Science.gov

Sample records for solar activity influences

  1. Influence of solar activity on climate change

    NASA Astrophysics Data System (ADS)

    Kirichenko, Kirill; Kovalenko, Vladimir

    The questions of primary importance for understanding the nature of climate changes in the XX century and main physical processes responsible for these changes are discussed. A physical model of the influence of solar activity on climate characteristics is presented. A key concept of this model is the influence of heliogeophysical disturbances on the Earth's climate system parameters controlling the long-wave radiation flux going out into space in high-latitude regions. A change in the Earth's radiation balance of high-latitude regions induces restructuring of the tropospheric thermobaric field, changes in the meridional temperature gradient responsible for meridional heat transfer. This causes changes in the heat content of the Earth's climate system and global climate. We present and discuss results of analysis of regularities and peculiarities of tropospheric and sea surface temperature (SST) responses both to separate heliogeophysical disturbances and to long-term changes of solar and geomagnetic activity. It is established that the climatic response in the tropospheric and sea surface temperature to the effect of solar and geomagnetic activity is characterised by a significant space-time irregularity and is local. A distinguishing feature of these distributions is the presence of regions of both positive and negative correlations. The exception is the epoch (1910-1940) when the SST response to geomagnetic activity was positive in virtually all regions, i. e. was global. This epoch coincides with the longest period of increase in geomagnetic activity during the period considered at the end of which annual averages of geomagnetic activity exceeded maximum values at the beginning of the epoch. Key words: climate, ocean, troposphere, solar activity.

  2. Influence of solar activity on Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    The influx of solar energy to different latitudes while Jupiter's orbital motion around the Sun varies significantly. This leads to a change in the optical and physical characteristics of its atmosphere. Analysis of the data for 1850-1991 on determination of the integral magnitude Mj Jupiter in the V filter, and a comparison with the changes of the Wolf numbers W, characterizing the variations of solar activity (SA) - showed that the change of Mj in maxima of the SA - has minima for odd, and maximums - for the even of SA cycles. That is, changing of the Jupiter brightness in visible light is much evident 22.3-year magnetic cycle, and not just about the 11.1-year cycle of solar activity. Analysis of the obtained in 1960-2015 data on the relative distribution of brightness along the central meridian of Jupiter, for which we calculated the ratio of the brightness Aj of northern to the southern part of the tropical and temperate latitudinal zones, allowed to approximate the change of Aj by sinusoid with a period of 11.91±0.07 earth years. Comparison of time variation of Aj from changes in the index of SA R, and the movement of the planet in its orbit - indicates the delay of response of the visible cloud layer in the atmosphere of the Sun's exposure mode for 6 years. This value coincides with the radiative relaxation of the hydrogen-helium atmosphere

  3. No evidence for planetary influence on solar activity

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Schüssler, M.

    2013-09-01

    Context. Recently, Abreu et al. (2012, A&A. 548, A88) proposed a long-term modulation of solar activity through tidal effects exerted by the planets. This claim is based upon a comparison of (pseudo-)periodicities derived from records of cosmogenic isotopes with those arising from planetary torques on an ellipsoidally deformed Sun. Aims: We examined the statistical significance of the reported similarity of the periods. Methods: The tests carried out by Abreu et al. were repeated with artificial records of solar activity in the form of white or red noise. The tests were corrected for errors in the noise definition as well as in the apodisation and filtering of the random series. Results: The corrected tests provide probabilities for chance coincidence that are higher than those claimed by Abreu et al. by about 3 and 8 orders of magnitude for white and red noise, respectively. For an unbiased choice of the width of the frequency bins used for the test (a constant multiple of the frequency resolution) the probabilities increase by another two orders of magnitude to 7.5% for red noise and 22% for white noise. Conclusions: The apparent agreement between the periodicities in records of cosmogenic isotopes as proxies for solar activity and planetary torques is statistically insignificant. There is no evidence for a planetary influence on solar activity.

  4. How Large Scales Flows May Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun's magnetic activity cycle and play important roles in shaping the Sun's magnetic field. Differential rotation amplifies the magnetic field through its shearing action and converts poloidal field into toroidal field. Poleward meridional flow near the surface carries magnetic flux that reverses the magnetic poles at about the time of solar maximum. The deeper, equatorward meridional flow can carry magnetic flux back toward the lower latitudes where it erupts through the surface to form tilted active regions that convert toroidal fields into oppositely directed poloidal fields. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun's rotation on convection produce velocity correlations that can maintain both the differential rotation and the meridional circulation. These convective motions can also influence solar activity directly by shaping the magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  5. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  6. Physical Model of Solar Activity Influence on Climate Characteristics of Troposphere.

    NASA Astrophysics Data System (ADS)

    Molodykh, S. I.; Zherebtsov, G. A.; Kovalenko, V. A.

    2009-10-01

    A new model of solar activity influence on the parameters of the terrestrial climate system is discussed. The main points of the model of solar activity effect on the terrestrial climate system are presented. The key conception of this model is the influence of heliogeophysical disturbances on the terrestrial climate system parameters controlling the energy flux going from the Earth to the space in polar regions. The model is based on the physical mechanism of the influence of heliogeophysical factors on climate characteristics and atmospheric circulation in high-latitude troposphere through atmospheric electricity. According to this model, the growth of solar activity results in the decrease of radiative cooling in high-latitude regions, increase of temperature of lower and middle troposphere, reorganization of the thermobaric field, decrease of the mean meridional gradient of temperature between polar and equatorial regions, which determine the meridional transportation of heat. The decrease of heat flow-out from low-latitude regions results in temperature increase in lower and middle latitude regions, and increase of heat content of the ocean and climate system. Some observational data are presented that confirm the proposed model.

  7. No evidence for planetary influence on solar activity 330 000 years ago

    NASA Astrophysics Data System (ADS)

    Cauquoin, A.; Raisbeck, G. M.; Jouzel, J.; Bard, E.

    2014-01-01

    Context. Abreu et al. (2012, A&A. 548, A88) have recently compared the periodicities in a 14C - 10Be proxy record of solar variability during the Holocene and found a strong similarity with the periodicities predicted on the basis of a model of the time-dependent torque exerted by the planets on the sun's tachocline. If verified, this effect would represent a dramatic advance not only in the basic understanding of the Sun's variable activity, but also in the potential influence of this variability on the Earth's climate. Cameron and Schussler (2013, A&A. 557, A83) have seriously criticized the statistical treatment used by Abreu et al. to test the significance of the coincidences between the periodicities of their model with the Holocene proxy record. Aims: If the Abreu et al. hypothesis is correct, it should be possible to find the same periodicities in the records of cosmogenic nuclides at earlier times. Methods: We present here a high-resolution record of 10Be in the EPICA Dome C (EDC) ice core from Antarctica during the Marine Interglacial Stage 9.3 (MIS 9.3), 325-336 kyr ago, and investigate its spectral properties. Results: We find very limited similarity with the periodicities seen in the proxy record of solar variability during the Holocene, or with that of the model of Abreu et al. Conclusions: We find no support for the hypothesis of a planetary influence on solar activity, and raise the question of whether the centennial periodicities of solar activity observed during the Holocene are representative of solar activity variability in general.

  8. Solar flare acceleration of solar wind - Influence of active region magnetic field

    NASA Technical Reports Server (NTRS)

    Lundstedt, H.; Wilcox, J. M.; Scherrer, P. H.

    1981-01-01

    The direction of the photospheric magnetic field at the site of a solar flare is a good predictor of whether the flare will accelerate solar wind plasma. If the field has a southward component, high-speed solar wind plasma is usually observed near the earth about 4 days later. If the field has a northward component, such high-speed solar wind is almost never observed. Southward-field flares may then be expected to have much larger terrestrial effects than northward flares.

  9. Influence of solar activity on fibrinolysis and fibrinogenolysis. [statistical correlation between solar flare and blood coagulation indices

    NASA Technical Reports Server (NTRS)

    Marchenko, V. I.

    1974-01-01

    During periods of high solar activity fibrinolysis and fibrinogenolysis are increased. A direct correlative relationship is established between the indices of fibrinolysis, fibrinogenolysis and solar flares which were recorded two days before the blood was collected for analysis.

  10. What is the solar influence on climate? Overview of activities during CAWSES-II

    NASA Astrophysics Data System (ADS)

    Seppälä, Annika; Matthes, Katja; Randall, Cora E.; Mironova, Irina A.

    2014-12-01

    This paper presents an overview of the main advances in the Key Questions identified by the Task Group `What is the Solar Influence on Climate' by the SCOSTEP CAWSES-II science program. We go through different aspects of solar forcing from solar irradiance, including total solar irradiance (TSI) and solar spectral irradiance (SSI), to energetic particle forcing, including energetic particle precipitation (EPP) and cosmic rays (CR). Besides discussing the main advances in the timeframe 2009 to 2013, we also illustrate the proposed mechanism for climate variability for the different solar variability sources listed above. The key questions are as follows: What is the importance of spectral variations to solar influences on climate? What is the effect of energetic particle forcing on the whole atmosphere and what are the implications for climate? How well do models reproduce and predict solar irradiance and energetic particle influences on the atmosphere and climate?

  11. The influence of nonstationarity of the solar activity and general solar field on modulation of cosmic rays

    NASA Technical Reports Server (NTRS)

    Zusmanovich, A. G.; Kryakunova, O. N.; Churunova, L. F.; Shvartsman, Y. E.

    1985-01-01

    A numerical model of the propagation of galactic cosmic rays in interplanetary space was constructed for the case when the modulation depth determined by the level of solar activity changed in time. Also the contribution of particle drift in the regular field was calculated, and the agreement with experimental data concerning the ratio of protons and electrons in two solar activity minima is shown.

  12. Solar activity influence on climatic variations of stratosphere and mesosphere in mid-latitudes

    NASA Technical Reports Server (NTRS)

    Taubenheim, J.; Entzian, G.; Voncossart, G.

    1989-01-01

    The direct modulation of temperature of the mid-latitude mesosphere by the solar-cycle EUV variation, which leads to greater heat input at higher solar activity, is well established. Middle atmosphere temperature modulation by the solar cycle is independently confirmed by the variation of reflection heights of low frequency radio waves in the lower ionosphere, which are regularly monitored over about 30 years. As explained elsewhere in detail, these reflection heights depend on the geometric altitude of a certain isobaric surface (near 80 k), and on the solar ionizing Lyman-alpha radiation flux. Knowing the solar cycle variation of Lyman-alpha how much the measured reflection heights would be lowered with the transition from solar minimum to maximum can be calculated, if the vertical baric structure of the neutral atmosphere would remain unchanged. An discrepancy between expected and observed height change must be explained by an uplifting of the isobaric level from solar minimum to maximum, caused by the temperature rise in the mesosphere. By integrating the solar cycle temperature changes over the height region of the middle atmosphere, and assuming that the lower boundary (tropopause) has no solar cycle variation, the magnitude of this uplifting can be estimated. It is given for the Lidar-derived and for the rocket-measured temperature variations. Comparison suggests that the real amplitude of the solar cycle temperature variation in the mesosphere is underestimated when using the rocket data, but probably overestimated with the Lidar data.

  13. Solar influences on global change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Monitoring of the Sun and the Earth has yielded new knowledge essential to this debate. There is now no doubt that the total radiative energy from the Sun that heats the Earth's surface changes over decadal time scales as a consequence of solar activity. Observations indicate as well that changes in ultraviolet radiation and energetic particles from the Sun, also connected with the solar activity, modulate the layer of ozone that protects the biosphere from the solar ultraviolet radiation. This report reassesses solar influences on global change in the light of this new knowledge of solar and atmospheric variability. Moreover, the report considers climate change to be encompassed within the broader concept of global change; thus the biosphere is recognized to be part of a larger, coupled Earth system. Implementing a program to continuously monitor solar irradiance over the next several decades will provide the opportunity to estimate solar influences on global change, assuming continued maintenance of observations of climate and other potential forcing mechanisms. In the lower atmosphere, an increase in solar radiation is expected to cause global warming. In the stratosphere, however, the two effects produce temperature changes of opposite sign. A monitoring program that would augment long term observations of tropospheric parameters with similar observations of stratospheric parameters could separate these diverse climate perturbations and perhaps isolate a greenhouse footprint of climate change. Monitoring global change in the troposphere is a key element of all facets of the United States Global Change Research Program (USGCRP), not just of the study of solar influences on global change. The need for monitoring the stratosphere is also important for global change research in its own right because of the stratospheric ozone layer.

  14. Solar Influence on Future Climate

    NASA Astrophysics Data System (ADS)

    Arsenovic, Pavle; Stenke, Andrea; Rozanov, Eugene; Peter, Thomas

    2015-04-01

    Global warming is one of the main threats to mankind. There is growing evidence that anthropogenic greenhouse gases have become the dominant factor, however natural factors such as solar variability cannot be neglected. Sun is a variable star; its activity varies in regular 11-years solar cycles. Longer periods of decreased solar activity are called Grand Solar Minima, which have stronger impact on terrestrial climate. Another natural factor related with solar activity are energetic particles. They can ionize neutral molecules in upper atmosphere and produce NOx and HOx which deplete ozone. We investigate the effect of proposed Grand Solar Minimum in 21st and 22nd century on terrestrial climate and ozone layer. The simulations are performed with different solar forcing scenarios for period of 200 years (2000-2200) using global chemistry-climate model coupled with ocean model (SOCOL-MPIOM). We also deal with problem of representation of middle range energy electrons (30-300 keV) in the model and investigation of their influence on climate.

  15. Influence of solar activity on red sprites and on vertical coupling in the system stratosphere-mesosphere

    NASA Astrophysics Data System (ADS)

    Tonev, Peter T.; Velinov, Peter I. Y.

    2016-04-01

    The positive downward propagating streamers of sprites are considered as factors of vertical coupling in middle atmosphere. Sprites are initiated in the lower ionosphere (at 75-85 km) and their streamers propagate in the mesosphere and upper stratosphere where the solar activity (SA) can have significant influence. The problem considered by us is whether sprites are sensitive to the solar activity. Different possible ways of such influence are considered. They concern: i) relations between solar activity and the occurrence of sprite-producing lightning discharges; ii) sensitivity of streamer inception to solar variability; iii) 11-year variations of conductivity in the night-time mesosphere and stratosphere during solar cycle due to modulation of the galactic cosmic ray flux by solar activity, which can lead to changes in sprite-driving electric fields, and therefore, in sprites. Accounting for the effects of sprites on minor constituents (in particular NOx), a link between SA level and the che^mical balance in the mesosphere and stratosphere is considered, as well. With respect to this we study by modeling the response of the sprite-driving electric fields to SA variations with the account to a complex of parameters of sprite-producing lightning discharges and atmospheric conductivity. The lightning-driven electric fields needed for streamer propagation show minor dependence on conductivity changes caused by variations in cosmic ray flux during a solar cycle. The long-term changes in sprite's lower boundary by different parameters of lightning discharges and atmospheric conductivity parameters are estimated. During solar minimum, of the vertical dimension of sprites increases by up to 1.5 km than those during solar maximum. We estimate also the effect of the reduction of conductivity in thunderclouds with respect to the adjacent air. Reduction of cloud conductivity by a factor of 5-10 leads to larger vertical dimension of sprites due to descending of the sprite

  16. What are the evidences of solar activity influence on coronary heart disease?

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Yury; Breus, Tamara

    Researches of last two decades have shown that the cardiovascular system represents the most probable target for influence of helio - and geomagnetic activity. Both cardiovascular system and blood connect very closely: one system cannot exist without another. For the same reason the effects perceived by one system, are easily transferred to another. Laboratory tests as blood coagulation, platelet aggregation, and capillary blood velocity performed in our hospital in patients suffering from coronary heart disease (CHD) revealed a high their dependence on a level of geomagnetic activity (Gurfinkel et al., 1995, 1998). Later Gmitrov and Ohkubo (2002) in experiments on animals also found a significant negative correlation between geomagnetic field disturbances and capillary blood velocity. The analyzing data collected by the Moscow ambulance services covering more then one million observations over three years, cleaned up by seasonal effects of meteorological and social causes, showed that the number of cases of myocardial infarction increased during geomagnetic storms (Breus et al., 1995). During 14 years we collected more than 25000 cases of acute myocardial infarction and brain stroke at seven medical hospitals located in Russia, China and some other countries. We used only cases with established date of acute attack of diseases. Undated cases were excluded from the analysis. Average numbers of patients on geomagnetic active days and days with quiet geomagnetic condition were compared. It was shown statistically that during geomagnetic disturbances the frequency of myocardial infarction and brain stroke cases increased on the average by a factor of two in comparison with quiet geomagnetic conditions. These results are close to results obtained by (Stoupel, 1999), for patients suffering with acute cardiological pathology. Our recent study (with L.Parfeonova) revealed the relation between heart ventricular ectopic activity (VEA) and geomagnetic conditions in patients

  17. Seasons on Saturn. II. Influence of solar activity on variation of methane absorption

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2015-10-01

    Methane and ammonia in the atmosphere of Saturn are in the form of impurities at the level of less than tenths of a percentage. They take part in photochemical processes, the main products of which are hydrocarbons and ammonia NH3. Polyacetylenes absorb sunlight almost to 400 nm, and hydrocarbons <180 nm. Therefore, the solar activity cycle, the slope of the equator to the plane of the orbit, the orbital motion and the presence of the rings induce change in composition of the upper atmosphere. Radiation constants in the atmosphere depend on the physical and chemical conditions, decreasing from ~10 years at the visible clouds level, to months in tropopause, and days in stratosphere. The observed seasonal effects may be associated also with condensation and convection, and the dynamic time scale may be only tens of hours. The data analysis on the methane absorption distribution over the disk of Saturn for 1964-2012 showed a significant seasonal changes in the levels of visible clouds and above clouds haze. Changes of methane absorption along the meridian in the equinox 1966 and 1995, had the opposite course to the results in equinox 1980. But the expected differences in the change of methane absorption at the equinox 2009, similar to 1980, did not happen. Although all the physical and orbital characteristics of Saturn at equinoxes in these moments repeated, but the response to them were received various. A few years before the equinox in 1966, 1980 and 1995, the number of R, characterizing solar activity, varied from 40 to 180. Before equinox 2009 the Sun has minimal activity and the R value was practically zero. According to observations at the time of equinox 2009, convection in the Saturn's atmosphere stayed at a minimal level. After exiting of rings shadows in winter northern hemisphere deep cloud layer was "frozen" at the same low level at absence of active processes on the Sun. This allowed easily to register a thick layer of methane and ammonia gas. So how

  18. Solar Activity and Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2006-01-01

    Our Sun is a dynamic, ever-changing star. In general, its atmosphere displays major variation on an 11-year cycle. Throughout the cycle, the atmosphere occasionally exhibits large, sudden outbursts of energy. These "solar eruptions" manifest themselves in the form of solar flares, filament eruptions, coronal mass ejections (CMEs), and energetic particle releases. They are of high interest to scientists both because they represent fundamental processes that occur in various astrophysical context, and because, if directed toward Earth, they can disrupt Earth-based systems and satellites. Research over the last few decades has shown that the source of the eruptions is localized regions of energy-storing magnetic field on the Sun that become destabilized, leading to a release of the stored energy. Solar scientists have (probably) unraveled the basic outline of what happens in these eruptions, but many details are still not understood. In recent years we have been studying what triggers these magnetic eruptions, using ground-based and satellite-based solar observations in combination with predictions from various theoretical models. We will present an overview of solar activity and solar eruptions, give results from some of our own research, and discuss questions that remain to be explored.

  19. Solar Wind-Magnetosphere Coupling Influences on Pseudo-Breakup Activity

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Brittnacher, M.; Parks, G. K.; Germany, G. A.; Spann, J. F.

    1998-01-01

    Pseudo-breakups are brief, localized aurora[ arc brightening, which do not lead to a global expansion, are historically observed during the growth phase of substorms. Previous studies have demonstrated that phenomenologically there is very little difference between substorm onsets and pseudo-breakups except for the degree of localization and the absence of a global expansion phase. A key open question is what physical mechanism prevents a pseudo-breakup form expanding globally. Using Polar Ultraviolet Imager (UVI) images, we identify periods of pseudo-breakup activity. Foe the data analyzed we find that most pseudo-breakups occur near local midnight, between magnetic local times of 21 and 03, at magnetic latitudes near 70 degrees, through this value may change by several degrees. While often discussed in the context of substorm growth phase events, pseudo-breakups are also shown to occur during prolonged relatively inactive periods. These quiet time pseudo-breakups can occur over a period of several hours without the development of a significant substorm for at least an hour after pseudo-breakup activity stops. In an attempt to understand the cause of quiet time pseudo-breakups, we compute the epsilon parameter as a measure of the efficiency of solar wind-magnetosphere coupling. It is noted that quiet time pseudo-breakups occur typically when epsilon is low; less than about 50 GW. We suggest that quiet time pseudo-breakups are driven by relatively small amounts of energy transferred to the magnetosphere by the solar wind insufficient to initiate a substorm expansion onset.

  20. North-South differences in the Earth's high-latitude upper atmosphere dynamics: Influence of solar activity and seasonal variations

    NASA Astrophysics Data System (ADS)

    Förster, Matthias; Cnossen, Ingrid

    2014-05-01

    Recent observations have shown that the upper thermospheric/ionospheric response to solar wind and IMF dependent drivers of the magnetosphere-ionosphere-thermosphere (M-I-T) system can be very dissimilar in the Northern and Southern Hemisphere. We present statistical studies of the high-latitude upper thermospheric neutral wind circulation patterns obtained from almost a decade of measurements with an accelerometer on board the CHAMP spacecraft. The influence of the solar activity and the dependence on seasonal variations is analysed with respect to average cross-polar wind velocities and high-latitude neutral wind vorticity values. Using the Coupled Magnetosphere-Ionosphere-Thermosphere (CMIT) model, on the other hand, we simulated representative equinox as well as solstice intervals for low and high solar activity conditions. For the simulations, we used on the one hand side symmetric dipole and on the other realistic (IGRF) geomagnetic field configurations. The comparative survey of both the numerical simulation and the statistical observation results show some prominent asymmetries between the two hemispheres, which are caused by the different geographic-geomagnetic offsets and/or the different patterns of geomagnetic flux densities. The average cross-polar neutral wind velocities show a distinct seasonal variation with minimum values during the respective hemispheric winter solstice. The neutral wind vorticity values are generally larger in the Northern than the Southern Hemisphere, except for northern winter solstice conditions. The hemispheric differences become larger for higher solar activity and show a semidiurnal variation. In contrast, the spatial variance of the upper thermospheric neutral wind is usually considerably larger in the polar region of the Southern Hemisphere compared with the Northern, and the hemispheric difference shows a strong semidiurnal variation.

  1. Solar activity influences on atmospheric electricity and on some structures in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Reiter, Reinhold

    1989-01-01

    Only processes in the troposphere and the lower stratosphere are reviewed. General aspects of global atmospheric electricity are summarized in Chapter 3 of NCR (1986); Volland (1984) has outlined the overall problems of atmospheric electrodynamics; and Roble and Hays (1982) published a summary of solar effects on the global circuit. The solar variability and its atmospheric effects (overview by Donelly et al, 1987) and the solar-planetary relationships (survey by James et al. 1983) are so extremely complex that only particular results and selected papers of direct relevance or historical importance are compiled herein.

  2. Investigating possible influence of solar activity on some reported seismic-induced ionospheric precursors via VLF wave propagation in Earth-ionosphere waveguide

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar; Sasmal, Sudipta; Ray, Suman

    2016-07-01

    The diurnal propagation characteristic of VLF radio signal have been widely used to study pre-seismic ionospheric anomalies, some of which are often reported to be associated with the event. On the other hand, Solar particle events and geomagnetic activity also drive changes in the magnetosphere, which modify ionospheric parameters through the Earth's magnetic field. There are also effects originating from planetary and tidal waves, thermospheric tides and stratospheric warming. Distinguishing or separating seismically induced ionospheric fluctuations from those of other origin remain vital and challenging. In this work, we investigated the influence of solar and geomagnetic origin on some reported 'seismic ionospheric precursors' before a few major earthquakes. We also investigated anomalies in VLF day-length signal during period of low solar and geomagnetic activity (in relation to seismic activity), to understand the occurrence of VLF anomaly that are unrelated to seismicity and solar activity.

  3. Activities for Teaching Solar Energy.

    ERIC Educational Resources Information Center

    Mason, Jack Lee; Cantrell, Joseph S.

    1980-01-01

    Plans and activities are suggested for teaching elementary children about solar energy. Directions are included for constructing a flat plate collector and a solar oven. Activities for a solar field day are given. (SA)

  4. Influence of solar activity on the development of calcareous nannofossils from a Middle Holocene costal paleo-ria (SW Portugal)

    NASA Astrophysics Data System (ADS)

    Hernández, Armand; Cachão, Mário; Trigo, Ricardo M.; Conceição Freitas, M.

    2015-04-01

    periodogram unveils only one significant periodicity (228-yrs). Phases with oceanic influence (downwelling) would be related to 450, 350 and 236-yrs frequencies and the phase with coastal influence (upwelling) would be linked to 228-yrs periodicity. These periodicities fit with previous solar activity reconstructions at millennial-to-centennial scale based on different proxies (Bond et al. 2001, Vaquero et al. 2002, Solanki et al. 2004), which, in turn, are conditioning the earth's climate system. Finally, performed time-frequency analyses on F1 and F2 scores show a higher activity of the 228-yrs periodicity during the whole studied period (spanning between 8.8k and 4.8k cal yr BP) with maximum values between 8k to 7k cal yr BP and 6k to 5k cal yr BP. By contrast, higher periodicities (450, 350 and 236-yrs) would be mainly confined to prior 7.5k cal yrs BP. These results highlight the possibility to use the calcareous nannofossils as indirect proxies of solar activity in cases of ultra-high resolution (centennial) sedimentary sequences. References Alday et al., Estuar Coast Shelf S, 66, 532 (2006). Bond et al., Science, 294, 2130 (2001). Solanki et al., Nature, 431, 1084 (2004). Vaquero et al., Geophys Res Lett, 29, 1997 (2002).

  5. Physics of solar activity

    NASA Technical Reports Server (NTRS)

    Sturrock, Peter A.

    1993-01-01

    The aim of the research activity was to increase our understanding of solar activity through data analysis, theoretical analysis, and computer modeling. Because the research subjects were diverse and many researchers were supported by this grant, a select few key areas of research are described in detail. Areas of research include: (1) energy storage and force-free magnetic field; (2) energy release and particle acceleration; (3) radiation by nonthermal electrons; (4) coronal loops; (5) flare classification; (6) longitude distributions of flares; (7) periodicities detected in the solar activity; (8) coronal heating and related problems; and (9) plasma processes.

  6. Influence of Solar Cycles on Earthquakes

    NASA Astrophysics Data System (ADS)

    Tavares, M.

    2011-12-01

    This research inspects possible influence of solar cycles on earthquakes through of statistical analyses. We also discussed the mechanism that would drive the occurrence of increasing of earthquakes during solar maxima. The study was based on worldwide earthquakes events during approximately four hundred years (1600-2010). The increase of earthquakes events followed the Maxima of Solar cycle, and also depends on the tectonic plate location. From 1600 until 1645 events increased during the Maxima in some of the tectonic plates as Pacific, Arabian and South America. The earthquakes analyzed during two grand solar minima, the Maunder (1645-1720) and the Dalton (1790-1820) showed a decrease in the number of earthquakes and the solar activity. It was observed during these minima a significant number of events at specific geological features. After the last minima (Dalton) the earthquakes pattern increased with solar maxima. The calculations showed that events increasing during solar maxima most in the Pacific, South America or Arabian until 1900. Since there were few records during these three centuries we needed additional analysis on modern data. We took the last four solar cycles events (1950-2010) and made similar calculations. The results agreed with the former calculations. It might be that the mechanism for the Sun-Earth connection relies on the solar wind speed. In both records (1600-1900) and (1950-2010) the results showed a significant increase in earthquakes events in some of the tectonic plates linked to solar maxima. The Solar wind energy striking the Earth's magnetosphere affects the entire environment because the pressure on the region increases and the magnetosphere shrinks sometimes four Earth's radii. This sudden compression causes earthquakes in specific plates. During the times of solar minima the pressure from the solar wind on the earth decreases, then the magnetosphere expands and earthquakes happen in a different pattern according to the

  7. Solar cell activation system

    SciTech Connect

    Apelian, L.

    1983-07-05

    A system for activating solar cells involves the use of phosphorescent paint, the light from which is amplified by a thin magnifying lens and used to activate solar cells. In a typical system, a member painted with phosphorescent paint is mounted adjacent a thin magnifying lens which focuses the light on a predetermined array of sensitive cells such as selenium, cadmium or silicon, mounted on a plastic board. A one-sided mirror is mounted adjacent the cells to reflect the light back onto said cells for purposes of further intensification. The cells may be coupled to rechargeable batteries or used to directly power a small radio or watch.

