furthermore, the N-terminal and C-terminal domains required for the dimerization are widely conserved among CRN effectors, suggesting that homo-/hetero-dimerization of Phytophthora CRN effectors is required to exert biological functions. Indeed, the dimerization was required for PTI suppression and cell death-induction activities of PsCRN63. PMID:27243217

  12. Xanthine toxicity to caterpillars synergized by allopurinol, a xanthine dehydrogenase/oxidase inhibitor.

    PubMed

    Slansky, F

    1993-11-01

    Xanthine (2,6-dioxypurine), which occurs in certain legumes and other plants, was fed in artificial diet to larvae of two noctuid moth species, a legume specialist,Anticarsia gemmatalis, and a generalist,Spodoptera frugiperda. In addition, diets either lacked or contained allopurinol (4-hydroxypyrazolo(3,4-d)-pyrimidine), an inhibitor of xanthine dehydrogenase and oxidase, enzymes that convert xanthine to uric acid. Xanthine alone (up to 2% fresh mass, fm) had little deleterious effect on either species, whereas allopurinol alone (up to 1% fm) had moderate but significant effects, increasing mortality, slowing development, and reducing insect biomass. At 0.5% fm allopurinol, the decrease in biomass-relative growth rate (RGR) was associated with reductions in the efficiency of conversion to biomass of digested food (ECD; both species) and in the biomass-relative consumption rate (RCR;A. gemmatalis). In addition, pupae of each species from allopurinol-fed larvae had increased water retention (i.e., lower percentage dry mass) compared with insects consuming control diet. When fed diet containing both compounds (1% fm xanthin+0.5% fm allopurinol), noA. gemmatalis and only 40% ofS. frugiperda larvae reached the prepupal stage; additionally for the latter species, there was a substantial slowing of growth and reductions in final biomass, RGR, RCR, and ECD. These results indicate a synergistic interaction, in which the effects of xanthine and allopurinol combined in the diet were significantly greater than the additive effects of each compound tested separately. Presumably, the inhibition of xanthine dehydrogenase by allopurinol prevented the absorbed xanthine from being converted to uric acid and excreted. In addition, this study expands the phenomenon of phytochemical detoxification by insects to include xanthine dehydrogenase, an enzyme generally not considered within this context. PMID:24248717

  13. A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses.

    PubMed

    Sun, XiaoLi; Sun, Mingzhe; Luo, Xiao; Ding, XiaoDong; Ji, Wei; Cai, Hua; Bai, Xi; Liu, XiaoFei; Zhu, YanMing

    2013-06-01

    Receptor such as protein kinases are proposed to work as sensors to initiate signaling cascades in higher plants. However, little is known about the precise functions of receptor such as protein kinases in abiotic stress response in plants, especially in wild soybean. Here, we focused on characterization of the biological functions of a receptor-like cytoplasmic serine/threonine protein kinase gene, GsRLCK, which was previously identified as a putative salt-alkali stress-related gene from the transcriptome profiles of Glycine soja. Bioinformatic analysis showed that GsRLCK protein contained a conserved kinase catalytic domain and two transmembrane domains at the N-terminus, but no typical extracellular domain. Consistently, GsRLCK-eGFP fusion protein was observed on the plasma membrane, but eGFP alone was distributing throughout the cytoplasm in onion epidermal cells. Quantitative real-time PCR analysis revealed the induced expression of GsRLCK by ABA, salt, alkali, and drought stresses. However, the expression levels of GsRLCK seemed to be similar in different tissues, except soybean pod. Phenotypic assays demonstrated that GsRLCK overexpression decreased ABA sensitivity and altered expression levels of ABA-responsive genes. Furthermore, we also found that GsRLCK conferred increased tolerance to salt and drought stresses and increased expression levels of a handful of stress-responsive genes, when overexpressing in Arabidopsis. In a word, we gave exact evidence that GsRLCK was a novel receptor-like cytoplasmic protein kinase and played a crucial role in plant responses to ABA, salt, and drought stresses. PMID:23494614

  14. QTL Location and Epistatic Effect Analysis of 100-Seed Weight Using Wild Soybean (Glycine soja Sieb. & Zucc.) Chromosome Segment Substitution Lines

    PubMed Central

    Zhu, Rongsheng; Hu, Jiahui; Han, Heyu; Hu, Guohua; Liu, Chunyan; Chen, Qingshan

    2016-01-01

    Increasing the yield of soybean (Glycine max L. Merrill) is a main aim of soybean breeding. The 100-seed weight is a critical factor for soybean yield. To facilitate genetic analysis of quantitative traits and to improve the accuracy of marker-assisted breeding in soybean, a valuable mapping population consisting of 194 chromosome segment substitution lines (CSSLs) was developed. In these lines, different chromosomal segments of the Chinese cultivar Suinong 14 were substituted into the genetic background of wild soybean (Glycine soja Sieb. & Zucc.) ZYD00006. Based on these CSSLs, a genetic map covering the full genome was generated using 121 simple sequence repeat (SSR) markers. In the quantitative trait loci (QTL) analysis, twelve main effect QTLs (qSW-B1-1/2/3, qSW-D1b-1/2, qSW-D2-1/2, qSW-G-1/2/3, qSW-M-2 and qSW-N-2) underlying 100-seed weight were identified in 2011 and 2012. The epistatic effects of pairwise interactions between markers were analyzed in 2011 and 2012. The results clearly demonstrated that these CSSLs could be used to identify QTLs, and that an epistatic analysis was able to detect several sites with important epistatic effects on 100-seed weight. Thus, we identified loci that will be valuable for improving soybean 100-seed weight. These results provide a valuable foundation for identifying the precise location of genes of interest, and for designing cloning and marker-assisted selection breeding strategies targeting the 100-seed weight of soybean. PMID:26934088

  15. Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (Heterodera glycines) HG Type 2.5.7 in Wild Soybean (Glycine soja)

    PubMed Central

    Zhang, Hengyou; Li, Chunying; Davis, Eric L.; Wang, Jinshe; Griffin, Joshua D.; Kofsky, Janice; Song, Bao-Hua

    2016-01-01

    Soybean cyst nematode (SCN) is the most destructive soybean pest worldwide. Host plant resistance is the most environmentally friendly and cost-effective way of mitigating SCN damage to soybeans. However, overuse of the resistant soybean [Glycine max (L.) Merr.] cultivars from limited genetic resources has resulted in SCN race shifts in many soybean-growing areas. Thus, exploration of novel sources of SCN resistance and dissection of the genetic basis are urgently needed. In this study, we screened 235 wild soybean (Glycine soja Sieb. & Zucc.) accessions to identify genotypes resistant to SCN HG Type 2.5.7 (race 5), a less investigated type but is prevalent in the southeastern US. We also dissected the genetic basis of SCN resistance using a genome-wide association study with SNPs genotyped by SoySNP50k iSelect BeadChip. In total, 43 resistant accessions (female index < 30) were identified, with 10 SNPs being significantly associated with SCN HG 2.5.7 resistance in this wild species. Furthermore, four significant SNPs were localized to linked regions of the known quantitative trait locus (QTL) rhg1 on chromosome 18. The other four SNPs on chromosome 18 and two SNPs on chromosome 19 are novel. Genes encoding disease resistance-related proteins with a leucine-rich region, a mitogen-activated protein kinase (MAPK) on chromosome 18, and a MYB transcription factor on chromosome 19 were identified as promising candidate genes. The identified SNPs and candidate genes will benefit future marker-assisted breeding and dissection of the molecular mechanisms underlying the soybean-SCN interaction. PMID:27582748

  16. Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (Heterodera glycines) HG Type 2.5.7 in Wild Soybean (Glycine soja).

    PubMed

    Zhang, Hengyou; Li, Chunying; Davis, Eric L; Wang, Jinshe; Griffin, Joshua D; Kofsky, Janice; Song, Bao-Hua

    2016-01-01

    Soybean cyst nematode (SCN) is the most destructive soybean pest worldwide. Host plant resistance is the most environmentally friendly and cost-effective way of mitigating SCN damage to soybeans. However, overuse of the resistant soybean [Glycine max (L.) Merr.] cultivars from limited genetic resources has resulted in SCN race shifts in many soybean-growing areas. Thus, exploration of novel sources of SCN resistance and dissection of the genetic basis are urgently needed. In this study, we screened 235 wild soybean (Glycine soja Sieb. & Zucc.) accessions to identify genotypes resistant to SCN HG Type 2.5.7 (race 5), a less investigated type but is prevalent in the southeastern US. We also dissected the genetic basis of SCN resistance using a genome-wide association study with SNPs genotyped by SoySNP50k iSelect BeadChip. In total, 43 resistant accessions (female index < 30) were identified, with 10 SNPs being significantly associated with SCN HG 2.5.7 resistance in this wild species. Furthermore, four significant SNPs were localized to linked regions of the known quantitative trait locus (QTL) rhg1 on chromosome 18. The other four SNPs on chromosome 18 and two SNPs on chromosome 19 are novel. Genes encoding disease resistance-related proteins with a leucine-rich region, a mitogen-activated protein kinase (MAPK) on chromosome 18, and a MYB transcription factor on chromosome 19 were identified as promising candidate genes. The identified SNPs and candidate genes will benefit future marker-assisted breeding and dissection of the molecular mechanisms underlying the soybean-SCN interaction. PMID:27582748

  17. Characterization of Natural and Simulated Herbivory on Wild Soybean (Glycine soja Seib. et Zucc.) for Use in Ecological Risk Assessment of Insect Protected Soybean.

    PubMed

    Goto, Hidetoshi; Shimada, Hiroshi; Horak, Michael J; Ahmad, Aqeel; Baltazar, Baltazar M; Perez, Tim; McPherson, Marc A; Stojšin, Duška; Shimono, Ayako; Ohsawa, Ryo

    2016-01-01

    Insect-protected soybean (Glycine max (L.) Merr.) was developed to protect against foliage feeding by certain Lepidopteran insects. The assessment of potential consequences of transgene introgression from soybean to wild soybean (Glycine soja Seib. et Zucc.) is required as one aspect of the environmental risk assessment (ERA) in Japan. A potential hazard of insect-protected soybean may be hypothesized as transfer of a trait by gene flow to wild soybean and subsequent reduction in foliage feeding by Lepidopteran insects that result in increased weediness of wild soybean in Japan. To assess this potential hazard two studies were conducted. A three-year survey of wild soybean populations in Japan was conducted to establish basic information on foliage damage caused by different herbivores. When assessed across all populations and years within each prefecture, the total foliage from different herbivores was ≤ 30%, with the lowest levels of defoliation (< 2%) caused by Lepidopteran insects. A separate experiment using five levels of simulated defoliation (0%, 10%, 25%, 50% and 100%) was conducted to assess the impact on pod and seed production and time to maturity of wild soybean. The results indicated that there was no decrease in wild soybean plants pod or seed number or time to maturity at defoliation rates up to 50%. The results from these experiments indicate that wild soybean is not limited by lepidopteran feeding and has an ability to compensate for defoliation levels observed in nature. Therefore, the potential hazard to wild soybean from the importation of insect-protected soybean for food and feed into Japan is negligible. PMID:26963815

  18. Characterization of Natural and Simulated Herbivory on Wild Soybean (Glycine soja Seib. et Zucc.) for Use in Ecological Risk Assessment of Insect Protected Soybean

    PubMed Central

    Goto, Hidetoshi; Shimada, Hiroshi; Horak, Michael J.; Ahmad, Aqeel; Baltazar, Baltazar M.; Perez, Tim; McPherson, Marc A.; Stojšin, Duška; Shimono, Ayako; Ohsawa, Ryo

    2016-01-01

    Insect-protected soybean (Glycine max (L.) Merr.) was developed to protect against foliage feeding by certain Lepidopteran insects. The assessment of potential consequences of transgene introgression from soybean to wild soybean (Glycine soja Seib. et Zucc.) is required as one aspect of the environmental risk assessment (ERA) in Japan. A potential hazard of insect-protected soybean may be hypothesized as transfer of a trait by gene flow to wild soybean and subsequent reduction in foliage feeding by Lepidopteran insects that result in increased weediness of wild soybean in Japan. To assess this potential hazard two studies were conducted. A three-year survey of wild soybean populations in Japan was conducted to establish basic information on foliage damage caused by different herbivores. When assessed across all populations and years within each prefecture, the total foliage from different herbivores was ≤ 30%, with the lowest levels of defoliation (< 2%) caused by Lepidopteran insects. A separate experiment using five levels of simulated defoliation (0%, 10%, 25%, 50% and 100%) was conducted to assess the impact on pod and seed production and time to maturity of wild soybean. The results indicated that there was no decrease in wild soybean plants pod or seed number or time to maturity at defoliation rates up to 50%. The results from these experiments indicate that wild soybean is not limited by lepidopteran feeding and has an ability to compensate for defoliation levels observed in nature. Therefore, the potential hazard to wild soybean from the importation of insect-protected soybean for food and feed into Japan is negligible. PMID:26963815

  19. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana.

    PubMed

    Sun, Xiaoli; Luo, Xiao; Sun, Mingzhe; Chen, Chao; Ding, Xiaodong; Wang, Xuedong; Yang, Shanshan; Yu, Qingyue; Jia, Bowei; Ji, Wei; Cai, Hua; Zhu, Yanming

    2014-01-01

    It is well established that 14-3-3 proteins are key regulators of multiple stress signal transduction cascades. However, the biological functions of soybean 14-3-3 proteins, especially in plant drought response, are not yet known. In this study, we characterized a Glycine soja 14-3-3 gene, GsGF14o, which is involved in plant development and drought response. GsGF14o expression was greatly induced by drought stress, as evidenced by the quantitative real-time PCR and β-glucuronidase (GUS) activity analysis. GsGF14o overexpression in Arabidopsis thaliana resulted in decreased drought tolerance during seed germination and seedling growth. Furthermore, silencing of AtGF14µ, the most homologous 14-3-3 gene of GsGF14o, led to enhanced drought tolerance at both the seed germination and seedling stage. Unexpectedly, GsGF14o transgenic lines showed reduced water loss and transpiration rates compared with wild-type plants, which was demonstrated to be the consequence of the decreased stomatal size. At the same time, the smaller stomata due to GsGF14o overexpression led to a relatively slow net photosynthesis rate, which led to a growth penalty under drought stress. We further demonstrated that GsGF14o overexpression caused deficits in root hair formation and development, and thereby reduced the water intake capacity of the transgenic root system. In addition, GsGF14o overexpression down-regulated the transcript levels of drought-responsive marker genes. Finally, we also investigated the tissue-specific accumulation of GsGF14o by using a GUS activity assay. Collectively, the results presented here confirm that GsGF14o plays a dual role in drought stress responses through its involvement in the regulation of stomatal size and root hair development. PMID:24272249

  20. GsCML27, a Gene Encoding a Calcium-Binding Ef-Hand Protein from Glycine soja, Plays Differential Roles in Plant Responses to Bicarbonate, Salt and Osmotic Stresses

    PubMed Central

    Chen, Chao; Sun, Xiaoli; Duanmu, Huizi; Zhu, Dan; Yu, Yang; Cao, Lei; Liu, Ailin; Jia, Bowei; Xiao, Jialei; Zhu, Yanming

    2015-01-01

    Calcium, as the most widely accepted messenger, plays an important role in plant stress responses through calcium-dependent signaling pathways. The calmodulin-like family genes (CMLs) encode Ca2+ sensors and function in signaling transduction in response to environmental stimuli. However, until now, the function of plant CML proteins, especially soybean CMLs, is largely unknown. Here, we isolated a Glycine soja CML protein GsCML27, with four conserved EF-hands domains, and identified it as a calcium-binding protein through far-UV CD spectroscopy. We further found that expression of GsCML27 was induced by bicarbonate, salt and osmotic stresses. Interestingly, ectopic expression of GsCML27 in Arabidopsis enhanced plant tolerance to bicarbonate stress, but decreased the salt and osmotic tolerance during the seed germination and early growth stages. Furthermore, we found that ectopic expression of GsCML27 decreases salt tolerance through modifying both the cellular ionic (Na+, K+) content and the osmotic stress regulation. GsCML27 ectopic expression also decreased the expression levels of osmotic stress-responsive genes. Moreover, we also showed that GsCML27 localized in the whole cell, including cytoplasm, plasma membrane and nucleus in Arabidopsis protoplasts and onion epidermal cells, and displayed high expression in roots and embryos. Together, these data present evidence that GsCML27 as a Ca2+-binding EF-hand protein plays a role in plant responses to bicarbonate, salt and osmotic stresses. PMID:26550992

  1. A Glycine soja methionine sulfoxide reductase B5a interacts with the Ca(2+) /CAM-binding kinase GsCBRLK and activates ROS signaling under carbonate alkaline stress.

    PubMed

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Qin, Zhiwei; Yang, Kejun; Chen, Chao; Yu, Qingyue; Zhu, Yanming

    2016-06-01

    Although research has extensively illustrated the molecular basis of plant responses to salt and high-pH stresses, knowledge on carbonate alkaline stress is poor and the specific responsive mechanism remains elusive. We have previously characterized a Glycine soja Ca(2+) /CAM-dependent kinase GsCBRLK that could increase salt tolerance. Here, we characterize a methionine sulfoxide reductase (MSR) B protein GsMSRB5a as a GsCBRLK interactor by using Y2H and BiFc assays. Further analyses showed that the N-terminal variable domain of GsCBRLK contributed to the GsMSRB5a interaction. Y2H assays also revealed the interaction specificity of GsCBRLK with the wild soybean MSRB subfamily proteins, and determined that the BoxI/BoxII-containing regions within GsMSRBs were responsible for their interaction. Furthermore, we also illustrated that the N-terminal basic regions in GsMSRBs functioned as transit peptides, which targeted themselves into chloroplasts and thereby prevented their interaction with GsCBRLK. Nevertheless, deletion of these regions allowed them to localize on the plasma membrane (PM) and interact with GsCBRLK. In addition, we also showed that GsMSRB5a and GsCBRLK displayed overlapping tissue expression specificity and coincident expression patterns under carbonate alkaline stress. Phenotypic experiments demonstrated that GsMSRB5a and GsCBRLK overexpression in Arabidopsis enhanced carbonate alkaline stress tolerance. Further investigations elucidated that GsMSRB5a and GsCBRLK inhibited reactive oxygen species (ROS) accumulation by modifying the expression of ROS signaling, biosynthesis and scavenging genes. Summarily, our results demonstrated that GsCBRLK and GsMSRB5a interacted with each other, and activated ROS signaling under carbonate alkaline stress. PMID:27121031

  2. Mode of Action and Specificity of Bacillus thuringiensis Toxins in the Control of Caterpillars and Stink Bugs in Soybean Culture

    PubMed Central

    Fiuza, Lidia Mariana

    2014-01-01

    The bacterium Bacillus thuringiensis (Bt) produces delta-endotoxins that possess toxic properties and can be used as biopesticides, as well as a source of genes for the construction of transgenic plants resistant to insects. In Brazil, the introduction of Bt soybean with insecticidal properties to the velvetbean caterpillar, the main insect pest of soybean, has been seen a promising tool in the management of these agroecosystems. However, the increase in stink bug populations in this culture, in various regions of the country, which are not susceptible to the existing genetically modified plants, requires application of chemicals that damage the environment. Little is known about the actual toxicity of Bt to Hemiptera, since these insects present sucking mouthparts, which hamper toxicity assays with artificial diets containing toxins of this bacterium. In recent studies of cytotoxicity with the gut of different hemipterans, susceptibility in the mechanism of action of delta-endotoxins has been demonstrated, which can generate promising subsidies for the control of these insect pests in soybean. This paper aims to review the studies related to the selection, application and mode of action of Bt in the biological control of the major pest of soybean, Anticarsia gemmatalis, and an analysis of advances in research on the use of Bt for control hemipterans. PMID:24575310

  3. Evaluation of pest vulnerability of 'Benning' soybean value added and insect resistant near isogenic lines.

    PubMed

    Samuel-Foo, Michelle; All, John N; Boerma, H Roger

    2013-04-01

    Crop enhancement with value added traits may affect vulnerability to insects, and evaluating the susceptibility levels of the various value added traits in elite germplasm would aid in developing integrated pest management strategies. During 2007-2008, five 'Benning' soybean (Glycine max (L.) Merr) lines with different value added nutritional traits and four insect resistant quantitative trait loci (QTL) lines were evaluated in an effort to determine their pest vulnerability under artificial and natural insect pest populations. The lines showed variable susceptibility to lepidopterous insect pests classified as defoliators and stem feeders in replicated greenhouse and field tests. The study was carried out in Athens and Midville, GA. The green cloverworm (Hypena scabra (F.)) was the most common lepidopteran defoliator occurring in the fields. Other caterpillar pests found included the soybean looper (Pseudoplusia includens (Walker)), the bollworm (Helicoverpa zea (Boddie)), and the velvetbean caterpillar (Anticarsia gemmatalis (Hübner)). Data indicated that there was no significantly increased pest susceptibility among the value added cultivars with improved nutritional qualities, with the insect resistant quantitative trait loci lines Benning M and Benning MGH consistently being less susceptible to lepidopterous (Noctuidae) leaf injury. PMID:23786071

  4. Characterization of an Indonesian isolate of Paecilomyces reniformis.

    PubMed

    Kalkar, O; Carner, G R; Scharf, D; Boucias, D G

    2006-02-01

    An entomopathogenic fungus (IndGH 96), identified as Paecilomyces reniformis, was isolated from long-horned grasshoppers (Orthoptera: Tettigoniidae) in Sulawesi, Indonesia. The phenotypic and molecular data identified the IndGH 96 as a P. reniformis. We present the first comprehensive characterization of this species using morphological features, sequencing of the ITS1-5.8s-ITS2 region, D1/D2 region of 28S of rDNA, and a portion of the tubulin gene, and laboratory bioassays. Distinguishing features include a hyphal body stage during vegetative growth and the production of distinctly curved, light-green conidia. High dosage bioassays showed that IndGH 96 was infectious to both long-horned and short-horned grasshoppers but not to the house cricket, Acheta domestica, or to the lepidopterans velvetbean caterpillar, Anticarsia gemmatalis or fall armyworm, Spodoptera frugiperda. Phenotypic and genetic analyses suggest that IndGH 96 and other isolates of P. reniformis are more closely related to Nomuraea rileyi than to other species of Paecilomyces. PMID:16463094

  5. Cell Culture for Production of Insecticidal Viruses.

    PubMed

    Reid, Steven; Chan, Leslie C L; Matindoost, Leila; Pushparajan, Charlotte; Visnovsky, Gabriel

    2016-01-01

    While large-scale culture of insect cells will need to be conducted using bioreactors up to 10,000 l scale, many of the main challenges for cell culture-based production of insecticidal viruses can be studied using small-scale (20-500 ml) shaker/spinner flasks, either in free suspension or using microcarrier-based systems. These challenges still relate to the development of appropriate cell lines, stability of virus strains in culture, enhancing virus yields per cell, and the development of serum-free media and feeds for the desired production systems. Hence this chapter presents mainly the methods required to work with and analyze effectively insect cell systems using small-scale cultures. Outlined are procedures for quantifying cells and virus and for establishing frozen cells and virus stocks. The approach for maintaining cell cultures and the multiplicity of infection (MOI) and time of infection (TOI) parameters that should be considered for conducting infections are discussed.The methods described relate, in particular, to the suspension culture of Helicoverpa zea and Spodoptera frugiperda cell lines to produce the baculoviruses Helicoverpa armigera nucleopolyhedrovirus, HearNPV, and Anticarsia gemmatalis multicapsid nucleopolyhedrovirus, AgMNPV, respectively, and the production of the nonoccluded Oryctes nudivirus, OrNV, using an adherent coleopteran cell line. PMID:27565495

  6. Field evaluation of soybean engineered with a synthetic cry1Ac transgene for resistance to corn earworm, soybean looper, velvetbean caterpillar (Lepidoptera: Noctuidae), and lesser cornstalk borer (Lepidoptera: Pyralidae).

    PubMed

    Walker, D R; All, J N; McPherson, R M; Boerma, H R; Parrott, W A

    2000-06-01

    A transgenic line of the soybean 'Jack', Glycine max (L.) Merrill, expressing a synthetic cry1Ac gene from Bacillus thuringiensis variety kurstaki (Jack-Bt), was evaluated for resistance to four lepidopteran pests in the field. Jack-Bt and genotypes serving as susceptible and resistant controls were planted in field cages and artificially infested with larvae of corn earworm, Helicoverpa zea (Boddie), and velvetbean caterpillar, Anticarsia gemmatalis (Hübner), in 1996, 1997, and 1998, and also with soybean looper, Pseudoplusia includens (Walker), in 1996. Susceptible controls included Jack (1996-1998), 'Cobb' (1996), and Jack-HPH (1996). GatIR 81-296 was used as the resistant control in all 3 yr. Compared with untransformed Jack, Jack-Bt showed three to five times less defoliation from corn earworm and eight to nine times less damage from velvetbean caterpillar. Defoliation of GatIR 81-296 was intermediate between that of Jack and Jack-Bt for corn earworm, and similar to that of Jack for velveltbean caterpillar. Jack-Bt exhibited significant, but lower resistance to soybean looper. Jack-Bt also showed four times greater resistance than Jack to natural infestations of lesser cornstalk borer, Elasmopalpus lignosellus (Zeller), in conventional field plots at two locations in 1998. Data from these experiments suggest that expression of this cry1Ac construct in soybean should provide adequate levels of resistance to several lepidopteran pests under field conditions. PMID:10902306

  7. Characterization of a single-nucleocapsid nucleopolyhedrovirus of Thysanoplusia orichalcea L. (Lepidoptera: Noctuidae) from Indonesia.

