Science.gov

Sample records for solar cell experiments

  1. A Photoelectrochemical Solar Cell: An Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Boudreau, Sharon M.; And Others

    1983-01-01

    Preparation and testing of a cadmium selenide photoelectrical solar cell was introduced into an environmental chemistry course to illustrate solid state semiconductor and electrochemical principles. Background information, procedures, and results are provided for the experiment which can be accomplished in a three- to four-hour laboratory session…

  2. A Photoelectrochemical Solar Cell: An Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Boudreau, Sharon M.; And Others

    1983-01-01

    Preparation and testing of a cadmium selenide photoelectrical solar cell was introduced into an environmental chemistry course to illustrate solid state semiconductor and electrochemical principles. Background information, procedures, and results are provided for the experiment which can be accomplished in a three- to four-hour laboratory session…

  3. Gallium Arsenide solar cell radiation damage experiment

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Kinnison, J. D.; Herbert, G. A.; Meulenberg, A.

    1991-01-01

    Gallium arsenide (GaAs) solar cells for space applications from three different manufactures were irradiated with 10 MeV protons or 1 MeV electrons. The electrical performance of the cells was measured at several fluence levels and compared. Silicon cells were included for reference and comparison. All the GaAs cell types performed similarly throughout the testing and showed a 36 to 56 percent power areal density advantage over the silicon cells. Thinner (8-mil versus 12-mil) GaAs cells provide a significant weight reduction. The use of germanium (Ge) substrates to improve mechanical integrity can be implemented with little impact on end of life performance in a radiation environment.

  4. Results from the IMP-J violet solar cell experiment and violet cell balloon flights

    NASA Technical Reports Server (NTRS)

    Gaddy, E. M.

    1976-01-01

    The IMP-J violet solar cell experiment was flown in an orbit with mild thermal cycling and low hard particle radiation. The results of the experiment show that violet cells degrade at about the same rate as conventional cells in such an orbit. Balloon flight measurements show that violet solar cells produce approximately 20% more power than conventional cells.

  5. Results from the IMP-J violet solar cell experiment and violet cell balloon flights

    NASA Technical Reports Server (NTRS)

    Gaddy, E. M.

    1976-01-01

    The Interplanetary Monitoring Platform-J violet solar cell experiment was flown in an orbit with mild thermal cycling and low hard-particle radiation. The results of the experiment show that violet cells degrade at about the same rate as conventional cells in such an orbit. Balloon flight measurements show that violet solar cells produce approximately 20% more power than conventional cells.

  6. A Dust Characterization Experiment for Solar Cells Operating on Mars

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Landis, Geoffrey A.; Krasowski, Michael; Greer, Lawrence; Wilt, David; Baraona, Cosmo; Scheiman, David; Lekki, John

    2001-01-01

    During the Viking and Pathfinder missions to Mars, significant amounts of dust accumulated on the spacecrafts. In Pathfinder's case, the dust obscured the solar panels on the lander and the rover degrading their output current. The material adherence experiment aboard the Pathfinder rover quantified the rate of decrease in short circuit current at 0.28% per day. This rate is unacceptably high for long duration missions. In response, NASA has developed the Dust Accumulation and Removal Technology (DART) experiment. DART has three instruments for characterizing dust settling out of the atmosphere and tests two methods to keep dust from settling on solar cells.

  7. Solar cell experiments for space: past, present and future

    NASA Astrophysics Data System (ADS)

    Hoheisel, R.; Messenger, S. R.; Lumb, M. P.; Gonzalez, M.; Bailey, C. G.; Scheiman, D. A.; Maximenko, S.; Jenkins, P. P.; Walters, R. J.

    2013-03-01

    Since the early beginnings of the space age in the 1950s, solar cells have been considered as the primary choice for long term electrical power generation of satellites and space systems. This is mainly due to their high power/mass ratio and the good scalability of solar modules according to the power requirements of a space mission. During the last decades, detailed solar cell material studies including the non-trivial interaction with high-energy space particles have led to continuous and significant improvements in device efficiency. This allowed the powering of advanced space systems like the International Space Station, rovers on the Martian surface as well as satellites which have helped to understand the universe and our planet. It is noteworthy that in addition to their success in space, these photovoltaic technologies have also broken ground for the application of photovoltaic systems in terrestrial systems. This paper discusses the development of space solar cells, gives insight into related experiments like the analysis of the interaction with space particles and provides an overview on challenges and requirements for future space missions.

  8. Light Trapping for Silicon Solar Cells: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Zhao, Hui

    Crystalline silicon solar cells have been the mainstream technology for photovoltaic energy conversion since their invention in 1954. Since silicon is an indirect band gap material, its absorption coefficient is low for much of the solar spectrum, and the highest conversion efficiencies are achieved only in cells that are thicker than about 0.1 mm. Light trapping by total internal reflection is important to increase the optical absorption in silicon layers, and becomes increasingly important as the layers are thinned. Light trapping is typically characterized by the enhancement of the absorptance of a solar cell beyond the value for a single pass of the incident beam through an absorbing semiconductor layer. Using an equipartition argument, in 1982 Yablonovitch calculated an enhancement of 4n2 , where n is the refractive index. We have extracted effective light-trapping enhancements from published external quantum efficiency spectra in several dozen silicon solar cells. These results show that this "thermodynamic" enhancement has never been achieved experimentally. The reasons for incomplete light trapping could be poor anti-reflection coating, inefficient light scattering, and parasitic absorption. We report the light-trapping properties of nanocrystalline silicon nip solar cells deposited onto two types of Ag/ZnO backreflectors at United Solar Ovonic, LLC. We prepared the first type by first making silver nanparticles onto a stainless steel substrate, and then overcoating the nanoparticles with a second silver layer. The second type was prepared at United Solar using a continuous silver film. Both types were then overcoated with a ZnO film. The root mean square roughness varied from 27 to 61 nm, and diffuse reflectance at 1000 nm wavelength varied from 0.4 to 0.8. The finished cells have a thin, indium-tin oxide layer on the top that acts as an antireflection coating. For both backreflector types, the short-circuit photocurrent densities J SC for solar illumination were about 25 mA/cm2 for 1.5 micron cells. We also measured external quantum efficiency spectra and optical reflectance spectra, which were only slightly affected by the back reflector morphology. We performed a thermodynamic calculation for the optical absorptance in the silicon layer and the top oxide layer to explain the experimental results; the calculation is an extension of previous work by Stuart and Hall that incorporates the antireflection properties and absorption in the top oxide film. From our calculations and experimental measurements, we concluded that parasitic absorption in this film is the prominent reason for incomplete light trapping in these cells. To reduce the optical parasitic loss in the top oxide layer, we propose a bilayer design, and show the possible benefits to the photocurrent density.

  9. Electroreflectance of thin-film solar cells: Simulation and experiment

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Krämmer, Christoph; Sperber, David; Magin, Alice; Kalt, Heinz; Hetterich, Michael

    2015-08-01

    Electromodulated reflectance (ER) is a standard characterization method to determine critical points such as the band gap in the band structure of semiconductors. These critical points show up as spectrally narrow features in ER and are typically evaluated using Aspnes's third-derivative functional form. ER spectra of stratified semiconductor systems such as thin-film solar cells, however, are significantly distorted by optical interference due to their layered structure. Furthermore, strong built-in electric fields result in a deviation from the typically assumed low-field conditions. We present here simulations of ER spectra from stratified systems based on transfer matrices using the Franz-Keldysh theory in its general form. For realistic thin-film solar cell conditions, distortions of ER line shapes due to the above-mentioned interferences and strong electric fields appear in the simulations. Furthermore, the results show good agreement with measured ER spectra of a structurally well-characterized Cu (In ,Ga ) Se2 (CIGS) solar cell. Our analysis points out the restrictions on the determination of energetic position and number of critical points from ER spectra of stratified systems.

  10. ATS-5 solar cell experiment after 699 days in synchronous orbit.

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1972-01-01

    The data from the ATS-5 solar cell experiment for the first 699 days in synchronous orbit is presented. Comparison of the performance of several different types of solar cell/coverslide configurations is made. This behavior is in turn compared with the calculated performance for such cell/coverslide configurations in synchronous orbit and with the results of accelerator irradiations designed to simulate the omnidirectional electron environment. It is generally found that the cells on the flight experiment perform like the cells irradiated with the accelerator, but they degraded more than predicted by the calculation. Solar cells mounted on a thin kapton panel are degrading about the same as are their counterparts mounted on a rigid panel.

  11. Pilot production experience of LPE GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Gillanders, M.; Cavicchi, B.; Lillington, D.; Mardesich, N.

    1987-01-01

    This paper is a follow-up to a previous paper written following the completion of Spectrolab's LPE GaAs production facility in 1985 (Mardesich et al., 1985). Progress made since that time is discussed. Significant improvements in the manufacture of these devices, resulting in better cell performance and higher yields, are described. Pilot production cell performance data are presented, including lot distribution of efficiency, Jsc, Voc and CFF. 1-MeV electron radiation damage results are reported.

  12. The effect of the low Earth orbit environment on space solar cells: Results of the Advanced Photovoltaic Experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.; Scheiman, David A.

    1993-01-01

    The results of post-flight performance testing of the solar cells flown on the Advanced Photovoltaic Experiment are reported. Comparison of post-flight current-voltage characteristics with similar pre-flight data revealed little or no change in solar cell conversion efficiency, confirming the reliability and endurance of space photovoltaic cells. This finding is in agreement with the lack of significant physical changes in the solar cells despite nearly six years in the low Earth orbit environment.

  13. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  14. Analysis of space environment damage to solar cell assemblies from LDEF experiment A0171-GSFC test plate

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank

    1994-01-01

    The results of the postflight analysis of the solar cell assemblies from the LDEF (Long Duration Exposure facility) experiment A0171 is provided in this NASA sponsored research project. The following data on this research are provided as follows: (1) solar cell description, including, substrate composition and thickness, crystal orientation, anti-reflective coating composition and thickness; (2) preflight characteristics of the solar cell assemblies with respect to current and voltage; and (3) post-flight characteristics of the solar cell assemblies with respect to voltage and current. These solar cell assemblies are part of the Goddard Space Flight Center test plate which was designed to test the space environment effects (radiation, atomic oxygen, thermal cycling, meteoroid and debris) on conductively coated solar cell coversheets, various electrical bond materials, solar cell performance, and other material properties where feasible.

  15. Solar Cells

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Heat Exchanger Method (HEM) produces high efficiency crystal ingots in an automated well-insulated furnace offering low equipment, labor and energy costs. The "grown" silicon crystals are used to make solar cells, or photovoltaic cells which convert sunlight directly into electricity. The HEM method is used by Crystal Systems, Inc. and was developed under a NASA/Jet Propulsion Laboratory contract. The square wafers which are the result of the process are sold to companies manufacturing solar panels.

  16. Displacement Damage Effects in Solar Cells: Mining Damage From the Microelectronics and Photonics Test Bed Space Experiment

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Walters, R. J.; Morton, T. L.; Messenger, S. R.

    2004-01-01

    The objective is to develop an improved space solar cell radiation response analysis capability and to produce a computer modeling tool which implements the analysis. This was accomplished through analysis of solar cell flight data taken on the Microelectronics and Photonics Test Bed experiment. This effort specifically addresses issues related to rapid technological change in the area of solar cells for space applications in order to enhance system performance, decrease risk, and reduce cost for future missions.

  17. An Experiment To Demonstrate Spacecraft Power Beaming and Solar Cell Annealing Using High-Energy Lasers

    NASA Astrophysics Data System (ADS)

    Luce, Richard; Michael, Sherif

    2003-05-01

    Satellite lifetime is often limited by degradation of the electrical power subsystem, e.g. radiation-damaged solar arrays or failed batteries. Being able to beam power from terrestrial sites could alleviate this limitation, extending the lifetime of billions of dollars of satellite assets, as well as providing additional energy for electric propulsion that can be used for stationkeeping and orbital changes. In addition, laboratory research at the Naval Postgraduate School (NPS) has shown the potential to anneal damaged solar cells using lasers. This paper describes that research and a proposed Maui experiment to demonstrate the relevant concepts by lasing PANSAT, an NPS-built and operated spacecraft.

  18. The UoSAT-5 solar cell experiment: First year in orbit

    NASA Technical Reports Server (NTRS)

    Goodbody, C.

    1993-01-01

    The results for the first year in orbit of the DRA solar cell experiment flying on the Surrey University UoSAT-5 satellite are described. Several problems were identified with the measured data, which are discussed along with the techniques used to remove or minimize the effect of the problems. After 1 year in orbit the majority of the cells flying on the experiment have undergone little or no degradation. The exception to this are all the ITO/InP cells, supplied by two different manufacturers, they are showing more degradation than the GaAs cells. This result is unexpected and currently unexplainable. It will be necessary to retrieve data from the experiment for several years to obtain the best results due to the relatively benign radiation environment.

  19. InP homojunction solar cell performance on the LIPS 3 flight experiment

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hart, Russell E., Jr.; Weinberg, Irving; Smith, Brian S.

    1988-01-01

    Performance data for the NASA Lewis Research Center indium phosphide n+p homojunction solar cell module on the LIPS 3 Flight Experiment is presented. The objective of the experiment is to measure the performance of InP cells in the natural radiation environment of the 1100 km altitude, 60+ deg inclination orbit. Analysis of flight data indicates that the performance of the four cells throughout the first year is near expected values. No degradation in short-circuit current was seen, as was expected from radiation tolerance studies of similar cells. Details of the cell structure and flight module design are discussed. The results of the temperature dependency and radiation tolerance studies necessary for normalization and analysis of the data are included.

  20. Two years of on-orbit gallium arsenide performance from the LIPS solar cell panel experiment

    NASA Technical Reports Server (NTRS)

    Francis, R. W.; Betz, F. E.

    1985-01-01

    The LIPS on-orbit performance of the gallium arsenide panel experiment was analyzed from flight operation telemetry data. Algorithms were developed to calculate the daily maximum power and associated solar array parameters by two independent methods. The first technique utilizes a least mean square polynomial fit to the power curve obtained with intensity and temperature corrected currents and voltages; whereas, the second incorporates an empirical expression for fill factor based on an open circuit voltage and the calculated series resistance. Maximum power, fill factor, open circuit voltage, short circuit current and series resistance of the solar cell array are examined as a function of flight time. Trends are analyzed with respect to possible mechanisms which may affect successive periods of output power during 2 years of flight operation. Degradation factors responsible for the on-orbit performance characteristics of gallium arsenide are discussed in relation to the calculated solar cell parameters. Performance trends and the potential degradation mechanisms are correlated with existing laboratory and flight data on both gallium arsenide and silicon solar cells for similar environments.

  1. Materials on the International Space Station - Forward Technology Solar Cell Experiment

    NASA Technical Reports Server (NTRS)

    Walters, R. J.; Garner, J. C.; Lam, S. N.; Vazquez, J. A.; Braun, W. R.; Ruth, R. E.; Lorentzen, J. R.; Bruninga, R.; Jenkins, P. P.; Flatico, J. M.

