Note: This page contains sample records for the topic soja anticarsia gemmatalis from
While these samples are representative of the content of,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of
to obtain the most current and comprehensive results.
Last update: August 15, 2014.

Effect of azadirachtin on the control of Anticarsia gemmatalis and its impact on Trichogramma pretiosum  

Microsoft Academic Search

Anticarsia gemmatalis has great potential to reduce soybean productivity, and the egg parasitoid Trichogramma pretiosum is a major agent in the biological control of this pest in soybean fields. We show that azadirachtin is able to control velvetbean\\u000a caterpillars in soybean plants and also that it has no effects on the parasitoid T. pretiosum. Soybean plants were sprayed with solutions

G. D. Almeida; J. C. Zanuncio; D. Pratissoli; G. S. Andrade; P. R. Cecon; J. E. Serrão



Growth, metabolism and baculovirus production in suspension cultures of an Anticarsia gemmatalis cell line.  


The UFL-AG-286 cell line, established from embryonic tissue of the lepidopteran insect Anticarsia gemmatalis, has been identified as a good candidate to be used as a cellular substrate in the development of a process for in vitro production of the Anticarsia gemmatalis multicapsid nucleopolyhedrovirus, a baculovirus widely used as bioinsecticide. In order to characterize the technological properties of this cell line and evaluate its feasibility to use it for the large-scale production of Anticarsia gemmatalis multicapsid nucleopolyhedrovirus, UFL-AG-286 cells were adapted to grow as agitated suspension cultures in spinner-flasks. Batch suspension cultures of adapted cells in serum-supplemented TC-100 medium grew with a doubling time of about 29 h and reached a maximum cell density higher than 3.5 x 10(6) viable cells ml(-1). At the end of the growth period glucose was completely depleted from the culture medium, but L: -lactate was not produced. Amino acids, with the exception of glutamine, were only negligibly consumed or produced. In contrast to other insect cell lines, UFL-AG-286 cells appeared to be unable to synthesize alanine as a metabolic way to dispose the by-product ammonia. The synchronous infection of suspension cultures with Anticarsia gemmatalis multicapsid nucleopolyhedrovirus in the early to medium exponential growth phase yielded high amounts of both viral progenies per cell and reduced the specific demands of UFL-AG-286 cells for the main nutrients. PMID:19002870

Gioria, Verónica Viviana; Jäger, Volker; Claus, Juan Daniel



High genetic stability of peroral infection factors from Anticarsia gemmatalis MNPV over 20years of sampling.  


The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) has been used as a biopesticide since the early 1980s in Brazil to control the major pest of soybean crops, the velvetbean caterpillar, Anticarsia gemmatalis. To monitor the genetic diversity over space and time we sequenced four pif genes (pif1, pif2, pif3 and pif4) from AgMNPV isolates collected from different regions of South America, as well as of seasonal isolates, sampled during a two-decade field experiment. Although all genes presented low levels of polymorphism, the pif-2 carries a slightly higher number of polymorphic sites. Overall, this study reveals that pif genes have remained stable after 20 years of repeated field application. PMID:24590109

Ferreira, Briana C; Melo, Fernando L; Souza, Marlinda L; Moscardi, Flávio; Báo, Sônia N; Ribeiro, Bergmann M



Pathogenesis of Autographa californica multiple nucleopolyhedrovirus in fifth-instar Anticarsia gemmatalis larvae.  


We have investigated infection and pathogenesis of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in Anticarsia gemmatalis (velvetbean caterpillar) larvae using a lacZ recombinant virus (AcMNPV-hsp70/lacZ) to track the temporal progression of infection in the midgut intestine and haemocoel. A. gemmatalis was highly resistant to fatal infection by occlusion bodies (OBs; LD(50)>5.5 x 10(5) OB) and budded virus (BV; LD(50)>3 x 10(5) BV) administered via oral and systemic routes, respectively. Orally administered occlusion-derived virus (ODV) efficiently attached and fused to midgut cells; however, high levels of infection-induced apoptosis limited infection in the midgut. Transcriptional analysis of AcMNPV genes expressed in the midgut of OB-inoculated A. gemmatalis larvae showed high levels of mRNA encoding the major capsid protein VP39 in the absence of immediate-early transactivator 1 (ie-1) expression. In the midgut, virus was efficiently transferred from infected midgut epithelial cells to nearby tracheolar cells and circulating haemocytes to initiate systemic infection in the haemocoel. However, haemocoelic BV did not efficiently disseminate infection and only cuticular epidermal cells displayed high levels of viral infection. Flow cytometry analysis of haemocytes isolated from BV-inoculated A. gemmatalis larvae showed low-level expression of the BV envelope protein GP64 on the cell surface, suggesting that A. gemmatalis haemocytes have a limited capacity for amplifying virus. These results show that AcMNPV is not an effective biological control agent for limiting crop damage caused by A. gemmatalis larvae. PMID:19423548

Chikhalya, Aniska; Luu, Dee Dee; Carrera, Maggie; De La Cruz, Alisa; Torres, Marianne; Martinez, Elisa N; Chen, Tiffany; Stephens, Kimberly D; Haas-Stapleton, Eric J



Biochemical responses of Anticarsia gemmatalis (Lepidoptera: Noctuidae) in soybean cultivars sprayed with the protease inhibitor berenil.  


The damage caused by Anticarsia gemmatalis motivates this study on the adaptive mechanisms of the insect to soybean. The lipoxygenase pathway produces and releases jasmonic acid, involved in the regulation of the plant defense genes, which encodes protease inhibitor (PI) production. Three soybean cultivars IAC-18, IAC-24, and Foscarin-31 were sprayed with water and berenil, a synthetic inhibitor, at 0.60 and 1.0% (w/v) and then infested with A. gemmatalis larvae. The lipoxygenase (LOX) activity increased in the leaves of Foscarin-31, IAC-18, and IAC-24 by 87, 81, and 78%, respectively, after 24 h of A. gemmatalis damage. IAC-18 revealed the lowest increase in PI when compared to the other cultivars. Protease, amidase, and esterase activities in soybean larvae dropped drastically after berenil application. PIs may be included in the control strategies of A. gemmatalis in soybean by lowering the digestive enzyme activity in the larval midgut, thus affecting insect growth and development. PMID:23909602

Paixão, Gilson P; Lourenção, André L; Silva, Camila R; Mendonça, Eduardo G; Silva, Paulo L; Oliveira, Joel A; Zanuncio, José C; Oliveira, Maria Goreti A



Bioinsecticidal activity of Talisia esculenta reserve protein on growth and serine digestive enzymes during larval development of Anticarsia gemmatalis  

Microsoft Academic Search

Plants synthesize a variety of molecules to defend themselves against an attack by insects. Talisin is a reserve protein from Talisia esculenta seeds, the first to be characterized from the family Sapindaceae. In this study, the insecticidal activity of Talisin was tested by incorporating the reserve protein into an artificial diet fed to the velvetbean caterpillar Anticarsia gemmatalis, the major

Maria Lígia R. Macedo; Maria das Graças M. Freire; Carlos Eduardo G. Kubo; José Roberto P. Parra



[Selection of resistant peanut genotypes to Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) supported by multivariate analysis].  


The velvetbean caterpillar Anticarsia gemmatalis Hübner attacks peanut leaves, and the use of resistant varieties has directly contributed to ecological and economic aspects of pest control. The aim of this work was to select resistant peanut genotypes to A. gemmatalis using cluster analyses (dendogram obtained by Ward's methods and K-means) and Principal Components analysis for data interpretation. The evaluated genotypes were: IAC 5, IAC 8112, IAC 22 and IAC Tatu ST with upright growth habit, and IAC 147, IAC 125, IAC Caiapó and IAC Runner 886 with runner growth habit, and soybean genotype BR 16 as a susceptible control. The biological parameters: leaf consumption, larval (4 masculine instar) and pupal (24h old) weight, larval and pupal development time and adult longevity were evaluated at laboratory conditions. The genotypes IAC 147 and IAC Runner 886 were resistant to A. gemmatalis in both cluster tests, grouping apart from most of the other genotypes. Both dendrogram and K-means methods provided satisfactory biological explanation, and they can be complementary used together with Principal Component and vice-versa. These results suggest that cluster analyses may be an important statistical tool in the selection of host plant resistance. PMID:20498965

Pitta, Rafael M; Boiça, Arlindo L; Jesus, Flávio G de; Tagliari, Sônia R A



Effects of Fetal Bovine Serum deprivation in cell cultures on the production of Anticarsia gemmatalis Multinucleopolyhedrovirus  

PubMed Central

Background Anticarsia gemmatalis is a pest in South America's soybean crops, which could be controlled by the Multinucleopolyhedrovirus of A. gemmatalis (AgMNPV). Currently, its commercial production is based on infected larvae. However, the possibility of using modified baculoviruses in Integrated Pest Management programs has stimulated an interest to develop alternative multiplication processes. This study evaluated the AgMNPV production in UFL-Ag-286 cells previously deprived Fetal Bovine Serum. Results Culture media containing 1% FBS during the previous 48 hours achieved a synchronized condition where 90% of cells were found in G0/G1 stage, showing the presence of non-filamentous actin. All characteristics were estimated from cellular viability tests, cell actin detection trials and flow cytometer cell cycle analysis. AgMNPV production was tested by transcript studies and budded viruses (BVs) and occlusion bodies (OBs) yield quantitation. Results showed that the productivity in FBS deprived cells was 9.8 times more in BVs and 3.8 times more in OBs with respect to non-treated cells. Conclusions UFL-Ag-286 cells previously deprived in FBS shown to be a better host for AgMNPV propagation, increasing the useful for both in vitro bioinsecticide production and applications such as recombinant protein expression or gene delivery.



Molecular cloning and sequence analysis of the Anticarsia gemmatalis multicapsid nuclear polyhedrosis virus GP64 glycoprotein.  


The gp64 locus of Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate Santa Fe (AgMNPV-SF) was characterised molecularly in our laboratory. To this end, we have located and cloned a AgMNPV-SF genomic DNA fragment containing the gp64 gene and sequenced the complete gp64 locus. Nucleotide sequence analysis indicated that the AgMNPV gp64 gene consists of a 1500 nucleotide open reading frame (ORF), encoding a protein of 499 amino acids. Of the seven gp64 homologues identified to date, the AgMNPV gp64 ORF shared most sequence similarity with the gp64 gene of Orgyia pseudotsugata MNPV. The GP64 from AgMNPV is the smallest baculoviral envelope glycoprotein found to date, differing in 10 or more residues from the other group I nucleopolyhedroviruses. The biological activity of AgMNPV GP64 protein was assessed by cell fusion assays in UFL-AG-286 cells using the obtained recombinant plasmids. In the upstream and downstream regions, relative to the gp64 ORF, we found different conserved transcriptional and post-transcriptional regulatory elements, respectively. PMID:12680694

Pilloff, Marcela Gabriela; Bilen, Marcos Fabián; Belaich, Mariano Nicolás; Lozano, Mario Enrique; Ghiringhelli, Pablo Daniel



Characterization of the ecdysteroid UDP-glucosyltransferase (egt) gene of Anticarsia gemmatalis nucleopolyhedrovirus.  


The Anticarsia gemmatalis nucelopolyhedrovirus (AgMNPV) egt gene was cloned, sequenced and its expression characterized by RT-PCR and western blot analysis. Sequence analysis of the gene indicated the presence of an open reading frame (ORF) of 1482 nucleotides, which codes for a polypeptide of 494 amino acids. ATATA box and a conserved regulatory sequence (CATT) found in other baculovirus early genes were present in the promoter region of the egt gene. A poly-A consensus sequence was present in the 3' untranslated region (3'-UTR) of the gene. Homology comparisons showed that the EGT protein of AgMNPV is most closely related (95.9% amino acid sequence identity) to the EGT from the Choristoneura fumiferana DEF nucleopolyhedrovirus (CfDEF). Transcriptional analysis of the AgMNPV egt gene showed that egt-specific transcripts can be detected both early and late in infection. The EGT protein was detected, by western blot analysis, in the intra- (from 12 to 48 h post-infection) and extra-cellular (from 12 to 96 h post-infection) fractions of infected insect cells. The AgMNPV Bgl II-F fragment, which has homology to the AcMNPV ie-1 gene, was cloned and used to cotransfect SF21 cells with the cloned AgMNPV egt gene. EGT activity was observed, suggesting that AgMNPV ie-1 can transactivate egt expression. PMID:11210933

Rodrigues, J C; De Souza, M L; O'Reilly, D; Velloso, L M; Pinedo, F J; Razuck, F B; Ribeiro, B; Ribeiro, B M



Characterization of the p10 gene region of Anticarsia gemmatalis nucleopolyhedrovirus.  


The Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) p10 gene region was cloned, sequenced and the putative p10 gene expression characterized by Northern-blot analysis. Sequence analysis of the p10 gene region indicated the presence of two complete open reading frames (ORFs) of 713 and 281 nucleotides, which codes for polypeptides of 273 and 93 amino acids, with homology to the P26 and P10 proteins of baculoviruses, respectively. Two additional partial ORFs, coding for partial polypeptides of 110 and 146 amino acids, showed homology to the p22.2 gene of Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) and p74 genes of different baculoviruses, respectively. A small ORF of 224 nucleotides coding for a protein of 74 amino acids showed homology to the 3'-end of the early p94 gene of AcMNPV. A putative baculovirus very late promoter motif TAAG was identified in the 5'-non-translated region (5'-UTR) at position-54 upstream of the start codon. The consensus polyadenylation sequence AATAAA is present 146nt downstream of the termination codon and the p10 ORF is flanked by the p26 and p74 ORFs. Homology comparisons showed that the P10 protein of AgMNPV is most closely related (82% amino acid sequence identity) to the P10 from the Orgyia pseudotsugata nucleopolyhedrovirus (OpMNPV). Transcriptional analysis of the AgMNPV p10 gene showed that p10-specific transcripts could be detected late in infection. PMID:12086145

Razuck, Fernando Barcellos; Ribeiro, Berghem; Vargas, José Hamilton; Wolff, Jose Luiz; Ribeiro, Bergmann Morais



Proteolytic activity of gut bacteria isolated from the velvet bean caterpillar Anticarsia gemmatalis.  


The development of proteinase inhibitors as potential insect control agents has been constrained by insect adaptation to these compounds. The velvet bean caterpillar (Anticarsia gemmatalis) is a key soybean pest species that is well-adapted to proteinase inhibitors, particularly serine-proteinase inhibitors, which are abundant in the caterpillar host. The expression of diverse proteolytic enzymes by gut symbionts may allow the velvet bean caterpillar to circumvent proteinase inhibitors produced by the host plant. In this study, we characterized the proteolytic activity of the four nonpathogenic species of gut bacteria isolated from the velvet bean caterpillar-Bacillus cereus, Enterococcus gallinarum, Enterococcus mundtii and Staphylococcus xylosus. Two proteinase substrates, N-?-benzoyl-L-Arg-p-nitroanilide (L-BApNA) and N-?-p-tosyl-L-Arg methyl ester (L-TAME) and five proteinase inhibitors [aprotinin, E-64, ethylenediamine tetraacetic acid (EDTA), pepstatin and N-?-tosyl-L-lysine chloromethyl ketone (TLCK)] as well as CaCl2, pH and temperature profiles were used to characterize the expressed proteolytic activity of these bacterial strains in vitro. Kinetic parameters for proteolytic activity were also estimated. The results of these experiments indicated that serine- and cysteine-proteinase activities were expressed by all four gut bacteria symbionts of the velvet bean caterpillar. The cysteine- and serine-proteinase activities of these gut symbionts were distinct and different from that of gut proteinases of the caterpillar itself. This finding provides support for the potential involvement of gut symbionts in the mitigation of the negative effects of serine-proteinase inhibitors in the velvet bean caterpillar. PMID:23392900

Pilon, F M; Visôtto, L E; Guedes, R N C; Oliveira, M G A



Genome of the most widely used viral biopesticide: Anticarsia gemmatalis multiple nucleopolyhedrovirus.  


The genome of Anticarsia gemmatalis multiple nucleopolyhedrovirus isolate 2D (AgMNPV-2D), which is the most extensively used virus pesticide in the world, was completely sequenced and shown to have 132 239 bp (G+C content 44.5 mol%) and to be capable of encoding 152 non-overlapping open reading frames (ORFs). Three ORFs were unique to AgMNPV-2D, one of which (ag31) had similarity to eukaryotic poly(ADP-ribose) polymerases. The lack of chiA and v-cath may explain some of the success and growth of the AgMNPV biological control programme, as it may explain the high recovery of polyhedra sequestered inside dead larvae in the field, which are collected and used for further application as biological pesticides in soybean fields. The genome organization was similar to that of the Choristoneura fumiferana defective MNPV (CfDefNPV). Most of the variation between the two genomes took place near highly repetitive regions, which were also closely associated with bro-coding regions. The separation of the NPVs into groups I and II was supported by: (i) a phenogram of the complete genomes of 28 baculovirus and Heliothis zea virus 1, (ii) the most parsimonious reconstruction of gene content along the phenograms and (iii) comparisons of genomic features. Moreover, these data also reinforced the notion that group I of the NPVs can be split further into the AgMNPV lineage (AgMNPV, CfDefNPV, Epiphyas postvittana NPV, Orgyia pseudotsugata MNPV and C. fumiferana MNPV), sharing eight defining genes, and the Autographa californica MNPV (AcMNPV) lineage (AcMNPV, Rachiplusia ou NPV and Bombyx mori NPV), sharing nine defining genes. PMID:17030857

Oliveira, Juliana Velasco de Castro; Wolff, José Luiz Caldas; Garcia-Maruniak, Alejandra; Ribeiro, Bergmann Morais; de Castro, Maria Elita Batista; de Souza, Marlinda Lobo; Moscardi, Flavio; Maruniak, James Edward; Zanotto, Paolo Marinho de Andrade



Biological characteristics of Anticarsia gemmatalis (Lepidoptera: Noctuidae) for three consecutive generations under different temperatures: understanding the possible impact of global warming on a soybean pest.  


Climate changes can affect the distribution and intensity of insect infestations through direct effects on their life cycles. Experiments were carried out during three consecutive generations to evaluate the effect of different temperatures (25°C, 28°C, 31°C, 34°C and 37±1°C) on biological traits of the velvetbean caterpillar Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Noctuidae). The insects were fed on artificial diet and reared in environmental chambers set at 14 h photophase. The developmental cycle slowed with the increase in the temperature, within the 25°C to 34°C range. Male and female longevities were reduced with an increase in temperature from 25°C to 28°C. Egg viability was highest at 25°C, and the sex ratio was not influenced by temperature, in the three generations. There was no interactive effect between development time and temperature on pupal weight. The results suggested that the increase in the temperature negatively impacted A. gemmatalis development inside the studied temperature range, indicating a possible future reduction of its occurrence on soybean crops, as a consequence of global warming, mainly considering its impact on tropical countries where this plant is cropped. A. gemmatalis was not able to adapt to higher temperatures in a three-generation interval for the studied temperature range. However, a gradual increase and a longer adaptation period may favor insect selection and consequently adaptation, and must be considered in future studies in this area. Moreover, it is important to consider that global warming might turn cold areas more suitable to A. gemmatalis outbreaks. Therefore, more than a future reduction of A. gemmatalis occurrence due to global warming, we might expect changes regarding its area of occurrence on a global perspective. PMID:22112586

da Silva, D M; Hoffmann-Campo, C B; de Freitas Bueno, A; de Freitas Bueno, R C O; de Oliveira, M C N; Moscardi, F



A Recombinant Anticarsia gemmatalis MNPV Harboring chiA and v-cath Genes from Choristoneura fumiferana Defective NPV Induce Host Liquefaction and Increased Insecticidal Activity  

PubMed Central

One of the interesting features of Anticarsia gemmatalis multiple nucleopolyhedrovirus isolate 2D (AgMNPV-2D) genome is the absence of chitinase (chiA) and cathepsin (v-cath) genes. This characteristic may be responsible for the lack of liquefaction and melanization in A. gemmatalis larvae killed by AgMNPV-2D infection. This study aimed to test the hypothesis that CHIA and V-CATH proteins from Choristonera fumiferana DEF multiple nucleopolyhedrovirus (CfDEFNPV) are able to liquefy and melanize the cuticle of A. gemmatalis larvae infected by a recombinant AgMNPV containing chiA and v-cath genes inserted in its genome. A fragment from the CfDefNPV genome containing chiA and v-cath genes was inserted into the genome of AgMNPV-2D. The recombinant virus (vAgp2100Cf.chiA/v-cath) was purified and used to infect insect cells and larvae. Transcripts of v-cath and chiA genes were detected along the infection of insect cells by qRT-PCR, from early to late phases of infection. The analysis of A. gemmatalis larvae killed by vAgp2100Cf.chiA/v-cath infection confirmed the hypothesis proposed. The vAgp2100Cf.chiA/v-cath showed higher insecticidal activity against third instar A. gemmatalis larvae when compared to AgMNPV-2D. The mean time to death was also lower for the vAgp2100Cf.chiA/v-cath when compared to AgMNPV-2D at 10 days post infection. Occlusion body production was higher in A. gemmatalis larvae infected with vAgp2100Cf.chiA/v-cath when compared to AgMNPV-2D. Enzyme assays showed higher chitinase and cysteine protease activities in insect cells and insects infected with vAgp2100Cf.chiA/v-cath when compared to AgMNPV-2D. The introduction of chiA and v-cath genes into the genome of AgMNPV improves its insecticidal activity against A. gemmatalis larvae and this recombinant virus could be used as an alternative to the wild type virus to control this important insect pest.

Lima, Anabele Azevedo; Aragao, Clara Wandenkolck Silva; de Castro, Maria Elita Batista; Oliveira, Juliana Velasco de Castro; Sosa Gomez, Daniel Ricardo; Ribeiro, Bergmann Morais



The gp64 locus of Anticarsia gemmatalis multicapsid nucleopolyhedrovirus contains a 3' repair exonuclease homologue and lacks v-cath and ChiA genes.  


Anticarsia gemmatalis multicapsid nucleopolyhedrovirus (AgMNPV) is one of the most successful biological insecticides. In this study, we cloned and sequenced a 12.5 kbp BamHI-D restriction endonuclease fragment of the AgMNPV isolate 2D genome that includes the gp64 gene. We compared this highly conserved region with that of other baculoviruses. AgMNPV contained two genes, p22.2 and v-trex, in common with Choristoneura fumiferana MNPV (CfMNPV) that were not present in other baculoviruses. The v-trex gene has homology to a eukaryotic 3' repair exonuclease and appears to have been acquired from an invertebrate host. The v-trex gene product has the potential to be involved in virus recombination or UV-light tolerance. Multigene phylogenetic analysis suggested that AgMNPV is most closely related to Orgyia pseudotsugata MNPV (OpMNPV). AgMNPV differed from other group I NPVs in that ChiA and v-cath gene homologues were missing from the region downstream of the gp64 gene. Proteinase assays and genetic probes suggest the v-cath gene is absent from AgMNPV. PMID:14718636

Slack, Jeffrey M; Ribeiro, Bergmann M; de Souza, Marlinda Lobo



Effects of ambient UV-B radiation on soybean crops: Impact on leaf herbivory by Anticarsia gemmatalis  

Microsoft Academic Search

Replicated field experiments with large plastic filters were carried outin Buenos Aires (Argentina, 34° S) to study the impacts of current levelsofsolar UV-B radiation (? = 315 ) on soybean(Glycine max L.) crops and their interactions with chewinginsects, in particular the soybean worm Anticarsiagemmatalis Hübner (Lepidoptera: Noctuidae). Solar(near-ambient)UV-B induced changes in the leaves that reduced their attractiveness toA. gemmatalis larvae

J. A. Zavala; A. L. Scopel; C. L. Ballaré



Kinetics of Nodule Development in Glycine soja.  

PubMed Central

Nodule development in the interaction of Glycine soja Sieb. & Zucc. PI468.397 with Bradyrhizobium japonicum USDA110 was studied by hypochlorite clearing and methylene blue staining. Even the earliest stages of nodule development could be observed. The entire length of the primary root was examined up to 15 d postinoculation. Markedly curled root hairs and the first cell divisions in the hypodermal layer (stage I) were observed 2 d postinoculation, and by 3 d cell division activity had spread to the outer layers of the cortex (stage II). Cortical cell division centers not associated with curled root hairs, frequently observed in soybean (Glycine max [L.] Merr.), were very rare in G. soja. The cortical cell division centers that had developed a well-defined nodule meristem (at or beyond stage IV) by 6 d postinoculation continued to develop, but the less-advanced stages became arrested. Almost all nodules developed near the position of the root tip at the time of inoculation. In the parts of the root that developed after inoculation, regions with a high density of markedly curled root hairs per root length were observed. The percentage of the curled root hairs associated with cortical cell division centers, however, declined with each successive peak. Regulation of nodule development in G. soja was similar to that previously reported in soybean, although the rate of nodule development was slower.

Eskew, D. L.; Jiang, Q.; Caetano-Anolles, G.; Gresshoff, P. M.



Genome Duplication in Soybean (Glycine Subgenus Soja)  

PubMed Central

Restriction fragment length polymorphism mapping data from nine populations (Glycine max X G. soja and G. max X G. max) of the Glycine subgenus soja genome led to the identification of many duplicated segments of the genome. Linkage groups contained up to 33 markers that were duplicated on other linkage groups. The size of homoeologous regions ranged from 1.5 to 106.4 cM, with an average size of 45.3 cM. We observed segments in the soybean genome that were present in as many as six copies with an average of 2.55 duplications per segment. The presence of nested duplications suggests that at least one of the original genomes may have undergone an additional round of tetraploidization. Tetraploidization, along with large internal duplications, accounts for the highly duplicated nature of the genome of the subgenus. Quantitative trait loci for seed protein and oil showed correspondence across homoeologous regions, suggesting that the genes or gene families contributing to seed composition have retained similar functions throughout the evolution of the chromosomes.

Shoemaker, R. C.; Polzin, K.; Labate, J.; Specht, J.; Brummer, E. C.; Olson, T.; Young, N.; Concibido, V.; Wilcox, J.; Tamulonis, J. P.; Kochert, G.; Boerma, H. R.



Phytophthora sojae: root rot pathogen of soybean and model oomycete.  


SUMMARY Phytophthora sojae is an oomycete pathogen of soybean, classified in the kingdom Stramenopiles. It causes 'damping off' of seedlings and root rot of older plants, with an annual cost worldwide of $1-2 billion. Owing to its economic importance, this species, along with P. infestans, has been developed as a model species for the study of oomycete plant pathogens. It is readily transformed with DNA enabling over-expression and silencing of selected genes, genetic maps have been constructed and large expressed sequence tag sequence libraries have been developed. A draft genome sequence has recently been completed. This review briefly summarizes current information about the pathogenicity, evolution, molecular biology and genomics of P. sojae. Taxonomy: Phytophthora sojae (Kaufman & Gerdman): superkingdom Eukaryota; kingdom Stramenopila; phylum Oomycota; class Peronosporomycetidae; order Pythiales; family Pythiaceae; genus Phytophthora. Host range: Soybean is the only economically important host. Several species of lupins have also been reported as hosts. Disease symptoms and signs: All parts of the soybean plant are susceptible to infection by P. sojae, from germinating seedlings to mature plants. In the field, P. sojae causes damping off of soybean seedlings and a root and stem rot of established plants. Leaves can be infected in the field as a result of rain splash or by deliberate inoculation in the laboratory. Damping off can affect germinating seeds or emerged seedlings and is most severe when the spring is very wet and warm (25-30 degrees C). Established plants can become infected when the soil is wet for extended periods, especially if the soil is poorly drained. Both the cortex and the vascular tissue are colonized by P. sojae, and the infection can spread rapidly along the vascular tissues in susceptible cultivars. Useful websites:,,,,,,,, PMID:20507474

Tyler, Brett M



Comparative Analysis of Expressed Sequences in Phytophthora sojae1  

PubMed Central

Phytophthora sojae (Kaufmann and Gerdemann) is an oomycete that causes stem and root rot on soybean (Glycine max L. Merr) plants. We have constructed three cDNA libraries using mRNA isolated from axenically grown mycelium and zoospores and from tissue isolated from plant hypocotyls 48 h after inoculation with zoospores. A total of 3,035 expressed sequence tags (ESTs) were generated from the three cDNA libraries, representing an estimated 2,189 cDNA transcripts. The ESTs were classified according to putative function based on similarity to known proteins, and were analyzed for redundancy within and among the three source libraries. Distinct expression patterns were observed for each library. By analysis of the percentage G+C content of the ESTs, we estimate that two-thirds of the ESTs from the infected plant library are derived from P. sojae cDNA transcripts. The ESTs originating from this study were also compared with a collection of Phytophthora infestans ESTs and with all other non-human ESTs to assess the similarity of the P. sojae sequences to existing EST data. This collection of cDNA libraries, ESTs, and accompanying annotation will provide a new resource for studies on oomycetes and on soybean responses to pathogen challenge.

Qutob, Dinah; Hraber, Peter T.; Sobral, Bruno W.S.; Gijzen, Mark



Soybean phytophthora root rot: {\\\\it Phytophthora sojae\\\\\\/} races in Indiana and factors affecting disease resistance  

Microsoft Academic Search

Phytophthora root rot of soybeans caused by Phytophthora sojae has been one of the most important diseases throughout the soybean growing areas of the United States and Canada since the 1950's. Documenting the current physiological diversity of P. sojae and the role of factors affecting disease resistance are important in reducing yield losses due to this disease. Prevalence and distribution

Jose Cristino Melgar



Draft Genome Sequencing and Comparative Analysis of Aspergillus sojae NBRC4239  

PubMed Central

We conducted genome sequencing of the filamentous fungus Aspergillus sojae NBRC4239 isolated from the koji used to prepare Japanese soy sauce. We used the 454 pyrosequencing technology and investigated the genome with respect to enzymes and secondary metabolites in comparison with other Aspergilli sequenced. Assembly of 454 reads generated a non-redundant sequence of 39.5-Mb possessing 13 033 putative genes and 65 scaffolds composed of 557 contigs. Of the 2847 open reading frames with Pfam domain scores of >150 found in A. sojae NBRC4239, 81.7% had a high degree of similarity with the genes of A. oryzae. Comparative analysis identified serine carboxypeptidase and aspartic protease genes unique to A. sojae NBRC4239. While A. oryzae possessed three copies of ?-amyalse gene, A. sojae NBRC4239 possessed only a single copy. Comparison of 56 gene clusters for secondary metabolites between A. sojae NBRC4239 and A. oryzae revealed that 24 clusters were conserved, whereas 32 clusters differed between them that included a deletion of 18 508 bp containing mfs1, mao1, dmaT, and pks-nrps for the cyclopiazonic acid (CPA) biosynthesis, explaining the no productivity of CPA in A. sojae. The A. sojae NBRC4239 genome data will be useful to characterize functional features of the koji moulds used in Japanese industries.

Sato, Atsushi; Oshima, Kenshiro; Noguchi, Hideki; Ogawa, Masahiro; Takahashi, Tadashi; Oguma, Tetsuya; Koyama, Yasuji; Itoh, Takehiko; Hattori, Masahira; Hanya, Yoshiki



Borrelidin, a potent antifungal agent: insight into the antifungal mechanism against Phytophthora sojae.  


Borrelidin has high and specific antifungal activity against Phytophthora sojae . To explore the antifungal mechanism of borrelidin against P. sojae , the relationship between the antifungal activity of borrelidin and the concentration of threonine was evaluated. The results demonstrated that the growth-inhibitory effect of borrelidin on the growth of P. sojae was antagonized by threonine in a dose-dependent manner, suggesting that threonyl-tRNA synthetase (ThrRS) may be the potential target of borrelidin. Subsequently, the inhibition of the enzymatic activity of ThrRS by borrelidin in vitro was confirmed. Furthermore, the detailed interaction between ThrRS and borrelidin was investigated using fluorescence spectroscopy and circular dichroism (CD), implying a tight binding of borrelidin to ThrRS. Taken together, these results suggest that the antifungal activity of borrelidin against P. sojae was mediated by inhibition of ThrRS via the formation of the ThrRS-borrelidin complex. PMID:22967236

Gao, Ya-Mei; Wang, Xiang-Jing; Zhang, Ji; Li, Ming; Liu, Chong-Xi; An, Jing; Jiang, Ling; Xiang, Wen-Sheng



Heterologous expression of a pleiotropic drug resistance transporter from Phytophthora sojae in yeast transporter mutants  

Microsoft Academic Search

A system for the expression of an ATP binding cassette (ABC) transporter from the soybean pathogen Phytophthora sojae is described. Pdr1, an ABC transporter with homology to the pleiotropic drug resistance (PDR) family of transporters, was cloned by primer walking\\u000a from a P. sojae genomic library. Reverse transcriptase PCR assays showed that the transcript disappeared after encystment of zoospores and

Mary S. Connolly; Yasuko Sakihama; Vipaporn Phuntumart; Yinjun Jiang; Franklin Warren; Lindsay Mourant; Paul F. Morris



Cell Culture Derived AgMNPV Bioinsecticide: Biological Constraints and Bioprocess Issues  

Microsoft Academic Search

We have studied parameters for optimizing the Spodoptera frugiperda (Sf9) cell culture and viral infection for the production of Anticarsia gemmatalis multiple nucleopolyhedrosis virus (AgMNPV) polyhedra inclusion bodies (PIBs) in shaker-Schott or spinner bottles and bioreactors.\\u000a We have assayed the kLa of the systems, initial cell seeding, cell culture volume, dissolved oxygen (DO), multiplicity of infection (MOI), nutrients\\u000a consumption, and

Valeria M. Rodas; Fabiano H. Marques; Marcelo T. Honda; Daniela M. Soares; Soraia A. C. Jorge; Marta M. Antoniazzi; Claudia Medugno; Maria E. B. Castro; Bergmann M. Ribeiro; Marlinda L. Souza; Aldo Tonso; Carlos A. Pereira



Molecular characterization of genes in the GP41 region of baculoviruses and phylogenetic analysis based upon GP41 and polyhedrin genes  

Microsoft Academic Search

A newly sequenced Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) gp41 gene was used to reconstruct the phylogeny for gp41 by comparison with Autographa californica MNPV, Bombyx mori MNPV, Helicoverpa zea single nucleopolyhedrovirus (SNPV), Lymantria dispar MNPV, Orgyia pseudotsugata MNPV and Spodoptera frugiperda MNPV. The 3.5 kb fragment of the AgMNPV gp41 region not only contained the gp41 gene but also three

Jaw-Ching Liu; James E. Maruniak



Real-time PCR assays for the quantification of Phialophora gregata f. sp. sojae IGS genotypes A and B.  