  8. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2012-04-01

    Commission 10 of the International Astronomical Union has more than 650 members who study a wide range of activity phenomena produced by our nearest star, the Sun. Solar activity is intrinsically related to solar magnetic fields and encompasses events from the smallest energy releases (nano- or even picoflares) to the largest eruptions in the Solar System, coronal mass ejections (CMEs), which propagate into the Heliosphere reaching the Earth and beyond. Solar activity is manifested in the appearance of sunspot groups or active regions, which are the principal sources of activity phenomena from the emergence of their magnetic flux through their dispersion and decay. The period 2008-2009 saw an unanticipated extended solar cycle minimum and unprecedentedly weak polar-cap and heliospheric field. Associated with that was the 2009 historical maximum in galactic cosmic rays flux since measurements begun in the middle of the 20th Century. Since then Cycle 24 has re-started solar activity producing some spectacular eruptions observed with a fleet of spacecraft and ground-based facilities. In the last triennium major advances in our knowledge and understanding of solar activity were due to continuing success of space missions as SOHO, Hinode, RHESSI and the twin STEREO spacecraft, further enriched by the breathtaking images of the solar atmosphere produced by the Solar Dynamic Observatory (SDO) launched on 11 February 2010 in the framework of NASA's Living with a Star program. In August 2012, at the time of the IAU General Assembly in Beijing when the mandate of this Commission ends, we will be in the unique position to have for the first time a full 3-D view of the Sun and solar activity phenomena provided by the twin STEREO missions about 120 degrees behind and ahead of Earth and other spacecraft around the Earth and ground-based observatories. These new observational insights are continuously posing new questions, inspiring and advancing theoretical analysis and

  9. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;…

  10. Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Klimchuk, James A.; van Driel-Gesztelyi, Lidia; Schrijver, Carolus J.; Melrose, Donald B.; Fletcher, Lyndsay; Gopalswamy, Natchimuthuk; Harrison, Richard A.; Mandrini, Cristina H.; Peter, Hardi; Tsuneta, Saku; Vršnak, Bojan; Wang, Jing-Xiu

    Commission 10 deals with solar activity in all of its forms, ranging from the smallest nanoflares to the largest coronal mass ejections. This report reviews scientific progress over the roughly two-year period ending in the middle of 2008. This has been an exciting time in solar physics, highlighted by the launches of the Hinode and STEREO missions late in 2006. The report is reasonably comprehensive, though it is far from exhaustive. Limited space prevents the inclusion of many significant results. The report is divided into the following sections: Photosphere and chromosphere; Transition region; Corona and coronal heating; Coronal jets; flares; Coronal mass ejection initiation; Global coronal waves and shocks; Coronal dimming; The link between low coronal CME signatures and magnetic clouds; Coronal mass ejections in the heliosphere; and Coronal mass ejections and space weather. Primary authorship is indicated at the beginning of each section.

  11. Activation of solar flares

    SciTech Connect

    Cargill, P.J.; Migliuolo, S.; Hood, A.W.

    1984-11-01

    The physics of the activation of two-ribbon solar flares via the MHD instability of coronal arcades is presented. The destabilization of a preflare magnetic field is necessary for a rapid energy release, characteristic of the impulsive phase of the flare, to occur. The stability of a number of configurations are examined, and the physical consequences and relative importance of varying pressure profiles and different sets of boundary conditions (involving field-line tying) are discussed. Instability modes, driven unstable by pressure gradients, are candidates for instability. Shearless vs. sheared equilibria are also discussed. (ESA)

  12. Influence of solar activity upon light curves of comets P/Halley (1986 3) and P/Churyumov-Gerasimenko (1982 8)

    NASA Technical Reports Server (NTRS)

    Churyumov, Klim I.; Filonenko, V. S.

    1992-01-01

    It is shown that the comet P/Halley's (1986 3) total magnitudes correlate with changes in the solar activity indices and the solar wind velocity. A statistically reliable correlation between the outbursts of brightness and magnitude variations of the short-period comet Churyumov-Gerasimenko (1982 8) and the level of the solar activity has been discovered.

  13. Moisture variability in the Danube lower basin: an analysis based on the Palmer drought indices and the solar/geomagnetic activity influence

    NASA Astrophysics Data System (ADS)

    Mares, Ileana; Dobrica, Venera; Demetrescu, Crisan; Mares, Constantin

    2014-05-01

    reveal quasi-periodicities of 7-8 years found in the PC1-TPP series also in the Kp. Regarding solar activity, expressed by the Wolf numbers, its influence is significant only for the spring season, highlighted by a cycle of approximate of 11-year in the principal component (PC1) of the drought estimated by temperatures and precipitation (TPP) in Danube lower basin. These preliminary results will be completed with new investigations for the entire Danube basin, considering longer time series and a discriminate analysis by taking into consideration the occurrence of the maxima and minima in the solar/ geomagnetic activity.

  14. Influences of solar wind parameters and geomagnetic activity on the tail lobe magnetic field: A statistical study

    SciTech Connect

    Nakai, H. ); Kamide, Y. ); Russell, C.T. )

    1991-04-01

    The size and magnetic field strength of the tail lobe at the downstream distance of 10 to 22.6 R{sub E} are examined statistically by utilizing data from the magnetometer on board the ISEE 1 satellite. The probability that the satellite encounters the lobe region is mapped on the tail cross sections, the Y-Z plane. It is found that the magnetotail lobe expands in association with increasing auroral electrojet activity. This expansion is particularly evident at the dawn and dusk flanks of the magnetotail, while the lobe region seems not to expand appreciably near the aberrated X axis. The lobe field strength, B{sub L}, is found to be represented as B{sub L}(nT) = 1.03 {times} 10{sup 3} R{sup {minus}1.20}, where R denotes the geocentric distance in Earth radii. Multiple regression analyses reveal that the lobe field strength principally depends on the dynamic pressure (P{sub D}) and static pressure (P{sub S}) of the solar wind as well as on the IMF B{sub Z}. It is also shown that the flaring angle of the tail lobe, {theta}, is represented as sin{sup 2}{theta} = 1.97 {times} 10{sup {minus}5} P{sub D}{sup {minus}0.47}{vert bar} AL {vert bar}{sup 0.11}, where AL denotes the auroral electrojet AL index.

  15. Solar activity secular cycles

    NASA Astrophysics Data System (ADS)

    Kramynin, A. P.; Mordvinov, A. V.

    2013-12-01

    Long-term variations in solar activity secular cycles have been studied using a method for the expansion of reconstructed sunspot number series Sn( t) for 11400 years in terms of natural orthogonal functions. It has been established that three expansion components describe more than 98% of all Sn( t) variations. In this case, the contribution of the first expansion component is about 92%. The averaged form of the 88year secular cycle has been determined based on the form of the first expansion coordinate function. The quasi-periodicities modulating the secular cycle have been revealed based on the time function conjugate to the first function. The quasi-periodicities modulating the secular cycle coincide with those observed in the Sn( t) series spectrum. A change in the secular cycle form and the time variations in this form are described by the second and third expansion components, the contributions of which are about 4 and 2%, respectively. The variations in the steepness of the secular cycle branches are more pronounced in the 200-year cycle, and the secular cycle amplitude varies more evidently in the 2300-year cycle.

  16. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1975-01-01

    The attempts during the past century to establish a connection between solar activity and the weather are discussed; some critical remarks about the quality of much of the literature in this field are given. Several recent investigations are summarized. Use of the solar/interplanetary magnetic sector structure in future investigations is suggested to add an element of cohesiveness and interaction to these investigations.

  17. Solar activity and myocardial infarction.

    PubMed

    Szczeklik, E; Mergentaler, J; Kotlarek-Haus, S; Kuliszkiewicz-Janus, M; Kucharczyk, J; Janus, W

    1983-01-01

    The correlation between the incidence of myocardial infarction, sudden cardiac death, the solar activity and geomagnetism in the period 1969-1976 was studied, basing on Wrocław hospitals material registered according to WHO standards; sudden death was assumed when a person died within 24 hours after the onset of the disease. The highest number of infarctions and sudden deaths was detected for 1975, which coincided with the lowest solar activity, and the lowest one for the years 1969-1970 coinciding with the highest solar activity. Such an inverse, statistically significant correlation was not found to exist between the studied biological phenomena and geomagnetism. PMID:6851574

  18. General overview of the solar activity effects on the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Danilov, A. D.

    1989-01-01

    Solar activity influences the ionospheric D region. That influence manifests itself both in the form of various solar induced disturbances and in the form of the D region dependence on solar activity parameters (UV-flux, interplanetary magnetic field, solar wind etc.) in quiet conditions. Relationship between solar activity and meteorological control of the D region behavior is considered in detail and examples of strong variations of aeronomical parameters due to solar or meteorological events are given.

  19. Solar activity over different timescales

    NASA Astrophysics Data System (ADS)

    Obridko, Vladimir; Nagovitsyn, Yuri

    The report deals with the “General History of the Sun” (multi-scale description of the long-term behavior of solar activity): the possibility of reconstruction. Time scales: • 100-150 years - the Solar Service. • 400 - instrumental observations. • 1000-2000 years - indirect data (polar auroras, sunspots seen with the naked eye). • Over-millennial scale (Holocene) -14С (10Be) Overview and comparison of data sets. General approaches to the problem of reconstruction of solar activity indices on a large timescale. North-South asymmetry of the sunspot formation activity. 200-year cycle over the “evolution timescales”.The relative contribution of the large-scale and low-latitude. components of the solar magnetic field to the general geomagnetic activity. “Large-scale” and low-latitude sources of geomagnetic disturbances.

  20. An influence of solar activity on latitudinal distribution of atmospheric ozone and temperature in 2-D radiative-photochemical model

    NASA Technical Reports Server (NTRS)

    Dyominov, I. G.

    1989-01-01

    On the basis of the 2-D radiative-photochemical model of the ozone layer at heights 0 to 60 km in the Northern Hemisphere there are revealed and analyzed in detail the characteristic features of the season-altitude-latitude variations of ozone and temperature due to changes of the solar flux during the 11 year cycle, electron and proton precipitations.

  1. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    NASA Astrophysics Data System (ADS)

    Mcintosh, Scott; Leamon, Robert

    2015-07-01

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish) year solar activity cycle.

  2. Solar collector manufacturing activity, 1988

    NASA Astrophysics Data System (ADS)

    1989-11-01

    This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy in cooperation with the Office of Conservation and Renewable Energy. The report presents data on producer shipments and end uses obtained from manufacturers and importers of solar thermal collectors and photovoltaic modules. It provides annual data necessary for the Department of Energy to execute its responsibility to: (1) monitor activities and trends in the solar collector manufacturing industry, (2) prepare the national energy strategy, and (3) provide information on the size and status of the industry to interested groups such as the U.S. Congress, government agencies, the Solar Energy Research institute, solar energy specialists, manufacturers, and the general public.

  3. [Influences of solar and geomagnetic activity on health status of people with various nosological forms of diseases].

    PubMed

    Gadzhiev, G D; Rakhmatulin, R A

    2013-01-01

    Statistical analysis of correlation between heliogeophysical factors and a symptom of the various forms of diseases (based on statistical data on disease of the personnel of Irkutsk Scientific Centre, RAS) has been studied. It is shown that geomagnetic storms influence vegetative regulation of a cardiac rhythm and vascular tone. The most serious consequences of such influence can mainly be observed in the persons suffering from diseases of the cardiovascular system (consequences of myocardium attack, brain strokes, cardiac rhythm disorders); being in a condition of additional stress, mainly with vegetovascular and hypertensic crises; having mental diseases; and subject to aggravations of general diseases (chronic inflammatory diseases of gynecological, musculoskeletal, urinary excretory, bronchopulmonary systems, and systems of digestive organs). PMID:24455893

  4. Solar Energy Project, Activities: Biology.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of biology experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher information…

  5. The magnetic field structure in the active solar corona.

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1971-01-01

    The structure of the magnetic field of the active solar corona is discussed with reference to optical and radio observations of the solar atmosphere. Eclipse observations provide evidence of fine scale structures in the solar atmosphere that appear to relate to the coronal magnetic field. The coronal magnetic field used for comparison is calculated from potential theory; the influence of solar activity upon the potential theory field is discussed with reference to observations of the Faraday rotation of a microwave signal from Pioneer 6 as it was occulted by the solar atmosphere. Evidence has been found suggesting the existence of expanding magnetic bottles located at 10 solar radii above flaring active regions. The dynamics of these events is discussed. It is further suggested that these magnetic bottles are an important component in the solar corona.

  6. Physical mechanisms of solar variability influence on weather and climate

    NASA Astrophysics Data System (ADS)

    Avakyan, Sergei

    2010-05-01

    Numerous researches into correlation of weather and climate characteristics with solar and geomagnetic activity confirm that such correlation does exist. However there is some uncertainty in interpretation of the Sun-weather-climate relations. The paper considers the main causes of this uncertainty which are as follows - the lack of permanent monitoring data on ionizing solar EUV/X-ray radiation including periods of flares; and also the data on electron fluxes of keV energy precipitating from radiation belts first of all during geomagnetic storms; - multiplicity of Sun-weather-climate links; - the lack of understanding what are the mechanisms of solar-geomagnetic activity (flares and storms) influence on weather and climate characteristics; By now mainly the research on galactic cosmic rays (GSR) including Forbush effects and solar cosmic rays (SCR) influences on atmosphere transparence characteristics and further on climate-weather characteristics have been carried out. The GCR flux increase causes the growth of low (usually optically thick) cloudness and therefore produces in generally cooling effect on the mean surface air temperature. The appearance of SCR causes the reduction of stratospheric and tropospheric transparence and produces also usually cooling effect However these events are rare and corresponding variations of fluxes energy are small. At the same time such strong and frequent manifestations of solar activity as flares and magnetic storms are not so far taken into account since it is not known what physical mechanisms could be responsible for energy transfer from solar flares and magnetic storms to the lower atmosphere. The paper describes a novel radio-optical mechanism responsible for the solar-terrestrial links which acts as a three-stage trigger and which could be useful for solving the problem "Sun- weather-climate". This physical mechanism is based on taking into account the excitation of Rydberg states of atoms and molecules in generation of

  7. Distant Futures of Solar Activity

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas

    1997-07-01

    We will explore possible future fates of solar magnetic activity through high-S/N ultraviolet spectra of the ancient Sun analog, Arcturus {K2 III}. The fundamental mechanisms that drive the hot {T>10^6 K} coronae of cool stars remain elusive. Solving the mystery is a central theme of the ``solar-stellar connection;'' whose importance extends beyond astronomy to areas ranging from basic plasma physics to solar-terrestrial relations. A significant property of the activity is that it subsides with age: G dwarfs in young clusters are intense coronal sources, whereas old low mass K giants are so feable in soft X-rays that most are below current detection limits. For that reason, historical studies of activity have been biased towards the younger stars. Now HST/STIS easily can record faint coronal proxies {like Si IV and C IV} in nearby cool subgiants and giants, thereby mitigating the de facto age discrimination. In the solar neighborhood the brightest single star of advanced age {9-11 Gyr} is Alpha Bootis {K2 III}. Previous studies have placed the archetype red giant firmly in the ``coronal graveyard.'' Our project focuses on understanding the ``basal'' chromosphere; molecular cooling catastrophes and the structure of the passive ``COmosphere;'' the dynamics and energy balance of the residual subcoronal gas; and mass loss mechanisms. {This program is a carryover from a failed Cycle 5 GHRS observation.}

  8. Solar ultraviolet-B and photosynthetically active irradiance in the urban sub-canopy: A survey of influences

    NASA Astrophysics Data System (ADS)

    Grant, Richard H.; Heisler, Gordon M.

    1996-12-01

    Stratospheric ozone loss in mid-latitudes is expected to increase the ultraviolet-B (UVB) radiation at the earth's surface. Impacts of this expected increase will depend on many factors, including the distribution of light in other wavelengths. Measurements of the photosynthetically active radiation (PAR) and UVB irradiance were made under clear skies at an open field and under the canopy of scattered trees in a suburban area in W. Lafayette, Indiana, USA (latitude 40.5°). Results showed that when there was significant sky view, the UVB penetration into sub-canopy spaces differs greatly from that of PAR. The UVB T canopy (transmittance; irradiance below canopy/irradiance in open) was inversely related to sky view. The UVB irradiance did not vary as greatly between shaded and sunlit areas as did PAR. Analysis of measurements made near a brick wall indicated that the leaf area of a canopy and the brick wall primarily acted to block fractions of the sky radiance and contributed little scattered UVB to the horizontal plant. A model was developed to predict the UVB and PAR T canopy based on diffuse fraction, sky view, and porosity of the crown(s) through which the beam is penetrating. The model accounted for the UVB and PAR T canopy to within 0.13 and 0.05 root mean squared error (RMSE), respectively. Analysis of the errors due to model assumptions indicated that care must be taken in describing the sky radiance distribution, the porosity of trees, the penetration of diffuse radiation through porous trees, and the location of sky-obstructing trees and buildings.

  9. Solar Influence on Ionosphere and Radio Communications

    NASA Astrophysics Data System (ADS)

    Reddy, B. M.

    2006-11-01

    When we are discussing solar influence on Ionosphere, it will be helpful to remember that less than one-thousandth of the solar energy being intercepted by the planet Earth is responsible for its production and dynamics. This includes the solar wind energy intercepted by a much larger magnetosphere. But it is this small fraction of energy (in the X-rays, EUV and solar wind) that undergoes violent fluctuations during the course of a solar cycle and during such solar events as flares and Coronal Mass Ejections (CMEs).The consequences of these events are now generically dubbed as “Space Weather”. The problems created by extreme space weather events encompass a wide variety of applications of human interest. These include difficulties to satellite operations, ionosphere-reflected H.F Communications, GPS operations and even power grids and gas pipelines. I will restrict my presentation to H.F communications and to certain science elements such as anomalous plasma temperature variations measured by satellites. Particular attention will be given to increases in electron temperatures during magnetic storms in the night time when there is no photo-electron heat input. As this has a bearing on the present theory of electron thermal conduction associated with increase in neutral densities during storms, a detailed analysis will be presented using satellite data. Also the presentation will include examples of H.F communication failures especially at night time, contrary to what is expected at low latitudes. This has serious implications to the communication scenario in India in view of the high Atmospheric Radio Noise at the lower bands of the H.F. Spectrum.

  10. Solar influences on spatial patterns of Eurasian winter temperature and atmospheric general circulation anomalies

    NASA Astrophysics Data System (ADS)

    Chen, Haishan; Ma, Hedi; Li, Xing; Sun, Shanlei

    2015-09-01

    Solar influences on spatial patterns of Eurasian winter climate and possible mechanisms are investigated based on a multiple linear regression method and multisource observational and reanalysis data. Robust and significant solar signals are detected in Eurasian surface air temperature (SAT), and strong solar activity evidently warms most area of the continent. The spatial pattern of sea level pressure (SLP) responses to solar activity is similar but not identical to that of the North Atlantic Oscillation (NAO). Compared to the NAO, geographic distribution of solar-induced SLP anomalies shifts eastward, with significantly enhanced influences over northern Eurasia. Relatively weaker solar signals were also found in mid-to-upper troposphere. The spatial pattern of 500 hPa geopotential anomalies resembles a negative Scandinavia teleconnection pattern, and the 200 hPa subtropical jet is weakened, while zonal wind at high latitudes is enhanced due to strong solar activity. The anomalous zonal circulations can be attributed to the "top-down" mechanism. During high solar activity winters, an enhanced stratospheric zonal wind anomaly propagates downward, causing zonal wind anomalies in the troposphere. However, the "bottom-up" mechanisms may provide more reasonable explanations of the distinct solar influences on Eurasian climate. Solar-induced strong warm advection in lower atmosphere tends to increase SAT but decrease SLP, resulting in enhanced solar influences over northern Eurasia. Meanwhile, change in the land-ocean thermal contrast (LOTC) could also amplify the circulation anomaly. Inhomogeneous surface heating caused by anomalous solar activity modifies LOTC, which probably enhances the solar-induced circulation patterns. Such a positive feedback may potentially strengthen the solar influences.

  11. Statistical evaluation of the significance of the influence of abrupt changes in solar activity on the dynamics of the epidemic process

    NASA Technical Reports Server (NTRS)

    Druzhinin, I. P.; Khamyanova, N. V.; Yagodinskiy, V. N.

    1974-01-01

    Statistical evaluations of the significance of the relationship of abrupt changes in solar activity and discontinuities in the multi-year pattern of an epidemic process are reported. They reliably (with probability of more than 99.9%) show the real nature of this relationship and its great specific weight (about half) in the formation of discontinuities in the multi-year pattern of the processes in question.

  12. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  13. Solar activity predicted with artificial intelligence

    NASA Astrophysics Data System (ADS)

    Lundstedt, Henrik

    The variability of solar activity has been described as a non-linear chaotic dynamic system. AI methods are therefore especially suitable for modelling and predicting solar activity. Many indicators of the solar activity have been used, such as sunspot numbers, F 10.7 cm solar radio flux, X-ray flux, and magnetic field data. Artificial neural networks have also been used by many authors to predict solar cycle activity. Such predictions will be discussed. A new attempt to predict the solar activity using SOHO/MDI high-time resolution solar magnetic field data is discussed. The purpose of this new attempt is to be able to predict episodic events and to predict occurrence of coronal mass ejections. These predictions will be a part of the Lund Space Weather Model.

  14. Geomagnetic responses to the solar wind and the solar activity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1975-01-01

    Following some historical notes, the formation of the magnetosphere and the magnetospheric tail is discussed. The importance of electric fields is stressed and the magnetospheric convection of plasma and magnetic field lines under the influence of large-scale magnetospheric electric fields is outlined. Ionospheric electric fields and currents are intimately related to electric fields and currents in the magnetosphere and the strong coupling between the two regions is discussed. The energy input of the solar wind to the magnetosphere and upper atmosphere is discussed in terms of the reconnection model where interplanetary magnetic field lines merge or connect with the terrestrial field on the sunward side of the magnetosphere. The merged field lines are then stretched behind earth to form the magnetotail so that kinetic energy from the solar wind is converted into magnetic energy in the field lines in the tail. Localized collapses of the crosstail current, which is driven by the large-scale dawn/dusk electric field in the magnetosphere, divert part of this current along geomagnetic field lines to the ionosphere, causing substorms with auroral activity and magnetic disturbances. The collapses also inject plasma into the radiation belts and build up a ring current. Frequent collapses in rapid succession constitute the geomagnetic storm.

  15. Heliobiology, its development, successes and tasks. [solar activity effects on life on earth

    NASA Technical Reports Server (NTRS)

    Platonova, A. T.

    1974-01-01

    Heliobiology studies the influence of changes in solar activity on life. Considered are the influence of periodic solar activity on the development and growth of epidemics, mortality from various diseases, the functional activity of the nervous system, the development of psychic disturbances, the details of the development of microorganisms and many other phenomena in the living world.

  16. Recurrence of solar activity - Evidence for active longitudes

    NASA Technical Reports Server (NTRS)

    Bogart, R. S.

    1982-01-01

    It is pointed out that the autocorrelation coefficients of the daily Wolf sunspot numbers over a period of 128 years reveal a number of interesting features of the variability of solar activity. Besides establishing periodicities for the solar rotation, solar activity cycle, and, perhaps, the 'Gleissberg Cycle', they suggest that active longitudes do exist, but with much greater strength and persistence in some solar cycles than in others. Evidence is adduced for a variation in the solar rotation period, as measured by sunspot number, of as much as two days between different solar cycles.

  17. Sources of the solar wind at solar activity maximum

    NASA Astrophysics Data System (ADS)

    Neugebauer, M.; Liewer, P. C.; Smith, E. J.; Skoug, R. M.; Zurbuchen, T. H.

    2002-12-01

    The photospheric sources of solar wind observed by the Ulysses and ACE spacecraft from 1998 to early 2001 are determined through a two-step mapping process. Solar wind speed measured at the spacecraft is used in a ballistic model to determine a foot point on a source surface at a solar distance of 2.5 solar radii. A potential-field source-surface model is then used to trace the field and flow from the source surface to the photosphere. Comparison of the polarity of the measured interplanetary field with the polarity of the photospheric source region shows good agreement for spacecraft latitudes equatorward of 60°. At higher southern latitudes, the mapping predicts that Ulysses should have observed only outward directed magnetic fields, whereas both polarities were observed. A detailed analysis is performed on four of the solar rotations for which the mapped and observed polarities were in generally good agreement. For those rotations, the solar wind mapped to both coronal holes and active regions. These findings for a period of high solar activity differ from the findings of a similar study of the solar wind in 1994-1995 when solar activity was very low. At solar minimum the fastest wind mapped to the interior of large polar coronal holes while slower wind mapped to the boundaries of those holes or to smaller low-latitude coronal holes. For the data examined in the present study, neither spacecraft detected wind from the small polar coronal holes when they existed and the speed was never as high as that observed by Ulysses at solar minimum. The principal difference between the solar wind from coronal holes and from active regions is that the O7+/O6+ ion ratio is lower for the coronal hole flow, but not as low as in the polar coronal hole flow at solar minimum. Furthermore, the active-region flows appear to be organized into several substreams unlike the more monolithic structure of flows from coronal holes. The boundaries between plasma flows from neighboring

  18. The Solar Dynamics Observatory, Studying the Sun and Its Influence on Other Bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Chamberlin, P. C.

    2011-01-01

    The solar photon output, which was once thought to be constant, varies over all time scales from seconds during solar flares to years due to the solar cycle. These solar variations cause significant deviations in the Earth and space environments on similar time scales, such as affecting the atmospheric densities and composition of particular atoms, molecules, and ions in the atmospheres of the Earth and other planets. Presented and discussed will be examples of unprecedented observations from NASA's new solar observatory, the Solar Dynamics Observatory (SDO). Using three specialized instruments, SDO measures the origins of solar activity from inside the Sun, though its atmosphere, then accurately measuring the Sun's radiative output in X-ray and EUV wavelengths (0.1-121 nm). Along with the visually appealing observations will be discussions of what these measurements can tell us about how the plasma motions in all layers of the Sun modifies and strengthens the weak solar dipole magnetic field to drive large energy releases in solar eruptions. Also presented will be examples of how the release of the Sun's energy, in the form of photons and high energy particles, physically influence other bodies in the solar system such as Earth, Mars, and the Moon, and how these changes drive changes in the technology that we are becoming dependent upon. The presentation will continuously emphasize how SDO, the first satellite in NASA's Living with a Star program, improving our understanding of the variable Sun and its Heliospheric influence.

  19. Solar irradiance measurements - Minimum through maximum solar activity

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gibson, M. A.; Shivakumar, N.; Wilson, R.; Kyle, H. L.; Mecherikunnel, A. T.

    1991-01-01

    The Earth Radiation Budget Satellite (ERBS) and the NOAA-9 spacecraft solar monitors were used to measure the total solar irradiance during the period October 1984 to December 1989. Decreasing trends in the irradiance measurements were observed as sunspot activity decreased to minimum levels in 1986; after 1986, increasing trends were observed as sunspot activity increased. The magnitude of the irradiance variability was found to be approximately 0.1 percent between sunspot minimum and maximum (late 1989). When compared with the 1984 to 1989 indices of solar magnetic activity, the irradiance trends appear to be in phase with the 11-year sunspot cycle. Both irradiance series yielded 1,365/sq Wm as the mean value of the solar irradiance, normalized to the mean earth/sun distance. The monitors are electrical substitution, active-cavity radiometers with estimated measurement precisions and accuracies of less than 0.02 and 0.2 percent, respectively.

  20. Modeling of the atmospheric response to a strong decrease of the solar activity

    NASA Astrophysics Data System (ADS)

    Rozanov, Eugene V.; Egorova, Tatiana A.; Shapiro, Alexander I.; Schmutz, Werner K.

    2012-07-01

    We estimate the consequences of a potential strong decrease of the solar activity using the model simulations of the future driven by pure anthropogenic forcing as well as its combination with different solar activity related factors: total solar irradiance, spectral solar irradiance, energetic electron precipitation, solar protons and galactic cosmic rays. The comparison of the model simulations shows that introduced strong decrease of solar activity can lead to some delay of the ozone recovery and partially compensate greenhouse warming acting in the direction opposite to anthropogenic effects. The model results also show that all considered solar forcings are important in different atmospheric layers and geographical regions. However, in the global scale the solar irradiance variability can be considered as the most important solar forcing. The obtained results constitute probably the upper limit of the possible solar influence. Development of the better constrained set of future solar forcings is necessary to address the problem of future climate and ozone layer with more confidence.

  1. Solar activity and oscillation frequency splittings

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.