    PubMed

    Cheng, X W; Carner, G R

    2000-05-01

    A single-nucleocapsid nucleopolyhedrovirus (NPV) isolated from Thysanoplusia orichalcea L. (Lepidoptera:Noctuidae) (ThorNPV) in Indonesia has tetrahedral occlusion bodies (OBs) with a width of 1. 22 microm (range = 0.803-1.931 microm). The length of the virion with an envelope averaged 0.29 and 0.23 microm without an envelope. ThorNPV was propagated in Pseudoplusia includens (Walker) and its authenticity was confirmed by sequence analysis of the polyhedrin gene of the ThorNPV produced in T. orichalcea and P. includens. Polyhedrin amino acid sequence analysis revealed that ThorNPV belongs to Group II of baculoviruses and is closely related to Trichoplusia ni single nucleocapsid NPV, sharing 97.6% sequence identity. Infectivity of ThorNPV against third instar P. includens was low, with a LD(50) value of 65,636 OBs/larva. Electron microscopy of infected tissues showed many polyhedra without virions embedded, which might explain the low virulence against P. includens. Differences in virion occlusion rates between individual cells in the same tissue suggested that the inoculum consisted of at least two variants that differed in the gene(s) controlling virion occlusion. In a host range test using the LD(50) value to P. includens against Spodoptera exigua, S. frugiperda, S. eridania, Anticarsia gemmatalis, Helicoverpa zea, Trichoplusia ni, and P. includens, P. includens was the only species infected. The virus infected primarily the fat body, tracheal epithelium, and hypodermis. The genomic size of the ThorNPV is 135 kb. PMID:10843835

  8. Biological and molecular characterization of a multicapsid nucleopolyhedrovirus from Thysanoplusia orichalcea (L.) (Lepidoptera: Noctuidae).

    PubMed

    Cheng, Xiao-Wen; Carner, Gerald R; Lange, Martin; Jehle, Johannes A; Arif, Basil M

    2005-02-01

    A multicapsid nucleopolyhedrovirus (ThorMNPV) that was co-isolated with a single nucleocapid ThorSNPV from mixed infected larvae of Thysanoplusia orichalcea L. (Lepidoptea: Noctuidae) is characterized. Scanning electron microscopy of ThorMNPV showed a dodecahedral-shaped occlusion body (OB). The occluded virions contained one to as many as eight nucleocapsids/virion. Virion band profiles in gradient centrifugation were consistent in at least 10 rounds of centrifugation from different virion sample preparations. The ThorMNPV had high virulence to third instar Trichoplusia ni and Pseudoplusia includens with LD50 values of 17 and 242OBs per larva, respectively. However, ThorMNPV did not cause mortality in Spodoptera exigua, Spodoptera frugiperda, Spodoptera eridania, Anticarsia gemmatalis, and Helicoverpa zea. ThorMNPV replicates in cells of various tissues such as the fat body and tracheal epithelium cells. T. ni High 5 cells were permissive to ThorMNPV in terms of infection and viral DNA transfection, but SF-21 was less permissive and the infection process was slower. Production of OBs by ThorMNPV in the nuclei of SF-21 was not well pronounced. The genome size of ThorMNPV was estimated to be 136 kb. The polyhedrin gene open reading frame (ORF) was cloned and completely sequenced. The promoter sequence is identical to that of Autographa californica MNPV. Phylogenetic analyses using partial sequences of the polh, lef-8, and lef-9 revealed that ThorMNPV is a member of the Group I NPVs and is related but distinct from the AcMNPV/Rachiplusia ou NPV/Bombyx mori NPV cluster. PMID:15766929

  9. An Amino Acid Substitution Inhibits Specialist Herbivore Production of an Antagonist Effector and Recovers Insect-Induced Plant Defenses1[W][OA

    PubMed Central

    Schmelz, Eric A.; Huffaker, Alisa; Carroll, Mark J.; Alborn, Hans T.; Ali, Jared G.; Teal, Peter E.A.

    2012-01-01

    Plants respond to insect herbivory through the production of biochemicals that function as either direct defenses or indirect defenses via the attraction of natural enemies. While attack by closely related insect pests can result in distinctive levels of induced plant defenses, precise biochemical mechanisms responsible for differing responses remain largely unknown. Cowpea (Vigna unguiculata) responds to Fall armyworm (Spodoptera frugiperda) herbivory through the detection of fragments of chloroplastic ATP synthase γ-subunit proteins, termed inceptin-related peptides, present in larval oral secretions (OS). In contrast to generalists like Fall armyworm, OS of the legume-specializing velvetbean caterpillar (VBC; Anticarsia gemmatalis) do not elicit ethylene production and demonstrate significantly lower induced volatile emission in direct herbivory comparisons. Unlike all other Lepidoptera OS examined, which preferentially contain inceptin (Vu-In; +ICDINGVCVDA−), VBC OS contain predominantly a C-terminal truncated peptide, Vu-In−A (+ICDINGVCVD−). Vu-In−A is both inactive and functions as a potent naturally occurring antagonist of Vu-In-induced responses. To block antagonist production, amino acid substitutions at the C terminus were screened for differences in VBC gut proteolysis. A valine-substituted peptide (Vu-InΔV; +ICDINGVCVDV−) retaining full elicitor activity was found to accumulate in VBC OS. Compared with the native polypeptide, VBC that previously ingested 500 pmol of the valine-modified chloroplastic ATP synthase γ-subunit precursor elicited significantly stronger plant responses in herbivory assays. We demonstrate that a specialist herbivore minimizes the activation of defenses by converting an elicitor into an antagonist effector and identify an amino acid substitution that recovers these induced plant defenses to a level observed with generalist herbivores. PMID:23008466

  10. Extensive transcription analysis of the Hyposoter didymator Ichnovirus genome in permissive and non-permissive lepidopteran host species.

    PubMed

    Dorémus, Tristan; Cousserans, François; Gyapay, Gabor; Jouan, Véronique; Milano, Patricia; Wajnberg, Eric; Darboux, Isabelle; Cônsoli, Fernando Luis; Volkoff, Anne-Nathalie

    2014-01-01

    Ichnoviruses are large dsDNA viruses that belong to the Polydnaviridae family. They are specifically associated with endoparasitic wasps of the family Ichneumonidae and essential for host parasitization by these wasps. We sequenced the Hyposoter didymator Ichnovirus (HdIV) encapsidated genome for further analysis of the transcription pattern of the entire set of HdIV genes following the parasitization of four different lepidopteran host species. The HdIV genome was found to consist of at least 50 circular dsDNA molecules, carrying 135 genes, 98 of which formed 18 gene families. The HdIV genome had general features typical of Ichnovirus (IV) genomes and closely resembled that of the IV carried by Hyposoter fugitivus. Subsequent transcriptomic analysis with Illumina technology during the course of Spodoptera frugiperda parasitization led to the identification of a small subset of less than 30 genes with high RPKM values in permissive hosts, consisting with these genes encoding crucial virulence proteins. Comparisons of HdIV expression profiles between host species revealed differences in transcript levels for given HdIV genes between two permissive hosts, S. frugiperda and Pseudoplusia includens. However, we found no evident intrafamily gene-specific transcription pattern consistent with the presence of multigenic families within IV genomes reflecting an ability of the wasps concerned to exploit different host species. Interestingly, in two non-permissive hosts, Mamestra brassiccae and Anticarsia gemmatalis (most of the parasitoid eggs were eliminated by the host cellular immune response), HdIV genes were generally less strongly transcribed than in permissive hosts. This suggests that successful parasitism is dependent on the expression of given HdIV genes exceeding a particular threshold value. These results raise questions about the mecanisms involved in regulating IV gene expression according to the nature of the lepidopteran host species encountered. PMID

  11. Efficacy of Soybean's Event DAS-81419-2 Expressing Cry1F and Cry1Ac to Manage Key Tropical Lepidopteran Pests Under Field Conditions in Brazil.

    PubMed

    Marques, L H; Castro, B A; Rossetto, J; Silva, O A B N; Moscardini, V F; Zobiole, L H S; Santos, A C; Valverde-Garcia, P; Babcock, J M; Rule, D M; Fernandes, O A

    2016-08-01

    Bacillus thuringiensis (Bt) event DAS-81419-2 (Conkesta technology) in soybean, Glycine max (L.) Merrill, expresses Cry1F and Cry1Ac proteins to provide protection from feeding by several lepidopteran pests. A total of 27 field experiments across nine locations were conducted from 2011 to 2015 in southern and central Brazil to characterize the efficacy of DAS-81419-2 soybean infested with Anticarsia gemmatalis Hübner (Lepidoptera: Erebidae), Chrysodeixis includens (Walker) (Lepidoptera: Noctuidae), Heliothis virescens (F.) (Lepidoptera: Noctuidae), and Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) during vegetative (V4) and reproductive (R2 and R4) crop developmental stages. The efficacy of DAS-81419-2 was compared to that of a non-Bt isogenic variety managed with or without applications of commercial foliar insecticides for lepidopteran control. DAS-81419-2 soybean consistently experienced defoliation levels of 0.5% or less (compared with 20.05-56.74% in the non-Bt, nonsprayed treatment) and larval survival of < 0.1% in all four species across the vegetative and reproductive plant stages evaluated. The efficacy of DAS-81419-2 was significantly higher than commercial foliar insecticides applied to the non-Bt variety. DAS-81419-2 soybeans containing two highly effective Bt proteins are expected to be a more robust IRM tool compared to single-trait Bt technologies. The consistent efficacy of DAS-81419-2 soybeans across years, locations, and crop stages suggests that it will be a valuable product for management of hard-to-control key lepidopteran pests in South American soybean production. PMID:27401112

  12. Modularity and evolutionary constraints in a baculovirus gene regulatory network

    PubMed Central

    2013-01-01

    Background The structure of regulatory networks remains an open question in our understanding of complex biological systems. Interactions during complete viral life cycles present unique opportunities to understand how host-parasite network take shape and behave. The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is a large double-stranded DNA virus, whose genome may encode for 152 open reading frames (ORFs). Here we present the analysis of the ordered cascade of the AgMNPV gene expression. Results We observed an earlier onset of the expression than previously reported for other baculoviruses, especially for genes involved in DNA replication. Most ORFs were expressed at higher levels in a more permissive host cell line. Genes with more than one copy in the genome had distinct expression profiles, which could indicate the acquisition of new functionalities. The transcription gene regulatory network (GRN) for 149 ORFs had a modular topology comprising five communities of highly interconnected nodes that separated key genes that are functionally related on different communities, possibly maximizing redundancy and GRN robustness by compartmentalization of important functions. Core conserved functions showed expression synchronicity, distinct GRN features and significantly less genetic diversity, consistent with evolutionary constraints imposed in key elements of biological systems. This reduced genetic diversity also had a positive correlation with the importance of the gene in our estimated GRN, supporting a relationship between phylogenetic data of baculovirus genes and network features inferred from expression data. We also observed that gene arrangement in overlapping transcripts was conserved among related baculoviruses, suggesting a principle of genome organization. Conclusions Albeit with a reduced number of nodes (149), the AgMNPV GRN had a topology and key characteristics similar to those observed in complex cellular organisms, which indicates

  13. Extensive Transcription Analysis of the Hyposoter didymator Ichnovirus Genome in Permissive and Non-Permissive Lepidopteran Host Species

    PubMed Central

    Dorémus, Tristan; Cousserans, François; Gyapay, Gabor; Jouan, Véronique; Milano, Patricia; Wajnberg, Eric; Darboux, Isabelle; Cônsoli, Fernando Luis; Volkoff, Anne-Nathalie

    2014-01-01

    Ichnoviruses are large dsDNA viruses that belong to the Polydnaviridae family. They are specifically associated with endoparasitic wasps of the family Ichneumonidae and essential for host parasitization by these wasps. We sequenced the Hyposoter didymator Ichnovirus (HdIV) encapsidated genome for further analysis of the transcription pattern of the entire set of HdIV genes following the parasitization of four different lepidopteran host species. The HdIV genome was found to consist of at least 50 circular dsDNA molecules, carrying 135 genes, 98 of which formed 18 gene families. The HdIV genome had general features typical of Ichnovirus (IV) genomes and closely resembled that of the IV carried by Hyposoter fugitivus. Subsequent transcriptomic analysis with Illumina technology during the course of Spodoptera frugiperda parasitization led to the identification of a small subset of less than 30 genes with high RPKM values in permissive hosts, consisting with these genes encoding crucial virulence proteins. Comparisons of HdIV expression profiles between host species revealed differences in transcript levels for given HdIV genes between two permissive hosts, S. frugiperda and Pseudoplusia includens. However, we found no evident intrafamily gene-specific transcription pattern consistent with the presence of multigenic families within IV genomes reflecting an ability of the wasps concerned to exploit different host species. Interestingly, in two non-permissive hosts, Mamestra brassiccae and Anticarsia gemmatalis (most of the parasitoid eggs were eliminated by the host cellular immune response), HdIV genes were generally less strongly transcribed than in permissive hosts. This suggests that successful parasitism is dependent on the expression of given HdIV genes exceeding a particular threshold value. These results raise questions about the mecanisms involved in regulating IV gene expression according to the nature of the lepidopteran host species encountered. PMID

  14. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diverse pathogens secrete effector proteins into plant cells to manipulate host cellular processes. Oomycete pathogens contain very large complements of predicted effector genes defined by an RXLR host cell entry motif. The genome of Hyaloperonospora arabidopsidis (Hpa, downy mildew of Arabidopsis) ...

  15. Identification of quantitative trait loci conditioning partial resistance to Phytophthora sojae in soybean PI 407861A

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving resistance for Phytophthora root and stem rot is an important goal in soybean [Glycine max (L.) Merr.] breeding. Partial resistance can be as effective in managing this disease as single-gene (Rps) mediated resistance and is more durable. The objective of this study was to identify QTL con...

  16. Ectopic Expression of a WRKY Homolog from Glycine soja Alters Flowering Time in Arabidopsis

    PubMed Central

    Liu, Baohui; Zhu, Dan; Bai, Xi; Cai, Hua; Ji, Wei; Cao, Lei; Wu, Jing; Wang, Mingchao; Ding, Xiaodong; Zhu, Yanming

    2013-01-01

    Flowering is a critical event in the life cycle of plants; the WRKY-type transcription factors are reported to be involved in many developmental processes sunch as trichome development and epicuticular wax loading, but whether they are involved in flowering time regulation is still unknown. Within this study, we provide clear evidence that GsWRKY20, a member of WRKY gene family from wild soybean, is involved in controlling plant flowering time. Expression of GsWRKY20 was abundant in the shoot tips and inflorescence meristems of wild soybean. Phenotypic analysis showed that GsWRKY20 over-expression lines flowered earlier than the wild-type plants under all conditions: long-day and short-day photoperiods, vernalization, or exogenous GA3 application, indicating that GsWRKY20 may mainly be involved in an autonomous flowering pathway. Further analyses by qRT-PCR and microarray suggests that GsWRKY20 accelerating plant flowering might primarily be through the regulation of flowering-related genes (i.e., FLC, FT, SOC1 and CO) and floral meristem identity genes (i.e., AP1, SEP3, AP3, PI and AG). Our results provide the evidence demonstrating the effectiveness of manipulating GsWRKY20 for altering plant flowering time. PMID:23991184

  17. Glyceollin is an important component of soybean plant defense against Phytophthora sojae and Macrophomina phaseolina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic soybean plants were generated using bombardment of embryogenic cultures with the PAL5 (phenylalanine ammonia lyase), CHS6 (chalcone synthase) and IFS2 (isoflavone synthase) genes in sense orientation, driven by the cotyledon-preferable lectin promoter, or with the IFS2 (isoflavone synthas...

  18. Development of enzyme technology for Aspergillus oryzae, A. sojae, and A. luchuensis, the national microorganisms of Japan.

    PubMed

    Ichishima, Eiji

    2016-09-01

    This paper describes the modern enzymology in Japanese bioindustries. The invention of Takadiastase by Jokiti Takamine in 1894 has revolutionized the world of industrial enzyme production by fermentation. In 1949, a new γ-amylase (glucan 1,4-α-glucosidase, EC 3.2.1.3) from A. luchuensis (formerly designated as A. awamori), was found by Kitahara. RNase T1 (guanyloribonuclease, EC 3.1.27.3) was discovered by Sato and Egami. Ando discovered Aspergillus nuclease S1 (single-stranded nucleate endonuclease, EC 3.1.30.1). Aspergillopepsin I (EC 3.4.23.18) from A. tubingensis (formerly designated as A. saitoi) activates trypsinogen to trypsin. Shintani et al. demonstrated Asp76 of aspergillopepsin I as the binding site for the basic substrate, trypsinogen. The new oligosaccharide moieties Man10GlcNAc2 and Man11GlcNAc2 were identified with α-1,2-mannosidase (EC 3.2.1.113) from A. tubingensis. A yeast mutant compatible of producing Man5GlcNAc2 human compatible sugar chains on glycoproteins was constructed. The acid activation of protyrosinase from A. oryzae at pH 3.0 was resolved. The hyper-protein production system of glucoamylase was established in a submerged culture. PMID:27151561

  19. Environmental and Historical Determinants of Patterns of Genetic Differentiation in Wild Soybean (Glycine soja Sieb. et Zucc)

    PubMed Central

    He, Shui-Lian; Wang, Yun-Sheng; Li, De-Zhu; Yi, Ting-Shuang

    2016-01-01

    Wild soybean, the direct progenitor of cultivated soybean, inhabits a wide distribution range across the mainland of East Asia and the Japanese archipelago. A multidisciplinary approach combining analyses of population genetics based on 20 nuclear microsatellites and one plastid locus were applied to reveal the genetic variation of wild soybean, and the contributions of geographical, environmental factors and historic climatic change on its patterns of genetic differentiation. High genetic diversity and significant genetic differentiation were revealed in wild soybean. Wild soybean was inferred to be limited to southern and central China during the Last Glacial Maximum (LGM) and experienced large-scale post-LGM range expansion into northern East Asia. A substantial northward range shift has been predicted to occur by the 2080s. A stronger effect of isolation by environment (IBE) versus isolation by geographical distance (IBD) was found for genetic differentiation in wild soybean, which suggested that environmental factors were responsible for the adaptive eco-geographical differentiation. This study indicated that IBE and historical climatic change together shaped patterns of genetic variation and differentiation of wild soybean. Different conservation measures should be implemented on different populations according to their adaptive potential to future changes in climate and human-induced environmental changes. PMID:26952904

  20. Environmental and Historical Determinants of Patterns of Genetic Differentiation in Wild Soybean (Glycine soja Sieb. et Zucc).

    PubMed

    He, Shui-Lian; Wang, Yun-Sheng; Li, De-Zhu; Yi, Ting-Shuang

    2016-01-01

    Wild soybean, the direct progenitor of cultivated soybean, inhabits a wide distribution range across the mainland of East Asia and the Japanese archipelago. A multidisciplinary approach combining analyses of population genetics based on 20 nuclear microsatellites and one plastid locus were applied to reveal the genetic variation of wild soybean, and the contributions of geographical, environmental factors and historic climatic change on its patterns of genetic differentiation. High genetic diversity and significant genetic differentiation were revealed in wild soybean. Wild soybean was inferred to be limited to southern and central China during the Last Glacial Maximum (LGM) and experienced large-scale post-LGM range expansion into northern East Asia. A substantial northward range shift has been predicted to occur by the 2080s. A stronger effect of isolation by environment (IBE) versus isolation by geographical distance (IBD) was found for genetic differentiation in wild soybean, which suggested that environmental factors were responsible for the adaptive eco-geographical differentiation. This study indicated that IBE and historical climatic change together shaped patterns of genetic variation and differentiation of wild soybean. Different conservation measures should be implemented on different populations according to their adaptive potential to future changes in climate and human-induced environmental changes. PMID:26952904

  1. The Diaporthe sojae species complex: phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytopathogenic species of Diaporthe are associated with the serious diseases including seed decay, pod and stem blight and stem canker of soybean leading to considerable loss of crop production worldwide. Accurate identification of the species that cause these diseases has been difficult due to the...

  2. Integration of the draft sequence and physical map as a framework for genomic research in soybean (Glycine max (L.) Merr.) and wild soybean (Glycine soja Sieb. and Zucc.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is a model for the legume research community due to its importance as a crop, a well populated genetic map, and the availability of a genome sequence. Even though a whole genome shotgun sequence and Bacterial Artificial Chromosome (BAC) libraries are available, a high-resolution chromosome-b...

  3. Constructing the Self in/as Thirdspace: New Potentials for Identity Exploration in the Composition Classroom

    ERIC Educational Resources Information Center

    Lauer, Claire

    2009-01-01

    In this article the author introduces a concept she calls "Thirdspace identity construction," which instructors can use to understand what happens in students' texts when such ever-open possibilities for identity exploration are allowed. This concept borrows from the work of critical geographer Edward Soja. Soja's "Thirdspace" represents a dynamic…

  4. Quantitative Trait Loci for Partial Resistance to Phytophthora Sojaei in Soybean [Glycine Max (L.) Merr.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora root and stem rot of soybean, caused by the oomycete, Phytophthora sojae, is one of the most destructive diseases to limit soybean production in the US. Although fourteen resistance genes (Rps) to P. sojae have been identified, adaptation of by the pathogen has made many of these ineffe...

  5. Phytophthora root rot resistance in soybean E00003

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora root rot (PRR), caused by the oomycete Phytophthora sojae, is a devastating disease in soybean production. Using resistant cultivars has been suggested as the best solution for disease management. Michigan elite soybean E00003 is resistant to P. sojae and has been used as a PRR resist...

  6. Selectivity of Organic Products to Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae).

    PubMed

    Amaro, J T; Bueno, A F; Pomari-Fernandes, A F; Neves, P M O J

    2015-10-01

    The selectivity of various entomopathogens and one insecticide (chlorpyrifos = positive control) to Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) was evaluated in the laboratory, using the protocol established by the Working Group on "Pesticides and Beneficial Organisms" of the IOBC. The evaluated parameters were parasitism (%), adult emergence (%), and product repellency to the parasitoid when sprayed on host eggs prior to parasitism (free-choice and no-choice tests). Most of the studied entomopathogens (Bacillus thuringiensis var. kurstaki, Bacillus thuringiensis var. aizawai, Beauveria bassiana, Metarhizium anisopliae, and Trichoderma harzianum) had no effects on biological parameters and were classified as harmless to T. pretiosum. Emergence of parasitoids (progeny viability) was reduced, but remained above 90%, when host eggs were sprayed with Baculovirus anticarsia prior to parasitism in the free-choice test, and B. anticarsia was therefore considered harmless. Chlorpyrifos (positive control) caused high adult parasitoid mortality in all bioassays. While T. pretiosum and the tested entomopathogens may be used simultaneously in integrated pest management programs, the use of chlorpyrifos should be avoided. PMID:26267248

  7. Phytophthora Resistance of Soybean Germplasm with High Potential for Asian Soybean Rust Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple disease resistance is an important component of production agriculture. Major challenges include resistance to Phytophthora root rot caused by evolving Phytophthora sojae races and the recently introduced invasive Asian soybean rust (ASBR) caused by Phakopsora pachyrhizi. The diseases cause...

  8. Artificial Selection for Determinate Growth Habit in Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determinacy is an agronomically important trait associated with the domestication in soybean (Glycine max). Most soybean cultivars are classifiable into indeterminate and determinate growth habit, while Glycine soja, the wild progenitor of soybean, is indeterminate. Indeterminate (Dt1) and determina...

  9. Genetic diversity of rhg1 and Rhg4 loci in wild soybeans resistant to soybean cyst nematode race 3.

    PubMed

    Yuan, C P; Wang, Y J; Zhao, H K; Zhang, L; Wang, Y M; Liu, X D; Zhong, X F; Dong, Y S

    2016-01-01

    Over-utilization of germplasms that are resistant to the soybean cyst nematode (SCN) in soybean breeding programs can lead to genetic vulnerability in resistant cultivars. Resistant wild soybean (Glycine soja) is considered an invaluable gene source for increasing the genetic diversity of SCN resistance. In this study, we genotyped 23 G. soja accessions that are resistant to SCN race 3 for polymorphisms in the resistance genes, rhg1, Rhg4, and SHMT, and investigated their genetic relationship with eight Glycine max resistant cultivars. We identified 89 single nucleotide polymorphisms (SNPs) and 11 DNA insertion-deletions (InDels), of which 70 SNPs and 8 InDels were found in rhg1, 9 SNPs were found in Rhg4, and 10 SNPs and 3 InDels were found in SHMT. Nucleotide diversity was π = 0.00238 and θ = 0.00235, and haplotype diversity was 1.000. A phylogenetic tree comprising four clusters was constructed using sequence variations of the 23 G. soja and 8 G. max resistant accessions. Five G. soja accessions in subcluster A2, and four G. soja accessions in cluster B were genetically distant from G. max genotypes. Eight resistance-associated SNPs in the three resistance genes formed nine haplotypes in total. G. soja resistant accessions had different haplotypes (H2, H4, H5, H6, H7, and H8) compared with those of G. max (H1, H3, and H9). These results provide vital information on the use of wild soybeans for broadening the genetic base of SCN resistance. PMID:27323148

  10. Host-Pathogen Interactions

    PubMed Central

    Ebel, Jürgen; Ayers, Arthur R.; Albersheim, Peter

    1976-01-01

    The glucan elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae, the fungus which causes stem and root rot in soybeans, stimulates the activity of phenylalanine ammonia-lyase and the accumulation of glyceollin in suspension-cultured soybean cells. Nigeran, a commercially available fungal wall glucan, was the only other compound tested which has any activity in this system. Glyceollin is a phenylpropanoid-derived phytoalexin which is toxic to P. megasperma var. sojae. Evidence is presented to support the hypothesis that the action of elicitors in stimulating phytoalexin synthesis is not species or variety specific but, rather, is part of a general defensive response of plants. PMID:16659568

  11. Expression of key hydrolases for soy sauce fermentation in Zygosaccharomyces rouxii.

    PubMed

    Yuzuki, Masanobu; Matsushima, Kenichiro; Koyama, Yasuji

    2015-01-01

    Several key hydrolases in soy sauce fermentation such as proteases, peptidases, and glutaminases are supplied by Aspergillus sojae or Aspergillus oryzae. The genes encoding these hydrolases were successfully expressed in salt-tolerant yeast Zygosaccharomyces rouxii. These transformants are expected to supply extra hydrolases during soy sauce fermentation process. PMID:25073685

  12. A Cross-Linguistic Study of Early Word Meaning: Universal Ontology and Linguistic Influence.

    ERIC Educational Resources Information Center

    Imai, Mutsumi; Gentner, Dedre

    1997-01-01

    Investigated whether learning the distinction between substance names and object names is conceptually or linguistically driven, by repeating Soja et al.'s study with English- and Japanese-speaking children. (Japanese does not make the count-mass grammatical distinction proposed to contribute to learning the distinction.) Found evidence for…

  13. Landscapes, Spatial Justice and Learning Communities

    ERIC Educational Resources Information Center

    Armstrong, Felicity

    2012-01-01

    This paper draws on a study of a community-based adult education initiative, "Cumbria Credits," which took place during the period of serious economic decline which hit sections of the farming and the wider community in Cumbria during 2001. It draws on the principles underpinning Edward Soja's notion of "spatial justice" to explore transformations…

  14. PHYTOPHTHORA GENOME SEQUENCES UNCOVER EVOLUTIONARY ORIGINS AND MECHANISMS OF PATHOGENESIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Draft genome sequences of the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum have been determined to depths of 9x and 7.7x, respectively. Oomycetes such as these Phytophthora species share the kingdom Stramenopiles with photosynthetic algae such as diatoms...