Populations of Phialophora gregata f. sp. sojae, the causal agent of brown stem rot (BSR) of soybean, consist of two genotypes, designated A and B. These genotypes are differentiated by an insertion or deletion in the intergenic spacer region (IGS) of ribosomal DNA. The two genotypes differ in the type and severity of symptoms they cause and have displayed preferential host colonization. Methods to quantify populations of P. gregata f. sp. sojae and to distinguish between the two genotypes are essential to understanding this host-pathogen interaction and to improving control of BSR. A real-time, quantitative polymerase chain reaction (qPCR) assay was developed for the specific detection and quantification of P. gregata f. sp. sojae genotype A. This assay is specific to P. gregata f. sp. sojae genotype A, sensitive to 50 fg of DNA, and unaffected by the presence of soybean or soil DNA. When the P. gregata f. sp. sojae genotype A-specific primer/probe set is used in a multiplex qPCR assay with a previously developed primer/probe set which indiscriminately amplifies both genotypes, the quantity of P. gregata f. sp. sojae genotype B can be indirectly determined. This multiplex assay provides a rapid and robust method for studying both the population size and genetic structure of P. gregata f. sp. sojae in its soybean host and in the soil. PMID:19671002

Hughes, T J; Atallah, Z K; Grau, C R



An integrated BAC and genome sequence physical map of Phytophthora sojae.  


Phytophthora spp. are serious pathogens that threaten numerous cultivated crops, trees, and natural vegetation worldwide. The soybean pathogen P. sojae has been developed as a model oomycete. Here, we report a bacterial artificial chromosome (BAC)-based, integrated physical map of the P. sojae genome. We constructed two BAC libraries, digested 8,681 BACs with seven restriction enzymes, end labeled the digested fragments with four dyes, and analyzed them with capillary electrophoresis. Fifteen data sets were constructed from the fingerprints, using individual dyes and all possible combinations, and were evaluated for contig assembly. In all, 257 contigs were assembled from the XhoI data set, collectively spanning approximately 132 Mb in physical length. The BAC contigs were integrated with the draft genome sequence of P. sojae by end sequencing a total of 1,440 BACs that formed a minimal tiling path. This enabled the 257 contigs of the BAC map to be merged with 207 sequence scaffolds to form an integrated map consisting of 79 superscaffolds. The map represents the first genome-wide physical map of a Phytophthora sp. and provides a valuable resource for genomics and molecular biology research in P. sojae and other Phytophthora spp. In one illustration of this value, we have placed the 350 members of a superfamily of putative pathogenicity effector genes onto the map, revealing extensive clustering of these genes. PMID:17153914

Zhang, Xuemin; Scheuring, Chantel; Tripathy, Sucheta; Xu, Zhanyou; Wu, Chengcang; Ko, Angela; Tian, S Ken; Arredondo, Felipe; Lee, Mi-Kyung; Santos, Felipe A; Jiang, Rays H Y; Zhang, Hong-Bin; Tyler, Brett M



Understanding nonaflatoxigenicity of Aspergillus sojae: a windfall of aflatoxin biosynthesis research.  


Aspergillus section Flavi includes aflatoxin-producing and nonproducing fungi. Aspergillus sojae is unable to produce aflatoxins and is generally recognized as safe for food fermentation. However, because of its taxonomical relatedness to aflatoxin-producing Aspergillus parasiticus and A. flavus, it is necessary to decipher the underlying mechanisms for its inability to produce aflatoxins. This review addresses the relationship between A. sojae and A. parasiticus and the advances that have been made in aflatoxin biosynthesis research, especially with regard to gene structure, genome organization, and gene regulation in A. parasiticus and A. flavus and how this has been used to assure the safety of A. sojae as an organism for food fermentation. The lack of aflatoxin-producing ability of A. sojae results primarily from an early termination point mutation in the pathway-specific aflR regulatory gene, which causes the truncation of the transcriptional activation domain of AflR and the abolishment of interaction between AflR and the AflJ co-activator. Both are required for gene expression. In addition, a defect in the polyketide synthase gene also contributes to its nonaflatoxigenicity. PMID:17665189

Chang, Perng-Kuang; Matsushima, Kenichiro; Takahashi, Tadashi; Yu, Jiujiang; Abe, Keietsu; Bhatnagar, Deepak; Yuan, Gwo-Fang; Koyama, Yasuji; Cleveland, Thomas E



Copy Number Variation and Transcriptional Polymorphisms of Phytophthora sojae RXLR Effector Genes Avr1a and Avr3a  

PubMed Central

The importance of segmental duplications and copy number variants as a source of genetic and phenotypic variation is gaining greater appreciation, in a variety of organisms. Now, we have identified the Phytophthora sojae avirulence genes Avr1a and Avr3a and demonstrate how each of these Avr genes display copy number variation in different strains of P. sojae. The Avr1a locus is a tandem array of four near-identical copies of a 5.2 kb DNA segment. Two copies encoding Avr1a are deleted in some P. sojae strains, causing changes in virulence. In other P. sojae strains, differences in transcription of Avr1a result in gain of virulence. For Avr3a, there are four copies or one copy of this gene, depending on the P. sojae strain. In P. sojae strains with multiple copies of Avr3a, this gene occurs within a 10.8 kb segmental duplication that includes four other genes. Transcriptional differences of the Avr3a gene among P. sojae strains cause changes in virulence. To determine the extent of duplication within the superfamily of secreted proteins that includes Avr1a and Avr3a, predicted RXLR effector genes from the P. sojae and the P. ramorum genomes were compared by counting trace file matches from whole genome shotgun sequences. The results indicate that multiple, near-identical copies of RXLR effector genes are prevalent in oomycete genomes. We propose that multiple copies of particular RXLR effectors may contribute to pathogen fitness. However, recognition of these effectors by plant immune systems results in selection for pathogen strains with deleted or transcriptionally silenced gene copies.

Kuflu, Kuflom; Pham, Hai; Wang, Yuanchao; Dou, Daolong; Kale, Shiv D.; Arredondo, Felipe D.; Tyler, Brett M.; Gijzen, Mark



Loci underlying resistance to Race 3 of soybean cyst nematode in Glycine soja plant introduction 468916  

Microsoft Academic Search

Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is an important soybean [Glycine max (L.) Merr.] pest in the U.S. and throughout the world. Genetic resistance is the primary method for controlling SCN and there\\u000a is a need to identify new resistance genes. Glycine soja Sieb. and Zucc. is the wild ancestor of domesticated soybean and is a potential source of

D. Wang; B. W. Diers; P. R. Arelli; R. C. Shoemaker



QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI464925B  

Microsoft Academic Search

Soybean cyst nematode (Heterodera glycines Ichinohe; SCN) is the primary disease responsible for yield loss of soybean [Glycine max (L.) Merr.]. Resistant cultivars are an effective management tool; however, the sources currently available have common resistant\\u000a genes. Glycine soja Sieb. and Zucc., the wild ancestor of domesticated soybean, represents a diverse germplasm pool with known SCN resistance.\\u000a The objectives of

Shawn M. J. Winter; Barry J. Shelp; Terry R. Anderson; Tom W. Welacky; Istvan Rajcan



Non-toxic albumin and soja protein borates as ground-contact wood preservatives  

Microsoft Academic Search

Wood preservatives based on protein borates, both obtained by just mixed water solutions of protein and boric acid, as well\\u000a as in the case of premanufactured protein borates salts are shown to be a good method to greatly retard the leaching of boron\\u000a from treated timber. Hence just premixed albumin + boric acid, premanufactured albumin borate and soja protein +

M.-F. Thevenon; A. Pizzi; J.-P. Haluk



Semicontinuous decolorization of azo dyes by rotating disc contactor immobilized with Aspergillus sojae B10  

Microsoft Academic Search

Aspergillus sojae B-10 was immobilized and used to treat model dye compounds. The model wastewater, containing 10 ppm of azo dyes such as Amaranth,\\u000a Sudan III, and Congo Red, was treated with cells attached to a rotating disc contactor (RDC). Amaranth was decolorized more\\u000a easily than were Sudan III and Congo Red. Decolorization of Amaranth began within a day, and

Beung Ho Ryu



Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis  

PubMed Central

Background Phytophthora sojae is the primary pathogen of soybeans that are grown on poorly drained soils. Race-specific resistance to P. sojae in soybean is gene-for-gene, although in many areas of the US and worldwide there are populations that have adapted to the most commonly deployed resistance to P. sojae ( Rps) genes. Hence, this system has received increased attention towards identifying mechanisms and molecular markers associated with partial resistance to this pathogen. Several quantitative trait loci (QTL) have been identified in the soybean cultivar ‘Conrad’ that contributes to the expression of partial resistance to multiple P. sojae isolates. Results In this study, two of the Conrad QTL on chromosome 19 were dissected through sequence and expression analysis of genes in both resistant (Conrad) and susceptible (‘Sloan’) genotypes. There were 1025 single nucleotide polymorphisms (SNPs) in 87 of 153 genes sequenced from Conrad and Sloan. There were 304 SNPs in 54 genes sequenced from Conrad compared to those from both Sloan and Williams 82, of which 11 genes had SNPs unique to Conrad. Eleven of 19 genes in these regions analyzed with qRT-PCR had significant differences in fold change of transcript abundance in response to infection with P. sojae in lines with QTL haplotype from the resistant parent compared to those with the susceptible parent haplotype. From these, 8 of the 11 genes had SNPs in the upstream, untranslated region, exon, intron, and/or downstream region. These 11 candidate genes encode proteins potentially involved in signal transduction, hormone-mediated pathways, plant cell structural modification, ubiquitination, and basal resistance. Conclusions These findings may indicate a complex defense network with multiple mechanisms underlying these two soybean QTL conferring resistance to P. sojae. SNP markers derived from these candidate genes can contribute to fine mapping of QTL and marker assisted breeding for resistance to P. sojae.



Proteomics study of changes in soybean lines resistant and sensitive to Phytophthora sojae  

PubMed Central

Background Phytophthora sojae causes soybean root and stem rot, resulting in an annual loss of 1-2 billion US dollars in soybean production worldwide. A proteomic technique was used to determine the effects on soybean hypocotyls of infection with P. sojae. Results In the present study, 46 differentially expressed proteins were identified in soybean hypocotyls infected with P. sojae, using two-dimensional electrophoresis and matrix-assisted laser desorption/ionization tandem time of flight (MALDI-TOF/TOF). The expression levels of 26 proteins were significantly affected at various time points in the tolerant soybean line, Yudou25, (12 up-regulated and 14 down-regulated). In contrast, in the sensitive soybean line, NG6255, only 20 proteins were significantly affected (11 up-regulated and 9 down-regulated). Among these proteins, 26% were related to energy regulation, 15% to protein destination and storage, 11% to defense against disease, 11% to metabolism, 9% to protein synthesis, 4% to secondary metabolism, and 24% were of unknown function. Conclusion Our study provides important information on the use of proteomic methods for studying protein regulation during plant-oomycete interactions.



Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans  

PubMed Central

Phytophthora stem and root rot, caused by Phytophthora sojae, is one of the most destructive diseases of soybean [Glycine max (L.) Merr.], and the incidence of this disease has been increasing in several soybean-producing areas around the world. This presents serious limitations for soybean production, with yield losses from 4 to 100%. The most effective method to reduce damage would be to grow Phytophthora-resistant soybean cultivars, and two types of host resistance have been described. Race-specific resistance conditioned by single dominant Rps (“resistance to Phytophthora sojae”) genes and quantitatively inherited partial resistance conferred by multiple genes could both provide protection from the pathogen. Molecular markers linked to Rps genes or quantitative trait loci (QTLs) underlying partial resistance have been identified on several molecular linkage groups corresponding to chromosomes. These markers can be used to screen for Phytophthora-resistant plants rapidly and efficiently, and to combine multiple resistance genes in the same background. This paper reviews what is currently known about pathogenic races of P. sojae in the USA and Japan, selection of sources of Rps genes or minor genes providing partial resistance, and the current state and future scope of breeding Phytophthora-resistant soybean cultivars.

Sugimoto, Takuma; Kato, Masayasu; Yoshida, Shinya; Matsumoto, Isao; Kobayashi, Tamotsu; Kaga, Akito; Hajika, Makita; Yamamoto, Ryo; Watanabe, Kazuhiko; Aino, Masataka; Matoh, Toru; Walker, David R.; Biggs, Alan R.; Ishimoto, Masao



Genetic and physical mapping of Avr1a in Phytophthora sojae.  

PubMed Central

The interaction between soybean and the phytopathogenic oomycete Phytophthora sojae is controlled by host resistance (Rps) genes and pathogen avirulence (Avr) genes. We have mapped the Avr1a locus in F(2) populations derived from four different P. sojae races. Four RAPD and nine AFLP markers linked to Avr1a were initially identified. Nine markers were used to compare genetic linkage maps of the Avr1a locus in two distinct F(2) populations. Distorted segregation ratios favoring homozygous genotypes were noted in both crosses. Segregation analysis of all the markers in one F(2) population of 90 progeny generated a map of 113.2 cM encompassing Avr1a, with one marker cosegregating with the gene. The cosegregating DNA marker was used to isolate P. sojae BAC clones and construct a physical map covering 170 kb, from which additional DNA markers were developed. Three markers occurring within the BAC contig were mapped in an enlarged population of 486 F(2) progeny. Avr1a was localized to a 114-kb interval, and an average physical to genetic distance ratio of 391 kb/cM was calculated for this region. This work provides a basis for the positional cloning of Avr1a.

MacGregor, Terry; Bhattacharyya, Madan; Tyler, Brett; Bhat, Ravindra; Schmitthenner, August F; Gijzen, Mark



Inventory and Comparative Evolution of the ABC Superfamily in the Genomes of Phytophthora ramorum and Phytophthora sojae  

Microsoft Academic Search

Automated and manual annotation of the ATP binding cassette (ABC) superfamily in the Phytophthora ramorum and P. sojae genomes has identified 135 and 136 members, respectively, indicating that this family is comparable in size to the Arabidopsis thaliana and rice genomes, and significantly larger than that of two fungal pathogens, Fusarium graminearum and Magnaporthe grisea. The high level of synteny

Paul F. Morris; Vipaporn Phuntumart



The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity.  


Necrosis- and ethylene-inducing-like proteins (NLP) are widely distributed in eukaryotic and prokaryotic plant pathogens and are considered to be important virulence factors. We identified, in total, 70 potential Phytophthora sojae NLP genes but 37 were designated as pseudogenes. Sequence alignment of the remaining 33 NLP delineated six groups. Three of these groups include proteins with an intact heptapeptide (Gly-His-Arg-His-Asp-Trp-Glu) motif, which is important for necrosis-inducing activity, whereas the motif is not conserved in the other groups. In total, 19 representative NLP genes were assessed for necrosis-inducing activity by heterologous expression in Nicotiana benthamiana. Surprisingly, only eight genes triggered cell death. The expression of the NLP genes in P. sojae was examined, distinguishing 20 expressed and 13 nonexpressed NLP genes. Real-time reverse-transcriptase polymerase chain reaction results indicate that most NLP are highly expressed during cyst germination and infection stages. Amino acid substitution ratios (Ka/Ks) of 33 NLP sequences from four different P. sojae strains resulted in identification of positive selection sites in a distinct NLP group. Overall, our study indicates that expansion and pseudogenization of the P. sojae NLP family results from an ongoing birth-and-death process, and that varying patterns of expression, necrosis-inducing activity, and positive selection suggest that NLP have diversified in function. PMID:22397404

Dong, Suomeng; Kong, Guanghui; Qutob, Dinah; Yu, Xiaoli; Tang, Junli; Kang, Jixiong; Dai, Tingting; Wang, Hai; Gijzen, Mark; Wang, Yuanchao



Phytophthora sojae Effector PsCRN70 Suppresses Plant Defenses in Nicotiana benthamiana  

PubMed Central

Phytophthora sojae, an oomycete pathogen, produces a large number of effector proteins that enter into host cells. The Crinklers (Crinkling and Necrosis, CRN) are cytoplasmic effectors that are conserved in oomycete pathogens and their encoding genes are highly expressed at the infective stages in P. sojae. However, their roles in pathogenesis are largely unknown. Here, we functionally characterized an effector PsCRN70 by transiently and stably overexpressing it in Nicotiana benthamiana. We demonstrated that PsCRN70 was localized to the plant cell nucleus and suppressed cell death elicited by all the tested cell death-inducing proteins, including BAX, PsAvh241, PsCRN63, PsojNIP and R3a/Avr3a. Overexpression of the PsCRN70 gene in N. benthamiana enhanced susceptibility to P. parasitica. The H2O2 accumulation in the PsCRN70-transgenic plants was reduced compared to the GFP-lines. The transcriptional levels of the defense-associated genes, including PR1b, PR2b, ERF1 and LOX, were also down-regulated in the PsCRN70-transgenic lines. Our results suggest that PsCRN70 may function as a universal suppressor of the cell death induced by many elicitors, the host H2O2 accumulation and the expression of defense-associated genes, and therefore promotes pathogen infection.

Ru, Yanyan; Liu, Tingli; Xu, Jing; Liu, Li; Mafurah, Joseph Juma; Dou, Daolong



Glyceollin is an important component of soybean plant defense against Phytophthora sojae and Macrophomina phaseolina.  


The response of soybean transgenic plants, with suppressed synthesis of isoflavones, and nontransgenic plants to two common soybean pathogens, Macrophomina phaseolina and Phytophthora sojae, was studied. Transgenic soybean plants of one line used in this study were previously generated via bombardment of embryogenic cultures with the phenylalanine ammonia lyase, chalcone synthase, and isoflavone synthase (IFS2) genes in sense orientation driven by the cotyledon-preferable lectin promoter (to turn genes on in cotyledons), while plants of another line were newly produced using the IFS2 gene in sense orientation driven by the Cassava vein mosaic virus constitutive promoter (to turn genes on in all plant parts). Nearly complete inhibition of isoflavone synthesis was found in the cotyledons of young seedlings of transgenic plants transformed with the IFS2 transgene driven by the cotyledon-preferable lectin promoter compared with the untransformed control during the 10-day observation period, with the precursors of isoflavone synthesis being accumulated in the cotyledons of transgenic plants. These results indicated that the lectin promoter could be active not only during seed development but also during seed germination. Downregulation of isoflavone synthesis only in the seed or in the whole soybean plant caused a strong inhibition of the pathogen-inducible glyceollin in cotyledons after inoculation with P. sojae, which resulted in increased susceptibility of the cotyledons of both transgenic lines to this pathogen compared with inoculated cotyledons of untransformed plants. When stems were inoculated with M. phaseolina, suppression of glyceollin synthesis was found only in stems of transgenic plants expressing the transgene driven by a constitutive promoter, which developed more severe infection. These results provide further evidence that rapid glyceollin accumulation during infection contributes to the innate soybean defense response. PMID:23617338

Lygin, Anatoliy V; Zernova, Olga V; Hill, Curtis B; Kholina, Nadegda A; Widholm, Jack M; Hartman, Glen L; Lozovaya, Vera V



A Myb Transcription Factor of Phytophthora sojae, Regulated by MAP Kinase PsSAK1, Is Required for Zoospore Development  

Microsoft Academic Search

PsSAK1, a mitogen-activated protein (MAP) kinase from Phytophthora sojae, plays an important role in host infection and zoospore viability. However, the downstream mechanism of PsSAK1 remains unclear. In this study, the 3'-tag digital gene expression (DGE) profiling method was applied to sequence the global transcriptional sequence of PsSAK1-silenced mutants during the cysts stage and 1.5 h after inoculation onto susceptible

Meng Zhang; Jing Lu; Kai Tao; Wenwu Ye; Aining Li; Xiaoyun Liu; Liang Kong; Suomeng Dong; Xiaobo Zheng; Yuanchao Wang



The Phytophthora sojae avirulence locus Avr3c encodes a multi-copy RXLR effector with sequence polymorphisms among pathogen strains.  


Root and stem rot disease of soybean is caused by the oomycete Phytophthora sojae. The avirulence (Avr) genes of P. sojae control race-cultivar compatibility. In this study, we identify the P. sojae Avr3c gene and show that it encodes a predicted RXLR effector protein of 220 amino acids. Sequence and transcriptional data were compared for predicted RXLR effectors occurring in the vicinity of Avr4/6, as genetic linkage of Avr3c and Avr4/6 was previously suggested. Mapping of DNA markers in a F(2) population was performed to determine whether selected RXLR effector genes co-segregate with the Avr3c phenotype. The results pointed to one RXLR candidate gene as likely to encode Avr3c. This was verified by testing selected genes by a co-bombardment assay on soybean plants with Rps3c, thus demonstrating functionality and confirming the identity of Avr3c. The Avr3c gene together with eight other predicted genes are part of a repetitive segment of 33.7 kb. Three near-identical copies of this segment occur in a tandem array. In P. sojae strain P6497, two identical copies of Avr3c occur within the repeated segments whereas the third copy of this RXLR effector has diverged in sequence. The Avr3c gene is expressed during the early stages of infection in all P. sojae strains examined. Virulent alleles of Avr3c that differ in amino acid sequence were identified in other strains of P. sojae. Gain of virulence was acquired through mutation and subsequent sequence exchanges between the two copies of Avr3c. The results illustrate the importance of segmental duplications and RXLR effector evolution in the control of race-cultivar compatibility in the P. sojae and soybean interaction. PMID:19440541

Dong, Suomeng; Qutob, Dinah; Tedman-Jones, Jennifer; Kuflu, Kuflom; Wang, Yuanchao; Tyler, Brett M; Gijzen, Mark



The Phytophthora sojae Avirulence Locus Avr3c Encodes a Multi-Copy RXLR Effector with Sequence Polymorphisms among Pathogen Strains  

PubMed Central

Root and stem rot disease of soybean is caused by the oomycete Phytophthora sojae. The avirulence (Avr) genes of P. sojae control race-cultivar compatibility. In this study, we identify the P. sojae Avr3c gene and show that it encodes a predicted RXLR effector protein of 220 amino acids. Sequence and transcriptional data were compared for predicted RXLR effectors occurring in the vicinity of Avr4/6, as genetic linkage of Avr3c and Avr4/6 was previously suggested. Mapping of DNA markers in a F2 population was performed to determine whether selected RXLR effector genes co-segregate with the Avr3c phenotype. The results pointed to one RXLR candidate gene as likely to encode Avr3c. This was verified by testing selected genes by a co-bombardment assay on soybean plants with Rps3c, thus demonstrating functionality and confirming the identity of Avr3c. The Avr3c gene together with eight other predicted genes are part of a repetitive segment of 33.7 kb. Three near-identical copies of this segment occur in a tandem array. In P. sojae strain P6497, two identical copies of Avr3c occur within the repeated segments whereas the third copy of this RXLR effector has diverged in sequence. The Avr3c gene is expressed during the early stages of infection in all P. sojae strains examined. Virulent alleles of Avr3c that differ in amino acid sequence were identified in other strains of P. sojae. Gain of virulence was acquired through mutation and subsequent sequence exchanges between the two copies of Avr3c. The results illustrate the importance of segmental duplications and RXLR effector evolution in the control of race-cultivar compatibility in the P. sojae and soybean interaction.

Dong, Suomeng; Qutob, Dinah; Tedman-Jones, Jennifer; Kuflu, Kuflom; Wang, Yuanchao; Tyler, Brett M.; Gijzen, Mark



Genetic diversity of Phytophthora sojae isolates in Heilongjiang Province in China assessed by RAPD and EST-SSR  

NASA Astrophysics Data System (ADS)

Random-amplified polymorphic DNA (RAPD) and EST-SSR markers were used to estimate the genetic relationship among thirty-nine P.sojae isolates from three locations in Heilongjiang Province, and nine isolates from Ohio in America were made as reference strains. 10 of 50 RAPD primers and 5 of 33 EST-SSR were polymorphic across 48 P.sojae isolates. Similarity values among P.sojae isolates were from 49% to 82% based on the RAPD data. The similarities based on EST-SSR markers ranged from 47% to 85%. The genetic diversity revealed by EST-SSR marker analysis was higher than that obtained from RAPD. The similarity matrices for the SSR data and the RAPD data were moderately correlated (r = 0.47). Genetic similarity coefficients were also relatively lower, which demonstrated complicated genetic background within each location. The high similarity values range revealed the ability of RAPD/EST-SSR markers to distinguish even among morphological similar phytophthora.

Wu, J. J.; Xu, P. F.; Liu, L. J.; Wang, J. S.; Lin, W. G.; Zhang, S. Z.; Wei, L.


Gene Duplication and Fragment Recombination Drive Functional Diversification of a Superfamily of Cytoplasmic Effectors in Phytophthora sojae  

PubMed Central

Phytophthora and other oomycetes secrete a large number of putative host cytoplasmic effectors with conserved FLAK motifs following signal peptides, termed crinkling and necrosis inducing proteins (CRN), or Crinkler. Here, we first investigated the evolutionary patterns and mechanisms of CRN effectors in Phytophthora sojae and compared them to two other Phytophthora species. The genes encoding CRN effectors could be divided into 45 orthologous gene groups (OGG), and most OGGs unequally distributed in the three species, in which each underwent large number of gene gains or losses, indicating that the CRN genes expanded after species evolution in Phytophthora and evolved through pathoadaptation. The 134 expanded genes in P. sojae encoded family proteins including 82 functional genes and expressed at higher levels while the other 68 genes encoding orphan proteins were less expressed and contained 50 pseudogenes. Furthermore, we demonstrated that most expanded genes underwent gene duplication or/and fragment recombination. Three different mechanisms that drove gene duplication or recombination were identified. Finally, the expanded CRN effectors exhibited varying pathogenic functions, including induction of programmed cell death (PCD) and suppression of PCD through PAMP-triggered immunity or/and effector-triggered immunity. Overall, these results suggest that gene duplication and fragment recombination may be two mechanisms that drive the expansion and neofunctionalization of the CRN family in P. sojae, which aids in understanding the roles of CRN effectors within each oomycete pathogen.

Shen, Danyu; Liu, Tingli; Ye, Wenwu; Liu, Li; Liu, Peihan; Wu, Yuren; Wang, Yuanchao; Dou, Daolong



Gene duplication and fragment recombination drive functional diversification of a superfamily of cytoplasmic effectors in Phytophthora sojae.  


Phytophthora and other oomycetes secrete a large number of putative host cytoplasmic effectors with conserved FLAK motifs following signal peptides, termed crinkling and necrosis inducing proteins (CRN), or Crinkler. Here, we first investigated the evolutionary patterns and mechanisms of CRN effectors in Phytophthora sojae and compared them to two other Phytophthora species. The genes encoding CRN effectors could be divided into 45 orthologous gene groups (OGG), and most OGGs unequally distributed in the three species, in which each underwent large number of gene gains or losses, indicating that the CRN genes expanded after species evolution in Phytophthora and evolved through pathoadaptation. The 134 expanded genes in P. sojae encoded family proteins including 82 functional genes and expressed at higher levels while the other 68 genes encoding orphan proteins were less expressed and contained 50 pseudogenes. Furthermore, we demonstrated that most expanded genes underwent gene duplication or/and fragment recombination. Three different mechanisms that drove gene duplication or recombination were identified. Finally, the expanded CRN effectors exhibited varying pathogenic functions, including induction of programmed cell death (PCD) and suppression of PCD through PAMP-triggered immunity or/and effector-triggered immunity. Overall, these results suggest that gene duplication and fragment recombination may be two mechanisms that drive the expansion and neofunctionalization of the CRN family in P. sojae, which aids in understanding the roles of CRN effectors within each oomycete pathogen. PMID:23922898

Shen, Danyu; Liu, Tingli; Ye, Wenwu; Liu, Li; Liu, Peihan; Wu, Yuren; Wang, Yuanchao; Dou, Daolong



Survival and behavior of the insecticide-exposed predators Podisus nigrispinus and Supputius cincticeps (Heteroptera: Pentatomidae).  


Pentatomid stinkbugs are important predators of defoliating caterpillars in agricultural and forestry systems, and knowledge of the impact of insecticides on natural enemies is important information for integrated pest management (IPM) programs. Thus, we assessed the toxicity and behavioral sublethal response of the predators Podisus nigrispinus and Supputius cincticeps exposed to deltamethrin, methamidophos, spinosad and chlorantraniliprole, insecticides commonly used to control the velvetbean caterpillar (Anticarsia gemmatalis) in soybean crops. With the exception of deltamethrin for S. cincticeps, all insecticides showed higher acute toxicity to the prey than to these natural enemies providing effective control of A. gemmatalis. The recommended field concentration of deltamethrin, methamidophos and spinosad for controlling A. gemmatalis caused 100% mortality of P. nigrispinus and S. cincticeps nymphs. Chlorantraniliprole was the less toxic and the most selective insecticide to these predators resulting in mortalities of less than 10% when exposed to 10× the recommended field concentration for a period of 72 h. Behavioral pattern changes in predators were found for all insecticides, especially methamidophos and spinosad, which exhibited irritability (i.e., avoidance after contact) to both predator species. However, insecticide repellence (i.e., avoidance without contact) was not observed in any of the insects tested. The lethal and sublethal effects of pesticides on natural enemies is of great importance for IPM, and our results indicate that substitution of pyrethroid and organophosphate insecticides at their field rates by chlorantraniliprole may be a key factor for the success of IPM programs of A. gemmatalis in soybeans. PMID:23880241

de Castro, A A; Corrêa, A S; Legaspi, J C; Guedes, R N C; Serrão, J E; Zanuncio, J C



Sequence Variants of the Phytophthora sojae RXLR Effector Avr3a/5 Are Differentially Recognized by Rps3a and Rps5 in Soybean  

PubMed Central

The perception of Phytophthora sojae avirulence (Avr) gene products by corresponding soybean resistance (Rps) gene products causes effector triggered immunity. Past studies have shown that the Avr3a and Avr5 genes of P. sojae are genetically linked, and the Avr3a gene encoding a secreted RXLR effector protein was recently identified. We now provide evidence that Avr3a and Avr5 are allelic. Genetic mapping data from F2 progeny indicates that Avr3a and Avr5 co-segregate, and haplotype analysis of P. sojae strain collections reveal sequence and transcriptional polymorphisms that are consistent with a single genetic locus encoding Avr3a/5. Transformation of P. sojae and transient expression in soybean were performed to test how Avr3a/5 alleles interact with soybean Rps3a and Rps5. Over-expression of Avr3a/5 in a P. sojae strain that is normally virulent on Rps3a and Rps5 results in avirulence to Rps3a and Rps5; whereas silencing of Avr3a/5 causes gain of virulence in a P. sojae strain that is normally avirulent on Rps3a and Rps5 soybean lines. Transient expression and co-bombardment with a reporter gene confirms that Avr3a/5 triggers cell death in Rps5 soybean leaves in an appropriate allele-specific manner. Sequence analysis of the Avr3a/5 gene identifies crucial residues in the effector domain that distinguish recognition by Rps3a and Rps5.

Cui, Linkai; Qutob, Dinah; Tedman-Jones, Jennifer; Kale, Shiv D.; Tyler, Brett M.; Wang, Yuanchao; Gijzen, Mark



Isolation and characterization of a pathogenesis-related protein 10 gene (GmPR10) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae.  


In previous study, a cDNA library enriched for mRNAs encoding ESTs that increased in abundance during infection with Phytophthora sojae was constructed by suppression subtractive hybridization from leaf tissues of a high resistant soybean, and an EST homologous to the class 10 of pathogenesis-related (PR) proteins was identified to be up-regulated by microarray and real-time PCR. Here, the full-length cDNA (termed GmPR10, GenBank accession number FJ960440; ADC31789.1) of the EST was isolated by rapid amplification of cDNA ends, and contains an open reading frame of 474 bp. The GmPR10 protein included a "P-loop'' motif. The constitutive transcript abundance of GmPR10 in soybean was the highest in leaves, followed by roots and stems. Further analysis showed that GmPR10 mRNA abundance was increased during infection with P. sojae following leaf treatments with gibberellin (GA3), hydrogen peroxide (H2O2), salicylic acid (SA), and abscisic acid (ABA). The dialytically renatured GmPR10 protein significantly inhibited P. sojae hyphal growth and exhibited RNase activity. Transgenic tobacco and soybean plants overexpressing GmPR10 showed increased resistance to P. nicotianae Breda and P. sojae, respectively. These results suggest that the GmPR10 protein plays an important role in host defense against P. sojae infection. To the best of our knowledge, this is the first report on the functional characterization of a PR10 protein from soybean in defense against P. sojae. PMID:24737571

Xu, Pengfei; Jiang, Liangyu; Wu, Junjiang; Li, Wenbin; Fan, Sujie; Zhang, Shuzhen



Coffee pulp koji of Aspergillus sojae as stable immobilized catalyst of chlorogenate hydrolase.  