    2005-01-01

    This paper describes a space solar cell experiment currently being built by the Naval Research Laboratory (NRL) in collaboration with NASA Glenn Research Center (GRC), and the US Naval Academy (USNA). The experiment has been named the Forward Technology Solar Cell Experiment (FTSCE), and the purpose is to rapidly put current and future generation space solar cells on orbit and provide validation data for these technologies. The FTSCE is being fielded in response to recent on-orbit and ground test anomalies associated with space solar arrays that have raised concern over the survivability of new solar technologies in the space environment and the validity of present ground test protocols. The FTSCE is being built as part of the Fifth Materials on the International Space Station (MISSE) Experiment (MISSE-5), which is a NASA program to characterize the performance of new prospective spacecraft materials when subjected to the synergistic effects of the space environment. Telemetry, command, control, and communication (TNC) for the FTSCE will be achieved through the Amateur Satellite Service using the PCSat2 system, which is an Amateur Radio system designed and built by the USNA. In addition to providing an off-the-shelf solution for FTSCE TNC, PCSat2 will provide a communications node for the Amateur Radio satellite system. The FTSCE and PCSat2 will be housed within the passive experiment container (PEC), which is an approximately 2ft x2ft x 4in metal container built by NASA Langley Research Center (NASA LaRC) as part of the MISSE-5 program. NASA LaRC has also supplied a thin film materials experiment that will fly on the exterior of the thermal blanket covering the PCSat2. The PEC is planned to be transported to the ISS on a Shuttle flight. The PEC will be mounted on the exterior of the ISS by an astronaut during an extravehicular activity (EVA). After nominally one year, the PEC will be retrieved and returned to Earth. At the time of writing this paper, the subsystems of the experiment are being integrated at NRL, and we are preparing to commence environmental testing.

  2. Photoelectrochemical Solar Cells.

    ERIC Educational Resources Information Center

    McDevitt, John T.

    1984-01-01

    This introduction to photoelectrochemical (PEC) cells reviews topics pertaining to solar energy conversion and demonstrates the ease with which a working PEC cell can be prepared with n-type silicon as the photoanode and a platinum counter electrode (both immersed in ethanolic ferrocene/ferricenium solutions). Experiments using the cell are…

  3. Photoelectrochemical Solar Cells.

    ERIC Educational Resources Information Center

    McDevitt, John T.

    1984-01-01

    This introduction to photoelectrochemical (PEC) cells reviews topics pertaining to solar energy conversion and demonstrates the ease with which a working PEC cell can be prepared with n-type silicon as the photoanode and a platinum counter electrode (both immersed in ethanolic ferrocene/ferricenium solutions). Experiments using the cell are…

  4. Forward Technology Solar Cell Experiment (FTSCE) for MISSE-5 Verified and Readied for Flight on STS-114

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip P.; Krasowski, Michael J.; Greer, Lawrence C.; Flatico, Joseph M.

    2005-01-01

    The Forward Technology Solar Cell Experiment (FTSCE) is a space solar cell experiment built as part of the Fifth Materials on the International Space Station Experiment (MISSE-5): Data Acquisition and Control Hardware and Software. It represents a collaborative effort between the NASA Glenn Research Center, the Naval Research Laboratory, and the U.S. Naval Academy. The purpose of this experiment is to place current and future solar cell technologies on orbit where they will be characterized and validated. This is in response to recent on-orbit and ground test results that raised concerns about the in-space survivability of new solar cell technologies and about current ground test methodology. The various components of the FTSCE are assembled into a passive experiment container--a 2- by 2- by 4-in. folding metal container that will be attached by an astronaut to the outer structure of the International Space Station. Data collected by the FTSCE will be relayed to the ground through a transmitter assembled by the U.S. Naval Academy. Data-acquisition electronics and software were designed to be tolerant of the thermal and radiation effects expected on orbit. The experiment has been verified and readied for flight on STS-114.

  5. Simple Experiments on the Use of Solar Energy

    ERIC Educational Resources Information Center

    Vella, G. J.; Goldsmid, H. J.

    1976-01-01

    Describes 5 solar energy experiments that can be used in secondary school: flat-plate collector, solar thermoelectric generator, simple concentrators, solar cell, and natural storage of solar energy. (MLH)

  6. On-orbit performance of LIPS gallium arsenide solar cell experiment

    NASA Technical Reports Server (NTRS)

    Bavaro, T.; Francis, R.; Pennell, M.

    1984-01-01

    Telemetry from the Living Plume Shield's gallium arsenide solar panel experiment was evaluated to determine degradation. The data were culled to preclude spurious results from possible shadowing or inaccurate measurements on a cold array. Two independent methods were then used to obtain the maximum power points and the various characteristics of the solar array. Fill factor, open circuit voltage, short circuit current, and series and shunt resistances were examined. The data analysis concluded that, to date, nearly all of the solar array degradation is due to the reduction in the short circuit current.

  7. Solar cells for solar power satellites

    NASA Technical Reports Server (NTRS)

    Oman, H.

    1978-01-01

    The concept of a solar-cell array for a solar power satellite is developed to permit evaluation of its economic feasibility for generating power for delivery to public utilities on earth. Gallium arsenide solar cells were considered but it could not be assured that the world gallium resources could support constructions of two solar power satellites per year. Therefore, for preliminary design an array blanket made from 5 by 10 cm silicon solar cells, 50 microns thick, and electrostatically bonded between borosilicate glass sheets was adopted. In annealing experiments, a radiated 50 microns thick cell was restored to its initial performance in a 500 C. Solar-cell efficiency effects significantly the solar power satellite mass, which varies from 90,000 metric tons for 20 percent cells to 120,000 metric tons for 12 percent cells. The anticipated cost of delivered power, based on 1977 dollars, varies from 4 cents per kWh with 18 percent cells, to 5 cents per kWh for 12 percent efficient cells.

  8. Laser annealing of amorphous/poly: Silicon solar cell material flight experiment

    NASA Technical Reports Server (NTRS)

    Cole, Eric E.

    1990-01-01

    The preliminary design proposed for the microelectronics materials processing equipment is presented. An overall mission profile, description of all processing steps, analysis methods and measurement techniques, data acquisition and storage, and a preview of the experimental hardware are included. The goal of the project is to investigate the viability of material processing of semiconductor microelectronics materials in a micro-gravity environment. The two key processes are examined: (1) Rapid Thermal Annealing (RTA) of semiconductor thin films and damaged solar cells, and (2) thin film deposition using a filament evaporator. The RTA process will be used to obtain higher quality crystalline properties from amorphous/poly-silicon films. RTA methods can also be used to repair radiation-damaged solar cells. On earth this technique is commonly used to anneal semiconductor films after ion-implantation. The damage to the crystal lattice is similar to the defects found in solar cells which have been exposed to high-energy particle bombardment.

  9. Chlorine solar neutrino experiment

    SciTech Connect

    Rowley, J.K.; Cleveland, B.T.; Davis, R. Jr.

    1984-01-01

    The chlorine solar neutrino experiment in the Homestake Gold Mine is described and the results obtained with the chlorine detector over the last fourteen years are summarized and discussed. Background processes producing /sup 37/Ar and the question of the constancy of the production rate of /sup 37/Ar are given special emphasis.

  10. JPL solar power experiments

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.

    1976-01-01

    Report describes evolution of photovoltaic power systems designed and built for terrestrial use. Discussion focuses on technological problems impeding further systems development. Experiments and test data on seven types of solar panels and six material test specimens are described in detail.

  11. The ATS-5 solar cell experiment after 6-1/2 years in synchronous orbit

    NASA Technical Reports Server (NTRS)

    Anspaugh, B.

    1976-01-01

    Several types of solar cell/coverslide combinations were launched into synchronous orbit. The cells were 2 and 10 ohm-cm crucible-grown silicon with thicknesses of 0.2 and 0.3 mm. Coverslides were fused silica, ranging in thickness from 0.15 to 1.52 mm. The cells were mounted on two panels, one a rigid aluminum honeycomb structure, giving essentially infinite backshielding; the other was a thin Kapton-fiberglass substrate, offering minimal protection to the rear surface of the cells. The current-voltage curves of the cells were measured. Correction of cell electrical output to standard temperature and solar intensity was performed, using empirical radiation-dependent corrections. It is found that the cells on the flexible panel degrade much more rapidly than predicted, while the rigid panel cells follow the predictions fairly well. The anomalous behavior of the flexible panel cells is attributed to the deposition of a contaminant on the cell coverslides.

  12. Solar cell concentrator system

    NASA Astrophysics Data System (ADS)

    Sengil, Nevsan

    1986-12-01

    If solar cells are exposed to charged particle radiation, efficiency decreases. Also solar cell efficiency is increased by concentrated solar light. A solar cell concentrator system includes shielding against particle radiation and provides concentrated solar light, with increased efficiency. A solar cell concentrator system was constructed using a GaAs solar cell. Using a heat pipe, heat was transferred to a radiator. Cell operating temperature (77 C) and under concentrated solar light (Concentration Ration = or approx. 130) solar cell efficiency was measured. Observed efficiency was 18.18. + or - 0.18 (%). These results were used to calculate the performance of an array, consisting of small concentrators. The performance of the concentrator array was compared with a conventional array, and demonstrated the higher efficiency advantages.

  13. Amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Konagai, M.

    The fabrication, performance, and applications of a-Si solar cells are discussed, summarizing the results of recent experimental investigations and trial installations. Topics examined include the fundamental principles and design strategies of solar power installations; the characteristics of monocrystalline-Si solar cells; techniques for reducing the cost of solar cells; independent, linked, and hybrid solar power systems; proposed satellite solar power systems; and the use of solar cells in consumer appliances. Consideration is given to the history of a-Si, a-Si fabrication techniques, quality criteria for a-Si films, solar cells based on a-Si, and techniques for increasing the efficiency and lowering the cost of a-Si solar cells. Graphs, diagrams, drawings, and black-and-white and color photographs are provided.

  14. Amorphous silicon solar cells

    SciTech Connect

    Takahashi, K.; Konagai, M.

    1986-01-01

    The fabrication, performance, and applications of a-Si solar cells are discussed, summarizing the results of recent experimental investigations and trial installations. Topics examined include the fundamental principles and design strategies of solar power installations; the characteristics of monocrystalline-Si solar cells; techniques for reducing the cost of solar cells; independent, linked, and hybrid solar power systems; proposed satellite solar power systems; and the use of solar cells in consumer appliances. Consideration is given to the history of a-Si, a-Si fabrication techniques, quality criteria for a-Si films, solar cells based on a-Si, and techniques for increasing the efficiency and lowering the cost of a-Si solar cells. Graphs, diagrams, drawings, and black-and-white and color photographs are provided. 136 references.

  15. Solar-neutrino experiments

    SciTech Connect

    Bethe, H.A. )

    1989-08-21

    The observation of solar neutrinos at Kamiokande rules out the Mikheyev-Smirnov-Wolfenstein (MSW) theory with a large'' mass difference between the neutrinos, {Delta}{ital m}{sup 2}{congruent}10{sup {minus}4} eV{sup 2}. There remain the MSW theory with a small {Delta}{ital m}{sup 2}{congruent}10{sup {minus}7} eV{sup 2} or the assumption of unexpectedly low central temperature in the Sun. A decision between these two alternatives will be possible on the basis of the future gallium experiment, and the Sudbury experiment with heavy water.

  16. Indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, Irving

    1991-01-01

    The direction for InP solar cell research; reduction of cell cost; increase of cell efficiency; measurements needed to better understand cell performance; n/p versus p/n; radiation effects; major problems in cell contacting; and whether the present level of InP solar cell research in the USA should be maintained, decreased, or increased were considered.

  17. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  18. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  19. On-orbit results of the LIPS 3/InP homojunction solar cell experiment

    NASA Technical Reports Server (NTRS)

    Brinker, David J.

    1989-01-01

    The flight performance of NASA Lewis Research Center's indium phosphide homojunction solar cell module on the LIPS 3 satellite is presented. A module of four n+p cells was fabricated and has been on-orbit on the LIPS 3 spacecraft since 1987. The experimental objective is the measurement of InP cell performance in the natural radiation environment of the 1100 kilometer altitude, 60 deg inclination, circular orbit. Flight data from the first year is near expected values, with no degradation in short-circuit current. The temperature dependence of current-voltage parameters is included along with the laboratory radiation tolerance studies necessary for normalization and analysis of the data. Details of the cell structure and flight module design are also discussed.

  20. Solar Array Flight Experiment (SAFE)

    NASA Technical Reports Server (NTRS)

    Schock, R. W.

    1982-01-01

    The solar arrays flight experiment consists of four experiments on two different flights. The first experiment, termed the baseline, has a basic purpose to demonstrate the flight readiness of lightweight solar array technology for solar electric propulsion and other payload power applications. The early availability of this experiment and its basic large space structure characteristics make it a logical candidate to demonstrate other disciplines critical to large space structures. These demonstrations form the basis for three other solar array experiments, two in remote sensing and one in control. All of these experiments are briefly reviewed in this paper.

  1. Solid state p-type dye-sensitized solar cells: concept, experiment and mechanism.

    PubMed

    Zhang, Lei; Boschloo, Gerrit; Hammarström, Leif; Tian, Haining

    2016-02-10

    Solid state p-type dye-sensitized solar cells (p-ssDSCs) have been proposed and fabricated for the first time, using the organic dye P1 as the sensitizer on mesoporous NiO and phenyl-C61-butyric acid methyl ester (PCBM) as the electron conductor. The p-ssDSC has shown an impressive open circuit photovoltage of 620 mV. Femtosecond and nanosecond transient absorption spectroscopy has given evidence for sub-ps hole injection from the excited P1 to NiO, followed by electron transfer from P1?(-) to PCBM. PMID:26478116

  2. Solar array experiments on the Sphinx satellite

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1973-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations; the edge illuminated-multijunction cells, the Teflon encased cells and the violet cells.

  3. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  4. Heterojunction solar cell

    DOEpatents

    Olson, Jerry M. (Lakewood, CO)

    1994-01-01

    A high-efficiency single heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. The conversion effiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer.

  5. Solar cell encapsulation

    NASA Technical Reports Server (NTRS)

    Gupta, Amitava (Inventor); Ingham, John D. (Inventor); Yavrouian, Andre H. (Inventor)

    1983-01-01

    A polymer syrup for encapsulating solar cell assemblies. The syrup includes uncrosslinked poly(n-butyl)acrylate dissolved in n-butyl acrylate monomer. Preparation of the poly(n-butyl)acrylate and preparation of the polymer syrup is disclosed. Methods for applying the polymer syrup to solar cell assemblies as an encapsulating pottant are described. Also included is a method for solar cell construction utilizing the polymer syrup as a dual purpose adhesive and encapsulating material.

  6. Heterojunction solar cell

    DOEpatents

    Olson, J.M.