    1993-01-01

    Solar p-mode frequency splittings, parameterized by the coefficients through order N = 12 of a Legendre polynomial expansion of the mode frequencies as a function of m/L, were obtained from an analysis of helioseismology data taken at Big Bear Solar Observatory during the 4 years 1986 and 1988-1990 (approximately solar minimum to maximum). Inversion of the even-index splitting coefficients confirms that there is a significant contribution to the frequency splittings originating near the solar poles. The strength of the polar contribution is anti correlated with the overall level or solar activity in the active latitudes, suggesting a relation to polar faculae. From an analysis of the odd-index splitting coefficients we infer an uppor limit to changes in the solar equatorial near-surface rotatinal velocity of less than 1.9 m/s (3 sigma limit) between solar minimum and maximum.

  2. How active was solar cycle 22?

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Pesnell, W. D.; Woods, T. N.; Rottman, G. J.

    1993-01-01

    Solar EUV observations from the Langmuir probe on Pioneer Venus Orbiter suggest that at EUV wavelengths solar cycle 22 was more active than solar cycle 21. The Langmuir probe, acting as a photodiode, measured the integrated solar EUV flux over a 13 1/2 year period from January 1979 to June 1992, the longest continuous solar EUV measurement. The Ipe EUV flux correlated very well with the SME measurement of L-alpha during the lifetime of SME and with the UARS SOLSTICE L-alpha from October 1991 to June 1992 when the Ipe measurement ceased. Starting with the peak of solar cycle 21, there was good general agreement of Ipe EUV with the 10.7 cm, Ca K, and He 10830 solar indices, until the onset of solar cycle 22. From 1989 to the start of 1992, the 10.7 cm flux exhibited a broad maximum consisting of two peaks of nearly equal magnitude, whereas Ipe EUV exhibited a strong increase during this time period making the second peak significantly higher than the first. The only solar index that exhibits the same increase in solar activity as Ipe EUV and L-alpha during the cycle 22 peak is the total magnetic flux. The case for high activity during this peak is also supported by the presence of very high solar flare intensity.

  3. Sustainable Buildings. Using Active Solar Power

    SciTech Connect

    Sharp, M. Keith; Barnett, Russell

    2015-04-20

    The objective of this project is to promote awareness and knowledge of active solar energy technologies by installing and monitoring the following demonstration systems in Kentucky: 1) Pool heating system, Churchill Park School, 2) Water heating and daylighting systems, Middletown and Aiken Road Elementary Schools, 3) Photovoltaic street light comparison, Louisville Metro, 4) up to 25 domestic water heating systems across Kentucky. These tasks will be supported by outreach activities, including a solar energy installer training workshop and a Kentucky Solar Energy Conference.

  4. Workshop on Solar Activity, Solar Wind, Terrestrial Effects, and Solar Acceleration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A summary of the proceedings from the workshop are presented. The areas covered were solar activity, solar wind, terrestrial effects, and solar acceleration. Specific topics addressed include: (1) solar cycle manifestations, both large and small scale, as well as long-term and short-term changes, including transients such as flares; (2) sources of solar wind, as identified by interplanetary observations including coronal mass ejections (CME's) or x-ray bright points, and the theory for and evolution of large-scale and small-scale structures; (3) magnetosphere responses, as observed by spacecraft, to variable solar wind and transient energetic particle emissions; and (4) origin and propagation of solar cosmic rays as related to solar activity and terrestrial effects, and solar wind coronal-hole relationships and dynamics.

  5. Dynamo theory prediction of solar activity

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.

  6. Modified Coronal Index of the Solar Activity

    NASA Astrophysics Data System (ADS)

    Lukáč, B.; Rybanský, M.

    2010-05-01

    The original coronal index of the solar activity (CI) has been constructed on the basis of ground-based measurements of the intensities of the coronal line of 530.3 nm (Rybanský in Bull. Astron. Inst. Czechoslov., 28, 367, 1975; Rybanský et al. in J. Geophys. Res., 110, A08106, 2005). In this paper, CI is compared with the EUV measurements on the CELIAS/SEM equipment based on the same idea as the original idea of the coronal index. The correlation is very good for the period 1996 - 2005 ( r=0.94 for daily values). The principal result of this paper is the introduction of the modified coronal index (MCI) which in all uses and contexts can replace the existing CI index. Daily MCI values extend over a time period of six solar activity cycles. Future MCI measurements will be derived from more reliable measurements made by space-based observatories that are not influenced by the weather. MCI measurements are and will continue to be archived at the web site of the Slovak Central Observatory in Hurbanovo ( http://www.suh.sk/obs/vysl/MCI.htm ).

  7. The Three-Dimenstional Solar Wind at Solar Activity Minimum

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1998-01-01

    In late 1997, the Ulysses spacecraft completed its first orbit around the Sun, observing the properties of the heliosphere at all latitudes between 80 degrees South and 80 degrees North. Because the mission occurred during a period of near-minimum solar activity, the configuration of the solar wind and interplanetary magnetic field were particularly simple, thus allowing confident comparisons between the properties of the polar corona observed by instruments of the Spartan and SOHO spacecraft and the resulting properties of the solar wind.

  8. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    NASA Technical Reports Server (NTRS)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  9. Solar Activity Predictions Based on Solar Dynamo Theories

    NASA Astrophysics Data System (ADS)

    Schatten, Kenneth H.

    2009-05-01

    We review solar activity prediction methods, statistical, precursor, and recently the Dikpati and the Choudhury groups’ use of numerical flux-dynamo methods. Outlining various methods, we compare precursor techniques with weather forecasting. Precursors involve events prior to a solar cycle. First started by the Russian geomagnetician Ohl, and then Brown and Williams; the Earth's field variations near solar minimum was used to predict the next solar cycle, with a correlation of 0.95. From the standpoint of causality, as well as energetically, these relationships were somewhat bizarre. One index used was the "number of anomalous quiet days,” an antiquated, subjective index. Scientific progress cannot be made without some suspension of disbelief; otherwise old paradigms become tautologies. So, with youthful naïveté, Svalgaard, Scherrer, Wilcox and I viewed the results through rose-colored glasses and pressed ahead searching for understanding. We eventually fumbled our way to explaining how the Sun could broadcast the state of its internal dynamo to Earth. We noted one key aspect of the Babcock-Leighton Flux Dynamo theory: the polar field at the end of a cycle serves as a seed for the next cycle's growth. Near solar minimum this field usually bathes the Earth, and thereby affects geomagnetic indices then. We found support by examining 8 previous solar cycles. Using our solar precursor technique we successfully predicted cycles 21, 22 and 23 using WSO and MWSO data. Pesnell and I improved the method using a SODA (SOlar Dynamo Amplitude) Index. In 2005, nearing cycle 23's minimum, Svalgaard and I noted an unusually weak polar field, and forecasted a small cycle 24. We discuss future advances: the flux-dynamo methods. As far as future solar activity, I shall let the Sun decide; it will do so anyhow.

  10. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    ERIC Educational Resources Information Center

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  11. Gap between active and passive solar heating

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  12. Science Activities in Energy: Solar Energy II.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 14 activities related to solar energy for secondary students. Each activity is outlined on a single card and is introduced by a question such as: (1) how much solar heat comes from the sun? or (2) how many times do you have to run water through a flat-plate collector to get a 10 degree rise in…

  13. Annual DOE Active Solar Heating and Cooling Contractors Review meeting

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Ninety three project summaries dicussing the following aspects of active solar heating and cooling are presented: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology.

  14. The risk characteristics of solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Podolska, Katerina

    2016-04-01

    The main aim of this contribution is a deeper analysis of the influence of solar activity which is expected to have an impact on human health, and therefore on mortality, in particular civilization and degenerative diseases. We have constructed the characteristics that represent the risk of solar and geomagnetic activity on human health on the basis of our previous analysis of association between the daily numbers of death on diseases of the nervous system and diseases of the circulatory system and solar and geomagnetic activity in the Czech Republic during the years 1994 - 2013. We used long period daily time series of numbers of deaths by cause, long period time series of solar activity indices (namely R and F10.7), geomagnetic indicies (Kp planetary index, Dst) and ionospheric parameters (foF2 and TEC). The ionospheric parameters were related to the geographic location of the Czech Republic and adjusted for middle geographic latitudes. The risk characteristics were composed by cluster analysis in time series according to the phases of the solar cycle resp. the seasonal insolation at mid-latitudes or the daily period according to the impact of solar and geomagnetic activity on mortality by cause of death from medical cause groups of death VI. Diseases of the nervous system and IX. Diseases of the circulatory system mortality by 10th Revision of International Classification of Diseases WHO (ICD-10).

  15. Solar collector manufacturing activity, 1992

    SciTech Connect

    Not Available

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  16. Science Activities in Energy: Solar Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 12 activities relating to solar energy. Activities are simple, concrete experiments for fourth, fifth, and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's supplement…

  17. Solar activities and Climate change hazards

    NASA Astrophysics Data System (ADS)

    Hady, A. A., II

    2014-12-01

    Throughout the geological history of Earth, climate change is one of the recurrent natural hazards. In recent history, the impact of man brought about additional climatic change. Solar activities have had notable effect on palaeoclimatic changes. Contemporary, both solar activities and building-up of green-house gases effect added to the climatic changes. This paper discusses if the global worming caused by the green-house gases effect will be equal or less than the global cooling resulting from the solar activities. In this respect, we refer to the Modern Dalton Minimum (MDM) which stated that starting from year 2005 for the next 40 years; the earth's surface temperature will become cooler than nowadays. However the degree of cooling, previously mentioned in old Dalton Minimum (c. 210 y ago), will be minimized by building-up of green-house gases effect during MDM period. Regarding to the periodicities of solar activities, it is clear that now we have a new solar cycle of around 210 years. Keywords: Solar activities; solar cycles; palaeoclimatic changes; Global cooling; Modern Dalton Minimum.

  18. Sources of solar wind over the solar activity cycle.

    PubMed

    Poletto, Giannina

    2013-05-01

    Fast solar wind has been recognized, about 40 years ago, to originate in polar coronal holes (CHs), that, since then, have been identified with sources of recurrent high speed wind streams. As of today, however, there is no general consensus about whether there are, within CHs, preferential locations where the solar wind is accelerated. Knowledge of slow wind sources is far from complete as well. Slow wind observed in situ can be traced back to its solar source by backward extrapolation of magnetic fields whose field lines are streamlines of the outflowing plasma. However, this technique often has not the necessary precision for an indisputable identification of the region where wind originates. As the Sun progresses through its activity cycle, different wind sources prevail and contribute to filling the heliosphere. Our present knowledge of different wind sources is here summarized. Also, a Section addresses the problem of wind acceleration in the low corona, as inferred from an analysis of UV data, and illustrates changes between fast and slow wind profiles and possible signatures of changes along the solar cycle. A brief reference to recent work about the deep roots of solar wind and their changes over different solar cycles concludes the review. PMID:25685421

  19. Hinode Captures Images of Solar Active Region

    NASA Video Gallery

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  20. A History of Solar Activity over Millennia

    NASA Astrophysics Data System (ADS)

    Usoskin, Ilya G.

    2013-03-01

    Presented here is a review of present knowledge of the long-term behavior of solar activity on a multi-millennial timescale, as reconstructed using the indirect proxy method. The concept of solar activity is discussed along with an overview of the special indices used to quantify different aspects of variable solar activity, with special emphasis upon sunspot number. Over long timescales, quantitative information about past solar activity can only be obtained using a method based upon indirect proxies, such as the cosmogenic isotopes 14C and 10Be in natural stratified archives (e.g., tree rings or ice cores). We give an historical overview of the development of the proxy-based method for past solar-activity reconstruction over millennia, as well as a description of the modern state. Special attention is paid to the verification and cross-calibration of reconstructions. It is argued that this method of cosmogenic isotopes makes a solid basis for studies of solar variability in the past on a long timescale (centuries to millennia) during the Holocene. A separate section is devoted to reconstructions of strong solar energetic-particle (SEP) events in the past, that suggest that the present-day average SEP flux is broadly consistent with estimates on longer timescales, and that the occurrence of extra-strong events is unlikely. Finally, the main features of the long-term evolution of solar magnetic activity, including the statistics of grand minima and maxima occurrence, are summarized and their possible implications, especially for solar/stellar dynamo theory, are discussed.

  1. Low Latitude Aurora: Index of Solar Activity

    NASA Astrophysics Data System (ADS)

    Bekli, M. R.; Aissani, D.; Chadou, I.

    2010-10-01

    Observations of aurora borealis at low latitudes are rare, and are clearly associated with high solar activity. In this paper, we analyze some details of the solar activity during the years 1769-1792. Moreover, we describe in detail three low latitude auroras. The first event was reported by ash-Shalati and observed in North Africa (1770 AD). The second and third events were reported by l'Abbé Mann and observed in Europe (1770 and 1777 AD).

  2. Relationships between solar activity and climate change

    NASA Technical Reports Server (NTRS)

    Roberts, W. O.

    1975-01-01

    The relationship between recurrent droughts in the High Plains of the United States and the double sunspot cycle is discussed in detail. It is suggested that high solar activity is generally related to an increase in meridional circulation and blocking patterns at high and intermediate latitudes, especially in winter, and the effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  3. New NSO Solar Surface Activity Maps

    NASA Astrophysics Data System (ADS)

    Henney, C. J.; Harvey, J. W.

    2001-05-01

    Using NSO-Kitt Peak Vacuum Telescope (KPVT) synoptic data, we present several new solar surface activity maps. The motivation is to test conventional wisdom about conditions that are likely to produce solar activity such as flares, coronal mass ejections and high speed solar wind streams. The ultimate goal is to improve real-time, observation-based models for the purpose of predicting solar activity. A large number of maps will eventually be produced based on the wide range of ideas and models of the conditions thought to lead to solar activity events. When data from the new SOLIS instruments becomes available, the range of possible models that can be tested will be greatly expanded. At present, the daily maps include ones that show magnetic field complexity, emerging flux and high speed solar wind sources. As a proxy for local magnetic potential energy, each element of the magnetic complexity map is the distance-weighted rms of the opposing ambient magnetic field. The flux emergence map is the difference between the two most recent absolute magnetic flux images. The solar wind source map is produced from coronal hole area data. The new maps are available on the NSO-Kitt Peak World Wide Web page. This research was supported in part by the Office of Navel Research Grant N00014-91-J-1040. The NSO-Kitt Peak data used here are produced cooperatively by NSF/AURA, NASA/GSFC, and NOAA/SEC.

  4. Volcanic eruptions and solar activity

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  5. 11 -year planetary index of solar activity

    NASA Astrophysics Data System (ADS)

    Okhlopkov, Victor

    In papers [1,2] introduced me parameter - the average difference between the heliocentric longitudes of planets ( ADL ) , which was used for comparison with solar activity. The best connection of solar activity ( Wolf numbers used ) was obtained for the three planets - Venus, Earth and Jupiter. In [1,2] has been allocated envelope curve of the minimum values ADL which has a main periodicity for 22 years and describes well the alternating series of solar activity , which also has a major periodicity of 22. It was shown that the minimum values of the envelope curve extremes ADL planets Venus, Earth and Jupiter are well matched with the 11- year solar activity cycle In these extremes observed linear configuration of the planets Venus, Earth and Jupiter both in their location on one side of the Sun ( conjunctions ) and at the location on the opposite side of the Sun ( three configurations ) This work is a continuation of the above-mentioned , and here for minimum ADL ( planets are in conjunction ) , as well as on the minimum deviation of the planets from a line drawn through them and Sun at the location of the planets on opposite sides of the Sun , compiled index (denoted for brevity as JEV ) that uniquely describes the 11- year solar cycle A comparison of the index JEV with solar activity during the time interval from 1000 to 2013 conducted. For the period from 1000 to 1699 used the Schove series of solar activity and the number of Wolf (1700 - 2013 ) During the time interval from 1000 to 2013 and the main periodicity of the solar activity and the index ADL is 11.07 years. 1. Okhlopkov V.P. Cycles of Solar Activity and the Configurations of Planets // Moscow University Physics Bulletin, 2012 , Vol. 67 , No. 4 , pp. 377-383 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.3103/S0027134912040108. 2 Okhlopkov VP, Relationship of Solar Activity Cycles to Planetary Configurations // Bulletin of the Russian Academy of Sciences. Physics, 2013 , Vol. 77 , No. 5

  6. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1975-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena is hindered by the difficulties of devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system, and determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-yr cycle, and meteorological phenomena undergo either no closely correlated variation, an 11-yr variation, or a 22-yr variation.

  7. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1974-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena has to date foundered on the two difficulties of (1) devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system; and (2) determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-year cycle, while meteorological phenomena undergo either no closely correlated variation, or an 11-year variation, or a 22-year variation.

  8. Is Solar Activity Once More Fainting?

    NASA Astrophysics Data System (ADS)

    Mares Aguilar, C. E.; Schröder, K.-P.; Song, G.

    2013-04-01

    After an anomalously long and deep minimum, will the Sun now once again reach a period of weaker activity cycles, which would affect northern hemisphere winter climate? We here discuss the current state and outlook of solar activity, and we propose to monitor the solar Ca II K line emission “as a star”, as part of the regular observing schedule of the Hamburg robotic telescope, which is bound to move to Guanajuato this year (2012). In fact, the chromospheric Ca II K line emission is a good proxy for the solar far-ultraviolet flux, as both are generated at about the same plasma temperatures (12-15,000 K) and both originate from the same active regions (plages). The solar ultraviolet flux, in turn, warms the stratosphere by photo dissociation of ozone and other molecules and, consequently, affects the strength of the North Atlantic Oscillation (NOA).

  9. Statistical Properties of Extreme Solar Activity Intervals

    NASA Astrophysics Data System (ADS)

    Lioznova, A. V.; Blinov, A. V.

    2014-01-01

    A study of long-term solar variability reflected in indirect indices of past solar activity leads to stimulating results. We compare the statistics of intervals of very low and very high solar activity derived from two cosmogenic radionuclide records and look for consistency in their timing and physical interpretation. According to the applied criteria, the numbers of minima and of maxima are 61 and 68, respectively, from the 10Be record, and 42 and 46 from the 14C record. The difference between the enhanced and depressed states of solar activity becomes apparent in the difference in their statistical distributions. We find no correlation between the level or type (minimum or maximum) of an extremum and the level or type of the predecessor. The hypothesis of solar activity as a periodic process on the millennial time scale is not supported by the existing proxies. A new homogeneous series of 10Be measurements in polar ice covering the Holocene would be of great value for eliminating the existing discrepancy in the available solar activity reconstructions.

  10. Solar wind influence on Jupiter's magnetosphere and aurora

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa; Gyalay, Szilard; Withers, Paul

    2016-04-01

    Jupiter's magnetosphere is often said to be rotationally driven, with strong centrifugal stresses due to large spatial scales and a rapid planetary rotation period. For example, the main auroral emission at Jupiter is not due to the magnetosphere-solar wind interaction but is driven by a system of corotation enforcement currents that arises to speed up outflowing Iogenic plasma. Additionally, processes like tail reconnection are also thought to be driven, at least in part, by processes internal to the magnetosphere. While the solar wind is generally expected to have only a small influence on Jupiter's magnetosphere and aurora, there is considerable observational evidence that the solar wind does affect the magnetopause standoff distance, auroral radio emissions, and the position and brightness of the UV auroral emissions. We will report on the results of a comprehensive, quantitative study of the influence of the solar wind on various magnetospheric data sets measured by the Galileo mission from 1996 to 2003. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, we have identified intervals of high and low solar wind dynamic pressure. We can use this information to quantify how a magnetospheric compression affects the magnetospheric field configuration, which in turn will affect the ionospheric mapping of the main auroral emission. We also consider whether there is evidence that reconnection events occur preferentially during certain solar wind conditions or that the solar wind modulates the quasi-periodicity seen in the magnetic field dipolarizations and flow bursts.

  11. Global water cycle and solar activity variations

    NASA Astrophysics Data System (ADS)

    Al-Tameemi, Muthanna A.; Chukin, Vladimir V.

    2016-05-01

    The water cycle is the most active and most important component in the circulation of global mass and energy in the Earth system. Furthermore, water cycle parameters such as evaporation, precipitation, and precipitable water vapour play a major role in global climate change. In this work, we attempt to determine the impact of solar activity on the global water cycle by analyzing the global monthly values of precipitable water vapour, precipitation, and the Solar Modulation Potential in 1983-2008. The first object of this study was to calculate global evaporation for the period 1983-2008. For this purpose, we determined the water cycle rate from satellite data, and precipitation/evaporation relationship from 10 years of Planet Simulator model data. The second object of our study was to investigate the relationship between the Solar Modulation Potential (solar activity index) and the evaporation for the period 1983-2008. The results showed that there is a relationship between the solar modulation potential and the evaporation values for the period of study. Therefore, we can assume that the solar activity has an impact on the global water cycle.

  12. The solar activity measurements experiments (SAMEX) for improved scientific understanding of solar activity

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Solar Activity Measurements Experiments (SAMEX) mission is described. It is designed to provide a look at the interactions of magnetic fields and plasmas that create flares and other explosive events on the sun in an effort to understand solar activity and the nature of the solar magnetic field. The need for this mission, the instruments to be used, and the expected benefits of SAMEX are discussed.

  13. Temporal offsets among solar activity indicators

    NASA Astrophysics Data System (ADS)

    Ramesh, K. B.; Vasantharaju, N.

    2014-04-01

    Temporal offsets between the time series of solar activity indicators provide important clues regarding the physical processes responsible for the cyclic variability in the solar atmosphere. Hysteresis patterns generated between any two indicators were popularly used to study their morphological features and further to understand their inter relationships. We use time series of different solar indicators to understand the possible cause-and-effect criteria between their respective source regions. Sensitivity of the upper atmosphere to the activity underneath might play an important role in introducing different evolutionary patterns in the profiles of solar indicators and in turn cause temporal offsets between them. Limitations in the observations may also cause relative shifts in the time series.

  14. Cosmic rays, solar activity, magnetic coupling, and lightning incidence

    NASA Technical Reports Server (NTRS)

    Ely, J. T. A.

    1984-01-01

    A theoretical model is presented and described that unifies the complex influence of several factors on spatial and temporal variation of lightning incidence. These factors include the cosmic radiation, solar activity, and coupling between geomagnetic and interplanetary (solar wind) magnetic fields. Atmospheric electrical conductivity in the 10 km region was shown to be the crucial parameter altered by these factors. The theory reconciles several large scale studies of lightning incidence previously misinterpreted or considered contradictory. The model predicts additional strong effects on variations in lightning incidence, but only small effects on the morphology and rate of thunderstorm development.

  15. Initiation of non-tropical thunderstorms by solar activity

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Goldberg, R. A.

    1976-01-01

    Correlative evidence accumulating since 1926 suggests that there must be some physical coupling mechanism between solar activity and thunderstorm occurrence in middle to high latitudes. Such a link may be provided by alteration of atmospheric electric parameters through the combined influence of high-energy solar protons and decreased cosmic ray intensities, both of which are associated with active solar events. The protons produce excess ionization near and above 20km, while the Forbush decreases a lowered conductivity and enhanced fair-weather atmospheric electric field below that altitude. Consequent effects ultimately lead to a charge distribution similar to that found in thunderclouds, and then other cloud physics processes take over to generate the intense electric fields required for lightning discharge.

  16. Solar activity and Perseid meteor heights

    NASA Astrophysics Data System (ADS)

    Buček, M.; Porubčan, V.; Zigo, P.

    2012-04-01

    Photographic meteor heights of the Perseid meteoroid stream compiled in the IAU Meteor Data Center catalogue observed in 1939-1992, covering five solar activity cycles, are analyzed and their potential variation within a solar activity cycle is investigated and discussed. Of the 673 Perseids selected from the catalogue, the variations of the heights for three independent sets: 524 Perseids with known information on both heights, 397 with known brightness and 279 with the geocentric velocity within a one sigma limit, were investigated. The observed beginning and endpoint heights of the Perseids, normalized for the geocentric velocity and the absolute photographic magnitude correlated with the solar activity represented by the relative sunspot number R, do not exhibit a variation consistent with the solar activity cycle. The result, confirmed also by the correlation analysis, is derived for the mass ranges of larger meteoroids observed by photographic techniques. However, a possible variation of meteor heights controlled by solar activity for smaller meteoroids detected by television and radio techniques remains still open and has to be verified.

  17. Causality principles in solar activity -climate relations.

    NASA Astrophysics Data System (ADS)

    Stauning, Peter

    The relations between solar activity and the terrestrial climate have quite often been inves-tigated. In most cases the analyses have been based on comparisons between time series of solar activity parameters, for instance sunspot numbers, and terrestrial climate parameters, for instance global temperatures. However, many of the reported close relations are based on skilfully manipulated data and neglect of basic causality principles. For cause-effect relations to be reliably established, the variations in the causative function must obviously happen prior to the related effects. Thus it is problematic to use, for instance, running averages of parameters, if the result depends too much on posterior elements of the causative time series or precursory elements of the effects. Even more neglected are the causality principles for cause-effect rela-tions with a strongly varying source function, like for instance the 11 year solar activity cycle. In such cases damping of source variations by smoothing data series, introduces additional im-plied delays, which should be considered in the judgement of apparent correlations between the processed time series of cause and effect parameters. The presentation shall illustrate causal-ity relations between solar activity and terrestrial climate parameters and discuss examples of frequently quoted solar activity-climate relations, which violate basic causality principles.

  18. The Influence of Solar Proton Events in Solar Cycle 23 on the Neutral Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; vonKonig, Miriam; Anderson, John; Roble, Raymond G.; McPeters, Richard D.; Fleming, Eric L.; Russell, James M.

    2004-01-01

    Solar proton events (SPEs) can cause changes in constituents in the Earth's middle atmosphere. The highly energetic protons cause ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which lead to the production of HO(x) (H, OH, HO2) and NO(y) (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The HO(x) increases lead to short-lived ozone decreases in the mesosphere and upper stratosphere due to the short lifetimes of the HO, constituents. The NO(x) increases lead to long-lived stratospheric ozone changes because of the long lifetime of NO(y) constituents in this region. Solar cycle 23 was quite active with SPEs and very large fluxes of high energy protons occurred in July and November 2000, November 200 1, and April 2002. Smaller, but still substantial, proton fluxes impacted the Earth during other months in the 1997-2003 time period. The impact of the very large SPEs on the neutral middle atmosphere during solar cycle 23 will be discussed, including the HO(x), NO(y), ozone variations and induced atmospheric transport changes. Two multi-dimensional models, the Goddard Space Flight Center (GSFC) Two-dimensional (2D) Model and the Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Model (TIME-GCM), were used in computing the influence of the SPEs. The results of the GSFC 2D Model and the TIME-GCM will be shown along with comparisons to the Upper Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE) and Solar Backscatter Ultraviolet 2 (SBUV/2) instruments.

  19. Global patterns of solar influence on high cloud cover

    NASA Astrophysics Data System (ADS)

    Dima, Mihai; Voiculescu, Mirela

    2016-07-01

    One of the main sources of uncertainty in climate projections is represented by clouds, which have a profound influence on the Earth's radiation budget through the feedbacks in which they are involved. The improvement of clouds representation in General Circulation Models relies largely on constraints derived from observations and on correct identification of processes that influence cloud formation or lifetime. Here we identify solar forced high cloud cover (HCC) patterns in reanalysis and observed data extending over the 1871-2009 period, based on their associations with known fingerprints of the same forcing on surface air temperature, sea surface temperature (SST) and sea level pressure fields. The solar influence on HCC has maximum amplitudes over the Pacific basin, where HCC anomalies are distributed in bands of alternating polarities. The colocation of the HCC and SST anomalies bands indicates a thermal influence on high clouds through convection and an amplification of the HCC anomalies by a positive feedback of long-wave fluxes, which increases the solar signal. Consistent with numerical simulations, the solar forced HCC pattern appears to be generated through a constructive interference between the so-called "top-down" and "bottom-up" mechanisms of solar influence on climate and is amplified by ocean-atmosphere positive feedbacks.

  20. Magnetic Influences on the Solar Wind

    NASA Astrophysics Data System (ADS)

    Woolsey, Lauren

    2016-05-01

    The steady, supersonic outflow from the Sun we call the solar wind was first posited in the 1950s and initial theories rightly linked the acceleration of the wind to the existence of the million-degree solar corona. Still today, the wind acceleration mechanisms and the coronal heating processes remain unsolved challenges in solar physics. In this work, I seek to answer a portion of the mystery by focusing on a particular acceleration process: Alfven waves launched by the motion of magnetic field footpoints in the photosphere. The entire corona is threaded with magnetic loops and flux tubes that open up into the heliosphere. I have sought a better understanding of the role these magnetic fields play in determining solar wind properties in open flux tubes. After an introduction of relevant material, I discuss my parameter study of magnetic field profiles and the statistical understanding we can draw from the resulting steady-state wind. In the chapter following, I describe how I extended this work to consider time dependence in the turbulent heating by Alfven waves in three dimensional simulations. The bursty nature of this heating led to a natural next step that expands my work to include not only the theoretical, but also a project to analyze observations of small network jets in the chromosphere and transition region, and the underlying photospheric magnetic field that forms thresholds in jet production. In summary, this work takes a broad look at the extent to which Alfven-wave-driven turbulent heating can explain measured solar wind properties and other observed phenomena.