Chlorogenate hydrolase (EC, CHase) was highly induced in mycelia of Aspergillus sojae AKU 3312 grown in Czapek medium containing either instant coffee powder or coffee pulp as inducer. No CHase formation was observed in the mycelia when cultivated without the inducer. CHase was purified readily from CHase-induced mycelia to high homogeneity, and the purified CHase revealed the molecular weight of 180,000 consisting of two identical subunits of 88 kDa. Equimolar quinate (QA) and caffeate (CA) were confirmed on hydrolysis of chlorogenate (CGA). The purified CHase was only useful for a laboratory scale hydrolysis of CGA. For practical QA and CA production using scaled up hydrolysis of vegetable extracts of natural CGA resources, the enzyme activity of purified CHase decreased and denatured irreversibly. Preparation of coffee pulp koji and its application to QA and CA production were proposed instead of purified CHase. When coffee pulp koji was heated at 60 degrees C for 30 min, CHase survived without any appreciable loss of enzyme activity while vegetative mycelial growth and spore germination were terminated. The heated coffee pulp koji thus prepared was effective itself as stable immobilized catalyst of CHase for QA and CA production from vegetable CGA resources such as coffee powders, coffee pulp, and others. PMID:18773200

Adachi, Osao; Ano, Yoshitaka; Akakabe, Yoshihiko; Shinagawa, Emiko; Matsushita, Kazunobu



Oceanobacillus soja sp. nov. isolated from soy sauce production equipment in Japan.  


A Gram-positive, spore-forming, motile rod-shaped bacterium, designated strain Y27T, was isolated from the bottom of a mold fermenter used in the process of soy sauce production. Phylogenetic analysis of the 16S rRNA gene sequence from this strain placed it within the genus Oceanobacillus, and further sequence analysis revealed that this strain has a sequence similarity of 95.0-98.7% to other known species of Oceanobacillus. The DNA-DNA relatedness between strain Y27T and related type strains of the genus Oceanobacillus is below 43%, indicating that it should be considered a separate species. Characterization of strain Y27T revealed that the major cellular fatty acid is anteiso-C(15:0), the cell wall contains meso-diaminopimelic acid-type peptidoglycans, the major menaquinone is MK-7, and the major polar lipids are diphosphatidylglycerol and phosphatidylglycerol. The genomic DNA G+C content of the strain is 38.0 mol%. On the basis of these phylogenetic, physiological and chemotaxonomic data, we propose that this isolate represents a novel species of the genus Oceanobacillus, and propose the name Oceanobacillus soja sp. nov. The type strain is strain Y27T (= JCM 15792T = NRRL B-59181T = NBRC 105379T = NCIMB 14542T). PMID:19590150

Tominaga, Tatsuya; An, Sun-Young; Oyaizu, Hiroshi; Yokota, Akira



Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment  

PubMed Central

Background Plant roots are the primary site of perception and injury for saline-alkaline stress. The current knowledge of saline-alkaline stress transcriptome is mostly focused on saline (NaCl) stress and only limited information on alkaline (NaHCO3) stress is available. Results Using Affymetrix® Soybean GeneChip®, we conducted transcriptional profiling on Glycine soja roots subjected to 50 mmol/L NaHCO3 treatment. In a total of 7088 probe sets, 3307 were up-regulated and 5720 were down-regulated at various time points. The number of significantly stress regulated genes increased dramatically after 3 h stress treatment and peaked at 6 h. GO enrichment test revealed that most of the differentially expressed genes were involved in signal transduction, energy, transcription, secondary metabolism, transporter, disease and defence response. We also detected 11 microRNAs regulated by NaHCO3 stress. Conclusions This is the first comprehensive wild soybean root transcriptome analysis under alkaline stress. These analyses have identified an inventory of genes with altered expression regulated by alkaline stress. The data extend the current understanding of wild soybean alkali stress response by providing a set of robustly selected, differentially expressed genes for further investigation.



Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We isolated and characterized a novel JAZ family gene, GsJAZ2, from Glycine soja. Black-Right-Pointing-Pointer Overexpression of GsJAZ2 enhanced plant tolerance to salt and alkali stress. Black-Right-Pointing-Pointer The transcriptions of stress marker genes were higher in GsJAZ2 overexpression lines. Black-Right-Pointing-Pointer GsJAZ2 was localized to nucleus. -- Abstract: Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)] [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Deyholos, Michael K. [Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9 (Canada)] [Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9 (Canada); Chen, Qin [Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403-1 Ave., South P.O. Box 3000, Lethbridge, AB, Canada T1J 4B1 (Canada)] [Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403-1 Ave., South P.O. Box 3000, Lethbridge, AB, Canada T1J 4B1 (Canada); Chen, Chao; Ji, Wei [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)] [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhu, Yanming, E-mail: [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)] [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)



Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics  

PubMed Central

Background Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is controlled by Rps genes. However, little is known regarding the Rps-induced molecular responses to P. sojae and how they actually overlap. We thus sequenced, analyzed, and compared the transcriptomes of 10 near isogenic lines (NILs), each with a unique Rps gene/allele, and the susceptible parent Williams, pre- and post-inoculation with the pathogen. Results A total of 4,330 differentially expressed genes (DEGs) were identified in Williams versus 2,014 to 5,499 DEGs in individual NILs upon inoculation with the pathogen. Comparisons of the DEGs between the NILs and Williams identified incompatible interaction genes (IIGs) and compatible interaction genes (CIGs). Hierarchical cluster and heatmap analyses consistently grouped the NILs into three clusters: Cluster I (Rps1-a), Cluster II (Rps1-b, 1-c and 1-k) and Cluster III (Rps3-a, 3-b, 3-c, 4, 5, and 6), suggesting an overlap in Rps-induced defense signaling among certain NILs. Gene ontology (GO) analysis revealed associations between members of the WRKY family and incompatible reactions and between a number of phytohormone signaling pathways and incompatible/compatible interactions. These associations appear to be distinguished according to the NIL clusters. Conclusions This study characterized genes and multiple branches of putative regulatory networks associated with resistance to P. sojae in ten soybean NILs, and depicted functional “fingerprints” of individual Rps-mediated resistance responses through comparative transcriptomic analysis. Of particular interest are dramatic variations of detected DEGs, putatively involved in ethylene (ET)-, jasmonic acid (JA)-, (reactive oxygen species) ROS-, and (MAP-kinase) MAPK- signaling, among these soybean NILs, implicating their important roles of these signaling in differentiating molecular defense responses. We hypothesize that different timing and robustness in defense signaling to the same pathogen may be largely responsible for such variations.



[Influence of bean yellow mosaic virus on metabolism of photosynthetic pigments, proteins and carbohydrates in Glycine soja L].  


This paper presents data on BYMV effects on some physiological processes of Glycine soja L. cultivated in the right-bank forest-steppe regions. Pigment content (chlorophyll a, b and carotenoids), soluble proteins and water soluble carbohydrates were estimated and, as has been shown, are subjected to significant changes as compared with control plants, namely: a decrease in the content of chlorophyll a, b and carotenoids was 64%, 53% and 36% compared with the control plants. The significant increase in carbohydrates (56% compared to the control) was observed at the end of the test period. PMID:24800515

Kyrychenko, A M



Gene cloning, purification, and characterization of a novel peptidoglutaminase-asparaginase from Aspergillus sojae.  


Glutaminase is an enzyme that catalyzes the hydrolysis of l-glutamine to l-glutamate, and it plays an important role in the production of fermented foods by enhancing the umami taste. By using the genome sequence and expressed sequence tag data available for Aspergillus oryzae RIB40, we cloned a novel glutaminase gene (AsgahA) from Aspergillus sojae, which was similar to a previously described gene encoding a salt-tolerant, thermostable glutaminase of Cryptococcus nodaensis (CnGahA). The structural gene was 1,929 bp in length without introns and encoded a glutaminase, AsGahA, which shared 36% identity with CnGahA. The introduction of multiple copies of AsgahA into A. oryzae RIB40 resulted in the overexpression of glutaminase activity. AsGahA was subsequently purified from the overexpressing transformant and characterized. While AsGahA was located at the cell surface in submerged culture, it was secreted extracellularly in solid-state culture. The molecular mass of AsGahA was estimated to be 67 kDa and 135 kDa by SDS-PAGE and gel filtration chromatography, respectively, indicating that the native form of AsGahA was a dimer. The optimal pH of the enzyme was 9.5, and its optimal temperature was 50°C in sodium phosphate buffer (pH 7.0). Analysis of substrate specificity revealed that AsGahA deamidated not only free l-glutamine and l-asparagine but also C-terminal glutaminyl or asparaginyl residues in peptides. Collectively, our results indicate that AsGahA is a novel peptidoglutaminase-asparaginase. Moreover, this is the first report to describe the gene cloning and purification of a peptidoglutaminase-asparaginase. PMID:22610430

Ito, Kotaro; Matsushima, Kenichiro; Koyama, Yasuji



Gene Cloning, Purification, and Characterization of a Novel Peptidoglutaminase-Asparaginase from Aspergillus sojae  

PubMed Central

Glutaminase is an enzyme that catalyzes the hydrolysis of l-glutamine to l-glutamate, and it plays an important role in the production of fermented foods by enhancing the umami taste. By using the genome sequence and expressed sequence tag data available for Aspergillus oryzae RIB40, we cloned a novel glutaminase gene (AsgahA) from Aspergillus sojae, which was similar to a previously described gene encoding a salt-tolerant, thermostable glutaminase of Cryptococcus nodaensis (CnGahA). The structural gene was 1,929 bp in length without introns and encoded a glutaminase, AsGahA, which shared 36% identity with CnGahA. The introduction of multiple copies of AsgahA into A. oryzae RIB40 resulted in the overexpression of glutaminase activity. AsGahA was subsequently purified from the overexpressing transformant and characterized. While AsGahA was located at the cell surface in submerged culture, it was secreted extracellularly in solid-state culture. The molecular mass of AsGahA was estimated to be 67 kDa and 135 kDa by SDS-PAGE and gel filtration chromatography, respectively, indicating that the native form of AsGahA was a dimer. The optimal pH of the enzyme was 9.5, and its optimal temperature was 50°C in sodium phosphate buffer (pH 7.0). Analysis of substrate specificity revealed that AsGahA deamidated not only free l-glutamine and l-asparagine but also C-terminal glutaminyl or asparaginyl residues in peptides. Collectively, our results indicate that AsGahA is a novel peptidoglutaminase-asparaginase. Moreover, this is the first report to describe the gene cloning and purification of a peptidoglutaminase-asparaginase.

Matsushima, Kenichiro; Koyama, Yasuji



Degradabilidade ruminal in situ da matéria seca e proteína bruta de duas variedades de grão de soja com diferentes teores de inibidor de tripsina, em bovinos  

Microsoft Academic Search

RESUMO - Foram utilizados quatro bovinos da raça holandesa canulados no rúmen, distribuídos em blocos, ao acaso, alimentados a pasto de coast-cross (Cynodon dactylon). Os animais foram suplementados com ração concentrada contendo grãos de soja moídos colocados no rúmen, às sete e às dezoito horas. Em todos os animais foram incubados sacos de náilon com amostras de cada tratamento: grãos

Leandro das Dores Ferreira da Silva; Bruno Mazzer de Oliveira Ramos; Edson Luis de Azambuja Ribeiro; Ivone Yurika Mizubuti; Marco Antônio da Rocha; Fábio Lucas Zito de Moraes




Microsoft Academic Search

Considerando-se que existe um déficit na capacidade estática de armazenamento de grãos no Brasil, aliado a baixa margem de rentabilidade auferida pelos produtores de commodities agrícolas, notadamente a soja, bem como o fato de que a armazenagem em nível de propriedade rural pode vir a se constituir em um diferencial positivo ao produtor no momento da comercialização desta oleaginosa, buscou-se

Alberto Silva Dutra; Joao Armando Dessimon Machado; Regis Rathmann




Microsoft Academic Search

RESUMO: O objetivo deste trabalho foi estudar o comportamento de genótipos de soja em relação ao oídio, por meio de estudos de adaptabilidade e de estabilidade, em casa de vegetação, durante cinco épocas de avaliação. O delineamento experimental foi inteiramente casualizado, disposto em parcelas subdivididas, com 15 tratamentos e três tipos de controle (parcial, total e sem controle) representando as

Derval Gomes PEREIRA; Tuneo SEDIYAMA; Cosme Damião CRUZ; Múcio Silva REIS


Production of antioomycete compounds active against the phytopathogens Phytophthora sojae and Aphanomyces cochlioides by clavicipitoid entomopathogenic fungi.  


A total of 412 strains belonging to 14 genera of clavicipitoid entomopathogenic fungi (EPF) were screened for activities against two economically important plant pathogenic oomycetes, Phytophthora sojae and Aphanomyces cochlioides. To identify the antioomycete compounds produced by EPF, the extracts of 13 highly active EPF strains were characterized in detail by high performance liquid chromatography with diode array detection and high-resolution mass spectrometric detection and antioomycete assay. The antioomycete activity of several Metarhizium extracts was associated with previously isolated aurovertins, fungerin, N-(methyl-3-oxodec-6-enoyl)-2-pyrroline, and N-(methyl-3-oxodecanoyl)-2-pyrroline. The depsipeptide beauvericin was confirmed to be one of the active principles of three strains of Isaria tenuipes, which strongly inhibited mycelial growth of both P. sojae and A. cochlioides. Two known bioactive metabolites, paecilosetin and aranorosinol A, together with a novel and potent antioomycete compound, farinomalein, were isolated from the extracts of Isaria farinosa and all compounds were confirmed to have antioomycete activity. Identification of 8 antioomycete compounds from 13 clavicipitioid EPF demonstrated a new potential use of EPF as a source of compounds for the control of soil-borne plant pathogenic oomycetes. PMID:24268864

Putri, Sastia Prama; Ishido, Kei-Ichi; Kinoshita, Hiroshi; Kitani, Shigeru; Ihara, Fumio; Sakihama, Yasuko; Igarashi, Yasuhiro; Nihira, Takuya



Phytophthora sojae Avirulence Effector Avr3b is a Secreted NADH and ADP-ribose Pyrophosphorylase that Modulates Plant Immunity  

PubMed Central

Plants have evolved pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) to protect themselves from infection by diverse pathogens. Avirulence (Avr) effectors that trigger plant ETI as a result of recognition by plant resistance (R) gene products have been identified in many plant pathogenic oomycetes and fungi. However, the virulence functions of oomycete and fungal Avr effectors remain largely unknown. Here, we combined bioinformatics and genetics to identify Avr3b, a new Avr gene from Phytophthora sojae, an oomycete pathogen that causes soybean root rot. Avr3b encodes a secreted protein with the RXLR host-targeting motif and C-terminal W and Nudix hydrolase motifs. Some isolates of P. sojae evade perception by the soybean R gene Rps3b through sequence mutation in Avr3b and lowered transcript accumulation. Transient expression of Avr3b in Nicotiana benthamiana increased susceptibility to P. capsici and P. parasitica, with significantly reduced accumulation of reactive oxygen species (ROS) around invasion sites. Biochemical assays confirmed that Avr3b is an ADP-ribose/NADH pyrophosphorylase, as predicted from the Nudix motif. Deletion of the Nudix motif of Avr3b abolished enzyme activity. Mutation of key residues in Nudix motif significantly impaired Avr3b virulence function but not the avirulence activity. Some Nudix hydrolases act as negative regulators of plant immunity, and thus Avr3b might be delivered into host cells as a Nudix hydrolase to impair host immunity. Avr3b homologues are present in several sequenced Phytophthora genomes, suggesting that Phytophthora pathogens might share similar strategies to suppress plant immunity.

Dong, Suomeng; Yin, Weixiao; Kong, Guanghui; Yang, Xinyu; Qutob, Dinah; Chen, Qinghe; Kale, Shiv D.; Sui, Yangyang; Zhang, Zhengguang; Dou, Daolong; Zheng, Xiaobo; Gijzen, Mark; M. Tyler, Brett; Wang, Yuanchao



Immunity of an Alternative Host Can Be Overcome by Higher Densities of Its Parasitoids Palmistichus elaeisis and Trichospilus diatraeae  

PubMed Central

Interactions of the parasitoids Palmistichus elaeisis Delvare & LaSalle and Trichospilus diatraeae Cherian & Margabandhu (Hymenoptera: Eulophidae) with its alternative host Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae) affect the success or failure of the mass production of these parasitoids for use in integrated pest management programs. The aim of this study was to evaluate changes in the cellular defense and encapsulation ability of A. gemmatalis pupae against P. elaeisis or T. diatraeae in adult parasitoid densities of 1, 3, 5, 7, 9, 11 or 13 parasitoids/pupae. We evaluated the total quantity of circulating hemocytes and the encapsulation rate versus density. Increasing parasitoid density reduced the total number of hemocytes in the hemolymph and the encapsulation rate by parasitized pupae. Furthermore, densities of P. elaeisis above 5 parasitoids/pupae caused higher reduction in total hemocyte numbers. The encapsulation rate fell with increasing parasitoid density. However, parasitic invasion by both species induced generally similar responses. The reduction in defensive capacity of A. gemmatalis is related to the adjustment of the density of these parasitoids to their development in this host. Thus, the role of the density of P. elaeisis or T. diatraeae by pupa is induced suppression of cellular defense and encapsulation of the host, even without them possesses a co-evolutionary history. Furthermore, these findings can predict the success of P. elaeisis and T. diatraeae in the control of insect pests through the use of immunology as a tool for evaluation of natural enemies.

Andrade, Gilberto Santos; Serrao, Jose Eduardo; Zanuncio, Jose Cola; Zanuncio, Teresinha Vinha; Leite, Germano Leao Demolin; Polanczyk, Ricardo Antonio



RNAi Silencing of Genes for Elicitation or Biosynthesis of 5-Deoxyisoflavonoids Suppresses Race-Specific Resistance and Hypersensitive Cell Death in Phytophthora sojae Infected Tissues1[OA  

PubMed Central

Isoflavonoids are thought to play an important role in soybean (Glycine max) resistance to Phytophthora sojae. This was addressed by silencing two genes for their biosynthesis and a third gene controlling their elicitation. Silencing of genes for isoflavone synthase (IFS) or chalcone reductase (CHR) was achieved in soybean roots through an Agrobacterium rhizogenes-mediated RNAi approach. Effectiveness of silencing was followed both by quantitative reverse transcriptase-polymerase chain reaction and high-performance liquid chromatography analyses. Silencing either IFS or CHR led to a breakdown of Rps-mediated resistance to race 1 of P. sojae in ‘W79’ (Rps 1c) or ‘W82’ (Rps 1k) soybean. Loss of resistance was accompanied by suppression of hypersensitive (HR) cell death in both cultivars and suppression of cell death-associated activation of hydrogen peroxide and peroxidase. The various results suggest that the 5-deoxyisoflavonoids play a critical role in the establishment of cell death and race-specific resistance. The P. sojae cell wall glucan elicitor, a potent elicitor of 5-deoxyisoflavonoids, triggered a cell death response in roots that was also suppressed by silencing either CHR or IFS. Furthermore, silencing of the elicitor-releasing endoglucanase (PR-2) led to a loss of HR cell death and race-specific resistance to P. sojae and also to a loss of isoflavone and cell death responses to cell wall glucan elicitor. Taken together, these results suggest that in situ release of active fragments from a general resistance elicitor (pathogen-associated molecular pattern) is necessary for HR cell death in soybean roots carrying resistance genes at the Rps 1 locus, and that this cell death response is mediated through accumulations of the 5-deoxyisoflavones.

Graham, Terrence L.; Graham, Madge Y.; Subramanian, Senthil; Yu, Oliver



Genome Re-Sequencing and Functional Analysis Places the Phytophthora sojae Avirulence Genes Avr1c and Avr1a in a Tandem Repeat at a Single Locus  

PubMed Central

The aim of this work was to map and identify the Phytophthora sojae Avr1c gene. Progeny from a cross of P. sojae strains ACR10×P7076 were tested for virulence on plants carrying Rps1c. Results indicate that avirulence segregates as a dominant trait. We mapped the Avr1c locus by performing whole genome re-sequencing of composite libraries created from pooled samples. Sequence reads from avirulent (Pool1) and virulent (Pool2) samples were aligned to the reference genome and single nucleotide polymorphisms (SNP) were identified for each pool. High quality SNPs were filtered to select for positions where SNP frequency was close to expected values for each pool. Only three SNP positions fit all requirements, and these occurred in close proximity. Additional DNA markers were developed and scored in the F2 progeny, producing a fine genetic map that places Avr1c within the Avr1a gene cluster. Transient expression of Avr1c or Avr1a triggers cell death on Rps1c plants, but Avr1c does not trigger cell death on Rps1a plants. Sequence comparisons show that the RXLR effector genes Avr1c and Avr1a are closely related paralogs. Gain of virulence on Rps1c in P. sojae strain P7076 is achieved by gene deletion, but in most other strains this is accomplished by gene silencing. This work provides practical tools for crop breeding and diagnostics, as the Rps1c gene is widely deployed in commercial soybean cultivars.

Na, Ren; Yu, Dan; Chapman, B. Patrick; Zhang, Yun; Kuflu, Kuflom; Austin, Ryan; Qutob, Dinah; Zhao, Jun; Wang, Yuanchao; Gijzen, Mark



Effect of various process parameters on morphology, rheology, and polygalacturonase production by Aspergillus sojae in a batch bioreactor.  


The effects of pH, agitation speed, and dissolved oxygen tension (DOT), significant in common fungal fermentations, on the production of polygalacturonase (PG) enzyme and their relation to morphology and broth rheology were investigated using Aspergillus sojae in a batch bioreactor. All three factors were effective on the response parameters under study. An uncontrolled pH increased biomass and PG activity by 27% and 38%, respectively, compared to controlled pH (pH 6) with an average pellet size of 1.69 +/- 0.48 mm. pH did not significantly affect the broth rheology but created an impact on the pellet morphology. Similarly, at constant agitation speed the maximum biomass obtained at 500 rpm and at 30 h was 3.27 and 3.67 times more than at 200 and 350 rpm, respectively, with an average pellet size of 1.08 +/- 0.42 mm. The maximum enzyme productivity of 0.149 U mL-1 h-1 was obtained at 200 rpm with an average pellet size of 0.71 +/- 0.35 mm. Non-Newtonian and pseudoplastic broth rheology was observed at 500 rpm agitation speed, broth rheology exhibited dilatant behavior at the lower agitation rate (200 rpm), and at the medium agitation speed (350 rpm) the broth was close to Newtonian. Furthermore, a DOT range of 30-50% was essential for maximum biomass formation, whereas only 10% DOT was required for maximum PG synthesis. Non-Newtonian shear thickening behavior (n > 1.0) was depicted at DOT levels of 10% and 30%, whereas non-Newtonian shear thinning behavior (n < 1.0) was dominant at 50% DOT. The overall fermentation duration (50-70 h) was considerably shorter compared to common fungal fermentations, revealing the economic feasibility of this particular process. As a result this study not only introduced a new strain with a potential of producing a highly commercially significant enzyme but also provided certain parameters significant in the design and mathematical modeling of fungal bioprocesses. PMID:17585778

Oncu, Selale; Tari, Canan; Unluturk, Sevcan



Wound-Associated Competency Factors Are Required for the Proximal Cell Responses of Soybean to the Phytophthora sojae Wall Glucan Elicitor.  

PubMed Central

Intact soybean (Glycine max L. [Merr.]) tissues show distinct proximal and distal cell responses to the Phytophthora sojae (Kauf. and Gerde.) wall glucan elicitor. Proximal cells respond with accumulations of glyceollin and phenolic polymers, whereas distal cells respond with an increase of isoflavone conjugates. Comparison of the activities of the P. sojae glucan in the classical cut cotyledon and a cotyledon infiltration assay suggests that the proximal, but not the distal, responses to elicitor require tissue wounding. Washing the surface of cut cotyledons prior to elicitor treatment also greatly diminishes the proximal responses, which can be restored in a dose-dependent manner by prior treatment of the washed cells with wound exudate from cut "donor" cotyledons. Thus, discrete wound-associated factors, which we term elicitation competency factors, are required for the proximal cell response to the glucan elicitor. The wound factors induce a competent state that is transient in nature. Maximal elicitor response is seen 2 to 3 h after wounding, and cells become elicitor nonresponsive after 4 h. Competency is markedly affected by the age of tissues; cotyledons become more inherently competent as they approach senescence. The time course of attainment of the competent state and its duration are strongly affected by light and temperature. Since the wound-associated competency factors can also be obtained from washings of hypersensitive lesions, we hypothesize that similar competency factors may be released from hypersensitively dying cells in incompatible infections. This event may program the immediately surrounding cells to make them competent for the proximal defense responses.

Graham, M. Y.; Graham, T. L.



RNA Interference of Soybean Isoflavone Synthase Genes Leads to Silencing in Tissues Distal to the Transformation Site and to Enhanced Susceptibility to Phytophthora sojae1  

PubMed Central

Isoflavones are thought to play diverse roles in plant-microbe interactions and are also potentially important to human nutrition and medicine. Isoflavone synthase (IFS) is a key enzyme for the formation of the isoflavones. Here, we examined the consequences of RNAi silencing of genes for this enzyme in soybean (Glycine max). Soybean cotyledon tissues were transformed with Agrobacterium rhizogenes carrying an RNAi silencing construct designed to silence expression of both copies of IFS genes. Approximately 50% of emerging roots were transformed with the RNAi construct, and most transformed roots exhibited >95% silencing of isoflavone accumulation. Silencing of IFS was also demonstrated throughout the entire cotyledon (in tissues distal to the transformation site) both by high-performance liquid chromatography analysis of isoflavones and by real-time reverse transcription-PCR. This distal silencing led to a nearly complete suppression of mRNA accumulation for both the IFS1 and IFS2 genes and of isoflavone accumulations induced by wounding or treatment with the cell wall glucan elicitor from Phytophthora sojae. Preformed isoflavone conjugates were not reduced in distal tissues, suggesting little turnover of these stored isoflavone pools. Distal silencing was established within just 5 d of transformation and was highly efficient for a 3- to 4-d period, after which it was no longer apparent in most experiments. Silencing of IFS was effective in at least two genotypes and led to enhanced susceptibility to P. sojae, disrupting both R gene-mediated resistance in roots and nonrace-specific resistance in cotyledon tissues. The soybean cotyledon system, already a model system for defense signal-response and cell-to-cell signaling, may provide a convenient and effective system for functional analysis of plant genes through gene silencing.

Subramanian, Senthil; Graham, Madge Y.; Yu, Oliver; Graham, Terrence L.



A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress.  


It has been well demonstrated that cystatins regulated plant stress tolerance through inhibiting the cysteine proteinase activity under environmental stress. However, there was limited information about the role of cystatins in plant alkali stress response, especially in wild soybean. Here, in this study, we focused on the biological characterization of a novel Glycine soja cystatin protein GsCPI14, which interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and positively regulated plant alkali stress tolerance. The protein-protein interaction between GsCBRLK and GsCPI14 was confirmed by using split-ubiquitin based membrane yeast two-hybrid analysis and bimolecular fluorescence complementation assay. Expression of GsCPI14 was greatly induced by salt, ABA and alkali stress in G. soja, and GsCBRLK overexpression (OX) in Glycine max promoted the stress induction of GmCPI14 expression under stress conditions. Furthermore, we found that GsCPI14-eGFP fusion protein localized in the entire Arabidopsis protoplast and onion epidermal cell, and GsCPI14 showed ubiquitous expression in different tissues of G. soja. In addition, we gave evidence that the GST-GsCPI14 fusion protein inhibited the proteolytic activity of papain in vitro. At last, we demonstrated that OX of GsCPI14 in Arabidopsis promoted the seed germination under alkali stress, as evidenced by higher germination rates. GsCPI14 transgenic Arabidopsis seedlings also displayed better growth performance and physiological index under alkali stress. Taken together, results presented in this study demonstrated that the G. soja cysteine proteinase inhibitor GsCPI14 interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and regulated plant tolerance to alkali stress. PMID:24407891

Sun, Xiaoli; Yang, Shanshan; Sun, Mingzhe; Wang, Sunting; Ding, Xiaodong; Zhu, Dan; Ji, Wei; Cai, Hua; Zhao, Chaoyue; Wang, Xuedong; Zhu, Yanming



Validation of reference genes aiming accurate normalization of qPCR data in soybean upon nematode parasitism and insect attack  

PubMed Central

Background Soybean pathogens and pests reduce grain production worldwide. Biotic interaction cause extensive changes in plant gene expression profile and the data produced by functional genomics studies need validation, usually done by quantitative PCR. Nevertheless, this technique relies on accurate normalization which, in turn, depends upon the proper selection of stable reference genes for each experimental condition. To date, only a few studies were performed to validate reference genes in soybean subjected to biotic stress. Here, we report reference genes validation in soybean during root-knot nematode (Meloidogyne incognita) parasitism and velvetbean caterpillar (Anticarsia gemmatalis) attack. Findings The expression stability of nine classical reference genes (GmCYP2, GmELF1A, GmELF1B, GmACT11, GmTUB, GmTUA5, GmG6PD, GmUBC2 and GmUBC4) was evaluated using twenty-four experimental samples including different organs, developmental stages, roots infected with M. incognita and leaves attacked by A. gemmatalis. Two different algorithms (geNorm and NormFinder) were used to determine expression stability. GmCYP2 and GmUBC4 are the most stable in different organs. Considering the developmental stages, GmELF1A and GmELF1B genes are the most stable. For spatial and temporal gene expression studies, normalization may be performed using GmUBC4, GmUBC2, GmCYP2 and GmACT11 as reference genes. Our data indicate that both GmELF1A and GmTUA5 are the most stable reference genes for data normalization obtained from soybean roots infected with M. incognita, and GmCYP2 and GmELF1A are the most stable in soybean leaves infested with A. gemmatalis. Conclusions Future expression studies using nematode infection and caterpilar infestation in soybean plant may utilize the reference gene sets reported here.



Host-Pathogen Interactions: IX. Quantitative Assays of Elicitor Activity and Characterization of the Elicitor Present in the Extracellular Medium of Cultures of Phytophthora megasperma var. sojae.  


Resistance of soybean (Glycine max L.) seedlings to Phytophthora megasperma var. sojae (Pms) is in part due to the accumulation in infected tissue of a compound which is toxic to Pms. The accumulation of this compound, a phytoalexin called glyceollin, is triggered by infection, but it can also be triggered by molecules, "elicitors," present in cultures of Pms. The ability of the Pms elicitor to stimulate phytoalexin accumulation in soybean tissues has been used as the basis for biological assays of elicitor activity. Two bioassays were developed and characterized in this study of the Pms elicitor. These bioassays use the cotyledons and the hypocotyls of soybean seedlings. The cotyledon assay was used to characterize the extracellular Pms elicitor. This elicitor was isolated from Pms cultures and purified by ion exchange and molecular sieving chromatography. The extracellular Pms elicitor was determined to be a predominantly 3-linked glucan, which is similar in composition and structure to a polysaccharide component of Pms mycelial walls. PMID:16659565

Ayers, A R; Ebel, J; Finelli, F; Berger, N; Albersheim, P



A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana.  


It is well established that 14-3-3 proteins are key regulators of multiple stress signal transduction cascades. However, the biological functions of soybean 14-3-3 proteins, especially in plant drought response, are not yet known. In this study, we characterized a Glycine soja 14-3-3 gene, GsGF14o, which is involved in plant development and drought response. GsGF14o expression was greatly induced by drought stress, as evidenced by the quantitative real-time PCR and ?-glucuronidase (GUS) activity analysis. GsGF14o overexpression in Arabidopsis thaliana resulted in decreased drought tolerance during seed germination and seedling growth. Furthermore, silencing of AtGF14µ, the most homologous 14-3-3 gene of GsGF14o, led to enhanced drought tolerance at both the seed germination and seedling stage. Unexpectedly, GsGF14o transgenic lines showed reduced water loss and transpiration rates compared with wild-type plants, which was demonstrated to be the consequence of the decreased stomatal size. At the same time, the smaller stomata due to GsGF14o overexpression led to a relatively slow net photosynthesis rate, which led to a growth penalty under drought stress. We further demonstrated that GsGF14o overexpression caused deficits in root hair formation and development, and thereby reduced the water intake capacity of the transgenic root system. In addition, GsGF14o overexpression down-regulated the transcript levels of drought-responsive marker genes. Finally, we also investigated the tissue-specific accumulation of GsGF14o by using a GUS activity assay. Collectively, the results presented here confirm that GsGF14o plays a dual role in drought stress responses through its involvement in the regulation of stomatal size and root hair development. PMID:24272249

Sun, Xiaoli; Luo, Xiao; Sun, Mingzhe; Chen, Chao; Ding, Xiaodong; Wang, Xuedong; Yang, Shanshan; Yu, Qingyue; Jia, Bowei; Ji, Wei; Cai, Hua; Zhu, Yanming



Cloning and sequence analysis of the Antheraea pernyi nucleopolyhedrovirus gp64 gene.  


Frequent outbreaks of the purulence disease of Chinese oak silkworm are reported in Middle and Northeast China. The disease is produced by the pathogen Antheraea pernyi nucleopolyhedrovirus (AnpeNPV). To obtain molecular information of the virus, the polyhedra of AnpeNPV were purified and characterized. The genomic DNA of AnpeNPV was extracted and digested with HindIII. The genome size of AnpeNPV is estimated at 128 kb. Based on the analysis of DNA fragments digested with HindIII, 23 fragments were bigger than 564 bp. A genomic library was generated using HindIII and the positive clones were sequenced and analysed. The gp64 gene, encoding the baculovirus envelope protein GP64, was found in an insert. The nucleotide sequence analysis indicated that the AnpeNPV gp64 gene consists of a 1,530 nucleotide open reading frame (ORF), encoding a protein of 509 amino acids. Of the eight gp64 homologues, the AnpeNPV gp64 ORF shared the most sequence similarity with the gp64 gene of Anticarsia gemmatalis NPV, but not Bombyx mori NPV. The upstream region of the AnpeNPV gp64 ORF encoded the conserved transcriptional elements for early and late stage of the viral infection cycle. These results indicated that AnpeNPV belongs to group I NPV and was far removed in molecular phylogeny from the BmNPV. PMID:16388134

Wang, Wenbing; Zhu, Shanying; Wang, Liqun; Yu, Feng; Shen, Weide



Analysis of a chitinase from EpapGV, a fast killing betabaculovirus.  