  15. Genome sequences of Phytophthora enable translational plant disease management and accelerate research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole and partial genome sequences are becoming available at an ever-increasing pace. For many plant pathogen systems, we are moving into the era of genome resequencing. The first Phytophthora genomes, P. ramorum and P. sojae, became available in 2004, followed shortly by P. infestans in 2006. Ava...

  16. Farm Fair Voices, Space, History, the Middle Ground and "The Future" of Rural Communities

    ERIC Educational Resources Information Center

    Halsey, John

    2011-01-01

    This article is essentially written as two linked parts. The first part considers how space, spatiality and history can contribute to understanding and "doing something about" the sustainability of rural communities. This is done by extensive reference to Soja's (1989 & 1996) space and spatial theorising and selective perspectives of history from…

  17. Soybean lines evaluated for resistance to reniform nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seventy-four wild and domestic soybean (Glycine max and G. soja) lines were evaluated for resistance to reniform nematode (Rotylenchulus reniformis) in growth chamber tests with a day length of 16 hours and temperature held constant at 28 C. Several entries for which reactions to reniform nematode w...

  18. What Can Availability of the Phytophthora ramorum Genome Do for Us?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genomes of Phytophthora ramorum and P. sojae were sequenced in 2004. Two obvious questions arise, What contributions does the availability of a genome sequence make toward understanding the biology of Phytophthora spp.? What are the implications for management of sudden oak death in the...

  19. The Utilization of Soybean Wild Relatives: How Can It Be Effective?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild soybean (G. soja Sieb. & Zucc.) is the progenitor of soybean and is native to China, Taiwan, Japan, eastern Russia and the Korean peninsula. Research has repeatedly demonstrated that wild soybean is more genetically diverse than the cultivated soybean. There are 26 perennial Glycine species tha...

  20. Dt2 is a gain-of-function MADS-Domain factor gene that controls semi-determinacy in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Similar to Arabidopsis, the wild soybean (Glycine soja) and many soybean (Glycine max) cultivars exhibit indeterminate stem growth controlled by a gene Dt1 – the functional counterpart of the Arabidopsis TFL1. Mutations in TFL1 and Dt1 both result in the shoot apical meristem (SAM) switching from ve...

  1. Host range of Phakopsora pachyrhizi, the causal agent of soybean rust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phakopsora pachyrhizi, the causal organism of soybean rust, was first described in 1903 from leaves of Glycine max subsp. soja, or wild soybean, in Japan. Since that time, there have been numerous reports of the pathogen on various leguminous species around the world, first in Asia, followed by Aust...

  2. Identification of Rotylenchulus reniformis resistant Glycine lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the Mid South. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen....

  3. Finding a Space for Professional Development: Creating Thirdspace through After-School Writing Groups

    ERIC Educational Resources Information Center

    Brooke, Robert; Coyle, Deborah; Walden, Anne; Healey, Conniem; Larson, Kim; Laughridge, Virginia; Ridder, Kim; Williams, Molly; Williams, Shawn

    2005-01-01

    This article describes a teacher study group focusing on After School Writing Circles for elementary students as a site of Thirdspace professional development. Borrowing the concept of Thirdspace from postmodern geographer Edward Soja, the authors argue that professional development works best when teachers engage in the dual work of imagining and…

  4. What Space Makes of Us: Thirdspace, Identity Politics, and Multiculturalism.

    ERIC Educational Resources Information Center

    Allen, Rick

    Space is related to power in that it is critical to the social production and reproduction of difference. This paper re-imagines a critical multiculturalism that embraces critical spatial theory and postmodern identity politics. In an overview of postmodern spatial theory, the works of Lefebvre (1974), E. Soja (1989, 1996), and M. Foucault (1986)…

  5. Genetic mapping and characterization of two novel Phytophthora resistance genes from soybean landrace PI567139B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora root and stem rot (PRR) disease, caused by P. sojae, is a widespread soybean disease resulting in an annual yield loss of $1~2 billion worldwide. To control the disease, breeders primarily employ race-specific resistant genes which are named Rps genes which have been identified to be lo...

  6. Changing Course: Locating Third Space in a College Classroom

    ERIC Educational Resources Information Center

    Johnston, Jennifer A.

    2009-01-01

    The author reflects on her experience teaching undergraduate children's literature over several semesters and the impact of her action research study on her teaching. Using theoretical concepts of Third Space (Bhabha, 1994; Soja, 1996), the author examines the evolution of her philosophy of education and classroom practice. The author determines…

  7. Alternate Intron Processing of Family 5 Endoglucanase Transcripts from Genus Phytophthora

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, twenty-one paralogs of family 5 endo-(1-4)-'-glucanase genes (EGs) were identified and characterized in the oomycete plant pathogens Phytophthora infestans, P. sojae and P. ramorum. Phylogenetic analysis revealed that these genes are in a unique group, with closest similarity being ba...

  8. Diversity of Aspergillus oryzae genotypes (RFLP) isolated from traditional soy sauce production within Malaysia and Southeast Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA fingerprinting was performed on 64 strains of Aspergillus oryzae and one strain of A. sojae isolated from soysauce factories within Malaysia and Southeast Asia that use primitive traditional methods in producing 'tamari type' Cantonese soy sauce. PstI digests of total genomic DNA from each isol...

  9. Proteomic and genetic analysis of glycinin subunits of sixteen soybean genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated proteomic and genomic profiles of glycinin, a family of major storage proteins in sixteen different soybean genotypes consisting of four groups including wild soybean (Glycine soja), unimproved cultivated soybean landraces from Asia (G. max), ancestors of N. American soybean, and mod...

  10. Cryptic Sexuality in Aspergillus parasiticus and A. flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascomycetous fungi of the genus Aspergillus comprise a wide variety of species of biotechnological importance (e.g. A. sojae, A. oryzae, A. niger) as well as pathogens and toxin producers (e.g. A. flavus, A. parasiticus, A. fumigatus, A. nidulans). With the exception of A. nidulans, which is a homot...

  11. Spaces of Difference: The Contradictions of Alternative Educational Programs

    ERIC Educational Resources Information Center

    Vadeboncoeur, Jennifer A.

    2009-01-01

    Drawing upon the concept of "thirdspace" (Soja 1996), this article extends sociocultural theorizations of space in relation to alternative educational programs: programs designed to re-engage youth who have been pushed out of mainstream schools. Snapshots of educational programs, provided by ethnographic research gathered in the United States,…

  12. NECTAR COMPOSITION OF WILD PERENNIAL GLYCINE (SOYBEAN) SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Glycine contains the cultivated annual soybean G. max, the wild annual, G. soja, and about 21 wild perennial Glycine species. The perennials are largely indigenous to Australia, but are found in Papua New Guinea, Timor, Philippines, Japan and Taiwan. Outcrossing rates in the cultivated s...

  13. Detection of novel QTLs for foxglove aphid resistance in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foxglove aphid, Aulacorthum solani (Kaltenbach), is a Hemipteran insect that infected a wide variety of plants worldwide and caused serious yield losses in crops. The objective of this study was to identify the putative QTL for foxglove aphid resistance in wild soybean, PI 366121, (Glycine soja Sieb...

  14. Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis

    SciTech Connect

    Lamour, Kurt H; McDonald, W Hayes; Savidor, Alon

    2006-01-01

    Genome sequences of the soybean pathogen, Phytophthora sojae, and the sudden oak death pathogen, Phytophthora ramorum, suggest a photosynthetic past and reveal recent massive expansion and diversification of potential pathogenicity gene families. Abstract: Draft genome sequences of the soybean pathogen, Phytophthora sojae, and the sudden oak death pathogen, Phytophthora ramorum, have been determined. O mycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms and the presence of many Phytophthora genes of probable phototroph origin support a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors and, in particular, a superfamily of 700 proteins with similarity to known o mycete avirulence genes.

  15. Effect of Soybean Cyst Nematode (Heterodera glycines) on Yield of Resistant and Susceptible Soybean Cultivars Grown in Ohio.

    PubMed

    Wheeler, T A; Pierson, P E; Young, C E; Riedel, R M; Willson, H R; Eisley, J B; Schmitthenner, A F; Lipps, P E

    1997-12-01

    Soybean (Glycine max) producers in Ohio rarely use soybean cyst nematode (Heterodera glycines, SCN)-resistant cultivars because of concerns over limited yield potential and lack of resistance to Phytophthora sojae. A two-year study was initiated to determine grain yield and nematode population increase on soybean cyst nematode-resistant cultivars in maturity groups II and III in production fields. Sites differed in soil texture, nematode densities, and P. sojae infestation at a number of locations in Ohio. Soil was assayed for nematode densities before planting and at harvest. Yields of resistant cultivars averaged 0% to 18% higher than those of susceptible cultivars in fine-textured soils with average preplant populations ranging from 463 to 14,330 SCN eggs/100 cm(3) soil. In coarse-textured soils, yields of susceptible cultivars were 21% to 56% less than the resistant cultivars with average preplant densities ranging from 1,661 to 15,558 SCN eggs/100 cm(3) soil. The reproductive index ranged from 0.1 to 5.5 for resistant cultivars and 0.4 to 112 for susceptible cultivars. In 1993, yield of P. sojae-susceptible, nematode-resistant 'Asgrow A 3431' was as high as yield of the P. sojae-resistant, nematode-susceptible cultivar 'Resnik' in a Phytophthora-infested field. The nematode-resistant cultivars Madison Experimental 131527 and Asgrow A3431 had higher yields than AgVenture AV1341 and susceptible cultivars Resnik and Kenwood when compared over five nematode-infested sites. Nematode-resistant cultivars were found to be excellent alternatives to currently grown susceptible cultivars for managing SCN where group III cultivars are used. However, better cultivar alternatives may be needed for sites with combined Phytophthora root rot and cyst nematode problems. PMID:19274272

  16. Effect of Soybean Cyst Nematode (Heterodera glycines) on Yield of Resistant and Susceptible Soybean Cultivars Grown in Ohio

    PubMed Central

    Wheeler, T. A.; Pierson, P. E.; Young, C. E.; Riedel, R. M.; Willson, H. R.; Eisley, J. B.; Schmitthenner, A. F.; Lipps, P. E.

    1997-01-01

    Soybean (Glycine max) producers in Ohio rarely use soybean cyst nematode (Heterodera glycines, SCN)-resistant cultivars because of concerns over limited yield potential and lack of resistance to Phytophthora sojae. A two-year study was initiated to determine grain yield and nematode population increase on soybean cyst nematode-resistant cultivars in maturity groups II and III in production fields. Sites differed in soil texture, nematode densities, and P. sojae infestation at a number of locations in Ohio. Soil was assayed for nematode densities before planting and at harvest. Yields of resistant cultivars averaged 0% to 18% higher than those of susceptible cultivars in fine-textured soils with average preplant populations ranging from 463 to 14,330 SCN eggs/100 cm³ soil. In coarse-textured soils, yields of susceptible cultivars were 21% to 56% less than the resistant cultivars with average preplant densities ranging from 1,661 to 15,558 SCN eggs/100 cm³ soil. The reproductive index ranged from 0.1 to 5.5 for resistant cultivars and 0.4 to 112 for susceptible cultivars. In 1993, yield of P. sojae-susceptible, nematode-resistant 'Asgrow A 3431' was as high as yield of the P. sojae-resistant, nematode-susceptible cultivar 'Resnik' in a Phytophthora-infested field. The nematode-resistant cultivars Madison Experimental 131527 and Asgrow A3431 had higher yields than AgVenture AV1341 and susceptible cultivars Resnik and Kenwood when compared over five nematode-infested sites. Nematode-resistant cultivars were found to be excellent alternatives to currently grown susceptible cultivars for managing SCN where group III cultivars are used. However, better cultivar alternatives may be needed for sites with combined Phytophthora root rot and cyst nematode problems. PMID:19274272

  17. Growth in microgravity increases susceptibility of soybean to a fungal pathogen

    NASA Technical Reports Server (NTRS)

    Ryba-White, M.; Nedukha, O.; Hilaire, E.; Guikema, J. A.; Kordyum, E.; Leach, J. E.; Spooner, B. S. (Principal Investigator)

    2001-01-01

    The influence of microgravity on the susceptibility of soybean roots to Phytophthora sojae was studied during the Space Shuttle Mission STS-87. Seedlings of soybean cultivar Williams 82 grown in spaceflight or at unit gravity were untreated or inoculated with the soybean root rot pathogen P. sojae. At 3, 6 and 7 d after launch while still in microgravity, seedlings were photographed and then fixed for subsequent microscopic analysis. Post-landing analysis of the seedlings revealed that at harvest day 7 the length of untreated roots did not differ between flight and ground samples. However, the flight-grown roots infected with P. sojae showed more disease symptoms (percentage of brown and macerated areas) and the root tissues were more extensively colonized relative to the ground controls exposed to the fungus. Ethylene levels were higher in spaceflight when compared to ground samples. These data suggest that soybean seedlings grown in microgravity are more susceptible to colonization by a fungal pathogen relative to ground controls.

  18. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana.

    PubMed

    Xiong, Qin; Ye, Wenwu; Choi, Duseok; Wong, James; Qiao, Yongli; Tao, Kai; Wang, Yuanchao; Ma, Wenbo

    2014-12-01

    The genus Phytophthora consists of notorious and emerging pathogens of economically important crops. Each Phytophthora genome encodes several hundreds of cytoplasmic effectors, which are believed to manipulate plant immune response inside the host cells. However, the majority of Phytophthora effectors remain functionally uncharacterized. We recently discovered two effectors from the soybean stem and root rot pathogen Phytophthora sojae with the activity to suppress RNA silencing in plants. These effectors are designated Phytophthora suppressor of RNA silencing (PSRs). Here, we report that the P. sojae PSR2 (PsPSR2) belongs to a conserved and widespread effector family in Phytophthora. A PsPSR2-like effector produced by P. infestans (PiPSR2) can also suppress RNA silencing in plants and promote Phytophthora infection, suggesting that the PSR2 family effectors have conserved functions in plant hosts. Using Agrobacterium rhizogenes-mediated hairy roots induction, we demonstrated that the expression of PsPSR2 rendered hypersusceptibility of soybean to P. sojae. Enhanced susceptibility was also observed in PsPSR2-expressing Arabidopsis thaliana plants during Phytophthora but not bacterial infection. These experiments provide strong evidence that PSR2 is a conserved Phytophthora effector family that performs important virulence functions specifically during Phytophthora infection of various plant hosts. PMID:25387135

  19. Host-Pathogen Interactions

    PubMed Central

    Cline, Kenneth; Wade, Mark; Albersheim, Peter

    1978-01-01

    A β-glucan isolated from the mycelial walls of Phytophthora megasperma var. sojae and a glucan purified from yeast extract stimulate the accumulation of phytoalexins in red kidney bean, Phaseolus vulgaris, and stimulate the accumulation of the phytoalexin, rishitin, in potato tubers, Solanum tuberosum. These glucans have previously been shown to be potent elicitors of glyceollin accumulation in soybean, Glycine max. Treatment of kidney bean cotyledons with the glucan elicitors resulted in the accumulation of at least five fungistatic compounds. These compounds migrate during thin layer chromatography identically to the fungistatic compounds which accumulate in kidney beans which have been inoculated with Colletotrichum lindemuthianum, a fungal pathogen of kidney beans. Potatoes accumulate as much as 29 micrograms of rishitin per gram fresh weight following exposure to the glucan from Phytophthora megasperma var. sojae and as much as 19.5 micrograms of rishitin per gram fresh weight following exposure to yeast glucan. Potatoes accumulated 28 micrograms of rishitin per gram fresh weight following inoculation with live Phytophthora megasperma var. sojae. ImagesFig. 1 PMID:16660638

  20. Mapping and use of QTLs controlling pod dehiscence in soybean

    PubMed Central

    Funatsuki, Hideyuki; Hajika, Makita; Yamada, Tetsuya; Suzuki, Masaya; Hagihara, Seiji; Tanaka, Yoshinori; Fujita, Shohei; Ishimoto, Masao; Fujino, Kaien

    2012-01-01

    While the cultivated soybean, Glycine max (L.) Merr., is more recalcitrant to pod dehiscence (shattering-resistant) than wild soybean, Glycine soja Sieb. & Zucc., there is also significant genetic variation in shattering resistance among cultivated soybean cultivars. To reveal the genetic basis and develop DNA markers for pod dehiscence, several research groups have conducted quantitative trait locus (QTL) analysis using segregated populations derived from crosses between G. max accessions or between a G. max and G. soja accession. In the populations of G. max, a major QTL was repeatedly identified near SSR marker Sat_366 on linkage group J (chromosome 16). Minor QTLs were also detected in several studies, although less commonality was found for the magnitudes of effect and location. In G. max × G. soja populations, only QTLs with a relatively small effect were detected. The major QTL found in G. max was further fine-mapped, leading to the development of specific markers for the shattering resistance allele at this locus. The markers were used in a breeding program, resulting in the production of near-isogenic lines with shattering resistance and genetic backgrounds of Japanese elite cultivars. The markers and lines developed will hopefully contribute to the rapid production of a variety of shattering-resistant soybean cultivars. PMID:23136494

  1. The effects of microgravity and clinorotation on the interaction of plant cells with fungal pathogen

    NASA Astrophysics Data System (ADS)

    Nedukha, O.; Kordyum, E.; Leach, J.; Martyn, G.; Ryba-White, M.

    The influence of microgravity and slow horizontal clinorotation (2 rev/min), which partly mimics microgravity, on the interaction of plant cells of soybean roots to Phytophthora sojae and of potato minitubers to Phytophthora infestans was studied during the Space Shuttle Mission STS-87 and during clinorotation. Seedlings of soybean cultivar Williams 82 grown in spaceflight and at 1 g were untreated or inoculated with pathogen P. sojae; minitubers of potato (cv Adreta) grown at horizontal clinorotation and the vertical control also were untreated or inoculated with pathogen P. infestans. The methods of light microscopy, scanning and transmission electron microscopy, confocal microscopy and also cytochemistry for the determination of callose content and peroxydase activity were used in the experiments. Post-landing analysis of the meristem cells of soybean roots infected with P. sojae and post-clinorotation analysis of the parenchyma cells of potato minitubers cells infected with P. infestans showed more destroying symptoms in cells of plant-host, which were more extensive colonized relative to the controls exposed to the pathogen fungus. Infected cells of plants-host were divided in two types: cells of first type were completely destroyed and hyphae of pathogen fungus were into these cells or in intercellular spaces; cells of second type characterized by partly changed ultrastructure and a calcium sites were contained above in mentioned cells. These data suggest that root cells of soybean seedlings grown in microgravity and cells of potato minitubers grown at slow horizontal clinorotation are more susceptible to penetration of a fungal pathogen in comparison with the corresponding controls.

  2. Use of genome sequence data in the design and testing of SSR markers for Phytophthora species

    PubMed Central

    Schena, Leonardo; Cardle, Linda; Cooke, David EL

    2008-01-01

    Background Microsatellites or single sequence repeats (SSRs) are a powerful choice of marker in the study of Phytophthora population biology, epidemiology, ecology, genetics and evolution. A strategy was tested in which the publicly available unigene datasets extracted from genome sequences of P. infestans, P. sojae and P. ramorum were mined for candidate SSR markers that could be applied to a wide range of Phytophthora species. Results A first approach, aimed at the identification of polymorphic SSR loci common to many Phytophthora species, yielded 171 reliable sequences containing 211 SSRs. Microsatellites were identified from 16 target species representing the breadth of diversity across the genus. Repeat number ranged from 3 to 16 with most having seven repeats or less and four being the most commonly found. Trinucleotide repeats such as (AAG)n, (AGG)n and (AGC)n were the most common followed by pentanucleotide, tetranucleotide and dinucleotide repeats. A second approach was aimed at the identification of useful loci common to a restricted number of species more closely related to P. sojae (P. alni, P. cambivora, P. europaea and P. fragariae). This analysis yielded 10 trinucleotide and 2 tetranucleotide SSRs which were repeated 4, 5 or 6 times. Conclusion Key studies on inter- and intra-specific variation of selected microsatellites remain. Despite the screening of conserved gene coding regions, the sequence diversity between species was high and the identification of useful SSR loci applicable to anything other than the most closely related pairs of Phytophthora species was challenging. That said, many novel SSR loci for species other than the three 'source species' (P. infestans, P. sojae and P. ramorum) are reported, offering great potential for the investigation of Phytophthora populations. In addition to the presence of microsatellites, many of the amplified regions may represent useful molecular marker regions for other studies as they are highly variable

  3. Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis

    SciTech Connect

    Tyler, Brett M.; Tripathy, Sucheta; Zhang, Xuemin; Dehal, Paramvir; Jiang, Rays H. Y.; Aerts, Andrea; Arredondo, Felipe D.; Baxter, Laura; Bensasson, Douda; Beynon, JIm L.; Chapman, Jarrod; Damasceno, Cynthia M. B.; Dorrance, Anne E.; Dou, Daolong; Dickerman, Allan W.; Dubchak, Inna L.; Garbelotto, Matteo; Gijzen, Mark; Gordon, Stuart G.; Govers, Francine; Grunwald, NIklaus J.; Huang, Wayne; Ivors, Kelly L.; Jones, Richard W.; Kamoun, Sophien; Krampis, Konstantinos; Lamour, Kurt H.; Lee, Mi-Kyung; McDonald, W. Hayes; Medina, Monica; Meijer, Harold J. G.; Nordberg, Erik K.; Maclean, Donald J.; Ospina-Giraldo, Manuel D.; Morris, Paul F.; Phuntumart, Vipaporn; Putnam, Nicholas J.; Rash, Sam; Rose, Jocelyn K. C.; Sakihama, Yasuko; Salamov, Asaf A.; Savidor, Alon; Scheuring, Chantel F.; Smith, Brian M.; Sobral, Bruno W. S.; Terry, Astrid; Torto-Alalibo, Trudy A.; Win, Joe; Xu, Zhanyou; Zhang, Hongbin; Grigoriev, Igor V.; Rokhsar, Daniel S.; Boore, Jeffrey L.

    2006-04-17

    Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oömycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oömycete avirulence genes.

  4. Zoosporic plant pathogens produce bacterial autoinducer-2 that affects Vibrio harveyi quorum sensing

    PubMed Central

    Kong, Ping; Lee, Bobby W.K.; Zhou, Zhaohui Sunny; Hong, Chuanxue

    2009-01-01

    The frequent co-isolation of bacteria with Phytophthora and Pythium species suggests possible interspecies communication. Zoospore free fluids (ZFF) from bacteria-free and nutrient-depleted zoospore suspensions were examined to investigate production of autoinducer-2 (AI-2), a bacterial interspecies signal molecule, by zoosporic oomycetes. ZFF from P. nicotianae, P. sojae and Py. aphanidermatum triggered luminescence of Vibrio harveyi AI-2 reporter, indicating the presence of AI-2 in zoospore extracellular products and the potential of cross-kingdom communication between oomycetes and bacteria. Production of AI-2 by zoospores was confirmed by chemical assays. These results provide new insight into the physiology and ecology of oomycetes. PMID:20002192

  5. [Review of traditional Chinese medicine processed by fermentation].

    PubMed

    Zhang, Li-Xia; Gao, Wen-Yuan; Wang, Hai-Yang

    2012-12-01

    The fermentation processing of traditional Chinese medicines (TCMs), as an important processing method for TCM, originated from the ancient brewing technology. It has a long history in China. Fermented TCMs (FTCMs) are widely applied among folks for preventing and treating many diseases. There are many kinds of TCM processed by spontaneous fermentation, including Massa Medicata Fermentata, Rhizoma Pinelliae Fermentata, Red fermented rice, Semen Sojae Praepaaratum, Mass Galla chinesis et camelliae Fermentata and Pien Tze Huang. This essay summarizes historical origin, main varieties, the effect of microbial strains, current processing techniques and existing problems of FTCM, and look into the prospect of modern development of FTCMs. PMID:23627162

  6. Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean

    PubMed Central

    2012-01-01

    Background Nonhost resistance (NHR) provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Three Arabidopsis thaliana PEN (penetration deficient) genes, PEN1, 2 and 3 have been shown to provide NHR against the barley pathogen Blumeria graminis f. sp. hordei at the prehaustorial level. Arabidopsis pen1-1 mutant lacking the PEN1 gene is penetrated by the hemibiotrophic oomycete pathogen Phytophthora sojae, the causal organism of the root and stem rot disease in soybean. We investigated if there is any novel nonhost resistance mechanism in Arabidopsis against the soybean pathogen, P. sojae. Results The P.sojaesusceptible (pss) 1 mutant was identified by screening a mutant population created in the Arabidopsis pen1-1 mutant that lacks penetration resistance against the non adapted barley biotrophic fungal pathogen, Blumeria graminis f. sp. hordei. Segregation data suggested that PEN1 is not epistatic to PSS1. Responses of pss1 and pen1-1 to P. sojae invasion were distinct and suggest that PSS1 may act at both pre- and post-haustorial levels, while PEN1 acts at the pre-haustorial level against this soybean pathogen. Therefore, PSS1 encodes a new form of nonhost resistance. The pss1 mutant is also infected by the necrotrophic fungal pathogen, Fusarium virguliforme, which causes sudden death syndrome in soybean. Thus, a common NHR mechanism is operative in Arabidopsis against both hemibiotrophic oomycetes and necrotrophic fungal pathogens that are pathogenic to soybean. However, PSS1 does not play any role in immunity against the bacterial pathogen, Pseudomonas syringae pv. glycinea, that causes bacterial blight in soybean. We mapped PSS1 to a region very close to the southern telomere of chromosome 3 that carries no known disease resistance genes. Conclusions The study revealed that Arabidopsis PSS1 is a novel nonhost resistance gene that confers a new form of nonhost resistance against both

  7. [Morphologic and molecular characterization of Phomopsis longicolla(teleomorph unknown: Diaporthales) from tempered and subtropical regions of Argentina].