    1994-08-30

    A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

  7. Experimenting with Solar Energy

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2004-01-01

    Over the past 25 years, the author has had the opportunity to study the subject of solar energy and to get involved with the installation, operation, and testing of solar energy systems. His work has taken him all over the United States and put him in contact with solar experts from around the world. He has also had the good fortune of seeing some…

  8. Experimenting with Solar Energy

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2004-01-01

    Over the past 25 years, the author has had the opportunity to study the subject of solar energy and to get involved with the installation, operation, and testing of solar energy systems. His work has taken him all over the United States and put him in contact with solar experts from around the world. He has also had the good fortune of seeing some…

  9. Solar cell shingle

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G. (inventors)

    1977-01-01

    A solar cell shingle was made of an array of solar cells on a lower portion of a substantially rectangular shingle substrate made of fiberglass cloth or the like. The solar cells may be encapsulated in flourinated ethylene propylene or some other weatherproof translucent or transparent encapsulant to form a combined electrical module and a roof shingle. The interconnected solar cells were connected to connectors at the edge of the substrate through a connection to a common electrical bus or busses. An overlap area was arranged to receive the overlap of a cooperating similar shingle so that the cell portion of the cooperating shingle may overlie the overlap area of the roof shingle. Accordingly, the same shingle serves the double function of an ordinary roof shingle which may be applied in the usual way and an array of cooperating solar cells from which electrical energy may be collected.

  10. Heterostructure solar cells

    NASA Technical Reports Server (NTRS)

    Chang, K. I.; Yeh, Y. C. M.; Iles, P. A.; Morris, R. K.

    1987-01-01

    The performance of gallium arsenide solar cells grown on Ge substrates is discussed. In some cases the substrate was thinned to reduce overall cell weight with good ruggedness. The conversion efficiency of 2 by 2 cm cells under AMO reached 17.1 percent with a cell thickness of 6 mils. The work described forms the basis for future cascade cell structures, where similar interconnecting problems between the top cell and the bottom cell must be solved. Applications of the GaAs/Ge solar cell in space and the expected payoffs are discussed.

  11. First principles modeling of donor materials for organic solar cells: where theory complements experiment

    NASA Astrophysics Data System (ADS)

    Zhugayevych, Andriy; Tretiak, Sergei; Bazan, Guillermo

    2013-03-01

    We discuss the predictive power and accuracy of first principles modeling of small-molecule crystalline donors for organic solar cells. First of all, in order to understand where the theory can help us in improving the performance of photovoltaic devices, we clarify what factors constituting power conversion efficiency needed to be improved. We argue these are short circuit current and fill factor, rather than bandgap and open circuit voltage. This implies that the optimization of intramolecular properties (e.g. HOMO/LUMO), which is best suitable for theoretical search, will not give the anticipated gain in efficiency. The intermolecular properties are amenable to first principles modeling on a single-crystallite scale and we discuss some challenges in this avenue. As an example of how theory can provide design rules for architecturing small-molecule crystals we analyze the dependence of charge carrier mobility on the intermolecular geometry of a pi-stack. In the other case study we show that changes in device performance due to small changes in chemical composition can be well tracked by the theory. Finally, we analyze the performance of commonly used density functionals for typical molecular systems used in organic electronics (oligomers, polymers, dimers, crystals).

  12. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Tada, H. Y.; Carter, J. R., Jr.

    1977-01-01

    Solar cell theory cells are manufactured, and how they are modeled mathematically is reviewed. The interaction of energetic charged particle radiation with solar cells is discussed in detail and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Finally, an extensive body of data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence is presented.

  13. Dye Sensitized Solar Cells

    PubMed Central

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  14. Lateral superlattice solar cells

    SciTech Connect

    Mascarenhas, A.; Zhang, Y.; Millunchick, J.M.; Twesten, R.D.; Jones, E.D.

    1997-10-01

    A novel structure which comprises of a lateral superlattice as the active layer of a solar cell is proposed. If the alternating regions A and B of a lateral superlattice ABABAB... are chosen to have a Type-II band offset, it is shown that the performance of the active absorbing region of the solar cell is optimized. In essence, the Type-II lateral superlattice region can satisfy the material requirements for an ideal solar cells active absorbing region, i.e. simultaneously having a very high transition probability for photogeneration and a very long minority carrier recombination lifetime.

  15. Dye sensitized solar cells.

    PubMed

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  16. Solar cell radiation handbook

    SciTech Connect

    Tada, H.Y.; Carter, J.R. Jr.; Anspaugh, B.E.

    1982-11-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  17. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  18. Solar cell power supply circuit

    SciTech Connect

    Higuchi, M.

    1984-02-28

    A solar cell power supply circuit for use in a calculator or equipment is disclosed. It includes a solar cell or cells, a back-up capacitor connected to the solar cells, and a circuit element connected to be responsive whether the electromotive force from the solar cells lies within a range of operation for a load element of the solar cells, typically an LSI semiconductor device. The back-up capacitor starts charging when the electromotive force of the solar cells falls out of the range of operation for the load element. Preferably, an alarm sound is delivered when the electromotive force of the solar cells is poor.

  19. Solar cell array interconnects

    DOEpatents

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  20. Solar cell array interconnects

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  1. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  2. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  3. Nanocrystal Solar Cells

    SciTech Connect

    Gur, Ilan

    2006-12-15

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  4. Thin silicon solar cells

    SciTech Connect

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Cotter, J.; Hughes-Lampros, T.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  5. Sliver solar cells

    NASA Astrophysics Data System (ADS)

    Franklin, Evan; Blakers, Andrew; Everett, Vernie; Weber, Klaus

    2007-12-01

    Sliver solar cells are thin, mono-crystalline silicon solar cells, fabricated using micro-machining techniques combined with standard solar cell fabrication technology. Sliver solar modules can be efficient, low cost, bifacial, transparent, flexible, shadow-tolerant, and lightweight. Sliver modules require only 5 to 10% of the pure silicon and less than 5% of the wafer starts per MW p of factory output when compared with conventional photovoltaic modules. At ANU, we have produced 20% efficient Sliver solar cells using a robust, optimised cell fabrication process described in this paper. We have devised a rapid, reliable and simple method for extracting Sliver cells from a Sliver wafer, and methods for assembling modularised Sliver cell sub-modules. The method for forming these Sliver sub-modules, along with a low-cost method for rapidly forming reliable electrical interconnections, are presented. Using the sub-module approach, we describe low-cost methods for assembling and encapsulating Sliver cells into a range of module designs.

  6. Screening of solar cells

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.; Chait, A.; Thompson, D. A.

    1993-01-01

    Because solar cells in a production batch are not identical, screening is performed to obtain similar cells for aggregation into arrays. A common technique for screening is based on a single operating point of the I-V characteristic of the cell, usually the maximum power point. As a result, inferior cell matching may occur at the actual operating points. Screening solar cells based on the entire I-V characteristic will inherently result in more similar cells in the array. An array consisting of more similar cells is likely to have better overall characteristics and more predictable performance. Solar cell screening methods and cell ranking are discussed. The concept of a mean cell is defined as a cell 'best' representing all the cells in the production batch. The screening and ranking of all cells are performed with respect to the mean cell. The comparative results of different screening methods are illustrated on a batch of 50 silicon cells of the Space Station Freedom.

  7. Welded solar cell interconnection

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  8. Home-made experiment of Dye-sensitized TiO2 Nanocrystalline Solar Cells and its education evaluation

    NASA Astrophysics Data System (ADS)

    Tai, M. F.; Shieh, M. C.; Chen, T. W.

    2010-03-01

    Dyes extracted from some natural fruits including anthocyanins absorb sunlight and effectively activate electrons of anthocyanins. Thus these activated electrons are conducted between TiO2 nanocrystals and form electric potential and current between two electrodes. The dyes can be gotten from the natural fruits, such as blackberries, raspberry, pomegranate seeds and bing cherries. This principle permits making a dye sensitized TiO2 nanocrystallines solar cell (DSSC). All required materials and tools for fabricating a home- made DSSC are easy to obtain around home. The procedures are perfect hands-on experiment as well as demonstration in K-12 schools or home settings. We have designed several protocols for fabricating DSSC and have successfully demonstrated in more than 100 activities with different level students. K-12 Students were able to build their own working DSSC's within 2-3 hours sessions and learned about alternative energy sources. These experiments can inspire students and general public about the modern technology in daily life. Low cost (low than US 3 in Taiwan)and safety are also ensured in our DSSC experiments.

  9. Characterizing Variability in Smestad and Gratzel's Nanocrystalline Solar Cells: A Collaborative Learning Experience in Experimental Design

    ERIC Educational Resources Information Center

    Lawson, John; Aggarwal, Pankaj; Leininger, Thomas; Fairchild, Kenneth

    2011-01-01

    This article describes a collaborative learning experience in experimental design that closely approximates what practicing statisticians and researchers in applied science experience during consulting. Statistics majors worked with a teaching assistant from the chemistry department to conduct a series of experiments characterizing the variation…

  10. Characterizing Variability in Smestad and Gratzel's Nanocrystalline Solar Cells: A Collaborative Learning Experience in Experimental Design

    ERIC Educational Resources Information Center

    Lawson, John; Aggarwal, Pankaj; Leininger, Thomas; Fairchild, Kenneth

    2011-01-01

    This article describes a collaborative learning experience in experimental design that closely approximates what practicing statisticians and researchers in applied science experience during consulting. Statistics majors worked with a teaching assistant from the chemistry department to conduct a series of experiments characterizing the variation…

  11. STS 41-D Solar Array Flight Experiment

    NASA Technical Reports Server (NTRS)

    Turner, G. F.; Hill, H. C.

    1984-01-01

    The Solar Array Flight Experiment (SAFE) developed under the direction of the Marshall Space Flight Center, scheduled for launch on STS 41-D, will demonstrate a lightweight solar array technology which offers a factor of 3 improvement in weight and a factor of 10 improvement in specific volume over solar array systems currently in use in the space program. The experiment, which will include multiple deployment and retraction demonstration, verification of electrical and thermal performance, and verification of structural dynamic math models is 15 feet by 105 feet in size and, if completely covered with solar cells, would produce approximately 12.5 kW of electrical power. The unit has now been developed, tested, and is at Kennedy Space Center (KSC) being prepared for launch.

  12. Four-cell solar tracker

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M.

    1981-01-01

    Forty cm Sun tracker, consisting of optical telescope and four solar cells, stays pointed at Sun throughout day for maximum energy collection. Each solar cell generates voltage proportional to part of solar image it receives; voltages drive servomotors that keep image centered. Mirrored portion of cylinder extends acquisition angle of device by reflecting Sun image back onto solar cells.

  13. Solar mesosphere explorer: Experiment description

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Solar Mesosphere Explorer (SME) satellite experiments will provide a comprehensive study of atmospheric ozone and the processes which form and destroy it. Five instruments to be carried on the spacecraft will measure the ozone density and altitude distribution, monitor the incoming solar radiation, and measure other atmospheric constituents which affect ozone. The investigative approach concept, methods and procedures, preflight studies, and orbits and mission lifetime are presented. Descriptions of the instruments are also presented.

  14. Solar cell power scanner

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.

    1971-01-01

    System locates high- and low-output regions in cadmium sulfide thin film photovoltaic cells. High resolution photograph shows conversion efficiency of each scanned area. X-Y recorder fed by amplified signal from solar cell also produces power contour map. Photo and map reveal high- and low-conversion-efficiency regions.

  15. Broad spectrum solar cell

    DOEpatents

    Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA); Wu, Junqiao (Richmond, CA); Schaff, William J. (Ithaca, NY)

    2007-05-15

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

  16. Parameterization of solar cells

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.; Chait, A.; Thompson, D.

    1992-01-01

    The aggregation (sorting) of the individual solar cells into an array is commonly based on a single operating point on the current-voltage (I-V) characteristic curve. An alternative approach for cell performance prediction and cell screening is provided by modeling the cell using an equivalent electrical circuit, in which the parameters involved are related to the physical phenomena in the device. These analytical models may be represented by a double exponential I-V characteristic with seven parameters, by a double exponential model with five parameters, or by a single exponential equation with four or five parameters. In this article we address issues concerning methodologies for the determination of solar cell parameters based on measured data points of the I-V characteristic, and introduce a procedure for screening of solar cells for arrays. We show that common curve fitting techniques, e.g., least squares, may produce many combinations of parameter values while maintaining a good fit between the fitted and measured I-V characteristics of the cell. Therefore, techniques relying on curve fitting criteria alone cannot be directly used for cell parameterization. We propose a consistent procedure which takes into account the entire set of parameter values for a batch of cells. This procedure is based on a definition of a mean cell representing the batch, and takes into account the relative contribution of each parameter to the overall goodness of fit. The procedure is demonstrated on a batch of 50 silicon cells for Space Station Freedom.

  17. On-orbit results of the LIPS 3/InP homojunction solar cell experiment

    NASA Technical Reports Server (NTRS)

    Brinker, David J.

    1989-01-01

    The flight performance of the NASA indium phosphide homojunction cell module on the LIPS 3 satellite is presented. The experimental objectivewas to measure the InP cell performance in the natural radiation environment in a circular 1100 km altitude orbit inclined 60 degrees. Flight data for the first year is close to expected values. No degradation in the short-circuit current is seen. Details of cell structure and flight module design are discussed.

  18. Solar neutrino experiments: An update

    SciTech Connect

    Hahn, R.L.

    1993-12-31

    The situation in solar neutrino physics has changed drastically in the past few years, so that now there are four neutrino experiments in operation, using different methods to look at different regions of the solar neutrino energy spectrum. These experiments are the radiochemical {sup 37}Cl Homestake detector, the realtime Kamiokande detector, and the different forms of radiochemical {sup 71}Ga detectors used in the GALLEX and SAGE projects. It is noteworthy that all of these experiments report a deficit of observed neutrinos relative to the predictions of standard solar models (although in the case of the gallium detectors, the statistical errors are still relatively large). This paper reviews the basic principles of operation of these neutrino detectors, reports their latest results and discusses some theoretical interpretations. The progress of three realtime neutrino detectors that are currently under construction, SuperKamiok, SNO and Borexino, is also discussed.

  19. Cadmium sulfide solar cells

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.

    1975-01-01

    Development, fabrication and applications of CdS solar cells are reviewed in detail. The suitability of CdS cells for large solar panels and microcircuitry, and their low cost, are emphasized. Developments are reviewed by manufacturer-developer. Vapor phase deposition of thin-film solar cells, doping and co-evaporation, sputtering, chemical spray, and sintered layers are reviewed, in addition to spray deposition, monograin layer structures, and silk screening. Formation of junctions by electroplating, evaporation, brushing, CuCl dip, and chemiplating are discussed, along with counterelectrode fabrication, VPD film structures, the Cu2S barrier layer, and various photovoltaic effects (contact photovoltage, light intensity variation, optical enhancement), and various other CdS topics.