The main function of baculoviral chitinase protein (V-CHIA) is to promote the final liquefaction of infected host larvae, facilitating the dispersion of occlusion bodies (OBs) in the environment. In this study, a v-chiA from Epinotia aporema Granulovirus (EpapGV) was identified and characterized. The 1,713 base pairs long open reading frame encodes a protein of 570 amino acids with a predicted molecular weight of 63 kDa. EpapGV V-CHIA sequence alignment resulted 62 % identical to Pieris rapae GV and Blastp search revealed a high conservation among all baculovirus chitinases. Amino acid sequence analysis indicated that the C-terminal KDEL present in most alphabaculovirus chitinases is absent in EpapGV V-CHIA, as well as in the rest of the betabaculoviruses. Phylogenetic analysis was performed with bacterial, lepidopteran, and baculoviral chitinase sequences available in databases. Using an AcMNPV bacmid (bApGOZA) a recombinant Ac-chiAEpapGV was obtained in order to overexpress EpapGV V-CHIA in cell culture. The presence of chitinase was detected in purified AcMNPV-chiAEpapGV OBs. Peritrophic membranes of Anticarsia gemmatalis larvae fed with recombinant OBs showed an altered structure. The results presented in this study show that EpapGV chitinase overexpression in recombinant baculovirus can cause association of this protein with OBs, and suggest that this could be used to evaluate the protein role in early stages of baculoviral infections. PMID:24297310

Salvador, Ricardo; Ferrelli, M Leticia; Sciocco-Cap, Alicia; Romanowski, Víctor



Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene.  

PubMed Central

Somatic embryos of jack, a Glycine max (L.) Merrill cultivar, were transformed using microprojectile bombardment with a synthetic Bacillus thuringiensis insecticidal crystal protein gene (Bt cryIAc) driven by the 35S promoter and linked to the HPH gene. Approximately 10 g of tissue was bombarded, and three transgenic lines were selected on hygromycin-containing media and converted into plants. The recovered lines contained the HPH gene, but the Bt gene was lost in one line. The plasmid was rearranged in the second line, and the third line had two copies, one of which was rear-ranged. The CryIAc protein accumulated up to 46 ng mg-1 extractable protein. In detached-leaf bioassays, plants with an intact copy of the Bt gene, and to a lesser extent those with the rearranged copy, were protected from damage from corn earworm (Helicoverpa zea), soybean looper (Pseudoplusia includens), tobacco budworm (Heliothis virescens), and velvetbean caterpillar (Anticarsia gemmatalis). Corn earworm produced less than 3% defoliation on transgenic plants, compared with 20% on the lepidopteran-resistant breeding line GatIR81-296, and more than 40% on susceptible cultivars. Unlike previous reports of soybean transformation using this technique, all plants were fertile. To our knowledge, this is the first report of a soybean transgenic for a highly expressed insecticidal gene.

Stewart, C N; Adang, M J; All, J N; Boerma, H R; Cardineau, G; Tucker, D; Parrott, W A



Perception of solar UVB radiation by phytophagous insects: Behavioral responses and ecosystem implications  

PubMed Central

Most of our present knowledge about the impacts of solar UVB radiation on terrestrial ecosystems comes from studies with plants. Recently, the effects of UVB on the growth and survival of consumer species have begun to receive attention, but very little is known about UVB impacts on animal behavior. Here we report that manipulations of the flux of solar UVB received by field-grown soybean crops had large and consistent effects on the density of the thrips (Caliothrips phaseoli, Thysanoptera: Thripidae) populations that invaded the canopies, as well as on the amount of leaf damage caused by the insects. Solar UVB strongly reduced thrips herbivory. Thrips not only preferred leaves from plants that were not exposed to solar UVB over leaves from UVB-exposed plants in laboratory and field choice experiments, but they also appeared to directly sense and avoid exposure to solar UVB. Additional choice experiments showed that soybean leaf consumption by the late-season soybean worm Anticarsia gemmatalis (Lepidoptera: Noctuidae) was much less intense in leaves with even slight symptoms of an early thrips attack than in undamaged leaves. These experiments suggest that phytophagous insects can present direct and indirect behavioral responses to solar UVB. The indirect responses are mediated by changes in the plant host that are induced by UVB and, possibly, by other insects whose behavior is affected by UVB.

Mazza, Carlos A.; Zavala, Jorge; Scopel, Ana L.; Ballare, Carlos L.



Mode of Action and Specificity of Bacillus thuringiensis Toxins in the Control of Caterpillars and Stink Bugs in Soybean Culture.  


The bacterium Bacillus thuringiensis (Bt) produces delta-endotoxins that possess toxic properties and can be used as biopesticides, as well as a source of genes for the construction of transgenic plants resistant to insects. In Brazil, the introduction of Bt soybean with insecticidal properties to the velvetbean caterpillar, the main insect pest of soybean, has been seen a promising tool in the management of these agroecosystems. However, the increase in stink bug populations in this culture, in various regions of the country, which are not susceptible to the existing genetically modified plants, requires application of chemicals that damage the environment. Little is known about the actual toxicity of Bt to Hemiptera, since these insects present sucking mouthparts, which hamper toxicity assays with artificial diets containing toxins of this bacterium. In recent studies of cytotoxicity with the gut of different hemipterans, susceptibility in the mechanism of action of delta-endotoxins has been demonstrated, which can generate promising subsidies for the control of these insect pests in soybean. This paper aims to review the studies related to the selection, application and mode of action of Bt in the biological control of the major pest of soybean, Anticarsia gemmatalis, and an analysis of advances in research on the use of Bt for control hemipterans. PMID:24575310

Schünemann, Rogério; Knaak, Neiva; Fiuza, Lidia Mariana



History and contemporary perspectives of the integrated pest management of soybean in Brazil.  


The integrated pest management (IPM) of soybean developed and implemented in Brazil was one of the most successful programs of pest management in the world. Established during the 1970s, it showed a tremendous level of adoption by growers, decreasing the amount of insecticide use by over 50%. It included outstanding approaches of field scouting and decision making, considering the economic injury levels (EILs) for the major pests. Two main biological control programs were highly important to support the soybean IPM program in Brazil, i.e., the use of a NPVAg to control the major defoliator, the velvet bean caterpillar, Anticarsia gemmatalis Hübner, and the use of egg parasitoids against the seed-sucking stink bugs, in particular, the southern green stink bug, Nezara viridula (L.). These two biological control programs plus pests scouting, and the use of more selective insecticides considering the EILs supported the IPM program through the 1980s and 1990s. With the change in the landscape, with the adoption of the no-tillage cultivation system and the introduction of more intense multiple cropping, and with the lower input to divulge and adapt the IPM program to this new reality, the program started to decline during the years 2000s. Nowadays, soybean IPM is almost a forgotten control technology. In this mini-review article, suggestions are made to possibly revive and adapt the soybean IPM to contemporary time. PMID:23949744

Panizzi, A R



Molecular characterization of genes in the GP41 region of baculoviruses and phylogenetic analysis based upon GP41 and polyhedrin genes.  


A newly sequenced Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) gp41 gene was used to reconstruct the phylogeny for gp41 by comparison with Autographa californica MNPV, Bombyx mori MNPV, Helicoverpa zea single nucleopolyhedrovirus (SNPV), Lymantria dispar MNPV, Orgyia pseudotsugata MNPV and Spodoptera frugiperda MNPV. The 3.5 kb fragment of the AgMNPV gp41 region not only contained the gp41 gene but also three other open reading frames that had significant homology with the very late factor (vlf-1) of baculoviruses, AcMNPV ORF78, AcMNPV ORF79, and one partial open reading frame homologous to AcMNPV ORF81. The reconstructed phylogenetic tree of baculovirus gp41 genes compared with the polyhedrin gene tree produced similar topologies. Two other phylogenetic trees were reconstructed based on either combined gp41 and polyhedrin nucleotide sequences (total evidence) or combined evolutionary histories of both genes (strict consensus tree). The former had an identical tree topology as the gp41 gene tree alone, and the latter lost resolution in the branch of AcMNPV and BmMNPV. Mutation rate analysis showed the gp41 gene had a higher nucleotide substitution rate than the polyhedrin gene, implying that the polyhedrin gene may have a different selection constraint than the gp41 gene. Both genes have nonsynonymous/synonymous substitution values close to 0.1, similar to other DNA viruses. PMID:10518714

Liu, J C; Maruniak, J E



Cell Culture Derived AgMNPV Bioinsecticide: Biological Constraints and Bioprocess Issues.  


We have studied parameters for optimizing the Spodoptera frugiperda (Sf9) cell culture and viral infection for the production of Anticarsia gemmatalis multiple nucleopolyhedrosis virus (AgMNPV) polyhedra inclusion bodies (PIBs) in shaker-Schott or spinner bottles and bioreactors. We have assayed the k(L)a of the systems, initial cell seeding, cell culture volume, dissolved oxygen (DO), multiplicity of infection (MOI), nutrients consumption, and metabolites production. The medium surface oxygen transfer was shown to be higher in shaker bottles than in spinner ones, which was in direct correlation to the higher cell density obtained. Best quantitative performances of PIBs production were obtained with a SF900II medium volume/shaker-bottle volume ratio of 15% and MOI of 0.5 to 1 performed at a cell concentration at infection (CCI) of 1 to 2.5x10(6) cells/ml in a medium containing enough glucose and glutamine. Upon infection, a decrease in the cell multiplication was observed to be dependent on the MOI used, and the muX at the exponential growth phase in infected and non-infected cultures were, respectively, of 0.2832 and 0.3914 (day(-1)). The glucose consumption and lactate production were higher in the infected cultures (muGlucose and muLactate of, respectively, 0.0248 and 0.0089x10(-8) g/cellxday in infected cultures and 0.0151 and 0.0046x10(-8) g/cellxday in non infected ones). The glutamine consumption did not differ in both cultures (muGlutamine of 0.0034 and 0.0037x10(-8) g/cellxday in, respectively, infected and non infected cultures). When a virus MOI of 0.1 to 1 was used for infection, a higher concentration of PIBs/ml was obtained. This was in direct correlation to a higher cell concentration present in these cultures, where a decrease in cell multiplication due to virus infection is minimized. When a MOI of 1 was used, a more effective decrease in cell multiplication was observed and a lower concentration of PIBs/ml was obtained, but with the best performance of PIBs/cell. Correlations between MOI and CCI indicate that a MOI 0.1 to 1.4 and a CCI of 10(6) to 2x10(6) cells/ml led to the best PIBs production performances. The virulence of PIBs produced in cultures infected at low or high MOI showed comparable DL(50). Culture and infection in scaling-up conditions, performed in a bioreactor, were shown to provide the cells with a better environment and be capable of potentially improving the shaker-Schott findings. For an accurate qualitative control of PIB virulence, hemolymph from AgMNPV infected Anticarsia gemmatalis was used as starting material for passages in Sf9 cells. These led to a loss of virulence among the PIBs with an increase in the DL(50). The loss of virulence was accompanied by a loss in budded virus titer, a decreased number of PIBs produced and an altered DNA restriction pattern, suggesting the generation of defective interference particles (DIPs). Transmission electron microscopy (TEM) studies revealed that after cell passages, PIBs lacking virions were progressively synthesized. The study described here point out the biological constraints and bioprocess issues for the preparation of AgMNPV PIBs for biological control. PMID:19003030

Rodas, Valeria M; Marques, Fabiano H; Honda, Marcelo T; Soares, Daniela M; Jorge, Soraia A C; Antoniazzi, Marta M; Medugno, Claudia; Castro, Maria E B; Ribeiro, Bergmann M; Souza, Marlinda L; Tonso, Aldo; Pereira, Carlos A



Biological and molecular characterization of a multicapsid nucleopolyhedrovirus from Thysanoplusia orichalcea (L.) (Lepidoptera: Noctuidae).  


A multicapsid nucleopolyhedrovirus (ThorMNPV) that was co-isolated with a single nucleocapid ThorSNPV from mixed infected larvae of Thysanoplusia orichalcea L. (Lepidoptea: Noctuidae) is characterized. Scanning electron microscopy of ThorMNPV showed a dodecahedral-shaped occlusion body (OB). The occluded virions contained one to as many as eight nucleocapsids/virion. Virion band profiles in gradient centrifugation were consistent in at least 10 rounds of centrifugation from different virion sample preparations. The ThorMNPV had high virulence to third instar Trichoplusia ni and Pseudoplusia includens with LD50 values of 17 and 242OBs per larva, respectively. However, ThorMNPV did not cause mortality in Spodoptera exigua, Spodoptera frugiperda, Spodoptera eridania, Anticarsia gemmatalis, and Helicoverpa zea. ThorMNPV replicates in cells of various tissues such as the fat body and tracheal epithelium cells. T. ni High 5 cells were permissive to ThorMNPV in terms of infection and viral DNA transfection, but SF-21 was less permissive and the infection process was slower. Production of OBs by ThorMNPV in the nuclei of SF-21 was not well pronounced. The genome size of ThorMNPV was estimated to be 136 kb. The polyhedrin gene open reading frame (ORF) was cloned and completely sequenced. The promoter sequence is identical to that of Autographa californica MNPV. Phylogenetic analyses using partial sequences of the polh, lef-8, and lef-9 revealed that ThorMNPV is a member of the Group I NPVs and is related but distinct from the AcMNPV/Rachiplusia ou NPV/Bombyx mori NPV cluster. PMID:15766929

Cheng, Xiao-Wen; Carner, Gerald R; Lange, Martin; Jehle, Johannes A; Arif, Basil M



Functional Genomics and Bioinformatics of the Phytophthora sojae Soybean Interaction  

Microsoft Academic Search

Oomycete plant pathogens such as Phytophthora species and downy mildews cause destructive diseases in an enormous variety of crop plant species as well as forests and\\u000a native ecosystems. These pathogens are most closely related to algae in the kingdom Stramenopiles, and hence have evolved\\u000a plant pathogenicity independently of other plant pathogens such as fungi. We have used bioinformatic analysis of

Brett M. Tyler; Rays H. Y. Jiang; Lecong Zhou; Sucheta Tripathy; Daolong Dou; Trudy Torto-Alalibo; Hua Li; Yongcai Mao; Bing Liu; Miguel Vega-Sanchez; Santiago X. Mideros; Regina Hanlon; Brian M. Smith; Konstantinos Krampis; Keying Ye; Steven St. Martin; Anne E. Dorrance; Ina Hoeschele; M. A. Saghai Maroof


Resistência de genótipos de soja à Phakopsora pachyrhizi  

Microsoft Academic Search

The aim of the present study, was to quantify the resistance in fifty soybean genotipes of the cerrado region to the rust caused by Phakopsora pachyrhizi .One experiment in greenhouse were conducted in Uberlândia , MG from January to July 2004. Average latent period, number of pustules per cm2 and disease severity were evaluated. Azevedo, L.A.S.; Juliatti, F.C.; Barreto, M..

Luís Antônio Siqueira de Azevedo; Fernando Cezar Juliatti; Modesto Barreto



Fungicidas no controle da ferrugem asiática (Phakopsora pachyrhizi) e produtividade da soja  

Microsoft Academic Search

This work was done in order to evaluated the fungicides effect on the control of soybean rust caused by Phakopsora pachyrhizi, as well as their effect on yield. The fungicides were sprayed when the plants were at the growth stage R4. The cultivar used was Fepagro-RS 10. The experimental design used was a randomized blocks replicated four times and with

Rafael Moreira Soares; Sérgio De Assis Librelotto Rubin; Angélica Polenz Wielewicki; José Geraldo Ozelame



Allelic differentiation of Kunitz trypsin inhibitor in wild soybean (Glycine soja).  


Soybean Kunitz trypsin inhibitor (SKTI) has several polymorphic types, which are controlled by co-dominant multiple alleles at a single locus. Of these types, Tia and Tib are predominant types, and there are nine differences in amino acids between Tia and Tib. Recently, an intermediate transitional type (Tibi5) between them was detected. However, other transitional types have not been detected despite surveys of many cultivated and wild soybeans. One of the reasons why other transitional variants have not been found is inferred to be due to the difficulty of the detection of SKTI protein variants by polyacrylamide gel electrophoresis (PAGE). To detect novel variants of SKTI, nucleotide sequence analysis in addition to PAGE was carried out. Four new variants were found from many Japanese wild soybeans. Of these variants, three (designated as Tiaa1, Tiaa2, Tiab1) were detected through gene sequence analysis on wild soybeans having the same electrophoretic mobility as Tia, and one (Tig) was detected through PAGE. The Tig variant showed a slightly lower electrophoretic mobility than Tic. The nucleotide sequences of Tig were identical to those of Tib except for one T-->C transitional mutation at position +340. The sequences of Tiaa1 and Tiaa2 genes were identical to those of Tia with the exception of a G-->A mutation at position +376 and a T-->C mutation at +404, respectively. The sequence of Tiab1 differed from Tia by three nucleotides: C-->A at position +331, T-->C at +459 and A-->G at +484. Of the three nucleotide changes, two were common to Tiab1, Tibi5 and Tib, suggesting that Tiab1 is an intermediate transitional type between Tia and Tib. Our results suggest that Tib type has been differentiated through a series of mutations from Tia before the domestication of cultivated soybean. PMID:18512041

Wang, K J; Takahata, Y; Kono, Y; Kaizuma, N



Allelic differentiation of Kunitz trypsin inhibitor in wild soybean ( Glycine soja )  

Microsoft Academic Search

Soybean Kunitz trypsin inhibitor (SKTI) has several polymorphic types, which are controlled by co-dominant multiple alleles\\u000a at a single locus. Of these types, Tia and Tib are predominant types, and there are nine differences in amino acids between Tia and Tib. Recently, an intermediate transitional type (Tib\\u000a \\u000a i5\\u000a ) between them was detected. However, other transitional types have not been

K. J. Wang; Y. Takahata; Y. Kono; N. Kaizuma




Microsoft Academic Search

Changes in the shape of characteristic spectral profile of soybean are associated with the development conditions of plants, especially meteorological and management. The objective of this study was to analyze the differences among spectral profiles taken on different producer regions of soybean in the southern of Brazil. The biomass monitoring, done from September 1999 to March 2000, was made using

E. Weber; L. A. Guasselli



Microsoft Academic Search

UTILIZATION OF FULL-FAT SOYBEAN WITHOUT KUNITZ FACTOR IN BROWN-EGG LAYER DIETS. Two hundred and eighty brown-egg layers (56\\/treatment) were individually alloted in cages and subjected to a completely randomized design. The birds were fed increasing dietary levels (0; 5; 10; 15; and 20%) of low Kunitz raw soybean during 84 days. Egg shell quality and yolk color were not affected

Paulo R; Rogério MAGGIONI


Antioxidant activity of glyceollins derived from soybean elicited with Aspergillus sojae.  


The extract of soybean exposed to biotic elicitors such as food-grade fungus is known to have antioxidant activity. Glyceollins were major bioactive compounds present in soybean elicited by fungi and shown to have antifungal and anticancer activities. The purpose of present study was to evaluate the antioxidant activities of glyceollins by measuring ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, singlet oxygen quenching, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, hydroxyl radical scavenging activity, and lipid peroxidation inhibition. In addition, the antioxidant potential of glyceollins were measured by a fluorescent probe, 2',7'-dichlorofluorescin diacetate (DCFDA), and dihydroethidium (DHE) in mouse hepatoma hepa1c1c7 cells in which they were insulted with H2O2 to generate reactive oxygen species (ROS). Glyceollins showed a strong reducing power and inhibited lipid peroxidation, with significant scavenging activities of radicals including singlet oxygen, superoxide anion, ABTS, and DPPH. We also found that glyceollins significantly suppressed H2O2-induced ROS production in hepa1c1c7 cells. Therefore, glyceollins deserve further study as natural antioxidants and nutraceuticals. PMID:21033668

Kim, Hyo Jung; Suh, Hwa-Jin; Kim, Jeong Hwan; Park, Sunmin; Joo, Young Chul; Kim, Jong-Sang



Alterações físico-químicas dos óleos de girassol, milho e soja em frituras  

Microsoft Academic Search

PHYSICO-CHEMICAL ALTERATIONS OF SUNFLOWER, CORN AND SOYBEAN OILS IN DEEP FAT FRYING. The aim of this study is to determine the influence of frying time on the alterations of sunflower, corn and soybean oils during deep fat frying of potato chips. The analytical methods used to evaluate the oil alterations are: free fatty acids, peroxide value, refractive index and total

Neuza Jorge; Bruno Bellei Prazeres Soares; Vanessa Martins Lunardi; Cassia Roberta Malacrida



Controle químico da ferrugem asiática (Phakopsora pachyrhizi Sidow) na cultura da soja  

Microsoft Academic Search

The efficiency of different fungicides rates applied at various soybean stages was evaluated to control Phakopsora pachyrhizi. Soybean cultivars used in the field trials under natural infection were: RS 10, BRS 154, CD 201, BRS 153, CD 206 and CD 209. Results showed significant variation on yield after two fungicide applications. Navarini, L, Dallagnol,L.J., Balardin, R.S., Moreira, M.T., Meneghetti, R.C.,

Lucas Navarini; Leandro José Dallagnol; Ricardo Silverio Balardin; Marcelo Temp Moreira; Rosana Ceolin Meneghetti; Marcelo Gripa Madalosso



Association mapping of yield-related traits and SSR markers in wild soybean (Glycine soja Sieb. and Zucc.).  


Wild soybean, the progenitor of cultivated soybean, is an important gene pool for ongoing soybean breeding efforts. To identify yield-enhancing quantitative trait locus (QTL) or gene from wild soybean, 113 wild soybeans accessions were phenotyped for five yield-related traits and genotyped with 85 simple sequence repeat (SSR) markers to conduct association mapping. A total of 892 alleles were detected for the 85 SSR markers, with an average 10.49 alleles; the corresponding PIC values ranged from 0.07 to 0.92, with an average 0.73. The genetic diversity of each SSR marker ranged from 0.07 to 0.93, with an average 0.75. A total of 18 SSR markers were identified for the five traits. Two SSR markers, sct_010 and satt316, which are associated with the yield per plant were stably expressed over two years at two experimental locations. Our results suggested that association mapping can be an effective approach for identifying QTL from wild soybean. PMID:24757383

Hu, Zhenbin; Zhang, Dan; Zhang, Guozheng; Kan, Guizhen; Hong, Delin; Yu, Deyue



Glycine soja PI 468916 SCN Resistance Loci's Associated Effects on Soybean Seed Yield and Other Agronomic Traits  

Microsoft Academic Search

The soybean cyst nematode (SCN, Heterodera glycines Riggs and Niblack) is the most important soybean (Glycine max (L.) Merr.) pathogen in the USA and its control relies on genetic resistance. When resistance genes from exotic sources are transferred into elite cultivars, deleterious alleles are frequently transferred with resistance through genetic linkages. Two SCN resistance loci have been identified in G.

E. A. Kabelka; S. R. Carlson; B. W. Diers



Microsoft Academic Search

The production of calves from dairy herds reared on whole milk is not economically viable. Different milk substitutes with animal or vegetal protein have been tested, but always showed allergic or practical management problems. The texturized soybean protein is obtained from whole soybean extruded, which takes a better digestibility and an inactivation of allergic principles. The objective of this trial



Cinética de inativação de inibidores de tripsina e de insolubilização de proteínas de diferentes cultivares de soja  

Microsoft Academic Search

Soybean (Glycine max (L.) Merrill) is one of the most studied vegetables, due to its use as sources of edible oil and protein for human and animal feeding. The presence of trypsin inhibitors in soy grain restrict its utilization and requires heating to improve the nutritional quality. However, excessive heating may reduce the protein quality. Soybean cultivar BR-36 containing normal

Edna Mayumi Yuahasi Miura; Rui Sérgio dos Santos Ferreira da Silva; Ivone Yurika Mizubuti; Elza Iouko Ida



Identification and functional characterization of the soybean GmaPPO12 promoter conferring Phytophthora sojae induced expression.  


Identification of pathogen-inducible promoters largely lags behind cloning of the genes for disease resistance. Here, we cloned the soybean GmaPPO12 gene and found that it was rapidly and strongly induced by Phytophthorasojae infection. Computational analysis revealed that its promoter contained many known cis-elements, including several defense related transcriptional factor-binding boxes. We showed that the promoter could mediate induction of GUS expression upon infection in both transient expression assays in Nicotianabenthamiana and stable transgenic soybean hairy roots. Importantly, we demonstrated that pathogen-induced expression of the GmaPPO12 promoter was higher than that of the soybean GmaPR1a promoter. A progressive 5' and 3' deletion analysis revealed two fragments that were essential for promoter activity. Thus, the cloned promoter could be used in transgenic plants to enhance resistance to phytophthora pathogens, and the identified fragment could serve as a candidate to produce synthetic pathogen-induced promoters. PMID:23840763

Chai, Chunyue; Lin, Yanling; Shen, Danyu; Wu, Yuren; Li, Hongjuan; Dou, Daolong



Identification and Functional Characterization of the Soybean GmaPPO12 Promoter Conferring Phytophthora sojae Induced Expression  

PubMed Central

Identification of pathogen-inducible promoters largely lags behind cloning of the genes for disease resistance. Here, we cloned the soybean GmaPPO12 gene and found that it was rapidly and strongly induced by Phytophthorasojae infection. Computational analysis revealed that its promoter contained many known cis-elements, including several defense related transcriptional factor-binding boxes. We showed that the promoter could mediate induction of GUS expression upon infection in both transient expression assays in Nicotianabenthamiana and stable transgenic soybean hairy roots. Importantly, we demonstrated that pathogen-induced expression of the GmaPPO12 promoter was higher than that of the soybean GmaPR1a promoter. A progressive 5’ and 3’ deletion analysis revealed two fragments that were essential for promoter activity. Thus, the cloned promoter could be used in transgenic plants to enhance resistance to phytophthora pathogens, and the identified fragment could serve as a candidate to produce synthetic pathogen-induced promoters.

Chai, Chunyue; Lin, Yanling; Shen, Danyu; Wu, Yuren; Li, Hongjuan; Dou, Daolong



Association mapping of yield-related traits and SSR markers in wild soybean (Glycine soja Sieb. and Zucc.)  

PubMed Central

Wild soybean, the progenitor of cultivated soybean, is an important gene pool for ongoing soybean breeding efforts. To identify yield-enhancing quantitative trait locus (QTL) or gene from wild soybean, 113 wild soybeans accessions were phenotyped for five yield-related traits and genotyped with 85 simple sequence repeat (SSR) markers to conduct association mapping. A total of 892 alleles were detected for the 85 SSR markers, with an average 10.49 alleles; the corresponding PIC values ranged from 0.07 to 0.92, with an average 0.73. The genetic diversity of each SSR marker ranged from 0.07 to 0.93, with an average 0.75. A total of 18 SSR markers were identified for the five traits. Two SSR markers, sct_010 and satt316, which are associated with the yield per plant were stably expressed over two years at two experimental locations. Our results suggested that association mapping can be an effective approach for identifying QTL from wild soybean.

Hu, Zhenbin; Zhang, Dan; Zhang, Guozheng; Kan, Guizhen; Hong, Delin; Yu, Deyue



Uncovering signatures of selection in the soybean genome using SSR diversity near QTLs of agronomic importance  

Microsoft Academic Search

The cultivated soybean [Glycine max (L.) Merr.] is widely considered to descend from the wild soybean (G. soja Sieb. & Zucc.). This study was designed to evaluate the genetic variability and differentiation between G. soja and G. max, and to detect signatures of the selection that may have occurred during the domestication process from G. soja to G. max. A

Tae-Hwan Jun; Kyujung Van; Moon Young Kim; Myounghai Kwak; Suk-Ha Lee




Microsoft Academic Search

Asian soybean rust, caused by the fungus Phakopsora pachyrhizi, is a recent problem on soybean in Brazil. Affected plants shed their leaves prematurely leading to crop losses. The present work was undertaken with the aim of testing two fungicidal active ingredients and 5 application times. The trials were established in Palmeira, from November 2003 to May 2004, with the cultivars

Emerson Fábio; Vismar da Costa LIMA


Efeitos protetor, curativo e erradicante de fungicidas no controle da ferrugem da soja causada por Phakopsora pachyrhizi, em casa de vegetação  

Microsoft Academic Search

Protective, curative and eradicative effects of fungicides to control soybean rust caused by Phakopsora pachyrhizi, in greenhouse Protective, curative and eradicative effects of systemic fungicides (azoxystrobin 50 g a.i.\\/ha + nimbus 0,5%, carbendazin 250 g a.i.\\/ha, tebuconazole 100 g a.i.\\/ha, difenoconazole 50 g a.i.\\/ha e epoxiconazole 25 g a.i.\\/ha + pyraclostrobin 66,5 g a.i.\\/ha) were evaluated in soybean (Glycine max)

Cláudia V. Godoy; Marcelo G. Canteri




Microsoft Academic Search

This article analyzes the exportation of soy, and other derived products, in Brazil and in Paraná state, from 1990 to 2007. The methodological procedures consist of identification of the most representative products of the chain - the soy in grain, the soy bran and soy oil, and analysis of the results using the Constant Market-Share (CMS) model. The sources of

Carlos Eduardo Caldarelli; Marcia Regina Gabardo Camara; Vanderlei Jose Sereia



Detección inmunoquímica de la adulteración de chorizo de cerdo con proteínas de sojaImmunochemical detection of fraudulent adulteration of pork chorizo (sausage) with soy protein  

Microsoft Academic Search

Rabbit polyclonal antisera were produced against soy flour proteins extracted with 0.5 M NaCl solution and purified by affinity chromatography to detect adulteration in pork chorizo (sausage) with an enzyme-linked immunoabsorbent assay (ELISA). To detect adulteration the following saline extracts were prepared: 100% pork and 100% soy chorizo and mixtures of these two pro ducts (90:10, 80:20, 70:30, 60:40, 50:50,

A. F. González-Córdova; A. M. Calderón de la Barca; M. Cota; B. Vallejo-Córdoba



AVALIAÇÃO DO ÓLEO DE SOJA SUBMETIDO AO PROCESSO DE FRITURA DE ALIMENTOS DIVERSOS Evaluation of soybean oil submitted to the frying process of varied foods  

Microsoft Academic Search

The main objective of this study was to evaluate the degree of degradation of the soybean oil used in frying processes. The quality of the oil during the frying process was evaluated by means of physical-chemical analyses, such: conjugated dienes (%) and TBA index (mmoles g -1 ), and determination of total polar compounds (%). It was observed that the

Neuza Jorge; Camila Janieri


Structural and Ultrastructural Changes during the Infection of UFL-AG-286 Cells with the Baculovirus AgMNPV  

Microsoft Academic Search

During infection of the permissive insect cell line UFL-AG-286 by the baculovirusAnticarsia gemmatalisnucleopolyhedrovirus (AgMNPV-2D) several morphological changes occur. By 12 h postinfection (h p.i.), the infected cells became round and exhibited a decrease in the number of cytoplasmic projections. By 24 h p.i., it was possible to detect a virogenic stroma inside the cell nucleus, and after 48 h p.i.,

Vivian Pombo; Lucas Malard Velloso; Bergmann M. Ribeiro; Sonia N. Báo



EFEITO DE FUNGICIDAS SISTÊMICO E PROTET ORES APLICADOS EM DIFERENTES ESTÁDIOS FENOLÓGICOS NO CONTROLE DA FERRUGEM ASIÁTICA DA SOJA 1 Effect of protectant and systemic fungicides applied at different growth stages on the control of soybean asian rust  

Microsoft Academic Search

The aim of this work was to verify the effect of the fungicides dicopper chloride trihydroxide, thiophanate methyl, chlorothalonil+thiophanate methyl, chlorothalonil, and pyraclostrobin+epoxiconazole applied at the stages V6, R1, R5, V6+R1, V6+R5, R1+R5 on the control of the Asian rust and on the agronomic characteristics of the soybean. The experiment was carried out at the experimental area of the Agriculture

Jorge da Silva Júnior; Pedro Milanez de Rezende; Eudes de Arruda Carvalho; Eduardo Alves; Edson Ampélio Pozza


Novillos Holando alimentados a corral con dietas completas con distintos niveles de aceite de soja. Respuesta productiva. Holstein Steers feeding with completed rations with different proportions of soybean oil. Productive Response  

Microsoft Academic Search

The objective of this work was characterize the productive response of Holstein steers that consumed completed diets of similar protein content and supplemented with different soybean oil levels. Eighteen animals were assigned to three treatments (six animals for each group). The animals received completed diets with the same protein content (12%) and with different soybean oil level (0, 4 and

Agropecuaria. EEA


COMPORTAMENTO DOS ÓLEOS DE GIRASSOL, SOJA E MILHO EM FRITURAS DE PRODUTO CÁRNEO EMP ANADO PRÉ-FRITO CONGELADO Sunflower, soybean and corn oils behavior in frozen pre-fried coated meat product frying  

Microsoft Academic Search

The ever growing utilization of fast food determined the expansion of an industry of pre-fried and fried products. The understanding of the changes that the oil undergoes during the frying processes is outstanding because it may lead to the optimization of such processes as well as to improvements on the quality of both frying oil and the finished product. The

Patrícia Vieira Del Ré; Neuza Jorge



NODULAÇÃO E CRESCIMENTO DE VARIEDADES DE SOJA RR SOB APLICAÇÃO DE GLYPHOSATE, FLUAZIFOP-P-BUTYL E FOMESAFEN1 GR Glycine max Nodulation and Growth Under Glyphosate, Fluazifop-p-Butyl and Fomesafen Aplication  

Microsoft Academic Search

The objective of this work was to evaluate the effects of the herbicides glyphosate, fluazifop-p-butyl and fomesafen, applied by different methods, on nodulation and initial growth of two glyphosate-resistant (GR) soybean varieties. Treatments were arranged in a 6 x 2 factorial, with six herbicide application methods (no-herbicide check, fomesafen\\/fomesafen sequential application, fomesafen\\/(fomesafen+fluazifop-p-butyl sequential application), fluazifop-p-butyl single application, glyphosate\\/glyphosate sequential application



Adição de Lipídios na Ração de Vacas Leiteiras: Parâmetros Fermentativos Ruminais, Produção e Composição do Leite1  

Microsoft Academic Search

RESUMO - Objetivou-se avaliar o efeito de dois níveis de lipídios (3 e 7%) na dieta de vacas em lactação e, dentro do nível de 7% avaliar duas fontes de lipídios (grão de soja moído e óleo de soja), sobre a produção e composição do leite, os parâmetros ruminais, a atividade de produção de amônia pela microbiota ruminal e o

Luiz Henrique Vargas; Rogério de Paula Lana; Gulab Newamdram Jham; Ferlando Lima Santos; Augusto César de Queiroz; Antônio Bento Mancio


Constructing the Self in/as Thirdspace: New Potentials for Identity Exploration in the Composition Classroom  

ERIC Educational Resources Information Center

In this article the author introduces a concept she calls "Thirdspace identity construction," which instructors can use to understand what happens in students' texts when such ever-open possibilities for identity exploration are allowed. This concept borrows from the work of critical geographer Edward Soja. Soja's "Thirdspace" represents a dynamic…

Lauer, Claire



Identification of putative QTL that underlie yield in interspecific soybean backcross populations  

Microsoft Academic Search

Glycine soja, the wild progenitor of soybean, is a potential source of useful genetic variation in soybean improvement. The objective of our study was to map quantitative trait loci (QTL) from G. soja that could improve the crop. Five populations of BC 2F 4-derived lines were developed using the Glycine max cultivar IA2008 as a recurrent parent and the G.