    PubMed

    Hernández, Facundo E; Pioli, Rosanna N; Peruzzo, Alejandra M; Formento, Ángela N; Pratta, Guillermo R

    2015-09-01

    Diaporthe (teleomorpho)-Phomopsis - (anamorph) (DP) is a fungal group of great genetic diversity with over 900 species associated to a wide host range that includes cultivated and uncultivated species, forest, fruit trees and weeds. DP isolates are hemibiotrophs and have different sources of primary inoculum as stubble and seeds to restart cycles of parasitism - saprophytism. They colonize host tissues from early plant stages and establish different nutritional relationships, acting as endophytic and necrotrophic fungi. The plasticity of the Phomopsis genus has favored its expansion to different agro-ecosystems and various hosts constituting an epidemiological risk. The objective was to validate the identity and evaluate the biological relationships among 12 isolates of P longicolla and D. phaseolorum var. sojae (anamorph P phaseoli var. sojae) obtained in different tempered and subtropical agro-environments of Argentina, in order to analyze the variability and strategies for preserving fungal biodiversity. Macromorphological attributes (such as texture and color of colonies, stroma shape and distribution, pycnidia and perythecia shape and distribution) and micro-morphological characteristics (such as size and shape of conidia, asci and ascospores) allowed identifying three new isolates as P longicolla. A complementary molecular analysis was also made to overcome the limitations derived from the morphological analysis, thus the AFP.8413 isolate was finally identified as P longicolla. The molecular characterization was useful to identify the evaluated isolates and to group them in four taxa of the Diaporthe-Phomopsis complex: ten isolates were included in P. longicolla, one isolate was included in D. phaseolorum var. sojae (anamorph P. phaseoli var. sojae), one isolate was identified as D. phaseolorum var. caulivora and two isolates were included in D. phaseolorum var. meridionalis. The use of phenotipic and molecular tools have contributed to an accurate

  8. Amino acid composition of food products used in the treatment of patients with disorders of the amino acid and protein metabolism.

    PubMed

    Bremer, H J; Anninos, A; Schulz, B

    1996-07-01

    The amino acid composition of food products frequently used in the diets of amino acid and protein disorders-including tryptophan- was estimated using ion-exchange column chromatography and high performance liquid chromatography. It includes fruits (different varieties of apples, pears, ananas, bananas, peach, strawberries, honey melon, water melon, kiwi, plums, grapes), vegetables (different varieties of potatoes, potato products, cauli-flower, broccoli, cabbages, spinach, olives, lettuce, cucumber, peas, mushrooms) and commercially available or home-made food products (meat broth, fine gravy paste, ketchup, liquid seasoning, soja sauce, different varieties of Chinese noodles, sausages for phenylketonuria patients), and different new fiber concentrates. PMID:8828624

  9. [A new case of food protein-induced enterocolitis syndrome].

    PubMed

    Chaabane, M; Bidat, E; Chevallier, B

    2010-05-01

    We report a case of food protein-induced enterocolitis syndrome (FPIES) with milk whose signs of milk intolerance began in the 1st days of life, consisting in minor and nonspecific symptoms. The 3 foods in question were cow's milk, soja, and wheat. The diagnosis of FPIES was suspected at the age of 9 months, after 3 hospitalizations for vomiting, sometimes associated with lethargy and hypotension, which occurred around 2h after cow's milk ingestion. Symptoms were not associated with positive specific IgE and cutaneous tests. Signs then occurred with soja and wheat. Because of the late diagnosis, 3 anaphylactic shock episodes occurred. FPIES is an uncommon cell-mediated food allergy reaction. This syndrome is characterized by gastrointestinal symptoms, especially severe vomiting, sometimes associated with anaphylactic shock. Usually signs occur 2h after ingestion. These reactions begin early, in the 1st months of life, and regress by the age of 3 years in 38-100% of cases depending on the responsible food. They are usually induced by cow's milk and soy proteins. Diagnosis is difficult and delayed because of nonspecific symptoms. Oral food challenge is the only examination that confirms the diagnosis. Treatment involves the exclusion of the specific food involved. Severe reactions require treatment of shock and adjunction of corticosteroids. PMID:20346636

  10. Plant community succession in modern Yellow River Delta, China.

    PubMed

    Zhang, Gao-sheng; Wang, Ren-qing; Song, Bai-min

    2007-08-01

    Data were collected in different successional stages using a simultaneous sampling method and analyzed through quantitative classification method. Three large groups and 12 classes were made to represent the community patterns of three succession stages and 12 succession communities. The succession series of plant community in the study area was as follows: saline bare land-->community Suaeda salsa-->community Tamarix chinensis-->grassland. Succession degree and succession process of 12 succession communities were calculated. Most of these communities were in the lower succession stage, however, community Phragmites communis+Glycine soja and community Imperata cylindrica+G. soja were close to the succession stage of grassland climax. Five species diversity indices were used to study the changes in species richness, species evenness and diversity during succession of community. Heterogeneity index and richness index increased gradually during the community succession process, but species evenness tended to decrease with succession development. The relation between succession and environment was studied by ordination technique, and the results showed that the soil salt content was an important factor to halarch succession of the modern Yellow River Delta. It affected community structure, species composition and succession process. PMID:17657854

  11. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters.

    PubMed

    Song, Tianqiao; Ma, Zhenchuan; Shen, Danyu; Li, Qi; Li, Wanlin; Su, Liming; Ye, Tingyue; Zhang, Meixiang; Wang, Yuanchao; Dou, Daolong

    2015-12-01

    Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH) motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters. PMID:26714171

  12. Strategies of attack and defense in plant-oomycete interactions, accentuated for Phytophthora parasitica Dastur (syn. P. Nicotianae Breda de Haan).

    PubMed

    Attard, Agnès; Gourgues, Mathieu; Galiana, Eric; Panabières, Franck; Ponchet, Michel; Keller, Harald

    2008-01-01

    Oomycetes from the genus Phytophthora are fungus-like plant pathogens that are devastating for agriculture and natural ecosystems. Due to their particular physiological characteristics, no efficient treatments against diseases caused by these microorganisms are presently available. To develop such treatments, it appears essential to dissect the molecular mechanisms that determine the interaction between Phytophthora species and host plants. Available data are scarce, and genomic approaches were mainly developed for the two species, Phytophthora infestans and Phytophthora sojae. However, these two species are exceptions from, rather than representative species for, the genus. P. infestans is a foliar pathogen, and P. sojae infects a narrow range of host plants, while the majority of Phytophthora species are quite unselective, root-infecting pathogens. To represent this majority, Phytophthora parasitica emerges as a model for the genus, and genomic resources for analyzing its interaction with plants are developing. The aim of this review is to assemble current knowledge on cytological and molecular processes that are underlying plant-pathogen interactions involving Phytophthora species and in particular P. parasitica, and to place them into the context of a hypothetical scheme of co-evolution between the pathogen and the host. PMID:17766006

  13. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters

    PubMed Central

    Song, Tianqiao; Ma, Zhenchuan; Shen, Danyu; Li, Qi; Li, Wanlin; Su, Liming; Ye, Tingyue; Zhang, Meixiang; Wang, Yuanchao; Dou, Daolong

    2015-01-01

    Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH) motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters. PMID:26714171

  14. Plant community succession in modern Yellow River Delta, China*

    PubMed Central

    Zhang, Gao-sheng; Wang, Ren-qing; Song, Bai-min

    2007-01-01

    Data were collected in different successional stages using a simultaneous sampling method and analyzed through quantitative classification method. Three large groups and 12 classes were made to represent the community patterns of three succession stages and 12 succession communities. The succession series of plant community in the study area was as follows: saline bare land→community Suaeda salsa→community Tamarix chinensis→grassland. Succession degree and succession process of 12 succession communities were calculated. Most of these communities were in the lower succession stage, however, community Phragmites communis+Glycine soja and community Imperata cylindrica+G. soja were close to the succession stage of grassland climax. Five species diversity indices were used to study the changes in species richness, species evenness and diversity during succession of community. Heterogeneity index and richness index increased gradually during the community succession process, but species evenness tended to decrease with succession development. The relation between succession and environment was studied by ordination technique, and the results showed that the soil salt content was an important factor to halarch succession of the modern Yellow River Delta. It affected community structure, species composition and succession process. PMID:17657854

  15. The Top 10 oomycete pathogens in molecular plant pathology.

    PubMed

    Kamoun, Sophien; Furzer, Oliver; Jones, Jonathan D G; Judelson, Howard S; Ali, Gul Shad; Dalio, Ronaldo J D; Roy, Sanjoy Guha; Schena, Leonardo; Zambounis, Antonios; Panabières, Franck; Cahill, David; Ruocco, Michelina; Figueiredo, Andreia; Chen, Xiao-Ren; Hulvey, Jon; Stam, Remco; Lamour, Kurt; Gijzen, Mark; Tyler, Brett M; Grünwald, Niklaus J; Mukhtar, M Shahid; Tomé, Daniel F A; Tör, Mahmut; Van Den Ackerveken, Guido; McDowell, John; Daayf, Fouad; Fry, William E; Lindqvist-Kreuze, Hannele; Meijer, Harold J G; Petre, Benjamin; Ristaino, Jean; Yoshida, Kentaro; Birch, Paul R J; Govers, Francine

    2015-05-01

    Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens which threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant-pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. This article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research. PMID:25178392

  16. Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding.

    PubMed

    Joshi, Trupti; Fitzpatrick, Michael R; Chen, Shiyuan; Liu, Yang; Zhang, Hongxin; Endacott, Ryan Z; Gaudiello, Eric C; Stacey, Gary; Nguyen, Henry T; Xu, Dong

    2014-01-01

    Soybean Knowledge Base (http://soykb.org) is a comprehensive web resource developed for bridging soybean translational genomics and molecular breeding research. It provides information for six entities including genes/proteins, microRNAs/sRNAs, metabolites, single nucleotide polymorphisms, plant introduction lines and traits. It also incorporates many multi-omics datasets including transcriptomics, proteomics, metabolomics and molecular breeding data, such as quantitative trait loci, traits and germplasm information. Soybean Knowledge Base has a new suite of tools such as In Silico Breeding Program for soybean breeding, which includes a graphical chromosome visualizer for ease of navigation. It integrates quantitative trait loci, traits and germplasm information along with genomic variation data, such as single nucleotide polymorphisms, insertions, deletions and genome-wide association studies data, from multiple soybean cultivars and Glycine soja. PMID:24136998

  17. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits.

    PubMed

    Li, Ying-hui; Zhou, Guangyu; Ma, Jianxin; Jiang, Wenkai; Jin, Long-guo; Zhang, Zhouhao; Guo, Yong; Zhang, Jinbo; Sui, Yi; Zheng, Liangtao; Zhang, Shan-shan; Zuo, Qiyang; Shi, Xue-hui; Li, Yan-fei; Zhang, Wan-ke; Hu, Yiyao; Kong, Guanyi; Hong, Hui-long; Tan, Bing; Song, Jian; Liu, Zhang-xiong; Wang, Yaoshen; Ruan, Hang; Yeung, Carol K L; Liu, Jian; Wang, Hailong; Zhang, Li-juan; Guan, Rong-xia; Wang, Ke-jing; Li, Wen-bin; Chen, Shou-yi; Chang, Ru-zhen; Jiang, Zhi; Jackson, Scott A; Li, Ruiqiang; Qiu, Li-juan

    2014-10-01

    Wild relatives of crops are an important source of genetic diversity for agriculture, but their gene repertoire remains largely unexplored. We report the establishment and analysis of a pan-genome of Glycine soja, the wild relative of cultivated soybean Glycine max, by sequencing and de novo assembly of seven phylogenetically and geographically representative accessions. Intergenomic comparisons identified lineage-specific genes and genes with copy number variation or large-effect mutations, some of which show evidence of positive selection and may contribute to variation of agronomic traits such as biotic resistance, seed composition, flowering and maturity time, organ size and final biomass. Approximately 80% of the pan-genome was present in all seven accessions (core), whereas the rest was dispensable and exhibited greater variation than the core genome, perhaps reflecting a role in adaptation to diverse environments. This work will facilitate the harnessing of untapped genetic diversity from wild soybean for enhancement of elite cultivars. PMID:25218520

  18. Biological control of soybean damping-off by antagonistic rhizobacteria.

    PubMed

    Sharifi Tehrani, A; Zebarjad, A; Hedjaroud, Gh A; Mohammadi, M

    2002-01-01

    Experiments were carried out with 133 bacterial isolates that were collected from soybean rhizosphere. These strains were used to investigate their biocontrol traits in vitro and their ability to suppress the soybean damping-off in vivo (soil and seed treatments). Three highly effective isolates were selected from these antagonists for subsequent studies. According to the biochemical, physiological and morphological tests, these isolates (B-2, B-12 and B-80) were identified as Bacillus spp. In soil treatment, the isolate B-3 with 70.8%, B-12 with 66.7%, B-80 with 54.2% had the highest effect on reducing the soybean damping-off. In seed treatment, the isolates B-43 with 62.5%, B-12 with 58.4 and B-80 with 45.8%, had the greatest effect on reducing the disease. These isolates produced volatile metabolites that inhibited mycelial growth of Phytophthora sojae. PMID:12701446

  19. A Comparative Study of New Aspergillus Strains for Proteolytic Enzymes Production by Solid State Fermentation

    PubMed Central

    Ortiz, Gastón Ezequiel; Noseda, Diego Gabriel; Ponce Mora, María Clara; Recupero, Matías Nicolás; Blasco, Martín; Albertó, Edgardo

    2016-01-01

    A comparative study of the proteolytic enzymes production using twelve Aspergillus strains previously unused for this purpose was performed by solid state fermentation. A semiquantitative and quantitative evaluation of proteolytic activity were carried out using crude enzymatic extracts obtained from the fermentation cultures, finding seven strains with high and intermediate level of protease activity. Biochemical, thermodynamics, and kinetics features such as optimum pH and temperature values, thermal stability, activation energy (Ea), quotient energy (Q10), Km, and Vmax were studied in four enzymatic extracts from the selected strains that showed the highest productivity. Additionally, these strains were evaluated by zymogram analysis obtaining protease profiles with a wide range of molecular weight for each sample. From these four strains with the highest productivity, the proteolytic extract of A. sojae ATCC 20235 was shown to be an appropriate biocatalyst for hydrolysis of casein and gelatin substrates, increasing its antioxidant activities in 35% and 125%, respectively. PMID:26989505

  20. Gravitational effects from a series of IVS R&D VLBI-sessions with observations close to the Sun

    NASA Astrophysics Data System (ADS)

    Heinkelmann, R.; Soja, B.; Schuh, H.

    2015-08-01

    In 2011 and 2012 the IVS observed twelve VLBI research and development (R&D) sessions that include successful observations as angularly close as 3.9° from the heliocenter. Among others, one purpose of these IVS-R&D sessions was to achieve an improvement in the determination of the PPN parameter γ . Besides, by analyzing this specific set of IVS sessions, it was for the first time possible to measure the dispersive effect of the Solar corona with VLBI (Soja et al., 2014). In this work we assess the formal error of the γ-parameter and the contributions of the various terms to the partial derivative of the γ-parameter. Furthermore, we investigate the size of the gravitational delays caused by: (i) Solar monopole field at rest and with approximately linear translation, (ii) rotation of the Solar monopole field, (iii) Solar gravitational field quadrupole expansion, and (iv) Solar higher order term.

  1. NEESPI focus issues in Environmental Research Letters

    NASA Astrophysics Data System (ADS)

    Norman, Julian; Groisman, Pavel; Soja, Amber J.

    2010-05-01

    In 2007 and 2009 Environmental Research Letters published focus issues (edited by Pavel Groisman and Amber J Soja) made up of work carried out by NEESPI participants. Here, we present the content of those focus issues as an invaluable resource for researchers working in the NEESPI study area. The first of the two issues, published in 2007 with title 'Northern Hemisphere High Latitude Climate and Environmental Change', presents a diverse collection of articles that are assembled into five groups devoted to studies of climate and hydrology, land cover and land use, the biogeochemical cycle and its feedbacks, the cryosphere, and human dimensions. The second issue, published in 2009, with title 'Climatic and Environmental Change in Northern Eurasia' presents diverse, assorted studies of different aspects of contemporary change, representing the diversity of climates and ecosystems across Northern Eurasia.

  2. A Comparative Study of New Aspergillus Strains for Proteolytic Enzymes Production by Solid State Fermentation.

    PubMed

    Ortiz, Gastón Ezequiel; Noseda, Diego Gabriel; Ponce Mora, María Clara; Recupero, Matías Nicolás; Blasco, Martín; Albertó, Edgardo

    2016-01-01

    A comparative study of the proteolytic enzymes production using twelve Aspergillus strains previously unused for this purpose was performed by solid state fermentation. A semiquantitative and quantitative evaluation of proteolytic activity were carried out using crude enzymatic extracts obtained from the fermentation cultures, finding seven strains with high and intermediate level of protease activity. Biochemical, thermodynamics, and kinetics features such as optimum pH and temperature values, thermal stability, activation energy (E a), quotient energy (Q 10), K m , and V max were studied in four enzymatic extracts from the selected strains that showed the highest productivity. Additionally, these strains were evaluated by zymogram analysis obtaining protease profiles with a wide range of molecular weight for each sample. From these four strains with the highest productivity, the proteolytic extract of A. sojae ATCC 20235 was shown to be an appropriate biocatalyst for hydrolysis of casein and gelatin substrates, increasing its antioxidant activities in 35% and 125%, respectively. PMID:26989505

  3. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis.

    PubMed

    Liu, Tingli; Song, Tianqiao; Zhang, Xiong; Yuan, Hongbo; Su, Liming; Li, Wanlin; Xu, Jing; Liu, Shiheng; Chen, Linlin; Chen, Tianzi; Zhang, Meixiang; Gu, Lichuan; Zhang, Baolong; Dou, Daolong

    2014-01-01

    Plant diseases caused by fungi and oomycetes pose an increasing threat to food security and ecosystem health worldwide. These filamentous pathogens, while taxonomically distinct, modulate host defense responses by secreting effectors, which are typically identified based on the presence of signal peptides. Here we show that Phytophthora sojae and Verticillium dahliae secrete isochorismatases (PsIsc1 and VdIsc1, respectively) that are required for full pathogenesis. PsIsc1 and VdIsc1 can suppress salicylate-mediated innate immunity in planta and hydrolyse isochorismate in vitro. A conserved triad of catalytic residues is essential for both functions. Thus, the two proteins are isochorismatase effectors that disrupt the plant salicylate metabolism pathway by suppressing its precursor. Furthermore, these proteins lack signal peptides, but exhibit characteristics that lead to unconventional secretion. Therefore, this secretion pathway is a novel mechanism for delivering effectors and might play an important role in host-pathogen interactions. PMID:25156390

  4. Identification and Candidate Gene Analysis of a Novel Phytophthora Resistance Gene Rps10 in a Chinese Soybean Cultivar

    PubMed Central

    Zhang, Jiqing; Xia, Changjian; Duan, Canxing; Sun, Suli; Wang, Xiaoming; Wu, Xiaofei; Zhu, Zhendong

    2013-01-01

    Resistance to Phytophthora sojae isolate PsMC1 was evaluated in 102 F2∶3 families derived from a cross between the resistant soybean cultivar Wandou 15 and the susceptible cultivar Williams and genotyped using simple sequence repeat (SSR) markers. The segregation ratio of resistant, segregating, and susceptible phenotypes in the population suggested that the resistance in Wandou 15 was dominant and monogenic. Twenty-six polymorphic SSR markers were identified on soybean chromosome 17 (Molecular linkage group D2; MLG D2), which were linked to the resistance gene based on bulked segregation analysis (BSA). Markers Sattwd15-24/25 and Sattwd15-47 flanked the resistance gene at a distance of 0.5 cM and 0.8 cM, respectively. Two cosegregating markers, Sattwd15-28 and Sattwd15-32, were also screened in this region. This is the first Rps resistance gene mapped on chromosome 17, which is designated as Rps10. Eight putative genes were found in the mapped region between markers Sattwd15-24/25 and Sattwd15-47. Among them, two candidate genes encoding serine/threonine (Ser/Thr) protein kinases in Wandou 15 and Williams were identified and sequenced. And the differences in genomic sequence and the putative amino acid sequence, respectively, were identified within each candidate gene between Wandou 15 and Williams. This novel gene Rps10 and the linked markers should be useful in developing soybean cultivars with durable resistance to P. sojae. PMID:23936102

  5. Diverse Evolutionary Trajectories for Small RNA Biogenesis Genes in the Oomycete Genus Phytophthora

    PubMed Central

    Bollmann, Stephanie R.; Fang, Yufeng; Press, Caroline M.; Tyler, Brett M.; Grünwald, Niklaus J.

    2016-01-01

    Gene regulation by small RNA pathways is ubiquitous among eukaryotes, but little is known about small RNA pathways in the Stramenopile kingdom. Phytophthora, a genus of filamentous oomycetes, contains many devastating plant pathogens, causing multibillion-dollar damage to crops, ornamental plants, and natural environments. The genomes of several oomycetes including Phytophthora species such as the soybean pathogen P. sojae, have been sequenced, allowing evolutionary analysis of small RNA-processing enzymes. This study examined the evolutionary origins of the oomycete small RNA-related genes Dicer-like (DCL), and RNA-dependent RNA polymerase (RDR) through broad phylogenetic analyses of the key domains. Two Dicer gene homologs, DCL1 and DCL2, and one RDR homolog were cloned and analyzed from P. sojae. Gene expression analysis revealed only minor changes in transcript levels among different life stages. Oomycete DCL1 homologs clustered with animal and plant Dicer homologs in evolutionary trees, whereas oomycete DCL2 homologs clustered basally to the tree along with Drosha homologs. Phylogenetic analysis of the RDR homologs confirmed a previous study that suggested the last common eukaryote ancestor possessed three RDR homologs, which were selectively retained or lost in later lineages. Our analysis clarifies the position of some Unikont and Chromalveolate RDR lineages within the tree, including oomycete homologs. Finally, we analyzed alterations in the domain structure of oomycete Dicer and RDR homologs, specifically focusing on the proposed domain transfer of the DEAD-box helicase domain from Dicer to RDR. Implications of the oomycete domain structure are discussed, and possible roles of the two oomycete Dicer homologs are proposed. PMID:27014308

  6. Humidity assay for studying plant-pathogen interactions in miniature controlled discrete humidity environments with good throughput.