  20. Solar Cells and Photovoltaics

    NASA Astrophysics Data System (ADS)

    Irvine, Stuart

    Photovoltaic solar cells are gaining wide acceptance for producing clean, renewable electricity. This has been based on more than 40 years of research that has benefited from the revolution in silicon electronics and compound semiconductors in optoelectronics. This chapter gives an introduction into the basic science of photovoltaic solar cells and the challenge of extracting the maximum amount of electrical energy from the available solar energy. In addition to the constraints of the basic physics of these devices, there are considerable challenges in materials synthesis. The latter has become more prominent with the need to reduce the cost of solar module manufacture as it enters mainstream energy production. The chapter is divided into sections dealing with the fundamentals of solar cells and then considering five very different materials systems, from crystalline silicon through to polycrystalline thin films. These materials have been chosen because they are all in production, although some are only in the early stages of production. Many more materials are being considered in research and some of the more exciting, polymer and dye-sensitised cells are mentioned in the conclusions. However, there is insufficient space to give these very active areas of research the justice they deserve. I hope the reader will feel sufficiently inspired by this topic to read further and explore one of the most exciting areas of semiconductor science. The need for high-volume production at low cost has taken the researcher along paths not normally considered in semiconductor devices and it is this that provides an exciting challenge.

  1. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  2. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Carter, J. R., Jr.; Tada, H. Y.

    1973-01-01

    A method is presented for predicting the degradation of a solar array in a space radiation environment. Solar cell technology which emphasizes the cell parameters that degrade in a radiation environment, is discussed along with the experimental techniques used in the evaluation of radiation effects. Other topics discussed include: theoretical aspects of radiation damage, methods for developing relative damage coefficients, nature of the space radiation environment, method of calculating equivalent fluence from electron and proton energy spectrums and relative damage coefficients, and comparison of flight data with estimated degradation.

  3. Flexible Solar Cells

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Solar cell "modules" are plastic strips coated with thin films of photovoltaic silicon that collect solar energy for instant conversion into electricity. Lasers divide the thin film coating into smaller cells to build up voltage. Developed by Iowa Thin Film Technologies under NASA and DOE grants, the modules are used as electrical supply for advertising displays, battery rechargers for recreational vehicles, and to power model airplanes. The company is planning other applications both in consumer goods and as a power source in underdeveloped countries.

  4. Photovoltaic Experiment Using Light from a Solar Simulator Lamp.

    ERIC Educational Resources Information Center

    Chow, R. H.

    1980-01-01

    A photovoltaic cell experiment utilizing the convenience of a solar simulating type lamp is described. Insight into the solid state aspect of a solar cell is gained by the student in studying the characteristics, and deducing from them cell parameters and efficiency. (Author/CS)

  5. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L. (Newark, DE)

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  6. NASA Facts, Solar Cells.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The design and function of solar cells as a source of electrical power for unmanned space vehicles is described in this pamphlet written for high school physical science students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review…

  7. Charge Photogeneration Experiments and Theory in Aggregated Squaraine Donor Materials for Improved Organic Solar Cell Efficiencies

    NASA Astrophysics Data System (ADS)

    Spencer, Susan Demetra

    Fossil fuel consumption has a deleterious effect on humans, the economy, and the environment. Renewable energy technologies must be identified and commercialized as quickly as possible so that the transition to renewables can happen at a minimum of financial and societal cost. Organic photovoltaic cells offer an inexpensive and disruptive energy technology, if the scientific challenges of understanding charge photogeneration in a bulk heterojunction material can be overcome. At RIT, there is a strong focus on creating new materials that can both offer fundamentally important scientific results relating to quantum photophysics, and simultaneously assist in the development of strong candidates for future commercialized technology. In this presentation, the results of intensive materials characterization of a series of squaraine small molecule donors will be presented, as well as a full study of the fabrication and optimization required to achieve >4% photovoltaic cell efficiency. A relationship between the molecular structure of the squaraine and its ability to form nanoscale aggregates will be explored. Squaraine aggregation will be described as a unique optoelectronic probe of the structure of the bulk heterojunction. This relationship will then be utilized to explain changes in crystallinity that impact the overall performance of the devices. Finally, a predictive summary will be given for the future of donor material research at RIT.

  8. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, R. W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  9. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  10. Solar array flight experiment/dynamic augmentation experiment

    NASA Technical Reports Server (NTRS)

    Young, Leighton E.; Pack, Homer C., Jr.

    1987-01-01

    This report presents the objectives, design, testing, and data analyses of the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE) that was tested aboard Shuttle in September 1984. The SAFE was a lightweight, flat-fold array that employed a thin polyimide film (Kapton) as a substrate for the solar cells. Extension/retraction, dynamics, electrical and thermal tests, were performed. Of particular interest is the dynamic behavior of such a large lightweight structure in space. Three techniques for measuring and analyzing this behavior were employed. The methodology for performing these tests, gathering data, and data analyses are presented. The report shows that the SAFE solar array technology is ready for application and that new methods are available to assess the dynamics of large structures in space.

  11. Integral diode solar cells

    NASA Astrophysics Data System (ADS)

    Mardesich, N.; Gillanders, M.

    To achieve high power at minimum weight, innovative array designs are needed. In the case where shadows fall across a series element in a simple circuit, the effective power will be reduced or eliminated. The conventional method of eliminating this loss is the introduction of bypass diodes. This method increases cost and weight and reduces available surface area. An alternative solution to the shadowing problem is to use integral diode solar cells. The integral diode cell has a built-in diode on the back that protects the adjacent cell and passes the current if it is shadowed. This paper describes the effort to produce the integral diode cells in a production facility with a minimum cost impact. The electrical characterization of the cell as well as the diode is presented. These cells can be readily manufactured in a production facility using photoresist defined contacting process.

  12. Coating Processes Boost Performance of Solar Cells

    NASA Technical Reports Server (NTRS)

    2012-01-01

    NASA currently has spacecraft orbiting Mercury (MESSENGER), imaging the asteroid Vesta (Dawn), roaming the red plains of Mars (the Opportunity rover), and providing a laboratory for humans to advance scientific research in space (the International Space Station, or ISS). The heart of the technology that powers those missions and many others can be held in the palm of your hand - the solar cell. Solar, or photovoltaic (PV), cells are what make up the panels and arrays that draw on the Sun s light to generate electricity for everything from the Hubble Space Telescope s imaging equipment to the life support systems for the ISS. To enable NASA spacecraft to utilize the Sun s energy for exploring destinations as distant as Jupiter, the Agency has invested significant research into improving solar cell design and efficiency. Glenn Research Center has been a national leader in advancing PV technology. The Center s Photovoltaic and Power Technologies Branch has conducted numerous experiments aimed at developing lighter, more efficient solar cells that are less expensive to manufacture. Initiatives like the Forward Technology Solar Cell Experiments I and II in which PV cells developed by NASA and private industry were mounted outside the ISS have tested how various solar technologies perform in the harsh conditions of space. While NASA seeks to improve solar cells for space applications, the results are returning to Earth to benefit the solar energy industry.

  13. Very high efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Barnett, Allen; Kirkpatrick, Douglas; Honsberg, Christiana

    2006-08-01

    The Defense Advanced Research Projects Agency has initiated the Very High Efficiency Solar Cell (VHESC) program to address the critical need of the soldier for power in the field. Very High Efficiency Solar Cells for portable applications that operate at greater than 55 percent efficiency in the laboratory and 50 percent in production are being developed. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space that leads to a new architecture paradigm. An integrated team effort is now underway that requires us to invent, develop and transfer to production these new solar cells. Our approach is driven by proven quantitative models for the solar cell design, the optical design and the integration of these designs. We start with a very high performance crystalline silicon solar cell platform. Examples will be presented. Initial solar cell device results are shown for devices fabricated in geometries designed for this VHESC Program.

  14. Quantum Dot Solar Cells

    NASA Astrophysics Data System (ADS)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-10-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  15. Quantum Dot Solar Cells

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  16. Novel chlorophyll solar cell

    SciTech Connect

    Ludlow, J.C.

    1981-01-01

    A novel solar battery is being developed which uses chlorophyll a for the generation of a voltage. The battery consists of platinum foil electrode, onto which a mixture of chlorophyll a and lipoic acid is deposited, and a platinum current collector. With such a device, voltages greater than 0.35 volts can reproducibly generated. The dependence of the output of the cell as a function of chlorophyll levels and light intensity has been determined. 9 refs.

  17. A space-borne solar stereoscope experiment in solar physics

    NASA Astrophysics Data System (ADS)

    Grigoryev, V. M.

    1993-12-01

    A space experiment project is proposed, with the main purpose of obtaining 3-dimensional images of the solar atmosphere. We give a list of problems and objectives which can be resolved through the space-borne solar stereoscope.

  18. Fundamental study on solar thermal cell

    SciTech Connect

    Ando, Yuji; Tanaka, Tadayoshi; Takashima, Takumi

    1999-07-01

    Solar thermal cell converts low-temperature solar thermal energy into electric power. It bases on the principle of fuel cell with 2-propanol dehydrogenation and acetone hydrogenation. As the fundamental experiments, acetone was diluted with water and supplied to positive electrode. In case of liquid-phase solar thermal cell, 2-propanol was supplied to negative electrode directly. In case of gas-phase solar thermal cell, hydrogen gas was supplied to negative electrode as proton source. The authors investigated effects of 2-propanol concentration, catalyst loading and reaction temperature on the cell efficiency. When 2-propanol was diluted with water and supplied to negative electrode, it was shown that 2-propanol concentration of 50--70 vol% was the best for cell efficiency. The cell efficiency was improved with increasing catalyst loading. As for reaction temperature, 80 C was better to improve the efficiency.

  19. SORCE: Solar Radiation and Climate Experiment

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

  20. Solar cell radiation handbook. Addendum 1: 1982-1988

    NASA Technical Reports Server (NTRS)

    Anspaugh, Bruce E.

    1989-01-01

    The Solar Cell Radiation Handbook (JPL Publication 82-69) is updated. In order to maintain currency of solar cell radiation data, recent solar cell designs have been acquired, irradiated with 1 MeV electrons, and measured. The results of these radiation experiments are reported.

  1. Epitaxial solar cells fabrication

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Kressel, H.

    1975-01-01

    Silicon epitaxy has been studied for the fabrication of solar cell structures, with the intent of optimizing efficiency while maintaining suitability for space applications. SiH2CL2 yielded good quality layers and junctions with reproducible impurity profiles. Diode characteristics and lifetimes in the epitaxial layers were investigated as a function of epitaxial growth conditions and doping profile, as was the effect of substrates and epitaxial post-gettering on lifetime. The pyrolytic decomposition of SiH4 was also used in the epitaxial formation of highly doped junction layers on bulk Si wafers. The effects of junction layer thickness and bulk background doping level on cell performance, in particular, open-circuit voltage, were investigated. The most successful solar cells were fabricated with SiH2 CL2 to grow p/n layers on n(+) substrates. The best performance was obtained from a p(+)/p/n/n(+) structure grown with an exponential grade in the n-base layer.

  2. Laser-assisted solar cell metallization processing

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1984-01-01

    Laser assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are investigated. The tasks comprising these investigations are summarized. Metal deposition experiments are carried out utilizing laser assisted pyrolysis of a variety of metal bearing polymer films and metalloorganic inks spun onto silicon substrates. Laser decomposition of spun on silver neodecanoate ink yields very promising results. Solar cell comb metallization patterns are written using this technique.

  3. Laser-assisted solar cell metallization processing

    NASA Astrophysics Data System (ADS)

    Dutta, S.

    1984-04-01

    Laser assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are investigated. The tasks comprising these investigations are summarized. Metal deposition experiments are carried out utilizing laser assisted pyrolysis of a variety of metal bearing polymer films and metalloorganic inks spun onto silicon substrates. Laser decomposition of spun on silver neodecanoate ink yields very promising results. Solar cell comb metallization patterns are written using this technique.

  4. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W. (Golden, CO)

    1994-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

  5. Monolithic tandem solar cell

    DOEpatents

    Wanlass, M.W.

    1994-06-21

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

  6. Solar cell module lamination process

    DOEpatents

    Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Aceves, Randy C. (Tracy, CA)

    2002-01-01

    A solar cell module lamination process using fluoropolymers to provide protection from adverse environmental conditions and thus enable more extended use of solar cells, particularly in space applications. A laminate of fluoropolymer material provides a hermetically sealed solar cell module structure that is flexible and very durable. The laminate is virtually chemically inert, highly transmissive in the visible spectrum, dimensionally stable at temperatures up to about 200.degree. C. highly abrasion resistant, and exhibits very little ultra-violet degradation.

  7. Solar Panel of Photovoltaic Cells

    USGS Multimedia Gallery

    Solar panels or arrays of photovoltaic cells convert renewable solar radiation into electricity by a clean and environmentally sound means. Collected solar energy can either be used instantly or stored in batteries for later use. These systems can be used as a component of a larger photovoltaic syst...

  8. Radiative cooling for solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, Linxiao; Raman, Aaswath; Wang, Ken X.; Anoma, Marc A.; Fan, Shanhui

    2015-03-01

    Standard solar cells heat up under sunlight, and the resulting increased temperature of the solar cell has adverse consequences on both its efficiency and its reliability. We introduce a general approach to radiatively lower the operating temperature of a solar cell through sky access, while maintaining its sunlight absorption. We present first an ideal scheme for the radiative cooling of solar cells. For an example case of a bare crystalline silicon solar cell, we show that the ideal scheme can passively lower the operating temperature by 18.3 K. We then show a microphotonic design based on realistic material properties, that approaches the performance of the ideal scheme. We also show that the radiative cooling effect is substantial, even in the presence of significant non-radiative heat change, and parasitic solar absorption in the cooling layer, provided that we design the cooling layer to be sufficiently thin.

  9. Schottky barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M. (Inventor)

    1981-01-01

    A method of fabricating a Schottky barrier solar cell is described. The cell consists of a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive. A thin layer of heavily doped n-type polycrystalling germanium is deposited on the substrate after a passivation layer is deposited to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes to serve as a base layer on which a thin layer of gallium arsenide is vapor-epitaxilly grown followed by a thermally-grown oxide layer. A metal layer is deposited on the oxide layer and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer.

  10. Quantum junction solar cells.

    PubMed

    Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. PMID:22881834

  11. Carbon Nanotube Solar Cells

    PubMed Central

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement. PMID:22655070

  12. Lunar production of solar cells

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Perino, Maria Antonietta

    1989-01-01

    The feasibility of manufacturing of solar cells on the moon for spacecraft applications is examined. Because of the much lower escape velocity, there is a great advantage in lunar manufacture of solar cells compared to Earth manufacture. Silicon is abundant on the moon, and new refining methods allow it to be reduced and purified without extensive reliance on materials unavailable on the moon. Silicon and amorphous silicon solar cells could be manufactured on the moon for use in space. Concepts for the production of a baseline amorphous silicon cell are discussed, and specific power levels are calculated for cells designed for both lunar and Earth manufacture.