  1. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    PubMed

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles. PMID:27450297

  2. Solar Energy Education. Home economics: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  3. Magnetic Influences on the Solar Wind

    NASA Astrophysics Data System (ADS)

    Woolsey, Lauren N.

    2016-01-01

    The Sun is our closest star, and even with the ability to resolve fine structure, there are several large mysteries that remain unsolved. One of these unanswered questions is how the supersonic outflow from the Sun, the solar wind, is generated and accelerated. In this dissertation, I have investigated the role of Alfvén waves in heating the corona and accelerating the wind. I focus on modeling of flux tubes that are open to the heliosphere, i.e. bundles of magnetic field that stretch beyond a few solar radii into the heliosphere. In these flux tubes, Alfvén waves are launched by the shaking of the footpoints from the convective motions of granulation on the solar photosphere. I present results of modeling efforts in one dimension that investigate how this process changes for a variety of different magnetic field structures over a solar cycle and three-dimensional modeling of time-dependent processes that unlock a connection between pico- and nanoflare-scale events and the turbulent heating generated by counter-propagating Alfvén waves. In addition to computational modeling, I also present efforts to find magnetic thresholds in observations of small-scale network jets seen with the Interface Region Imaging Spectrograph (IRIS). These jets were first discovered by IRIS due to their short lifetimes (10s of seconds) and small size (widths of 100s of kilometers). The findings for this project suggest that the modeled Alfvén-wave-driven turbulence is consistent with these network jets.

  4. Solar activity and the mean global temperature

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Sloan, T.; Wolfendale, A. W.

    2009-01-01

    The variation with time from 1956 to 2002 of the globally averaged rate of ionization produced by cosmic rays in the atmosphere is deduced and shown to have a cyclic component of period roughly twice the 11 year solar cycle period. Long term variations in the global average surface temperature as a function of time since 1956 are found to have a similar cyclic component. The cyclic variations are also observed in the solar irradiance and in the mean daily sun spot number. The cyclic variation in the cosmic ray rate is observed to be delayed by 2-4 years relative to the temperature, the solar irradiance and daily sun spot variations suggesting that the origin of the correlation is more likely to be direct solar activity than cosmic rays. Assuming that the correlation is caused by such solar activity, we deduce that the maximum recent increase in the mean surface temperature of the Earth which can be ascribed to this activity is {\\lesssim }14% of the observed global warming.

  5. The influence of solar spectral variations on global radiative balance

    NASA Astrophysics Data System (ADS)

    Gao, Feng-Ling; Tao, Le-Ren; Cui, Guo-Min; Xu, Jia-Liang; Hua, Tse-Chao

    2015-01-01

    The total solar irradiance (TSI) has been the sole solar input in many climate models for lack of long and reliable time series of solar spectral irradiance (SSI) measurements currently. However, based on the recent SSI measurements by the Solar Radiation and Climate Experiment, which is able to provide full and accurate SSI measurements, the influence of SSI variations on global radiative balance between the descending phase of previous solar cycle in December 2007 and the ascending phase of the current solar cycle in the first half 2010 has been studied in this paper. The results show that the relatively larger TSI in the first half 2010 was mainly due to the ultraviolet and near infrared radiation enhancements, with average increases of 0.11% in 200-400 nm and 0.05% in 760-4000 nm respectively, while the radiation in visible region of 400-760 nm decreased by 0.05%. According to the measurements of ozone from the Aura-Microwave Limb Sounder satellite, the global average stratospheric ozone increased markedly in the layer of 25-40 km at the same time. The visible radiation decrease and stratospheric ozone increase together contributed to the smaller solar radiation at the tropopause for each month of the first half 2010 as compared with that in December 2007, with the maximum decrease of 0.15 W m-2 in March 2010. The study reveals that SSI variations in the ascending solar phase may also cool the Earth-atmosphere system.

  6. The influence of solar wind variability on magnetospheric ULF wave power

    NASA Astrophysics Data System (ADS)

    Pokhotelov, D.; Rae, I. J.; Murphy, K. R.; Mann, I. R.

    2015-06-01

    Magnetospheric ultra-low frequency (ULF) oscillations in the Pc 4-5 frequency range play an important role in the dynamics of Earth's radiation belts, both by enhancing the radial diffusion through incoherent interactions and through the coherent drift-resonant interactions with trapped radiation belt electrons. The statistical distributions of magnetospheric ULF wave power are known to be strongly dependent on solar wind parameters such as solar wind speed and interplanetary magnetic field (IMF) orientation. Statistical characterisation of ULF wave power in the magnetosphere traditionally relies on average solar wind-IMF conditions over a specific time period. In this brief report, we perform an alternative characterisation of the solar wind influence on magnetospheric ULF wave activity through the characterisation of the solar wind driver by its variability using the standard deviation of solar wind parameters rather than a simple time average. We present a statistical study of nearly one solar cycle (1996-2004) of geosynchronous observations of magnetic ULF wave power and find that there is significant variation in ULF wave powers as a function of the dynamic properties of the solar wind. In particular, we find that the variability in IMF vector, rather than variabilities in other parameters (solar wind density, bulk velocity and ion temperature), plays the strongest role in controlling geosynchronous ULF power. We conclude that, although time-averaged bulk properties of the solar wind are a key factor in driving ULF powers in the magnetosphere, the solar wind variability can be an important contributor as well. This highlights the potential importance of including solar wind variability especially in studies of ULF wave dynamics in order to assess the efficiency of solar wind-magnetosphere coupling.

  7. Seismic Holography of Solar Activity

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles

    2000-01-01

    The basic goal of the project was to extend holographic seismic imaging techniques developed under a previous NASA contract, and to incorporate phase diagnostics. Phase-sensitive imaging gives us a powerful probe of local thermal and Doppler perturbations in active region subphotospheres, allowing us to map thermal structure and flows associated with "acoustic moats" and "acoustic glories". These remarkable features were discovered during our work, by applying simple acoustic power holography to active regions. Included in the original project statement was an effort to obtain the first seismic images of active regions on the Sun's far surface.

  8. Influence of a solar eclipse on twilight.

    PubMed

    Geyer, E H; Hoffmann, M; Volland, H

    1994-07-20

    The morning twilight of the presunrise sky was measured at the Hoher-List Observatory during the total eclipse of 22 July 1990. The location of observation was far away from the central eclipse zone. The luminance showed a deep minimum in twilight during the main phase of the solar eclipse compared with normal conditions. A first order scattering model explains the observations reasonably well and shows that the sky radiation during the first phase of twilight at a location far away from the central umbra depends primarily on the height profile of the air pressure between ~ 100 and 200 km. PMID:20935830

  9. Solar activities observed with the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Yang, Shuhong

    2015-08-01

    The New Vacuum Solar Telescope is the most important facility of the Fuxian Solar Observatory in China. Based on the high spatial and temporal resolution NVST observations, we investigate the solar activities in the chromosphere and obtain some new results. (1) Observations of a flux rope tracked by filament activation (Yang et al. 2014a). The filament material is initially located at one end of the flux rope and fills in a section of the rope. Then the filament is activated and the material flows along helical threads, tracking the twisted flux rope structure. The flux rope can be detected in both low temperature and high temperature lines, and there exists a striking anti-correlation between the Hα and EUV lines, which could imply some mild heating of cool filament material to coronal temperatures during the filament activation. (2) Fine structures and overlying loops of homologous confined solar flares (Yang et al. 2014b). At the pre-flare stage, there exists a reconnection between small loops. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive. (3) Magnetic reconnection between small-scale loops (Yang et al. 2015). We report the solid observational evidence of magnetic reconnection between two sets of small-scale loops. The observed signatures are consistent with the predictions by reconnection models. The thickness and length of the current sheet are determined to be about 420 km and 1.4 Mm, respectively. The reconnection process contains a slow step and a rapid step. We suggest that the successive slow reconnection changes the conditions around the reconnection site and disrupts the instability, thus leading to the rapid approach of the anti

  10. Solar Energy Project, Activities: Chemistry & Physics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of chemistry and physics experiments. Each unit presents an introduction to the unit; objectives; required skills and knowledge; materials; method; questions; recommendations for further work; and a teacher information sheet.…

  11. Solar Energy Project, Activities: Junior High Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of the junior high science curriculum. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher…

  12. Solar Energy Project, Activities: Earth Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of earth science experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; method; questions; recommendations for further study; and a teacher information sheet. The teacher…

  13. Vestibular influence on tongue activity.

    PubMed

    Elmund, J; Bowman, J P; Morgan, R J

    1983-07-01

    The vestibular system was electrically stimulated in cats anesthetized with ketamine. Peripheral stimulation by an electrode positioned in the vestibule evoked torsional contralateral eye deviations and an electromyogram (EMG) response in a contralateral dorsal neck extensor. Consistently associated with this well documented vestibular pattern was an EMG response in tongue protrusive muscles, at a latency of 13 +/- 5 (means +/- SD) ms. Stimulation in a specific part of the rostroventral lateral vestibular nucleus elicited the same combination of responses: torsional contralateral eye deviations, dorsal neck EMG, and tongue EMG at a latency of 14 +/- 3 ms. Possible tongue activation by current spread to peripheral and central neural structures was examined in detail. Cerebellar, V, VII, cochlear, IX, X, and XII nerve influences were considered. On the basis of combined evidence, it was concluded that the vestibular system does influence tongue activity. PMID:6602714

  14. 20 March 2015 solar eclipse influence on sporadic E layer

    NASA Astrophysics Data System (ADS)

    Pezzopane, M.; Pietrella, M.; Pignalberi, A.; Tozzi, R.

    2015-11-01

    This paper shows how the solar eclipse occurred on 20 March 2015 influenced the sporadic E (Es) layer as recorded by the Advanced Ionospheric Sounder by Istituto Nazionale di Geofisica e Vulcanologia (AIS-INGV) ionosondes installed at Rome (41.8°N, 12.5°E) and Gibilmanna (37.9°N, 14.0°E), Italy. In these locations, the solar eclipse was only partial, with the maximum area of the solar disk obscured by the Moon equal to ∼54% at Rome and ∼45% at Gibilmanna. Nevertheless, it is shown that the strong thermal gradients that usually accompany a solar eclipse, have significantly influenced the Es phenomenology. Specifically, the solar eclipse did not affect the Es layer in terms of its maximum intensity, which is comparable with that of the previous and next day, but rather in terms of its persistence. In fact, both at Rome and Gibilmanna, contrary to what typically happens in March, the Es layer around the solar eclipse time is always present. On the other hand, this persistence is also confirmed by the application of the height-time-intensity (HTI) technique. A detailed analysis of isoheight ionogram plots suggests that traveling ionospheric disturbances (TIDs) likely caused by gravity wave (GW) propagation have played a significant role in causing the persistence of the Es layer.

  15. Influence of Diffused Solar Radiation on the Solar Concentrating System of a Plant Shoot Configuration

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya

    Investigation of a plant shoot configuration is used to obtain valuable information concerning the received light system. Additionally, analysis results concerning a plant shoot configuration interaction with direct solar radiation were taken from a past study. However, in order to consider a plant shoot as a received sunlight system, it is necessary to understand the received light characteristics of both direct solar radiation and diffused solar radiation. Under a clear sky, the ratio of direct solar radiation to diffused solar radiation is large. However, under a clouded sky, the amount of diffused solar radiation becomes larger. Therefore, in this paper, we investigate the received light characteristics of a plant shoot configuration under the influence of diffused solar radiation. As a result, we clarify the relationship between the amount of diffused solar radiation and the amount of received light as a function of the characteristics of the plant shoot configuration. In order to obtain diffused solar radiation, it is necessary to correspond to the radiation of the multi-directions. In the analysis, the characteristic of the difference in arrangement of the top leaf and the other leaf was obtained. Therefore, in analysis, leaves other than the top were distributed in the wide range.

  16. Comparison of Solar Active Region Complexity Andgeomagnetic Activity from 1996 TO 2014

    NASA Astrophysics Data System (ADS)

    Tanskanen, E. I.; Nikbakhsh, S.; Perez-Suarez, D.; Hackman, T.

    2015-12-01

    We have studied the influence of magnetic complexity of solar Active Regions (ARs)on geomagnetic activity from 1996 to 2014. Sunspots are visual indicators of ARswhere the solar magnetic field is disturbed. We have used International, American,Space Environment Service Center (SESC) and Space Weather Prediction Center(SWPC) sunspot numbers to examine ARs. Major manifestations of solar magneticactivity, such as flares and Coronal Mass Ejections (CMEs), are associated withARs. For this study we chose the Mount Wilson scheme. It classifies ARs in terms oftheir magnetic topology from the least complex (?) to the most complex one ( ?).Several cases have been found where the more complex structures produce strongerflares and CMEs than the less complex ones. We have a list of identified substormsavailable with different phases and their durations. This will be compared to ourmagnetic complexity data to analyse the effects of active region magnetic complexityto the magnetic activity on the vicinity of the Earth.

  17. Division II: Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Scrijver, Karel J.; Klimchuk, James A.; Charbonneau, Paul; Fletcher, Lyndsay; Hasan, S. Sirajul; Hudson, Hugh S.; Kusano, Kanya; Mandrini, Cristina H.; Peter, Hardi; Vršnak, Bojan; Yan, Yihua

    2015-08-01

    The Business Meeting of Commission 10 was held as part of the Business Meeting of Division II (Sun and Heliosphere), chaired by Valentin Martínez-Pillet, the President of the Division. The President of Commission 10 (C10; Solar activity), Lidia van Driel-Gesztelyi, took the chair for the business meeting of C10. She summarised the activities of C10 over the triennium and the election of the incoming OC.

  18. Influence of solar UVA on erythemal irradiances.

    PubMed

    Parisi, A V; Turnbull, D J; Kimlin, M G

    2006-06-21

    Many materials in everyday use such as window glass in homes and offices, glass in sunrooms and greenhouses, vehicle glass and some brands of sunscreens act as a barrier to the shorter UVB wavelengths while transmitting some of the longer UVA wavelengths. This paper reports on the erythemal exposures due to the UVA waveband encountered over a 12-month period for a solar zenith angle (SZA) range of 4 degrees to 80 degrees and the resulting times required for an erythemal exposure of one standard erythemal dose (SED) due to the erythemal exposures to the UVA wavelengths. The minimum time for an exposure of one SED due to the UVA wavelengths in winter is approximately double that what it is in summer. The time period of 40 to 60 min was the most frequent length of time for an exposure of one SED with 60 to 80 min the next frequent length of time required for a one SED exposure. PMID:16757874

  19. Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind.

    PubMed

    Sakao, Taro; Kano, Ryouhei; Narukage, Noriyuki; Kotoku, Jun'ichi; Bando, Takamasa; Deluca, Edward E; Lundquist, Loraine L; Tsuneta, Saku; Harra, Louise K; Katsukawa, Yukio; Kubo, Masahito; Hara, Hirohisa; Matsuzaki, Keiichi; Shimojo, Masumi; Bookbinder, Jay A; Golub, Leon; Korreck, Kelly E; Su, Yingna; Shibasaki, Kiyoto; Shimizu, Toshifumi; Nakatani, Ichiro

    2007-12-01

    The Sun continuously expels a huge amount of ionized material into interplanetary space as the solar wind. Despite its influence on the heliospheric environment, the origin of the solar wind has yet to be well identified. In this paper, we report Hinode X-ray Telescope observations of a solar active region. At the edge of the active region, located adjacent to a coronal hole, a pattern of continuous outflow of soft-x-ray-emitting plasmas was identified emanating along apparently open magnetic field lines and into the upper corona. Estimates of temperature and density for the outflowing plasmas suggest a mass loss rate that amounts to approximately 1/4 of the total mass loss rate of the solar wind. These outflows may be indicative of one of the solar wind sources at the Sun. PMID:18063788

  20. Possible helio-geomagnetic activity influence on cardiological cases

    NASA Astrophysics Data System (ADS)

    Katsavrias, Christos

    Eruptive solar events as flares and coronal mass ejections (CMEs) occur during solar activ-ity periods. Energetic particles, fast solar wind plasma and electromagnetic radiation pass through interplanetary space, arrive on Earth's ionosphere-magnetosphere and produce various disturbances. It is well known the negative influence of geomagnetic substorms on the human technological applications on geospace. During the last 25 years, many studies concerning the possible influence on the human health are published. Increase of the Acute Coronary Syn-dromes and disorders of the Cardiac Rhythm, increase of accidents as well as neurological and psychological disorders (e.g. increase of suicides) during or near to the geomagnetic storms time interval are reported. In this study, we research the problem in Greece, focusing on patients with Acute Myocardial Infraction, hospitalized in the 2nd Cardiological Department of the General Hospital of Nikaea (Piraeus City), for the time interval 1997-2007 (23rd solar cycle) and also to the arrival of emergency cardiological cases to Emergency Department of two greek hospitals, the General Hospital of Lamia City and the General Hospital of Veria City during the selected months, with or without helio-geomagnetic activity, of the 23rd solar cycle. Increase of cases is recorded during the periods with increase helio-geomagnetic activity. The necessity of continuing the research for a longer period and with a bigger sample is high; so as to exact more secure conclusions.

  1. The Heliosphere Through the Solar Activity Cycle

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Lanzerotti, L. J.; Suess, S. T.

    2006-01-01

    Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun the heliosphere has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors describe the rise in solar ESA and NASA have now unamiously agreed a third extension to operate the highly successful Ulysses spacecraft until March 2008 and, in 2007 and 2008, the European-built space probe will fly over the poles of the Sun for a third time. This will enable Ulysses to add an important chapter to its survey of the high-latitude heliosphere and this additional material would be included in a 2nd edition of this book.

  2. Forecasts of solar and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Joselyn, Joann

    1987-01-01

    Forecasts of solar and geomagnetic activity are critical since these quantities are such important inputs to the thermospheric density models. At this time in the history of solar science there is no way to make such a forecast from first principles. Physical theory applied to the Sun is developing rapidly, but is still primitive. Techniques used for forecasting depend upon the observations over about 130 years, which is only twelve solar cycles. It has been noted that even-numbered cycles systematically tend to be smaller than the odd-numbered ones by about 20 percent. Another observation is that for the last 12 cycle pairs, an even-numbered sunspot cycle looks rather like the next odd-numbered cycle, but with the top cut off. These observations are examples of approximate periodicities that forecasters try to use to achieve some insight into the nature of an upcoming cycle. Another new and useful forecasting aid is a correlation that has been noted between geomagnetic indices and the size of the next solar cycle. Some best estimates are given concerning both activities.

  3. The variations of prominence activities during solar cycle

    NASA Astrophysics Data System (ADS)

    Shimojo, Masumi

    The prominence activities (prominence eruption/disappearance) in the solar atmosphere closely relate with the CMEs that cause great influences on heliosphere and magnetosphere. Gopal-swarmy et al. (2003) reported that 72 The Nobeyama Radioheliograph (NoRH) is observing Sun in microwave (17 GHz) since 1992. At a flare, the main component of the microwave from Sun is emitted from non-thermal electrons that are accelerated by flare. On the other hand, the main component of the microwave is thermal emission when Sun is quiet, and a prominence is clearly observed in microwave because there is the prominence on the limb. We developed the automatic prominence activity detection program based on 17 GHz images observed by NoRH, and investigated the variation of the properties of the prominence activities that oc-curred from 1992 to the end of 2009. We found the following results. 1. The variation in the number of prominence activities is similar to that of sunspots during one solar cycle but there are differences between the peak times of prominence activities and sunspots. 2. The frequency distribution as a function of the magnitude of the prominence activities the size of activated prominences at each phase shows a power-law distribution. The power-law index of the distribution does not change except around the solar minimum. 3. The number of promi-nence activities has a dependence on the latitude On the other hand the average magnitude is independent of the latitude. In the paper, we will also discuss the relationship the other properties of prominence eruptions, solar cycle and the photospheric magnetic field.

  4. Coronal Activity and Extended Solar Cycles

    NASA Astrophysics Data System (ADS)

    Altrock, R. C.

    2012-12-01

    Wilson et al. (1988, Nature 333, 748) discussed a number of solar parameters, which appear at high latitudes and gradually migrate towards the equator, merging with the sunspot "butterfly diagram". They found that this concept had been identified by earlier investigators extending back to 1957. They named this process the "Extended Solar Cycle" (ESC). Altrock (1997, Solar Phys. 170, 411) found that this process continued in Fe XIV 530.3 nm emission features. In cycles 21 - 23 solar maximum occurred when the number of Fe XIV emission regions per day > 0.19 (averaged over 365 days and both hemispheres) first reached latitudes 18°, 21° and 21°, for an average of 20° ± 1.7°. Other recent studies have shown that Torsional Oscillation (TO) negative-shear zones are co-located with the ESC from at least 50° down to the equator and also in the zones where the Rush to the Poles occur. These phenomena indicate that coronal activity occurring up to 50° and higher latitudes is related to TO shear zones, another indicator that the ESC is an important solar process. Another high-latitude process, which appears to be connected with the ESC, is the "Rush to the Poles" ("Rush") of polar crown prominences and their associated coronal emission, including Fe XIV. The Rush is is a harbinger of solar maximum (cf. Altrock, 2003, Solar Phys. 216, 343). Solar maximum in cycles 21 - 23 occurred when the center line of the Rush reached a critical latitude. These latitudes were 76°, 74° and 78°, respectively, for an average of 76° ± 2°. Applying the above conclusions to Cycle 24 is difficult due to the unusual nature of this cycle. Cycle 24 displays an intermittent "Rush" that is only well-defined in the northern hemisphere. In 2009 an initial slope of 4.6°/yr was found in the north, compared to an average of 9.4 ± 1.7 °/yr in the previous three cycles. This early fit to the Rush would have reached 76° at 2014.6. However, in 2010 the slope increased to 7.5°/yr (an increase

  5. Division E Commission 10: Solar Activity

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Fletcher, Lyndsay; van Driel-Gesztelyi, Lidia; Asai, Ayumi; Cally, Paul S.; Charbonneau, Paul; Gibson, Sarah E.; Gomez, Daniel; Hasan, Siraj S.; Veronig, Astrid M.; Yan, Yihua

    2016-04-01

    After more than half a century of community support related to the science of ``solar activity'', IAU's Commission 10 was formally discontinued in 2015, to be succeeded by C.E2 with the same area of responsibility. On this occasion, we look back at the growth of the scientific disciplines involved around the world over almost a full century. Solar activity and fields of research looking into the related physics of the heliosphere continue to be vibrant and growing, with currently over 2,000 refereed publications appearing per year from over 4,000 unique authors, publishing in dozens of distinct journals and meeting in dozens of workshops and conferences each year. The size of the rapidly growing community and of the observational and computational data volumes, along with the multitude of connections into other branches of astrophysics, pose significant challenges; aspects of these challenges are beginning to be addressed through, among others, the development of new systems of literature reviews, machine-searchable archives for data and publications, and virtual observatories. As customary in these reports, we highlight some of the research topics that have seen particular interest over the most recent triennium, specifically active-region magnetic fields, coronal thermal structure, coronal seismology, flares and eruptions, and the variability of solar activity on long time scales. We close with a collection of developments, discoveries, and surprises that illustrate the range and dynamics of the discipline.

  6. Quasi-biennial modulation of solar neutrino flux: connections with solar activity

    NASA Astrophysics Data System (ADS)

    Vecchio, A.; Laurenza, M.; D'alessi, L.; Carbone, V.; Storini, M.

    2011-12-01

    A quasi-biennial periodicity has been recently found (Vecchio et al., 2010) in the solar neutrino flux, as detected at the Homestake experiment, as well as in the flux of solar energetic protons, by means of the Empirical Modes Decomposition technique. Moreover, both fluxes have been found to be significantly correlated at the quasi-biennial timescale, thus supporting the hypothesis of a connection between solar neutrinos and solar activity. The origin of this connection is investigated, by modeling how the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect (the process for which the well-known neutrino flavor oscillations are modified in passing through the material) could be influenced by matter fluctuations. As proposed by Burgess et al., 2004, by introducing a background magnetic field in the helioseismic model, density fluctuations can be excited in the radiative zone by the resonance between helioseismic g-modes and Alfvén waves. In particular, with reasonable values of the background magnetic field (10-100 kG), the distance between resonant layers could be of the same order of neutrino oscillation length. We study the effect over this distance of a background magnetic field which is variable with a ~2 yr period, in agreement with typical variations of solar activity. Our findings suggest that the quasi-biennial modulation of the neutrino flux is theoretically possible as a consequence of the magnetic field variations in the solar interior. A. Vecchio, M. Laurenza, V. Carbone, M. Storini, The Astrophysical Journal Letters, 709, L1-L5 (2010). C. Burgess, N. S. Dzhalilov, T. I. Rashba, V., B.Semikoz, J. W. F. Valle, Mon. Not. R. Astron. Soc., 348, 609-624 (2004).

  7. Cosmic rays, solar activity and the climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.; Wolfendale, A. W.

    2013-12-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  8. Cosmic Rays, Solar Activity and the Climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.

    2013-02-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialisation is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this paper a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialisation is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  9. Solar activities at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Klimas, Paul C.; Hasti, David E.

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  10. Solar activities at Sandia National Laboratories

    SciTech Connect

    Klimas, P.C.; Hasti, D.E.

    1994-03-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth`s present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  11. Solar irradiance variations due to active regions

    SciTech Connect

    Oster, L.; Schatten, K.H.; Sofia, S.

    1982-05-15

    We have been able to reproduce the variations of the solar irradiance observed by ACRIM to an accuracy of better than +- 0.4 W m/sup -2/, assuming that during the 6 month observation period in 1980 the solar luminosity was constant. The improvement over previous attempts is primarily due to the inclusion of faculae. The reproduction scheme uses simple geometrical data on spot and facula areas, and conventional parameters for the respective fluxes and angular dependencies. The quality of reproduction is not very sensitive to most of the details of these parameters; nevertheless, there conventional parameters cannot be very different from their actual values in the solar atmosphere. It is interesting that the time average of the integrated excess emission (over directions) of the faculae cancels out the integrated deficit produced by the spots, within an accuracy of about 10%. If this behavior were maintained over longer periods of time, say, on the order of an activity cycle, active regions could be viewed as a kind of lighthouse where the energy deficit near the normal direction, associated with the spots, is primarily reemitted close to the tangential directions by the faculae. The currently available data suggest that energy ''storage'' associated with the redirection of flux near active regions on the Sun is comparable to the lifetime of the faculae.

  12. The Magnetic Origins of Solar Activity

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    2012-01-01

    The defining physical property of the Sun's corona is that the magnetic field dominates the plasma. This property is the genesis for all solar activity ranging from quasi-steady coronal loops to the giant magnetic explosions observed as coronal mass ejections/eruptive flares. The coronal magnetic field is also the fundamental driver of all space weather; consequently, understanding the structure and dynamics of the field, especially its free energy, has long been a central objective in Heliophysics. The main obstacle to achieving this understanding has been the lack of accurate direct measurements of the coronal field. Most attempts to determine the magnetic free energy have relied on extrapolation of photospheric measurements, a notoriously unreliable procedure. In this presentation I will discuss what measurements of the coronal field would be most effective for understanding solar activity. Not surprisingly, the key process for driving solar activity is magnetic reconnection. I will discuss, therefore, how next-generation measurements of the coronal field will allow us to understand not only the origins of space weather, but also one of the most important fundamental processes in cosmic and laboratory plasmas.

  13. Solar Eruptions Initiated in Sigmoidal Active Regions

    NASA Astrophysics Data System (ADS)

    Savcheva, Antonia

    2016-07-01

    active regions that have been shown to possess high probability for eruption. They present a direct evidence of the existence of flux ropes in the corona prior to the impulsive phase of eruptions. In order to gain insight into their eruptive behavior and how they get destabilized we need to know their 3D magnetic field structure. First, we review some recent observations and modeling of sigmoidal active regions as the primary hosts of solar eruptions, which can also be used as useful laboratories for studying these phenomena. Then, we concentrate on the analysis of observations and highly data-constrained non-linear force-free field (NLFFF) models over the lifetime of several sigmoidal active regions, where we have captured their magnetic field structure around the times of major flares. We present the topology analysis of a couple of sigmoidal regions pointing us to the probable sites of reconnection. A scenario for eruption is put forward by this analysis. We demonstrate the use of this topology analysis to reconcile the observed eruption features with the standard flare model. Finally, we show a glimpse of how such a NLFFF model of an erupting region can be used to initiate a CME in a global MHD code in an unprecedented realistic manner. Such simulations can show the effects of solar transients on the near-Earth environment and solar system space weather.