    PubMed

    Xu, Zhen; Jiang, Huawei; Sahu, Binod Bihari; Kambakam, Sekhar; Singh, Prashant; Wang, Xinran; Wang, Qiugu; Bhattacharyya, Madan K; Dong, Liang

    2016-05-01

    This paper reports a highly economical and accessible approach to generate different discrete relative humidity conditions in spatially separated wells of a modified multi-well plate for humidity assay of plant-pathogen interactions with good throughput. We demonstrated that a discrete humidity gradient could be formed within a few minutes and maintained over a period of a few days inside the device. The device consisted of a freeway channel in the top layer, multiple compartmented wells in the bottom layer, a water source, and a drying agent source. The combinational effects of evaporation, diffusion, and convection were synergized to establish the stable discrete humidity gradient. The device was employed to study visible and molecular disease phenotypes of soybean in responses to infection by Phytophthora sojae, an oomycete pathogen, under a set of humidity conditions, with two near-isogenic soybean lines, Williams and Williams 82, that differ for a Phytophthora resistance gene (Rps1-k). Our result showed that at 63% relative humidity, the transcript level of the defense gene GmPR1 was at minimum in the susceptible soybean line Williams and at maximal level in the resistant line Williams 82 following P. sojae CC5C infection. In addition, we investigated the effects of environmental temperature, dimensional and geometrical parameters, and other configurational factors on the ability of the device to generate miniature humidity environments. This work represents an exploratory effort to economically and efficiently manipulate humidity environments in a space-limited device and shows a great potential to facilitate humidity assay of plant seed germination and development, pathogen growth, and plant-pathogen interactions. Since the proposed device can be easily made, modified, and operated, it is believed that this present humidity manipulation technology will benefit many laboratories in the area of seed science, plant pathology, and plant-microbe biology, where

  7. Diverse Evolutionary Trajectories for Small RNA Biogenesis Genes in the Oomycete Genus Phytophthora.

    PubMed

    Bollmann, Stephanie R; Fang, Yufeng; Press, Caroline M; Tyler, Brett M; Grünwald, Niklaus J

    2016-01-01

    Gene regulation by small RNA pathways is ubiquitous among eukaryotes, but little is known about small RNA pathways in the Stramenopile kingdom. Phytophthora, a genus of filamentous oomycetes, contains many devastating plant pathogens, causing multibillion-dollar damage to crops, ornamental plants, and natural environments. The genomes of several oomycetes including Phytophthora species such as the soybean pathogen P. sojae, have been sequenced, allowing evolutionary analysis of small RNA-processing enzymes. This study examined the evolutionary origins of the oomycete small RNA-related genes Dicer-like (DCL), and RNA-dependent RNA polymerase (RDR) through broad phylogenetic analyses of the key domains. Two Dicer gene homologs, DCL1 and DCL2, and one RDR homolog were cloned and analyzed from P. sojae. Gene expression analysis revealed only minor changes in transcript levels among different life stages. Oomycete DCL1 homologs clustered with animal and plant Dicer homologs in evolutionary trees, whereas oomycete DCL2 homologs clustered basally to the tree along with Drosha homologs. Phylogenetic analysis of the RDR homologs confirmed a previous study that suggested the last common eukaryote ancestor possessed three RDR homologs, which were selectively retained or lost in later lineages. Our analysis clarifies the position of some Unikont and Chromalveolate RDR lineages within the tree, including oomycete homologs. Finally, we analyzed alterations in the domain structure of oomycete Dicer and RDR homologs, specifically focusing on the proposed domain transfer of the DEAD-box helicase domain from Dicer to RDR. Implications of the oomycete domain structure are discussed, and possible roles of the two oomycete Dicer homologs are proposed. PMID:27014308

  8. Ensifer glycinis sp. nov., a rhizobial species associated with species of the genus Glycine.

    PubMed

    Yan, Hui; Yan, Jun; Sui, Xin Hua; Wang, En Tao; Chen, Wen Xin; Zhang, Xiao Xia; Chen, Wen Feng

    2016-09-01

    Rhizobial strains from root nodules of Astragalus mongholicus and soybean (Glycine max) were characterized phylogenetically as members of the genus Ensifer (formerly named Sinorhizobium), based on 16S rRNA gene sequence comparisons. Results based upon concatenated sequence analysis of three housekeeping genes (recA, atpD and glnII, ≤ 93.8 % similarities to known species) and average nucleotide identity (ANI) values of whole genome sequence comparisons (ranging from 89.6 % to 83.4 % to Ensifer fredii and Ensifer saheli, respectively) indicated the distinct positions of these novel strains within the genus Ensifer. Phylogeny of symbiotic genes (nodC and nifH) of three novel strains clustered them with rhizobial species Ensifer fredii and Ensifer sojae, both isolated from nodules of Glycine max. Cross-nodulation tests showed that the representative strain CCBAU 23380T could form root nodules with nitrogen fixation capability on Glycine soja, Albizia julibrissin, Vigna unguiculata and Cajanus cajan, but failed to nodulate Astragalus mongholicus, its original host legume. Strain CCBAU 23380T formed inefficient nodules on G. max, and it did not contain 18 : 0, 18 : 1ω7c 11-methyl or summed feature 1 fatty acids, which differed from other related strains. Failure to utilize malonic acid as a carbon source distinguished strain CCBAU 23380T from the type strains of related species. The genome size of CCBAU 23380T was 6.0 Mbp, comprising 5624 predicted genes with DNA G+C content of 62.4 mol%. Based on the results above, a novel species, Ensifer glycinis sp. nov., is proposed, with CCBAU 23380T (=LMG 29231T =HAMBI 3645T) as the type strain. PMID:27125987

  9. Profiling of dynamic changes in the microbial community during the soy sauce fermentation process.

    PubMed

    Wei, Quanzeng; Wang, Hongbin; Chen, Zhixin; Lv, Zhijia; Xie, Yufeng; Lu, Fuping

    2013-10-01

    Soy sauce is a traditional condiment manufactured by natural inoculation and mixed culture fermentation. As is well known, it is the microbial community that plays an important role in the formation of its flavors. However, to date, its dynamic changes during the long period of fermentation process are still unclear, intensively constraining the improvement and control of the soy sauce quality. In this work, we revealed the dynamic changes of the microbial community by combining a cultured dependent method and a cultured independent method of polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis. Results indicated that the two methods verified and complemented each other in profiling microbial community, and that significant dynamics of the microbial community existed during the fermentation process, especially the strong inhibition of the growth of most of the microbes when entering into the mash stage from the koji stage. In the analysis of bacterial community, Staphylococcus and Bacillus were found to be the dominant bacteria and detected in the whole fermentation process. Kurthia and Klebsiella began to appear in the koji stage and then fade away in the early stage of the mash fermentation. In the analysis of fungal community, Aspergillus sojae and Zygosaccharomyces rouxii were found to be the dominant fungi in the koji and mash fermentation, respectively. It was clearly shown that when A. sojae decreased and disappeared in the middle stage of the mash fermentation, Z. rouxii appeared and increased at the meantime. Aspergillus parasiticus, Trichosporon ovoides and Trichosporon asahii also appeared in the koji and the early period of the mash fermentation and disappeared thereafter. Similar to Z. rouxii, Millerozyma farinosa and Peronospora farinosa were also found spontaneously which appeared in the mid-late period of the mash fermentation. The principal component analysis suggested that the microbial community underwent significant changes in

  10. Zoospore interspecific signaling promotes plant infection by Phytophthora

    PubMed Central

    2010-01-01

    Background Oomycetes attack a huge variety of economically and ecologically important plants. These pathogens release, detect and respond to signal molecules to coordinate their communal behaviors including the infection process. When signal molecules are present at or above threshold level, single zoospores can infect plants. However, at the beginning of a growing season population densities of individual species are likely below those required to reach a quorum and produce threshold levels of signal molecules to trigger infection. It is unclear whether these molecules are shared among related species and what their chemistries are. Results Zoospore-free fluids (ZFF) from Phytophthora capsici, P. hydropathica, P. nicotianae (ZFFnic), P. sojae (ZFFsoj) and Pythium aphanidermatum were cross tested for stimulating plant infection in three pathosystems. All ZFFs tested significantly increased infection of Catharanthus roseus by P. nicotianae. Similar cross activities were observed in infection of Lupinus polyphyllus and Glycine max by P. sojae. Only ZFFnic and ZFFsoj cross induced zoospore aggregation at a density of 2 × 103 ml-1. Pure autoinducer-2 (AI-2), a component in ZFF, caused zoospore lysis of P. nicotianae before encystment and did not stimulate plant infection at concentrations from 0.01 to 1000 μM. P. capsici transformants with a transiently silenced AI-2 synthase gene, ribose phosphate isomerase (RPI), infected Capsicum annuum seedlings at the same inoculum concentration as the wild type. Acyl-homoserine lactones (AHLs) were not detected in any ZFFs. After freeze-thaw treatments, ZFF remained active in promoting plant infection but not zoospore aggregation. Heat treatment by boiling for 5 min also did not affect the infection-stimulating property of ZFFnic. Conclusion Oomycetes produce and use different molecules to regulate zoospore aggregation and plant infection. We found that some of these signal molecules could act in an inter-specific manner

  11. Chronostratigraphical Subdivision of the Late Glacial and the Holocene for the Alaska Region

    NASA Astrophysics Data System (ADS)

    Michczynska, D. J.; Hajdas, I.

    2009-04-01

    Our work is a kind of so called data mining. The first step of our work was collection of the radiocarbon data for samples coming from Alaska. We construct data base using Radiocarbon Measurements Lists published by different radiocarbon laboratories (mainly in the journal 'Radiocaron'). The next step was careful analysis of collected dates. We excluded from our analysis all dates suspected of contamination by younger or older organic matter. Such fact could be stated, for instance, on the base of inconsistency of radiocarbon age and stratigraphy or palynology. Finally, we calibrated whole large set of chosen radiocarbon dates and construct probability density function (PDF). Analysis of the shape of PDF was the subject of the previous research (eg. Michczynska and Pazdur, 2004; Macklin et al., 2006; Starkel et al., 2006, Michczynska et al., 2007). In our analysis we take into account the distinct tendency to collect samples from specific horizons. It is a general rule to take samples for radiocarbon dating from places of visible sedimentation changes or changes in palynological diagram. Therefore the culminations of the PDF represent periods of environmental changes and could be helpful in identifying the chronostratigraphical boundaries on the calendar time scale. References: Michczyńska D.J., Pazdur A., 2004. A shape analysis of cumulative probability density function of radiocarbon dates set in the study of climate change in Late Glacial and Holocene. Radiocarbon 46(2): 733-744. Michczyńska D.J., Michczyński A., Pazdur A. 2007. Frequency distribution of radiocarbon dates as a tool for reconstructing environmental changes. Radiocarbon 49(2): 799-806. Macklin M.G., Benito G., Gregory K.J., Johnstone E., Lewin J., Michczyńska D.J., Soja R., Starkel L., Thorndycraft V.R., 2006. Past hydrological events reflected in the Holocene fluvial record of Europe. CATENA 66: 145-154. Starkel L., Soja R., Michczyńska D.J., 2006. Past hydrological events reflected in

  12. The Activation of Phytophthora Effector Avr3b by Plant Cyclophilin is Required for the Nudix Hydrolase Activity of Avr3b

    PubMed Central

    Kong, Guanghui; Zhao, Yao; Jing, Maofeng; Huang, Jie; Yang, Jin; Xia, Yeqiang; Kong, Liang; Ye, Wenwu; Xiong, Qin; Qiao, Yongli; Dong, Suomeng; Ma, Wenbo; Wang, Yuanchao

    2015-01-01

    Plant pathogens secrete an arsenal of effector proteins to impair host immunity. Some effectors possess enzymatic activities that can modify their host targets. Previously, we demonstrated that a Phytophthora sojae RXLR effector Avr3b acts as a Nudix hydrolase when expressed in planta; and this enzymatic activity is required for full virulence of P. sojae strain P6497 in soybean (Glycine max). Interestingly, recombinant Avr3b produced by E. coli does not have the hydrolase activity unless it was incubated with plant protein extracts. Here, we report the activation of Avr3b by a prolyl-peptidyl isomerase (PPIase), cyclophilin, in plant cells. Avr3b directly interacts with soybean cyclophilin GmCYP1, which activates the hydrolase activity of Avr3b in a PPIase activity-dependent manner. Avr3b contains a putative Glycine-Proline (GP) motif; which is known to confer cyclophilin-binding in other protein substrates. Substitution of the Proline (P132) in the putative GP motif impaired the interaction of Avr3b with GmCYP1; as a result, the mutant Avr3bP132A can no longer be activated by GmCYP1, and is also unable to promote Phytophthora infection. Avr3b elicits hypersensitive response (HR) in soybean cultivars producing the resistance protein Rps3b, but Avr3bP132A lost its ability to trigger HR. Furthermore, silencing of GmCYP1 rendered reduced cell death triggered by Avr3b, suggesting that GmCYP1-mediated Avr3b maturation is also required for Rps3b recognition. Finally, cyclophilins of Nicotiana benthamiana can also interact with Avr3b and activate its enzymatic activity. Overall, our results demonstrate that cyclophilin is a “helper” that activates the enzymatic activity of Avr3b after it is delivered into plant cells; as such, cyclophilin is required for the avirulence and virulence functions of Avr3b. PMID:26317500

  13. Host-Pathogen Interactions

    PubMed Central

    Ayers, Arthur R.; Ebel, Jürgen; Finelli, Frederick; Berger, Nathan; Albersheim, Peter

    1976-01-01

    Resistance of soybean (Glycine max L.) seedlings to Phytophthora megasperma var. sojae (Pms) is in part due to the accumulation in infected tissue of a compound which is toxic to Pms. The accumulation of this compound, a phytoalexin called glyceollin, is triggered by infection, but it can also be triggered by molecules, “elicitors,” present in cultures of Pms. The ability of the Pms elicitor to stimulate phytoalexin accumulation in soybean tissues has been used as the basis for biological assays of elicitor activity. Two bioassays were developed and characterized in this study of the Pms elicitor. These bioassays use the cotyledons and the hypocotyls of soybean seedlings. The cotyledon assay was used to characterize the extracellular Pms elicitor. This elicitor was isolated from Pms cultures and purified by ion exchange and molecular sieving chromatography. The extracellular Pms elicitor was determined to be a predominantly 3-linked glucan, which is similar in composition and structure to a polysaccharide component of Pms mycelial walls. PMID:16659565

  14. Metabolic Profiles Reveal Changes in Wild and Cultivated Soybean Seedling Leaves under Salt Stress

    PubMed Central

    Zhang, Jing; Yang, Dongshuang; Li, Mingxia; Shi, Lianxuan

    2016-01-01

    Clarification of the metabolic mechanisms underlying salt stress responses in plants will allow further optimization of crop breeding and cultivation to obtain high yields in saline-alkali land. Here, we characterized 68 differential metabolites of cultivated soybean (Glycine max) and wild soybean (Glycine soja) under neutral-salt and alkali-salt stresses using gas chromatography-mass spectrometry (GC-MS)-based metabolomics, to reveal the physiological and molecular differences in salt tolerance. According to comparisons of growth parameters under the two kinds of salt stresses, the level of inhibition in wild soybean was lower than in cultivated soybean, especially under alkali-salt stress. Moreover, wild soybean contained significantly higher amounts of phenylalanine, asparagine, citraconic acid, citramalic acid, citric acid and α-ketoglutaric acid under neutral-salt stress, and higher amounts of palmitic acid, lignoceric acid, glucose, citric acid and α-ketoglutaric acid under alkali-salt stress, than cultivated soybean. Further investigations demonstrated that the ability of wild soybean to salt tolerance was mainly based on the synthesis of organic and amino acids, and the more active tricarboxylic acid cycle under neutral-salt stress. In addition, the metabolite profiling analysis suggested that the energy generation from β-oxidation, glycolysis and the citric acid cycle plays important roles under alkali-salt stress. Our results extend the understanding of mechanisms involved in wild soybean salt tolerance and provide an important reference for increasing yields and developing salt-tolerant soybean cultivars. PMID:27442489

  15. Identification of Novel QTL Governing Root Architectural Traits in an Interspecific Soybean Population

    PubMed Central

    Musket, Theresa A.; Chaky, Julian; Deshmukh, Rupesh; Vuong, Tri D.; Song, Li; Cregan, Perry B.; Nelson, James C.; Shannon, J. Grover; Specht, James E.; Nguyen, Henry T.

    2015-01-01

    Cultivated soybean (Glycine max L.) cv. Dunbar (PI 552538) and wild G. soja (PI 326582A) exhibited significant differences in root architecture and root-related traits. In this study, phenotypic variability for root traits among 251 BC2F5 backcross inbred lines (BILs) developed from the cross Dunbar/PI 326582A were identified. The root systems of the parents and BILs were evaluated in controlled environmental conditions using a cone system at seedling stage. The G. max parent Dunbar contributed phenotypically favorable alleles at a major quantitative trait locus on chromosome 8 (Satt315-I locus) that governed root traits (tap root length and lateral root number) and shoot length. This QTL accounted for >10% of the phenotypic variation of both tap root and shoot length. This QTL region was found to control various shoot- and root-related traits across soybean genetic backgrounds. Within the confidence interval of this region, eleven transcription factors (TFs) were identified. Based on RNA sequencing and Affymetrix expression data, key TFs including MYB, AP2-EREBP and bZIP TFs were identified in this QTL interval with high expression in roots and nodules. The backcross inbred lines with different parental allelic combination showed different expression pattern for six transcription factors selected based on their expression pattern in root tissues. It appears that the marker interval Satt315–I locus on chromosome 8 contain an essential QTL contributing to early root and shoot growth in soybean. PMID:25756528

  16. Transformation of Litchi Pericarp-Derived Condensed Tannin with Aspergillus awamori.

    PubMed

    Lin, Sen; Li, Qing; Yang, Bao; Duan, Xuewu; Zhang, Mingwei; Shi, John; Jiang, Yueming

    2016-01-01

    Condensed tannin is a ubiquitous polyphenol in plants that possesses substantial antioxidant capacity. In this study, we have investigated the polyphenol extraction recovery and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of the extracted polyphenol after litchi pericarp is treated with Aspergillus awamori, Aspergillus sojae or Aspergillus oryzae. We have further explored the activity of A. awamori in the formation of condensed tannin. The treatment of A. awamori appeared to produce the highest antioxidant activity of polyphenol from litchi pericarp. Further studies suggested that the treatment of A. awamori releases the non-extractable condensed tannin from cell walls of litchi pericarp. The total extractable tannin in the litchi pericarp residue after a six-time extraction with 60% ethanol increased from 199.92 ± 14.47-318.38 ± 7.59 μg/g dry weight (DW) after the treatment of A. awamori. The ESI-TOF-MS and HPLC-MS² analyses further revealed that treatment of A. awamori degraded B-type condensed tannin (condensed flavan-3-ol via C4-C8 linkage), but exhibited a limited capacity to degrade the condensed tannin containing A-type linkage subunits (C4-C8 coupled C2-O-C7 linkage). These results suggest that the treatment of A. awamori can significantly improve the production of condensed tannin from litchi pericarp. PMID:27420043

  17. A model to predict the frequency of integration of fitness-related QTLs from cultivated to wild soybean.

    PubMed

    Kitamoto, N; Kaga, A; Kuroda, Y; Ohsawa, R

    2012-02-01

    With the proliferation of genetically modified (GM) products and the almost exponential growth of land use for GM crops, there is a growing need to develop quantitative approaches to estimating the risk of escape of transgenes into wild populations of crop relatives by natural hybridization. We assessed the risk of transgene escape by constructing a population genetic model based on information on fitness-related QTLs obtained from an F (2) population of wild soybean G. soja × cultivated soybean Glycine max. Simulation started with ten F (1) and 990 wild soybeans reproducing by selfing or outcrossing. Seed production was determined from the genetic effects of two QTLs for number of seeds (SN). Each seed survived winter according to the maternal genotype at three QTLs for winter survival (WS). We assumed that one neutral transgene was inserted at various sites and calculated its extinction rate. The presence of G. max alleles at SN and WS QTLs significantly decreased the probability of introgression of the neutral transgene at all insertion sites equally. The presence of G. max alleles at WS QTLs lowered the risk more than their presence at SN QTLs. Although most model studies have concentrated only on genotypic effects of transgenes, we show that the presence of fitness-related domestication genes has a large effect on the risk of transgene escape. Our model offers the advantage of considering the effects of both domestication genes and a transgene, and they can be widely applied to other wild × crop relative complexes. PMID:21544624

  18. Aspergillus Associated with Meju, a Fermented Soybean Starting Material for Traditional Soy Sauce and Soybean Paste in Korea

    PubMed Central

    Hong, Seung-Beom

    2015-01-01

    Aspergillus is an important fungal genus used for the fermentation of Asian foods; this genus is referred to as koji mold in Japan and China. A. oryzae, A. sojae, and A. tamari are used in the production of miso and shoyu in Japan, but a comprehensive taxonomic study of Aspergillus isolated from Meju, a fermented soybean starting material for traditional soy sauce and soybean paste in Korea, has not been conducted. In this study, various Aspergillus species were isolated during a study of the mycobiota of Meju, and the aspergilli were identified based on phenotypic characteristics and sequencing of the β-tubulin gene. Most strains of Aspergillus were found to belong to the following sections: Aspergillus (n = 220), Flavi (n = 213), and Nigri (n = 54). The most commonly identified species were A. oryzae (n = 183), A. pseudoglaucus (Eurotium repens) (n = 81), A. chevalieri (E. chevalieri) (n = 62), A. montevidensis (E. amstelodami) (n = 34), A. niger (n = 21), A. tamari (n = 15), A. ruber (E. rubrum) (n = 15), A. proliferans (n = 14), and A. luchuensis (n = 14); 25 species were identified from 533 Aspergillus strains. Aspergillus strains were mainly found during the high temperature fermentation period in the later steps of Meju fermentation. PMID:26539037

  19. Performance of hybrid progeny formed between genetically modified herbicide-tolerant soybean and its wild ancestor

    PubMed Central

    Guan, Zheng-Jun; Zhang, Peng-Fei; Wei, Wei; Mi, Xiang-Cheng; Kang, Ding-Ming; Liu, Biao

    2015-01-01

    Gene flow from genetically modified (GM) crops to wild relatives might affect the evolutionary dynamics of weedy populations and result in the persistence of escaped genes. To examine the effects of this gene flow, the growth of F1 hybrids that were formed by pollinating wild soybean (Glycine soja) with glyphosate-tolerant GM soybean (G. max) or its non-GM counterpart was examined in a greenhouse. The wild soybean was collected from two geographical populations in China. The performance of the wild soybean and the F2 hybrids was further explored in a field trial. Performance was measured by several vegetative and reproductive growth parameters, including the vegetative growth period, pod number, seed number, above-ground biomass and 100-seed weight. The pod setting percentage was very low in the hybrid plants. Genetically modified hybrid F1 plants had a significantly longer period of vegetative growth, higher biomass and lower 100-seed weight than the non-GM ones. The 100-seed weight of both F1 and F2 hybrids was significantly higher than that of wild soybean in both the greenhouse and the field trial. No difference in plant growth was found between GM and non-GM F2 hybrids in the field trial. The herbicide-resistant gene appeared not to adversely affect the growth of introgressed wild soybeans, suggesting that the escaped transgene could persist in nature in the absence of herbicide use. PMID:26507568

  20. Antimicrobial activity of glycosidase inhibitory protein isolated from Cyphomandra betacea Sendt. fruit.

    PubMed

    Ordóñez, Roxana M; Ordóñez, Adriana A L; Sayago, Jorge E; Nieva Moreno, María I; Isla, María I

    2006-06-01

    Broad-spectrum antimicrobial activity of an invertase inhibitory protein (IIP) isolated from Cyphomandra betacea ripe fruits is documented. Minimal inhibitory concentration (MIC) values were determined by agar macrodilution and broth microdilution assays. This IIP inhibited the growth of xylophagous and phytopatogenic fungi (Ganoderma applanatum, Schizophyllum commune, Lenzites elegans, Pycnoporus sanguineous, Penicillium notatum, Aspergillus niger, Phomopsis sojae and Fusarium mango) and phytopathogenic bacteria (Xanthomonas campestris pvar vesicatoria CECT 792, Pseudomonas solanacearum CECT 125, Pseudomonas corrugata CECT 124, Pseudomonas syringae pv. syringae and Erwinia carotovora var carotovora). The IIP concentration required to completely inhibit the growth of all studied fungi ranged from 7.8 to 62.5 microg/ml. Phytopatogenic bacteria were the most sensitive, with MIC values between 7.8 and 31.25 microg/ml. Antifungal and antibacterial activities can be associated with their ability to inhibit hydrolytic enzymes. Our results indicate the possible participation of IIP in the plant defense mechanism and its potential application as a biocontrol agent against phytopathogenic fungi and bacteria. PMID:16406143

  1. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members

    PubMed Central

    Jiang, Rays H. Y.; Tripathy, Sucheta; Govers, Francine; Tyler, Brett M.

    2008-01-01

    Pathogens secrete effector molecules that facilitate the infection of their hosts. A number of effectors identified in plant pathogenic Phytophthora species possess N-terminal motifs (RXLR-dEER) required for targeting these effectors into host cells. Here, we bioinformatically identify >370 candidate effector genes in each of the genomes of P. sojae and P. ramorum. A single superfamily, termed avirulence homolog (Avh) genes, accounts for most of the effectors. The Avh proteins show extensive sequence divergence but are all related and likely evolved from a common ancestor by rapid duplication and divergence. More than half of the Avh proteins contain conserved C-terminal motifs (termed W, Y, and L) that are usually arranged as a module that can be repeated up to eight times. The Avh genes belong to the most rapidly evolving part of the genome, and they are nearly always located at synteny breakpoints. The superfamily includes all experimentally identified oomycete effector and avirulence genes, and its rapid pace of evolution is consistent with a role for Avh proteins in interaction with plant hosts. PMID:18344324

  2. GK4, a G-protein-coupled receptor with a phosphatidylinositol phosphate kinase domain in Phytophthora infestans, is involved in sporangia development and virulence.

    PubMed

    Hua, Chenlei; Meijer, Harold J G; de Keijzer, Jeroen; Zhao, Wei; Wang, Yuanchao; Govers, Francine

    2013-04-01

    For dispersal and host infection plant pathogens largely depend on asexual spores. Pathogenesis and sporulation are complex processes that are governed by cellular signalling networks including G-protein and phospholipid signalling. Oomycetes possess a family of novel proteins called GPCR-PIPKs (GKs) that are composed of a seven-transmembrane spanning (7-TM) domain fused to a phosphatidylinositol phosphate kinase (PIPK) domain. Based on this domain structure GKs are anticipated to link G-protein and phospholipid signal pathways; however, their functions are currently unknown. Expression analyses of the 12 GK genes in Phytophthora infestans and their orthologues in Phytophthora sojae, revealed differential expression during asexual development. PiGK1 and PiGK4 were fused to monomeric red fluorescent protein (mRFP) and ectopically expressed in P. infestans. In growing hyphae different subcellular distribution patterns were observed indicating that these two GKs act independently during development. We focused on the functional analyses of PiGK4. Its localization suggested involvement in cell differentiation and elongation and its 7-TM domain showed a canonical GPCR membrane topology. Silencing of GK4 and overexpression of full-length and truncated constructs in P. infestans revealed that PiGK4 is not only involved in spore germination and hyphal elongation but also in sporangia cleavage and infection. PMID:23448716

  3. Genome sequences of two Phytophthora species responsible for Sudden Oak Death and Soybean Root Rot provide novel insights into their evolutionary origins and mechanisms of pathogenesis

    SciTech Connect

    Tyler, Brett M.; Tripathi, Sucheta; Aerts, Andrea; Bensasson, Douda; Dehal, Paramvir; Dubchak, Inna; Garbelotto, Matteo; Gijzen, Mark; Huang, Wayne; Ivors, Kelly; Jiang, Rays; Kamoun, Sophien; Krampis, Konstantinos; Lamour, Kurt; McDonald, Hayes; Medina, Monica; Morris, Paul; Putnam, Nik; Rash, Sam; Salamov, Asaf; Smith, Brian; Smith, Joe; Terry, Astrid; Torto, Trudy; Grigoriev, Igor; Rokhsar, Daniel; Boore, Jeffrey

    2005-12-01

    The approximately 60 species of Phytophthora are all destructive pathogens, causing rots of roots, stems, leaves and fruits of a wide range of agriculturally and ornamentally important plants (1). Some species, such as P. cinnamomi, P. parasitica and P. cactorum, each attack hundreds of different plant host species, whereas others are more restricted. Some of the crops where Phytophthora infections cause the greatest financial losses include potato, soybean, tomato, alfalfa, tobacco, peppers, cucurbits, pineapple, strawberry, raspberry and a wide range of perennial tree crops, especially citrus, avocado, almonds, walnuts, apples and cocoa, and they also heavily affect the ornamental, nursery and forestry industries. The economic damage overall to crops in the United States by Phytophthora species is estimated in the tens of billions of dollars, including the costs of control measures, and worldwide it is many times this amount (1). In the northern midwest of the U.S., P. sojae causes $200 million in annual losses to soybean alone, and worldwide causes around $1-2 billion in losses per year. P. infestans infections resulted in the Irish potato famine last century and continues to be a difficult and worsening problem for potato and tomato growers worldwide, with worldwide costs estimated at $5 billion per year.