  13. Supramolecular solar cells

    NASA Astrophysics Data System (ADS)

    Subbaiyan, Navaneetha Krishnan

    Supramolecular chemistry - chemistry of non-covalent bonds including different type of intermolecular interactions viz., ion-pairing, ion-dipole, dipole-dipole, hydrogen bonding, cation-pi and Van der Waals forces. Applications based on supramolecular concepts for developing catalysts, molecular wires, rectifiers, photochemical sensors have been evolved during recent years. Mimicking natural photosynthesis to build energy harvesting devices has become important for generating energy and solar fuels that could be stored for future use. In this dissertation, supramolecular chemistry is being explored for creating light energy harvesting devices. Photosensitization of semiconductor metal oxide nanoparticles, such as titanium dioxide (TiO2) and tin oxide (SnO2,), via host-guest binding approach has been explored. In the first part, self-assembly of different porphyrin macrocyclic compounds on TiO2 layer using axial coordination approach is explored. Supramolecular dye sensitized solar cells built based on this approach exhibited Incident Photon Conversion Efficiency (IPCE) of 36% for a porphyrin-ferrocene dyad. In the second part, surface modification of SnO2 with water soluble porphyrins and phthalocyanine resulted in successful self-assembly of dimers on SnO2 surface. IPCE more than 50% from 400 - 700 nm is achieved for the supramolecular self-assembled heterodimer photocells is achieved. In summary, the axial ligation and ion-pairing method used as supramolecular tools to build photocells, exhibited highest quantum efficiency of light energy conversion with panchromatic spectral coverage. The reported findings could be applied to create interacting molecular systems for next generation of efficient solar energy harvesting devices.

  14. Inversion layer MOS solar cells

    NASA Technical Reports Server (NTRS)

    Ho, Fat Duen

    1986-01-01

    Inversion layer (IL) Metal Oxide Semiconductor (MOS) solar cells were fabricated. The fabrication technique and problems are discussed. A plan for modeling IL cells is presented. Future work in this area is addressed.

  15. An Introduction to Solar Cells

    ERIC Educational Resources Information Center

    Feldman, Bernard J.

    2010-01-01

    Most likely, solar cells will play a significant role in this country's strategy to address the two interrelated issues of global warming and dependence on imported oil. The purpose of this paper is to present an explanation of how solar cells work at an introductory high school, college, or university physics course level. The treatment presented…

  16. An Introduction to Solar Cells

    ERIC Educational Resources Information Center

    Feldman, Bernard J.

    2010-01-01

    Most likely, solar cells will play a significant role in this country's strategy to address the two interrelated issues of global warming and dependence on imported oil. The purpose of this paper is to present an explanation of how solar cells work at an introductory high school, college, or university physics course level. The treatment presented…

  17. Stretchable polymer solar cell fibers.

    PubMed

    Zhang, Zhitao; Yang, Zhibin; Deng, Jue; Zhang, Ye; Guan, Guozhen; Peng, Huisheng

    2015-02-11

    Power yourself up: a sweater made from solar cells! Stretchable and wearable fibers are shown to be highly efficient polymer solar cells. Their stable energy conversion efficiency variation is below 10% even after 1000 bending cycles or stretching under a strain of 30%. These fibers can easily be woven into fabric from which any type of clothing can be made. PMID:25236579

  18. Solar-Cell-Manufacturing System

    NASA Technical Reports Server (NTRS)

    Kelly, F. G.

    1984-01-01

    Cost of manufacturing solar arrays minimized by using polyimide-ribbed substrates together with silver-plated coils of low-expansion nickel/iron ribbon on solar cells. Polyimide taped to ribbon protects cell from abrasion or from sticking to other tooling.

  19. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    History of GaAs solar cell development is provided. Photovoltaic equations are described along with instrumentation techniques for measuring solar cells. Radiation effects in solar cells, electrical performance, and spacecraft flight data for solar cells are discussed. The space radiation environment and solar array degradation calculations are addressed.

  20. Germanium Nanocrystal Solar Cells

    NASA Astrophysics Data System (ADS)

    Holman, Zachary Charles

    Greenhouse gas concentrations in the atmosphere are approaching historically unprecedented levels from burning fossil fuels to meet the ever-increasing world energy demand. A rapid transition to clean energy sources is necessary to avoid the potentially catastrophic consequences of global warming. The sun provides more than enough energy to power the world, and solar cells that convert sunlight to electricity are commercially available. However, the high cost and low efficiency of current solar cells prevent their widespread implementation, and grid parity is not anticipated to be reached for at least 15 years without breakthrough technologies. Semiconductor nanocrystals (NCs) show promise for cheap multi-junction photovoltaic devices. To compete with photovoltaic materials that are currently commercially available, NCs need to be inexpensively cast into dense thin films with bulk-like electrical mobilities and absorption spectra that can be tuned by altering the NC size. The Group II-VI and IV-VI NC communities have had some success in achieving this goal by drying and then chemically treating colloidal particles, but the more abundant and less toxic Group IV NCs have proven more challenging. This thesis reports thin films of plasma-synthesized Ge NCs deposited using three different techniques, and preliminary solar cells based on these films. Germanium tetrachloride is dissociated in the presence of hydrogen in a nonthermal plasma to nucleate Ge NCs. Transmission electron microscopy and X-ray diffraction indicate that the particles are nearly monodisperse (standard deviations of 10-15% the mean particle diameter) and the mean diameter can be tuned from 4-15 nm by changing the residence time of the Ge NCs in the plasma. In the first deposition scheme, a Ge NC colloid is formed by reacting nanocrystalline powder with 1-dodecene and dispersing the functionalized NCs in a solvent. Films are then formed on substrates by drop-casting the colloid and allowing it to dry. As-deposited films are electrically insulating due to the long hydrocarbon molecules separating neighboring particles; however, mass spectrometry shows that annealing treatments successfully decompose these molecules. After annealing at 250 °C, Ge NC films exhibit conductivities as large as 10-6 S/cm. In the second film deposition scheme, a Ge NC colloid is formed by dispersing Ge NCs in select solvents without further surface modification. While these "bare" NCs quickly agglomerate and flocculate in nearly all non-polar solvents, they remain stable in benzonitrile and 1,2-dichlorobenzene, among others. Thin-film field-effect transistors have been fabricated by spinning Ge NC colloids onto substrates and the films have been subjected to various annealing procedures. The devices show n-type, p -type, or ambipolar behavior depending on the annealing conditions, with Ge NC films annealed at 300°C exhibiting electron saturation mobilities greater than 10-2 cm2/Vs and on-to-off ratios of 104. The final film deposition scheme involves the impaction of Ge NCs onto substrates downstream of the synthesis plasma via acceleration of the NCs through an orifice. This technique produces highly uniform films with densities greater than 50% of the density of bulk Ge. By varying the size of the Ge NCs, we have measured films with band gaps ranging from the bulk value of 0.7 eV to over 1.1 eV for films of 4 nm Ge NCs. Having deposited dense thin films with tunable band gaps and respectable mobilities, we have begun fabricating bilayer solar cells consisting of heterojunctions between Ge NC films and P3HT, Si NCs, or Si wafers. Preliminary devices exhibit opencircuit voltages and short-circuit currents as large as 0.3 V and 4 mA/cm 2, respectively.

  1. Upconversion in solar cells

    PubMed Central

    2013-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells. PMID:23413889

  2. Back wall solar cell

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr. (inventor)

    1978-01-01

    A solar cell is disclosed which comprises a first semiconductor material of one conductivity type with one face having the same conductivity type but more heavily doped to form a field region arranged to receive the radiant energy to be converted to electrical energy, and a layer of a second semiconductor material, preferably highly doped, of opposite conductivity type on the first semiconductor material adjacent the first semiconductor material at an interface remote from the heavily doped field region. Instead of the opposite conductivity layer, a metallic Schottky diode layer may be used, in which case no additional back contact is needed. A contact such as a gridded contact, previous to the radiant energy may be applied to the heavily doped field region of the more heavily doped, same conductivity material for its contact.

  3. Thin monocrystalline silicon solar cells

    SciTech Connect

    Muenzer, K.A.; Holdermann, K.T.; Schlosser, R.E.; Sterk, S.

    1999-10-01

    One of the most effective approaches for a cost reduction of crystalline silicon solar cells is the better utilization of the crystals by cutting thinner wafers. However, such thin silicon wafer must have sufficient mechanical strength to maintain a high mechanical yield in cell and module manufacturing. The electrical performance of thin cells drops strongly with decreasing cell thickness if solar cell manufacturing technologies without a backside passivation of a back-surface-field (BSF) are applied. However, with the application of a BSF, stable efficiencies of over 17%, even with decreasing cell thickness, have been reached. Thin solar cells show lower photodegradation, as is normally observed for Cz-silicon cells with today's standard thickness (about 300 {micro}m) because of a higher ratio of the diffusion length compared to the cell thickness. Cells of about 100--150 {micro}m thickness fabricated with the production Cz-silicon show almost no photodegradation. Furthermore, thin boron BSF cells have a pronounced efficiency response under backside illumination. The backside efficiency increases with decreasing cell thickness and reaches 60% of the frontside cell efficiency for 150 {micro}m solar cells and also for solar modules assembled of 36 cells of a thickness of 150 {mu}m. Assuming, for example, a rearside illumination of 150 W/m{sub 2}, this results in an increased module power output of about 10% relatively.

  4. Bulb mounting of solar cell

    SciTech Connect

    Thompson, M.E.

    1983-04-05

    An energy converting assembly is provided for parasiting of light from a fluorescent light bulb utilizing a solar cell. The solar cell is mounted on a base member elongated in the dimension of elongation of the fluorescent bulb, and electrical interconnections to the cell are provided. A flexible sheet of opaque material having a flat white interior reflective surface surrounds the fluorescent bulb and reflects light emitted from the bulb back toward the bulb and the solar cell. The reflective sheet is tightly held in contact with the bottom of the bulb by adhesive, a tie strap, an external clip, or the like.

  5. Testing of gallium arsenide solar cells on the CRRES vehicle

    NASA Technical Reports Server (NTRS)

    Trumble, T. M.

    1985-01-01

    A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage.

  6. Solar electron source and thermionic solar cell

    NASA Astrophysics Data System (ADS)

    Yaghoobi, Parham; Vahdani Moghaddam, Mehran; Nojeh, Alireza

    2012-12-01

    Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed "Heat Trap" effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  7. Si Microwire Array Solar Cells

    SciTech Connect

    Putnam, Morgan C.; Boettcher, Shannon W.; Kelzenberg, Michael D.; Turner-Evans, Daniel B.; Spurgeon, Joshua M.; Warren, Emily L.; Briggs, Ryan M.; Lewis, Nathan S.; Atwater, Harry A.

    2010-01-01

    Si microwire-array solar cells with Air Mass 1.5 Global conversion efficiencies of up to 7.9% have been fabricated using an active volume of Si equivalent to a 4 ?m thick Si wafer. These solar cells exhibited open-circuit voltages of 500 mV, short-circuit current densities (J{sub sc}) of up to 24 mA cm{sup -2}, and fill factors >65% and employed Al{sub 2}O{sub 3} dielectric particles that scattered light incident in the space between the wires, a Ag back reflector that prevented the escape of incident illumination from the back surface of the solar cell, and an a-SiN{sub x}:H passivation/anti-reflection layer. Wire-array solar cells without some or all of these design features were also fabricated to demonstrate the importance of the light-trapping elements in achieving a high J{sub sc}. Scanning photocurrent microscopy images of the microwire-array solar cells revealed that the higher J{sub sc} of the most advanced cell design resulted from an increased absorption of light incident in the space between the wires. Spectral response measurements further revealed that solar cells with light-trapping elements exhibited improved red and infrared response, as compared to solar cells without light-trapping elements.

  8. Multiple Exciton Generation Solar Cells

    SciTech Connect

    Luther, J. M.; Semonin, O. E.; Beard, M. C.; Gao, J.; Nozik, A. J.

    2012-01-01

    Heat loss is the major factor limiting traditional single junction solar cells to a theoretical efficiency of 32%. Multiple Exciton Generation (MEG) enables efficient use of the solar spectrum yielding a theoretical power conversion efficiency of 44% in solar cells under 1-sun conditions. Quantum-confined semiconductors have demonstrated the ability to generate multiple carriers but present-day materials deliver efficiencies far below the SQ limit of 32%. Semiconductor quantum dots of PbSe and PbS provide an active testbed for developing high-efficiency, inexpensive solar cells benefitting from quantum confinement effects. Here, we will present recent work of solar cells employing MEG to yield external quantum efficiencies exceeding 100%.

  9. Series Connection of Solar Cells

    NASA Technical Reports Server (NTRS)

    Keenan, R.

    1985-01-01

    Roll soldering from continuous string of cells. Automatic, continuous process attaches interconnecting strips to series string of silicon solar cells. Manufacturing process attaches each conductor from positive side of one cell to negative side of next. For reliability, 22 contacts are soldered on each side of each cell.

  10. Module level solutions to solar cell polarization

    DOEpatents

    Xavier, Grace (Fremont, CA), Li; Bo (San Jose, CA)

    2012-05-29

    A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.

  11. Solar array experiments on the SPHINX satellite. [Space Plasma High voltage INteraction eXperiment satellite

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1974-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations: the edge illuminated-multijunction cells, the teflon encased cells, and the violet cells.

  12. Dust Removal from Solar Cells

    NASA Technical Reports Server (NTRS)

    Ashpis, David E. (Inventor)

    2015-01-01

    A solar panel cleaning device includes a solar panel having a plurality of photovoltaic cells arranged in rows and embedded in the solar panel with space between the rows. A transparent dielectric overlay is affixed to the solar panel. A plurality of electrode pairs each of which includes an upper and a lower electrode are arranged on opposite sides of the transparent dielectric and are affixed thereto. The electrodes may be transparent electrodes which may be arranged without concern for blocking sunlight to the solar panel. The solar panel may be a dielectric and its dielectric properties may be continuously and spatially variable. Alternatively the dielectric used may have dielectric segments which produce different electrical field and which affects the wind "generated."

  13. Dust removal from solar cells

    NASA Technical Reports Server (NTRS)

    Ashpis, David E. (Inventor)

    2011-01-01

    A solar panel cleaning device includes a solar panel having a plurality of photovoltaic cells arranged in rows and embedded in the solar panel with space between the rows. A transparent dielectric overlay is affixed to the solar panel. A plurality of electrode pairs each of which includes an upper and a lower electrode are arranged on opposite sides of the transparent dielectric and are affixed thereto. The electrodes may be transparent electrodes which may be arranged without concern for blocking sunlight to the solar panel. The solar panel may be a dielectric and its dielectric properties may be continuously and spatially variable. Alternatively the dielectric used may have dielectric segments which produce different electrical field and which affects the wind "generated."

  14. Solar cell with back side contacts

    DOEpatents

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  15. SPDE: Solar Plasma Diagnostic Experiment

    NASA Technical Reports Server (NTRS)

    Bruner, Marilyn E.