D. Wang; G. L. Graef; A. M. Procopiuk; B. W. Diers



QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields  

PubMed Central

The objective of this study was to identify quantitative trait loci (QTL) affecting fitness of hybrids between wild soybean (Glycine soja) and cultivated soybean (Glycine max). Seed dormancy and seed number, both of which are important for fitness, were evaluated by testing artificial hybrids of G. soja × G. max in a multiple-site field trial. Generally, the fitness of the F1 hybrids and hybrid derivatives from self-pollination was lower than that of G. soja due to loss of seed dormancy, whereas the fitness of hybrid derivatives with higher proportions of G. soja genetic background was comparable with that of G. soja. These differences were genetically dissected into QTL for each population. Three QTLs for seed dormancy and one QTL for total seed number were detected in the F2 progenies of two diverse cross combinations. At those four QTLs, the G. max alleles reduced seed number and severely reduced seed survival during the winter, suggesting that major genes acquired during soybean adaptation to cultivation have a selective disadvantage in natural habitats. In progenies with a higher proportion of G. soja genetic background, the genetic effects of the G. max alleles were not expressed as phenotypes because the G. soja alleles were dominant over the G. max alleles. Considering the highly inbreeding nature of these species, most hybrid derivatives would disappear quickly in early self-pollinating generations in natural habitats because of the low fitness of plants carrying G. max alleles.

Kuroda, Yosuke; Kaga, Akito; Tomooka, Norihiko; Yano, Hiroshi; Takada, Yoshitake; Kato, Shin; Vaughan, Duncan



Pathogenic Races of Phakopsora pachyrhizi on Soybean and Wild Host Plants Collected in Japan  

Microsoft Academic Search

  A total of 45 single uredinial isolates of Phakopsora pachyrhizi were collected from rust-infected soybean and wild host plants (Pueraria lobata and G. soja ) at different localities in central and southwestern Japan. Eighteen pathogenic races were identified using a set of differential\\u000a varieties composed of nine cultivars of soybean and two accession lines of G. soja. Nine and 11




Antifungal activity of borrelidin produced by a Streptomyces strain isolated from soybean.  


In this study, an endophytic Streptomyces sp. neau-D50 with strong antifungal activity against Phytophthora sojae was isolated from healthy soybean root, using an in vitro screening technique. A bioactivity-guided approach was then employed to isolate and determine the chemical identity of bioactive constituents with antifungal activity from strain neau-D50. The structure of the antifungal metabolite was elucidated as borrelidin on the basis of spectral analysis. To our knowledge, this is the first report that borrelidin has strong antifungal activity against dominant race 1 of P. sojae with EC(50) and EC(95) of 0.0056 and 0.026 mg/L, respectively. The values were respectively 62.5- and 262.3-fold lower than those of the commercial fungicide metalaxyl, which has been used to treat soybean seed for the control of P. sojae . The in situ bioassays demonstrated that borrelidin at 10 mg/L reduced P. sojae race 1 lesions on soybean seedlings by 94.72% without affecting root growth. Thus, borrelidin might be a promising candidate for new antifungal agents against P. sojae. PMID:22242825

Liu, Chong-Xi; Zhang, Ji; Wang, Xiang-Jing; Qian, Ping-Ting; Wang, Ji-Dong; Gao, Ya-Mei; Yan, Yi-Jun; Zhang, Shu-Zhen; Xu, Peng-Fei; Li, Wen-Bin; Xiang, Wen-Sheng



Fermentação da proteína de seis alimentos por microrganismos ruminais, incubados puros ou com monensina ou rumensin®  

Microsoft Academic Search

RESUMO - Avaliaram-se os efeitos da fermentação in vitro de seis alimentos: fubá de milho (FM), farelo de soja (FS), farelo de trigo (FT), sorgo (SO), glúten de milho (GM) e uréia (UR), incubados puros ou com o antibiótico monensina, esse na forma pur a para análise (Monensina) ou comercial (Rumensin®). O experimento constituiu-se de 18 unidades experimentais (três alimentos

Natália Guarino Souza Barbosa; Rogério de Paula Lana; Antônio Bento Mâncio; Arnaldo Chaer Borges; Cesar de Queiroz; Juliana Silva Oliveira



Biological Control of Phytophthora Root Rots on Alfalfa and Soybean with Streptomyces  

Microsoft Academic Search

A collection of 53 antibiotic-producing Streptomyces isolated from soils from Minnesota, Nebraska, and Washington were evaluated for their ability to inhibit plant pathogenic Phytophthora medicaginis and Phytophthora sojae in vitro. Eight isolates having the greatest pathogen-inhibitory capabilities were subsequently tested for their ability to control Phytophthora root rots on alfalfa and soybean in sterilized vermiculite and naturally infested field soil.

Kun Xiao; Linda L. Kinkel; Deborah A. Samac



A case of polyagglutination with features of Th and Tk activation associated with an acquired B antigen.  


A case is reported of polyagglutination with features of both Tk and Th activation associated with an acquired B antigen. Reactions with polybrene, Glycine soja, and Bandeiraea simplicifolia II indicated the presence of Tk activation. However, the reactivity of the patient's erythrocytes with Arachis hypogoea was greatly reduced by treatment with ficin, indicating the concomitant presence of Th activation. PMID:6829061

Klarkowski, D B; Ford, D S



Restriction fragment length polymorphism diversity in soybean  

Microsoft Academic Search

Fifty-eight soybean accessions from the genus Glycine, subgenus Soja, were surveyed with 17 restriction fragment length polymorphism (RFLP) genetic markers to assess the level of molecular diversity and to evaluate the usefulness of previously identified RFLP markers. In general, only low levels of molecular diversity were observed: 2 of the 17 markers exhibited three alleles per locus, whereas all others

P. Keim; R. C. Shoemaker; R. G. Palmer



Untersuchung und Zusammensetzung einiger Leguminosen  

Microsoft Academic Search

Summary The chemical composition of some legume seeds is reviewed. It was found that soy (Glycine soja), field beans (Vicia faba), Vicia sativa andLens culinaris (red seeds) have the highest protein content. There were only minor differences in amino acid composition except for glutamic acid. The lysine content of legume seeds was high. Lysine is the most limiting essential amino

Werner Nierle; Abd El Wahab El Bayd



Influência do óleo de linhaça sobre o desempenho e a qualidade dos ovos de poedeiras semipesadas  

Microsoft Academic Search

RESUMO - O experimento foi conduzido para avaliar a influência da adição de óleo de linhaça em substituição ao óleo de soja em rações para poedeiras semipesadas sobre o desempenho e a qualidade interna e externa dos ovos. Utilizaram-se 192 poedeiras da linhagem Bovans Godline com 29 semanas de idade, distribuídas em seis tratamentos, que consistiram de uma dieta controle

Fernando Guilherme Perazzo Costa; Janete Gouveia de Souza; José Humberto Vilar da Silva; Carlos Bôa-Viagem Rabello; Cláudia de Castro Goulart; Raul da Cunha Lima Neto



Fontes de carboidratos e ionóforo em dietas contendo óleo vegetal para ovinos: digestibilidade, balanço de nitrogênio e fluxo portal de nutrientes1  

Microsoft Academic Search

RESUMO - Os objetivos neste trabalho foram avaliar a utilização de duas fontes de carboidratos (casca de soja e milho), com a utilização ou não de monensina em dietas com alta densidade lipídica, e seus efeitos sobre a digestibilidade dos nutrientes, o balanço de nitrogênio e o fluxo portal de nutrientes em ovinos. Adotou-se o método de coleta total de

Gisele Fernanda Mouro; Antonio Ferriani Branco; David Lee Harmon; Fabio José Maia


El balance de nutrientes en la Provincia de La Pampa y sus implicancias económicas  

Microsoft Academic Search

La provincia de La Pampa registra una intensificación de la agricultura con una apreciación del deterioro ambiental que merece ser analizada y evaluada económicamente. La falta de información económico-ambiental no permite dimensionar y posicionar esta problemática en su real magnitud. Se estimó el balance de nutrientes y su cuantificación económica, para trigo, maíz, girasol y soja. La extracción alcanzó valores

Daniel H. Iglesias; Norberto Luis Zanotti; Gabriela Iturrioz; Enrique Álvarez Costa; Héctor Dadam; Knut Wiedenhöfer; Juan José Vasallo



ADAPTABILIDADE E EST ABILIDADE DE GENÓTIPOS DE GIRASSOL NOS ESTADOS DO RIO GRANDE DO SUL E P ARANÁ Adaptability and stability of sunflower genotypes from the states of Rio Grande do Sul and Paraná  

Microsoft Academic Search

The objective of this paper was to study the adaptability and stability of sunflower genotypes from the states of Rio Grande do Sul and Paraná, according to their grain and oil yield. The analyzed data were obtained from the Official Sunflower Trials Network, coordinated by Embrapa Soja, from the year 2003 to 2007. The experiment was carried out in randomized

Anna Karolina Grunvald; Claudio Guilherme; Portela de Carvalho; Ana Cláudia; Barneche de Oliveira; Carlos Alberto de Bastos


Detection of moulds producing aflatoxins in maize and peanuts by an immunoassay  

Microsoft Academic Search

An enzyme-linked immunosorbent assay (ELISA) was developed to detect moulds producing aflatoxins in maize and peanuts by an antibody produced to extracellular antigen from Aspergillus parasiticus. This antibody recognized species with phenotypic similarities to A. parasiticus, A. flavus and the domesticated species A. sojae and A. oryzae. For maize samples that were naturally contaminated with aflatoxins, low and high levels

R. K Yong; M. A Cousin



Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis  

SciTech Connect

Genome sequences of the soybean pathogen, Phytophthora sojae, and the sudden oak death pathogen, Phytophthora ramorum, suggest a photosynthetic past and reveal recent massive expansion and diversification of potential pathogenicity gene families. Abstract: Draft genome sequences of the soybean pathogen, Phytophthora sojae, and the sudden oak death pathogen, Phytophthora ramorum, have been determined. O mycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms and the presence of many Phytophthora genes of probable phototroph origin support a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors and, in particular, a superfamily of 700 proteins with similarity to known o mycete avirulence genes.

Lamour, Kurt H [ORNL; McDonald, W Hayes [ORNL; Savidor, Alon [ORNL



Mutagenic and antimutagenic effects of methanol extracts of unfermented and fermented black soybeans  

Microsoft Academic Search

In this study, solid fermentation of steamed black soybean with various GRAS (Generally recognized as safe) filamentious-fungi including Aspergillus awamori, Aspergillus oryzae BCRC 30222, Aspergillus sojae BCRC 30103, Rhizopus azygosporus BCRC 31158 and Rhizopus sp. No. 2 was performed. Mutagenicity and antimutagenicity of the methanol extracts of unfermented and fermented steamed black soybeans against 4-nitroquinoline-N-oxide (4-NQO), a direct mutagen and

Yu-Hsiang Hung; Hui-Yu Huang; Cheng-Chun Chou



The significance of antibiotic production by Pseudomonas aureofaciens PA 147-2 for biological control of Phytophthora megasperma root rot of asparagus  

Microsoft Academic Search

Pseudomonas aureofaciens PA147-2 produces an antibiotic (Af+) which inhibits the growth of fungal phytopathogens on phosphate buffered potato dextrose agar (PBPDA). To determine the\\u000a role of the antibiotic in disease suppression in vivo, PA147-2 and an antibiotic-deficient Tn5 mutant (Af-) PA109, were tested for their ability to suppress root rot of Asparagus officinalis seedlings caused by Phytophthora megasperma var sojae,

F. L. Carruthers; T. Shum-Thomas; A. J. Conner; H. K. Mahanty



A New Cell Wall Located N-rich Protein is Strongly Induced During the Hypersensitive Response in Glycine Max L  

Microsoft Academic Search

Soybean (Glycine max (L.) Merill, cv. Williams 82) plants and cell cultures respond to avirulent pathogens with a hypersensitive reaction. After inoculation of soybean with Pseudomonas syringae pv. glycinea, carrying the avirulence gene avrA, or zoospores from the fungus Phytophthora sojae Race 1, a resistance-gene-dependent cell death programme is activated. A new gene was identified by differential display of mRNAs

Andrea A. Ludwig; Raimund Tenhaken



Adaptive Evolution Has Targeted the C-Terminal Domain of the RXLR Effectors of Plant Pathogenic Oomycetes  

Microsoft Academic Search

Oomyceteplantpathogensdelivereffectorproteinsinsidehostcellstomodulateplantdefensecircuitryandtoenableparasitic colonization.Theseeffectorsaredefinedbyaconservedmotif,termedRXLR(forArg,anyaminoacid,Leu,Arg),thatislocated downstream of the signal peptide and that has been implicated in host translocation. Because the phenotypes of RXLR effectors extend to plant cells, their genes are expected to be the direct target of the evolutionary forces that drive the antagonistic interplay between pathogen and host. We used the draft genome sequences of three oomycete plant pathogens, Phytophthora sojae,

Joe Win; William Morgan; Jorunn Bos; Ksenia V. Krasileva; Liliana M. Cano; Angela Chaparro-Garcia; Randa Ammar; Brian J. Staskawicz; S. Kamoun



VMD: a community annotation database for oomycetes and microbial genomes.  


The VBI Microbial Database (VMD) is a database system designed to host a range of microbial genome sequences. At present, the database contains genome sequence and annotation data of two plant pathogens Phytophthora sojae and Phytophthora ramorum. With the completion of the draft genome sequences of these pathogens in collaboration with the DOE Joint Genome Institute (JGI), we have created this resource to make the sequences publicly available. The genome sequences (95 MB for P.sojae and 65 MB for P.ramorum) were annotated with approximately 19,000 and approximately 16,000 gene models, respectively. We used two different statistical methods to validate these gene models, Fickett's and a log-likelihood method. Functional annotation of the gene models is based on results from BlastX and InterProScan screens. From the InterProScan results, we could assign putative functions to 17,694 genes in P.sojae and 14,700 genes in P.ramorum. We created an easy-to-use genome browser to view the genome sequence data, which opens to detailed annotation pages for each gene model. A community annotation interface is available for registered community members to add or edit annotations. There are approximately 1600 gene models for P.sojae and approximately 700 models for P.ramorum that have already been manually curated. A toolkit is provided as an additional resource for users to perform a variety of sequence analysis jobs. The database is publicly available at PMID:16381891

Tripathy, Sucheta; Pandey, Varun N; Fang, Bing; Salas, Fidel; Tyler, Brett M



Generation of a soybean BAC library, and identification of DNA sequences tightly linked to the Rps1-k disease resistance gene  

Microsoft Academic Search

A soybean bacterial artificial chromosome (BAC) library, comprising approximately 45?000 clones, was constructed from high-molecular-weight\\u000a nuclear DNA of cultivar Williams 82, which carries the Rps1-k gene for resistance against Phytophthora sojae. The library is stored in 130 pools with about 350 clones per pool. Completeness of the library was evaluated for 21 random\\u000a sequences including four markers linked to the

S. S. Salimath; M. K. Bhattacharyya



Detailed study of Brazil nut (Bertholletia excelsa) oil micro-compounds: phospholipids, tocopherols and sterols  

Microsoft Academic Search

O óleo da castanha-do-pará (Bertholletia excelsa) foi estudado por causa da sua composição em ácidos graxos, tocoferóis, esteróis e fosfolipídios. A composição de ácidos graxos nos fosfolipídeos também foi estudada. Os resultados foram comparados com os do girassol, da castanha, amêndoa, noz, soja e azeites. O seu alto teor em ácidos graxos insaturados, em b-tocoferol e em b-sitosterol confere à

Thavarith Chunhieng; Abdel Hafidi; Daniel Pioch; José Brochier; Didier Montet



Sequence variation of non-coding regions of chloroplast DNA of soybean and related wild species and its implications for the evolution of different chloroplast haplotypes  

Microsoft Academic Search

Soybean chloroplast DNAs (cpDNAs) are classified into three types (I, II and III) based on RFLP profiles. Type I is mainly\\u000a observed in cultivated soybean (Glycine max), while type II and type III are frequently found in both cultivated and wild soybean (Glycine soja), although type III is predominant in wild soybean. In order to evaluate the diversity of cpDNA

D. H. Xu; J. Abe; M. Sakai; A. Kanazawa; Y. Shimamoto



Small interspersed sequences that serve as recombination sites at the cox2 and atp6 loci in the mitochondrial genome of soybean are widely distributed in higher plants  

Microsoft Academic Search

Mitochondrial DNA (mtDNA) fragments that contain cox2 and atp6 were cloned from a wild soybean (Glycine soja, accession `B09002') and from a cultivated soybean (G. max, `Harosoy'). Comparison of these DNAs revealed that two sets of repeated sequences, namely, 299 bp and 23 bp, were present\\u000a in the 5? regions of cox2 and atp6. The 299-bp and 23-bp repeats were

Akira Kanazawa; Azumi Tozuka; Sumie Kato; Tetsuo Mikami; Jun Abe; Yoshiya Shimamoto



Identification of soybean microRNAs and their targets  

Microsoft Academic Search

The microRNAs (miRNAs) are a newly identified class of small non-protein-coding regulatory RNA. Using comparative genomics,\\u000a we identified 69 miRNAs belonging to 33 families in the domesticated soybean (Glycine max) as well as five miRNAs in the soybean wild species Glycine soja and Glycine clandestine. TaqMan® MicroRNA Assay analyses demonstrated that these miRNAs were differentially expressed in soybean tissues, with

Baohong Zhang; Xiaoping Pan; Edmund J. Stellwag



Distinct changes in soybean xylem sap proteome in response to pathogenic and symbiotic microbe interactions  

PubMed Central

Background Plant systemic signaling characterized by the long distance transport of molecules across plant organs involves the xylem and phloem conduits. Root-microbe interactions generate systemic signals that are transported to aerial organs via the xylem sap. We analyzed the xylem sap proteome of soybean seedlings in response to pathogenic and symbiotic interactions to identify systemic signaling proteins and other differentially expressed proteins. Results We observed the increase of a serine protease and peroxidase in the xylem sap in response to Phytophthora sojae elicitor treatment. The high molecular weight fraction of soybean xylem sap was found to promote the growth of Neurospora crassa in vitro at lower concentrations and inhibit growth at higher concentrations. Sap from soybean plants treated with a P. sojae elicitor had a significantly higher inhibitory effect than sap from control soybean plants. When soybean seedlings were inoculated with the symbiont Bradyrhizobium japonicum, the abundance of a xyloglucan transendoglycosyl transferase protein increased in the xylem sap. However, RNAi-mediated silencing of the corresponding gene did not significantly affect nodulation in soybean hairy root composite plants. Conclusion Our study identified a number of sap proteins from soybean that are differentially induced in response to B. japonicum and P. sojae elicitor treatments and a majority of them were secreted proteins.

Subramanian, Senthil; Cho, Un-Haing; Keyes, Carol; Yu, Oliver



Growth in microgravity increases susceptibility of soybean to a fungal pathogen.  


The influence of microgravity on the susceptibility of soybean roots to Phytophthora sojae was studied during the Space Shuttle Mission STS-87. Seedlings of soybean cultivar Williams 82 grown in spaceflight or at unit gravity were untreated or inoculated with the soybean root rot pathogen P. sojae. At 3, 6 and 7 d after launch while still in microgravity, seedlings were photographed and then fixed for subsequent microscopic analysis. Post-landing analysis of the seedlings revealed that at harvest day 7 the length of untreated roots did not differ between flight and ground samples. However, the flight-grown roots infected with P. sojae showed more disease symptoms (percentage of brown and macerated areas) and the root tissues were more extensively colonized relative to the ground controls exposed to the fungus. Ethylene levels were higher in spaceflight when compared to ground samples. These data suggest that soybean seedlings grown in microgravity are more susceptible to colonization by a fungal pathogen relative to ground controls. PMID:11427686

Ryba-White, M; Nedukha, O; Hilaire, E; Guikema, J A; Kordyum, E; Leach, J E



Host-Pathogen Interactions  

PubMed Central

A ?-glucan isolated from the mycelial walls of Phytophthora megasperma var. sojae and a glucan purified from yeast extract stimulate the accumulation of phytoalexins in red kidney bean, Phaseolus vulgaris, and stimulate the accumulation of the phytoalexin, rishitin, in potato tubers, Solanum tuberosum. These glucans have previously been shown to be potent elicitors of glyceollin accumulation in soybean, Glycine max. Treatment of kidney bean cotyledons with the glucan elicitors resulted in the accumulation of at least five fungistatic compounds. These compounds migrate during thin layer chromatography identically to the fungistatic compounds which accumulate in kidney beans which have been inoculated with Colletotrichum lindemuthianum, a fungal pathogen of kidney beans. Potatoes accumulate as much as 29 micrograms of rishitin per gram fresh weight following exposure to the glucan from Phytophthora megasperma var. sojae and as much as 19.5 micrograms of rishitin per gram fresh weight following exposure to yeast glucan. Potatoes accumulated 28 micrograms of rishitin per gram fresh weight following inoculation with live Phytophthora megasperma var. sojae. ImagesFig. 1

Cline, Kenneth; Wade, Mark; Albersheim, Peter



A comparative proteomics analysis of soybean leaves under biotic and abiotic treatments.  


A comparative proteomic study was made to explore the molecular mechanisms, which underlie soybean root and stem defense response caused by the oomycete Phytophthora sojae strain P6497. Soybean (Glycine max cv. Xinyixiaoheidou) seedling roots were incubated in salicylic acid, methyl jasmonate, 1-amino cyclopropane-1-carboxylic acid, hydrogen peroxide, sodium nitroprusside, vitamin B(1) and P. sojae zoosperm in order to determine whether the corresponding leaves play a role in the defense response at the proteomic level. The results showed that the proteome of leaves had no significant differences. Of the 21 identified proteins identified in the study, 62 % were involved in predominately in energy functions. Those involved in protein synthesis, secondary metabolism and metabolism categories followed in abundance, where proteins involved as transporters and in transcription were the least and represented only 5 %. Those related to energy were shown to be involved in photosynthesis and photorespiration activities. The present study provides important information with regards to proteomic methods aimed to study protein regulations of the soybean-P. sojae pathosystem, especially in terms of host resistance to this pathogen. PMID:23100066

Zhao, Jinming; Zhang, Yumei; Bian, Xiaochun; Lei, Jun; Sun, Jutao; Guo, Na; Gai, Junyi; Xing, Han



The effects of microgravity and clinorotation on the interaction of plant cells with fungal pathogen  

NASA Astrophysics Data System (ADS)

The influence of microgravity and slow horizontal clinorotation (2 rev/min), which partly mimics microgravity, on the interaction of plant cells of soybean roots to Phytophthora sojae and of potato minitubers to Phytophthora infestans was studied during the Space Shuttle Mission STS-87 and during clinorotation. Seedlings of soybean cultivar Williams 82 grown in spaceflight and at 1 g were untreated or inoculated with pathogen P. sojae; minitubers of potato (cv Adreta) grown at horizontal clinorotation and the vertical control also were untreated or inoculated with pathogen P. infestans. The methods of light microscopy, scanning and transmission electron microscopy, confocal microscopy and also cytochemistry for the determination of callose content and peroxydase activity were used in the experiments. Post-landing analysis of the meristem cells of soybean roots infected with P. sojae and post-clinorotation analysis of the parenchyma cells of potato minitubers cells infected with P. infestans showed more destroying symptoms in cells of plant-host, which were more extensive colonized relative to the controls exposed to the pathogen fungus. Infected cells of plants-host were divided in two types: cells of first type were completely destroyed and hyphae of pathogen fungus were into these cells or in intercellular spaces; cells of second type characterized by partly changed ultrastructure and a calcium sites were contained above in mentioned cells. These data suggest that root cells of soybean seedlings grown in microgravity and cells of potato minitubers grown at slow horizontal clinorotation are more susceptible to penetration of a fungal pathogen in comparison with the corresponding controls.

Nedukha, O.; Kordyum, E.; Leach, J.; Martyn, G.; Ryba-White, M.


Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar.  


Phytophthora root rot (PRR), caused by Phytophthora sojae Kaufmann & Gerdemann, is one of the most destructive diseases of soybean [Glycine max (L.) Merr.]. Deployment of resistance genes is the most economical and effective way of controlling the disease. The soybean cultivar 'Yudou 29' is resistant to many P. sojae isolates in China. The genetic basis of the resistance in 'Yudou 29' was elucidated through an inheritance study and molecular mapping. In response to 25 P. sojae isolates, 'Yudou 29' displayed a new resistance reaction pattern distinct from those of differentials carrying known Rps genes. A population of 214 F2:3 families from a cross between 'Jikedou 2' (PRR susceptible) and 'Yudou 29' was used for Rps gene mapping. The segregation fit a ratio of 1:2:1 for resistance:segregation:susceptibility within this population, indicating that resistance in 'Yudou 29' is controlled by a single dominant gene. This gene was temporarily named RpsYD29 and mapped on soybean chromosome 03 (molecular linkage group N; MLG N) flanked by SSR markers SattWM82-50 and Satt1k4b at a genetic distance of 0.5 and 0.2 cM, respectively. Two nucleotide binding site-leucine rich repeat (NBS-LRR) type genes were detected in the 204.8 kb region between SattWM82-50 and Satt1k4b. These two genes showed high similarity to Rps1k in amino acid sequence and could be candidate genes for PRR resistance. Based on the phenotype reactions and the physical position on soybean chromosome 03, RpsYD29 might be a novel allele at, or a novel gene tightly linked to, the Rps1 locus. PMID:23467992

Zhang, Jiqing; Xia, Changjian; Wang, Xiaoming; Duan, Canxing; Sun, Suli; Wu, Xiaofei; Zhu, Zhendong



Use of genome sequence data in the design and testing of SSR markers for Phytophthora species  

PubMed Central

Background Microsatellites or single sequence repeats (SSRs) are a powerful choice of marker in the study of Phytophthora population biology, epidemiology, ecology, genetics and evolution. A strategy was tested in which the publicly available unigene datasets extracted from genome sequences of P. infestans, P. sojae and P. ramorum were mined for candidate SSR markers that could be applied to a wide range of Phytophthora species. Results A first approach, aimed at the identification of polymorphic SSR loci common to many Phytophthora species, yielded 171 reliable sequences containing 211 SSRs. Microsatellites were identified from 16 target species representing the breadth of diversity across the genus. Repeat number ranged from 3 to 16 with most having seven repeats or less and four being the most commonly found. Trinucleotide repeats such as (AAG)n, (AGG)n and (AGC)n were the most common followed by pentanucleotide, tetranucleotide and dinucleotide repeats. A second approach was aimed at the identification of useful loci common to a restricted number of species more closely related to P. sojae (P. alni, P. cambivora, P. europaea and P. fragariae). This analysis yielded 10 trinucleotide and 2 tetranucleotide SSRs which were repeated 4, 5 or 6 times. Conclusion Key studies on inter- and intra-specific variation of selected microsatellites remain. Despite the screening of conserved gene coding regions, the sequence diversity between species was high and the identification of useful SSR loci applicable to anything other than the most closely related pairs of Phytophthora species was challenging. That said, many novel SSR loci for species other than the three 'source species' (P. infestans, P. sojae and P. ramorum) are reported, offering great potential for the investigation of Phytophthora populations. In addition to the presence of microsatellites, many of the amplified regions may represent useful molecular marker regions for other studies as they are highly variable and easily amplifiable from different Phytophthora species.

Schena, Leonardo; Cardle, Linda; Cooke, David EL



Intravascular [correction of intracellular] hemolysis and renal failure in a patient with T polyagglutination.  


A patient with postoperative intravascular hemolysis aggravated by transfusion with fresh whole blood and fresh plasma products had acute renal failure. Screening with Arachis hypogaea and Glycine soja lectins showed that his red cells were T-transformed. Only washed red cells were transfused subsequently, and no further fresh plasma products were given. All hemolysis ceased, the renal function returned to normal, and the T-polyagglutination as measured by lectin tests disappeared 4 months after surgery. Early diagnosis of polyagglutination using lectin screening tests is simple to perform, and will facilitate the immediate choice of the correct transfusion therapy, which in this case may have been life-saving. PMID:3705141

Levene, C; Sela, R; Blat, J; Friedlaender, M; Manny, N



The problem of how fungal and oomycete avirulence proteins enter plant cells.  


Recent advances in cloning avirulence genes from a rust fungus and three oomycete species have provided the novel insight that these eukaryotic plant pathogens deliver small proteins into the host cell cytoplasm where they are recognized by resistance proteins. Anne Rehmany et al. have recently identified a potential host-targeting signal in oomycete avirulence proteins from Hyaloperonospora parasitica, Phytophthora sojae and Phytophthora infestans that might be involved in transporting proteins into the host cell. This signal is surprisingly similar to the host targeting signal used by the malaria pathogen Plasmodium fulciparum to target virulence proteins to the mammalian host cell. PMID:16406302

Ellis, Jeff; Catanzariti, Ann-Maree; Dodds, Peter



Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean  

PubMed Central

Background Nonhost resistance (NHR) provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Three Arabidopsis thaliana PEN (penetration deficient) genes, PEN1, 2 and 3 have been shown to provide NHR against the barley pathogen Blumeria graminis f. sp. hordei at the prehaustorial level. Arabidopsis pen1-1 mutant lacking the PEN1 gene is penetrated by the hemibiotrophic oomycete pathogen Phytophthora sojae, the causal organism of the root and stem rot disease in soybean. We investigated if there is any novel nonhost resistance mechanism in Arabidopsis against the soybean pathogen, P. sojae. Results The P.sojaesusceptible (pss) 1 mutant was identified by screening a mutant population created in the Arabidopsis pen1-1 mutant that lacks penetration resistance against the non adapted barley biotrophic fungal pathogen, Blumeria graminis f. sp. hordei. Segregation data suggested that PEN1 is not epistatic to PSS1. Responses of pss1 and pen1-1 to P. sojae invasion were distinct and suggest that PSS1 may act at both pre- and post-haustorial levels, while PEN1 acts at the pre-haustorial level against this soybean pathogen. Therefore, PSS1 encodes a new form of nonhost resistance. The pss1 mutant is also infected by the necrotrophic fungal pathogen, Fusarium virguliforme, which causes sudden death syndrome in soybean. Thus, a common NHR mechanism is operative in Arabidopsis against both hemibiotrophic oomycetes and necrotrophic fungal pathogens that are pathogenic to soybean. However, PSS1 does not play any role in immunity against the bacterial pathogen, Pseudomonas syringae pv. glycinea, that causes bacterial blight in soybean. We mapped PSS1 to a region very close to the southern telomere of chromosome 3 that carries no known disease resistance genes. Conclusions The study revealed that Arabidopsis PSS1 is a novel nonhost resistance gene that confers a new form of nonhost resistance against both a hemibiotrophic oomycete pathogen, P. sojae and a necrotrophic fungal pathogen, F. virguliforme that cause diseases in soybean. However, this gene does not play any role in the immunity of Arabidopsis to the bacterial pathogen, P. syringae pv. glycinea, which causes bacterial blight in soybean. Identification and further characterization of the PSS1 gene would provide further insights into a new form of nonhost resistance in Arabidopsis, which could be utilized in improving resistance of soybean to two serious pathogens.



Studies on lectins. XXXVI. Properties of some lectins prepared by affinity chromatography on O-glycosyl polyacrylamide gels.  