  4. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses.

    PubMed

    Yan, Qiang; Cui, Xiaoxia; Lin, Shuai; Gan, Shuping; Xing, Han; Dou, Daolong

    2016-01-01

    The cytochrome P450 monooxygenases (P450s) represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.). Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA) or ethephon (ETH). Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA), and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes. PMID:27588421

  5. GS52 Ecto-Apyrase Plays a Critical Role during Soybean Nodulation1[W][OA

    PubMed Central

    Govindarajulu, Manjula; Kim, Sung-Yong; Libault, Marc; Berg, R. Howard; Tanaka, Kiwamu; Stacey, Gary; Taylor, Christopher G.

    2009-01-01

    Apyrases are non-energy-coupled nucleotide phosphohydrolases that hydrolyze nucleoside triphosphates and nucleoside diphosphates to nucleoside monophosphates and orthophosphates. GS52, a soybean (Glycine soja) ecto-apyrase, was previously shown to be induced very early in response to inoculation with the symbiotic bacterium Bradyrhizobium japonicum. Overexpression of the GS52 ecto-apyrase in Lotus japonicus increased the level of rhizobial infection and enhanced nodulation. These data suggest a critical role for the GS52 ecto-apyrase during nodulation. To further investigate the role of GS52 during nodulation, we used RNA interference to silence GS52 expression in soybean (Glycine max) roots using Agrobacterium rhizogenes-mediated root transformation. Transcript levels of GS52 were significantly reduced in GS52 silenced roots and these roots exhibited reduced numbers of mature nodules. Development of the nodule primordium and subsequent nodule maturation was significantly suppressed in GS52 silenced roots. Transmission electron micrographs of GS52 silenced root nodules showed that early senescence and infected cortical cells were devoid of symbiosome-containing bacteroids. Application of exogenous adenosine diphosphate to silenced GS52 roots restored nodule development. Restored nodules contained bacteroids, thus indicating that extracellular adenosine diphosphate is important during nodulation. These results clearly suggest that GS52 ecto-apyrase catalytic activity is critical for the early B. japonicum infection process, initiation of nodule primordium development, and subsequent nodule organogenesis in soybean. PMID:19036836

  6. Dt2 Is a Gain-of-Function MADS-Domain Factor Gene That Specifies Semideterminacy in Soybean[C][W

    PubMed Central

    Ping, Jieqing; Liu, Yunfeng; Sun, Lianjun; Zhao, Meixia; Li, Yinghui; She, Maoyun; Sui, Yi; Lin, Feng; Liu, Xiaodong; Tang, Zongxiang; Nguyen, Hanh; Tian, Zhixi; Qiu, Lijuan; Nelson, Randall L.; Clemente, Thomas E.; Specht, James E.; Ma, Jianxin

    2014-01-01

    Similar to Arabidopsis thaliana, the wild soybeans (Glycine soja) and many cultivars exhibit indeterminate stem growth specified by the shoot identity gene Dt1, the functional counterpart of Arabidopsis TERMINAL FLOWER1 (TFL1). Mutations in TFL1 and Dt1 both result in the shoot apical meristem (SAM) switching from vegetative to reproductive state to initiate terminal flowering and thus produce determinate stems. A second soybean gene (Dt2) regulating stem growth was identified, which, in the presence of Dt1, produces semideterminate plants with terminal racemes similar to those observed in determinate plants. Here, we report positional cloning and characterization of Dt2, a dominant MADS domain factor gene classified into the APETALA1/SQUAMOSA (AP1/SQUA) subfamily that includes floral meristem (FM) identity genes AP1, FUL, and CAL in Arabidopsis. Unlike AP1, whose expression is limited to FMs in which the expression of TFL1 is repressed, Dt2 appears to repress the expression of Dt1 in the SAMs to promote early conversion of the SAMs into reproductive inflorescences. Given that Dt2 is not the gene most closely related to AP1 and that semideterminacy is rarely seen in wild soybeans, Dt2 appears to be a recent gain-of-function mutation, which has modified the genetic pathways determining the stem growth habit in soybean. PMID:25005919

  7. Controlling filamentous fungi morphology with microparticles to enhanced β-mannanase production.

    PubMed

    Yatmaz, Ercan; Karahalil, Ercan; Germec, Mustafa; Ilgin, Merve; Turhan, İrfan

    2016-09-01

    β-mannanase was produced mainly by Aspergillus species and can degrade the β-1,4-mannose linkages of galactomannans. This study was undertaken to enhance mannanase production using talcum and aluminum oxide as the microparticles, which control cell morphology of recombinant Aspergillus sojae in glucose and carob extract medium. Both microparticles improved fungal growth in glucose and carob pod extract medium. Aluminum oxide (1 g/L) was the best agent for glucose medium which resulted in 514.0 U/ml. However, the highest mannanase activity was found as 568.7 U/ml with 5 g/L of talcum in carob extract medium. Increase in microparticle concentration resulted in decreasing the pellet size diameter. Furthermore, more than 10 g/L of talcum addition changed the filamentous fungi growth type from pellet to pellet/mycelium mixture. Results showed that right type and concentration of microparticle in fermentation media improved the mannanase activity and production rate by controlling the growth morphology. PMID:27129457

  8. Comparative Biochemical and Proteomic Analyses of Soybean Seed Cultivars Differing in Protein and Oil Content.

    PubMed

    Min, Chul Woo; Gupta, Ravi; Kim, So Wun; Lee, So Eui; Kim, Yong Chul; Bae, Dong Won; Han, Won Young; Lee, Byong Won; Ko, Jong Min; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae

    2015-08-19

    This study develops differential protein profiles of soybean (Glycine max) seeds (cv. Saedanbaek and Daewon) varying in protein (47.9 and 39.2%) and oil (16.3 and 19.7%) content using protamine sulfate (PS) precipitation method coupled with a 2D gel electrophoresis (2DGE) approach. Of 71 detected differential spots between Daewon and Saedanbaek, 48 were successfully identified by MALDI-TOF/TOF. Gene ontology analysis revealed that up-regulated proteins in Saedanbaek were largely associated with nutrient reservoir activity (42.6%), which included mainly seed-storage proteins (SSPs; subunits of glycinin and β-conglycinin). Similar results were also obtained in two cultivars of wild soybean (G. soja cv. WS22 and WS15) differing in protein content. Western blots confirmed higher accumulation of SSPs in protein-rich Saedanbaek. Findings presented and discussed in this study highlight a possible involvement of the urea cycle for increased accumulation of SSPs and hence the higher protein content in soybean seeds. PMID:26237057

  9. [Vegetarian nutrition: Preventive potential and possible risks. Part 1: Plant foods].

    PubMed

    Ströhle, Alexander; Waldmann, Annika; Wolters, Maike; Hahn, Andreas

    2006-10-01

    Today vegetarian nutrition is more accepted and widespread in Europe than in former years. For a long time scientific research on vegetarian diets has focused mostly on malnutrition, whereas nowadays research centers increasingly on the preventive potential of plant-based diets. We followed a nutritive and a metabolic-epidemiological approach to obtain dietary recommendations. A MEDLINE research was performed for all plant food groups relevant for a vegetarian diet (key words: all relevant food groups, "vegetarian diet", "chronic disease", "cancer", "cardiovascular disease", "diabetes mellitus", "osteoporosis"). All relevant food groups were characterized regarding their nutrient content and rated with respect to the available metabolic-epidemiological evidence. Based on the evidence criteria of the WHO/FAO, cancer risk reduction by a high intake of vegetables and fruits is assessed as probable or possible, while a lowered risk of cardiovascular disease is convincing and a lowered risk of osteoporosis is probable. The evidence of a risk reducing effect of whole grain relating to colorectal cancer is assessed as possible, whereas it is probable relating to cardiovascular disease and diabetes mellitus type 2. There is an insufficient risk-reducing effect of legumes like soja relating to epithelial tumours and cardiovascular disease. The evidence of a risk-reducing effect of nuts to cardiovascular disease is assessed as probable, and in relation to cholelithiasis and diabetes mellitus type 2 as possible and insufficient, respectively. In conclusion, high consumption of fruits, vegetables, whole grains and nuts can lower the risk for several chronic diseases. PMID:17136332

  10. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean

    PubMed Central

    Xu, Zhaolong; Ali, Zulfiqar; Xu, Ling; He, Xiaolan; Huang, Yihong; Yi, Jinxin; Shao, Hongbo; Ma, Hongxiang; Zhang, Dayong

    2016-01-01

    Plant basic-leucine zipper (bZIP) transcription factors play important roles in many biological processes and are involved in the regulation of salt stress tolerance. Previously, our lab generated digital gene expression profiling (DGEP) data to identify differentially expressed genes in a salt-tolerant genotype of Glycine soja (STGoGS) and a salt-sensitive genotype of Glycine max (SSGoGM). This DGEP data revealed that the expression (log2 ratio) of GmbZIP110 was up-regulated 2.76-fold and 3.38-fold in SSGoGM and STGoGS, respectively. In the present study, the salt inducible gene GmbZIP110 was cloned and characterized through phylogenetic analysis, subcellular localization and in silico transcript abundance analysis in different tissues. The functional role of this gene in salt tolerance was studied through transactivation analysis, DNA binding ability, expression in soybean composite seedlings and transgenic Arabidopsis, and the effect of GmbZIP110 on the expression of stress-related genes in transgenic Arabidopsis was investigated. We found that GmbZIP110 could bind to the ACGT motif, impact the expression of many stress-related genes and the accumulation of proline, Na+ and K+, and enhanced the salt tolerance of composite seedlings and transgenic Arabidopsis. Integrating all these results, we propose that GmbZIP110 plays a critical role in the response to salinity stress in soybean and has high potential usefulness in crop improvement. PMID:26837841

  11. A putative soybean GmsSOS1 confers enhanced salt tolerance to transgenic Arabidopsis sos1-1 mutant.

    PubMed

    Nie, Wang-Xing; Xu, Lin; Yu, Bing-Jun

    2015-01-01

    The cDNA of GmsSOS1, a putative plasma membrane Na(+)/H(+) antiporter gene isolated from Glycine max, Glycine soja, and their hybrid, was constructed into plant expression vector pCAMBIA 1300 and then transformed with Agrobacterium tumefaciens under the control of CaMV 35S promoter to Arabidopsis thaliana wild-type (WT) and mutant (atsos1-1) plants. By hygromycin resistance detection and PCR analysis, transgenic plants (WT35S:GmsSOS1 and atsos1-1 35S:GmsSOS1) were obtained. Seed germination, seedling growth, and Na(+) contents in roots and shoots were analytically compared among WT, atsos1-1 mutant, and their transgenic lines under salt stress. The results showed that when GmsSOS1 was integrated into the genome of A. thaliana, the inhibitions of salt stress on seed germination and seedling growth were all significantly improved, and enhanced salt tolerance was displayed, which may be attributed to the decrease of Na(+) absorption in roots and transportation in shoots of the transgenic lines, especially for that of atsos1-1 mutant. PMID:24934653

  12. Pericentromeric Regions of Soybean (Glycine max L. Merr.) Chromosomes Consist of Retroelements and Tandemly Repeated DNA and Are Structurally and Evolutionarily Labile

    PubMed Central

    Lin, Jer-Young; Jacobus, Barbara Hass; SanMiguel, Phillip; Walling, Jason G.; Yuan, Yinan; Shoemaker, Randy C.; Young, Nevin D.; Jackson, Scott A.

    2005-01-01

    Little is known about the physical makeup of heterochromatin in the soybean (Glycine max L. Merr.) genome. Using DNA sequencing and molecular cytogenetics, an initial analysis of the repetitive fraction of the soybean genome is presented. BAC 076J21, derived from linkage group L, has sequences conserved in the pericentromeric heterochromatin of all 20 chromosomes. FISH analysis of this BAC and three subclones on pachytene chromosomes revealed relatively strict partitioning of the heterochromatic and euchromatic regions. Sequence analysis showed that this BAC consists primarily of repetitive sequences such as a 102-bp tandem repeat with sequence identity to a previously characterized ∼120-bp repeat (STR120). Fragments of Calypso-like retroelements, a recently inserted SIRE1 element, and a SIRE1 solo LTR were present within this BAC. Some of these sequences are methylated and are not conserved outside of G. max and G. soja, a close relative of soybean, except for STR102, which hybridized to a restriction fragment from G. latifolia. These data present a picture of the repetitive fraction of the soybean genome that is highly concentrated in the pericentromeric regions, consisting of rapidly evolving tandem repeats with interspersed retroelements.

  13. Interaction between the moss Physcomitrella patens and Phytophthora: a novel pathosystem for live-cell imaging of subcellular defence.

    PubMed

    Overdijk, Elysa J R; DE Keijzer, Jeroen; DE Groot, Deborah; Schoina, Charikleia; Bouwmeester, Klaas; Ketelaar, Tijs; Govers, Francine

    2016-08-01

    Live-cell imaging of plant-pathogen interactions is often hampered by the tissue complexity and multicell layered nature of the host. Here, we established a novel pathosystem with the moss Physcomitrella patens as host for Phytophthora. The tip-growing protonema cells of this moss are ideal for visualizing interactions with the pathogen over time using high-resolution microscopy. We tested four Phytophthora species for their ability to infect P. patens and showed that P. sojae and P. palmivora were only rarely capable to infect P. patens. In contrast, P. infestans and P. capsici frequently and successfully penetrated moss protonemal cells, showed intracellular hyphal growth and formed sporangia. Next to these successful invasions, many penetration attempts failed. Here the pathogen was blocked by a barrier of cell wall material deposited in papilla-like structures, a defence response that is common in higher plants. Another common response is the upregulation of defence-related genes upon infection and also in moss we observed this upregulation in tissues infected with Phytophthora. For more advanced analyses of the novel pathosystem we developed a special set-up that allowed live-cell imaging of subcellular defence processes by high-resolution microscopy. With this set-up, we revealed that Phytophthora infection of moss induces repositioning of the nucleus, accumulation of cytoplasm and rearrangement of the actin cytoskeleton, but not of microtubules. PMID:27027911

  14. Soil bacteria as sources of virulence signal providers promoting plant infection by Phytophthora pathogens.

    PubMed

    Kong, Ping; Hong, Chuanxue

    2016-01-01

    Phytophthora species are known as "plant destroyers" capable of initiating single zoospore infection in the presence of a quorum of chemical signals from the same or closely related species of oomycetes. Since the natural oomycete population is too low to reach a quorum necessary to initiate a disease epidemic, creation of the quorum is reliant on alternate sources. Here, we show that a soil bacterial isolate, Bacillus megaterium Sb5, promotes plant infection by Phytophthora species. In the presence of Sb5 exudates, colonization of rhododendron leaf discs by 12 Phytophthora species/isolates was significantly enhanced, single zoospores of P. nicotianae infected annual vinca and P. sojae race 25 successfully attacked a non-host plant, Nicotiana benthamiana as well as resistant soybean cultivars with RPS1a or RPS3a. Sb5 exudates, most notably the fractions larger than 3 kDa, promoted plant infection by improving zoospore swimming, germination and plant attachment. Sb5 exudates also stimulated infection hypha growth and upregulated effector gene expression. These results suggest that environmental bacteria are important sources of virulence signal providers that promote plant infection by Phytophthora species, advancing our understanding of biotic factors in the environmental component of the Phytophthora disease triangle and of communal infection of plant pathogens. PMID:27616267

  15. Development of a high resolution interstellar dust engineering model - overview of the project

    NASA Astrophysics Data System (ADS)

    Sterken, V. J.; Strub, P.; Soja, R. H.; Srama, R.; Krüger, H.; Grün, E.

    2013-09-01

    Beyond 3 AU heliocentric distance, the flow of interstellar dust through the solar system is a dominant component of the total dust population. The modulation of this flux with the solar cycle and the position in the solar system has been predicted by theoretical studies since the seventies. The modulation was proven to exist by matching dust trajectory simulations with real spacecraft data from Ulysses in 1998. The modulations were further analyzed and studies in detail in 2012. The current ESA interplanetary meteoroid model IMEM includes an interstellar dust component, but this component was modelled only with straight line trajectories through the solar system. For the new ESA IMEX model, a high-resolution interstellar dust component is implemented separately from a dust streams module. The dust streams module focuses on dust in streams that was released from comets (cf. Abstract R. Soja). Parallel processing techniques are used to improve computation time (cf. Abstract P. Strub). The goal is to make predictions for the interstellar dust flux as close to the Sun as 1 AU or closer, for future space mission design.

  16. Plant-derived antifungal agent poacic acid targets β-1,3-glucan

    PubMed Central

    Piotrowski, Jeff S.; Okada, Hiroki; Lu, Fachuang; Li, Sheena C.; Hinchman, Li; Ranjan, Ashish; Smith, Damon L.; Higbee, Alan J.; Ulbrich, Arne; Coon, Joshua J.; Deshpande, Raamesh; Bukhman, Yury V.; McIlwain, Sean; Ong, Irene M.; Myers, Chad L.; Boone, Charles; Landick, Robert; Ralph, John; Kabbage, Mehdi; Ohya, Yoshikazu

    2015-01-01

    A rise in resistance to current antifungals necessitates strategies to identify alternative sources of effective fungicides. We report the discovery of poacic acid, a potent antifungal compound found in lignocellulosic hydrolysates of grasses. Chemical genomics using Saccharomyces cerevisiae showed that loss of cell wall synthesis and maintenance genes conferred increased sensitivity to poacic acid. Morphological analysis revealed that cells treated with poacic acid behaved similarly to cells treated with other cell wall-targeting drugs and mutants with deletions in genes involved in processes related to cell wall biogenesis. Poacic acid causes rapid cell lysis and is synergistic with caspofungin and fluconazole. The cellular target was identified; poacic acid localized to the cell wall and inhibited β-1,3-glucan synthesis in vivo and in vitro, apparently by directly binding β-1,3-glucan. Through its activity on the glucan layer, poacic acid inhibits growth of the fungi Sclerotinia sclerotiorum and Alternaria solani as well as the oomycete Phytophthora sojae. A single application of poacic acid to leaves infected with the broad-range fungal pathogen S. sclerotiorum substantially reduced lesion development. The discovery of poacic acid as a natural antifungal agent targeting β-1,3-glucan highlights the potential side use of products generated in the processing of renewable biomass toward biofuels as a source of valuable bioactive compounds and further clarifies the nature and mechanism of fermentation inhibitors found in lignocellulosic hydrolysates. PMID:25775513

  17. A novel protein elicitor (SsCut) from Sclerotinia sclerotiorum induces multiple defense responses in plants.

    PubMed

    Zhang, Huajian; Wu, Qun; Cao, Shun; Zhao, Tongyao; Chen, Ling; Zhuang, Peitong; Zhou, Xiuhong; Gao, Zhimou

    2014-11-01

    In this study, we report the cloning of the SsCut gene encoding cutinase from Sclerotinia sclerotiorum. We isolated a 609-bp cDNA encoding a polypeptide of 202 amino acids with a molecular weight of 20.4 kDa. Heterologous expression of SsCut in Escherichia coli (His-SsCut) caused the formation of lesions in tobacco that closely resembled hypersensitive response lesions. Mutational analysis identified the C-terminal-half peptide and the same amino acids indispensable for both enzyme and elicitor activity. His-SsCut was caused cell death in Arabidopsis, soybean (Glycine max), oilseed rape (Brassica napus), rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum), indicating that both dicot and monocot species are responsive to the elicitor. Furthermore, the elicitation of tobacco was effective in the induction of the activities of hydrogen peroxide, phenylalanine ammonia-lyase, peroxides, and polyphenol oxidase. His-SsCut-treated plants exhibited enhanced resistance as indicated by a significant reduction in the number and size of S. sclerotiorum, Phytophthora sojae, and P. nicotianae lesions on leaves relative to controls. Real-time PCR results indicated that the expression of defense-related genes and genes involved in signal transduction were induced by His-SsCut. Our results demonstrate that SsCut is an elicitor that triggers defense responses in plants and will help to clarify its relationship to downstream signaling pathways that induce defense responses. PMID:25149470

  18. Transformation of Litchi Pericarp-Derived Condensed Tannin with Aspergillus awamori

    PubMed Central

    Lin, Sen; Li, Qing; Yang, Bao; Duan, Xuewu; Zhang, Mingwei; Shi, John; Jiang, Yueming

    2016-01-01

    Condensed tannin is a ubiquitous polyphenol in plants that possesses substantial antioxidant capacity. In this study, we have investigated the polyphenol extraction recovery and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of the extracted polyphenol after litchi pericarp is treated with Aspergillus awamori, Aspergillus sojae or Aspergillus oryzae. We have further explored the activity of A. awamori in the formation of condensed tannin. The treatment of A. awamori appeared to produce the highest antioxidant activity of polyphenol from litchi pericarp. Further studies suggested that the treatment of A. awamori releases the non-extractable condensed tannin from cell walls of litchi pericarp. The total extractable tannin in the litchi pericarp residue after a six-time extraction with 60% ethanol increased from 199.92 ± 14.47–318.38 ± 7.59 μg/g dry weight (DW) after the treatment of A. awamori. The ESI-TOF-MS and HPLC-MS2 analyses further revealed that treatment of A. awamori degraded B-type condensed tannin (condensed flavan-3-ol via C4–C8 linkage), but exhibited a limited capacity to degrade the condensed tannin containing A-type linkage subunits (C4–C8 coupled C2–O–C7 linkage). These results suggest that the treatment of A. awamori can significantly improve the production of condensed tannin from litchi pericarp. PMID:27420043

  19. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean.