    1995-01-01

    The physics of the Solar corona is studied through the use of high resolution soft x-ray spectroscopy and high resolution ultraviolet imagery. The investigation includes the development and application of a flight instrument, first flown in May, 1992 on NASA sounding rocket 36.048. A second flight, NASA founding rocket 36.123, took place on 25 April 1994. Both flights were successful in recording new observations relevant to the investigation. The effort in this contract covers completion of the modifications to the existing rocket payload, its reflight, and the preliminary day reduction and analysis. Experience gained from flight 36.048 led us to plan several payload design modifications. These were made to improve the sensitivity balance between the UV and EUV spectrographs, to improve the scattered light rejection in the spectrographs, to protect the visible light rejection filter for the Normal Incidence X-ray Imager instrument (NIXI), and to prepare one new multilayer mirror coating to the NIXI. We also investigated the addition of a brassboard CCD camera to the payload to test it as a possible replacement for the Eastman type 101-07 film used by the SPDE instruments. This camera was included in the experimeter's data package for the Project Initiation Conference for the flight of NASA Mission 36.123, held in January, 1994, but for programmatic reasons was deleted from the final payload configuration. The payload was shipped to the White Sands Missile Range on schedule in early April. The launch and successful recovery took place on 25 April, in coordination with the Yohkoh satellite and a supporting ground-based observing campaign.

  16. Origami-enabled deformable silicon solar cells

    SciTech Connect

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing; Tu, Hongen; Xu, Yong; Song, Zeming; Jiang, Hanqing; Yu, Hongyu

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  17. Origami-enabled deformable silicon solar cells

    NASA Astrophysics Data System (ADS)

    Tang, Rui; Huang, Hai; Tu, Hongen; Liang, Hanshuang; Liang, Mengbing; Song, Zeming; Xu, Yong; Jiang, Hanqing; Yu, Hongyu

    2014-02-01

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  18. Point contact silicon solar cells

    NASA Technical Reports Server (NTRS)

    Swanson, Richard M.

    1987-01-01

    A new type of silicon solar cell has been developed. It is called the point-contact cell because the metal semiconductor contacts are restricted to an array of small points on the back of the cell. The point contact cell has recently demonstrated 22 percent conversion efficiency at one sun and 27.5 percent at 100 suns under an AM1.5 spectrum.

  19. High voltage solar array experiments

    NASA Technical Reports Server (NTRS)

    Kennerud, K. L.

    1974-01-01

    The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.

  20. Solar exposure of LDEF experiment trays

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.

    1992-01-01

    Exposure to solar radiation is one of the primary causes of degradation of materials on spacecraft. Accurate knowledge of solar exposure is needed to evaluate the performance of materials carried on the Long Duration Exposure Facility (LDEF) during its nearly 6 year orbital flight. Presented here are tables and figures of calculated solar exposure for the experiment rows, longerons, and end bays of the spacecraft as functions of time in orbit. The data covers both direct solar and earth reflected radiation. Results are expressed in cumulative equivalent sun hours (CESH) or the hours of direct, zero incidence solar radiation that would cause the same irradiance of a surface. Space end bays received the most solar radiation, 14,000 CESH; earth end bays received the least, 4,500 CESH. Row locations received between 6,400 CESH and 11,200 CESH with rows facing either eastward or westward receiving the most radiation and rows facing northward or southward receiving the least.

  1. Report on solar neutrino experiments

    SciTech Connect

    Davis, R. Jr.; Cleveland, B.T.; Rowley, J.K.

    1984-01-01

    A summary is given of the status of solar neutrino research that includes results of the Brookhaven chlorine detector, a discussion of the development of the gallium, bromine, and lithium radiochemical detectors, and some proposals for direct counting detectors. The gallium and bromine radiochemical detectors are developed and are capable of giving critical information of interest about neutrino physics and the fusion reactions in the interior of the sun. A plan for building these detectors is outlined and a rough cost estimate is given. A review is given of the plans in the Soviet Union in solar neutrino research.

  2. Solar Activity Measurement Experiment (SAMEX)

    NASA Astrophysics Data System (ADS)

    Keil, Stephen L.; Neidig, Donald F.

    1986-01-01

    SAMEX is the first step in providing the Air Force with a Solar Activity Forecasting and Monitoring System in Space (SAFMSS). SAMEX will provide the test bed for a high spatial resolution soft X-ray/EUV imager (20-150 A) and a high resolution vector magnetograph. The proposed payload will be flown as part of the Space Test Program and subsequently used to form the kernel of a Solar Activity Monitoring Satellite (SAMSAT) that has been proposed by the Air Weather Service.

  3. Lithium counterdoped silicon solar cell

    NASA Technical Reports Server (NTRS)

    Weinberg, I. (inventor); Brandhorst, H. W., Jr. (inventor)

    1986-01-01

    The resistance to radiation damage of an n(+)p boron doped silicon solar cell is improved by lithium counterdoping. Even though lithium is an n-dopant in silicon, the lithium is introduced in small enough quantities so that the cell base remains p-type. The lithium is introduced into the solar cell wafer by implantation of lithium ions whose energy is about 50 keV. After this lithium implantation, the wafer is annealed in a nitrogen atmosphere at 375 C for two hours.

  4. Compact Concentrators for Solar Cells

    NASA Technical Reports Server (NTRS)

    Whang, V. S.

    1984-01-01

    Each cell in array has own concentrator. A Cassegrain Reflector combination of paraboloidal and hyperboloidar mirrors-used with conical reflector at each element of array. Three components direct light to small solar cell. No cooling fins, fans, pumps, or heat pipes needed, not even in vacuum.

  5. Solar models, neutrino experiments, and helioseismology

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Ulrich, Roger K.

    1988-01-01

    The event rates and their recognized uncertainties are calculated for 11 solar neutrino experiments using accurate solar models. These models are also used to evaluate the frequency spectrum of the p and g oscillations modes of the sun. It is shown that the discrepancy between the predicted and observed event rates in the Cl-37 and Kamiokande II experiments cannot be explained by a 'likely' fluctuation in input parameters with the best estimates and uncertainties given in the present study. It is suggested that, whatever the correct solution to the solar neutrino problem, it is unlikely to be a 'trival' error.

  6. Experiences in solar cooling systems

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Oberoi, H. S.

    Six of the nine solar cooling systems discussed in this paper had negative energy savings. In several cases the solar cooling system used substantially more energy than a conventional system could have been expected to use. Two systems, however, had significant energy savings. These systems (1 residential and 1 commercial) obtained system thermal efficiencies of 12.0 to 12.4 percent. Their system overall efficiences averaged 11.2 and 5.2 percent respectively. The residential-sized system achieved an annual energy savings of about 16.8 GJ/year, or approximately .34 GJ/year.m2 of collector. The commercial system had equivalent values of 137 GJ/year or about .22 GJ/year/sq m of collector. It should be noted that these efficiencies re much lower than those of well-designed and properly controlled cooling systems in commercial sizes. However, with realistic system modifications and subsequent improvements in performance these solar cooling systems can be expected to achieve savings in nonrenewable energy sources of approximately 1.2 GJ/year/sq m of collector. These savings can be compared to those associated with solar space and domestic hot water heating systems of 2.2 and 2.5 GJ/year/sq m of collector, respectively.

  7. Analysis of Fundamental Light Receiving Characteristics of Spherical Solar Cells

    NASA Astrophysics Data System (ADS)

    Ishikawa, Hiroki; Furuno, Takayuki; Kambe, Satoru; Naitoh, Haruo

    The spherical solar cells are claimed to have some advantageous characteristics superior to those of the ordinary planar solar cells. The most significant one is that the spherical solar cells have no directivity to light. This paper examines the characteristics based on geometrical consideration. It is proved that a single spherical cell has no directivity as a whole. In practical use, many cells are used in an array configuration, where an individual cell receives the shadows casted by other cells around it. The adjacent shadows, so named in this paper, causes directivity. Their effects are evaluated geometrically and the theoretical consideration is verified by experiments.

  8. Gap/silicon Tandem Solar Cell with Extended Temperature Range

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2006-01-01

    A two-junction solar cell has a bottom solar cell junction of crystalline silicon, and a top solar cell junction of gallium phosphide. A three (or more) junction solar cell has bottom solar cell junctions of silicon, and a top solar cell junction of gallium phosphide. The resulting solar cells exhibit improved extended temperature operation.

  9. Wraparound-contact solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.; Klucher, T. M.; Thornhill, J. W.; Scott-Monck, J.

    1979-01-01

    Positive and negative electrical contacts are on back surface of wraparound-contact solar cell. With both terminals on nonilluminated side, cells can be connected back-to-back, and interconnection of many cells can be automated by using printed-circuit techniques. Cells are made by screen-printing layer of dielectric around edge of cell and extending top contact over dielectric to back surface. Wraparound also facilitates application of transparent covers and encapsulants. Efficiencies of cells are in excess of seventeen percent.

  10. Nanocrystal-polymer solar cells

    NASA Astrophysics Data System (ADS)

    Huynh, Wendy Uyen

    The ability to structure materials on a nanometer dimension enables the processes of solar energy conversion to be optimized at their most fundamental length scale. In semiconducting nanocrystals, optical absorption and electrical transport can be tailored by changing their radius and length, respectively. The unique features of quantum confinement and shape manipulation characteristic for inorganic nanocrystals can be utilized to fabricate solar cells with properties not observed in organic or conventional inorganic solar cells. Furthermore, their solution processibility provides fabrication advantages in the production of low cost, large area, and flexible solar cells. By blending organic conjugated polymers with CdSe nanocrystals efficient thin film solar cells have been constructed. Intimate contact for efficient charge transfer between the polymer and nanocrystal components of the blend was achieved by removing the organic ligands on the surface of the nanocrystal and by using solvent mixtures. Control of the nanocrystal length and therefore the distance on which electrons are transported directly through a thin film device enabled the creation of direct pathways for the transport of electrons. In addition, tuning the band gap by altering the nanocrystal radius as well as using alternate materials such as CdTe the overlap between the absorption spectrum of the cell and the solar emission spectrum could be optimized. A photovoltaic device consisting of 7nm by 60nm CdSe nanorods and the conjugated polymer poly-3(hexylthiophene) was assembled from solution with an external quantum efficiency of over 54% and a monochromatic power conversion efficiency of up to 7% under illumination at low light intensity. Under AM 1.5 Global solar conditions, we obtained a power conversion efficiency of 1.7%.

  11. Accelerated annealing of gallium arsenide solar cells

    SciTech Connect

    Knechtli, R.C.; Kamath, G.S.; Loo, R.Y.

    1985-01-22

    A method is provided for accelerating and improving the recovery of GaAs solar cells from the damage which they experience in space under high energy particle irradiation such as electrons, protons and neutrons. The method comprises combining thermal annealing with injection annealing. Injection annealing is the recovery from radiation damage resulting from minority carrier injection into the damaged semiconductor, nonradiative minority carrier combination of the injected minority carriers, transfer of the recombination energy to the crystal lattice and utilization of this energy to remove the defects caused by the high energy particle irradiation. The combined annealing of this invention is implemented by heating the solar cells to a moderate temperature (on the order of about 200/sup 0/ C. to 300/sup 0/ C. or less), while at the same time injecting the minority carriers by either of two methods: current injection (by applying an adequate forward bias voltage) or photo-injection (by exposing the cell to adequate light intensity). Sunlight directed onto the solar cells may be employed for heating the solar cells. Alternatively, energy dissipation in the solar cells caused by the flow of a forward bias current may be used to heat the solar cells. In one example, thermal annealing at 200/sup 0/ C. alone was observed to bring the power output up to a level of about 75% of its original value from a level of about 50%, resulting from radiation-induced damage. Combined annealing, employing thermal annealing at 200/sup 0/ C. in conjunction with simultaneous injection of minority carriers at a current density of 125 mA/cm/sup 2/, was observed to bring the power output to a level of nearly 90%.

  12. Accelerated annealing of gallium arsenide solar cells

    SciTech Connect

    Knechtli, R.C.; Kamath, S.; Loo, R.Y.

    1983-07-26

    A method is provided for accelerating and improving the recovery of GaAs solar cells from the damage which they experience in space under high energy particle irradiation such as electrons, protons and neutrons. The method comprises combining thermal annealing with injection annealing. Injection annealing is the recovery from radiation damage resulting from minority carrier injection into the damaged semiconductor, non-radiative minority carrier combination of the injected minority carriers, transfer of the recombination energy to the crystal lattice and utilization of this energy to remove the defects caused by the high energy particle irradiation. The combined annealing of this invention is implemented by heating the solar cells to a moderate temperature (on the order of about 200/sup 0/ C. to 300/sup 0/ C. or less), while at the same time injecting the minority carriers by either of two methods: current injection (by applying an adequate forward bias voltage) or photoinjection (by exposing the cell to adequate light intensity). Sunlight directed onto the solar cells may be employed for heating the solar cells. Alternatively, energy dissipation in the solar cells caused by the flow of a forward bias current may be used to heat the solar cells. In one example, thermal annealing at 200/sup 0/ C. alone was observed to bring the power output up to a level of about 75% of its original value from a level of about 50%, resulting from radiation-induced damage. Combined annealing, employing thermal annealing at 200/sup 0/ C. in conjunction with simultaneous injection of minority carriers at a current density of 125 mA/cm/sup 2/, was observed to bring the power output to a level of nearly 90%.

  13. Silicon concentrator solar cell research

    SciTech Connect

    Green, M.A.; Zhao, J.; Wang, A.; Dai, X.; Milne, A.; Cai, S.; Aberle, A.; Wenham, S.R.

    1993-06-01

    This report describes work conducted between December 1990 and May 1992 continuing research on silicon concentrator solar cells. The objectives of the work were to improve the performance of high-efficiency cells upon p-type substrates, to investigate the ultraviolet stability of such cells, to develop concentrator cells based on n-type substrates, and to transfer technology to appropriate commercial environments. Key results include the identification of contact resistance between boron-defused areas and rear aluminum as the source of anomalously large series resistance in both p- and n-type cells. A major achievement of the present project was the successful transfer of cell technology to both Applied Solar Energy Corporation and Solarex Corporation.

  14. Development of concentrator solar cells

    SciTech Connect

    Not Available

    1994-08-01

    A limited pilot production run on PESC silicon solar cells for use at high concentrations (200 to 400 suns) is summarized. The front contact design of the cells was modified for operation without prismatic covers. The original objective of the contract was to systematically complete a process consolidation phase, in which all the, process improvements developed during the contract would be combined in a pilot production run. This pilot run was going to provide, a basis for estimating cell costs when produced at high throughput. Because of DOE funding limitations, the Photovoltaic Concentrator Initiative is on hold, and Applied Solar`s contract was operated at a low level of effort for most of 1993. The results obtained from the reduced scope pilot run showed the effects of discontinuous process optimization and characterization. However, the run provided valuable insight into the technical areas that can be optimized to achieve the original goals of the contract.

  15. Summary of solar cell data from the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank

    1994-01-01

    The Long Duration Exposure Facility (LDEF) was composed of many separate experiments, some of which contained solar cells. These solar cells were distributed at various positions on the LDEF and, therefore, were exposed to the space environment with an orientational dependence. This report will address the space environmental effects on solar cells and solar cell assemblies (SCA's), including electrical interconnects and associated insulation blankets where flown in conjunction with solar cells.

  16. Solar neutrino experiments and neutrino oscillations

    SciTech Connect

    Cleveland, B.T.; Davis, R. Jr.; Rowley, J.K.