  14. The physical mechanism of the solar variability influence on electrical and climatic characteristics of the troposphere

    NASA Astrophysics Data System (ADS)

    Zherebtsov, G. A.; Kovalenko, V. A.; Molodykh, S. I.

    Possible mechanisms of solar-climatic connections, which may be of importance over short and long time intervals, are discussed. The variations of energetic balance of Earth's climatic system for the last 50 years are estimated. It is ascertained that the imbalance between the flux of solar energy that comes to the Earth and radiates to space is of 0.1% for the last ten years. The significance is analyzed for the possible influence of variations of solar constant upon the energetic balance of the atmosphere. The physical mechanism of the influence of solar activity on climatic characteristics and the atmospheric circulation is suggested and theoretically substantiated. The mechanism is based on the redistribution in lower-troposphere of condensation nuclei by the vertical electric field. This electric field is determined by the ionosphere-Earth electric potential, which in the Polar Regions is controlled not only by tropical thunderstorms and by the galactic cosmic-ray intensity but also by solar cosmic-ray fluxes. The height redistribution in the atmosphere of condensation nuclei with a change of the electric field of the atmosphere is accompanied by a change in total latent heat (phase transition of water vapor), by changes in radiation balance, and by subsequent changes of the thermobaric field of troposphere. The results of analysis of thermobaric field variations for the periods of invasion of abnormally powerful solar cosmic ray fluxes and magnetic storms confirm the reality of manifestation of heliogeophysical disturbances.

  15. The Influence of the Solar Sector Angle on the Ionosphere

    NASA Astrophysics Data System (ADS)

    McWilliams, K. A.; Huyghebaert, D. R.

    2014-12-01

    Undulations of the heliospheric current sheet result in identifiable sectors at Earth where the interplanetary magnetic field (IMF) is directed predominantly toward or away from the Sun. When the IMF is directed toward the Sun magnetic reconnection results in open magnetic field lines in the northern polar cap that are directed upstream into the solar wind, providing a path of direct access for solar wind plasma into the northern polar cap and producing polar rain. At the same time, the reconnected field lines threading the southern polar cap are directed downstream, draping along the magnetotail and leading to low particle fluxes precipitating into the southern polar cap. The magnetic field asymmetry arising from a strong radial IMF component results in asymmetric particle fluxes in the north and south polar caps. At times, a very clear correlation exists between the number of echoes recorded by the Super Dual Auroral Radar Network (SuperDARN) and the orientation of IMF in the solar sector. The polar cap that is connected upstream produces fewer ionospheric and ground echoes for the SuperDARN radars in that hemisphere. The echo occurrence is opposite in the north and in the south, and the high or low echo occurrence persists through the solar sector. The presence or lack of polar rain precipitation is expected to alter the ionospheric density profile and lead to different propagation of the radio waves through the ionosphere. Changes in tropospheric weather circulation have been linked to the passage of a solar sector boundary at Earth, and this direct solar-terrestrial influence at ionospheric altitudes may prove to be essential in understanding interplanetary influences on the troposphere.

  16. High Energetic Solar Flares in the Solar Minima Activity in Comparative Study with the Solar Maxima Activity from 1954 to 2014 and Their Effects on the Space Environment

    NASA Astrophysics Data System (ADS)

    Mohamed, Wael

    Solar 11-year cycle of solar activity is characterized by the rise and fall in the numbers and areas of sunspots. On solar maximum activity, many flares and CMEs can affect the near-earth space environment. But on the solar minimum activity, there are sometimes solar proton events, (e.g. High Energetic Solar Proton Flares on the declining phase of solar cycle 22 for M.A.Mosalam Shaltout, 1995), have the same effect for those on the solar maximum activity or more. So, a study must be made for the ascending and descending phases of solar activity for a set of solar cycles (from 1954 to 2014) to confirm the conclusion of Mosalam Shaltout on the light of the present high quality observations from ground and by artificial satellites.

  17. Solar Energy Education. Renewable energy activities for earth science

    SciTech Connect

    Not Available

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  18. Solar Radiation Influence on Ground-Level Geomagnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Weimer, D. R.; Clauer, C. R.

    2011-12-01

    An empirical model has been developed for predicting ground-level geomagnetic perturbations. Measurements from over 112 magnetometers were used, along with simultaneous observations of the solar wind and interplanetary magnetic field (IMF) from the ACE satellite. These data were from an eight-year period, from 1998 through 2005, covering both the rise and fall of the solar cycle. Variations in the solar radiation during this cycle are incorporated into the model, as determined by the F10.7 index of solar radio flux. Variations in ionospheric conductivity, under the influence of both season (dipole tilt angle) and solar radiation are implicitly included. Comparisons of model calculations with measurements at different locations show very good results. Maps of the magnetic perturbations for different conditions generally look as expected. Surprisingly, increasing the F10.7 index does not always increase the magnetic perturbations on the ground at all locations, as one might expect. The largest increases in the perturbations occur near the cusp when the IMF is Northward or has a strong Y component. However, in the nightside, as well as under the Region-2 currents, the ground-level perturbations are more likely to have a smaller magnitude with a higher F10.7 index.

  19. Tsunami related to solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2016-04-01

    The authors of this study wanted to verify the existence of a correlation between earthquakes of high intensity capable of generating tsunami and variations of solar and Earth's geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the four earthquakes of high intensity that have generated tsunamis: 1) Japan M9 earthquake occurred on March 11, 2011 at 05:46 UTC; 2) Japan M7.1 earthquake occurred on October 25, 2013 at 17:10 UTC; 3) Chile M8.2 earthquake occurred on April 1, 2014 at 23:46 UTC; 4) Chile M8.3 earthquake occurred on September 16, 2015 at 22:54 UTC. The data relating to the four earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark and by Space Weather Prediction Center of Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already

  20. Preferred longitudes in solar and stellar activity

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.

    An analysis of the distribution of starspots on the surfaces of very active stars, such as RS CVn- FK Com-type stars as well as young solar analogs, reveals preferred longitudes of spot formation and their quasi-periodic oscillations, i.e. flip-flop cycles. A non-linear migration of the preferred longitudes suggests the presence of the differential rotation and variations of mean spot latitudes. It enables recovering stellar butterfly diagrams. Such phenomena are found to persist in the sunspot activity as well. A comparison of the observed properties of preferred longitudes on the Sun with those detected on more active stars leads to the conclusion that we can learn fine details of the stellar dynamo by studying the Sun, while its global parameters on the evolutionary time scale are provided by a sample of active stars.

  1. Is motivation influenced by geomagnetic activity?

    PubMed

    Starbuck, S; Cornélissen, G; Halberg, F

    2002-01-01

    To eventually build a scientific bridge to religion by examining whether non-photic, non-thermic solar effects may influence (religious) motivation, invaluable yearly world wide data on activities from 1950 to 1999 by Jehovah's Witnesses on behalf of their church were analyzed chronobiologically. The time structure (chronome) of these archives, insofar as it is able to be evaluated in yearly means for up to half a century, was assessed. Least squares spectra in a frequency range from one cycle in 42 to one in 2.1 years of data on the average number of hours per month spent in work for the church, available from 103 different geographic locations, as well as grand totals also including other sites, revealed a large peak at one cycle in about 21 years. The non-linear least squares fit of a model consisting of a linear trend and a cosine curve with a trial period of 21.0 years, numerically approximating that of the Hale cycle, validated the about 21.0-year component in about 70% of the data series, with the non-overlap of zero by the 95% confidence interval of the amplitude estimate. Estimates of MESOR (midline-estimating statistic of rhythm, a rhythm (or chronome) adjusted mean), amplitude and period were further regressed with geomagnetic latitude. The period estimate did not depend on geomagnetic latitude. The about 21.0-year amplitude tends to be larger at low and middle than at higher latitudes and the resolution of the about 21.0-year cycle, gauged by the width of 95% confidence intervals for the period and amplitude, is higher (the 95% confidence intervals are statistically significantly smaller) at higher than at lower latitudes. Near-matches of periods in solar activity and human motivation hint that the former may influence the latter, while the dependence on latitude constitutes evidence that geomagnetic activity may affect certain brain areas involved in motivation, just as it was earlier found that it is associated with effects on the electrocardiogram

  2. Solar-energy absorber: Active infrared (IR) trap

    NASA Technical Reports Server (NTRS)

    Brantley, L. W., Jr.

    1974-01-01

    Efficiency of solar-energy absorbers may be improved to 95% by actively cooling their intermediate glass plates. This approach may be of interest to manufacturers of solar absorbers and to engineers and scientists developing new sources of energy.

  3. Nanoflare activity in the solar chromosphere

    SciTech Connect

    Jess, D. B.; Mathioudakis, M.; Keys, P. H.

    2014-11-10

    We use ground-based images of high spatial and temporal resolution to search for evidence of nanoflare activity in the solar chromosphere. Through close examination of more than 1 × 10{sup 9} pixels in the immediate vicinity of an active region, we show that the distributions of observed intensity fluctuations have subtle asymmetries. A negative excess in the intensity fluctuations indicates that more pixels have fainter-than-average intensities compared with those that appear brighter than average. By employing Monte Carlo simulations, we reveal how the negative excess can be explained by a series of impulsive events, coupled with exponential decays, that are fractionally below the current resolving limits of low-noise equipment on high-resolution ground-based observatories. Importantly, our Monte Carlo simulations provide clear evidence that the intensity asymmetries cannot be explained by photon-counting statistics alone. A comparison to the coronal work of Terzo et al. suggests that nanoflare activity in the chromosphere is more readily occurring, with an impulsive event occurring every ∼360 s in a 10,000 km{sup 2} area of the chromosphere, some 50 times more events than a comparably sized region of the corona. As a result, nanoflare activity in the chromosphere is likely to play an important role in providing heat energy to this layer of the solar atmosphere.

  4. A Forecast of Reduced Solar Activity and Its Implications for NASA

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth; Franz, Heather

    2005-01-01

    The "Solar Dynamo" method of solar activity forecasting is reviewed. Known generically as a 'precursor" method, insofar as it uses observations which precede solar activity generation, this method now uses the Solar Dynamo Amplitude (SODA) Index to estimate future long-term solar activity. The peak amplitude of the next solar cycle (#24), is estimated at roughly 124 in terms of smoothed F10.7 Radio Flux and 74 in terms of the older, more traditional smoothed international or Zurich Sunspot number (Ri or Rz). These values are significantly smaller than the amplitudes of recent solar cycles. Levels of activity stay large for about four years near the peak in smoothed activity, which is estimated to occur near the 2012 timeflame. Confidence is added to the prediction of low activity by numerous examinations of the Sun s weakened polar field. Direct measurements are obtained by the Mount Wilson Solar Observatory and the Wilcox Solar Observatory. Further support is obtained by examining the Sun s polar faculae (bright features), the shape of coronal soft X-ray "holes," and the shape of the "source surface" - a calculated coronal feature which maps the large scale structure of the Sun s field. These features do not show the characteristics of well-formed polar coronal holes associated with typical solar minima. They show stunted polar field levels, which are thought to result in stunted levels of solar activity during solar cycle #24. The reduced levels of solar activity would have concomitant effects upon the space environment in which satellites orbit. In particular, the largest influences would affect orbit determination of satellites in LEO (Low Earth Orbit), based upon the altered thermospheric and exospheric densities. A decrease in solar activity would result in smaller satellite decay rates, as well as fewer large solar events that can destroy satellite electronic functions. Other effects of reduced solar activity upon the space environment include enhanced

  5. MASC: Magnetic Activity of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and

  6. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  7. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  8. Automatic Tracking of Active Regions and Detection of Solar Flares in Solar EUV Images

    NASA Astrophysics Data System (ADS)

    Caballero, C.; Aranda, M. C.

    2014-05-01

    Solar catalogs are frequently handmade by experts using a manual approach or semi-automated approach. The appearance of new tools is very useful because the work is automated. Nowadays it is impossible to produce solar catalogs using these methods, because of the emergence of new spacecraft that provide a huge amount of information. In this article an automated system for detecting and tracking active regions and solar flares throughout their evolution using the Extreme UV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft is presented. The system is quite complex and consists of different phases: i) acquisition and preprocessing; ii) segmentation of regions of interest; iii) clustering of these regions to form candidate active regions which can become active regions; iv) tracking of active regions; v) detection of solar flares. This article describes all phases, but focuses on the phases of tracking and detection of active regions and solar flares. The system relies on consecutive solar images using a rotation law to track the active regions. Also, graphs of the evolution of a region and solar evolution are presented to detect solar flares. The procedure developed has been tested on 3500 full-disk solar images (corresponding to 35 days) taken from the spacecraft. More than 75 % of the active regions are tracked and more than 85 % of the solar flares are detected.

  9. Geomagnetic Activity Influence on Thermobaric Characteristics of the Atmosphere.

    NASA Astrophysics Data System (ADS)

    Rubtsova, O. A.; Zherebtsov, G. A.; Kovalenko, V. A.; Molodykh, S. I.

    2009-10-01

    The main points of the model of the solar activity effect on the Earth climatic system are presented. The model is based on the physical mechanism of heliogeophysical factors influence on climatic characteristics and atmospheric circulation in the high-latitude troposphere through the atmospheric electricity. In accordance with this mechanism, the atmospheric electricity parameters in the high latitudes depend on the solar activity; at the same time, they influence the altitude distribution of charged condensation nuclei in the troposphere, as well as the cloudiness formation and radiation balance. The mechanism is proved to operate more efficiently in the high latitudes resulting in additional cloudiness formation in areas with adequate vapour concentration. We present complex analysis results of response of temperature and tropospheric pressure fields to different heliogeophysical disturbances. It is detected that regular changes of the temperature and pressure field dynamic accompany these disturbances.

  10. The evolution of solar ultraviolet luminosity. [influence on planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.; Walker, J. C. G.

    1982-01-01

    Astronomical observations of stars analogous to the sun are used to construct a tentative account of the evolution of solar UV luminosity. Evidence exists that the young sun was a much more powerful source of energetic particles and radiation than it is today, and while on the main sequence, solar activity has declined as an inverse power law of age as a consequence of angular momentum loss to the solar wind. Observations of pre-main sequence stars indicate that before the sun reached the main sequence, it may have emitted as much as ten thousand times the amount of ultraviolet radiation that it does today. The impact of the results on knowledge of photochemistry and escape of constituents of primordial planetary atmospheres is discussed.

  11. Thermospheric hydrogen - The long-term solar influence

    NASA Technical Reports Server (NTRS)

    Breig, E. L.; Sanatani, S.; Hanson, W. B.

    1985-01-01

    Atmospheric Explorer C and E satellite data are employed for a long-term analysis of the behavior of thermospheric hydrogen with respect to the 11 yr solar cycle. The data covered the period 1974-79 (increasing solar activity) and comprised in situ ionospheric (F region) and neutral atmospheric data. The data were analyzed statistically to characterize low latitude hydrogen behavior, e.g., the diurnal variation and mean concentration over the 5 yr data sampling period. Both the mean and daily maximum/minimum ratio (DMMR) varied with the solar F index. The escaping flux of H ions became a contant around 1000 K. Increasing thermospheric temperatures lowered the DMMR value. However, the DMMR values calculated were consistently large enough to require inclusion of neutral winds and/or diurnal variations in charge exchange fluxes moving in and out of the plasmasphere in any model for thermospheric hydrogen behavior.

  12. Influence of solar wind ions on photoemission charging of dust

    NASA Astrophysics Data System (ADS)

    Nouzak, Libor; Richterova, Ivana; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek

    2016-04-01

    The lunar surface covered by a layer of dust grains is exposed to solar wind particles and photons coming from the Sun on the sunlit side. Solar wind ions cause sputtering of dust grains or can be implanted into grains. We suppose that as a consequence of ion implantation, an additional energy is transferred to grains, more valence band electrons are excited, and the photoelectron yield is increased. An increase of the photoelectron current causes the enhanced density of electrons that form a sheet above the illuminated lunar surface. Thus, an influence of solar wind ions on the Debye length and photoelectron sheet formation is expected. We present laboratory estimations of work functions and photoelectron yields of a single micron-sized silica grain before and after ion implantation. The silica grain used as a lunar simulant is caught in the electrodynamic trap. Grain's specific charge is evaluated by an analysis of the grain motion within the trap, while its work function is determined from observations of a time evolution of the charge-to-mass ratio when the grain is irradiated by photons of different emission lines. By comparison of the photoelectron current (from grain) with photon flux (from UV source), we establish the photoelectron yield of the trapped object. The influence of ion implantation is thoroughly analyzed and discussed.

  13. Radio magnetography of the solar active regions

    NASA Astrophysics Data System (ADS)

    Gelfreikh, G. B.; Shibasaki, K.

    The observations of the solar magnetic fields is one of the most important basics for study of all important processes in structuring the solar atmosphere and most kinds of the release of the energy. The radio methods are of the special interest here because they gain the information on the magnetic field strength in the solar corona and upper chromosphere where traditional optical methods do not work. The construction of the Nobeyama radio heliograph opens a new era in usage radio methods for solar radio magnetography due to some unique property of the instrument: - The 2D mapping of the whole disk of the sun both in I and V Stokes parameters with resolution of 10 arcsec. - Regular observations (without breaks due to weather conditions), eight hours a day, already for seven years. The most effective and representative radio method of measuring the solar magnetic fields is to use polarization measurements of the thermal bremsstrahlung (free-free emission). It is applicable both to analysis of chromospheric and coronal magnetic fields and presents information on longitude component of the magnetic field strength in solar active regions. Three problems are met, however: (i) One needs to measure very low degree of polarization (small fraction of a percent); (ii) To get the real value of the field the spectral data are necessary. (iii) While observing an active region on the disk we have got the overlapping effects on polarized signal of the chromospheric and coronal magnetic fields. To get higher sensitivity the averaging of the radio maps over periods of about ten minutes were used with the results of sensitivity on V-maps of the order 0.1%. Observations for a number of dates have been analysed (August 22, 1992, October 31, 1992; June 30, 1993, July 22,1994, June 15, 1995 and some more). In all cases a very good similarity was found of the polarized regions (V-maps) with the Ca^ + plages in form and total coincidence with the direction of the magnetic fields on the

  14. Composite Mg II solar activity index for solar cycles 21 and 22

    NASA Technical Reports Server (NTRS)

    Deland, Matthew T.; Cebula, Richard P.

    1993-01-01

    On the basis of version 1.0 of the composite MG II solar activity index data set, it is shown that the change in the 27-day running average of the Mg II index from solar maximum to solar minimum is about 8 percent for solar cycle 21 and about 9 percent for solar cycle 22 through January 1992. Scaling factors based on the short-term variations in the Mg II index and solar irradiance data sets are developed for each instrument to estimate solar variability at mid-UV and near-UV wavelengths. A set of composite scale factors are derived for use with the present composite MG index. Near 205 cm, where solar irradiance variations are important for stratospheric chemistry, the estimated change in irradiance during solar cycle 22 is about 10 +/- 1 percent using the composite Mg II index (version 1.0) and scale factors.

  15. Correlation of Doppler noise during solar conjunctions with fluctuations in solar activity

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Rockwell, S. T.

    1975-01-01

    Deviations betweeb observed Doppler noise and the noise model during solar conjunction were analyzed. It is tentatively concluded that these deviations are due to short-term fluctuations in solar activity as seen along the signal path, and not to solar/antenna structure effects or system noise temperature.

  16. The Long-term Middle Atmospheric Influence of Very Large Solar Proton Events

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Randall, Cora E.; Fleming, Eric L.; Frith, Stacey M.

    2008-01-01

    Long-term variations in ozone have been caused by both natural and humankind related processes. The humankind or anthropogenic influence on ozone originates from the chlorofluorocarbons and halons (chlorine and bromine) and has led to international regulations greatly limiting the release of these substances. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the long-term (> few months) influences of solar proton events from 1963 through 2004 on stratospheric ozone and temperature. There were extremely large solar proton events in 1972, 1989,2000,2001, and 2003. These events caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen-containing compounds, which led to the polar ozone destruction. The nitrogen-containing compounds, called odd nitrogen, lasted much longer than the hydrogen-containing compounds and led to long-lived stratospheric impacts. An extremely active period for these events occurred in the five-year period, 2000- 2004, and caused increases in odd nitrogen which lasted for several months after individual events. Associated stratospheric ozone decreases of >lo% were calculated

  17. Long-term persistence of solar activity

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.

  18. Geoeffective and Climate-Influencing Solar and Interplanetary Conditions

    NASA Astrophysics Data System (ADS)

    Baranyi, T.; Ludmány, A.

    Several connections have been detected and demonstrated between solar magnetic conditions and climatic responses which hint at a highly complicated mechanism of sun-climate relations through plasma streams. The present contribution overviews our results about the possible factors of this mechanism. The main factor is the negative value of the interplanetary magnetic B_z component which exhibits a fairly complex behaviour. Its strength is influenced by the solar dipole cycle, the nature of ejected plasma (CME or fast stream), the magnetic topology of the CME and the position of the Earth (Rosenberg-Coleman and Russell-McPherron effects). The persistence of the negative B_z is also effective. The impacts of these features can be pointed out in the climatic responses.

  19. Solar Energy Education. Industrial arts: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-02-01

    In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

  20. Solar Influence on Medieval Megadroughts in the Greater Near East

    NASA Astrophysics Data System (ADS)

    Kushnir, Y.; Stein, M.

    2014-12-01

    Recent surveys of medieval era chronicles provide calendar accurate information of years of unusual, extreme weather and climate events in areas surrounding the eastern Mediterranean, between the mid-A.D. 10th century and end of the 11th century. Put together, these documents show that the region was simultaneously afflicted by unprecedented sever and persistent droughts in Egypt's Nile Valley and by unusually cold and dry winters associated with crop failure and loss of pasture areas in present-day Iraq and Iran, and in historical Khurasan. We show that this documentary information is consistent with the annually dated Nile summer flood record as measured at the Cairo Nilometer site and within acceptable dating accuracies with much more coarsely resolved regional paleoclimate proxies. We furthermore note that the timing of these events coincided with the Oort Grand Solar Minimum that reached its peak between A.D. 1040 and 1080. Given the scientific evidence for the impact of solar minima on sea surface temperatures in the equatorial Pacific and how the latter affect the intensity of the African summer monsoon, we argue that the Oort Solar Minimum forced the frequent failure of the Nile summer floods resulting in dearth and famine in Egypt. Furthermore, the simultaneous cold and dry winters in the northern Near East are also consistent with the hypothesized solar minimum influence on the North Atlantic Oscillation and on the intensity of the Siberian High. This interpretation underscores the sensitivity of the climate system to variations in solar irradiance, particularly on multi-decadal time scales, to their role in regional processes, and their impact on human history and may help understand other rapid Mediterranean cooling events that occured during the Holocene.

  1. Solar-terrestrial predictions proceedings. Volume 4: Prediction of terrestrial effects of solar activity

    NASA Technical Reports Server (NTRS)

    Donnelly, R. E. (Editor)

    1980-01-01

    Papers about prediction of ionospheric and radio propagation conditions based primarily on empirical or statistical relations is discussed. Predictions of sporadic E, spread F, and scintillations generally involve statistical or empirical predictions. The correlation between solar-activity and terrestrial seismic activity and the possible relation between solar activity and biological effects is discussed.

  2. TEC variability over Havana for different solar activity conditions

    NASA Astrophysics Data System (ADS)

    Lazo, B.; Alazo, K.; Rodríguez, M.; Calzadilla, A.

    2004-01-01

    The variability of total electron content measured over Havana using ATS-6, SMS-1 and GOES-3 geosynchronous satellite signals has been investigated for low, middle and high solar activity periods from 1974 to 1982. The results show that the standard deviation is smooth during the nighttime hours and maximal at the noon or postnoon hours. A strong solar activity dependence of the standard deviation has been found with maximum values during periods of high solar activity.

  3. The influence of solar variability past, present and future, on North Atlantic climate.

    NASA Astrophysics Data System (ADS)

    Dunstone, Nick; Scaife, Adam; Ineson, Sarah; Gray, Lesley; Knight, Jeff; Lockwood, Mike; Maycock, Amanda

    2014-05-01

    There has long existed observational evidence for a link between solar activity (both the semi-regular 11-yr cycle and longer term variability) and regional climate variability. In the last few years progress is starting to be made in understanding such observational correlations from physical mechanistic viewpoint. Firstly, new observations of solar spectral irradiance from the SORCE satellite have raised the possibility of much larger variability in the UV than previously appreciated. Secondly, state of the art computer climate models now explicitly resolve the Earth's stratosphere allowing the influence of solar variability to be simulated here. By driving such climate models with the larger solar UV variability implied by the latest satellite observations, surface climate impacts have been shown in the Northern Hemisphere winter that are consistent with late 20th century climate data. Low solar activity is associated with the negative phase of the North Atlantic Oscillation (NAO) and hence colder winters over northern Europe and the USA. We discuss the implications for seasonal/decadal climate prediction. Further work has examined the role of ocean feedbacks in amplifying this tropospheric response. There is robust statistical evidence that such a feedback operates in the observations and gives a lag of 3-4 years for the maximum tropospheric response after the maximum solar forcing. This lag does not generally appear to be reproduced by current climate models. We discuss how this observational evidence may be a valuable way of assessing the relative strength of ocean-atmosphere coupling in the present generation of climate models. The prolonged solar minimum during the transition between solar cycles 23 & 24, combined with the relatively low maximum activity of cycle 24, have increased suggestions that we may be coming to the end of the grand solar maximum which dominated the 20th century. A return to Maunder Minimum like solar activity is therefore a possible

  4. Evidence for a Solar Influence on Gamma Radiation from Radon

    NASA Astrophysics Data System (ADS)

    Sturrock, P. A.; Steinitz, G.; Fischbach, E.; Javorsek, D.; Jenkins, J.

    2012-12-01

    We have analyzed 29,000 measurements of gamma radiation associated with the decay of radon confined to an airtight vessel at the Geological Survey of Israel (GSI) Laboratory in Jerusalem between January 28 2007 and May 10 2010. These measurements exhibit strong variations in time of year and time of day, which may be due in part to environmental influences. However, time-series analysis reveals a number of strong periodicities, including two at approximately 11.2 year-1 and 12.5 year-1. We consider it significant that these same oscillations have previously been detected in nuclear-decay data acquired at the Brookhaven National Laboratory and at the Physiklisch-Technische Bundesanstalt. We have suggested that these oscillations are due to some form of solar radiation (possibly neutrinos) that has its origin in the deep solar interior. A curious property of the GSI data is that the annual oscillation is much stronger in daytime data than in nighttime data, but the opposite is true for all other oscillations. Time-frequency analysis also yields quite different results from daytime and nighttime data. These procedures have also been applied to data collected from subsurface geological sites in Israel, Tenerife, and Italy, which have a variety of geological and geophysical scenarios, different elevations, and depths below the surface ranging from several meters to 1000 meters. In view of these results, and in view of the fact that there is at present no clear understanding of the behavior of radon in its natural environment, there would appear to be a need for multi-disciplinary research. Investigations that clarify the nature and mechanisms of solar influences may help clarify the nature and mechanisms of geological influences.

  5. Solar wind turbulence as a driver of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Ikechukwu Ugwu, Ernest Benjamin; Nneka Okeke, Francisca; Ugonabo, Obiageli Josephine

    2016-07-01

    We carried out simultaneous analyses of interplanetary and geomagnetic datasets for the period of (solar Maunder) least (2009) and maximum (2002) solar activity to determine the nature of solar wind turbulence on geomagnetic activity using AE, ASY-D, and ASY-H indices. We determined the role played by Alfvénic fluctuations in the solar wind so as to find out the nature of the turbulence. Our analyses showed that solar wind turbulence play a role in geomagnetic processes at high latitudes during periods of low and high solaractivity but does not have any effect at mid-low latitudes.

  6. Prominences: The Key to Understanding Solar Activity

    NASA Technical Reports Server (NTRS)

    Karpen, Judy T.