    PubMed

    Xu, Zhaolong; Ali, Zulfiqar; Xu, Ling; He, Xiaolan; Huang, Yihong; Yi, Jinxin; Shao, Hongbo; Ma, Hongxiang; Zhang, Dayong

    2016-01-01

    Plant basic-leucine zipper (bZIP) transcription factors play important roles in many biological processes and are involved in the regulation of salt stress tolerance. Previously, our lab generated digital gene expression profiling (DGEP) data to identify differentially expressed genes in a salt-tolerant genotype of Glycine soja (STGoGS) and a salt-sensitive genotype of Glycine max (SSGoGM). This DGEP data revealed that the expression (log2 ratio) of GmbZIP110 was up-regulated 2.76-fold and 3.38-fold in SSGoGM and STGoGS, respectively. In the present study, the salt inducible gene GmbZIP110 was cloned and characterized through phylogenetic analysis, subcellular localization and in silico transcript abundance analysis in different tissues. The functional role of this gene in salt tolerance was studied through transactivation analysis, DNA binding ability, expression in soybean composite seedlings and transgenic Arabidopsis, and the effect of GmbZIP110 on the expression of stress-related genes in transgenic Arabidopsis was investigated. We found that GmbZIP110 could bind to the ACGT motif, impact the expression of many stress-related genes and the accumulation of proline, Na(+) and K(+), and enhanced the salt tolerance of composite seedlings and transgenic Arabidopsis. Integrating all these results, we propose that GmbZIP110 plays a critical role in the response to salinity stress in soybean and has high potential usefulness in crop improvement. PMID:26837841

  20. Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense

    PubMed Central

    Zimmermann, Sabine; Nürnberger, Thorsten; Frachisse, Jean-Marie; Wirtz, Wolfgang; Guern, Jean; Hedrich, Rainer; Scheel, Dierk

    1997-01-01

    Pathogen recognition at the plant cell surface typically results in the initiation of a multicomponent defense response. Transient influx of Ca2+ across the plasma membrane is postulated to be part of the signaling chain leading to pathogen resistance. Patch-clamp analysis of parsley protoplasts revealed a novel Ca2+-permeable, La3+-sensitive plasma membrane ion channel of large conductance (309 pS in 240 mM CaCl2). At an extracellular Ca2+ concentration of 1 mM, which is representative of the plant cell apoplast, unitary channel conductance was determined to be 80 pS. This ion channel (LEAC, for large conductance elicitor-activated ion channel) is reversibly activated upon treatment of parsley protoplasts with an oligopeptide elicitor derived from a cell wall protein of Phytophthora sojae. Structural features of the elicitor found previously to be essential for receptor binding, induction of defense-related gene expression, and phytoalexin formation are identical to those required for activation of LEAC. Thus, receptor-mediated stimulation of this channel appears to be causally involved in the signaling cascade triggering pathogen defense in parsley. PMID:11038609

  1. Interactions between preparations containing female sex hormones and dietary supplements.

    PubMed

    Zabłocka-Słowińska, Katarzyna; Jawna, Katarzyna; Grajeta, Halina; Biernat, Jadwiga

    2014-01-01

    An increasing number of premenopausal women use contraception whereas postmenopausal women use hormone replacement therapy (HRT). This long-term hormone therapy poses a high risk of interactions with dietary supplements. Taking estrogens at the same time as selective estrogen receptor modulators (SERMs), biologically-active compounds of glycine soja, Ginkgo biloba or Pimpinella anisum, may distort the final effect of the hormone agent. On the other hand, estrogen therapy coupled with melatonin or retinol supplementation may lead to an increased level of dietary supplements in the serum as studies have proved a concomitant beneficial effect of HRT and vitamin E supplementation on lipid profiles. In turn, taking preparations containing St John's wort during hormone therapy may lead to a reduction in hormone concentrations in serum and debilitation of the pharmacological effect. It results from the inductive effect of the biologically-active compounds of St John's wort on the metabolism of hormones as a result of the enhanced activity of cytochrome P450 CYP3A4. PMID:25166453

  2. Performance of hybrid progeny formed between genetically modified herbicide-tolerant soybean and its wild ancestor.

    PubMed

    Guan, Zheng-Jun; Zhang, Peng-Fei; Wei, Wei; Mi, Xiang-Cheng; Kang, Ding-Ming; Liu, Biao

    2015-01-01

    Gene flow from genetically modified (GM) crops to wild relatives might affect the evolutionary dynamics of weedy populations and result in the persistence of escaped genes. To examine the effects of this gene flow, the growth of F1 hybrids that were formed by pollinating wild soybean (Glycine soja) with glyphosate-tolerant GM soybean (G. max) or its non-GM counterpart was examined in a greenhouse. The wild soybean was collected from two geographical populations in China. The performance of the wild soybean and the F2 hybrids was further explored in a field trial. Performance was measured by several vegetative and reproductive growth parameters, including the vegetative growth period, pod number, seed number, above-ground biomass and 100-seed weight. The pod setting percentage was very low in the hybrid plants. Genetically modified hybrid F1 plants had a significantly longer period of vegetative growth, higher biomass and lower 100-seed weight than the non-GM ones. The 100-seed weight of both F1 and F2 hybrids was significantly higher than that of wild soybean in both the greenhouse and the field trial. No difference in plant growth was found between GM and non-GM F2 hybrids in the field trial. The herbicide-resistant gene appeared not to adversely affect the growth of introgressed wild soybeans, suggesting that the escaped transgene could persist in nature in the absence of herbicide use. PMID:26507568

  3. Rhamnolipids as platform molecules for production of potential anti-zoospore agrochemicals.

    PubMed

    Miao, Shida; Dashtbozorg, Soroosh Soltani; Callow, Nicholas V; Ju, Lu-Kwang

    2015-04-01

    Rhamnolipid biosurfactants have potential applications in the control of zoosporic plant pathogens. However, rhamnolipids have not been closely investigated for the anti-zoospore mechanism or for developing new anti-zoospore chemicals. In this study, RhL-1 and RhL-3 groups of rhamnolipids were used to generate the corresponding RhL-2 and RhL-4 groups and the free diacids. Conversion of RhL-3 to RhL-1 was also accomplished in vitro with cellobiase as the catalyst. The anti-zoospore effects of RhL-1-RhL-4 and the diacids were investigated with zoospores of Phytophthora sojae. For RhL-1-RhL-4, approximately 20, 30, 40, and 40 mg/L, respectively, were found to be the lowest concentrations required to stop movement of all zoospores, which indicates that the anti-zoospore effect remains strong even after RhL-1 and RhL-3 are hydrolyzed into RhL-2 and RhL-4. The free diacids required a significantly higher critical concentration of about 125 mg/L. Rhamnose can be obtained as a co-product. PMID:25790115

  4. Rhamnolipid Adsorption in Soil: Factors, Unique Features, and Considerations for Use as Green Antizoosporic Agents.

    PubMed

    Soltani Dashtbozorg, Soroosh; Kohl, Jacob; Ju, Lu-Kwang

    2016-05-01

    In aqueous solutions, rhamnolipids effectively kill the motile zoospores responsible for spreading many pathogens, including soy-infecting Phytophthora sojae. For use in soil, adsorption properties need to be considered. Having low critical micelle concentrations, rhamnolipids tend to form micelles/aggregates with unknown effects on soil adsorption. Effects of soil pH, rhamnolipid congener structure, and concentration were examined. Congeners were identified and each quantitated for adsorptive partitioning. The adsorption isotherm at pH 6.5 showed a multi-stage profile plateauing at 1700 μg/g of soil. Less hydrophilic congeners adsorbed preferentially: R-C10-C12 > R-C10-C12:1 > RR-C10-C12:1 > RR-C10-C12 > R-C10-C10 > RR-C10-C10 > R-C8-C10 > RR-C8-C10 (where R is rhamnose and C# is the carbon number of β-hydroxy fatty acid). Adsorptive selectivity among congeners was very clear in dilute solutions but diminished with increasing concentrations. Results were interpreted with aggregate formation in solutions and on the soil surface. The cost estimate made accordingly supported the economic feasibility of rhamnolipid antizoosporic uses in soil. PMID:27054522

  5. Overexpression of a Phytophthora Cytoplasmic CRN Effector Confers Resistance to Disease, Salinity and Drought in Nicotiana benthamiana.

    PubMed

    Rajput, Nasir Ahmed; Zhang, Meixiang; Shen, Danyu; Liu, Tingli; Zhang, Qimeng; Ru, Yanyan; Sun, Peng; Dou, Daolong

    2015-12-01

    The Crinkler (CRN) effector family is produced by oomycete pathogens and may manipulate host physiological and biochemical events inside host cells. Here, PsCRN161 was identified from Phytophthora sojae based on its broad and strong cell death suppression activities. The effector protein contains two predicted nuclear localization signals and localized to nuclei of plant cells, indicating that it may target plant nuclei to modify host cell physiology and function. The chimeric gene GFP:PsCRN161 driven by the Cauliflower mosaic virus (CaMV) 35S promoter was introduced into Nicotiana benthamiana. The four independent PsCRN161-transgenic lines exhibited increased resistance to two oomycete pathogens (P. parasitica and P. capsici) and showed enhanced tolerance to salinity and drought stresses. Digital gene expression profiling analysis showed that defense-related genes, including ABC transporters, Cyt P450 and receptor-like kinases (RLKs), were significantly up-regulated in PsCRN161-transgenic plants compared with GFP (green fluorescent protein) lines, implying that PsCRN161 expression may protect plants from biotic and abiotic stresses by up-regulation of many defense-related genes. The results reveal previously unknown functions of the oomycete effectors, suggesting that the pathogen effectors could be directly used as functional genes for plant molecular breeding for enhancement of tolerance to biotic and abiotic stresses. PMID:26546319

  6. Competence for Elicitation of H2O2 in Hypocotyls of Cucumber Is Induced by Breaching the Cuticle and Is Enhanced by Salicylic Acid.

    PubMed Central

    Fauth, M.; Merten, A.; Hahn, M. G.; Jeblick, W.; Kauss, H.

    1996-01-01

    To study H2O2 production, the epidermal surfaces of hypocotyl segments from etiolated seedlings of cucumber (Cucumis sativus L.) were gently abraded. Freshly abraded segments were not constitutively competent for rapid H2O2 elicitation. This capacity developed subsequent to abrasion in a time-dependent process that was greatly enhanced in segments exhibiting an acquired resistance to penetration of their epidermal cell walls by Colletotrichum lagenarium, because of root pretreatment of the respective seedlings with 2,6-dichloroisonicotinic acid. When this compound or salicylic acid was applied to abraded segments, it also greatly enhanced the induction of competence for H2O2 elicitation. This process was fully inhibited by 5 [mu]M cycloheximide or 200 [mu]M puromycin, suggesting a requirement for translational protein synthesis. Both a crude elicitor preparation and a partially purified oligoglucan mixture from Phytophthora sojae also induced, in addition to H2O2 production, a refractory state, which explains the transient nature of H2O2 elicitation. Taken together, these results suggest that the cucumber hypocotyl epidermis becomes conditioned for competence to produce H2O2 in response to elicitors by a stimulus resulting from breaching the cuticle and/or cutting segments. This conditioning process is associated with protein synthesis and is greatly enhanced when substances able to induce systemic acquired resistance are present in the tissue. PMID:12226186

  7. Culture condition-dependent metabolite profiling of Aspergillus fumigatus with antifungal activity.

    PubMed

    Kang, Daejung; Son, Gun Hee; Park, Hye Min; Kim, Jiyoung; Choi, Jung Nam; Kim, Hyang Yeon; Lee, Sarah; Hong, Seung-Beom; Lee, Choong Hwan

    2013-03-01

    Three sections of Aspergillus (five species, 21 strains) were classified according to culture medium-dependent and time-dependent secondary metabolite profile-based chemotaxonomy. Secondary metabolites were analysed by liquid chromatography-electrospray ionisation tandem mass spectrometry (LC-ESI-MS-MS) and multivariate statistical methods. From the Aspergillus sections that were cultured on malt extract agar (MEA) and Czapek yeast extract agar (CYA) for 7, 12, and 16 d, Aspergillus sections Fumigati (A. fumigatus), Nigri (A. niger), and Flavi (A. flavus, A. oryzae, and A. sojae) clustered separately on the basis of the results of the secondary metabolite analyses at 16 d regardless of culture medium. Based on orthogonal projection to latent structures discriminant analysis by partial least squares discriminant analysis (PLS-DA), we identified the secondary metabolites that helped differentiate sections between A. fumigatus and Aspergillus section Flavi to be gliotoxin G, fumigatin oxide, fumigatin, pseurotin A or D, fumiquinazoline D, fumagillin, helvolic acid, 1,2-dihydrohelvolic acid, and 5,8-dihydroxy-9,12-octadecadienoic acid (5,8-diHODE). Among these compounds, fumagillin, helvolic acid, and 1,2-dihydrohelvolic acid of A. fumigatus showed antifungal activities against Malassezia furfur, which is lipophilic yeast that causes epidermal skin disorders. PMID:23537878

  8. Main dynamics and drivers of boreal forests fire regimes during the Holocene

    NASA Astrophysics Data System (ADS)

    Molinari, Chiara; Lehsten, Veiko; Blarquez, Olivier; Clear, Jennifer; Carcaillet, Christopher; Bradshaw, Richard HW

    2015-04-01

    Forest fire is one of the most critical ecosystem processes in the boreal megabiome, and it is likely that its frequency, size and severity have had a primary role in vegetation dynamics since the Last Ice Age (Kasischke & Stocks 2000). Fire not only organizes the physical and biological attributes of boreal forests, but also affects biogeochemical cycling, particularly the carbon balance (Balshi et al. 2007). Due to their location at climatically sensitive northern latitudes, boreal forests are likely to be significantly affected by global warming with a consequent increase in biomass burning (Soja et al. 2007), a variation in vegetation structure and composition (Johnstone et al. 2004) and a rise in atmospheric carbon dioxide concentration (Bond-Lamberty et al. 2007). Even if the ecological role of wildfire in boreal forest is widely recognized, a clearer understanding of the environmental factors controlling fire dynamics and how variations in fire regimes impact forest ecosystems is essential in order to place modern fire processes in a meaningful context for projecting ecosystem behaviour in a changing environment (Kelly et al. 2013). Because fire return intervals and successional cycles in boreal forests occur over decadal to centennial timescales (Hu et al. 2006), palaeoecological research seems to be one of the most promising tool for elucidating ecosystem changes over a broad range of environmental conditions and temporal scales. Within this context, our first aim is to reconstruct spatial and temporal patterns of boreal forests fire dynamics during the Holocene based on sedimentary charcoal records. As a second step, trends in biomass burning will be statistically analysed in order to disentangle between regional and local drivers. The use of European and north-American sites will give us the unique possibility to perform a large scale analysis on one of the broadest biome in the world and to underline the different patterns of fire in these two

  9. Wrinkle reduction in post-menopausal women consuming a novel oral supplement: a double-blind placebo-controlled randomized study

    PubMed Central

    Jenkins, G; Wainwright, L J; Holland, R; Barrett, K E; Casey, J

    2014-01-01

    Synopsis Objective The maintenance of youthful skin appearance is strongly desired by a large proportion of the world's population. The aim of the present study was therefore to evaluate the effect on skin wrinkling, of a combination of ingredients reported to influence key factors involved in skin ageing, namely inflammation, collagen synthesis and oxidative/UV stress. A supplemented drink was developed containing soy isoflavones, lycopene, vitamin C and vitamin E and given to post-menopausal women with a capsule containing fish oil. Method We have performed a double-blind randomized controlled human clinical study to assess whether this cocktail of dietary ingredients can significantly improve the appearance of facial wrinkles. Results We have shown that this unique combination of micronutrients can significantly reduce the depth of facial wrinkles and that this improvement is associated with increased deposition of new collagen fibres in the dermis. Conclusion This study demonstrates that consumption of a mixture of soy isoflavones, lycopene, vitamin C, vitamin E and fish oil is able to induce a clinically measureable improvement in the depth of facial wrinkles following long-term use. We have also shown, for the first time with an oral product, that the improvement is associated with increased deposition of new collagen fibres in the dermis. Résumé Objectif Le maintien de l'apparence d'une peau jeune est vivement souhaité par une grande proportion de la population mondiale. L'objectif de la présente étude était donc d'évaluer l'effet sur les rides de la peau, d'une combinaison d'ingrédients rapportés à influer sur les facteurs clés impliqués dans le vieillissement de la peau, à savoir l'inflammation, la synthèse du collagène et le stress oxydatif / UV. Une boisson supplémentée a été élaborée contenant des isoflavones de soja, le lycopène, la vitamine C et la vitamine E et donnée aux femmes ménopausées avec une capsule contenant de l

  10. [Distribution characteristics of soil nematodes in reclaimed land of copper-mine-tailings in different plant associations].

    PubMed

    Zhu, Yong-heng; Li, Ke-zhong; Zhang, Heng; Han, Fei; Zhou, Ju-hua; Gao, Ting-ting

    2015-02-01

    A survey was carried out to investigate soil nematode communities in the plant associations of gramineae (Arthraxon lanceolatus, AL; Imperata cylindrica, IC) and leguminosae (Glycine soja, GS) in reclaimed land of copper-mine-tailings and in the plant associations of gramineae (Digitaria chrysoblephara, DC-CK) of peripheral control in Fenghuang Mountain, Tongling City. A total of 1277 nematodes were extracted and sorted into 51 genera. The average individual density of the nematodes was 590 individuals · 100 g(-1) dry soil. In order to analyze the distribution character- istics of soil nematode communities in reclaimed land of copper-mine-tailings, Shannon community diversity index and soil food web structure indices were applied in the research. The results showed that the total number of nematode genus and the Shannon community diversity index of soil nematode in the three plant associations of AL, IC and GS were less than that in the plant associations of DC-CK. Compared with the ecological indices of soil nematode communities among the different plant associations in reclaimed land of copper-mine-tailings and peripheral natural habitat, we found that the structure of soil food web in the plant associations of GS was more mature, with bacterial decomposition being dominant in the soil organic matter decomposition, and that the soil ecosystem in the plant associations of GS was not stable with low interference. This indicated that the soil food web in the plant associations of leguminosae had a greater development potential to improve the ecological stability of the reclaimed land of copper-mine-tailings. On the other hand, the structure of soil food web in the plant associations of AL and IC were relatively stable in a structured state with fungal decomposition being dominant in the decomposition of soil organic matter. This indicated that the soil food web in the plant associations of gramineae was at a poor development level. PMID:26094476

  11. Phylogenetic analysis of Pythium insidiosum Thai strains using cytochrome oxidase II (COX II) DNA coding sequences and internal transcribed spacer regions (ITS).

    PubMed

    Kammarnjesadakul, Patcharee; Palaga, Tanapat; Sritunyalucksana, Kallaya; Mendoza, Leonel; Krajaejun, Theerapong; Vanittanakom, Nongnuch; Tongchusak, Songsak; Denduangboripant, Jessada; Chindamporn, Ariya

    2011-04-01

    To investigate the phylogenetic relationship among Pythium insidiosum isolates in Thailand, we investigated the genomic DNA of 31 P. insidiosum strains isolated from humans and environmental sources from Thailand, and two from North and Central America. We used PCR to amplify the partial COX II DNA coding sequences and the ITS regions of these isolates. The nucleotide sequences of both amplicons were analyzed by the Bioedit program. Phylogenetic analysis using genetic distance method with Neighbor Joining (NJ) approach was performed using the MEGA4 software. Additional sequences of three other Pythium species, Phytophthora sojae and Lagenidium giganteum were employed as outgroups. The sizes of the COX II amplicons varied from 558-564 bp, whereas the ITS products varied from approximately 871-898 bp. Corrected sequence divergences with Kimura 2-parameter model calculated for the COX II and the ITS DNA sequences ranged between 0.0000-0.0608 and 0.0000-0.2832, respectively. Phylogenetic analysis using both the COX II and the ITS DNA sequences showed similar trees, where we found three sister groups (A(TH), B(TH), and C(TH)) among P. insidiosum strains. All Thai isolates from clinical cases and environmental sources were placed in two separated sister groups (B(TH) and C(TH)), whereas the Americas isolates were grouped into A(TH.) Although the phylogenetic tree based on both regions showed similar distribution, the COX II phylogenetic tree showed higher resolution than the one using the ITS sequences. Our study indicates that COX II gene is the better of the two alternatives to study the phylogenetic relationships among P. insidiosum strains. PMID:20818919

  12. Ectopic Expression of GsPPCK3 and SCMRP in Medicago sativa Enhances Plant Alkaline Stress Tolerance and Methionine Content

    PubMed Central

    Zhao, Yang; Zhao, Chaoyue; DuanMu, Huizi; Yu, Yang; Ji, Wei; Zhu, Yanming

    2014-01-01

    So far, it has been suggested that phosphoenolpyruvate carboxylases (PEPCs) and PEPC kinases (PPCKs) fulfill several important non-photosynthetic functions. However, the biological functions of soybean PPCKs, especially in alkali stress response, are not yet well known. In previous studies, we constructed a Glycine soja transcriptional profile, and identified three PPCK genes (GsPPCK1, GsPPCK2 and GsPPCK3) as potential alkali stress responsive genes. In this study, we confirmed the induced expression of GsPPCK3 under alkali stress and investigated its tissue expression specificity by using quantitative real-time PCR analysis. Then we ectopically expressed GsPPCK3 in Medicago sativa and found that GsPPCK3 overexpression improved plant alkali tolerance, as evidenced by lower levels of relative ion leakage and MDA content and higher levels of chlorophyll content and root activity. In this respect, we further co-transformed the GsPPCK3 and SCMRP genes into alfalfa, and demonstrated the increased alkali tolerance of GsPPCK3-SCMRP transgenic lines. Further investigation revealed that GsPPCK3-SCMRP co-overexpression promoted the PEPC activity, net photosynthetic rate and citric acid content of transgenic alfalfa under alkali stress. Moreover, we also observed the up-regulated expression of PEPC, CS (citrate synthase), H+-ATPase and NADP-ME genes in GsPPCK3-SCMRP transgenic alfalfa under alkali stress. As expected, we demonstrated that GsPPCK3-SCMRP transgenic lines displayed higher methionine content than wild type alfalfa. Taken together, results presented in this study supported the positive role of GsPPCK3 in plant response to alkali stress, and provided an effective way to simultaneously improve plant alkaline tolerance and methionine content, at least in legume crops. PMID:24586886

  13. Artificial selection for determinate growth habit in soybean

    PubMed Central

    Tian, Zhixi; Wang, Xiaobo; Lee, Rian; Li, Yinghui; Specht, James E.; Nelson, Randall L.; McClean, Phillip E.; Qiu, Lijuan; Ma, Jianxin

    2010-01-01

    Determinacy is an agronomically important trait associated with the domestication in soybean (Glycine max). Most soybean cultivars are classifiable into indeterminate and determinate growth habit, whereas Glycine soja, the wild progenitor of soybean, is indeterminate. Indeterminate (Dt1/Dt1) and determinate (dt1/dt1) genotypes, when mated, produce progeny that segregate in a monogenic pattern. Here, we show evidence that Dt1 is a homolog (designated as GmTfl1) of Arabidopsis terminal flower 1 (TFL1), a regulatory gene encoding a signaling protein of shoot meristems. The transition from indeterminate to determinate phenotypes in soybean is associated with independent human selections of four distinct single-nucleotide substitutions in the GmTfl1 gene, each of which led to a single amino acid change. Genetic diversity of a minicore collection of Chinese soybean landraces assessed by simple sequence repeat (SSR) markers and allelic variation at the GmTfl1 locus suggest that human selection for determinacy took place at early stages of landrace radiation. The GmTfl1 allele introduced into a determinate-type (tfl1/tfl1) Arabidopsis mutants fully restored the wild-type (TFL1/TFL1) phenotype, but the Gmtfl1 allele in tfl1/tfl1 mutants did not result in apparent phenotypic change. These observations indicate that GmTfl1 complements the functions of TFL1 in Arabidopsis. However, the GmTfl1 homeolog, despite its more recent divergence from GmTfl1 than from Arabidopsis TFL1, appears to be sub- or neo-functionalized, as revealed by the differential expression of the two genes at multiple plant developmental stages and by allelic analysis at both loci. PMID:20421496

  14. Survey and analysis of microsatellites from transcript sequences in Phytophthora species: frequency, distribution, and potential as markers for the genus

    PubMed Central

    Garnica, Diana P; Pinzón, Andrés M; Quesada-Ocampo, Lina M; Bernal, Adriana J; Barreto, Emiliano; Grünwald, Niklaus J; Restrepo, Silvia

    2006-01-01

    Background Members of the genus Phytophthora are notorious pathogens with world-wide distribution. The most devastating species include P. infestans, P. ramorum and P. sojae. In order to develop molecular methods for routinely characterizing their populations and to gain a better insight into the organization and evolution of their genomes, we used an in silico approach to survey and compare simple sequence repeats (SSRs) in transcript sequences from these three species. We compared the occurrence, relative abundance, relative density and cross-species transferability of the SSRs in these oomycetes. Results The number of SSRs in oomycetes transcribed sequences is low and long SSRs are rare. The in silico transferability of SSRs among the Phytophthora species was analyzed for all sets generated, and primers were selected on the basis of similarity as possible candidates for transferability to other Phytophthora species. Sequences encoding putative pathogenicity factors from all three Phytophthora species were also surveyed for presence of SSRs. However, no correlation between gene function and SSR abundance was observed. The SSR survey results, and the primer pairs designed for all SSRs from the three species, were deposited in a public database. Conclusion In all cases the most common SSRs were trinucleotide repeat units with low repeat numbers. A proportion (7.5%) of primers could be transferred with 90% similarity between at least two species of Phytophthora. This information represents a valuable source of molecular markers for use in population genetics, genetic mapping and strain fingerprinting studies of oomycetes, and illustrates how genomic databases can be exploited to generate data-mining filters for SSRs before experimental validation. PMID:17007642

  15. Bradyrhizobium ottawaense sp. nov., a symbiotic nitrogen fixing bacterium from root nodules of soybeans in Canada

    PubMed Central

    Yu, Xiumei; Cloutier, Sylvie; Tambong, James T.

    2014-01-01

    Sixteen strains of symbiotic bacteria from root nodules of Glycine max grown in Ottawa, Canada, were previously characterized and placed in a novel group within the genus Bradyrhizobium. To verify their taxonomic status, these strains were further characterized using a polyphasic approach. All strains possessed identical 16S rRNA gene sequences that were 99.79 % similar to the closest relative, Bradyrhizobium liaoningense LMG 18230T. Phylogenetic analysis of concatenated atpD, glnII, recA, gyrB, rpoB and dnaK genes divided the 16 strains into three multilocus sequence types that were placed in a highly supported lineage distinct from named species of the genus Bradyrhizobium consistent with results of DNA–DNA hybridization. Based on analysis of symbiosis gene sequences (nodC and nifH), all novel strains were placed in a phylogenetic group with five species of the genus Bradyrhizobium that nodulate soybeans. The combination of phenotypic characteristics from several tests including carbon and nitrogen source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain OO99T elicits effective nodules on Glycine max, Glycine soja and Macroptilium atropurpureum, partially effective nodules on Desmodium canadense and Vigna unguiculata, and ineffective nodules on Amphicarpaea bracteata and Phaseolus vulgaris. Based on the data presented, we conclude that our strains represent a novel species for which the name Bradyrhizobium ottawaense sp. nov. is proposed, with OO99T ( = LMG 26739T = HAMBI 3284T) as the type strain. The DNA G+C content is 62.6 mol%. PMID:24969302

  16. Phytophthora niederhauserii sp. nov., a polyphagous species associated with ornamentals, fruit trees and native plants in 13 countries.