    1981-01-01

    This report gives the results of the Brookhaven solar neutrino experiment that is based upon the neutrino capture reaction, /sup 37/Cl(..nu..,e/sup -/)/sup 37/Ar. The experiment was built in 1967 to test the theory of solar energy production, and it is well known that the neutrino capture rate in the detector is lower than that expected from theoretical models of the sun. The results will be compared to the current solar model calculations. One possible explanation of the low solar neutrino capture rate is that the neutrinos oscillate between two or more neutrino states, a topic of particular interest to this conference. This question is discussed in relation to the /sup 37/Cl experiment, and to other solar neutrino detectors that are capable of observing the lower energy neutrinos from the sun. A radiochemical solar neutrino detector located deep underground has a very low background and is capable of detecting the monoenergetic neutrinos from megacurie sources of radioisotopes that decay by electron capture. Experiments of this nature are described that are capable of testing for neutrino oscillations with a omicronm/sup 2/ as low as 0.2 eV/sup 2/ if there is maximum mixing between two neutrino states.

  17. Solar cell circuit and method for manufacturing solar cells

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor)

    2010-01-01

    The invention is a novel manufacturing method for making multi-junction solar cell circuits that addresses current problems associated with such circuits by allowing the formation of integral diodes in the cells and allows for a large number of circuits to readily be placed on a single silicon wafer substrate. The standard Ge wafer used as the base for multi-junction solar cells is replaced with a thinner layer of Ge or a II-V semiconductor material on a silicon/silicon dioxide substrate. This allows high-voltage cells with multiple multi-junction circuits to be manufactured on a single wafer, resulting in less array assembly mass and simplified power management.

  18. Solar-cell array design handbook

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1977-01-01

    Twelve-chapter two-volume compilation of solar cell design data is written from industrial, university, and governmental sources. Volumes contain tutorial descriptions of analytical methods, solar-cell characteristics, and cell material properties widely used in specifying solar-cell array performance and hardware design, as well as analysis, fabrication, and test methods.

  19. Report on solar-neutrino experiments

    SciTech Connect

    Davis, R. Jr.

    1982-01-01

    This report on solar neutrino experiments will include a summary of the results of the chlorine detector, and an account of our plans to build a gallium solar neutrino experiment. In addition to discussing the experimental side of the solar neutrino problem I would like to relate our experiences during the last 15 years in working in the Homestake Gold Mine. In the course of our work at Homestake a number of independent groups have asked to use our facilities and, because of the cooperative and helpful attitude of the Mine management, these experimentalists could be easily accommodated. A brief account of these experiences may be useful for the main business of this workshop, building large particle detectors for observing nucleon decay, and the related question of the need for a national underground physics facility.

  20. Solar Energy Experiment for Beginning Chemistry.

    ERIC Educational Resources Information Center

    Davis, Clyde E.

    1983-01-01

    Describes an experiment illustrating how such chemical concepts as light absorption, thermodynamics, and solid-state photovoltaics can be incorporated into solar energy education. Completed in a three-hour period, the experiment requires about two hours for data collections with the remaining hour devoted to calculations and comparison of results.…

  1. Solar Energy Experiment for Beginning Chemistry.

    ERIC Educational Resources Information Center

    Davis, Clyde E.

    1983-01-01

    Describes an experiment illustrating how such chemical concepts as light absorption, thermodynamics, and solid-state photovoltaics can be incorporated into solar energy education. Completed in a three-hour period, the experiment requires about two hours for data collections with the remaining hour devoted to calculations and comparison of results.…

  2. Solar Radiation and Climate Experiment (SORCE) Satellite

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).

  3. Advances in large area polycrystalline solar cells

    NASA Technical Reports Server (NTRS)

    Vendura, G. J., Jr.; Johnson, G.; Hoelscher, J. F.

    1984-01-01

    Polycrystaline silicon is presently routinely processed into low cost 10 cm by 10 cm solar cells. However assuming minimal handling difficulties, only minor equipment modifications and no increase in processing complexity, the fabrication of even larger geometries would be economically advantageous. This investigation addressed the feasibility of developing 10 cm by 15 cm solar cells from research through pilot line production stages. The major thrust was to minimize costing by using existing production equipment and proven techniques wherever possible. Accordingly methods were developed to section larger substrates from existing cast ingots, a simple solar cell was designed and low cost processes implemented. After numerous preliminary experiments, pilot line production of 1500 cells was completed. Of these approximately 62 percent exhibited efficiencies greater than 7.0 percent, 53 percent were greater than 8.0 percent and 15 percent were greater than 9.0 percent. Based on this study, the regular production of 10 cm by 15 cm solar cells was determined to be both feasible and cost effective using existing processing methods.

  4. Compensated amorphous silicon solar cell

    DOEpatents

    Carlson, David E. (Yardley, PA)

    1980-01-01

    An amorphous silicon solar cell incorporates a region of intrinsic hydrogenated amorphous silicon fabricated by a glow discharge wherein said intrinsic region is compensated by P-type dopants in an amount sufficient to reduce the space charge density of said region under illumination to about zero.

  5. Organic solar cells: Going green

    NASA Astrophysics Data System (ADS)

    Luo, Guoping; Wu, Hongbin

    2016-02-01

    High-performance polymer solar cells are normally processed with halogenated solvents, which are toxic and hazardous. Now, high power-conversion efficiency in bulk-heterojunction devices is achieved by using a non-toxic hydrocarbon solvent through an environmentally friendly processing route.

  6. Asymmetric tandem organic solar cells

    NASA Astrophysics Data System (ADS)

    Howells, Thomas J.

    Organic photovoltaics (OPVs) is an area that has attracted much attention recently as a potential low cost, sustainable source of energy with a good potential for full-scale commercialisation. Understanding the factors that determine the efficiency of such cells is therefore a high priority, as well as developing ways to boost efficiency to commercially-useful levels. In addition to an intensive search for new materials, significant effort has been spent on ways to squeeze more performance out of existing materials, such as multijunction cells. This thesis investigates double junction tandem cells in the context of small molecule organic materials. . Two different organic electron donor materials, boron subphthalocyanine chloride (SubPc) and aluminium phthalocyanine chloride (ClAlPc) were used as donors in heterojunctions with C60 to create tandem cells for this thesis. These materials have been previously used for solar cells and the absorption spectra of the donor materials complement each other, making them good candidates for tandem cell architectures. The design of the recombination layer between the cells is considered first, with silver nanoparticles demonstrated to work well as recombination centres for charges from the front and back sub-cells, necessary to avoid a charge build-up at the interface. The growth conditions for the nanoparticles are optimised, with the tandem cells outperforming the single heterojunction architecture. Optical modelling is considered as a method to improve the understanding of thin film solar cells, where interference effects from the reflective aluminium electrode are important in determining the magnitude of absorption a cell can achieve. The use of such modelling is first demonstrated in hybrid solar cells based on a SubPc donor with a titanium oxide (TiOx) acceptor; this system is ideal for observing the effects of interference as only the SubPc layer has significant absorption. The modelling is then applied to tandem cells where it is used to predict the short-circuit current (Jsc) generation of the sub-cells, which is not accessible experimentally. Current-matching is then used to predict the Jsc of the complete tandem device. . As a support to the optical modelling, ellipsometry measurements of thin films of ClAlPc are presented. These films of known thickness are analysed to extract the complex refractive index for use in optical modelling calculations. A dependence of the complex refractive index on film thickness and substrate is also noted. Finally, the external quantum efficiency (EQE) technique is considered as applied to solar cells, and an additional method is proposed to characterise current balancing in asymmetric tandem cells under illumination. This technique is verified experimentally by two separate sets of data..

  7. Low cost solar cell arrays

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Mclennan, H.

    1975-01-01

    Limitations in both space and terrestial markets for solar cells are described. Based on knowledge of the state-of-the-art, six cell options are discussed; as a result of this discussion, the three most promising options (involving high, medium and low efficiency cells respectively) were selected and analyzed for their probable costs. The results showed that all three cell options gave promise of costs below $10 per watt in the near future. Before further cost reductions can be achieved, more R and D work is required; suggestions for suitable programs are given.

  8. Experimenting with Photoelectrochemical Cells in Drinking Straws: Practical Aids for Learning about Solar Energy in School or at Home

    ERIC Educational Resources Information Center

    Appleyard, S. J.

    2008-01-01

    Photoelectrochemical cells using dye-sensitized ZnO with a Cu[superscript 2+]/Fe[superscript 2+]/Fe[superscript 3+] electrolyte can be easily made at home or in a school classroom with household chemicals and other readily available materials. The cells, which are made with wire housed within plastic drinking straws, have open-circuit voltages of…

  9. Experimenting with Photoelectrochemical Cells in Drinking Straws: Practical Aids for Learning about Solar Energy in School or at Home

    ERIC Educational Resources Information Center

    Appleyard, S. J.

    2008-01-01

    Photoelectrochemical cells using dye-sensitized ZnO with a Cu[superscript 2+]/Fe[superscript 2+]/Fe[superscript 3+] electrolyte can be easily made at home or in a school classroom with household chemicals and other readily available materials. The cells, which are made with wire housed within plastic drinking straws, have open-circuit voltages of…

  10. Key Physical Mechanisms in Nanostructured Solar Cells

    SciTech Connect

    Dr Stephan Bremner

    2010-07-21

    The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

  11. Process of making solar cell module

    DOEpatents

    Packer, M.; Coyle, P.J.

    1981-03-09

    A process is presented for the manufacture of solar cell modules. A solution comprising a highly plasticized polyvinyl butyral is applied to a solar cell array. The coated array is dried and sandwiched between at last two sheets of polyvinyl butyral and at least two sheets of a rigid transparent member. The sandwich is laminated by the application of heat and pressure to cause fusion and bonding of the solar cell array with the rigid transparent members to produce a solar cell module.

  12. Solar Neutrinos and the Borexino experiment

    NASA Astrophysics Data System (ADS)

    Vignaud, D.

    2015-04-01

    Solar neutrinos are produced in the core of the Sun in different nuclear reactions all based on the conversion of hydrogen into helium, releasing energy and making the Sun shine. Until now, the observation of solar neutrinos has demonstrated: a) the nuclear origin of the Sun's energy; b) that the ve produced were undergoing lepton flavor transformation into v? or v?, the neutrino oscillation mechanism. In the recent years, the Borexino experiment, in the Gran Sasso underground laboratory, has made significant contributions to the solar neutrino spectroscopy: first observation and precision measurement of the 7Be neutrinos, first observation of the pep reaction, stringent limit on CNO neutrinos, observation of 8B neutrinos with a 3 MeV threshold. These measurements reinforce the so-called LMA solution of the neutrino oscillation explaining the solar ve survival probability as a function of energy.

  13. Nanostructured Materials for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Raffaelle, Ryne; Castro, Stephanie; Fahey, S.; Gennett, T.; Tin, P.

    2003-01-01

    The use of both inorganic and organic nanostructured materials in producing high efficiency photovoltaics is discussed in this paper. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of semiconductor quantum dots in an ordinary p-i-n solar cell. In addition, it has also recently been demonstrated that quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. A similar improvement in these types of cells has also been observed by employing single wall carbon nanotubes. This relatively new carbon allotrope may assist both in the disassociation of excitons as well as carrier transport through the composite material. This paper reviews the efforts that are currently underway to produce and characterize these nanoscale materials and to exploit their unique properties.

  14. A novel chlorophyll solar cell

    NASA Astrophysics Data System (ADS)

    Ludlow, J. C.

    The photosynthetic process is reviewed in order to produce a design for a chlorophyll solar cell. In a leaf, antenna chlorophyll absorbs light energy and conducts it to an energy trap composed of a protein and two chlorophyll molecules, which perform the oxidation-reduction chemistry. The redox potential of the trap changes from 0.4 to -0.6 V, which is sufficient to reduce nearby molecules with redox potentials in that range. The reduction occurs by transfer of an electron, and a chlorophyll solar cell would direct the transferred electron to a current carrier. Chlorophyll antenna and traps are placed on a metallic support immersed in an electron acceptor solution, and resulting electrons from exposure to light are gathered by a metallic current collector. Spinach chlorophyll extracted, purified, and applied in a cell featuring a Pt collector and an octane water emulsion resulted in intensity independent voltages.

  15. Solar Irradiance and Thermospheric Airglow Rocket Experiments

    NASA Technical Reports Server (NTRS)

    Solomon, Stanley C.

    1998-01-01

    This report describes work done in support of the Solar Irradiance and Thermospheric Air-glow Rocket Experiments at the University of Colorado for NASA grant NAG5-5021 under the direction of Dr. Stanley C. Solomon. (The overall rocket program is directed by Dr. Thomas N. Woods, formerly at the National Center for Atmospheric Research, and now also at the University of Colorado, for NASA grant NAG5-5141.) Grant NAG5-5021 provided assistance to the overall program through analysis of airglow and solar data, support of two graduate students, laboratory technical services, and field support. The general goals of the rocket program were to measure the solar extreme ultraviolet spectral irradiance, measure the terrestrial far-ultraviolet airglow, and analyze their relationship at various levels of solar activity, including near solar minimum. These have been met, as shown below. In addition, we have used the attenuation of solar radiation as the rocket descends through the thermosphere to measure density changes. This work demonstrates the maturity of the observational and modeling methods connecting energetic solar photon fluxes and airglow emissions through the processes of photoionization and photoelectron production and loss. Without a simultaneous photoelectron measurement, some aspects of this relationship remain obscure, and there are still questions pertaining to cascade contributions to molecular and atomic airglow emissions. However, by removing the solar irradiance as an "adjustable parameter" in the analysis, significant progress has been made toward understanding the relationship of far-ultraviolet airglow emissions to the solar and atmospheric conditions that control them.

  16. Nanowire perovskite solar cell.

    PubMed

    Im, Jeong-Hyeok; Luo, Jingshan; Franckevičius, Marius; Pellet, Norman; Gao, Peng; Moehl, Thomas; Zakeeruddin, Shaik Mohammed; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Park, Nam-Gyu

    2015-03-11

    Organolead iodide perovskite, CH3NH3PbI3, was prepared in the form of nanowire by means of a small quantity of aprotic solvent in two-step spin-coating procedure. One-dimensional nanowire perovskite with the mean diameter of 100 nm showed faster carrier separation in the presence of hole transporting layer and higher lateral conductivity than the three-dimensional nanocuboid crystal. Reduction in dimensionality resulted in the hypsochromic shift of both absorption and fluorescence spectra, indicative of more localized exciton states in nanowires. The best performing device employing nanowire CH3NH3PbI3 delivered photocurrent density of 19.12 mA/cm(2), voltage of 1.052 V, and fill factor of 0.721, leading to a power conversion efficiency (PCE) of 14.71% at standard AM 1.5G solar illumination. A small I-V hysteresis was observed, where a PCE at forward scan was measured to be 85% of the PCE at reverse scan. PMID:25710268

  17. Point contact silicon solar cells

    NASA Technical Reports Server (NTRS)

    Swanson, R. M.