    2011-01-01

    Prominences are spectacular manifestations of both quiescent and eruptive solar activity. The largest examples can be seen with the naked eye during eclipses, making prominences among the first solar features to be described and catalogued. Steady improvements in temporal and spatial resolution from both ground- and space-based instruments have led us to recognize how complex and dynamic these majestic structures really are. Their distinguishing characteristics - cool knots and threads suspended in the hot corona, alignment along inversion lines in the photospheric magnetic field within highly sheared filament channels, and a tendency to disappear through eruption - offer vital clues as to their origin and dynamic evolution. Interpreting these clues has proven to be contentious, however, leading to fundamentally different models that address the basic questions: What is the magnetic structure supporting prominences, and how does so much cool, dense plasma appear in the corona? Despite centuries of increasingly detailed observations, the magnetic and plasma structures in prominences are poorly known. Routine measurements of the vector magnetic field in and around prominences have become possible only recently, while long-term monitoring of the underlying filament-channel formation process also remains scarce. The process responsible for prominence mass is equally difficult to establish, although we have long known that the chromosphere is the only plausible source. As I will discuss, however, the motions and locations of prominence material can be used to trace the coronal field, thus defining the magnetic origins of solar eruptions. A combination of observations, theory, and numerical modeling must be used to determine whether any of the competing theories accurately represents the physics of prominences. I will discuss the criteria for a successful prominence model, compare the leading models, and present in detail one promising, comprehensive scenario for

  7. Solar activity at birth predicted infant survival and women's fertility in historical Norway

    PubMed Central

    Skjærvø, Gine Roll; Fossøy, Frode; Røskaft, Eivin

    2015-01-01

    Ultraviolet radiation (UVR) can suppress essential molecular and cellular mechanisms during early development in living organisms and variations in solar activity during early development may thus influence their health and reproduction. Although the ultimate consequences of UVR on aquatic organisms in early life are well known, similar studies on terrestrial vertebrates, including humans, have remained limited. Using data on temporal variation in sunspot numbers and individual-based demographic data (N = 8662 births) from Norway between 1676 and 1878, while controlling for maternal effects, socioeconomic status, cohort and ecology, we show that solar activity (total solar irradiance) at birth decreased the probability of survival to adulthood for both men and women. On average, the lifespans of individuals born in a solar maximum period were 5.2 years shorter than those born in a solar minimum period. In addition, fertility and lifetime reproductive success (LRS) were reduced among low-status women born in years with high solar activity. The proximate explanation for the relationship between solar activity and infant mortality may be an effect of folate degradation during pregnancy caused by UVR. Our results suggest that solar activity at birth may have consequences for human lifetime performance both within and between generations. PMID:25567646

  8. Solar activity at birth predicted infant survival and women's fertility in historical Norway.

    PubMed

    Skjærvø, Gine Roll; Fossøy, Frode; Røskaft, Eivin

    2015-02-22

    Ultraviolet radiation (UVR) can suppress essential molecular and cellular mechanisms during early development in living organisms and variations in solar activity during early development may thus influence their health and reproduction. Although the ultimate consequences of UVR on aquatic organisms in early life are well known, similar studies on terrestrial vertebrates, including humans, have remained limited. Using data on temporal variation in sunspot numbers and individual-based demographic data (N = 8662 births) from Norway between 1676 and 1878, while controlling for maternal effects, socioeconomic status, cohort and ecology, we show that solar activity (total solar irradiance) at birth decreased the probability of survival to adulthood for both men and women. On average, the lifespans of individuals born in a solar maximum period were 5.2 years shorter than those born in a solar minimum period. In addition, fertility and lifetime reproductive success (LRS) were reduced among low-status women born in years with high solar activity. The proximate explanation for the relationship between solar activity and infant mortality may be an effect of folate degradation during pregnancy caused by UVR. Our results suggest that solar activity at birth may have consequences for human lifetime performance both within and between generations. PMID:25567646

  9. Change of solar cell element properties influenced by adsorbed atoms

    NASA Astrophysics Data System (ADS)

    Livshits, A. I.; Romanovskij, Y. A.; Zavilopulo, A. N.; Zhukov, A. I.; Snegurskij, A. V.

    A series of experimental studies on the influence of alkali and alkaline-earth metal films on electro-physical properties of solar elements used for spacecraft energy supply was carried out. Metal films of different thicknesses were deposited using an effusion source, the mass of the film was calculated using measured atomic beam density. The Mg film thickness was determined by means of microscopic technique. The dynamics of current-to-voltage characteristic variation was studied for different film thickness and chemical composition in vacuum and in oxygen atmosphere.

  10. Diagnostics of a cause-effect relation between solar activity and the Earth's global surface temperature

    NASA Astrophysics Data System (ADS)

    Mokhov, I. I.; Smirnov, D. A.

    2008-06-01

    The influence of solar activity on the Earth’s global surface temperature (GST) was quantified. The method for estimation of the Granger causality was used, with analysis of the improvement of the prediction of one process by using data from another process as compared to autoprediction. Two versions of reconstructions of the solar flux variations associated with solar activity were used, according to Hoyt et al. [1997] for 1680 1992 (data H) and according to Lean et al. [2005] for 1610 2005 (data L). In general, the estimation results for the two reconstructions are reasonably well consistent. A significant influence of solar activity on GST with a positive sign was found for two periods, from the late 19th century to the late 1930s and from the latter half of the 1940s to the early 1990s, with no inertia or time delay. In these periods, up to 8 and 25% of the variance of the GST change, respectively, can be attributed to solar activity variations. The solar influence increased in the 1980s to the early 1990s according to data H and began to decrease in the latter half of the 1980s according to data L.

  11. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings

    PubMed Central

    Steinhilber, Friedhelm; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W.; Mann, Mathias; McCracken, Ken G.; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans

    2012-01-01

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as 10Be and 14C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different 10Be ice core records from Greenland and Antarctica with the global 14C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution 10Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate. PMID:22474348

  12. Solar-terrestrial influences on weather and climate; Proceedings of the Symposium, Ohio State University, Columbus, Ohio, August 24-28, 1978

    NASA Technical Reports Server (NTRS)

    Mccormac, B. M. (Editor); Seliga, T. A.

    1979-01-01

    The book contains most of the invited papers and contributions presented at the symposium/workshop on solar-terrestrial influences on weather and climate. Four main issues dominate the activities of the symposium: whether solar variability relationships to weather and climate is a fundamental scientific question to which answers may have important implications for long-term weather and climate prediction; the sun-weather relationships; other potential solar influences on weather including the 11-year sunspot cycle, the 27-day solar rotation, and special solar events such as flares and coronal holes; and the development of practical use of solar variability as a tool for weather and climatic forecasting, other than through empirical approaches. Attention is given to correlation topics; solar influences on global circulation and climate models; lower and upper atmospheric coupling, including electricity; planetary motions and other indirect factors; experimental approaches to sun-weather relationships; and the role of minor atmospheric constituents.

  13. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  14. On the statistical relationship between solar activity and spontaneous social processes

    NASA Astrophysics Data System (ADS)

    Rodkin, M. V.; Kharin, E. P.

    2014-12-01

    The starting times of mass spontaneous social movements have been compared with temporal changes in solar activity (Wolf numbers) and in the Aa index of geomagnetic activity. It is shown that relatively high values of solar and, hence, geomagnetic activity are typical (on average) of a set of years when social cataclysms began. In addition, the relationship between social activity and geomagnetic activity is expressed somewhat more strongly than with solar activity. Heliogeomagnetic activity itself is not, however, the cause of social conflicts, as is evidenced by the weakness of the statistical relationship and the fact that the time intervals of an extremely large number of social conflicts (the decades of the 1800s, 1910s, and 1990s) occur during periods of a reduced mean level of solar and geomagnetic activity. From an averaged statistical model of the solar-geomagnetic influence on social activity and the current status and forecast of the 24th solar cycle, we can assume that heliogeomagnetic factors will contribute to an increased level of sociopolitical activity at least until the end of 2014 and, possibly, a little longer.

  15. The solar atmosphere and the structure of active regions. [aircraft accidents, weather

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.

    1975-01-01

    Numerical analyses of solar activities are presented. The effect of these activities on aircraft and weather conditions was studied. Topics considered are: (1) solar flares; (2) solar X-rays; and (3) solar magnetic fields (charts are shown).

  16. Active Vibration Damping of Solar Arrays

    NASA Astrophysics Data System (ADS)

    Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas

    2012-07-01

    Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.

  17. Limits of Predictability of Solar Activity

    NASA Astrophysics Data System (ADS)

    Kremliovsky, M. N.

    1995-07-01

    The study of a nonlinear chaotic map of 11-year cycle maxima evolution recently derived from observations is presented with the purpose of predicting the features of the long-term variability of solar activity. It is stressed that dynamical forecast is limited by the Lyapunov time and a statistical approach can be justified due to the ergodic properties of the chaotic evolution. The Gleissberg variation is described as a chaotic walk and its distribution over length is shown to be broad. The global minima are identified as laminar slots of temporal intermittency and their typical distribution over length is also given. We note that a long sunspot cycle can be used as a precursor of the global minimum and a close sequence of global minima (once in approximately 1500 2000 years) may be responsible for the climatic changes (Little Ice Ages).

  18. Solar Activity Forecasting for use in Orbit Prediction

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth

    2001-01-01

    Orbital prediction for satellites in low Earth orbit (LEO) or low planetary orbit depends strongly on exospheric densities. Solar activity forecasting is important in orbital prediction, as the solar UV and EUV inflate the upper atmospheric layers of the Earth and planets, forming the exosphere in which satellites orbit. Geomagnetic effects also relate to solar activity. Because of the complex and ephemeral nature of solar activity, with different cycles varying in strength by more than 100%, many different forecasting techniques have been utilized. The methods range from purely numerical techniques (essentially curve fitting) to numerous oddball schemes, as well as a small subset, called 'Precursor techniques.' The situation can be puzzling, owing to the numerous methodologies involved, somewhat akin to the numerous ether theories near the turn of the last century. Nevertheless, the Precursor techniques alone have a physical basis, namely dynamo theory, which provides a physical explanation for why this subset seems to work. I discuss this solar cycle's predictions, as well as the Sun's observed activity. I also discuss the SODA (Solar Dynamo Amplitude) index, which provides the user with the ability to track the Sun's hidden, interior dynamo magnetic fields. As a result, one may then update solar activity predictions continuously, by monitoring the solar magnetic fields as they change throughout the solar cycle. This paper ends by providing a glimpse into what the next solar cycle (#24) portends.

  19. Growth and Decay of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Dobias, J. J.; Chapman, G. A.; Cookson, A. M.; Preminger, D. G.; Walton, S. R.

    2002-05-01

    We report here on a study of growth and decay rates of sunspot and facular areas of solar active regions. The data used in this project come from an ongoing program of daily photometric observations of the sun with the Cartesian Full Disk Telescope No. 1 (CFDT1) at the San Fernando Observatory (SFO). Sunspot regions are determined from images taken with a red filter centered at 672.3 nm with a bandpass of 9.7 nm, while images taken with a Ca II K line filter, centered at 393.4 nm and with a bandpass of only 1nm, are used to find facular areas. Before any areas can be found on any observed images, they have to be calibrated then flattened by removing limb darkening thus producing contrast images. Sunspot areas are then determined from any pixel with contrast of -8.5% or less, while any pixel on a K line contrast image with a contrast of +4.8%/μ or higher, where μ is the cosine of the heliocentric angle, is considered to be a facular pixel. To identify the areas as clearly as possible, studied active regions were usually observed on the sun with relatively low activity; that means that each region is either alone on the sun's disk or with only very few other active regions present. Furthermore, to obtain growth and decay patterns of the areas as reliably as possible, only such active regions must be chosen for which there is as complete observational coverage as possible. At the present time studies have been finished for only a few active regions, but analysis of several others is on going. Obtained results will be presented at the meeting. This work is supported by NSF grant ATM-9912132 and NASA grants NAG5-7191 and NAG5-7778.

  20. Solar activity during the deep minimum of 2009

    NASA Astrophysics Data System (ADS)

    Sylwester, Janusz; Siarkowski, Marek; Gburek, Szymon; Gryciuk, Magdalena; Kepa, Anna; Kowaliński, Mirosław; Mrozek, Tomek; Phillips, Kenneth J. H.; Podgórski, Piotr; Sylwester, Barbara

    2014-12-01

    We discuss the character of the unusually deep solar activity minimum of 2009 between Solar Cycles 23 and 24. Levels of solar activity in various parts of the solar atmosphere -- photosphere, chromosphere, transition region, and corona -- were observed to be at their lowest for a century. The soft X-ray emission from the corona (hot outer part of the Sun's atmosphere) was measured throughout most of 2009 with the Polish-built SphinX spectrophotometer. Unlike other X-ray monitoring spacecraft, this sensitive spacecraft-borne instrument was able to continue measurements throughout this extended period of low activity.

  1. Revisiting the question: Does high-latitude solar activity lead low-latitude solar activity in time phase?

    SciTech Connect

    Kong, D. F.; Qu, Z. N.; Guo, Q. L.

    2014-05-01

    Cross-correlation analysis and wavelet transform methods are used to investigate whether high-latitude solar activity leads low-latitude solar activity in time phase or not, using the data of the Carte Synoptique solar filaments archive from 1919 March to 1989 December. From the cross-correlation analysis, high-latitude solar filaments have a time lead of 12 Carrington solar rotations with respect to low-latitude ones. Both the cross-wavelet transform and wavelet coherence indicate that high-latitude solar filaments lead low-latitude ones in time phase. Furthermore, low-latitude solar activity is better correlated with high-latitude solar activity of the previous cycle than with that of the following cycle, which is statistically significant. Thus, the present study confirms that high-latitude solar activity in the polar regions is indeed better correlated with the low-latitude solar activity of the following cycle than with that of the previous cycle, namely, leading in time phase.

  2. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  3. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  4. Influence of nanowires length on performance of crystalline silicon solar cell

    NASA Astrophysics Data System (ADS)

    Li, Haofeng; Jia, Rui; Chen, Chen; Xing, Zhao; Ding, Wuchang; Meng, Yanlong; Wu, Deqi; Liu, Xinyu; Ye, Tianchun

    2011-04-01

    Silicon-nanowire (Si-NW) array, prepared by an electroless chemical-etching method, shows excellent optical antireflection property over a wide spectral bandwidth. The influence of the wire length on the optical antireflection property and the solar cell performance were studied for both the Si-NW array solar cells and the planar solar cells. The reflectance of NWs solar cells is almost invariable and much lower than that of the planar solar cells but the performance of planar solar cells is the best. Results show the performance of NWs solar cells is strongly affected by some other factors such as surface passivation and electrode-contact property.

  5. Models of Impulsively Heated Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Klimchuk, J.

    2009-05-01

    A number of attempts to model solar active regions with steady coronal heating have been modestly successful at reproducing the observed soft X-ray emission, but they fail dramatically at explaining EUV observations. Since impulsive heating (nanoflare) models can reproduce individual EUV loops, it seems reasonable to consider that entire active regions are impulsively heated. However, nanoflares are characterized by many parameters, such as magnitude, duration, and time delay between successive events, and these parameters may depend on the strength of the magnetic field or the length of field lines, for example, so a wide range of active region models must be examined. We have recently begun such a study. Each model begins with a magnetic "skeleton” obtained by extrapolating an observed photospheric magnetogram into the corona. Field lines are populated with plasma using our highly efficient hydro code called Enthalpy Based Thermal Evolution of Loops (EBTEL). We then produce synthetic images corresponding to emission line or broad-band observations. By determining which set of nanoflare parameters best reproduces actual observations, we hope to constrain the properties of the heating and ultimately to reveal the physical mechanism. We here report on the initial progress of our study.

  6. Effects of Solar Magnetic Activity on the Charge States of Minor Ions of Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, Xuyu

    We present an investigation of the effects of solar magnetic activity on the charge states of minor ions (Fe, Si, Mg, Ne, O, C) in the solar wind using ACE solar wind data, the Current Sheet Source Surface (CSSS) model of the corona and SoHO/MDI data during the 23rd solar cycle. We found that the mean charge states indicate a clear trend to increase with the solar activity when the solar wind speed is above 550 km/s. Below this speed, no significant solar activity dependence is found. When displayed as a function of solar wind speed, iron is different from other elements in that it displays lower charge states in slow wind than in fast wind. The percentages of the high charge states for species with higher m/q (Fe) increase with the solar wind speed, while for the species with lower m/q (Si,Mg, O, C), the percentages of the high charge states decrease with the solar wind speed.

  7. Response of the mesopause temperatures to solar activity over Yakutia in 1999-2013

    NASA Astrophysics Data System (ADS)

    Ammosov, Petr; Gavrilyeva, Galina; Ammosova, Anastasia; Koltovskoi, Igor

    2014-12-01

    OH(6-2) rotational temperature trends and solar cycle effects are studied. Observations were carried out at the Maimaga station (63.04°N, 129.51°E) for the period August 1999 to March 2013. Measurements were conducted with an infrared spectrograph. Temperatures were determined from intensity ratios in the P branch of the OH band. The monthly average residuals of temperature after the subtraction of the mean seasonal variation were used for a search for the solar component of temperature response. The dependence of temperatures on solar activity has been investigated using the Ottawa 10.7 cm flux as a proxy. A linear regression fitting on residual temperatures yields a solar cycle coefficient of 4.24 ± 1.39 K/100 solar flux units (SFU). The cross-correlation analyses showed that changes of the residual temperature follow changes of solar activity with a quasi-two year delay (25 months). The temperature response at the delay of 25 months reaches 7 K/100 SFU. The possible reason of the observed delay can be an influence of quasi-biennial oscillations (QBO) of the atmosphere on the relation of temperature and solar activity. The value of the temperature trend after the subtraction of seasonal and solar components is not statistically significant.

  8. Recent Perplexing Behavior in Solar Activity Indices

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.

    1997-05-01

    Calcium K and Hα and SOHO He II UV plage and sunspot ara have been monitored using images on the INTERNET since November of 1992. The purpose of the project is to determine the degree of correlation between changing plage area and solar irradiance changes (also obtained via the INTERNET). Also the project provides a low cost process to involve undergraduates in astronomy research. When using weighted weekly averages for both spot Hα plage pixel counts, we see the expected decline from the last maximum. The activity continues to decline, or at best, has flattened out over the past several months. In contrast, the K-line plage pixel count from both Big Bear and Sacramento Peak show an upswing since mid-1995 or earlier. The k2 measurments from both Kitt Peak and Sacramento Peak are in general agreement with the spot and Hα behavior, indicating wer are in, or barely passed minimum. Images high in the chromosphere, detailing the magnetic network, may be more senstive to smaller field changes. This might be a partial explanation for the earlier upswing in K line and He 304 activity, which are receiving radiation near or at the top of the chromosphere.

  9. Initiation of non-tropical thunderstorms by solar activity

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Goldberg, R. A.

    1978-01-01

    A theory of thunderstorm initiation is proposed to account for the statistical correlation between solar activity and thunderstorm occurrence in middle to high latitudes. It is suggested that cosmic ray decreases and/or high-energy solar protons associated with active solar events enhance the electric field at low heights so that, if appropriate meteorological conditions are present during a solar event, the atmospheric electric field enhancement may be sufficient to trigger thunderstorm development. Statistical correlations and atmospheric electric effects are described. The theory could be tested if the possible forcing functions and the responding atmospheric electrical and ionic species' characteristics were measured.

  10. Solar Activity, Different Geomagnetic Activity Levels and Acute Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Dimitrova, Svetla; Jordanova, Malina; Stoilova, Irina; Taseva, Tatiana; Maslarov, Dimitar

    Results on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data covering the period from 1.12.1995 to 31.12.2004 and concerned daily distribution of patients with AMI diagnose (in total 1192 cases) from Sofia region on the day of admission at the hospital. Analysis of variance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms, those caused by Magnetic Clouds (MC) and by High Speed Solar Wind Streams (HSSWS), on AMI morbidity. Relevant correlation coefficients were calculated. Results revealed statistically significant positive correlation between considered GMA indices and AMI. ANOVA revealed that AMI number was signifi- cantly increased from the day before (-1st) till the day after (+1st) geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day.

  11. Analytical Study of Geomagnetic and Solar Activities During Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Hady, A. A.

    The data of amplitude and phase of most common indicators of geomagnetic activities (especially aa index, A? index) have been analyzed and compared with the solar ac- tivities in the time of solar cycle 23(started from 1996 to 2007). The data taken from NOAA space environment center (SES), USA. during the period starting April 1996 Until Dec. 2001, have been analyzed by power spectrum method. The prediction until year 2007 of geomagnetic activities were studied according to the whole of behavior of solar cycle 23. The results show a good indication of the effects of solar activities on changes of earth climate and weather forecasting. The results are important to various techniques including the operation of low earth orbiting satellites. The climatologi- cal approach makes use of the secular trend since year 1900 until now, by about 15 nanotesla. This indication was recorded too, in solar activity changes during the last century.

  12. Multi-wavelength solar activity complexes evolution from Solar Dynamic Observatory (SDO)

    NASA Astrophysics Data System (ADS)

    Korolkova, Olga; Benevolenskaya, Elena

    The main problem of the solar physics is to understand a nature of the solar magnetic activity. New space missions and background observations provide us by data describing solar activity with a good space and time resolution. Space missions data observe the solar activity in multi-wavelength emissions come from photosphere to corona. The complex of the solar activity has roots in inte-rior and extends to the solar corona. Thus, modern data give an opportunity to study the activity on the Sun at different levels simultaneously. Solar Dynamics Observatory (SDO) [1] which launched at the beginning of 2010, looks at Sun in different wavelengths such as coronal lines 171Å & 335Å. Also SDO measures photospheric magnetic flux (line-of-sight component of the magnetic field strength) and gives images in continuum. We have studied a stable complexes of the solar activity (about 30 com-plexes) during 6 hours from 10 March 2013 to 14 October 2013 using 720s ca-dence of HMI (Helioseismic and Magnetic Imager) [2] and AIA (Atmospheric Imaging Assembly) [3] instruments of SDO. We have found a good relationship between the magnetic flux and coronal emissions. Here we discuss properties of the complexes in the different levels from photosphere to corona. References 1. W. Dean Pesnell, B.J. Thompson, P.C. Chamberlin // Solar Phys., v. 275, p. 3-15, (2012). 2. P.H. Scherrer, J. Schou, R.I. Bush et al. // Solar Phys., v. 275, p. 207-227, (2012). 3. James R. Lemen • Alan M. Title • David J. Akin et al. // Solar Phys., v. 275, p. 17-40, (2012).

  13. Ionospheric effects of the extreme solar activity of February 1986

    NASA Technical Reports Server (NTRS)

    Boska, J.; Pancheva, D.

    1989-01-01

    During February 1986, near the minimum of the 11 year Solar sunspot cycle, after a long period of totally quiet solar activity (R sub z = 0 on most days in January) a period of a suddenly enhanced solar activity occurred in the minimum between solar cycles 21 and 22. Two proton flares were observed during this period. A few other flares, various phenomena accompanying proton flares, an extremely severe geomagnetic storm and strong disturbances in the Earth's ionosphere were observed in this period of enhanced solar activity. Two active regions appeared on the solar disc. The flares in both active regions were associated with enhancement of solar high energy proton flux which started on 4 February of 0900 UT. Associated with the flares, the magnetic storm with sudden commencement had its onset on 6 February 1312 UT and attained its maximum on 8 February (Kp = 9). The sudden enhancement in solar activity in February 1986 was accompanied by strong disturbances in the Earth's ionosphere, SIDs and ionospheric storm. These events and their effects on the ionosphere are discussed.

  14. Bayesian Infernce for Indentifying Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Pap, Judit; Turmon, Michael; Mukhtar, Saleem

    1997-01-01

    The solar chromosphere consists of three classes-- plage, network, background -- which contribute differently to ultraviolet radiation reaching the earth. Solar physicists are interested in relating plage area and intensity to UV irradiance, as well as understanding the spatial and temporal evolution of plage shapes.

  15. Heliospheric Consecuences of Solar Activity In Several Interplanetary Phenomena

    NASA Astrophysics Data System (ADS)

    Valdés-Galicia, J. F.; Mendoza, B.; Lara, A.; Maravilla, D.

    We have done an analysis of several phenomena related to solar activity such as the total magnetic flux, coronal hole area and sunspots, investigated its long trend evolu- tion over several solar cycles and its possible relationships with interplanetary shocks, sudden storm commencements at earth and cosmic ray variations. Our results stress the physical connection between the solar magnetic flux emergence and the interplan- etary medium dynamics, in particular the importance of coronal hole evolution in the structuring of the heliosphere.

  16. Pre- and main-sequence evolution of solar activity

    NASA Technical Reports Server (NTRS)

    Walter, Frederick M.; Barry, Don C.

    1991-01-01

    The magnetic activity on single solarlike stars declines with stellar age. This has important consequences for the influence of the sun on the early solar system. What is meant by stellar activity, and how it is measured, is reviewed. Stellar activity on the premain-sequence phase of evolution is discussed; the classical T Tauri stars do not exhibit solarlike activity, while the naked T Tauri stars do. The emission surface fluxes of the naked T Tauri stars are similar to those of the youngest main-sequence G stars. The best representation for solarlike stars is a decay proportional to exp(A x t exp 0.5), where A is a function of line excitation temperature. From these decay laws, one can determine the interdependences of the activity, age, and rotation periods. The fluxes of ionizing photons at the earth early in its history are discussed; there was sufficient fluence to account for the observed isotopic ratios of the noble gases.

  17. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-09-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, {alpha}, of the energy spectrum, E(k) {approx} k{sup -}{alpha}, and the total spectral energy, W = {integral}E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of {alpha} and W as A = 10{sup b}({alpha}W){sup c}, with b = -7.92 {+-} 0.58 and c = 1.85 {+-} 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  18. The Influence of the Solar Cycle on Plasmasphere Refilling

    NASA Astrophysics Data System (ADS)

    Krall, J.; Huba, J.

    2015-12-01

    During refilling, ionospheric plasma streams into the inner magnetosphere from both the northern and southern hemispheres. Plasmasphere refilling rates depend on both the ionospheric sources and on the thermalization of streaming ions. We use the NRL SAMI3 ionosphere/plasmasphere code[1] coupled to the NRLMSIS empirical atmosphere model and the HWM14 empirical wind model, to simulate H+, He+ and O+ populations in the plasmasphere. The SAMI3 ionosphere code includes 7 ion species (H+, He+, O+, N+, O2+, N2+, NO+), each treated as a separate fluid, with temperature equations being solved for H+, He+, O+ and e. Measurements show that refilling rates decrease with increasing solar activity, an effect reproduced by SAMI3 and its two-dimensional cousin, SAMI2. We find that the refilling rate and the resulting the plasmasphere electron content are sensitive to the thermospheric composition and temperature, as well as photoelectron heating and photoproduction rates. Depending on conditions, simulations suggest that the plasmaspheric contribution to the total electron content can either increase or decrease with solar activity, as represented by the daily and 81-day-average F10.7 indices. [1] Huba, J. and J. Krall, 2013, ``Modeling the plasmasphere with SAMI3'', Geophys. Res. Lett. 40, 6--10, doi:10.1029/2012GL054300 Research supported by NRL base funds and the NASA HSR program.

  19. Possible relationships between solar activity and atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Roosen, R. G.; Angione, R. J.

    1975-01-01

    The large body of data on solar variations and atmospheric constituents collected between 1902 and 1953 by the Astrophysical Observatory of the Smithsonian Institution (APO) was examined. Short-term variations in amounts of atmospheric aerosols and water vapor due to seasonal changes, volcanic activity, air pollution, and frontal activity are discussed. Preliminary evidence indicates that increased solar activity is at times associated with a decrease in attenuation due to airborne particulates.

  20. Possible relationships between solar activity and atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Roosen, R. G.; Angione, R. J.

    1974-01-01

    The large body of data on solar variations and atmospheric constituents collected between 1902 and 1953 by the Astrophysical Observatory of the Smithsonian Institution (APO) is examined. Short term variations in amounts of atmospheric aerosols and water vapor due to seasonal changes, volcanic activity, air pollution, and frontal activity are discussed. Preliminary evidence indicates that increased solar activity is at times associated with a decrease in attenuation due to airborne particulates.

  1. Low-Dimensional Chaos of High-Latitude Solar Activity

    NASA Astrophysics Data System (ADS)

    Li, Qi-Xiu; Li, Ke-Jun

    2007-10-01

    The chaos of high-latitude solar activity has been investigated by determining the behavior of the monthly averaged polar facula counts obtained from the National Astronomical Observatory of Japan (NAOJ) on the basis of nonlinear dynamics theories and methods. It is found that the high-latitude solar activity is also governed by a low-dimensional chaotic attractor in both the northern and southern solar hemispheres, which is the same as that of the low-latitude solar activity. However, their maximal Lyapunov exponents are different, showing different strength of chaos. The maximal Lyapunov exponent (MLE) of polar faculae in the southern solar hemisphere is about 0.0211 ± 0.0003 (month-1), which is nearly consistent with the low-latitude Wolf sunspot numbers, while the MLE in the northern one is approximately 0.0944 ± 0.0066 (month-1), which is obviously greater than the above two.

  2. Solar activity index for long-term ionospheric forecasts

    NASA Astrophysics Data System (ADS)

    Deminov, M. G.

    2016-01-01

    Based on the comparison of solar activity indices (annual average values of the relative number of sunspots Rz 12 and solar radio emission flux at a wavelength of 10.7 cm F 12) with the ionospheric index of solar activity IG 12 for 1954-2013, we have found that the index F 12 is a more accurate (than Rz 12) indicator of solar activity for the long-term forecast of foF2 (the critical frequency of the F2-layer). This advantage of the F 12 index becomes especially significant after 2000 if the specific features of extreme ultraviolet radiation of the Sun are additionally taken into account in the minima of solar cycles, using an appropriate correction to F 12. Qualitative arguments are given in favor of the use of F 12 for the long-term forecast of both foF2 and other ionospheric parameters.