A number of lectins has been purified by affinity chromatography on O-glycosyl polyacrylamide gels. The lectins isolated (and the particular sugar ligands used in the affinity carriers) are as follows: Anguilla anguilla, serum (alpha-L-fucosyl-), Vicia cracca, seeds; Phaseolus lunatus, seeds; Glycine soja, seeds; Dolichos biflorus, seeds; Maclura pomifera, seeds; Sarothamnus scoparius, seeds; Helix pomatia, ablumin glands; Clitocybe nebularis, fruiting bodies (all N-acetyl-alpha-D-galactosaminyl-); Ricinus communis, seeds (beta-lactosyl-); Ononis spinosa, root; Fomes fomentarius, fruiting bodies; Marasmius oreades, fruiting bodies (all alpha-D-galactosyl-), Canavalia ensiformis, seeds, (i.e., concanavalin A) (alpha-D-glucosyl-). Physicochemical properties of Glycine soja, Dolichos biflorus, Phaseolus lunatus, Helix Pomatia and Ricinus communis lectins corresponded well to properties of the preparations studied earlier by other workers. For the other purified lectins the essential physiochemical data (sedimentation coefficient, molecular weight, subunit composition, electrophoretic patterns, amino acid composition, carbohydrate content, isoelectric point) were established and their precipitating, hemagglutinating and mitogenic activities determined. PMID:563738

Horejsí, V; Kocourek, J



Molecular Cloning and Characterization of Glucanase Inhibitor Proteins  

PubMed Central

A characteristic plant response to microbial attack is the production of endo-?-1,3-glucanases, which are thought to play an important role in plant defense, either directly, through the degradation of ?-1,3/1,6-glucans in the pathogen cell wall, or indirectly, by releasing oligosaccharide elicitors that induce additional plant defenses. We report the sequencing and characterization of a class of proteins, termed glucanase inhibitor proteins (GIPs), that are secreted by the oomycete Phytophthora sojae, a pathogen of soybean, and that specifically inhibit the endoglucanase activity of their plant host. GIPs are homologous with the trypsin class of Ser proteases but are proteolytically nonfunctional because one or more residues of the essential catalytic triad is absent. However, specific structural features are conserved that are characteristic of protein–protein interactions, suggesting a mechanism of action that has not been described previously in plant pathogen studies. We also report the identification of two soybean endoglucanases: EGaseA, which acts as a high-affinity ligand for GIP1; and EGaseB, with which GIP1 does not show any association. In vitro, GIP1 inhibits the EGaseA-mediated release of elicitor-active glucan oligosaccharides from P. sojae cell walls. Furthermore, GIPs and soybean endoglucanases interact in vivo during pathogenesis in soybean roots. GIPs represent a novel counterdefensive weapon used by plant pathogens to suppress a plant defense response and potentially function as important pathogenicity determinants.

Rose, Jocelyn K. C.; Ham, Kyung-Sik; Darvill, Alan G.; Albersheim, Peter



Host-pathogen interactions. XVII. Hydrolysis of biologically active fungal glucans by enzymes isolated from soybean cells  

SciTech Connect

The ability of ..beta..-glucosylase I, a soybean cell wall ..beta..-glucosyl hydrolase, to degrade elicitors of phytoalexin accumulation was studied. Extensive ..beta..-glucosylase I treatment of the glucan elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae results in hydrolysis of 77% of the glucosidic bonds of the elicitor and destruction of 94% of its activity. Soybean cell walls contain some additional factor, probably one or more additional enzymes, which can assist ..beta..-glucosylase I in hydrolyzing the glucan elicitor. In a single treatment, the mixture of cell wall enzymes hydrolyzed 91% of the glucosidic bonds and destroyed 85% of the activity of the elicitor. The enzymes from soybean cell walls will also hydrolyze elicitor-active oligoglucosides prepared from the mycelial walls of Phytophthora megasperma var. sojae. The active oligoglucosides are more susceptible than the glucan elicitor to hydrolysis by these enzymes. The mixture of cell wall enzymes or ..beta..-glucosylase I, by itself, hydrolyzes more than 96% of the glucosidic bonds and destroys more than 99% of the activity of the oligoglucoside elicitor. Two possible advantages for the existence of these enzymes in the walls of soybean cells are discussed.

Cline, K.; Albersheim, P.



Identification and Candidate Gene Analysis of a Novel Phytophthora Resistance Gene Rps10 in a Chinese Soybean Cultivar  

PubMed Central

Resistance to Phytophthora sojae isolate PsMC1 was evaluated in 102 F2?3 families derived from a cross between the resistant soybean cultivar Wandou 15 and the susceptible cultivar Williams and genotyped using simple sequence repeat (SSR) markers. The segregation ratio of resistant, segregating, and susceptible phenotypes in the population suggested that the resistance in Wandou 15 was dominant and monogenic. Twenty-six polymorphic SSR markers were identified on soybean chromosome 17 (Molecular linkage group D2; MLG D2), which were linked to the resistance gene based on bulked segregation analysis (BSA). Markers Sattwd15-24/25 and Sattwd15-47 flanked the resistance gene at a distance of 0.5 cM and 0.8 cM, respectively. Two cosegregating markers, Sattwd15-28 and Sattwd15-32, were also screened in this region. This is the first Rps resistance gene mapped on chromosome 17, which is designated as Rps10. Eight putative genes were found in the mapped region between markers Sattwd15-24/25 and Sattwd15-47. Among them, two candidate genes encoding serine/threonine (Ser/Thr) protein kinases in Wandou 15 and Williams were identified and sequenced. And the differences in genomic sequence and the putative amino acid sequence, respectively, were identified within each candidate gene between Wandou 15 and Williams. This novel gene Rps10 and the linked markers should be useful in developing soybean cultivars with durable resistance to P. sojae.

Zhang, Jiqing; Xia, Changjian; Duan, Canxing; Sun, Suli; Wang, Xiaoming; Wu, Xiaofei; Zhu, Zhendong



[A new case of food protein-induced enterocolitis syndrome].  


We report a case of food protein-induced enterocolitis syndrome (FPIES) with milk whose signs of milk intolerance began in the 1st days of life, consisting in minor and nonspecific symptoms. The 3 foods in question were cow's milk, soja, and wheat. The diagnosis of FPIES was suspected at the age of 9 months, after 3 hospitalizations for vomiting, sometimes associated with lethargy and hypotension, which occurred around 2h after cow's milk ingestion. Symptoms were not associated with positive specific IgE and cutaneous tests. Signs then occurred with soja and wheat. Because of the late diagnosis, 3 anaphylactic shock episodes occurred. FPIES is an uncommon cell-mediated food allergy reaction. This syndrome is characterized by gastrointestinal symptoms, especially severe vomiting, sometimes associated with anaphylactic shock. Usually signs occur 2h after ingestion. These reactions begin early, in the 1st months of life, and regress by the age of 3 years in 38-100% of cases depending on the responsible food. They are usually induced by cow's milk and soy proteins. Diagnosis is difficult and delayed because of nonspecific symptoms. Oral food challenge is the only examination that confirms the diagnosis. Treatment involves the exclusion of the specific food involved. Severe reactions require treatment of shock and adjunction of corticosteroids. PMID:20346636

Chaabane, M; Bidat, E; Chevallier, B



Cloning and characterization of avfA and omtB genes involved in aflatoxin biosynthesis in three Aspergillus species.  


The biosynthesis of aflatoxins (B(1), G(1), B(2), and G(2)) is a multi-enzyme process controlled genetically by over 20 genes. In this study, we report the identification and characterization of the avfA gene, which was found to be involved in the conversion of averufin (AVF) to versiconal hemiacetal acetate (VHA), in Aspergillus parasiticus and A. flavus; a copy of avfA gene was also cloned from a non-aflatoxin producing strain A. sojae. Complementation of an averufin-accumulating, non-aflatoxigenic mutant strain of A. parasiticus, SRRC 165, with the avfA gene cloned from A. flavus, restored the ability of the mutant to convert AVF to VHA and to produce aflatoxins B(1), G(1), B(2), and G(2). Sequence analysis revealed that a single amino acid replacement from aspartic acid to asparagine disabled the function of the enzyme in the mutant strain SRRC 165. The A. parasiticus avfA was identified to be a homolog of previously sequenced, but functionally unassigned transcript, stcO, in A. nidulans based on sequence homology at both nucleotide (57%) and amino acid (55%) levels. In addition to avfA, another aflatoxin pathway gene, omtB, encoding for an O-methyltransferase involved in the conversion of demethylsterigmatocystin (DMST) to sterigmatocystin (ST) and dihydrodemethylsterigmatocystin (DHDMST) to dihydrosterigmatocystin (DHST), was cloned from A. parasiticus, A. flavus, and A. sojae. The omtB gene was found to be highly homologous to stcP from A. nidulans, which has been reported earlier to be involved in a similar enzymatic step for the sterigmatocystin formation in that species. RT-PCR data demonstrated that both the avfA and avfA1 as well as omtB genes in A. parasiticus were expressed only in the aflatoxin-conducive medium. An analysis of the degrees of homology for the two reported genes between the Aspergillus species A. parasiticus, A. flavus, A. nidulans and A. sojae was conducted. PMID:10806361

Yu, J; Woloshuk, C P; Bhatnagar, D; Cleveland, T E



The CAZyome of Phytophthora spp.: A comprehensive analysis of the gene complement coding for carbohydrate-active enzymes in species of the genus Phytophthora  

PubMed Central

Background Enzymes involved in carbohydrate metabolism include Carbohydrate esterases (CE), Glycoside hydrolases (GH), Glycosyl transferases (GT), and Polysaccharide lyases (PL), commonly referred to as carbohydrate-active enzymes (CAZymes). The CE, GH, and PL superfamilies are also known as cell wall degrading enzymes (CWDE) due to their role in the disintegration of the plant cell wall by bacterial and fungal pathogens. In Phytophthora infestans, penetration of the plant cells occurs through a specialized hyphal structure called appressorium; however, it is likely that members of the genus Phytophthora also use CWDE for invasive growth because hyphal forces are below the level of tensile strength exhibited by the plant cell wall. Because information regarding the frequency and distribution of CAZyme coding genes in Phytophthora is currently unknown, we have scanned the genomes of P. infestans, P. sojae, and P. ramorum for the presence of CAZyme-coding genes using a homology-based approach and compared the gene collinearity in the three genomes. In addition, we have tested the expression of several genes coding for CE in cultures grown in vitro. Results We have found that P. infestans, P. sojae and P. ramorum contain a total of 435, 379, and 310 CAZy homologs; in each genome, most homologs belong to the GH superfamily. Most GH and PL homologs code for enzymes that hydrolyze substances present in the pectin layer forming the middle lamella of the plant cells. In addition, a significant number of CE homologs catalyzing the deacetylation of compounds characteristic of the plant cell cuticle were found. In general, a high degree of gene location conservation was observed, as indicated by the presence of sequential orthologous pairs in the three genomes. Such collinearity was frequently observed among members of the GH superfamily. On the other hand, the CE and PL superfamilies showed less collinearity for some of their putative members. Quantitative PCR experiments revealed that all genes are expressed in P. infestans when this pathogen grown in vitro. However, the levels of expression vary considerably and are lower than the expression levels observed for the constitutive control. Conclusions In conclusion, we have identified a highly complex set of CAZy homologs in the genomes of P. infestans, P. sojae, and P. ramorum, a significant number of which could play roles critical for pathogenicity, by participating in the degradation of the plant cell wall.



Allelic variation of soybean flower color gene W4 encoding dihydroflavonol 4-reductase 2  

PubMed Central

Background Flower color of soybean is primarily controlled by six genes, viz., W1, W2, W3, W4, Wm and Wp. This study was conducted to investigate the genetic and chemical basis of newly-identified flower color variants including two soybean mutant lines, 222-A-3 (near white flower) and E30-D-1 (light purple flower), a near-isogenic line (Clark-w4), flower color variants (T321 and T369) descended from the w4-mutable line and kw4 (near white flower, Glycine soja). Results Complementation tests revealed that the flower color of 222-A-3 and kw4 was controlled by the recessive allele (w4) of the W4 locus encoding dihydroflavonol 4-reductase 2 (DFR2). In 222-A-3, a single base was deleted in the first exon resulting in a truncated polypeptide consisting of 24 amino acids. In Clark-w4, base substitution of the first nucleotide of the fourth intron abolished the 5? splice site, resulting in the retention of the intron. The DFR2 gene of kw4 was not expressed. The above results suggest that complete loss-of-function of DFR2 gene leads to near white flowers. Light purple flower of E30-D-1 was controlled by a new allele at the W4 locus, w4-lp. The gene symbol was approved by the Soybean Genetics Committee. In E30-D-1, a single-base substitution changed an amino acid at position 39 from arginine to histidine. Pale flowers of T369 had higher expression levels of the DFR2 gene. These flower petals contained unique dihydroflavonols that have not yet been reported to occur in soybean and G. soja. Conclusions Complete loss-of-function of DFR2 gene leads to near white flowers. A new allele of the W4 locus, w4-lp regulates light purple flowers. Single amino acid substitution was associated with light purple flowers. Flower petals of T369 had higher levels of DFR2 gene expression and contained unique dihydroflavonols that are absent in soybean and G. soja. Thus, mutants of the DFR2 gene have unique flavonoid compositions and display a wide variety of flower color patterns in soybean, from near white, light purple, dilute purple to pale.



Liquid chromatography-mass spectrometry-based chemotaxonomic classification of Aspergillus spp. and evaluation of the biological activity of its unique metabolite, neosartorin.  


This work aimed to classify Aspergillus (8 species, 28 strains) by using a secondary metabolite profile-based chemotaxonomic classification technique. Secondary metabolites were analyzed by liquid chromatography ion-trap mass spectrometry (LC-IT-MS) and multivariate statistical analysis. Most strains were generally well separated from each section. A. lentulus was discriminated from the other seven species (A. fumigatus, A. fennelliae, A. niger, A. kawachii, A. flavus, A. oryzae, and A. sojae) with partial least-squares discriminate analysis (PLS-DA) with five discriminate metabolites, including 4,6-dihydroxymellein, fumigatin, 5,8-dihydroxy-9- octadecenoic acid, cyclopiazonic acid, and neosartorin. Among them, neosartorin was identified as an A. lentulus-specific compound that showed anticancer activity, as well as antibacterial effects on Staphylococcus epidermidis. This study showed that metabolite-based chemotaxonomic classification is an effective tool for the classification of Aspergillus spp. with species-specific activity. PMID:23711526

Lee, Mee Youn; Park, Hye Min; Son, Gun Hee; Lee, Choong Hwan



Tx polyagglutination in three members of one family.  


A case of acute haemolytic anaemia is described in a child. Tx polyagglutination of his red cells was observed, but no direct association with the anaemia could be proved. Polyagglutination was suspected because of irregularities in the AB0 blood grouping. Confirmation of the cryptantigen Tx was made when the patient's red cells were tested with lectins including Arachis hypogaea, Glycine soja, and Vicia cretica. Examination of family members showed Tx polyagglutination on the red cells of 2 siblings. The Tx polyagglutination was a transient phenomenon lasting 4-5.5 months, and could have been caused as the result of some unidentified bacterial or viral infection. Guidelines for transfusion therapy are suggested in patients in whom polyagglutination is recognised. PMID:3116808

Wolach, B; Sadan, N; Bird, G W; Moulds, J J; Bar-Shany, S; Ben-Porath, D; Levene, N A; Sela, R; Levene, C



Phytophthora genomics: the plant destroyers' genome decoded.  


The year 2004 was an exciting one for the Phytophthora research community. The United States Department of Energy Joint Genome Institute (JGI) completed the draft genome sequence of two Phytophthora species, Phytophthora sojae and Phytophthora ramorum. In August of that year over 50 people gathered at JGI in Walnut Creek, California, for an annotation jamboree and searched for the secrets and surprises that the two genomes have in petto. This culminated in a paper in Science in September of this year describing the highlights of the sequencing project and emphasizing the power of having the genome sequences of two closely related organisms. This MPMI Focus issue on Phytophthora genomics contains a number of more specialized manuscripts centered on gene annotation and genome organization, and complemented with manuscripts that rely on genomics resources. PMID:17153913

Govers, Francine; Gijzen, Mark



Studies on lectins. XL. O-glycosyl derivatives of Spheron in affinity chromatography of lectins.  


Free monosaccharides can be used for direct glycosylation of Spheron, a spherical macroporous hydroxyalkyl methacrylate-ethylene dimethacrylate copolymer, in a reaction that proceeds at room temperature in dioxane medium under catalysis of dry HCl or BF3. Derivatives of L-fucose, D-galactose, D-glucose, D-mannose, N-acetyl-D-galactosamine and N-acetyl-D-glucosamine thus prepared from Spheron beads have been shown to be efficient affinity carriers in isolation of lectins from seeds of Canavalia ensiformis D.C. (concanavalin A), Dolichos biflorus L., Glycine soja (L.) Sieb. et Zucc., Lens esculenta Moench, Ricinus communis L., Ulex europaeus L. and from albumin glands of the garden snail Helix pomatia L. PMID:638203

Filka, K; Coupek, J; Kocourek, J



Oomycete pathogens encode RNA silencing suppressors  

PubMed Central

Effectors are essential virulence proteins produced by a broad range of parasites, including viruses, bacteria, fungi, oomycetes, protozoa, insects and nematodes. Upon entry into host cells, pathogen effectors manipulate specific physiological processes or signaling pathways to subvert host immunity. Most effectors, especially those of eukaryotic pathogens, remain functionally uncharacterized. Here, we show that two effectors from the oomycete plant pathogen Phytophthora sojae suppress RNA silencing in plants by inhibiting the biogenesis of small RNAs. Ectopic expression of these Phytophthora suppressors of RNA silencing enhances plant susceptibility to both a virus and Phytophthora, showing that some eukaryotic pathogens have evolved virulence proteins that target host RNA silencing processes to promote infection. These findings identify RNA silencing suppression as a common strategy used by pathogens across kingdoms to cause disease and are consistent with RNA silencing having key roles in host defense.

Qiao, Yongli; Liu, Lin; Xiong, Qin; Flores, Cristina; Wong, James; Shi, Jinxia; Wang, Xianbing; Liu, Xigang; Xiang, Qijun; Jiang, Shushu; Zhang, Fuchun; Wang, Yuanchao; Judelson, Howard S; Chen, Xuemei; Ma, Wenbo



Host-Pathogen Interactions  

PubMed Central

Resistance of soybean (Glycine max L.) seedlings to Phytophthora megasperma var. sojae (Pms) is in part due to the accumulation in infected tissue of a compound which is toxic to Pms. The accumulation of this compound, a phytoalexin called glyceollin, is triggered by infection, but it can also be triggered by molecules, “elicitors,” present in cultures of Pms. The ability of the Pms elicitor to stimulate phytoalexin accumulation in soybean tissues has been used as the basis for biological assays of elicitor activity. Two bioassays were developed and characterized in this study of the Pms elicitor. These bioassays use the cotyledons and the hypocotyls of soybean seedlings. The cotyledon assay was used to characterize the extracellular Pms elicitor. This elicitor was isolated from Pms cultures and purified by ion exchange and molecular sieving chromatography. The extracellular Pms elicitor was determined to be a predominantly 3-linked glucan, which is similar in composition and structure to a polysaccharide component of Pms mycelial walls.

Ayers, Arthur R.; Ebel, Jurgen; Finelli, Frederick; Berger, Nathan; Albersheim, Peter



Identification and candidate gene analysis of a novel phytophthora resistance gene Rps10 in a Chinese soybean cultivar.  


Resistance to Phytophthora sojae isolate PsMC1 was evaluated in 102 F2?3 families derived from a cross between the resistant soybean cultivar Wandou 15 and the susceptible cultivar Williams and genotyped using simple sequence repeat (SSR) markers. The segregation ratio of resistant, segregating, and susceptible phenotypes in the population suggested that the resistance in Wandou 15 was dominant and monogenic. Twenty-six polymorphic SSR markers were identified on soybean chromosome 17 (Molecular linkage group D2; MLG D2), which were linked to the resistance gene based on bulked segregation analysis (BSA). Markers Sattwd15-24/25 and Sattwd15-47 flanked the resistance gene at a distance of 0.5 cM and 0.8 cM, respectively. Two cosegregating markers, Sattwd15-28 and Sattwd15-32, were also screened in this region. This is the first Rps resistance gene mapped on chromosome 17, which is designated as Rps10. Eight putative genes were found in the mapped region between markers Sattwd15-24/25 and Sattwd15-47. Among them, two candidate genes encoding serine/threonine (Ser/Thr) protein kinases in Wandou 15 and Williams were identified and sequenced. And the differences in genomic sequence and the putative amino acid sequence, respectively, were identified within each candidate gene between Wandou 15 and Williams. This novel gene Rps10 and the linked markers should be useful in developing soybean cultivars with durable resistance to P. sojae. PMID:23936102

Zhang, Jiqing; Xia, Changjian; Duan, Canxing; Sun, Suli; Wang, Xiaoming; Wu, Xiaofei; Zhu, Zhendong



Expressed Peptide Tags: An additional layer of data for genome annotation  

SciTech Connect

While genome sequencing is becoming ever more routine, genome annotation remains a challenging process. Identification of the coding sequences within the genomic milieu presents a tremendous challenge, especially for eukaryotes with their complex gene architectures. Here we present a method to assist the annotation process through the use of proteomic data and bioinformatics. Mass spectra of digested protein preparations of the organism of interest were acquired and searched against a protein database created by a six frame translation of the genome. The identified peptides were mapped back to the genome, compared to the current annotation, and then categorized as supporting or extending the current genome annotation. We named the classified peptides Expressed Peptide Tags (EPTs). The well annotated bacterium Rhodopseudomonas palustris was used as a control for the method and showed high degree of correlation between EPT mapping and the current annotation, with 86% of the EPTs confirming existing gene calls and less than 1% of the EPTs expanding on the current annotation. The eukaryotic plant pathogens Phytophthora ramorum and Phytophthora sojae, whose genomes have been recently sequenced and are much less well annotated, were also subjected to this method. A series of algorithmic steps were taken to increase the confidence of EPT identification for these organisms, including generation of smaller sub-databases to be searched against, and definition of EPT criteria that accommodates the more complex eukaryotic gene architecture. As expected, the analysis of the Phytophthora species showed less correlation between EPT mapping and their current annotation. While ~77% of Phytophthora EPTs supported the current annotation, a portion of them (7.2% and 12.6% for P. ramorum and P. sojae, respectively) suggested modification to current gene calls or identified novel genes that were missed by the current genome annotation of these organisms.

Savidor, Alon [ORNL; Donahoo, Ryan S [ORNL; Hurtado-Gonzales, Oscar [University of Tennessee, Knoxville (UTK); Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Lamour, Kurt H [ORNL; McDonald, W Hayes [ORNL



Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans  

PubMed Central

Background Phytophthora infestans is the most devastating pathogen of potato and a model organism for the oomycetes. It exhibits high evolutionary potential and rapidly adapts to host plants. The P. infestans genome experienced a repeat-driven expansion relative to the genomes of Phytophthora sojae and Phytophthora ramorum and shows a discontinuous distribution of gene density. Effector genes, such as members of the RXLR and Crinkler (CRN) families, localize to expanded, repeat-rich and gene-sparse regions of the genome. This distinct genomic environment is thought to contribute to genome plasticity and host adaptation. Results We used in silico approaches to predict and describe the repertoire of P. infestans secreted proteins (the secretome). We defined the "plastic secretome" as a subset of the genome that (i) encodes predicted secreted proteins, (ii) is excluded from genome segments orthologous to the P. sojae and P. ramorum genomes and (iii) is encoded by genes residing in gene sparse regions of P. infestans genome. Although including only ~3% of P. infestans genes, the plastic secretome contains ~62% of known effector genes and shows >2 fold enrichment in genes induced in planta. We highlight 19 plastic secretome genes induced in planta but distinct from previously described effectors. This list includes a trypsin-like serine protease, secreted oxidoreductases, small cysteine-rich proteins and repeat containing proteins that we propose to be novel candidate virulence factors. Conclusions This work revealed a remarkably diverse plastic secretome. It illustrates the value of combining genome architecture with comparative genomics to identify novel candidate virulence factors from pathogen genomes.



PCR Amplification of Ribosomal DNA for Species Identification in the Plant Pathogen Genus Phytophthora  

PubMed Central

We have developed a PCR procedure to amplify DNA for quick identification of the economically important species from each of the six taxonomic groups in the plant pathogen genus Phytophthora. This procedure involves amplification of the 5.8S ribosomal DNA gene and internal transcribed spacers (ITS) with the ITS primers ITS 5 and ITS 4. Restriction digests of the amplified DNA products were conducted with the restriction enzymes RsaI, MspI, and HaeIII. Restriction fragment patterns were similar after digestions with RsaI for the following species: P. capsici and P. citricola; P. infestans, P. cactorum, and P. mirabilis; P. fragariae, P. cinnamomi, and P. megasperma from peach; P. palmivora, P. citrophthora, P. erythroseptica, and P. cryptogea; and P. megasperma from raspberry and P. sojae. Restriction digests with MspI separated P. capsici from P. citricola and separated P. cactorum from P. infestans and P. mirabilis. Restriction digests with HaeIII separated P. citrophthora from P. cryptogea, P. cinnamomi from P. fragariae and P. megasperma on peach, P. palmivora from P. citrophthora, and P. megasperma on raspberry from P. sojae. P. infestans and P. mirabilis digests were identical and P. cryptogea and P. erythroseptica digests were identical with all restriction enzymes tested. A unique DNA sequence from the ITS region I in P. capsici was used to develop a primer called PCAP. The PCAP primer was used in PCRs with ITS 1 and amplified only isolates of P. capsici, P. citricola, and P. citrophthora and not 13 other species in the genus. Restriction digests with MspI separated P. capsici from the other two species. PCR was superior to traditional isolation methods for detection of P. capsici in infected bell pepper tissue in field samples. The techniques described will provide a powerful tool for identification of the major species in the genus Phytophthora.

Ristaino, Jean B.; Madritch, Michael; Trout, Carol L.; Parra, Gregory



[Emission inventory of greenhouse gases from agricultural residues combustion: a case study of Jiangsu Province].  


Burning of agricultural crop residues was a major source greenhouse gases. In this study, the proportion of crop straws (rice, wheat, maize, oil rape, cotton and soja) in Jiangsu used as household fuel and direct open burning in different periods (1990-1995, 1996-2000, 2001-2005 and 2006-2008) was estimated through questionnaire. The emission factors of CO2, CO, CH4 and NO20 from the above six types of crop straws were calculated by the simulated burning experiment. Thus the emission inventory of greenhouse gases from crop straws burning was established according to above the burning percentages and emission factors, ratios of dry residues to production and crop productions of different periods in Jiangsu province. Results indicated that emission factors of CO2, CO, CH4 and N2O depended on crop straw type. The emission factors of CO2 and CH4 were higher for oil rape straw than the other straws, while the maize and the rice straw had the higher N2O and CO emission factor. Emission inventory of greenhouse gases from agricultural residues burning in Jiangsu province showed, the annual average global warming potential (GWP) of six tested crop straws were estimated to be 9.18 (rice straw), 4.35 (wheat straw), 2.55 (maize straw), 1.63 (oil rape straw), 0.55 (cotton straw) and 0. 39 (soja straw) Tg CO2 equivalent, respectively. Among the four study periods, the annual average GWP had no obvious difference between the 1990-1995 and 2006-2008 periods, while the maximal annual average GWP (23.83 Tg CO2 equivalent) happened in the 1996-2000 period, and the minimum (20.30 Tg CO2 equivalent) in 1996-2000 period. PMID:21780575

Liu, Li-hua; Jiang, Jing-yan; Zong, Liang-gang



Zoospore interspecific signaling promotes plant infection by Phytophthora  

PubMed Central

Background Oomycetes attack a huge variety of economically and ecologically important plants. These pathogens release, detect and respond to signal molecules to coordinate their communal behaviors including the infection process. When signal molecules are present at or above threshold level, single zoospores can infect plants. However, at the beginning of a growing season population densities of individual species are likely below those required to reach a quorum and produce threshold levels of signal molecules to trigger infection. It is unclear whether these molecules are shared among related species and what their chemistries are. Results Zoospore-free fluids (ZFF) from Phytophthora capsici, P. hydropathica, P. nicotianae (ZFFnic), P. sojae (ZFFsoj) and Pythium aphanidermatum were cross tested for stimulating plant infection in three pathosystems. All ZFFs tested significantly increased infection of Catharanthus roseus by P. nicotianae. Similar cross activities were observed in infection of Lupinus polyphyllus and Glycine max by P. sojae. Only ZFFnic and ZFFsoj cross induced zoospore aggregation at a density of 2 × 103 ml-1. Pure autoinducer-2 (AI-2), a component in ZFF, caused zoospore lysis of P. nicotianae before encystment and did not stimulate plant infection at concentrations from 0.01 to 1000 ?M. P. capsici transformants with a transiently silenced AI-2 synthase gene, ribose phosphate isomerase (RPI), infected Capsicum annuum seedlings at the same inoculum concentration as the wild type. Acyl-homoserine lactones (AHLs) were not detected in any ZFFs. After freeze-thaw treatments, ZFF remained active in promoting plant infection but not zoospore aggregation. Heat treatment by boiling for 5 min also did not affect the infection-stimulating property of ZFFnic. Conclusion Oomycetes produce and use different molecules to regulate zoospore aggregation and plant infection. We found that some of these signal molecules could act in an inter-specific manner, though signals for zoospore aggregation were somewhat restricted. This self-interested cooperation among related species gives individual pathogens of the same group a competitive advantage over pathogens and microbes from other groups for limited resources. These findings help to understand why these pathogens often are individually undetectable until severe disease epidemics have developed. The signal molecules for both zoospore aggregation and plant infection are distinct from AI-2 and AHL.



Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1  

PubMed Central

Background Systemic acquired resistance (SAR) is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA) is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR) genes. Arabidopsis non-expressor of PR1 (NPR1) is a regulatory gene of the SA signal pathway [1-3]. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis. Results Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA) or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i) PR-1 was induced following INA treatment and (ii) BGL2 following infection with Pseudomonas syringae pv. tomato (Pst), and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively. Conclusion Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential for oligomer-monomer transition of Arabidopsis NPR1, with Ser and Leu residues in GmNPR1-1 and GmNPR1-2, respectively, suggested that there may be differences between the regulatory mechanisms of GmNPR1 and Arabidopsis NPR proteins.

Sandhu, Devinder; Tasma, I Made; Frasch, Ryan; Bhattacharyya, Madan K



GK4, a G-protein-coupled receptor with a phosphatidylinositol phosphate kinase domain in Phytophthora infestans, is involved in sporangia development and virulence.  


For dispersal and host infection plant pathogens largely depend on asexual spores. Pathogenesis and sporulation are complex processes that are governed by cellular signalling networks including G-protein and phospholipid signalling. Oomycetes possess a family of novel proteins called GPCR-PIPKs (GKs) that are composed of a seven-transmembrane spanning (7-TM) domain fused to a phosphatidylinositol phosphate kinase (PIPK) domain. Based on this domain structure GKs are anticipated to link G-protein and phospholipid signal pathways; however, their functions are currently unknown. Expression analyses of the 12 GK genes in Phytophthora infestans and their orthologues in Phytophthora sojae, revealed differential expression during asexual development. PiGK1 and PiGK4 were fused to monomeric red fluorescent protein (mRFP) and ectopically expressed in P.?infestans. In growing hyphae different subcellular distribution patterns were observed indicating that these two GKs act independently during development. We focused on the functional analyses of PiGK4. Its localization suggested involvement in cell differentiation and elongation and its 7-TM domain showed a canonical GPCR membrane topology. Silencing of GK4 and overexpression of full-length and truncated constructs in P.?infestans revealed that PiGK4 is not only involved in spore germination and hyphal elongation but also in sporangia cleavage and infection. PMID:23448716

Hua, Chenlei; Meijer, Harold J G; de Keijzer, Jeroen; Zhao, Wei; Wang, Yuanchao; Govers, Francine



An improved method for basic hydrolysis of isoflavone malonylglucosides and quality evaluation of Chinese soy materials.  


Basic hydrolysis procedure is often included in the sample preparation in order to quantify malonylglucosides or acetylglucosides of soy materials. However, it is preferable not to use NaOH as a hydrolytic reagent considering the effect of its alkalinity on the successive injection to HPLC and low acidity of soy isoflavones. This paper presents an improved method for basic hydrolysis using ammonia as a hydrolytic reagent without the additional neutralization step. Moreover, by means of HPLC and LC-MS methods, a systematic quality evaluation of natural soy materials from Chinese markets were established and discussed, inclusive of soybeans, black soybeans, defatted soy flours, as well as the distribution of isoflavones in the seed coat, hypocotyl and cotyledon. The results indicate that HPLC profiling patterns of originating various isoflavone constituents of Chinese soybeans was similar to those of Japanese ones, and those of Chinese black soybeans was similar to those of American ones. The average content level of total soy isoflavones of Chinese soybeans and black soybeans were a little lower than that of American and Japanese ones. Additionally, the thorough analysis for Semen Sojae Praeparatum, a Chinese herbal medicine made from fermented black soybeans or soybeans was done for the first time and the characteristic of its HPLC profiling patterns shows the higher content of isoflavone glucosides and aglycones than those of natural soy materials. PMID:18175965

Yuan, Dan; Pan, Yingni; Chen, Yan; Uno, Toshio; Zhang, Shaohui; Kano, Yoshihiro



Enhanced antioxidative activity of soybean koji prepared with various filamentous fungi.  


In the present study, soybean koji fermented with various GRAS filamentous fungi, including Aspergillus sojae BCRC 30103, Aspergillus oryzae BCRC 30222, Aspergillus awamori, Actinomucor taiwanensis and Rhizopus sp. These organisms are commonly used as starters in the fermentation of many traditional, oriental food products. The growth of starter organisms, total phenolic content, and antioxidative activities of the methanol extract of these kojis are compared with specific reference to alpha-diphenyl-2-picryl-hydrozyl (DPPH) radicals scavenging effects, Fe2+-chelating ability, and reducing power. Depending on starter organism, various extents of mycelia propagation (35.23-86.29 mg/g koji) were noted after 3 days of fermentation. Total phenolic content increased in soybean after fermentation. Koji also displayed enhanced antioxidative activates in comparison with the non-fermented soybean. Among the five kinds of koji tested, those fermented with Asp. awamori exhibited the highest levels of DPPH-free radicals scavenging activity, Fe2+-chelating ability and reducing power. The DPPH-free radicals scavenging activity and Fe2+-chelating ability of this soybean koji was ca. 8.9 and 6.7 fold that of the control. Analysis of the dose-response effect also revealed that before reaching a threshold point, there is a linear relationship between increases in antioxidative activity and increases in the concentration of the koji extract. These results show the potential for developing a healthy food supplement with soybean fermented by the GRAS filamentous fungi. PMID:16943061

Lin, Chia-Hung; Wei, Yi-Tien; Chou, Cheng-Chun



Solid-state fermentation with fungi to enhance the antioxidative activity, total phenolic and anthocyanin contents of black bean.  