    PubMed

    Abad, Z Gloria; Abad, Jorge A; Cacciola, Santa Olga; Pane, Antonella; Faedda, Roberto; Moralejo, Eduardo; Pérez-Sierra, Ana; Abad-Campos, Paloma; Alvarez-Bernaola, Luis A; Bakonyi, József; Józsa, András; Herrero, Maria Luz; Burgess, Treena I; Cunnington, James H; Smith, Ian W; Balci, Yilmaz; Blomquist, Cheryl; Henricot, Béatrice; Denton, Geoffrey; Spies, Chris; Mcleod, Adele; Belbahri, Lassaad; Cooke, David; Kageyama, Koji; Uematsu, Seiji; Kurbetli, Ilker; Değirmenci, Kemal

    2014-01-01

    A non-papillate, heterothallic Phytophthora species first isolated in 2001 and subsequently from symptomatic roots, crowns and stems of 33 plant species in 25 unrelated botanical families from 13 countries is formally described here as a new species. Symptoms on various hosts included crown and stem rot, chlorosis, wilting, leaf blight, cankers and gumming. This species was isolated from Australia, Hungary, Israel, Italy, Japan, the Netherlands, Norway, South Africa, Spain, Taiwan, Turkey, the United Kingdom and United States in association with shrubs and herbaceous ornamentals grown mainly in greenhouses. The most prevalent hosts are English ivy (Hedera helix) and Cistus (Cistus salvifolius). The association of the species with acorn banksia (Banksia prionotes) plants in natural ecosystems in Australia, in affected vineyards (Vitis vinifera) in South Africa and almond (Prunus dulcis) trees in Spain and Turkey in addition to infection of shrubs and herbaceous ornamentals in a broad range of unrelated families are a sign of a wide ecological adaptation of the species and its potential threat to agricultural and natural ecosystems. The morphology of the persistent non-papillate ellipsoid sporangia, unique toruloid lobate hyphal swellings and amphigynous antheridia does not match any of the described species. Phylogenetic analysis based on sequences of the ITS rDNA, EF-1α, and β-tub supported that this organism is a hitherto unknown species. It is closely related to species in ITS clade 7b with the most closely related species being P. sojae. The name Phytophthora niederhauserii has been used in previous studies without the formal description of the holotype. This name is validated in this manuscript with the formal description of Phytophthora niederhauserii Z.G. Abad et J.A. Abad, sp. nov. The name is coined to honor Dr John S. Niederhauser, a notable plant pathologist and the 1990 World Food Prize laureate. PMID:24871599

  17. Nutrition rehabilitation of undernourished children utilizing Spiruline and Misola

    PubMed Central

    Simpore, Jacques; Kabore, Fatoumata; Zongo, Frederic; Dansou, Deleli; Bere, Augustin; Pignatelli, Salvatore; Biondi, Daniela M; Ruberto, Giuseppe; Musumeci, Salvatore

    2006-01-01

    Background Malnutrition constitutes a public health problem throughout the world and particularly in developing countries. Aims The objective of the study is to assess the impact of an elementary integrator composed of Spiruline (Spirulina platensis) and Misola (millet, soja, peanut) produced at the Centre Medical St Camille (CMSC) of Ouagadougou, Burkina Faso, on the nutritional status of undernourished children. Materials and methods 550 undernourished children of less than 5 years old were enrolled in this study, 455 showed severe marasma, 57 marasma of medium severity and 38 kwashiorkor plus marasma. We divided the children randomly into four groups: 170 were given Misola (731 ± 7 kcal/day), 170 were given Spiruline plus traditional meals (748 ± 6 kcal/day), 170 were given Spiruline plus Misola (767 ± 5 kcal/day). Forty children received only traditional meals (722 ± 8 kcal/day) and functioned as the control group. The duration of this study was eight weeks. Results and Discussion Anthropometrics and haematological parameters allowed us to appreciate both the nutritional and biological evolution of these children. The rehabilitation with Spiruline plus Misola (this association gave an energy intake of 767 ± 5 kcal/day with a protein assumption of 33.3 ± 1.2 g a day), both greater than Misola or Spiruline alone, seems to correct weight loss more quickly. Conclusion Our results indicate that Misola, Spiruline plus traditional meals or Spiruline plus Misola are all a good food supplement for undernourished children, but the rehabilitation by Spiruline plus Misola seems synergically favour the nutrition rehabilitation better than the simple addition of protein and energy intake. PMID:16430775

  18. Genetic diversity of wild soybean populations in Dongying, China, by simple sequence repeat analysis.

    PubMed

    Wang, Y H; Zhang, X J; Fan, S J

    2015-01-01

    Annual wild soybean (Glycine soja Sieb. et Zucc.), the ancestor of cultivated soybean (G. max), is believed to be a potential gene source for further improvement of soybean to cope with environmental stress. In this study, 10 simple sequence repeat (SSR) markers were used to evaluate the genetic diversity and population genetic structure in five wild soybean populations using 195 accessions collected from Dongying, China. Ten SSR markers yielded 90 bands, with an average of nine bands per marker. The percentage of polymorphic loci (P) was 97.78%, the distribution of expected heterozygosity (HE) was 0.1994-0.4460 with an average of 0.3262, and the distribution from Shannon's information index (I) was 0.3595-0.6506 with an average of 0.5386. The results showed that wild soybean had a high degree of genetic diversity at the species level. Nei's differentiation coefficient (FST) was 0.1533, and gene flow (Nm) was 1.3805, which indicated that genetic variation mainly existed within populations and that there was a certain level of gene exchange between populations. Some genetic differentiation occurred among populations, although this was not significant. Cluster analysis indicated that there was no significant correlation between the genetic structure of wild soybean populations and their geographic distribution, and the clustering results may be relatively consistent with the habitats of the accessions. In the present study, the genetic diversity of wild soybeans showed a broad genetic base and enables suggestions for the conservation of this plant to be made. PMID:26436402

  19. Study of the mode of action of some nitrodiphenyl ethers.

    PubMed

    Piekarski, D; Potier, P; Giannotti, C

    1990-01-01

    Nitrosoderivatives of the nitrodiphenyl ether herbicides (nitrofen, bifenox) have been studied. UV irradiation in different organic solvents gives degradation products. In buffered aqueous media, in the presence of chloroplasts and spin traps such as DMPO, hydroxy and peroxy radicals have been characterized. In organic media and in the presence of spin traps such as DMPO, PBN, 4-POBN, solvent radicals (.CHCl2, .CCl3, .CH2 [symbol: see text]) have been formed. Nitro-derivatives have been studied under UV irradiation and in the presence of tetramethylethylene (TME), alkenylhydroxylamines are formed which autoxidize in nitroxide radicals. The formation of the stable nitroxide radical occurs in the dark process after continuous irradiation. The intensity of the signal decreases strongly when a new irradiation is applied. Radical species, with analogous ESR spectral characteristics are formed on reaction with nitrodiphenyl ethers and fatty acids. The reactivity of these herbicides in micellar media (SDS, Brij 35, and CTAB) has been investigated. The kinetics of formation of the ESR signal corresponding to the photoreduction of the nitrodiphenyl ether in the presence of TME behave differently in a micellar environment as compared to solution. The intensity of the formation of the nitroxide increases under irradiation and decreases in the dark; the rotational correlation time tau c has been determined for each type of micelle. Synthetic nitrosodiphenyl ether made by the reduction of nitrodiphenyl ether using hydrogen gas and PtO2 as a catalyst gives the corresponding amine, which is oxidized with meta-chloroperbenzoic acid (m.CPBA). The nitrosodiphenyl ether in the presence of soja azolectin liposome containing a fluorescent probe has been analysed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2165990

  20. Characterization of chemical constituents in Zhi-Zi-Da-Huang decoction by ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    PubMed

    Zhu, Heyun; Yin, Ran; Han, Fei; Guan, Jiao; Zhang, Xiaoshu; Mao, Xinjuan; Zhao, Longshan; Li, Qing; Hou, Xiaohong; Bi, Kaishun

    2014-12-01

    A sensitive and reliable ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was established to separate and identify the chemical constituents of Zhi-Zi-Da-Huang decoction, a classic traditional Chinese medicine formula. The chromatographic separation was achieved on a Shim-pack XR-ODS C18 column (75 × 3.0 mm, 2.2 μm) using a gradient elution program. The detection was performed on a Waters Xevo G2 Q-TOF mass spectrometer equipped with electrospray ionization source in both positive and negative modes. With the optimized conditions, a total of 82 compounds were identified or tentatively characterized. Of the 82 compounds, 21 compounds were identified by comparing the retention time and MS data with reference standards, the rest were characterized by analyzing MS data and retrieving the reference literature. In addition, 31 compounds were identified from Gardenia jasminoides Ellis, ten compounds were identified from Rheum palmatum L., 33 compounds were identified from Citrus aurantium L., and eight compounds were identified from Sojae Semen Praeparatum. Results indicated that iridoids, anthraquinones, flavonoids, isoflavonoids, coumarins, glycosides of crocetin, monoterpenoids, and organic acids were major constituents in Zhi-Zi-Da-Huang decoction. It is concluded that the developed ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method with high sensitivity and resolution is suitable for identifying and characterizing the chemical constituents of Zhi-Zi-Da-Huang decoction, and the analysis provides a helpful chemical basis for further research on Zhi-Zi-Da-Huang decoction. PMID:25195935

  1. Identification of the absorbed components and metabolites of Zhi-Zi-Da-Huang decoction in rat plasma by ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry.

    PubMed

    Zhu, Heyun; Bi, Kaishun; Han, Fei; Guan, Jiao; Zhang, Xiaoshu; Mao, Xinjuan; Zhao, Longshan; Li, Qing; Hou, Xiaohong; Yin, Ran

    2015-01-01

    Zhi-Zi-Da-Huang decoction (ZZDHD), consisting of Gardenia jasminoides Ellis, Rheum palmatum L., Citrus aurantium L. and Sojae Semen Praeparatum, is a widely used traditional Chinese medicine preparation for the treatment of acute or chronic hepatic diseases. In the present study, a sensitive and selective ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) method was developed to separate and identify the absorbed components and metabolites in rat plasma after oral administration of ZZDHD. The plasma samples were pretreated by protein precipitation and separated on a Shim-pack XR-ODS C18 column (75 mm × 3.0 mm, 2.2 μm) using a gradient elution program. Mass spectrometric detection was performed on an Agilent 6520 Q-TOF mass spectrometer equipped with electrospray ionization (ESI) source in positive and negative ion modes. By comparing the retention time, high resolution mass data of blank plasma and dosed plasma, a total of 43 constituents, including 21 prototype compounds and 22 metabolites were identified or tentatively characterized. Results indicated that glucuronidation and sulfation were the main metabolic pathways of iridoid glycosides and anthraquinones, glucuronidation was the main metabolic pathways of flavanone-related compounds. It is concluded the developed UHPLC-Q-TOF-MS method with high sensitivity and resolution is suitable for identifying and characterizing the absorbed components and metabolites of ZZDHD, and the results will provide essential data for further studying the relationship between the chemical components and pharmacological activity of ZZDHD. PMID:25912849

  2. Bradyrhizobium ottawaense sp. nov., a symbiotic nitrogen fixing bacterium from root nodules of soybeans in Canada.

    PubMed

    Yu, Xiumei; Cloutier, Sylvie; Tambong, James T; Bromfield, Eden S P

    2014-09-01

    Sixteen strains of symbiotic bacteria from root nodules of Glycine max grown in Ottawa, Canada, were previously characterized and placed in a novel group within the genus Bradyrhizobium. To verify their taxonomic status, these strains were further characterized using a polyphasic approach. All strains possessed identical 16S rRNA gene sequences that were 99.79 % similar to the closest relative, Bradyrhizobium liaoningense LMG 18230(T). Phylogenetic analysis of concatenated atpD, glnII, recA, gyrB, rpoB and dnaK genes divided the 16 strains into three multilocus sequence types that were placed in a highly supported lineage distinct from named species of the genus Bradyrhizobium consistent with results of DNA-DNA hybridization. Based on analysis of symbiosis gene sequences (nodC and nifH), all novel strains were placed in a phylogenetic group with five species of the genus Bradyrhizobium that nodulate soybeans. The combination of phenotypic characteristics from several tests including carbon and nitrogen source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain OO99(T) elicits effective nodules on Glycine max, Glycine soja and Macroptilium atropurpureum, partially effective nodules on Desmodium canadense and Vigna unguiculata, and ineffective nodules on Amphicarpaea bracteata and Phaseolus vulgaris. Based on the data presented, we conclude that our strains represent a novel species for which the name Bradyrhizobium ottawaense sp. nov. is proposed, with OO99(T) ( = LMG 26739(T) = HAMBI 3284(T)) as the type strain. The DNA G+C content is 62.6 mol%. PMID:24969302

  3. A Single-Nucleotide Polymorphism in an Endo-1,4-β-Glucanase Gene Controls Seed Coat Permeability in Soybean

    PubMed Central

    Jang, Seong-Jin; Sato, Masako; Sato, Kei; Jitsuyama, Yutaka; Fujino, Kaien; Mori, Haruhide; Takahashi, Ryoji; Benitez, Eduardo R.; Liu, Baohui; Yamada, Tetsuya; Abe, Jun

    2015-01-01

    Physical dormancy, a structural feature of the seed coat known as hard seededness, is an important characteristic for adaptation of plants against unstable and unpredictable environments. To dissect the molecular basis of qHS1, a quantitative trait locus for hard seededness in soybean (Glycine max (L) Merr.), we developed a near-isogenic line (NIL) of a permeable (soft-seeded) cultivar, Tachinagaha, containing a hard-seed allele from wild soybean (G. soja) introduced by successive backcrossings. The hard-seed allele made the seed coat of Tachinagaha more rigid by increasing the amount of β-1,4-glucans in the outer layer of palisade cells of the seed coat on the dorsal side of seeds, known to be a point of entrance of water. Fine-mapping and subsequent expression and sequencing analyses revealed that qHS1 encodes an endo-1,4-β-glucanase. A single-nucleotide polymorphism (SNP) introduced an amino acid substitution in a substrate-binding cleft of the enzyme, possibly reducing or eliminating its affinity for substrates in permeable cultivars. Introduction of the genomic region of qHS1 from the impermeable (hard-seeded) NIL into the permeable cultivar Kariyutaka resulted in accumulation of β-1,4-glucan in the outer layer of palisade cells and production of hard seeds. The SNP allele found in the NIL was further associated with the occurrence of hard seeds in soybean cultivars of various origins. The findings of this and previous studies may indicate that qHS1 is involved in the accumulation of β-1,4-glucan derivatives such as xyloglucan and/or β-(1,3)(1,4)-glucan that reinforce the impermeability of seed coats in soybean. PMID:26039079

  4. Identification and Molecular Analysis of Four New Alleles at the W1 Locus Associated with Flower Color in Soybean

    PubMed Central

    Sundaramoorthy, Jagadeesh; Park, Gyu Tae; Chang, Jeong Ho; Lee, Jeong-Dong; Kim, Jeong Hoe; Seo, Hak Soo; Chung, Gyuhwa; Song, Jong Tae

    2016-01-01

    In soybean, flavonoid 3′5′-hydroxylase (F3′5′H) and dihydroflavonol-4-reductase (DFR) play a crucial role in the production of anthocyanin pigments. Loss-of-function of the W1 locus, which encodes the former, or W3 and W4, which encode the latter, always produces white flowers. In this study, we searched for new genetic components responsible for the production of white flowers in soybean and isolated four white-flowered mutant lines, i.e., two Glycine soja accessions (CW12700 and CW13381) and two EMS-induced mutants of Glycine max (PE1837 and PE636). F3′5′H expression in CW12700, PE1837, and PE636 was normal, whereas that in CW13381 was aberrant and missing the third exon. Sequence analysis of F3′5′H of CW13381 revealed the presence of an indel (~90-bp AT-repeat) in the second intron. In addition, the F3′5′H of CW12700, PE1837, and PE636 harbored unique single-nucleotide substitutions. The single nucleotide polymorphisms resulted in substitutions of amino acid residues located in or near the SRS4 domain of F3′5′H, which is essential for substrate recognition. 3D structure modeling of F3′5′H indicated that the substitutions could interfere with an interaction between the substrate and heme group and compromise the conformation of the active site of F3′5′H. Recombination analysis revealed a tight correlation between all of the mutant alleles at the W1 locus and white flower color. On the basis of the characterization of the new mutant alleles, we discussed the biological implications of F3′5′H and DFR in the determination of flower colors in soybean. PMID:27442124

  5. Major Soybean Maturity Gene Haplotypes Revealed by SNPViz Analysis of 72 Sequenced Soybean Genomes

    PubMed Central

    Langewisch, Tiffany; Zhang, Hongxin; Vincent, Ryan; Joshi, Trupti; Xu, Dong; Bilyeu, Kristin

    2014-01-01

    In this Genomics Era, vast amounts of next-generation sequencing data have become publicly available for multiple genomes across hundreds of species. Analyses of these large-scale datasets can become cumbersome, especially when comparing nucleotide polymorphisms across many samples within a dataset and among different datasets or organisms. To facilitate the exploration of allelic variation and diversity, we have developed and deployed an in-house computer software to categorize and visualize these haplotypes. The SNPViz software enables users to analyze region-specific haplotypes from single nucleotide polymorphism (SNP) datasets for different sequenced genomes. The examination of allelic variation and diversity of important soybean [Glycine max (L.) Merr.] flowering time and maturity genes may provide additional insight into flowering time regulation and enhance researchers' ability to target soybean breeding for particular environments. For this study, we utilized two available soybean genomic datasets for a total of 72 soybean genotypes encompassing cultivars, landraces, and the wild species Glycine soja. The major soybean maturity genes E1, E2, E3, and E4 along with the Dt1 gene for plant growth architecture were analyzed in an effort to determine the number of major haplotypes for each gene, to evaluate the consistency of the haplotypes with characterized variant alleles, and to identify evidence of artificial selection. The results indicated classification of a small number of predominant haplogroups for each gene and important insights into possible allelic diversity for each gene within the context of known causative mutations. The software has both a stand-alone and web-based version and can be used to analyze other genes, examine additional soybean datasets, and view similar genome sequence and SNP datasets from other species. PMID:24727730

  6. Phytophthora Have Distinct Endogenous Small RNA Populations That Include Short Interfering and microRNAs

    PubMed Central

    Fahlgren, Noah; Bollmann, Stephanie R.; Kasschau, Kristin D.; Cuperus, Josh T.; Press, Caroline M.; Sullivan, Christopher M.; Chapman, Elisabeth J.; Hoyer, J. Steen; Gilbert, Kerrigan B.; Grünwald, Niklaus J.; Carrington, James C.

    2013-01-01

    In eukaryotes, RNA silencing pathways utilize 20-30-nucleotide small RNAs to regulate gene expression, specify and maintain chromatin structure, and repress viruses and mobile genetic elements. RNA silencing was likely present in the common ancestor of modern eukaryotes, but most research has focused on plant and animal RNA silencing systems. Phytophthora species belong to a phylogenetically distinct group of economically important plant pathogens that cause billions of dollars in yield losses annually as well as ecologically devastating outbreaks. We analyzed the small RNA-generating components of the genomes of P. infestans, P. sojae and P. ramorum using bioinformatics, genetic, phylogenetic and high-throughput sequencing-based methods. Each species produces two distinct populations of small RNAs that are predominantly 21- or 25-nucleotides long. The 25-nucleotide small RNAs were primarily derived from loci encoding transposable elements and we propose that these small RNAs define a pathway of short-interfering RNAs that silence repetitive genetic elements. The 21-nucleotide small RNAs were primarily derived from inverted repeats, including a novel microRNA family that is conserved among the three species, and several gene families, including Crinkler effectors and type III fibronectins. The Phytophthora microRNA is predicted to target a family of amino acid/auxin permeases, and we propose that 21-nucleotide small RNAs function at the post-transcriptional level. The functional significance of microRNA-guided regulation of amino acid/auxin permeases and the association of 21-nucleotide small RNAs with Crinkler effectors remains unclear, but this work provides a framework for testing the role of small RNAs in Phytophthora biology and pathogenesis in future work. PMID:24204767

  7. Assessment of green cleaning effectiveness on polychrome surfaces by MALDI-TOF mass spectrometry and microscopic imaging.

    PubMed

    Hrdlickova Kuckova, Stepanka; Crhova Krizkova, Michaela; Pereira, Catarina Luísa Cortes; Hynek, Radovan; Lavrova, Olga; Busani, Tito; Branco, Luis Cobra; Sandu, Irina Crina Anca

    2014-08-01

    This article proposes an innovative methodology which employs nondestructive techniques to assess the effectiveness of new formulations based on ionic liquids, as alternative solvents for enzymes (proteases), for the removal of proteinaceous materials from painted surfaces during restoration treatments. Ionic liquids (ILs), also known as "designer" solvents, because of their peculiar properties which can be adjusted by selecting different cation-anion combinations, are potentially green solvents due totheir low vapour pressure. In this study, two ionic liquids were selected: IL1 (1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4 ])) and IL2 (1-ethyl-3-methylimidazolium ethylsulphate ([EMIM][EtSO4 ])). New formulations were prepared with these ILs and two different proteases (E): one acid (E1-pepsin) and one alkaline (E2-obtained from Aspergillus sojae). These formulations were tested on tempera and oil mock-up samples, prepared in accordance with historically documented recipes, and covered with two different types of protein-based varnishes (egg white and isinglass-fish glue). A noninvasive multiscale imaging methodology was applied before and after the treatment to evaluate the cleaning's effectiveness. Different microscopic techniques-optical microscopy (OM) with visible and fluorescent light, scanning electron microscopy (SEM) and atomic force microscopy (AFM)-together with Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) were applied on areas cleaned with the new formulations (IL + E) and reference areas cleaned only with the commercial enzyme formulations (gels). MALDI-TOF proved particularly very useful for comparing the diversity and abundance of peptides released by using different enzymatic systems. Microsc. Res. Tech. 77:574-585, 2014. © 2014 Wiley Periodicals, Inc. PMID:24825619

  8. Mechanistic aspects of biologically synthesized silver nanoparticles against food- and water-borne microbes.

    PubMed

    Krishnaraj, Chandran; Harper, Stacey L; Choe, Ho Sung; Kim, Kwang-Pyo; Yun, Soon-Il

    2015-10-01

    In the present study, silver nanoparticles (AgNPs) synthesized from aqueous leaves extract of Malva crispa and their mode of interaction with food- and water-borne microbes were investigated. Formation of AgNPs was conformed through UV-Vis, FE-SEM, EDS, AFM, and HR-TEM analyses. Further the concentration of silver (Ag) in the reaction mixture was conformed through ICP-MS analysis. Different concentration of nanoparticles (1-3 mM) tested to know the inhibitory effect of bacterial pathogens such as Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Salmonella typhi, Salmonella enterica and the fungal pathogens of Penicillium expansum, Penicillium citrinum, Aspergillus oryzae, Aspergillus sojae and Aspergillus niger. Interestingly, nanoparticles synthesized from 2 to 3 mM concentration of AgNO3 showed excellent inhibitory activities against both bacterial and fungal pathogens which are well demonstrated through well diffusion, poison food technique, minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC). In addition, mode of interaction of nanoparticles into both bacterial and fungal pathogens was documented through Bio-TEM analysis. Further the genomic DNA isolated from test bacterial strains and their interaction with nanoparticles was carried out to elucidate the possible mode of action of nanoparticles against bacteria. Interestingly, AgNPs did not show any genotoxic effect against all the tested bacterial strains which are pronounced well in agarose gel electrophoresis and for supporting this study, UV-Vis and Bio-TEM analyses were carried out in which no significant changes observed compared with control. Hence, the overall results concluded that the antimicrobial activity of biogenic AgNPs occurred without any DNA damage. PMID:26178241

  9. Multiple Horizontal Gene Transfer Events and Domain Fusions Have Created Novel Regulatory and Metabolic Networks in the Oomycete Genome

    PubMed Central

    Morris, Paul Francis; Schlosser, Laura Rose; Onasch, Katherine Diane; Wittenschlaeger, Tom; Austin, Ryan; Provart, Nicholas

    2009-01-01

    Complex enzymes with multiple catalytic activities are hypothesized to have evolved from more primitive precursors. Global analysis of the Phytophthora sojae genome using conservative criteria for evaluation of complex proteins identified 273 novel multifunctional proteins that were also conserved in P. ramorum. Each of these proteins contains combinations of protein motifs that are not present in bacterial, plant, animal, or fungal genomes. A subset of these proteins were also identified in the two diatom genomes, but the majority of these proteins have formed after the split between diatoms and oomycetes. Documentation of multiple cases of domain fusions that are common to both oomycetes and diatom genomes lends additional support for the hypothesis that oomycetes and diatoms are monophyletic. Bifunctional proteins that catalyze two steps in a metabolic pathway can be used to infer the interaction of orthologous proteins that exist as separate entities in other genomes. We postulated that the novel multifunctional proteins of oomycetes could function as potential Rosetta Stones to identify interacting proteins of conserved metabolic and regulatory networks in other eukaryotic genomes. However ortholog analysis of each domain within our set of 273 multifunctional proteins against 39 sequenced bacterial and eukaryotic genomes, identified only 18 candidate Rosetta Stone proteins. Thus the majority of multifunctional proteins are not Rosetta Stones, but they may nonetheless be useful in identifying novel metabolic and regulatory networks in oomycetes. Phylogenetic analysis of all the enzymes in three pathways with one or more novel multifunctional proteins was conducted to determine the probable origins of individual enzymes. These analyses revealed multiple examples of horizontal transfer from both bacterial genomes and the photosynthetic endosymbiont in the ancestral genome of Stramenopiles. The complexity of the phylogenetic origins of these metabolic pathways and

  10. Salinity tolerance in soybean is modulated by natural variation in GmSALT3.

    PubMed

    Guan, Rongxia; Qu, Yue; Guo, Yong; Yu, Lili; Liu, Ying; Jiang, Jinghan; Chen, Jiangang; Ren, Yulong; Liu, Guangyu; Tian, Lei; Jin, Longguo; Liu, Zhangxiong; Hong, Huilong; Chang, Ruzhen; Gilliham, Matthew; Qiu, Lijuan

    2014-12-01

    The identification of genes that improve the salt tolerance of crops is essential for the effective utilization of saline soils for agriculture. Here, we use fine mapping in a soybean (Glycine max (L.) Merr.) population derived from the commercial cultivars Tiefeng 8 and 85-140 to identify GmSALT3 (salt tolerance-associated gene on chromosome 3), a dominant gene associated with limiting the accumulation of sodium ions (Na+) in shoots and a substantial enhancement in salt tolerance in soybean. GmSALT3 encodes a protein from the cation/H+ exchanger family that we localized to the endoplasmic reticulum and which is preferentially expressed in the salt-tolerant parent Tiefeng 8 within root cells associated with phloem and xylem. We identified in the salt-sensitive parent, 85-140, a 3.78-kb copia retrotransposon insertion in exon 3 of Gmsalt3 that truncates the transcript. By sequencing 31 soybean landraces and 22 wild soybean (Glycine soja) a total of nine haplotypes including two salt-tolerant haplotypes and seven salt-sensitive haplotypes were identified. By analysing the distribution of haplotypes among 172 Chinese soybean landraces and 57 wild soybean we found that haplotype 1 (H1, found in Tiefeng 8) was strongly associated with salt tolerance and is likely to be the ancestral allele. Alleles H2-H6, H8 and H9, which do not confer salinity tolerance, were acquired more recently. H1, unlike other alleles, has a wide geographical range including saline areas, which indicates it is maintained when required but its potent stress tolerance can be lost during natural selection and domestication. GmSALT3 is a gene associated with salt tolerance with great potential for soybean improvement. PMID:25292417