  3. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  4. On the Relationship Between Solar Wind Speed, Geomagnetic Activity, and the Solar Cycle Using Annual Values

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    The aa index can be decomposed into two separate components: the leading sporadic component due to solar activity as measured by sunspot number and the residual or recurrent component due to interplanetary disturbances, such as coronal holes. For the interval 1964-2006, a highly statistically important correlation (r = 0.749) is found between annual averages of the aa index and the solar wind speed (especially between the residual component of aa and the solar wind speed, r = 0.865). Because cyclic averages of aa (and the residual component) have trended upward during cycles 11-23, cyclic averages of solar wind speed are inferred to have also trended upward.

  5. Solar energy education. Renewable energy activities for general science

    SciTech Connect

    Not Available

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  6. Solar-collector manufacturing activity, July through December, 1981

    SciTech Connect

    1982-03-01

    Solar thermal collector and solar cell manufacturing activity is both summarized and tabulated. Data are compared for three survey periods (July through December, 1981; January through June, 1981; and July through December, 1980). Annual totals are also provided for the years 1979 through 1981. Data include total producer shipments, end use, market sector, imports and exports. (LEW)

  7. Solar Energy Education. Renewable energy activities for biology

    SciTech Connect

    Not Available

    1982-01-01

    An instructional aid for teachers is presented that will allow biology students the opportunity to learn about renewable energy sources. Some of the school activities include using leaves as collectors of solar energy, solar energy stored in wood, and a fuel value test for green and dry woods. A study of organic wastes as a source of fuel is included. (BCS)

  8. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    NASA Technical Reports Server (NTRS)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  9. Intraocular pressure (IOP) in relation to four levels of daily geomagnetic and extreme yearly solar activity.

    PubMed

    Stoupel, E; Goldenfeld, M; Shimshoni, M; Siegel, R

    1993-02-01

    The link between geomagnetic field activity (GMA), solar activity and intraocular pressure (IOP) in healthy individuals was investigated. The IOP of 485 patients (970 eyes) was recorded over three nonconsecutive years (1979, 1986, 1989) which were characterized by maximal solar activity (1979, 1989) or minimal solar activity (1986). The measurements were also correlated with four categories of GMA activity: quiet (level I0), unsettled (II0), active (III0), and stormy (IV0). Participants were also differentiated by age and sex. We found that IOP was lowest on days of level IV0 (stromy) GMA. The drop in IOP concomitant with a decrease in GMA level was more significant during periods of low solar activity and in persons over 65 years of age. There was a trend towards higher IOP values on days of levels II0 and IV0 GMA in years of high solar activity. Differences between the sexes and among individuals younger than 65 years were not significant. Our results show an interesting aspect of environmental influence on the healthy population. PMID:8468099

  10. Martian induced magnetosphere variations with solar activity cycle

    NASA Astrophysics Data System (ADS)

    Fedorov, Andrey; Ronan, Modolo; Jarninen, Riku; Mazelle, Christian; Barabash, Stas

    2014-05-01

    During the last 6 years of ESA Mars Express mission we have accumulated plasma data taken inside and around the Martian induced magnetosphere corresponding to the increasing branch of solar activity. This data allows to make an enhanced study of the magnetosphere variations as a response of the solar activity level. Since Mars Express has no onboard magnetometer, we used the hybrid models of the Martian plasma environment to get a proper frame to make an adequate statistics of the magnetospheric response. In this paper we present a spatial distribution of the planetary plasma in the planetary wake as well as the ionsospheric escape as a function of the solar activity.

  11. Influenza pandemics, solar activity cycles, and vitamin D.

    PubMed

    Hayes, Daniel P

    2010-05-01

    There is historic evidence that influenza pandemics are associated with solar activity cycles (the Schwabe-cycle of about 11-years periodicity). The hypothesis is presented and developed that influenza pandemics are associated with solar control of vitamin D levels in humans which waxes and wanes in concert with solar cycle dependent ultraviolet radiation. It is proposed that this solar cycle dependence arises both directly from cyclic control of the amount of ultraviolet radiation as well as indirectly through cyclic control of atmospheric circulation and dynamics. PMID:20056531

  12. Influence of External Pressure on the Performance of Quantum Dot Solar Cells.

    PubMed

    Kim, Jaehoon; Jeong, Byeong Guk; Roh, Heebum; Song, Jiyun; Park, Myeongjin; Lee, Doh C; Bae, Wan Ki; Lee, Changhee

    2016-09-14

    We report the influence of post-treatment via the external pressure on the device performance of quantum dot (QD) solar cells. The structural analysis together with optical and electrical characterization on QD solids reveal that the external pressure compacts QD active layers by removing the mesoscopic voids and enhances the charge carrier transport along QD solids, leading to significant increase in JSC of QD solar cells. Increasing the external pressure, by contrast, accompanies reduction in FF and VOC, yielding the trade-off relationship among JSC and FF and VOC in PCE of devices. Optimization at the external pressure in the present study at 1.4-1.6 MPa enables us to achieve over 10% increase in PCE of QD solar cells. The approach and results show that the control over the organization of QDs is the key for the charge transport properties in ensemble and also offer simple yet effective mean to enhance the electrical performance of transistors and solar cells using QDs. PMID:27549664

  13. The influence of cloud cover index on the accuracy of solar irradiance model estimates

    NASA Astrophysics Data System (ADS)

    Martins, F. R.; Silva, S. A. B.; Pereira, E. B.; Abreu, S. L.

    2008-04-01

    Cloud cover index ( CCI) obtained from satellite images contains information on cloud amount and their optical thickness. It is the chief climate data for the assessment of solar energy resources in most radiative transfer models, particularly for the model BRASIL-SR that is currently operational at CPTEC. The wide range of climate environments in Brazil turns CCI determination into a challenging activity and great effort has been directed to develop new methods and procedures to improve the accuracy of these estimations from satellite images (Martins 2001; Martins et al. 2003a; Ceballos et al. 2004). This work demonstrates the influence of CCI determination methods on estimates of surface solar irradiances obtained by the model BRASIL-SR comparing deviations among ground data and model results. Three techniques using visible and/or thermal infrared images of GOES-8 were employed to generate the CCI for input into the model BRASIL-SR. The ground-truth data was provided by the solar radiation station located at Caicó/PE, in Brazilian Northeast region, which is part of the UNEP/GEF project SWERA (Solar and Wind Energy Resources Assessment). Results have shown that the application of the bi-spectral techniques have reduced mean bias error up to 66% and root mean square error up to 50% when compared to the usual technique for CCI determination based on the straightforward determination of month-by-month extremes for maximum and minimum cloud states.

  14. The influence of absorbed solar radiation by Saharan dust on hurricane genesis

    NASA Astrophysics Data System (ADS)

    Bretl, Sebastian; Reutter, Philipp; Raible, Christoph C.; Ferrachat, Sylvaine; Poberaj, Christina Schnadt; Revell, Laura E.; Lohmann, Ulrike

    2015-03-01

    To date, the radiative impact of dust and the Saharan air layer (SAL) on North Atlantic hurricane activity is not yet known. According to previous studies, dust stabilizes the atmosphere due to absorption of solar radiation but thus shifts convection to regions more conducive for hurricane genesis. Here we analyze differences in hurricane genesis and frequency from ensemble sensitivity simulations with radiatively active and inactive dust in the aerosol-climate model ECHAM6-HAM. We investigate dust burden and other hurricane-related variables and determine their influence on disturbances which develop into hurricanes (developing disturbances, DDs) and those which do not (nondeveloping disturbances, NDDs). Dust and the SAL are found to potentially have both inhibiting and supporting influences on background conditions for hurricane genesis. A slight southward shift of DDs is determined when dust is active as well as a significant warming of the SAL, which leads to a strengthening of the vertical circulation associated with the SAL. The dust burden of DDs is smaller in active dust simulations compared to DDs in simulations with inactive dust, while NDDs contain more dust in active dust simulations. However, no significant influence of radiatively active dust on other variables in DDs and NDDs is found. Furthermore, no substantial change in the DD and NDD frequency due to the radiative effects of dust can be detected.

  15. A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity

    SciTech Connect

    Johnson, Jay R; Wing, Simon

    2005-03-08

    The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.

  16. Influence of Atmospheric Solar Radiation Absorption on Photodestruction of Ions at D-Region Altitudes of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    2016-04-01

    The influence of atmospheric solar radiation absorption on the photodetachment, dissociative photodetachment, and photodissociation rate coefficients (photodestruction rate coefficients) of O-, Cl-, O2 -, O3 -, OH-, NO2 -, NO3 -, O4 -, OH-(H2O), CO3 -, CO4 -, ONOO-, HCO3 -, CO3 -(H2O), NO3 -(H2O), O2 +(H2O), O4 +, N4 +, NO+(H2O), NO+(H2O)2, H+(H2O) n for n = 2-4, NO+(N2), and NO+(CO2) at D-region altitudes of the ionosphere is studied. A numerical one-dimensional time-dependent neutral atmospheric composition model has been developed to estimate this influence. The model simulations are carried out for the geomagnetically quiet time period of 15 October 1998 at moderate solar activity over the Boulder ozonesonde. If the solar zenith angle is not more than 90° then the strongest influence of atmospheric solar radiation absorption on photodestruction of ions is found for photodissociation of CO4 - ions when CO3 - ions are formed. It follows from the calculations that decreases in the photodestruction rate coefficients of ions under consideration caused by this influence are less than 2 % at 70 km altitude and above this altitude if the solar zenith angle does not exceed 90°.

  17. Influence of Atmospheric Solar Radiation Absorption on Photodestruction of Ions at D-Region Altitudes of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    2016-07-01

    The influence of atmospheric solar radiation absorption on the photodetachment, dissociative photodetachment, and photodissociation rate coefficients (photodestruction rate coefficients) of O-, Cl-, O2 -, O3 -, OH-, NO2 -, NO3 -, O4 -, OH-(H2O), CO3 -, CO4 -, ONOO-, HCO3 -, CO3 -(H2O), NO3 -(H2O), O2 +(H2O), O4 +, N4 +, NO+(H2O), NO+(H2O)2, H+(H2O) n for n = 2-4, NO+(N2), and NO+(CO2) at D-region altitudes of the ionosphere is studied. A numerical one-dimensional time-dependent neutral atmospheric composition model has been developed to estimate this influence. The model simulations are carried out for the geomagnetically quiet time period of 15 October 1998 at moderate solar activity over the Boulder ozonesonde. If the solar zenith angle is not more than 90° then the strongest influence of atmospheric solar radiation absorption on photodestruction of ions is found for photodissociation of CO4 - ions when CO3 - ions are formed. It follows from the calculations that decreases in the photodestruction rate coefficients of ions under consideration caused by this influence are less than 2 % at 70 km altitude and above this altitude if the solar zenith angle does not exceed 90°.

  18. Influence of interplanetary magnetic field and solar wind on auroral brightness in different regions

    NASA Astrophysics Data System (ADS)

    Yang, Y. F.; Lu, J. Y.; Wang, J.-S.; Peng, Z.; Zhou, L.