In the present study, solid-state fermentation of black bean with various GRAS filamentous fungi including Aspergillus awamori, Aspergillus oryzae, Aspergillus sojae, Rhizopus azygosporus and Rhizopus sp. No. 2 was preformed to prepared koji. Mycelial propagation of starter organisms and antioxidative activity, including alpha-alpha-diphenyl-2-picyl-hydoxyl (DPPH) radicals, Fe2+-chelating ability, and reducing activity, were examined. Depending upon the starter organism, various amounts of mycelial propagation (23.5-67.3 mg/k koji) were found in the prepared black bean kojis. The methanol extracts of all the black bean kojis, except that prepared with Rhizopus sp. No. 2, exhibited higher levels of DPPH free radical-scavenging activity, Fe2+-chelating activity, and reducing power than did the non-fermented black bean. Taking into account methanol extract content, all the prepared kojis showed greater antioxidative activity than non-fermented black bean. Among the various koji extracts examined, extract of A. awamori-koji exhibited the highest antioxidative activity as did the A. awamori-koji when comparing its antioxidative activity with that of other kojis and non-fermented black bean. In general, the total extractable phenolic compounds and anthocyanins content in black beans increased after fermentation. This might lead to the increased antioxidant activities of black bean kojis observed. PMID:18031859

Lee, I-Hsin; Hung, Yu-Hsiang; Chou, Cheng-Chun



Haemoglobin M-Hyde Park associated with polyagglutinable red blood cells in a South African family.  


Twelve of 35 members tested in a large ethnically-mixed South African family were found to have both haemoglobin M type Hyde Park and persistent polyagglutinable red blood cells. The characteristics of the polyagglutination have not been recorded previously. The cells of affected family members were not agglutinated by Arachis hypogea, Dolichos biflorus or Salvia sclarea, but were agglutinated weakly by Salvia horminum and BSII (GSII) and reacted strongly with Glycine soja and Sophora japonica lectins. BSI (GSI) lectin agglutinated the group A but not the group O cells. The N and MN cells were agglutinated more strongly than normal by Vicia graminea, other anti-N lectins and human anti-N but the M and MN cells reacted as expected with human anti-M. The name 'Hyde Park' is provisionally suggested for this type of polyagglutination, although it appears unlikely that the evidently complete association between the polyagglutination and the variant haemoglobin is the result of a single genetic mutation. More likely, the connection has a post-genetic origin, perhaps showing that bonds, possibly affected adversely by precocious senescence, normally occur between the haemoglobin and alpha-sialoglycoprotein molecules in red blood cells. PMID:3377987

Bird, A R; Kent, P; Moores, P P; Elliott, T



Exposure of cryptantigens on erythrocytes in patients with breast cancer.  


One hundred thirty-two patients with breast cancer were examined for exposure of cryptantigens on their erythrocytes (RBC) using a lectin panel consisting of Arachis hypogaea and Glycine soja. Eight had exposed cryptantigens; of the eight, five were classified with additional lectins as T-polyagglutination type and three as Th-polyagglutination. A control group of 300 healthy blood donors had no exposed cryptantigens on their RBC. These findings could not be correlated with the staging of the tumor, extension of metastases, or positive estrogen or progesterone receptors of malignant tumor cells. Only one study has been found that describes the incidence of agglutination of erythrocytes from cancer patients using a monoclonal antibody, which detected an epitope on the RBC from cancer patients and was considered to be distinct from the antigen bound by naturally occurring anti-T. Studies have been made describing polyagglutinable sites on breast cancer tumor cells, where there was a much higher incidence. This discrepancy can be explained either by a difference in the methods used to search for cryptantigen exposure on the various types of cells, or by the existence of a different mechanism, which causes the exposure of cryptantigens on RBC as opposed to malignant breast tumor cells. PMID:3365668

Buskila, D; Levene, C; Biran, H; Levene, N A



Characterization of a neuraminidase from Corynebacterium aquaticum responsible for Th polyagglutination.  


Th polyagglutinability is characterized by the agglutination of the red blood cells (RBC) by Arachis hypogaea, Medicago disciformis, Vicia cretica but, in contrast to the T phenomenon, not by Glycine max (Glycine soja). Because Th transformation of RBC has been obtained in vitro, the mechanism of Th polyagglutinability expression has been studied and reproduced experimentally. An enzyme with neuraminidase specificity has been isolated from the culture supernatant of Corynebacterium aquaticum, and further characterized (MW = 55,600 kDa, pH = 5.5, Km = 0.138 microM, Kcat = 0.22 micrograms). Reversely, Th transformation of RBC could be obtained by using other neuraminidases but in very mild conditions of hydrolysis. From our results, it can be concluded that by the release of less than 20 micrograms of sialic acid per 10(10) RBC, Th reactivity can be induced whereas hydrolysis of greater amounts of sialic acid (greater than 20 micrograms/10(10) RBC) give the classical T polyagglutinability. PMID:2617954

Sondag-Thull, D; Levene, N A; Levene, C; Manny, N; Liew, Y W; Bird, G W; Schechter, Y; François-Gérard, C; Huet, M; Blanchard, D



GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens.  


Cytoplasmic aggregation, the rapid translocation of cytoplasm and subcellular components to the site of pathogen penetration, is one of the earliest reactions of plant cells against attack by microorganisms. We have investigated cytoplasmic aggregation during Arabidopsis-oomycete interactions. Infection by non-pathogenic Phytophthora sojae was prevented in the plant epidermal cell layer, whereas Peronospora parasitica isolates Cala2 (avirulent) and Noks1 (virulent) could both penetrate into the mesophyll cell layer. Epidermal cell responses to penetration by these oomycetes were examined cytologically with a range of transgenic Arabidopsis plants expressing Green Fluorescent Protein (GFP)-tagged cell components. These included plants containing GFP-TUA6 for visualizing microtubules, GFP-hTalin for actin microfilaments, GFP-tm-KKXX for endoplasmic reticulum (ER), and STtmd-GFP for the Golgi apparatus. In all interactions, actin microfilaments were actively re-arranged and formed large bundles in cytoplasmic strands focused on the penetration site. Aggregation of ER membrane and accumulation of Golgi bodies at the infection site were observed, suggesting that production and secretion of plant materials were activated around the penetration site. Microtubules did not become focused on the penetration site. No difference was evident between the responses of epidermal cells in the non-host, incompatible and compatible interactions. This result indicates that the induction of cytoplasmic aggregation in Arabidopsis epidermal cells was neither suppressed by the virulent strain of Peronospora, nor effective in stopping infection. PMID:12609049

Takemoto, Daigo; Jones, David A; Hardham, Adrienne R



Uncovering the Salt Response of Soybean by Unraveling Its Wild and Cultivated Functional Genomes Using Tag Sequencing  

PubMed Central

Soil salinity has very adverse effects on growth and yield of crop plants. Several salt tolerant wild accessions and cultivars are reported in soybean. Functional genomes of salt tolerant Glycine soja and a salt sensitive genotype of Glycine max were investigated to understand the mechanism of salt tolerance in soybean. For this purpose, four libraries were constructed for Tag sequencing on Illumina platform. We identify around 490 salt responsive genes which included a number of transcription factors, signaling proteins, translation factors and structural genes like transporters, multidrug resistance proteins, antiporters, chaperons, aquaporins etc. The gene expression levels and ratio of up/down-regulated genes was greater in tolerant plants. Translation related genes remained stable or showed slightly higher expression in tolerant plants under salinity stress. Further analyses of sequenced data and the annotations for gene ontology and pathways indicated that soybean adapts to salt stress through ABA biosynthesis and regulation of translation and signal transduction of structural genes. Manipulation of these pathways may mitigate the effect of salt stress thus enhancing salt tolerance.

Ali, Zulfiqar; Zhang, Da Yong; Xu, Zhao Long; Xu, Ling; Yi, Jin Xin; He, Xiao Lan; Huang, Yi Hong; Liu, Xiao Qing; Khan, Asif Ali; Trethowan, Richard M.; Ma, Hong Xiang



Comparative Ecophysiological Study of Salt Stress for Wild and Cultivated Soybean Species from the Yellow River Delta, China  

PubMed Central

Osmotic and ionic stresses were the primary and instant damage produced by salt stress. They can also bring about other secondary stresses. Soybean is an important economic crop and the wild soybean aroused increasing attention for its excellent performance in salt resistance. For this reason, we compared the different performances of Glycine max L. (ZH13) and Glycine soja L. (BB52) in both young and mature seedlings, hoping to clarify the specific reasons. Our research revealed that, compared to the cultivated soybean, the wild soybean was able to maintain higher water potential and relative water content (RWC), accumulate more amount of proline and glycine betaine, reduce the contents of Na+ and Cl? by faster efflux, and cut down the efflux of the K+ as well as keep higher K+/Na+ ratio. And what is more is that, almost all the excel behaviors became particularly obvious under higher NaCl concentration (300?mM). Therefore, according to all the detections and comparisons, we concluded that the wild soybean had different tolerance mechanisms and better salt resistance. It should be used as eminent germplasm resource to enhance the resistant ability of cultivated soybean or even other crops.

Wu, Gang; Zhou, Zhengda; Chen, Peng; Tang, Xiaoli; Shao, Hongbo; Wang, Hongyan



Cloning and characterization of a novel chitinase gene (chi46) from Chaetomium globosum and identification of its biological activity.  


Chitinases play a major role in the defensive strategies of plants against fungal pathogens. In the current study, the gene for a 46-kDa endochitinase (chi46) was cloned from Chaetomium globosum, an important biocontrol fungus. The corresponding complementary deoxyribonucleic acid sequence was 1,350 bp in length, encoding 449 amino acid residues. The temporal expression of chi46, in response to the treatments of cell walls of six pathogens and confrontation against two fungal pathogens, was measured in C. globosum using real-time reverse transcription polymerase chain reaction. The expression of chi46 can be highly induced by exposure to the cell walls of plant pathogens and living pathogens, suggesting a role in plant disease resistance. The chi46 gene was inserted into the pPIC9 vector and transferred into the cells of Pichia pastoris GS115 for heterologous expression. The optimal reaction conditions for chitinase CHI46 activity were: 45 degrees C, pH of 5.0, and 5 mmol l(-1) of Cu2+. The maximum enzyme activity was 1.42 U ml(-1) following exposure to the cell wall chitin of Septoria tritici. The CHI46 enzyme can efficiently degrade cell walls of the phytopathogenic Rhizoctonia solani, Fusarium oxysporum, Sclerotinia sclerotiorum, Valsa sordida, S. tritici, and Phytophthora sojae, demonstrating that it may be involved in the biocontrol mechanism of C. globosum. PMID:18563407

Liu, Z H; Yang, Q; Hu, S; Zhang, J D; Ma, J



A functional screen to characterize the secretomes of eukaryotic pathogens and their hosts in planta.  


Complex suites of proteins that are secreted by plants and phytopathogens into the plant apoplast play crucial roles in surveillance, assault, defense, and counter-defense. High-throughput genome-scale strategies are being developed to better understand the nature of these "secretomes" and the identity of pathogen-derived effector proteins that subvert plant defenses and promote pathogenicity. Although combined bioinformatic and experimental approaches recently have provided comprehensive coverage of secreted proteins from bacterial phytopathogens, far less is known about the secretomes and batteries of effectors of eukaryotic phytopathogens; notably fungi and oomycetes. The yeast secretion trap (YST) represents a potentially valuable technique to simultaneously target pathogen and host secretomes in infected plant material. A YST screen, using a new vector system, was applied to study the interaction between tomato (Solanum lycopersicum) and the oomycete Phytophthora infestans, revealing sets of genes encoding secreted proteins from both pathogen and host. Most of those from the oomycete had no identifiable function and were detectable in planta only during pathogenesis, underlining the value of YST as a tool to identify new candidate effectors and pathogenicity factors. In addition, the majority of the P. infestans proteins had homologs in the genomes of the related oomycetes R. sojae and P. ramorum. PMID:17153921

Lee, Sang-Jik; Kelley, Brendan S; Damasceno, Cynthia M B; St John, Bonnie; Kim, Byung-Soo; Kim, Byung-Dong; Rose, Jocelyn K C



Genome sequences of two Phytophthora species responsible for Sudden Oak Death and Soybean Root Rot provide novel insights into their evolutionary origins and mechanisms of pathogenesis  

SciTech Connect

The approximately 60 species of Phytophthora are all destructive pathogens, causing rots of roots, stems, leaves and fruits of a wide range of agriculturally and ornamentally important plants (1). Some species, such as P. cinnamomi, P. parasitica and P. cactorum, each attack hundreds of different plant host species, whereas others are more restricted. Some of the crops where Phytophthora infections cause the greatest financial losses include potato, soybean, tomato, alfalfa, tobacco, peppers, cucurbits, pineapple, strawberry, raspberry and a wide range of perennial tree crops, especially citrus, avocado, almonds, walnuts, apples and cocoa, and they also heavily affect the ornamental, nursery and forestry industries. The economic damage overall to crops in the United States by Phytophthora species is estimated in the tens of billions of dollars, including the costs of control measures, and worldwide it is many times this amount (1). In the northern midwest of the U.S., P. sojae causes $200 million in annual losses to soybean alone, and worldwide causes around $1-2 billion in losses per year. P. infestans infections resulted in the Irish potato famine last century and continues to be a difficult and worsening problem for potato and tomato growers worldwide, with worldwide costs estimated at $5 billion per year.

Tyler, Brett M.; Tripathi, Sucheta; Aerts, Andrea; Bensasson, Douda; Dehal, Paramvir; Dubchak, Inna; Garbelotto, Matteo; Gijzen, Mark; Huang, Wayne; Ivors, Kelly; Jiang, Rays; Kamoun, Sophien; Krampis, Konstantinos; Lamour, Kurt; McDonald, Hayes; Medina, Monica; Morris, Paul; Putnam, Nik; Rash, Sam; Salamov, Asaf; Smith, Brian; Smith, Joe; Terry, Astrid; Torto, Trudy; Grigoriev, Igor; Rokhsar, Daniel; Boore, Jeffrey



The RXLR motif of oomycete effectors is not a sufficient element for binding to phosphatidylinositol monophosphates.  


The translocation of effector proteins into the host plant cells is essential for pathogens to suppress plant immune responses. The oomycete pathogen Phytophthora infestans secretes AVR3a, a crucial virulence effector protein with an N-terminal RXLR motif that is required for this translocation. It has been reported that the RXLR motif of P. sojae Avr1b, which is a close homolog of AVR3a, is required for binding to phosphatidylinositol monophosphates (PIPs). However, in our previous report, AVR3a as well as Avr1b bind to PIPs not via RXLR but via lysine residues forming a positively-charged area in the effector domain. In this report, we examined whether other RXLR effectors whose structures have been determined bind to PIPs. Both P. capsici AVR3a11 and Hyaloperonospora arabidopsidis ATR1 have an RXLR motif in their N-terminal regions but did not bind to any PIPs. These results suggest that the RXLR motif is not sufficient for PIP binding. PMID:23425855

Yaeno, Takashi; Shirasu, Ken



Elicitor-induced defence reactions in cell suspension cultures of soybean cultivars.  


Suspension cultured soybean (Glycine max [L.] Merr.) cells of four cultivars (Wilis, Lumut, Kalmit, Doko RC) were compared for their response to different fungal and bacterial elicitors. Cells were treated either with crude cell wall extracts of the fungal pathogens Phytophthora sojae (Pmg-elicitor) and Rhizoctonia solani (Riso-elicitor) or with two isolates of the bacterial pathogen Pseudomonas syringae pv. glycinea (Psg01/02) and a broad spectrum of antimicrobial defence reactions was measured. Cells of all four cultivars showed the same elicitor-induced rapid (H2O2 accumulation, alkalinization of the culture medium, peroxidative cross-linking of cell wall proteins) and slow (activation of phenylpropanoid metabolism, accumulation of phenolic compounds, induction of PR-proteins) defence responses. However, the reactivity of the cultivars was not identical in terms of time courses and intensities. Furthermore, the ability of the various elicitors to induce defence responses varied markedly. These differences indicate that (1) cells of the same species but of different cultivars are equipped with the same array of perception systems to recognise various stimuli but (2) the sensitivity of these perception systems or later steps in the signal transduction seem to be stimulated to a different extent in the analysed cultivars. PMID:11098822

Groten, K; Barz, W



[A comparison of culture and immunofluorescence technics in the study of Bacteroides with black pigmentation].  


The aim of that study was to compare culture and immunofluorescence (IF) methods to determine whether B. gingivalis and other B.P.B. can be detected in subgingival plaque of children. Samples were collected from the lingual sulcus of mandibular incisors, dispersed and diluted from 1 to 10(-5); 15 microliters of each dilution were plated on Trypticase soja agar and Todd-Hewitt agar supplemented with blood, Vit K 1 and hemin. The same dilutions were smeared on glass slides for indirect IF using an species-specific polyclonal rabbit whole cell antiserum to B. gingivalis ATCC 33 277. Representative colonies producing brown-to-black pigment were isolated, purified and further characterized. Using culture, BPB were detected in 46% of children (19/41). B. gingivalis was cultured from 6 children. Using immunofluorescence test (Fluotec*), 90% of 309 children 3 years old and more harbour detectable B.P.B., but B. gingivalis don't react with that test. B. gingivalis were detected by immunofluorescence in 72% of children (30/41) in the incisor plaque. PMID:2083384

Robert, J C; Mouton, C; Sixou, J L; Cormier, M



Potential defense-related prenylated isoflavones in lactofen-induced soybean.  


An integrated LC-MS and NMR metabolomic study was conducted to investigate metabolites whose formation was induced by lactofen (1), a soybean (Glycine max L.) disease resistance-inducing herbicide. First, LC-MS analyses of control and lactofen (1)-induced soybean extracts were performed. The LC-MS raw data were then processed by a custom designed bioinformatics program to detect the induced metabolites so formed. Finally, structures of unknown induced metabolites were determined on the basis of their 1D and 2D NMR spectroscopic data. Structure of two previously unreported compounds, 7,8-dihydroxy-4'-methoxy-3'-prenylisoflavone (2) and 7-hydroxy-4',8-dimethoxy-3'-prenylisoflavone (3) were elucidated together with four known prenylated compounds, 3'-prenyldaidzein (4), 8-prenyldaidzein (5), 3'-prenylgenistein (6), and 4-prenylcoumestrol (7). Compounds (2-6) are reported for the first time in soybean, as are the (13)C chemical shift assignments for compound (7). Formation of these six prenylated compounds was also induced by the primary defense glucan elicitor from the cell wall of the pathogen Phytophthora sojae (Kauf. and Gerde.), further suggesting a potential role in soybean defense. These results highlight the metabolic flexibility within soybean secondary product pathways and suggest that prenylation may be associated with defense responses. Moreover, this study demonstrates a promising future approach using metabolomics on elicitor-induced plants for discovery of unknown compounds even in relatively well studied plants. PMID:21477824

Cheng, Jiye; Yuan, Chunhua; Graham, Terrence L



Soybean glyceollins mitigate inducible nitric oxide synthase and cyclooxygenase-2 expression levels via suppression of the NF-?B signaling pathway in RAW 264.7 cells  

PubMed Central

Glyceollins, produced to induce disease resistance responses against specific species, such as an incompatible pathogen Phytophthora sojae in soybeans, have the potential to exhibit anti-inflammatory activity in RAW 264.7 cells. To investigate the anti-inflammatory effects of elicited glyceollins via a signaling pathway, we studied the glyceollin signaling pathway using several assays including RNA and protein expression levels. We found that soybean glyceollins significantly reduced LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production, as well as the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) via the suppression of NF-?B activation. Glyceollins also inhibited the phosphorylation of I?B? kinase (IKK), the degradation of I?B?, and the formation of NF-?B-DNA binding complex in a dose-dependent manner. Furthermore, they inhibited pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-?, interleukin (IL)-1? and IL-18, but increased the generation of the anti-inflammatory cytokine IL-10. Collectively, the present data show that glyceollins elicit potential anti-inflammatory effects by suppressing the NF-?B signaling pathway in RAW 264.7 cells.




Tandem mass spectrometry for the detection of plant pathogenic fungi and the effects of database composition on protein inferences  

PubMed Central

LC-MS/MS has demonstrated potential for detecting plant pathogens. Unlike PCR or ELISA, LC-MS/MS does not require pathogen-specific reagents for the detection of pathogen-specific proteins and peptides. However, the MS/MS approach we and others have explored does require a protein sequence reference database and database-search software to interpret tandem mass spectra. To evaluate the limitations of database composition on pathogen identification, we analyzed proteins from cultured Ustilago maydis, Phytophthora sojae, Fusarium graminearum, and Rhizoctonia solani by LC-MS/MS. When the search database did not contain sequences for a target pathogen, or contained sequences to related pathogens, target pathogen spectra were reliably matched to protein sequences from nontarget organisms, giving an illusion that proteins from nontarget organisms were identified. Our analysis demonstrates that when database-search software is used as part of the identification process, a paradox exists whereby additional sequences needed to detect a wide variety of possible organisms may lead to more cross-species protein matches and misidentification of pathogens.

Padliya, Neerav D.; Garrett, Wesley M.; Campbell, Kimberly B.; Tabb, David L.; Cooper, Bret



Competence for Elicitation of H2O2 in Hypocotyls of Cucumber Is Induced by Breaching the Cuticle and Is Enhanced by Salicylic Acid.  

PubMed Central

To study H2O2 production, the epidermal surfaces of hypocotyl segments from etiolated seedlings of cucumber (Cucumis sativus L.) were gently abraded. Freshly abraded segments were not constitutively competent for rapid H2O2 elicitation. This capacity developed subsequent to abrasion in a time-dependent process that was greatly enhanced in segments exhibiting an acquired resistance to penetration of their epidermal cell walls by Colletotrichum lagenarium, because of root pretreatment of the respective seedlings with 2,6-dichloroisonicotinic acid. When this compound or salicylic acid was applied to abraded segments, it also greatly enhanced the induction of competence for H2O2 elicitation. This process was fully inhibited by 5 [mu]M cycloheximide or 200 [mu]M puromycin, suggesting a requirement for translational protein synthesis. Both a crude elicitor preparation and a partially purified oligoglucan mixture from Phytophthora sojae also induced, in addition to H2O2 production, a refractory state, which explains the transient nature of H2O2 elicitation. Taken together, these results suggest that the cucumber hypocotyl epidermis becomes conditioned for competence to produce H2O2 in response to elicitors by a stimulus resulting from breaching the cuticle and/or cutting segments. This conditioning process is associated with protein synthesis and is greatly enhanced when substances able to induce systemic acquired resistance are present in the tissue.

Fauth, M.; Merten, A.; Hahn, M. G.; Jeblick, W.; Kauss, H.



Signaling in Soybean Phenylpropanoid Responses (Dissection of Primary, Secondary, and Conditioning Effects of Light, Wounding, and Elicitor Treatments).  

PubMed Central

The spatial and temporal deployment of plant defense responses involves a complex interplay of signal events, often resulting in superimposition of signaling processes. We have employed a minimal-wound protocol to clearly separate and characterize the specific contributions of light, wounding, and a wall glucan elicitor preparation (PWG) from Phytophthora sojae (Kauf. and Gerde.) to the regulation of phenylpropanoid defense responses in soybean (Glycine max L. [Merr.]) cotyledon tissues. The assay also allowed us to clearly reconstitute responses to combinations of these primary signals and to examine the effects of other pathogenesis-related molecules on the responses in a defined manner. Light specifically triggers accumulation of malonylglucosyl conjugates of the 5-hydroxy-isoflavone, genistein, which is normally found in epidermal cells. PWG selectively induces accumulation of conjugates of the 5-deoxy-isoflavone daidzein, the first committed precursor of the phytoalexin glyceollin. Wounding initiates phenolic polymer deposition, a process greatly potentiated by PWG and light. Whereas glutathione selectively enhances light induction of genistein conjugates, methyl jasmonate enhances both light and PWG-induced isoflavone conjugate accumulations. Wound exudate fully activates the cell's capacity (competency) for the phenolic polymer and glyceollin responses to PWG, whereas glutathione partially restores competency, favoring coumestrol and phenolic polymer responses to PWG. Abscisic acid inhibits all induced phenylpropanoid responses.

Graham, T. L.; Graham, M. Y.



Lactofen induces isoflavone accumulation and glyceollin elicitation competency in soybean.  


Lactofen, the active ingredient of the soybean disease resistance-inducing herbicide, Cobra, induces large accumulations of isoflavone conjugates and aglycones in soybean tissues. The predominant isoflavones induced in cotyledon tissues are daidzein (and its conjugates) and formononetin and glycitein aglycones. The latter two isoflavones are usually present only at very low levels in soybean seedling tissues. In leaves, the predominant lactofen-induced isoflavones are daidzein and formononetin aglycones and the malonyl-glucosyl conjugate of genistein. Isoflavone induction also occurs in cells distal to the point of treatment, but is only weakly systemic. Lactofen also induces elicitation competency, the capacity of soybean cells to accumulate the pterocarpan phytoalexin glyceollin in response to glucan elicitors from the cell wall of the pathogen Phytophthora sojae. Comparison of the activity of a series of diphenyl ether herbicides demonstrated that while all diphenyl ethers tested induced some degree of elicitation competency, only certain ones induced isoflavone accumulation in the absence of glucan elicitor. As a group the diphenyl ethers are thought to inhibit protoporhyrinogen oxidase, eventually leading to singlet oxygen generation. Another singlet oxygen generator, rose bengal, also induced elicitation competency, but little isoflavone accumulation. It is hypothesized that diphenyl ether-induced activated oxygen species mimic some aspects of hypersensitive cell death, which leads to elicitation competency in infected tissues. PMID:12590114

Landini, Serena; Graham, Madge Y; Graham, Terrence L



Identification of Rotylenchulus reniformis Resistant Glycine Lines  

PubMed Central

Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the mid-South region of the United States. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen. Sixty-one wild and domestic soybean lines were evaluated in replicated growth chamber tests. Six previously untested soybean lines with useful levels of resistance to reniform nematode were identified in both initial screening and subsequent confirmation tests: released germplasm lines DS4-SCN05 (PI 656647) and DS-880 (PI 659348); accession PI 567516 C; and breeding lines DS97-84-1, 02011-126-1-1-2-1 and 02011-126-1-1-5-1. Eleven previously untested moderately susceptible or susceptible lines were also identified: released germplasm lines D68-0099 (PI 573285) and LG01-5087-5; accessions PI 200538, PI 416937, PI 423941, PI 437697, PI 467312, PI 468916, PI 594692, and PI 603751 A; and cultivar Stafford (PI 508269). Results of previously tested lines evaluated in the current study agreed with published reports 69.6% of the time for resistant lines and 87.5% of the time for susceptible lines. Soybean breeders may benefit from incorporating the newly identified resistant lines into their breeding programs.

Stetina, Salliana R.; Smith, James R.; Ray, Jeffery D.



Identification of Rotylenchulus reniformis Resistant Glycine Lines.  


Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the mid-South region of the United States. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen. Sixty-one wild and domestic soybean lines were evaluated in replicated growth chamber tests. Six previously untested soybean lines with useful levels of resistance to reniform nematode were identified in both initial screening and subsequent confirmation tests: released germplasm lines DS4-SCN05 (PI 656647) and DS-880 (PI 659348); accession PI 567516 C; and breeding lines DS97-84-1, 02011-126-1-1-2-1 and 02011-126-1-1-5-1. Eleven previously untested moderately susceptible or susceptible lines were also identified: released germplasm lines D68-0099 (PI 573285) and LG01-5087-5; accessions PI 200538, PI 416937, PI 423941, PI 437697, PI 467312, PI 468916, PI 594692, and PI 603751 A; and cultivar Stafford (PI 508269). Results of previously tested lines evaluated in the current study agreed with published reports 69.6% of the time for resistant lines and 87.5% of the time for susceptible lines. Soybean breeders may benefit from incorporating the newly identified resistant lines into their breeding programs. PMID:24643425

Stetina, Salliana R; Smith, James R; Ray, Jeffery D



Mutagenic and antimutagenic effects of methanol extracts of unfermented and fermented black soybeans.  


In this study, solid fermentation of steamed black soybean with various GRAS (Generally recognized as safe) filamentious-fungi including Aspergillus awamori, Aspergillus oryzae BCRC 30222, Aspergillus sojae BCRC 30103, Rhizopus azygosporus BCRC 31158 and Rhizopus sp. No. 2 was performed. Mutagenicity and antimutagenicity of the methanol extracts of unfermented and fermented steamed black soybeans against 4-nitroquinoline-N-oxide (4-NQO), a direct mutagen and Benzo[a]pyrene (B[a]P), an indirect mutagen, on Salmonella Typhimurium TA100 and TA 98, were examined. The methanol extracts of unfermented and fermented steamed black soybeans show no mutagenic activity for either test strains at the doses tested. The extracts inhibited mutagenesis by either 4-NQO or B[a]P in S. Typhimurium TA100 and TA98. Fermentation with fungi also enhanced the antimutagenic effect of black soybean while the antimutagenic effect of the fermented black soybeans extract varied with the starter organism, mutagen, and test strain of S. Typhimurium examined. Generally, the extracts of A. awamori-fermented black soybean exhibited the highest antimutagenic effect. With strain TA100, the inhibitory effects of 5.0 mg of A. awamori-fermented black soybean extract per plate on the mutagenic effects of 4-NQO and B[a]P were 92% and 89%, respectively, while the corresponding rates for extract of unfermented were 41% and 63%, respectively. With strain 98, the inhibition rates were 94 and 81% for the fermented bean extract and 58% and 44% for the unfermented bean extracts. Testing of extracts prepared from black soybean by A. awamori at temperatures 25, 30 and 35 degrees C and for times of 1-5 days revealed that, generally, the extract prepared from beans fermented at 30 degrees C for 3 days exhibited the greatest inhibition against the mutagenic effects of 4-NQO and B[a]P. PMID:17628128

Hung, Yu-Hsiang; Huang, Hui-Yu; Chou, Cheng-Chun



Comparison of genetic diversity between Canadian adapted genotypes and exotic germplasm of soybean.  


Soybean (Glycine max (L.) Merr.) was domesticated in China and the greatest genetic diversity for this species is found in Asia. In contrast, in North America, soybean cultivars trace back to a small number of plant introductions from Asia and genetic diversity is typically quite limited. The purpose of this work was to measure and compare the genetic diversity in two sets of soybean lines. The first set (termed "local") was composed of 100 lines used in a private breeding program in Quebec. The second set (termed "exotic") was composed of 200 lines from elsewhere in the world (but mostly from Asia) and included a few lines of Glycine soja, the wild progenitor of cultivated soybean. Almost all the genotypes belonged to maturity groups between 000 and II. A total of 39 microsatellites (SSRs) were used to genotype the two collections. The number of alleles per locus was almost twice as great in the exotic set compared with the local set. Also, the number of "unique" alleles, i.e., those uniquely present in one set and absent in the other, was almost fivefold greater (191 vs. 37) in a subset of 108 exotic lines with good adaptation than among the local set. A genetic distance matrix, a UPGMA cluster analysis, and a principal coordinate analysis were conducted based on the SSR data. These analyses all indicated that the exotic set was much more diverse and formed a clearly distinct group from the local set. Interestingly, some of the lines showing the best adaptation to local conditions were quite distinctive in terms of their genotype and could potentially contribute useful novel genetic variation within the breeding program. PMID:20616865

Iquira, Elmer; Gagnon, Eric; Belzile, François



Sequence variation of chloroplast DNA that involves EcoRI and ClaI restriction site polymorphisms in soybean.  


Restriction fragment length polymorphisms (RFLPs) of EcoRI-and ClaI-digested chloroplast DNA (cpDNA) within the genus Glycine subgenus Soja were characterized. Two mutations were found to be responsible for the EcoRI and ClaI restriction site polymorphisms, and both were located in a region in which many ribosomal protein genes are clustered. This region is within the large single copy region of cpDNA and is located close to an inverted repeat. The locations of restriction sites of EcoRI and ClaI in the cpDNA region were analyzed by DNA gel-blot analyses and PCR amplification, which were followed by sequencing analyses. The EcoRI site polymorphism was found to have occurred in the intergenic spacer between rps11 and rpl36, while the ClaI site polymorphism was located within the 3' part of the coding region of rps3. The mutations that cause EcoRI and ClaI polymorphisms were both found to be single base substitutions. In addition to these polymorphisms, novel sequence variations in soybean cpDNA were detected near the sites of these mutations. Previously, it was shown that cultivated soybeans could be classified into three groups (I, II, and III) based on their cpDNA RFLPs. A comparison of the cpDNA sequences of soybeans in the present study was consistent with the notion that the cpDNA of group II soybeans is an intermediate between the cpDNAs of groups I and II. PMID:9718676

Kanazawa, A; Tozuka, A; Shimamoto, Y



Effect of six decades of selective breeding on soybean protein composition and quality: a biochemical and molecular analysis.  


To evaluate the extent of the genetic change and its effects on the seed protein composition of soybean cultivars released during the past 60 years, representative ancestral cultivars and those derived from selective breeding were grown in a side-by-side comparison. Total seed protein content, determined by combustion analysis of nitrogen, revealed a decline in the protein content after decades of selection and breeding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis comparison of protein profiles of the soybean cultivars indicated that relative expression of most of the seed storage proteins had not varied substantially from the ancestral lines to the present commercial cultivars. There was noticeably less beta-subunit of beta-conglycinin, a protein devoid of sulfur amino acids, in the modern cultivars represented by Mustang, Pioneer 93B09, and Asgrow 3602. Comparison of the amino acid profiles of soybean seed, a benchmark of the protein's nutritional quality, revealed that the ancestral progenitor, G. soja, was significantly higher in cysteine, glutamic acid, histidine, and arginine than either the ancestral or the modern cultivars. Selective breeding over the past 60 years minimally affected the overall amino acid composition. The degree of divergence in the DNA sequence of the genes encoding glycinin and beta-conglycinin in the ancestral and modern cultivars was investigated using Southern hybridization and the polymerase chain reaction. Even though some restriction fragment polymorphisms could be detected, overall, the banding patterns were remarkably similar among the ancestral cultivars and those derived from them, suggesting a high degree of conservation of seed-storage protein genes. The results of our study suggest that selection and breeding for yield during the past 60 years had no major influence on the protein composition, ostensibly because of limited genetic diversity among the parental lines. PMID:16719515

Mahmoud, Ahmed A; Natarajan, Savithiry S; Bennett, John O; Mawhinney, Thomas P; Wiebold, William J; Krishnan, Hari B



QTL Mapping of Domestication-related Traits in Soybean (Glycine max)  

PubMed Central

Background and Aims Understanding the genetic basis underlying domestication-related traits (DRTs) is important in order to use wild germplasm efficiently for improving yield, stress tolerance and quality of crops. This study was conducted to characterize the genetic basis of DRTs in soybean (Glycine max) using quantitative trait locus (QTL) mapping. Methods A population of 96 recombinant inbred lines derived from a cultivated (ssp. max) × wild (ssp. soja) cross was used for mapping and QTL analysis. Nine DRTs were examined in 2004 and 2005. A linkage map was constructed with 282 markers by the Kosambi function, and the QTL was detected by composite interval mapping. Key Results The early flowering and determinate habit derived from the max parent were each controlled by one major QTL, corresponding to the major genes for maturity (e1) and determinate habit (dt1), respectively. There were only one or two significant QTLs for twinning habit, pod dehiscence, seed weight and hard seededness, which each accounted for approx. 20–50 % of the total variance. A comparison with the QTLs detected previously indicated that in pod dehiscence and hard seededness, at least one major QTL was common across different crosses, whereas no such consistent QTL existed for seed weight. Conclusions Most of the DRTs in soybeans were conditioned by one or two major QTLs and a number of genotype-dependent minor QTLs. The common major QTLs identified in pod dehiscence and hard seededness may have been key loci in the domestication of soybean. The evolutionary changes toward larger seed may have occurred through the accumulation of minor changes at many QTLs. Since the major QTLs for DRTs were scattered across only six of the 20 linkage groups, and since the QTLs were not clustered, introgression of useful genes from wild to cultivated soybeans can be carried out without large obstacles.

Liu, Baohui; Fujita, Toshiro; Yan, Ze-Hong; Sakamoto, Shinichi; Xu, Donghe; Abe, Jun



Infection and genotype remodel the entire soybean transcriptome  

PubMed Central

Background High throughput methods, such as high density oligonucleotide microarray measurements of mRNA levels, are popular and critical to genome scale analysis and systems biology. However understanding the results of these analyses and in particular understanding the very wide range of levels of transcriptional changes observed is still a significant challenge. Many researchers still use an arbitrary cut off such as two-fold in order to identify changes that may be biologically significant. We have used a very large-scale microarray experiment involving 72 biological replicates to analyze the response of soybean plants to infection by the pathogen Phytophthora sojae and to analyze transcriptional modulation as a result of genotypic variation. Results With the unprecedented level of statistical sensitivity provided by the high degree of replication, we show unambiguously that almost the entire plant genome (97 to 99% of all detectable genes) undergoes transcriptional modulation in response to infection and genetic variation. The majority of the transcriptional differences are less than two-fold in magnitude. We show that low amplitude modulation of gene expression (less than two-fold changes) is highly statistically significant and consistent across biological replicates, even for modulations of less than 20%. Our results are consistent through two different normalization methods and two different statistical analysis procedures. Conclusion Our findings demonstrate that the entire plant genome undergoes transcriptional modulation in response to infection and genetic variation. The pervasive low-magnitude remodeling of the transcriptome may be an integral component of physiological adaptation in soybean, and in all eukaryotes.

Zhou, Lecong; Mideros, Santiago X; Bao, Lei; Hanlon, Regina; Arredondo, Felipe D; Tripathy, Sucheta; Krampis, Konstantinos; Jerauld, Adam; Evans, Clive; St Martin, Steven K; Maroof, MA Saghai; Hoeschele, Ina; Dorrance, Anne E; Tyler, Brett M



Regulation of catalase activity and gene expression during Phytophthora nicotianae development and infection of tobacco.  


Plant defence against pathogen attack typically incorporates an oxidative burst involving elevated levels of reactive oxygen species such as hydrogen peroxide. In the present study, we have used an in-gel assay to monitor the activity of the hydrogen peroxide scavenging enzyme, catalase, during asexual development of Phytophthora nicotianae and during infection of host tobacco plants. In vitro, catalase activity is highest in sporulating hyphae; in planta, catalase activity increases dramatically about 8 h after host inoculation. We have cloned and characterized three catalase genes, designated PnCat1, PnCat2 and PnCat3, from P. nicotianae and identified their homologues in P. infestans, P. sojae and P. ramorum. In all three species, Cat2 is predicted to be targeted to the peroxisome and the other catalases are likely to be cytosolic. Quantitative real-time PCR assessment of catalase transcripts during development and infection indicates that peroxisomal PnCat2 is the gene predominantly expressed, with transcript levels peaking in vitro in sporulating hyphae and in planta increasing dramatically during the first 24 h after inoculation of susceptible tobacco seedlings. Levels of tobacco catalase gene expression are significantly down-regulated in susceptible tobacco 4, 8 and 24 h post-inoculation and in resistant plants at 24 h post-inoculation. Together, our results give evidence that during infection P. nicotianae increases its own peroxisomal catalase levels while concurrently down-regulating host catalase expression. This behaviour is consistent with a role of pathogen catalase in counterdefence and protection against oxidative stress and of pathogen-orchestrated enhanced plant cell death to support necrotrophic pathogen growth and plant colonization. PMID:18705863

Blackman, Leila M; Hardham, Adrienne R



Multiple horizontal gene transfer events and domain fusions have created novel regulatory and metabolic networks in the oomycete genome.  


Complex enzymes with multiple catalytic activities are hypothesized to have evolved from more primitive precursors. Global analysis of the Phytophthora sojae genome using conservative criteria for evaluation of complex proteins identified 273 novel multifunctional proteins that were also conserved in P. ramorum. Each of these proteins contains combinations of protein motifs that are not present in bacterial, plant, animal, or fungal genomes. A subset of these proteins were also identified in the two diatom genomes, but the majority of these proteins have formed after the split between diatoms and oomycetes. Documentation of multiple cases of domain fusions that are common to both oomycetes and diatom genomes lends additional support for the hypothesis that oomycetes and diatoms are monophyletic. Bifunctional proteins that catalyze two steps in a metabolic pathway can be used to infer the interaction of orthologous proteins that exist as separate entities in other genomes. We postulated that the novel multifunctional proteins of oomycetes could function as potential Rosetta Stones to identify interacting proteins of conserved metabolic and regulatory networks in other eukaryotic genomes. However ortholog analysis of each domain within our set of 273 multifunctional proteins against 39 sequenced bacterial and eukaryotic genomes, identified only 18 candidate Rosetta Stone proteins. Thus the majority of multifunctional proteins are not Rosetta Stones, but they may nonetheless be useful in identifying novel metabolic and regulatory networks in oomycetes. Phylogenetic analysis of all the enzymes in three pathways with one or more novel multifunctional proteins was conducted to determine the probable origins of individual enzymes. These analyses revealed multiple examples of horizontal transfer from both bacterial genomes and the photosynthetic endosymbiont in the ancestral genome of Stramenopiles. The complexity of the phylogenetic origins of these metabolic pathways and the paucity of Rosetta Stones relative to the total number of multifunctional proteins suggests that the proteome of oomycetes has few features in common with other Kingdoms. PMID:19582169

Morris, Paul Francis; Schlosser, Laura Rose; Onasch, Katherine Diane; Wittenschlaeger, Tom; Austin, Ryan; Provart, Nicholas



Phytophthora niederhauserii sp. nov., a polyphagous species associated with ornamentals, fruit trees and native plants in 13 countries.  


A non-papillate, heterothallic Phytophthora species first isolated in 2001 and subsequently from symptomatic roots, crowns and stems of 33 plant species in 25 unrelated botanical families from 13 countries is formally described here as a new species. Symptoms on various hosts included crown and stem rot, chlorosis, wilting, leaf blight, cankers and gumming. This species was isolated from Australia, Hungary, Israel, Italy, Japan, the Netherlands, Norway, South Africa, Spain, Taiwan, Turkey, the United Kingdom and United States in association with shrubs and herbaceous ornamentals grown mainly in greenhouses. The most prevalent hosts are English ivy (Hedera helix) and Cistus (Cistus salvifolius). The association of the species with acorn banksia (Banksia prionotes) plants in natural ecosystems in Australia, in affected vineyards (Vitis vinifera) in South Africa and almond (Prunus dulcis) trees in Spain and Turkey in addition to infection of shrubs and herbaceous ornamentals in a broad range of unrelated families are a sign of a wide ecological adaptation of the species and its potential threat to agricultural and natural ecosystems. The morphology of the persistent non-papillate ellipsoid sporangia, unique toruloid lobate hyphal swellings and amphigynous antheridia does not match any of the described species. Phylogenetic analysis based on sequences of the ITS rDNA, EF-1?, and ?-tub supported that this organism is a hitherto unknown species. It is closely related to species in ITS clade 7b with the most closely related species being P. sojae. The name Phytophthora niederhauserii has been used in previous studies without the formal description of the holotype. This name is validated in this manuscript with the formal description of Phytophthora niederhauserii Z.G. Abad et J.A. Abad, sp. nov. The name is coined to honor Dr John S. Niederhauser, a notable plant pathologist and the 1990 World Food Prize laureate. PMID:24871599

Abad, Z Gloria; Abad, Jorge A; Cacciola, Santa Olga; Pane, Antonella; Faedda, Roberto; Moralejo, Eduardo; Pérez-Sierra, Ana; Abad-Campos, Paloma; Alvarez-Bernaola, Luis A; Bakonyi, József; Józsa, András; Herrero, Maria Luz; Burgess, Treena I; Cunnington, James H; Smith, Ian W; Balci, Yilmaz; Blomquist, Cheryl; Henricot, Béatrice; Denton, Geoffrey; Spies, Chris; Mcleod, Adele; Belbahri, Lassaad; Cooke, David; Kageyama, Koji; Uematsu, Seiji; Kurbetli, Ilker; De?irmenci, Kemal



Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses?  

PubMed Central

Background How photosynthetic organelles, or plastids, were acquired by diverse eukaryotes is among the most hotly debated topics in broad scale eukaryotic evolution. The history of plastid endosymbioses commonly is interpreted under the "chromalveolate" hypothesis, which requires numerous plastid losses from certain heterotrophic groups that now are entirely aplastidic. In this context, discoveries of putatively algal genes in plastid-lacking protists have been cited as evidence of gene transfer from a photosynthetic endosymbiont that subsequently was lost completely. Here we examine this evidence, as it pertains to the chromalveolate hypothesis, through genome-level statistical analyses of similarity scores from queries with two diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, and two aplastidic sister taxa, Phytophthora ramorum and P. sojae. Results Contingency tests of specific predictions of the chromalveolate model find no evidence for an unusual red algal contribution to Phytophthora genomes, nor that putative cyanobacterial sequences that are present entered these genomes through a red algal endosymbiosis. Examination of genes unrelated to plastid function provide extraordinarily significant support for both of these predictions in diatoms, the control group where a red endosymbiosis is known to have occurred, but none of that support is present in genes specifically conserved between diatoms and oomycetes. In addition, we uncovered a strong association between overall sequence similarities among taxa and relative sizes of genomic data sets in numbers of genes. Conclusion Signal from "algal" genes in oomycete genomes is inconsistent with the chromalveolate hypothesis, and better explained by alternative models of sequence and genome evolution. Combined with the numerous sources of intragenomic phylogenetic conflict characterized previously, our results underscore the potential to be mislead by a posteriori interpretations of variable phylogenetic signals contained in complex genome-level data. They argue strongly for explicit testing of the different a priori assumptions inherent in competing evolutionary hypotheses.

Stiller, John W; Huang, Jinling; Ding, Qin; Tian, Jing; Goodwillie, Carol



The Diphenylether Herbicide Lactofen Induces Cell Death and Expression of Defense-Related Genes in Soybean1  

PubMed Central

Lactofen belongs to the diphenylether class of herbicides, which targets protoporphyrinogen oxidase, which in turn causes singlet oxygen generation. In tolerant plants like soybean (Glycine max), the chemical nonetheless causes necrotic patches called “bronzing” in contact areas. Here it is shown that such bronzing is accompanied by cell death, which was quantified from digital microscopic images using Assess Software. Cellular autofluorescence accompanied cell death, and a homolog of the cell death marker gene, Hsr203j, was induced by lactofen in treated soybean tissues. Thus, this form of chemically induced cell death shares some hallmarks of certain types of programmed cell death. In addition to the cell death phenotype, lactofen caused enhanced expressions of chalcone synthase and chalcone reductase genes, mainly in the exposed and immediately adjacent (proximal) cells. Furthermore, isoflavone synthase genes, which are wound inducible in soybean, were up-regulated by lactofen in both proximal and distal cell zones in minimally wounded cotyledons and further enhanced in wounded tissues. Moreover, if the wall glucan elicitor from Phytophthora sojae was present during lactofen treatment, the induction of isoflavone synthase was even more rapid. These results are consistent with the fact that lactofen triggers massive isoflavone accumulations and activates the capacity for glyceollin elicitation competency. In addition, lactofen induces late expression of a selective set of pathogenesis-related (PR) protein genes, including PR-1a, PR-5, and PR-10, mainly in treated proximal tissues. These various results are discussed in the context of singlet oxygen-induced responses and lactofen's potential as a disease resistance-inducing agent.

Graham, Madge Y.



Comparative Genomic Analysis of Soybean Flowering Genes  

PubMed Central

Flowering is an important agronomic trait that determines crop yield. Soybean is a major oilseed legume crop used for human and animal feed. Legumes have unique vegetative and floral complexities. Our understanding of the molecular basis of flower initiation and development in legumes is limited. Here, we address this by using a computational approach to examine flowering regulatory genes in the soybean genome in comparison to the most studied model plant, Arabidopsis. For this comparison, a genome-wide analysis of orthologue groups was performed, followed by an in silico gene expression analysis of the identified soybean flowering genes. Phylogenetic analyses of the gene families highlighted the evolutionary relationships among these candidates. Our study identified key flowering genes in soybean and indicates that the vernalisation and the ambient-temperature pathways seem to be the most variant in soybean. A comparison of the orthologue groups containing flowering genes indicated that, on average, each Arabidopsis flowering gene has 2-3 orthologous copies in soybean. Our analysis highlighted that the CDF3, VRN1, SVP, AP3 and PIF3 genes are paralogue-rich genes in soybean. Furthermore, the genome mapping of the soybean flowering genes showed that these genes are scattered randomly across the genome. A paralogue comparison indicated that the soybean genes comprising the largest orthologue group are clustered in a 1.4 Mb region on chromosome 16 of soybean. Furthermore, a comparison with the undomesticated soybean (Glycine soja) revealed that there are hundreds of SNPs that are associated with putative soybean flowering genes and that there are structural variants that may affect the genes of the light-signalling and ambient-temperature pathways in soybean. Our study provides a framework for the soybean flowering pathway and insights into the relationship and evolution of flowering genes between a short-day soybean and the long-day plant, Arabidopsis.

Jung, Chol-Hee; Wong, Chui E.; Singh, Mohan B.; Bhalla, Prem L.



A second eukaryotic group with mitochondrion-encoded tmRNA: in silico identification and experimental confirmation.  


In bacteria, stalled ribosomes are rescued by transfer-mRNA (tmRNA) that catalyzes two steps. First, a non-encoded alanine is added to the incomplete polypeptide chain by the tRNA (Ala) -like portion of tmRNA, and second, the ribosome switches to the mRNA-like domain of tmRNA, thus resuming protein synthesis. Mitochondrial DNA (mtDNA)-encoded mt-tmRNA is so far only known from jakobid protists, but we posit that the corresponding ssrA gene may also reside in other mtDNAs. Here we present a highly sensitive covariance model built from jakobid ssrA genes that identifies previously unrecognized ssrA homologs in mtDNAs of oomycetes. These genes, located in previously unassigned genomic regions, are circular permuted as in ?-Protobacteria, implying that pre-tmRNA is processed and the two pieces are held together by non-covalent interactions. RNA-Seq data from Phytophthora sojae confirm predicted processing sites as well as post-transcriptional addition of 3' CCA, a prerequisite for tmRNAs to be charged with alanine by alanyl-tRNA synthetase. Structure modeling of oomycete tmRNAs infers that the mRNA-like domain is lacking as in jakobids. Features of mitochondrial tmRNAs include the G-U pair at position three of the acceptor stem, a hallmark of bacterial tmRNAs, and a T-loop sequence that differs from that of standard tRNAs and most bacterial tmRNAs, forming alternative, virtually isosteric tertiary interactions with the D-loop. The anticodon stem has two additional G-A base pairs formed between the D-loop and the variable region, shortening the length of the variable region to a single nucleotide. PMID:23823571

Hafez, Mohamed; Burger, Gertraud; Steinberg, Sergey V; Lang, B Franz



Assessment of green cleaning effectiveness on polychrome surfaces by MALDI-TOF mass spectrometry and microscopic imaging.  


This article proposes an innovative methodology which employs nondestructive techniques to assess the effectiveness of new formulations based on ionic liquids, as alternative solvents for enzymes (proteases), for the removal of proteinaceous materials from painted surfaces during restoration treatments. Ionic liquids (ILs), also known as "designer" solvents, because of their peculiar properties which can be adjusted by selecting different cation-anion combinations, are potentially green solvents due totheir low vapour pressure. In this study, two ionic liquids were selected: IL1 (1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4 ])) and IL2 (1-ethyl-3-methylimidazolium ethylsulphate ([EMIM][EtSO4 ])). New formulations were prepared with these ILs and two different proteases (E): one acid (E1-pepsin) and one alkaline (E2-obtained from Aspergillus sojae). These formulations were tested on tempera and oil mock-up samples, prepared in accordance with historically documented recipes, and covered with two different types of protein-based varnishes (egg white and isinglass-fish glue). A noninvasive multiscale imaging methodology was applied before and after the treatment to evaluate the cleaning's effectiveness. Different microscopic techniques-optical microscopy (OM) with visible and fluorescent light, scanning electron microscopy (SEM) and atomic force microscopy (AFM)-together with Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) were applied on areas cleaned with the new formulations (IL?+?E) and reference areas cleaned only with the commercial enzyme formulations (gels). MALDI-TOF proved particularly very useful for comparing the diversity and abundance of peptides released by using different enzymatic systems. Microsc. Res. Tech. 77:574-585, 2014. © 2014 Wiley Periodicals, Inc. PMID:24825619

Hrdlickova Kuckova, Stepanka; Crhova Krizkova, Michaela; Pereira, Catarina Luísa Cortes; Hynek, Radovan; Lavrova, Olga; Busani, Tito; Branco, Luis Cobra; Sandu, Irina Crina Anca



Major Soybean Maturity Gene Haplotypes Revealed by SNPViz Analysis of 72 Sequenced Soybean Genomes.  


In this Genomics Era, vast amounts of next-generation sequencing data have become publicly available for multiple genomes across hundreds of species. Analyses of these large-scale datasets can become cumbersome, especially when comparing nucleotide polymorphisms across many samples within a dataset and among different datasets or organisms. To facilitate the exploration of allelic variation and diversity, we have developed and deployed an in-house computer software to categorize and visualize these haplotypes. The SNPViz software enables users to analyze region-specific haplotypes from single nucleotide polymorphism (SNP) datasets for different sequenced genomes. The examination of allelic variation and diversity of important soybean [Glycine max (L.) Merr.] flowering time and maturity genes may provide additional insight into flowering time regulation and enhance researchers' ability to target soybean breeding for particular environments. For this study, we utilized two available soybean genomic datasets for a total of 72 soybean genotypes encompassing cultivars, landraces, and the wild species Glycine soja. The major soybean maturity genes E1, E2, E3, and E4 along with the Dt1 gene for plant growth architecture were analyzed in an effort to determine the number of major haplotypes for each gene, to evaluate the consistency of the haplotypes with characterized variant alleles, and to identify evidence of artificial selection. The results indicated classification of a small number of predominant haplogroups for each gene and important insights into possible allelic diversity for each gene within the context of known causative mutations. The software has both a stand-alone and web-based version and can be used to analyze other genes, examine additional soybean datasets, and view similar genome sequence and SNP datasets from other species. PMID:24727730

Langewisch, Tiffany; Zhang, Hongxin; Vincent, Ryan; Joshi, Trupti; Xu, Dong; Bilyeu, Kristin



Fungal avirulence genes: structure and possible functions.  


Avirulence (Avr) genes exist in many fungi that share a gene-for-gene relationship with their host plant. They represent unique genetic determinants that prevent fungi from causing disease on plants that possess matching resistance (R) genes. Interaction between elicitors (primary or secondary products of Avr genes) and host receptors in resistant plants causes induction of various defense responses often involving a hypersensitive response. Avr genes have been successfully isolated by reverse genetics and positional cloning. Five cultivar-specific Avr genes (Avr4, Avr9, and Ecp2 from Cladosporium fulvum; nip1 from Rhynchosporium secalis; and Avr2-YAMO from Magnaporthe grisea) and three species-specific Avr genes (PWL1 and PWL2 from M. grisea and inf1 from Phytophthora infestans) have been cloned. Isolation of additional Avr genes from these fungi, but also from other fungi such as Uromyces vignae, Melampsora lini, Phytophthora sojae, and Leptosphaeria maculans, is in progress. Molecular analyses of nonfunctional Avr gene alleles show that these originate from deletions or mutations in the open reading frame or the promoter sequence of an Avr gene. Although intrinsic biological functions of most Avr gene products are still unknown, recent studies have shown that two Avr genes, nip1 and Ecp2, encode products that are important pathogenicity factors. All fungal Avr genes cloned so far have been demonstrated or predicted to encode extracellular proteins. Current studies focus on unraveling the mechanisms of perception of avirulence factors by plant receptors. The exploitation of Avr genes and the matching R genes in engineered resistance is also discussed. PMID:9756710

Laugé, R; De Wit, P J



5S rRNA genes in tribe Phaseoleae: array size, number, and dynamics.  


The organization of 5S rRNA genes in plants belonging to tribe Phaseoleae was investigated by clamped homogeneous electric field gel electrophoresis and Southern blot hybridization. Representatives of subtribe Glycininae included the diploid species Neonotonia wightii and Teramnus labialis, as well as three soybean accessions: an elite Glycine max (L.) Merr. cultivar (BSR101), an unadapted G. max introduction (PI 437.654), and a wild Glycine soja (PI 468.916). A cultivar of Phaseolus vulgaris (kidney bean), a member of subtribe Phaseolinae, was also examined. We determined the number of 5S rDNA arrays and estimated the size and copy number of the repeat unit for each array. The three soybean accessions all have a single 5S locus, with a repeat unit size of ~345 bp and a copy number ranging from about 600 in 'BSR101' to about 4600 in the unadapted soybean introduction. The size of the 5S gene cluster in 'BSR101' is the same in roots, shoots, and trifoliate leaves. Given that the genus Glycine probably has an allotetraploid origin, our data strongly suggest that one of the two progenitor 5S loci has been lost during diploidization of soybean. Neonotonia wightii, the diploid species most closely related to soybean, also has a single locus but has a repeat unit of 520 bp and a copy number of about 1300. The more distantly related species T. labialis and P. vulgaris exhibited a more complex arrangement of 5S rRNA genes, having at least three arrays, each comprising a few hundred copies of a distinct repeat unit. Although each array in P. vulgaris exhibits a high degree of homogeneity with regard to the sequence of the repeat unit, heterogeneity in array size (copy number) was evident when individual plants were compared. A cis-dependent molecular drive process, such as unequal crossing-over, could account for both the homogenization of repeat units within individual arrays and the observed variation in copy number among individuals. Key words : pulsed-field gel electrophoresis, rRNA genes, soybean, tandem arrays. PMID:18469906

Danna, K J; Workman, R; Coryell, V; Keim, P



Potential of Spirulina Platensis as a Nutritional Supplement in Malnourished HIV-Infected Adults in Sub-Saharan Africa: A Randomised, Single-Blind Study  

PubMed Central

Background: Malnutrition is a major global public health issue and its impact on communities and individuals is more dramatic in Sub-Saharan Africa, where it is compounded by widespread poverty and generalized high prevalence of human immunodeficiency virus (HIV). Therefore, malnutrition should be addressed through a multisectorial approach, and malnourished individuals should have access to nutritional rehabilitation molecules that are affordable, accessible, rich in nutrient and efficient. We thus assessed the efficacy of two affordable and accessible nutritional supplements, spirulina platensis versus soya beans among malnourished HIV-infected adults. Methods: Undernourished patients, naïve of, but eligible to antiretroviral treatment (ART), aged 18 to 35 years were enrolled and randomly assigned to two groups. The first group received spirulina (Group A) as food supplement and the second received soya beans (Group B). Patients were initiated ART simultaneously with supplements. Food supplements were auto-administered daily, the quantity being calculated according to weight to provide 1.5 g/kg body weight of proteins with 25% from supplements (spirulina and soya beans). Patients were monitored at baseline and followed-up during twelve weeks for anthropometric parameters, body composition, haemoglobin and serum albumin, CD4 count and viral load. Results: Fifty-two patients were enrolled (Group A: 26 and Group B: 26). The mean age was 26.4 ± 4.9 years (Group A) and 28.7 ± 4.8 (Group B) with no significant difference between groups (P = 0.10). After 12 weeks, weight and BMI significantly improved in both groups (P < 0.001 within each group). The mean gain in weight and BMI in Group A and B were 4.8 vs. 6.5 kg, (P = 0.68) and 1.3 vs. 1.90 Kg/m2, (P = 0.82) respectively. In terms of body composition, fat free mass (FFM) did not significantly increase within each group (40.5 vs. 42.2 Kg, P = 0.56 for Group A; 39.2 vs. 39.0 Kg, P = 0.22 for Group B). But when compared between the two groups at the end of the trial, FFM was significantly higher in the spirulina group (42.2 vs. 39.0 Kg, P = 0.01). The haemoglobin level rose significantly within groups (P < 0.001 for each group) with no difference between groups (P = 0.77). Serum albumin level did not increase significantly within groups (P < 0.90 vs. P < 0.82) with no difference between groups (P = 0.39). The increase in CD4 cell count within groups was significant (P < 0.01 in both groups), with a significantly higher CD4 count in the spirulina group compared to subjects on soya beans at the end of the study (P = 0.02). Within each group, HIV viral load significantly reduced at the end of the study (P < 0.001 and P = 0.04 for spirulina and soya beans groups respectively). Between the groups, the viral load was similar at baseline but significantly reduced in the spirulina group at the end of the study (P = 0.02). Conclusion: We therefore conclude in this preliminary study, firstly, that both spirulina and soja improve on nutritional status of malnourished HIV-infected patients but in terms of quality of nutritional improvement, subjects on spirulina were better off than subjects on soya beans. Secondly, nutritional rehabilitation improves on immune status with a consequent drop in viral load but further investigations on the antiviral effects of this alga and its clinical implications are strongly needed.

Azabji-Kenfack, M.; Dikosso, S. Edie; Loni, E.G.; Onana, E.A.; Sobngwi, E.; Gbaguidi, E.; Kana, A.L. Ngougni; Nguefack-Tsague, G.; Von der Weid, D.; Njoya, O.; Ngogang, J.



Molecular Detection of Phytophthora ramorum, the Causal Agent of Sudden Oak Death in California, and Two Additional Species Commonly Recovered from Diseased Plant Material.  


ABSTRACT Sudden oak death is a disease currently devastating forest ecosystems in several coastal areas of California. The pathogen causing this is Phy-tophthora ramorum, although species such as P. nemorosa and P. pseudo-syringae often are recovered from symptomatic plants as well. A molecular marker system was developed based on mitochondrial sequences of the cox I and II genes for detection of Phytophthora spp. in general, and P. ramorum, P. nemorosa, and P. pseudosyringae in particular. The first-round multiplex amplification contained two primer pairs, one for amplification of plant sequences to serve as an internal control to ensure that extracted DNA was of sufficient quality to allow for polymerase chain reaction (PCR) amplification and the other specific for amplification of sequences from Phytophthora spp. The plant primers amplified the desired amplicon size in the 29 plant species tested and did not interfere with amplification by the Phytophthora genus-specific primer pair. Using DNA from purified cultures, the Phytophthora genus-specific primer pair amplified a fragment diagnostic for the genus from all 45 Phytophthora spp. evaluated, although the efficiency of amplification was lower for P. lateralis and P. sojae than for the other species. The genus-specific primer pair did not amplify sequences from the 30 Pythium spp. tested or from 29 plant species, although occasional faint bands were observed for several additional plant species. With the exception of one plant species, the resulting amplicons were smaller than the Phytophthora genus-specific amplicon. The products of the first-round amplification were diluted and amplified with primer pairs nested within the genus-specific amplicon that were specific for either P. ramorum, P. nemorosa, or P. pseudo-syringae. These species-specific primers amplified the target sequence from all isolates of the pathogens under evaluation; for P. ramorum, this included 24 isolates from California, Germany, and the Netherlands. Using purified pathogen DNA, the limit of detection for P. ramorum using this marker system was approximately 2.0 fg of total DNA. However, when this DNA was spiked with DNA from healthy plant tissue extracted with a commercial miniprep procedure, the sensitivity of detection was reduced by 100- to 1,000-fold, depending on the plant species. This marker system was validated with DNA extracted from naturally infected plant samples collected from the field by comparing the sequence of the Phytophthora genus-specific amplicon, morphological identification of cultures recovered from the same lesions and, for P. ramorum, amplification with a previously published rDNA internal transcribed spacer species-specific primer pair. Results were compared and validated with three different brands of thermal cyclers in two different laboratories to provide information about how the described PCR assay performs under different laboratory conditions. The specificity of the Phytophthora genus-specific primers suggests that they will have utility for pathogen detection in other Phytophthora pathosystems. PMID:18943487

Martin, Frank N; Tooley, Paul W; Blomquist, Cheryl



EDITORIAL: Ongoing climatic change in Northern Eurasia: justification for expedient research  

NASA Astrophysics Data System (ADS)

A brief overview of the ongoing climatic and environmental changes in Northern Eurasia serves as an editorial introduction to this, the second, special Northern Eurasia Earth Science Partnership Initiative (NEESPI) focus issue of Environmental Research Letters. Climatic changes in Northern Eurasia over the last hundred years are reflected in numerous atmospheric and terrestrial variables. Many of these are noticeably significant above the confidence level for 'weather' or other (fire regime, ecosystem change) noise and thus should be further investigated in order to adapt to their impacts. In this focus issue, we introduce assorted studies of different aspects of contemporary change in Northern Eurasia. Most of these have been presented at one of the NEESPI workshops (for more information see and/or American Geophysical Union and European Geosciences Union NEESPI open sessions during the past year. These studies are diverse, representing the diversity of climates and ecosystems across Northern Eurasia. Some of these are focused on smaller spatial scales and/or address only specific aspects of the global change implications across the subcontinent. But the feeling (and observational evidence) that these changes have already been quite rapid and can have global implications inspires us to bring this suite of papers to the readers' attention. See the PDF for the full text of the editorial. Focus on Climatic and Environmental Change in Northern Eurasia Contents Preface Northern Eurasia Earth Science Partnership Initiative Pavel Groisman and Amber J Soja Editorial Siberia integrated regional study: Multidisciplinary investigations of interrelation between Siberia environment dynamics and global climate change E P Gordov and E A Vaganov Studies of the energy and water cycles in Northern Eurasia Comparison and evaluation of gridded radiation products across northern Eurasia T J Troy and E F Wood Reanalysis data underestimate significant changes in growing season weather in Kazakhstan C K Wright, K M de Beurs, Z K Akhmadieva, P Y Groisman and G M Henebry Climate change in Inner Mongolia from 1955 to 2005—trends at regional, biome and local scales N Lu, B Wilske, J Ni, R John and J Chen Application of the Snowmelt Runoff model in the Kuban river basin using MODIS satellite images M V Georgievsky Record Russian river discharge in 2007 and the limits of analysis A I Shiklomanov and R B Lammers Paleoclimatic reconstructions for the south of Valdai Hills (European Russia) as paleo-analogs of possible regional vegetation changes under global warming E Novenko, A Olchev, O Desherevskaya and I Zuganova Diagnosis of the record discharge of Arctic-draining Eurasian rivers in 2007 Michael A Rawlins, Mark C Serreze, Ronny Schroeder, Xiangdong Zhang and Kyle C McDonald Studies of the cryosphere in Northern Eurasia Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements Reginald R Muskett and Vladimir E Romanovsky Changes in snow cover over Northern Eurasia in the last few decades O N Bulygina, V N Razuvaev and N N Korshunova Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Dmitry Laptev Strait D Nicolsky and N Shakhova Snow cover basal ice layer changes over Northern Eurasia since 1966 Olga N Bulygina, Pavel Ya Groisman, Vyacheslav N Razuvaev and Vladimir F Radionov Snow cover and permafrost evolution in Siberia as simulated by the MGO regional climate model in the 20th and 21st centuries I M Shkolnik, E D Nadyozhina, T V Pavlova, E K Molkentin and A A Semioshina Studies of the biosphere in Northern Eurasia The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites A Bartsch, H Balzter and C George Change and persistence in land surface phenologies of the Don and Dnieper river basins V Kovalskyy and G M Henebry Effects of climatic changes on carbon dioxide and water vapor fluxes in boreal forest ecosystems of European part of Russia A Olchev, E Novenko, O Desherevskaya, K Krasnorutskaya and J Kurbatova The effects of cli

Groisman, Pavel; Soja, Amber J.