    2013-01-01

    Abstract<p label="1">By integrating and averaging the auroral brightness from Polar Ultraviolet Imager auroral images, which have the whole auroral ovals, and combining the observation data of interplanetary magnetic field (IMF) and <span class="hlt">solar</span> wind from NASA Operating Missions as a Node on the Internet (OMNI), we investigate the <span class="hlt">influence</span> of IMF and <span class="hlt">solar</span> wind on auroral <span class="hlt">activities</span>, and analyze the separate roles of the <span class="hlt">solar</span> wind dynamic pressure, density, and velocity on aurora, respectively. We statistically analyze the relations between the interplanetary conditions and the auroral brightness in dawnside, dayside, duskside, and nightside. It is found that the three components of the IMF have different effects on the auroral brightness in the different regions. Different from the nightside auroral brightness, the dawnside, dayside, and duskside auroral brightness are affected by the IMF Bx, and By components more significantly. The IMF Bx and By components have different effects on these three regional auroral brightness under the opposite polarities of the IMF Bz. As expected, the nightside aurora is mainly affected by the IMF Bz, and under southward IMF, the larger the |Bz|, the brighter the nightside aurora. The IMF Bx and By components have no visible effects. On the other hand, it is also found that the aurora is not intensified singly with the increase of the <span class="hlt">solar</span> wind dynamic pressure: when only the dynamic pressure is high, but the <span class="hlt">solar</span> wind velocity is not very fast, the aurora will not necessarily be intensified significantly. These results can be used to qualitatively predict the auroral <span class="hlt">activities</span> in different regions for various interplanetary conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780019594','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780019594"><span id="translatedtitle">Preliminary design <span class="hlt">activities</span> for <span class="hlt">solar</span> heating and cooling systems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1978-01-01</p> <p>Information on the development of <span class="hlt">solar</span> heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design <span class="hlt">activities</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..121.1619Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..121.1619Z"><span id="translatedtitle"><span class="hlt">Solar</span> <span class="hlt">activity</span> dependence of nightside aurora in winter conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Su; Luan, Xiaoli; Dou, Xiankang</p> <p>2016-02-01</p> <p>The dependence of the nightside (21:00-03:00 MLT; magnetic local time) auroral energy flux on <span class="hlt">solar</span> <span class="hlt">activity</span> was quantitatively studied for winter/dark and geomagnetically quiet conditions. Using data combined from Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager and Defense Meteorological Satellite Program/Special Sensor Ultraviolet Spectrographic Imager observations, we separated the effects of geomagnetic <span class="hlt">activity</span> from those of <span class="hlt">solar</span> flux on the nightside auroral precipitation. The results showed that the nightside auroral power was reduced by ~42% in <span class="hlt">solar</span> maximum (F10.7 = 200 sfu; <span class="hlt">solar</span> flux unit 1 sfu = 10-22 W m-2 Hz-1) with respect to that under <span class="hlt">solar</span> minimum (F10.7 = 70 sfu) for the Kp = 1 condition, and this change rate became less (~21%) for the Kp = 3 condition. In addition, the <span class="hlt">solar</span> cycle dependence of nightside auroral power was similar with that from both the premidnight (21:00-23:00 MLT) and postmidnight (01:00-03:00 MLT) sectors. These results indicated that as the ionospheric ionization increases with the enhanced auroral and geomagnetic <span class="hlt">activities</span>, the <span class="hlt">solar</span> <span class="hlt">activity</span> dependences of nightside auroral power become weaker, at least under geomagnetically quiet conditions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_13");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_13");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008639','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008639"><span id="translatedtitle">Effects of Low <span class="hlt">Activity</span> <span class="hlt">Solar</span> Cycle on Orbital Debris Lifetime</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cable, Samual B.; Sutton, Eric K.; Lin, chin S.; Liou, J.-C.</p> <p>2011-01-01</p> <p>Long duration of low <span class="hlt">solar</span> <span class="hlt">activity</span> in the last <span class="hlt">solar</span> minimum has an undesirable consequence of extending the lifetime of orbital debris. The AFRL TacSat-2 satellite decommissioned in 2008 has finally re-entered into the atmosphere on February 5th after more than one year overdue. Concerning its demise we have monitored its orbital decay and monthly forecasted Tacsat-2 re-entry since September 2010 by using the Orbital Element Prediction (OEP) model developed by the AFRL Orbital Drag Environment program. The model combines estimates of future <span class="hlt">solar</span> <span class="hlt">activity</span> with neutral density models, drag coefficient models, and an orbit propagator to predict satellite lifetime. We run the OEP model with <span class="hlt">solar</span> indices forecast by the NASA Marshall <span class="hlt">Solar</span> <span class="hlt">Activity</span> Future Estimation model, and neutral density forecast by the MSIS-00 neutral density model. Based on the two line elements in 2010 up to mid September, we estimated at a 50% confidence level TacSat-2's re-entry time to be in early February 2011, which turned out to be in good agreement with Tacsat-2's actual re-entry date. The potential space weather effects of the coming low <span class="hlt">activity</span> <span class="hlt">solar</span> cycle on satellite lifetime and orbital debris population are examined. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of <span class="hlt">solar</span> flux on the orbital debris population in the 200-600 km altitude environment. The results are discussed for developing satellite orbital drag application product.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ApPhA.114.1361Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ApPhA.114.1361Z"><span id="translatedtitle"><span class="hlt">Influence</span> of morphology of PCDTBT:PC71BM on the performance of <span class="hlt">solar</span> cells</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Ling; Zhao, Suling; Xu, Zheng; Gong, Wei; Yang, Qianqian; Fan, Xing; Xu, Xurong</p> <p>2014-03-01</p> <p>Because of the restriction of low energy difference between the highest occupied molecular orbital of P3HT and the lowest unoccupied molecular orbital of PCBM, the obtained power conversion efficiency of P3HT:PCBM <span class="hlt">solar</span> cells is merely half the ideal value. In this paper, we have fabricated bulk heterojunction <span class="hlt">solar</span> cells based on PCDTBT and PC71BM (structure: ITO/PEDOT:PSS/PCDTBT:PC71BM/LiF (0.8 nm)/Al (80 nm)). In order to optimize the performance of the cells, the weight ratio of PCDTBT to PC71BM, the thickness of the <span class="hlt">active</span> layer and thermal annealing are investigated. When the weight ratio of PCDTBT to PC71BM is 1:2 and the thickness of the <span class="hlt">active</span> layer is 73 nm, a short circuit current density of 10.36 mA/cm2, an open-circuit voltage of 0.91 V, a fill factor of 55.06 % and a power conversion efficiency of 5.19 % can be achieved. Moreover, we probe the <span class="hlt">influence</span> of annealing temperature on the performance of organic <span class="hlt">solar</span> cells, and find that the thermal treatment methodology (apart from the removal of trapped casting solvent) is of limited benefit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSH33D..07K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSH33D..07K"><span id="translatedtitle">The <span class="hlt">Solar</span> Non-<span class="hlt">activity</span> Cycle of Polar Coronal Holes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirk, M. S.; Pesnell, W. D.; Young, C. A.</p> <p>2015-12-01</p> <p>After the unusually extended minimum in 2008 and 2009, <span class="hlt">solar</span> cycle 24 continues to be an exceptionally weak cycle both in sunspot number and number of large magnetic storms. Coronal holes offer a direct measurement of the non-<span class="hlt">activity</span> <span class="hlt">solar</span> cycle, a missing link in our understanding of <span class="hlt">solar</span> cycle progression. They are prevalent during <span class="hlt">solar</span> minimum, non-axisymmetric, and are stable. Polar coronal holes are regularly observed capping the northern and southern <span class="hlt">solar</span> poles in EUV images of the corona and are understood as the primary source of the fast <span class="hlt">solar</span> wind. We make measurements of these features from 1996 through 2015 using four different NASA imagers: SOHO EIT, STEREO A and B EUVI, and SDO AIA. A measurement of the axial symmetry of the polar holes is seen to have clear <span class="hlt">solar</span> cycle dependence. Polar coronal holes are aligned with the <span class="hlt">solar</span> rotation axis during minimum and have a maximum asymmetry between holes of about 14 degrees in the declining phase of the current <span class="hlt">solar</span> cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMSH33A2035S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMSH33A2035S"><span id="translatedtitle">Radio Imaging Observations of <span class="hlt">Solar</span> <span class="hlt">Activity</span> Cycle and Its Anomaly</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shibasaki, K.</p> <p>2011-12-01</p> <p>The 24th <span class="hlt">solar</span> <span class="hlt">activity</span> cycle has started and relative sunspot numbers are increasing. However, their rate of increase is rather slow compared to previous cycles. <span class="hlt">Active</span> region sizes are small, lifetime is short, and big (X-class) flares are rare so far. We study this anomalous situation using data from Nobeyama Radioheliograph (NoRH). Radio imaging observations have been done by NoRH since 1992. Nearly 20 years of daily radio images of the Sun at 17 GHz are used to synthesize a radio butterfly diagram. Due to stable operation of the instrument and a robust calibration method, uniform datasets are available covering the whole period of observation. The radio butterfly diagram shows bright features corresponding to <span class="hlt">active</span> region belts and their migration toward low latitude as the <span class="hlt">solar</span> cycle progresses. In the present <span class="hlt">solar</span> <span class="hlt">activity</span> cycle (24), increase of radio brightness is delayed and slow. There are also bright features around both poles (polar brightening). Their brightness show <span class="hlt">solar</span> cycle dependence but peaks around <span class="hlt">solar</span> minimum. Comparison between the last minimum and the previous one shows decrease of its brightness. This corresponds to weakening of polar magnetic field <span class="hlt">activity</span> between them. In the northern pole, polar brightening is already weakened in 2011, which means it is close to <span class="hlt">solar</span> maximum in the northern hemisphere. Southern pole does not show such feature yet. Slow rise of <span class="hlt">activity</span> in <span class="hlt">active</span> region belt, weakening of polar <span class="hlt">activity</span> during the minimum, and large north-south asymmetry in polar <span class="hlt">activity</span> imply that global <span class="hlt">solar</span> <span class="hlt">activity</span> and its synchronization are weakening.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900018856','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900018856"><span id="translatedtitle"><span class="hlt">Solar</span> <span class="hlt">activity</span>, the QBO, and tropospheric responses</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tinsley, Brian A.; Brown, Geoffrey M.; Scherrer, Philip H.</p> <p>1989-01-01</p> <p>The suggestion that galactic cosmic rays (GCR) as modulated by the <span class="hlt">solar</span> wind are the carriers of the component of <span class="hlt">solar</span> variability that affects weather and climate has been discussed in the literature for 30 years, and there is now a considerable body of evidence that supports it. Variations of GCR occur with the 11 year <span class="hlt">solar</span> cycle, matching the time scale of recent results for atmospheric variations, as modulated by the quasibiennial oscillation of equatorial stratospheric winds (the QBO). Variations in GCR occur on the time scale of centuries with a well defined peak in the coldest decade of the little ice age. New evidence is presented on the meteorological responses to GCR variations on the time scale of a few days. These responses include changes in the vertical temperature profile in the troposphere and lower stratosphere in the two days following <span class="hlt">solar</span> flare related high speed plasma streams and associated GCR decreases, and in decreases in Vorticity Area Index (VAI) following Forbush decreases of GCR. The occurrence of correlations of GCR and meteorological responses on all three time scales strengthens the hypothesis of GCR as carriers of <span class="hlt">solar</span> variability to the lower atmosphere. Both short and long term tropospheric responses are understandable as changes in the intensity of cyclonic storms initiated by mechanisms involving cloud microphysical and cloud electrification processes, due to changes in local ion production from changes in GCR fluxes and other high energy particles in the MeV to low GeV range. The nature of these mechanisms remains undetermined. Possible stratospheric wind (particularly QBO) effects on the transport of HNO3 and other constituents incorporated in cluster ions and possible condensation and freezing nuclei are considered as relevant to the long term variations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790002474','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790002474"><span id="translatedtitle">Effect of <span class="hlt">solar</span> <span class="hlt">activity</span> on the frequency of occurrence of major anomalies in the Arctic. [weather forecasting</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bolotinskaya, M. S.</p> <p>1978-01-01</p> <p>Major air pressure and temperature anomalies in certain arctic regions were studied with a view toward predicting their occurrence. Correlations are sought between the frequency of arctic anomalies and <span class="hlt">solar</span> <span class="hlt">activity</span>, or specifically the Wolf number and the index of geomagnetic disturbance. Graphic techniques are used to show that <span class="hlt">solar</span> <span class="hlt">activity</span> has a definite <span class="hlt">influence</span> on the frequency of occurrence of major anomalies of pressure and temperature in the Arctic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/21557069','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/21557069"><span id="translatedtitle">CHEMI-IONIZATION IN <span class="hlt">SOLAR</span> PHOTOSPHERE: <span class="hlt">INFLUENCE</span> ON THE HYDROGEN ATOM EXCITED STATES POPULATION</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Mihajlov, Anatolij A.; Ignjatovic, Ljubinko M.; Sreckovic, Vladimir A.; Dimitrijevic, Milan S. E-mail: mihajlov@ipb.ac.rs</p> <p>2011-03-15</p> <p>In this paper, the <span class="hlt">influence</span> of chemi-ionization processes in H*(n {>=} 2) + H(1s) collisions, as well as the <span class="hlt">influence</span> of inverse chemi-recombination processes on hydrogen atom excited-state populations in <span class="hlt">solar</span> photosphere, are compared with the <span class="hlt">influence</span> of concurrent electron-atom and electron-ion ionization and recombination processes. It has been found that the considered chemi-ionization/recombination processes dominate over the relevant concurrent processes in almost the whole <span class="hlt">solar</span> photosphere. Thus, it is shown that these processes and their importance for the non-local thermodynamic equilibrium modeling of the <span class="hlt">solar</span> atmosphere should be investigated further.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/6617349','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/6617349"><span id="translatedtitle"><span class="hlt">Active</span> <span class="hlt">solar</span> heating and cooling information user study</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.</p> <p>1981-01-01</p> <p>The results of a series of telephone interviews with groups of users of information on <span class="hlt">active</span> <span class="hlt">solar</span> heating and cooling (SHAC). An earlier study identified the information user groups in the <span class="hlt">solar</span> community and the priority (to accelerate <span class="hlt">solar</span> energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the <span class="hlt">Solar</span> Energy Research Institute, the <span class="hlt">Solar</span> Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010037770','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010037770"><span id="translatedtitle">A Time-Frequency Analysis of the Effects of <span class="hlt">Solar</span> <span class="hlt">Activities</span> on Tropospheric Thermodynamics</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kiang, Richard K.; Kyle, H. Lee; Wharton, Stephen W. (Technical Monitor)</p> <p>2001-01-01</p> <p>Whether the Sun has significantly <span class="hlt">influenced</span> the climate during the last century has been under extensive debates for almost two decades. Since the <span class="hlt">solar</span> irradiance varies very little in a <span class="hlt">solar</span> cycle, it is puzzling that some geophysical parameters show proportionally large variations which appear to be responding to the <span class="hlt">solar</span> cycles. For example, variation in low altitude clouds is shown correlated with <span class="hlt">solar</span> cycle, and the onset of Forbush decrease is shown correlated with the reduction of the vorticity area index. A possible sun-climate connection is that galactic cosmic rays modulated by <span class="hlt">solar</span> <span class="hlt">activities</span> <span class="hlt">influence</span> cloud formation. In this paper, we apply wavelet transform to satellite and surface data to examine this hypothesis. Data analyzed include the time series for <span class="hlt">solar</span> irradiance, sunspots, UV index, temperature, cloud coverage, and neutron counter measurements. The interactions among the elements in the Earth System under the external and internal forcings give out very complex signals.The periodicity of the forcings or signals could range widely. Since wavelet transforms can analyze multi-scale phenomena that are both localized in frequency and time, it is a very useful technique for detecting, understanding and monitoring climate changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://ntrs.nasa.gov/search.jsp?R=19950033056&hterms=Hysteresis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DHysteresis','NASA-TRS'); return false;" href="http://ntrs.nasa.gov/search.jsp?R=19950033056&hterms=Hysteresis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DHysteresis"><span id="translatedtitle">Observations of hysteresis in <span class="hlt">solar</span> cycle variations among seven <span class="hlt">solar</span> <span class="hlt">activity</span> indicators</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bachmann, Kurt T.; White, Oran R.</p> <p>1994-01-01</p> <p>We show that smoothed time series of 7 indices of <span class="hlt">solar</span> <span class="hlt">activity</span> exhibit significant <span class="hlt">solar</span> cycle dependent differences in their relative variations during the past 20 years. In some cases these observed hysteresis patterns start to repeat over more than one <span class="hlt">solar</span> cycle, giving evidence that this is a normal feature of <span class="hlt">solar</span> variability. Among the indices we study, we find that the hysteresis effects are approximately simple phase shifts, and we quantify these phase shifts in terms of lag times behind the leading index, the International Sunspot Number. Our measured lag times range from less than one month to greater than four months and can be much larger than lag times estimated from short-term variations of these same <span class="hlt">activity</span> indices during the emergence and decay of major <span class="hlt">active</span> regions. We argue that hysteresis represents a real delay in the onset and decline of <span class="hlt">solar</span> <span class="hlt">activity</span> and is an important clue in the search for physical processes responsible for changing <span class="hlt">solar</span> emission at various wavelengths.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.9519L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.9519L"><span id="translatedtitle"><span class="hlt">Influence</span> of interplanetary <span class="hlt">solar</span> wind sector polarity on the ionosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>liu, jing</p> <p>2014-05-01</p> <p>Knowledge of <span class="hlt">solar</span> sector polarity effects on the ionosphere may provide some clues in understanding of the ionospheric day-to-day variability. A <span class="hlt">solar</span>-terrestrial connection ranging from <span class="hlt">solar</span> sector boundary (SB) crossings, geomagnetic disturbance and ionospheric perturbations has been demonstrated. The increases in interplanetary <span class="hlt">solar</span> wind speed within three days are seen after SB crossings, while the decreases in <span class="hlt">solar</span> wind dynamic pressure and magnetic field intensity immediately after SB crossings are confirmed by the superposed epoch analysis results. Furthermore, the interplanetary magnetic field (IMF) Bz component turns from northward to southward in March equinox and June solstice as the Earth passes from a <span class="hlt">solar</span> sector of outward to inward directed magnetic fields, whereas the reverse situation occurs for the transition from toward to away sectors. The F2 region critical frequency (foF2) covering about four <span class="hlt">solar</span> cycles and total electron content (TEC) during 1998-2011 are utilized to extract the related information, revealing that they are not modified significantly and vary within the range of 15% on average. The responses of the ionospheric TEC to SB crossings exhibit complex temporal and spatial variations and have strong dependencies on season, latitude, and <span class="hlt">solar</span> cycle. This effect is more appreciable in equinoctial months than in solstitial months, which is mainly caused by larger southward Bz components in equinox. In September equinox, latitudinal profile of relative variations of foF2 at noon is featured by depressions at high latitudes and enhancements in low-equatorial latitudes during IMF away sectors. The negative phase of foF2 is delayed at <span class="hlt">solar</span> minimum relative to it during other parts of <span class="hlt">solar</span> cycle, which might be associated with the difference in longevity of major interplanetary <span class="hlt">solar</span> wind drivers perturbing the Earth's environment in different phases of <span class="hlt">solar</span> cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995IJBm...38...89S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995IJBm...38...89S"><span id="translatedtitle">Relationship between immunoglobulin levels and extremes of <span class="hlt">solar</span> <span class="hlt">activity</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stoupel, Elijahu G.; Abramson, Eugene; Gabbay, Uri; Pick, Albert I.</p> <p>1995-06-01</p> <p>The possible relationship between epidemics and extremes of <span class="hlt">solar</span> <span class="hlt">activity</span> has been discussed previously. The purpose of the present study was to verify whether differences in the levels of immunoglobulins (IgA, IgG, IgM) could be noted at the highest (July 1989) and lowest (September 1986) points of the last (21st) and present (22nd) 11-year <span class="hlt">solar</span> cycle. The work was divided into a 1-month study (covering the month of minimal or maximal <span class="hlt">solar</span> <span class="hlt">activity</span>), a 3-month study (1 month before and after the month of minimal or maximal <span class="hlt">solar</span> <span class="hlt">activity</span>) and a 5-month study (2 months before and after the month of minimal or maximal <span class="hlt">solar</span> <span class="hlt">activity</span>). A trend of a drop-off for all three immunoglobulins was seen on the far side of the maximal point of the <span class="hlt">solar</span> cycle. Statistical significance was achieved in the 5-month study for IgM ( P=0.04), and a strong trend was shown for IgG ( P=0.07). Differences between the sexes were also noted.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://ntrs.nasa.gov/search.jsp?R=19820041908&hterms=variability+climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dvariability%2Bclimate','NASA-TRS'); return false;" href="http://ntrs.nasa.gov/search.jsp?R=19820041908&hterms=variability+climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dvariability%2Bclimate"><span id="translatedtitle">The <span class="hlt">influence</span> of <span class="hlt">solar</span> ultraviolet variability on climate</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chamberlain, J. W.</p> <p>1982-01-01</p> <p>Changes in the <span class="hlt">solar</span> u.v. flux and its wavelength distribution could affect the climate both directly and through the greenhouse effect of the ozone shield. Indeed, the ozone content of the stratosphere is highly sensitive to the relative intensity of two broad spectral regions in the <span class="hlt">solar</span> u.v. The observed amplitude for global-ozone variation of a few percent at most over the <span class="hlt">solar</span> cycle is compatible with a variation of <span class="hlt">solar</span> u.v. flux of no more than about 20%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1260817','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1260817"><span id="translatedtitle">Do <span class="hlt">solar</span> cycles <span class="hlt">influence</span> giant cell arteritis and rheumatoid arthritis incidence?</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Wing, Simon; Rider, Lisa G.; Johnson, Jay R.; Miller, Federick W.; Matteson, Eric L.; Crowson, C. S.; Gabriel, S. E.</p> <p>2015-05-15</p> <p>Our objective was to examine the <span class="hlt">influence</span> of <span class="hlt">solar</span> cycle and geomagnetic effects on the incidence of giant cell arteritis (GCA) and rheumatoid arthritis (RA). Methods: We used data from patients with GCA (1950-2004) and RA (1955-2007) obtained from population-based cohorts. Yearly trends in age-adjusted and sex-adjusted incidence were correlated with the F10.7 index (<span class="hlt">solar</span> radiation at 10.7 cm wavelength, a proxy for the <span class="hlt">solar</span> extreme ultraviolet radiation) and AL index (a proxy for the westward auroral electrojet and a measure of geomagnetic <span class="hlt">activity</span>). Fourier analysis was performed on AL, F10.7, and GCA and RA incidence rates. Results: The correlation of GCA incidence with AL is highly significant: GCA incidence peaks 0-1 year after the AL reaches its minimum (ie, auroral electrojet reaches a maximum). The correlation of RA incidence with AL is also highly significant. RA incidence rates are lowest 5-7 years after AL reaches maximum. AL, GCA and RA incidence power spectra are similar: they have a main peak (periodicity) at about 10 years and a minor peak at 4-5 years. However, the RA incidence power spectrum main peak is broader (8-11 years), which partly explains the lower correlation between RA onset and AL. The auroral electrojets may be linked to the decline of RA incidence more strongly than the onset of RA. The incidences of RA and GCA are aligned in geomagnetic latitude. Conclusions: AL and the incidences of GCA and RA all have a major periodicity of about 10 years and a secondary periodicity at 4-5 years. Geomagnetic <span class="hlt">activity</span> may explain the temporal and spatial variations, including east-west skewness in geographic coordinates, in GCA and RA incidence, although the mechanism is unknown. Lastly, the link with <span class="hlt">solar</span>, geospace and atmospheric parameters need to be investigated. These novel findings warrant examination in other populations and with other autoimmune diseases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990109083','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990109083"><span id="translatedtitle">The <span class="hlt">Influence</span> of Extremely Large <span class="hlt">Solar</span> Proton Events in a Changing Stratosphere. Stratospheric <span class="hlt">Influence</span> of <span class="hlt">Solar</span> Proton Events</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jackman, Charles H.; Fleming, Eric L.; Vitt, Francis M.</p> <p>1999-01-01</p> <p>Two periods of extremely large <span class="hlt">solar</span> proton events (SPEs) occurred in the past thirty years, which forced significant long-term polar stratospheric changes. The August 2-10, 1972 and October 19-27, 1989 SPEs happened in stratospheres that were quite different chemically. The stratospheric chlorine levels were relatively small in 1972 (approximately 1.2 ppbv) and were fairly substantial in 1989 at about (approximately 3 ppbv). Although these SPEs produced both HO(x) and NO(y) constituents in the mesosphere and stratosphere, only the NO(y) constituents had lifetimes long enough to affect ozone for several months to years past the events. Our recently improved two-dimensional chemistry and transport atmospheric model was used to compute the effects of these gigantic SPEs in a changing stratosphere. Significant upper stratospheric ozone depletions > 10% are computed to last for a few months past these SPEs. The long-lived SPE-produced NO(y) constituents were transported to lower levels during winter after these huge SPEs and caused impacts in the middle and lower stratosphere. During periods of high halogen loading these impacts resulted in interference with the chlorine and bromine loss cycles for ozone destruction. The chemical state of the atmosphere, including the stratospheric sulfate aerosol density, substantially affected the predicted stratospheric <span class="hlt">influence</span> of these extremely large SPEs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...820L..11J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...820L..11J"><span id="translatedtitle">The Magnetic Classification of <span class="hlt">Solar</span> <span class="hlt">Active</span> Regions 1992-2015</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jaeggli, S. A.; Norton, A. A.</p> <p>2016-03-01</p> <p>The purpose of this Letter is to address a blindspot in our knowledge of <span class="hlt">solar</span> <span class="hlt">active</span> region (AR) statistics. To the best of our knowledge, there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of <span class="hlt">solar</span> cycle based on modern observations. We show statistics for all ARs reported in the daily <span class="hlt">Solar</span> Region Summary from 1992 January 1 to 2015 December 31. We find that the α and β class ARs (including all sub-groups, e.g., βγ, βδ) make up fractions of approximately 20% and 80% of the sample, respectively. This fraction is relatively constant during high levels of <span class="hlt">activity</span> however, an increase in the α fraction to about 35% and and a decrease in the β fraction to about 65% can be seen near each <span class="hlt">solar</span> minimum and are statistically significant at the 2σ level. Over 30% of all ARs observed during the years of <span class="hlt">solar</span> maxima were appended with the classifications γ and/or δ, while these classifications account for only a fraction of a percent during the years near the <span class="hlt">solar</span> minima. This variation in the AR types indicates that the formation of complex ARs may be due to the pileup of frequent emergence of magnetic flux during <span class="hlt">solar</span> maximum, rather than the emergence of complex, monolithic flux structures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://ntrs.nasa.gov/search.jsp?R=19890042166&hterms=activity+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dactivity%2Btheory','NASA-TRS'); return false;" href="http://ntrs.nasa.gov/search.jsp?R=19890042166&hterms=activity+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dactivity%2Btheory"><span id="translatedtitle">Polarization aberrations in the <span class="hlt">solar</span> <span class="hlt">activity</span> measurements experiments (SAMEX) <span class="hlt">solar</span> vector magnetograph</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcguire, James P., Jr.; Chipman, Russell A.</p> <p>1989-01-01</p> <p>An optical design and polarization analysis of the Air Force/NASA <span class="hlt">Solar</span> <span class="hlt">Activity</span> Measurements Experiments <span class="hlt">solar</span> vector magnetograph optical system is performed. Polarization aberration theory demonstrates that conventional telescope coating designs introduce unacceptably high levels of polarization aberrations into the optical system. Several ultralow polarization mirror and lens coatings designs for this instrument are discussed. Balancing of polarization aberrations at different surfaces is demonstrated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/21067833','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/21067833"><span id="translatedtitle">Microbial <span class="hlt">solar</span> cells: applying photosynthetic and electrochemically <span class="hlt">active</span> organisms.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Strik, David P B T B; Timmers, Ruud A; Helder, Marjolein; Steinbusch, Kirsten J J; Hamelers, Hubertus V M; Buisman, Cees J N</p> <p>2011-01-01</p> <p>Microbial <span class="hlt">solar</span> cells (MSCs) are recently developed technologies that utilize <span class="hlt">solar</span> energy to produce electricity or chemicals. MSCs use photoautotrophic microorganisms or higher plants to harvest <span class="hlt">solar</span> energy, and use electrochemically <span class="hlt">active</span> microorganisms in the bioelectrochemical system to generate electrical current. Here, we review the principles and performance of various MSCs in an effort to identify the most promising systems, as well as the bottlenecks and potential solutions, for "real-life" MSC applications. We present an outlook on future applications based on the intrinsic advantages of MSCs, specifically highlighting how these living energy systems can facilitate the development of an electricity-producing green roof. PMID:21067833</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://ntrs.nasa.gov/search.jsp?R=19900018869&hterms=physical+activity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dphysical%2Bactivity','NASA-TRS'); return false;" href="http://ntrs.nasa.gov/search.jsp?R=19900018869&hterms=physical+activity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dphysical%2Bactivity"><span id="translatedtitle">Physical mechanisms of <span class="hlt">solar</span> <span class="hlt">activity</span> effects in the middle atmosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ebel, A.</p> <p>1989-01-01</p> <p>A great variety of physical mechanisms of possibly <span class="hlt">solar</span> induced variations in the middle atmosphere has been discussed in the literature during the last decades. The views which have been put forward are often controversial in their physical consequences. The reason may be the complexity and non-linearity of the atmospheric response to comparatively weak forcing resulting from <span class="hlt">solar</span> <span class="hlt">activity</span>. Therefore this review focuses on aspects which seem to indicate nonlinear processes in the development of <span class="hlt">solar</span> induced variations. Results from observations and numerical simulations are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMED51B0423H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMED51B0423H"><span id="translatedtitle">Caught in the <span class="hlt">Solar</span> Wind: A Study of Space Weather and its <span class="hlt">Influence</span> on Earth</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hill, R.; Chuckran, A.; Erickson, P. J.</p> <p>2007-12-01</p> <p>Space weather is a phenomenon that is becoming more familiar to the general public. As people are increasingly reliant on 21st century technology, the potential for disruption to their daily lives also rises. As the sun approaches its next <span class="hlt">solar</span> maximum in 2011 or 2012, the peak of Cycle 24 is expected to be the highest of the satellite age, perhaps surpassing that of Cycle 19 in 1957-58. In this teaching unit, we have attempted to create a series of lessons that sheds light on the concept of space weather and the sun's <span class="hlt">influences</span> on earth's magnetic field and upper atmosphere. Within this unit, we have provided ample opportunities for students to access and interpret real scientific data from a variety of sources. The main location is the web site www.spaceweather.com , which has near real time data from satellites such as SOHO, STEREO, ACE and POES. This data is easily viewed and explained within the site, and with appropriate instruction, students can regularly gather data, make predictions, and draw conclusions based on the current behavior of the sun. Examples include sunspot number and development, speed and density of <span class="hlt">solar</span> wind, orientation and strength of the interplanetary magnetic field, location of coronal holes, planetary K index and X-ray <span class="hlt">solar</span> flares. Depending on the level of the students, some or all of this data can be compiled over a period of time to better understand the behavior of the sun as well as its <span class="hlt">influence</span> on Earth. The goal of this unit is to provide a vehicle for students to understand how data is used by scientists. Once they have the base knowledge, students may be able to construct their own questions and follow through with research. An inquiry-based approach is incorporated whenever possible. With the onset of a potentially <span class="hlt">active</span> <span class="hlt">solar</span> cycle in the near future, teachers have the opportunity to make a dramatic connection between the natural world and their daily lives. <span class="hlt">Solar</span> storms can cause disruption to telephone communication</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_13");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_13");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRA..117.8335L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRA..117.8335L"><span id="translatedtitle"><span class="hlt">Influence</span> of interplanetary <span class="hlt">solar</span> wind sector polarity on the ionosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Jing; Liu, Libo; Zhao, Biqiang; Wan, Weixing</p> <p>2012-08-01</p> <p>Knowledge of <span class="hlt">solar</span> sector polarity effects on the ionosphere may provide some clues in understanding of the ionospheric day-to-day variability and "hysteresis" effect on foF2. Ionospheric response to changes in <span class="hlt">solar</span> sector polarity has not been fully documented previously, partly due to the limitation of observations. In this study, a <span class="hlt">solar</span>-terrestrial connection ranging from <span class="hlt">solar</span> sector boundary (SB) crossings, geomagnetic disturbances and ionospheric perturbations has been demonstrated. The increases in interplanetary <span class="hlt">solar</span> wind speed within three days are seen after SB crossings, while the decreases in <span class="hlt">solar</span> wind dynamic pressure and magnetic field intensity immediately after SB crossings are confirmed by the superposed epoch analysis results. Furthermore, the interplanetary magnetic field (IMF) Bz component turns from northward to southward in March equinox and June solstice as the Earth passes from a <span class="hlt">solar</span> sector of outward to inward directed magnetic fields, whereas the reverse situation occurs for the transition from toward to away sectors. The IMF Bz component for the same <span class="hlt">solar</span> sector polarity has opposite signs between March equinox and September equinox, and also between June solstice and December solstice. In order to know how the ionosphere reacts to the interplanetary <span class="hlt">solar</span> wind variations linkage of SB crossings, the F2 region critical frequency (foF2) covering about four <span class="hlt">solar</span> cycles and total electron content (TEC) during 1998-2011 are utilized to extract the related information, revealing that they are not modified significantly and vary within the range of ±15% on average. The responses of the ionospheric TEC to SB crossings exhibit complex temporal and spatial variations and have strong dependencies on season, latitude, and <span class="hlt">solar</span> cycle. This effect is more appreciable in equinoctial months than in solstitial months, which is mainly caused by larger southwardBzcomponents in equinox. In September equinox, latitudinal profile of relative</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090017773','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090017773"><span id="translatedtitle">Evidence for <span class="hlt">Solar</span> Cycle <span class="hlt">Influence</span> on the Infrared Energy Budget and Radiative Cooling of the Thermosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mlynczak, Martin G.; Martin-Torres, F. Javier; Marshall, B. Thomas; Thompson, R. Earl; Williams, Joshua; Turpin, TImothy; Kratz, D. P.; Russell, James M.; Woods, Tom; Gordley, Larry L.</p> <p>2007-01-01</p> <p>We present direct observational evidence for <span class="hlt">solar</span> cycle <span class="hlt">influence</span> on the infrared energy budget and radiative cooling of the thermosphere. By analyzing nearly five years of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, we show that the annual mean infrared power radiated by the nitric oxide (NO) molecule at 5.3 m has decreased by a factor of 2.9. This decrease is correlated (r = 0.96) with the decrease in the annual mean F10.7 <span class="hlt">solar</span> index. Despite the sharp decrease in radiated power (which is equivalent to a decrease in the vertical integrated radiative cooling rate), the variability of the power as given in the standard deviation of the annual means remains approximately constant. A simple relationship is shown to exist between the infrared power radiated by NO and the F10.7 index, thus providing a fundamental relationship between <span class="hlt">solar</span> <span class="hlt">activity</span> and the thermospheric cooling rate for use in thermospheric models. The change in NO radiated power is also consistent with changes in absorbed ultraviolet radiation over the same time period.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015AGUFMSM31C2511M&link_type=ABSTRACT','NASAADS'); return false;" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2015AGUFMSM31C2511M&link_type=ABSTRACT"><span id="translatedtitle"><span class="hlt">Solar</span> wind <span class="hlt">influence</span> on the Jovian inner magnetosphere observed by Hisaki/EXCEED</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murakami, G.; Yoshioka, K.; Yamazaki, A.; Tsuchiya, F.; Kimura, T.; Tao, C.; Kagitani, M.; Sakanoi, T.; Uemizu, K.; Kasaba, Y.; Yoshikawa, I.; Fujimoto, M.</p> <p>2015-12-01</p> <p>The dawn-dusk asymmetry of the Io plasma torus has been seen by several observations [e.g., Sandel and Broadfoot, 1982; Steffl et al., 2004]. Ip and Goertz [1983] explained this asymmetry can be caused by a dawn-to-dusk electric field in the Jupiter's inner magnetosphere. However, the question what physical process can impose such an electric field deep inside the strong magnetosphere still remains. The long-term monitoring of the Io plasma torus is a key observation to answer this question. The extreme ultraviolet (EUV) spectrometer EXCEED onboard the Hisaki satellite observed the Io plasma torus continuously during the two periods: from December 2013 to March 2014 and from November 2014 to May 2015. We found clear responses of the dawn-dusk asymmetry to rapid increases of the <span class="hlt">solar</span> wind dynamic pressure. We statistically analyzed the relations between <span class="hlt">solar</span> wind and IPT response. Furthermore, we investigated the <span class="hlt">influence</span> of Io's volcanic <span class="hlt">activity</span>, detected by Hisaki in January 2015, on the <span class="hlt">solar</span> wind response of Jovian inner magnetosphere. We will report the initial results of this study.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1675S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1675S"><span id="translatedtitle">Investigation of relationships between parameters of <span class="hlt">solar</span> nano-flares and <span class="hlt">solar</span> <span class="hlt">activity</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia</p> <p>2016-07-01</p> <p><span class="hlt">Solar</span> flares are one of the important coronal events which are originated in <span class="hlt">solar</span> magnetic <span class="hlt">activity</span>. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret <span class="hlt">solar</span> large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the <span class="hlt">solar</span> full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the <span class="hlt">solar</span> disk (quiet Sun (QS), coronal holes (CHs), and <span class="hlt">active</span> regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of <span class="hlt">solar</span> <span class="hlt">activity</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980202344','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980202344"><span id="translatedtitle"><span class="hlt">Influence</span> of Short-Term <span class="hlt">Solar</span> UV Variability on the Determination of <span class="hlt">Solar</span> Cycle Minimum</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cebula, Richard P.; DeLand, Matthew T.</p> <p>1997-01-01</p> <p>Smoothing <span class="hlt">solar</span> UV data on rotational timescale (approx. 27 days) improves identification of <span class="hlt">solar</span> minimum. Smoothing intervals which are not multiples of rotational period (e.g. 35 days) can leave measurable residual signal. No evidence found for periodic behavior on intermediate (50-250 days) time scales during Cycle 22, based on data from three <span class="hlt">solar</span> UV instruments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760007440','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760007440"><span id="translatedtitle">Possible relationships between <span class="hlt">solar</span> <span class="hlt">activity</span> and meteorological phenomena</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bandeen, W. R. (Editor); Maran, S. P. (Editor)</p> <p>1975-01-01</p> <p>A symposium was conducted in which the following questions were discussed: (1) the evidence concerning possible relationships between <span class="hlt">solar</span> <span class="hlt">activity</span> and meteorological phenomena; (2) plausible physical mechanisms to explain these relationships; and (3) kinds of critical measurements needed to determine the nature of <span class="hlt">solar</span>/meteorological relationships and/or the mechanisms to explain them, and which of these measurements can be accomplished best from space.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/17677760','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/17677760"><span id="translatedtitle">Self-similar signature of the <span class="hlt">active</span> <span class="hlt">solar</span> corona within the inertial range of <span class="hlt">solar</span>-wind turbulence.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kiyani, K; Chapman, S C; Hnat, B; Nicol, R M</p> <p>2007-05-25</p> <p>We quantify the scaling of magnetic energy density in the inertial range of <span class="hlt">solar</span>-wind turbulence seen in situ at 1 AU with respect to <span class="hlt">solar</span> <span class="hlt">activity</span>. At <span class="hlt">solar</span> maximum, when the coronal magnetic field is dynamic and topologically complex, we find self-similar scaling in the <span class="hlt">solar</span> wind, whereas at <span class="hlt">solar</span> minimum, when the coronal fields are more ordered, we find multifractality. This quantifies the <span class="hlt">solar</span>-wind signature that is of direct coronal origin and distinguishes it from that of local MHD turbulence, with quantitative implications for coronal heating of the <span class="hlt">solar</span> wind. PMID:17677760</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993GeoRL..20.2271O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993GeoRL..20.2271O"><span id="translatedtitle">Semiannual variation of the geomagnetic <span class="hlt">activity</span> and <span class="hlt">solar</span> wind parameters</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orlando, M.; Moreno, G.; Parisi, M.; Storini, M.</p> <p>1993-10-01</p> <p>The semiannual variation of the geomagnetic <span class="hlt">activity</span> is investigated in connection with a large set of <span class="hlt">solar</span> wind and interplanetary magnetic field data (4494 daily averages from 1965 to 1987). Our analysis confirms that the geomagnetic <span class="hlt">activity</span> (described by the aa index), is mainly modulated by the southward component of the magnetic field (BS), as suggested by Russell and McPherron. On the other hand, it is also found that the <span class="hlt">solar</span> wind velocity (V) has a relevant role in this phenomenon. In fact, the amplitude of the aa modulation is best correlated with the function BSV2. We also explore the linkage between the annual trend of aa and the sunspot <span class="hlt">activity</span> (1868-1989), showing that the modulation of the geomagnetic <span class="hlt">activity</span> follows a more regular pattern during the descending phase of the <span class="hlt">solar</span> cycle than during the rising and maximum parts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://ntrs.nasa.gov/search.jsp?R=19830012579&hterms=activity+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dactivity%2Btheory','NASA-TRS'); return false;" href="http://ntrs.nasa.gov/search.jsp?R=19830012579&hterms=activity+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dactivity%2Btheory"><span id="translatedtitle"><span class="hlt">Solar</span> <span class="hlt">activity</span>: The Sun as an X-ray star</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Golub, L.</p> <p>1981-01-01</p> <p>The existence and constant <span class="hlt">activity</span> of the Sun's outer atmosphere are thought to be due to the continual emergence of magnetic fields from the <span class="hlt">Solar</span> interior and the stressing of these fields at or near the surface layers of the Sun. The structure and <span class="hlt">activity</span> of the corona are thus symptomatic of the underlying magnetic dynamo and the existence of an outer turbulent convective zone on the Sun. A sufficient condition for the existence of coronal <span class="hlt">activity</span> on other stars would be the existence of a magnetic dynamo and an outer convective zone. The theoretical relationship between magnetic fields and coronal <span class="hlt">activity</span> can be tested by <span class="hlt">Solar</span> observations, for which the individual loop structures can be resolved. A number of parameters however, which enter into the alternative theoretical formulations remain fixed in all <span class="hlt">Solar</span> observations. To determine whether these are truly parameters of the theory observations need to be extended to nearby stars on which suitable conditions may occur.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUSM.B32A..18D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUSM.B32A..18D"><span id="translatedtitle">Relation Between Myocardial Infarction Deaths and <span class="hlt">Solar</span> <span class="hlt">Activity</span> in Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Diaz-Sandoval, R.</p> <p>2002-05-01</p> <p>We study the daily incidence of myocardial infarction deaths in Mexico for 4 years (1996-99) with a total of 129 917 cases in all the country, collected at the General Directorate of Epidemiology (National Ministry of Health). We divided the cases by sex and age and perform two kinds of analysis. First, we did an spectral analysis using the Maximum Entropy Method, considering the complete period, and minimum and maximum epochs of <span class="hlt">solar</span> <span class="hlt">activity</span>. The results show that the most persistent periodicity at higher frequencies in the myocardial infarction death occurrence is that of seven days. Considering the <span class="hlt">solar</span> cycle phases, we found that during <span class="hlt">solar</span> minimum times some frequencies are not detectable compared with <span class="hlt">solar</span> maximum epochs, particularly that of seven days. Biological rhythms close to seven days, the circaseptans, are in general thought to be only the result of the social organization of life. However, this cannot be the only explanation, because the 7-days periodicity has been encountered in lower organisms not related with our rhythms of life. Thus, it has been proposed that biological rhythms could be evolutionary adaptations to environmental conditions, particularly, <span class="hlt">solar</span> <span class="hlt">activity</span>. In the second analysis we compared two <span class="hlt">solar</span> <span class="hlt">activity</span>-related phenomena: the Forbush decreases of cosmic rays and the geomagnetic index Ap for various levels of geomagnetic perturbations. The results show that during decreases of cosmic ray fluxes, for most cases there is a higher average myocardial infarction deaths occurrence, compared with the average incidence in days of no decreases. For geomagnetic <span class="hlt">activity</span> we find the same situation in most cases. Furthermore, this behavior is more pronounced as the level of the perturbation increases and in times of maximum <span class="hlt">solar</span> <span class="hlt">activity</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_13");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <center> <div class="footer-extlink text-muted"><small>Some links on this page may take you to non-federal websites. Their policies may differ from this site.</small> </div> </center> <div id="footer-wrapper"> <div class="footer-content"> <div id="footerOSTI" class=""> <div class="row"> <div class="col-md-4 text-center col-md-push-4 footer-content-center"><small><a href="http://www.science.gov/disclaimer.html">Privacy and Security</a></small> <div class="visible-sm visible-xs push_footer"></div> </div> <div class="col-md-4 text-center col-md-pull-4 footer-content-left"> <img src="http://www.osti.gov/images/DOE_SC31.png" alt="U.S. Department of Energy" usemap="#doe" height="31" width="177"><map style="display:none;" name="doe" id="doe"><area shape="rect" coords="1,3,107,30" href="http://www.energy.gov" alt="U.S. Deparment of Energy"><area shape="rect" coords="114,3,165,30" href="http://www.science.energy.gov" alt="Office of Science"></map> <a ref="http://www.osti.gov" style="margin-left: 15px;"><img src="http://www.osti.gov/images/footerimages/ostigov53.png" alt="Office of Scientific and Technical Information" height="31" width="53"></a> <div class="visible-sm visible-xs push_footer"></div> </div> <div class="col-md-4 text-center footer-content-right"> <a href="http://www.osti.gov/nle"><img src="http://www.osti.gov/images/footerimages/NLElogo31.png" alt="National Library of Energy" height="31" width="79"></a> <a href="http://www.science.gov"><img src="http://www.osti.gov/images/footerimages/scigov77.png" alt="science.gov" height="31" width="98"></a> <a href="http://worldwidescience.org"><img src="http://www.osti.gov/images/footerimages/wws82.png" alt="WorldWideScience.org" height="31" width="90"></a> </div> </div> </div> </div> </div> <p><br></p> </div><!-- container --> </body> </html>