    1986-01-01

    The construction of a 22.2% efficient single-crystal silicon solar cell fabricated at Stanford University is described. The cell dimensions were 3 x 5 mm and 100 microns thick with a base lifetime of 500 microseconds. The cell featured light trapping between a texturized top surface and a reflective bottom surface, small point contact diffusions, alternating between n-type and p-type in a polka-dot pattern on the bottom surface, and a surface passivation on all surfaces between contact regions.

  18. Mixed ternary heterojunction solar cell

    DOEpatents

    Chen, Wen S. (Seattle, WA); Stewart, John M. (Seattle, WA)

    1992-08-25

    A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

  19. Impurities in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Davis, J. R., Jr.; Rohatgi, A.; Hopkins, R. H.; Blais, P. D.; Rai-Choudhury, P.; Mccormick, J. R.; Mollenkopf, H. C.

    1980-01-01

    The paper investigates the effects of metallic impurities on the performance of silicon solar cells. Czochralski and polycrystalline ingots were employed with boron and phosphorus as primary dopants and with controlled additions of secondary impurities. The data obtained from over 200 crystals indicate that impurity-induced performance loss is primarily due to a reduction of the base diffusion length. Based on this observation, a model is developed which predicts cell performance as a function of secondary impurity concentrations. The model calculations are in good agreement with experimental values except for Cu, Ni, Fe, and to a lesser degree, carbon, which at higher concentrations degrade the cell by junction defect mechanisms.

  20. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    The handbook discusses the history of GaAs solar cell development, presents equations useful for working with GaAs solar cells, describes commonly used instrumentation techniques for assessing radiation effects in solar cells and fundamental processes occurring in solar cells exposed to ionizing radiation, and explains why radiation decreases the electrical performance of solar cells. Three basic elements required to perform solar array degradation calculations: degradation data for GaAs solar cells after irradiation with 1 MeV electrons at normal incidence; relative damage coefficients for omnidirectional electron and proton exposure; and the definition of the space radiation environment for the orbit of interest, are developed and used to perform a solar array degradation calculation.

  1. Towards stable silicon nanoarray hybrid solar cells

    PubMed Central

    He, W. W.; Wu, K. J.; Wang, K.; Shi, T. F.; Wu, L.; Li, S. X.; Teng, D. Y.; Ye, C. H.

    2014-01-01

    Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viable alternative for harvesting solar energy. Here we show that Si nanoarray/PEDOT:PSS hybrid solar cells with improved stability can be fabricated via eliminating the water inclusion in the initial formation of the heterojunction between Si nanoarray and PEDOT:PSS. The Si nanoarray hybrid solar cells are stable against rapid degradation in the atmosphere environment for several months without encapsulation. This finding paves the way towards the real-world applications of Si nanoarray hybrid solar cells. PMID:24430057

  2. Towards stable silicon nanoarray hybrid solar cells

    NASA Astrophysics Data System (ADS)

    He, W. W.; Wu, K. J.; Wang, K.; Shi, T. F.; Wu, L.; Li, S. X.; Teng, D. Y.; Ye, C. H.

    2014-01-01

    Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viable alternative for harvesting solar energy. Here we show that Si nanoarray/PEDOT:PSS hybrid solar cells with improved stability can be fabricated via eliminating the water inclusion in the initial formation of the heterojunction between Si nanoarray and PEDOT:PSS. The Si nanoarray hybrid solar cells are stable against rapid degradation in the atmosphere environment for several months without encapsulation. This finding paves the way towards the real-world applications of Si nanoarray hybrid solar cells.

  3. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    NASA Technical Reports Server (NTRS)

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  4. Flexibility in space solar cell production

    NASA Technical Reports Server (NTRS)

    Khemthong, Scott; Iles, Peter A.

    1989-01-01

    The wide range of cells that must be available from present-day production lines for space solar cells are described. After over thirty years of space-cell use, there is very little standardization in solar cell design. It is not generally recognized what a wide range of designs must remain available on cell production lines. This range of designs is surveyed.

  5. TIMED Solar EUV Experiment: Phase E

    NASA Technical Reports Server (NTRS)

    Woods, Tom; Eparvier, Frank; Woodraska, Don; Rottman, Gary; Solomon, Stan; Roble, Ray; deToma, Guliana; White, Dick; Lean, Judith; Tobiska, Kent; Bailey, Scott

    2002-01-01

    The timed Solar EUV Experiment (SEE) Phase E Annual Report for 2002 is presented. The contents include: 1) SEE Science Overview; 2) SEE Instrument Overview and Status; 3) Summary of SEE Data Products; 4) Summary of SEE Results; 5) Summary of SEE Related Talks and Papers; and 6) Future Plans for SEE Team. This paper is in viewgraph form.

  6. Solar Array Module Plasma Interaction Experiment (SAMPIE)

    NASA Astrophysics Data System (ADS)

    Ferguson, Dale C.

    The objective of the Solar Array Module Plasma Interaction Experiment (SAMPIE) is to investigate, by means of a shuttle-based flight experiment and relevant ground-based testing, the arcing and current collection behavior of materials and geometries likely to be exposed to the LEO plasma on high-voltage space power systems, in order to minimize adverse environmental interactions. An overview of the SAMPIE program is presented in outline and graphical form.

  7. Compensated amorphous silicon solar cell

    DOEpatents

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  8. Study of solar cell welds

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1978-01-01

    The thermal imaging technique was evaluated for its capabilities in the nondestructive evaluation of solar cell welds. The temperature and spatial resolution of state of the art instrumentation was sufficient for both qualitative and quantitative determination of the quality of solar cell welds. The addition of color digitized thermography enhanced the aspects of the thermographic display and allowed easily computerized testing procedures. For automated testing systems an accurate correlation of weld quality with temperature profiles of the welds needs to be performed. In comparison, the holographic technique was complementary with the thermal imaging technique, except that the holographic analysis appeared to be more quantitative at the present time. However, the thermal imaging approach is much more versatile in overall capabilities.

  9. Solar Cells for Lunar Application

    NASA Technical Reports Server (NTRS)

    Freundlich, Alex; Ignatiev, Alex

    1997-01-01

    In this work a preliminary study of the vacuum evaporation of silicon extracted from the lunar regolith has been undertaken. An electron gun vacuum evaporation system has been adapted for this purpose. Following the calibration of the system using ultra high purity silicon deposited on Al coated glass substrates, thin films of lunar Si were evaporated on a variety of crystalline substrates as well as on glass and lightweight 1 mil (25 microns) Al foil. Extremely smooth and featureless films with essentially semiconducting properties were obtained. Optical absorption analysis sets the bandgap (about 1.1 eV) and the refractive index (n=3.5) of the deposited thin films close to that of crystalline silicon. Secondary ion mass spectroscopy and energy dispersive spectroscopy analysis indicated that these films are essentially comparable to high purity silicon and that the evaporation process resulted in a substantial reduction of impurity levels. All layers exhibited a p-type conductivity suggesting the presence of a p-type dopant in the fabricated layers. While the purity of the 'lunar waste material' is below that of the 'microelectronic-grade silicon', the vacuum evaporated material properties seems to be adequate for the fabrication of average performance Si-based devices such as thin film solar cells. Taking into account solar cell thickness requirements (greater than 10 microns) and the small quantities of lunar material available for this study, solar cell fabrication was not possible. However, the high quality of the optical and electronic properties of evaporated thin films was found to be similar to those obtained using ultra-high purity silicon suggest that thin film solar cell production on the lunar surface with in situ resource utilization may be a viable approach for electric power generation on the moon.

  10. Bonding Solar-Cell Modules

    NASA Technical Reports Server (NTRS)

    Coulter, D. R.; Cuddihy, E. F.; Plueddemann, E. F.

    1985-01-01

    Status of research program on chemical bonding for solar-cell arrays subject of 57-page report. Program aimed at identifying, developing, and validating weather-stable chemical bonding promoters. Materials key to ensuring long life in encapsulated photovoltaic modules for electric-power generation. To be cost-effective, modules must hold together for at least 20 years, reliably resisting delamination and separation of component materials

  11. High Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The majority of satellites and near-earth probes developed to date have used photovoltaic arrays for power generation. If future mission to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. In this paper, we derive the optimum bandgap as a function of the operating temperature.

  12. Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment.

    PubMed

    Anselmi, Chiara; Mosconi, Edoardo; Pastore, Mariachiara; Ronca, Enrico; De Angelis, Filippo

    2012-12-14

    First-principles computer simulations can contribute to a deeper understanding of the dye/semiconductor interface lying at the heart of Dye-sensitized Solar Cells (DSCs). Here, we present the results of simulation of dye adsorption onto TiO(2) surfaces, and of their implications for the functioning of the corresponding solar cells. We propose an integrated strategy which combines FT-IR measurements with DFT calculations to individuate the energetically favorable TiO(2) adsorption mode of acetic acid, as a meaningful model for realistic organic dyes. Although we found a sizable variability in the relative stability of the considered adsorption modes with the model system and the method, a bridged bidentate structure was found to closely match the FT-IR frequency pattern, also being calculated as the most stable adsorption mode by calculations in solution. This adsorption mode was found to be the most stable binding also for realistic organic dyes bearing cyanoacrylic anchoring groups, while for a rhodanine-3-acetic acid anchoring group, an undissociated monodentate adsorption mode was found to be of comparable stability. The structural differences induced by the different anchoring groups were related to the different electron injection/recombination with oxidized dye properties which were experimentally assessed for the two classes of dyes. A stronger coupling and a possibly faster electron injection were also calculated for the bridged bidentate mode. We then investigated the adsorption mode and I(2) binding of prototype organic dyes. Car-Parrinello molecular dynamics and geometry optimizations were performed for two coumarin dyes differing by the length of the π-bridge separating the donor and acceptor moieties. We related the decreasing distance of the carbonylic oxygen from the titania to an increased I(2) concentration in proximity of the oxide surface, which might account for the different observed photovoltaic performances. The interplay between theory/simulation and experiments appears to be the key to further DSCs progress, both concerning the design of new dye sensitizers and their interaction with the semiconductor and with the solution environment and/or an electrolyte upon adsorption onto the semiconductor. PMID:23108504

  13. Silicon Carbide Solar Cells Investigated

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  14. TROPIX: A solar electric propulsion flight experiment

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Hillard, G. Barry; Oleson, Steven R.

    1993-01-01

    The Transfer Orbit Plasma Interaction Experiment (TROPIX) is a proposed scientific experiment and flight demonstration of a solar electric propulsion vehicle. Its mission goals are to significantly increase our knowledge of Earth's magnetosphere and its associated plasma environment and to demonstrate an operational solar electric upper stage (SEUS) for small launch vehicles. The scientific investigations and flight demonstration technology experiments are uniquely interrelated because of the spacecraft's interaction with the surrounding environment. The data obtained will complement previous studies of the Earth's magnetosphere and space plasma environment by supplying the knowledge necessary to attain the strategic objectives of the NASA Office of Space Science. This first operational use of a primary ion propulsion vehicle, designed to withstand the harsh environments from low Earth orbit to geosynchronous Earth orbit, may lead to the development of a new class of electric propulsion upper stages or space-based transfer vehicles and may improve future spacecraft design and safety.

  15. Report on solar-neutrino experiments

    NASA Astrophysics Data System (ADS)

    Davis, R., Jr.

    The results of the chlorine detector are summarized, and an account made of the plans to build a gallium solar neutrino experiment. In addition to discussing the experimental side of the solar neutrino problem the experiences during the last 15 years in working in the Homestake Gold Mine are related. A number of independent groups have asked to use the facilities and, because of the cooperative and helpful attitude of the Mine management, these experimentalists were easily accommodated. A brief account of these experiences is useful for the main business of this workshop, building large particle detectors for observing nucleon decay, and the related question of the need for a national underground physics facility.

  16. Three-junction solar cell

    DOEpatents

    Ludowise, Michael J. (Cupertino, CA)

    1986-01-01

    A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

  17. Solar cell contacts

    SciTech Connect

    Meier, D.L.; Campbell, R.B.; Davis, J.R.; Rai-Choudhury, P.; Sienkiewicz, L.J.

    1982-09-01

    Two experimental contact systems were examined and compared to a baseline contact system consisting of evaporated layers of titanium, palladium, and silver and an electroplated layer of copper. The first experimental contact system consisted of evaporated layers of titanium, nickel, and copper and an electroplated layer of copper. This system performed as well as the baseline system in all respects, including its response to temperature stress tests, to a humidity test, and to an accelerated aging test. In addition, the cost of this system is estimated to be only 43% of the cost of the baseline system at a production level of 25 MW/year. The second experimental contact system consisted of evaporated layers of nickel and copper and an electroplated layer of copper. Cells with this system show serious degradation in a temperature stress test at 350/sup 0/C for 30 minutes. Auger Electron Spectroscopy was used to show that the evaporated nickel layer is not an adequate barrier to copper diffusion even at temperatures as low as 250/sup 0/C. This fact brings into question the longterm reliability of this contact system.

  18. Recent Advances in Solar Cell Technology

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

    1996-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

  19. The solar molten salt electric experiment

    SciTech Connect

    Holmes, J.T.

    1983-12-01

    The solar Molten Salt Electric Experiment (MSEE) is now in operation at the Central Receiver Test Facility (CRTF) near Albuquerque, NM. The MSEE uses a molten salt as its solar receiver and thermal storage working fluid and uses water/steam as its electric power generating fluid. The molten sodium nitrate (60 percent) and potassium nitrate (40 percent) salt melts at about 430/sup 0/F (220/sup 0/C). Because it is chemically stable in air and has a low vapor pressure at high temperatures, it is an ideal medium for storing heat for use in cloudy weather or at night. The MSEE integrates the existing CRTF heliostat field, a 5 MWt solar receiver, a 7 MWH thermal storage system, a new 3 MWt steam generator, a 0.75 MWe turbogenerator and a digital process control system. The amount of electricity produced by the MSEE is sufficient for about 250 homes.

  20. Modeling and experiment of dye-sensitized solar cell with vertically aligned ZnO nanorods through chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Wahyuono, Ruri Agung; Risanti, Doty D.

    2015-01-01

    A theoretical model based on electron diffusion differential equation and Schottky barrier model was developed to determine the current-voltage characteristics of DSSC. To verify the model DSSC with ZnO nanorods photoelectrode which was chemically bath deposited onto the TCO was fabricated. According to modeling results, increasing of recombination current density J at these interfaces results in a decrease in Schottky barrier height ?b and therefore improves the photovoltage under the open-circuit condition. It is found that the open-circuit voltage remains constant when the TCO/ZnO Schottky barrier height was varied in the range of 0.45 - 0.6 eV. This theoretical model consistents with the experimental result in which the fabricated DSSCs can produce conversion efficiency in the range of 0.98 - 1.16%. The trend in photovoltage calculated in the theoretical model basically agrees with the experimental result, although the calculated photocurrent is somewhat over estimated compared to the experimental results. The model presents that the ideality factor for ZnO nanorods, which also contributes to the enhancement of photovoltage, increases in the range of 2.75 - 3.0 as the annealing temperature is increased in the experiment.

  1. Spectral sensitization of nanocrystalline solar cells

    DOEpatents

    Spitler, Mark T.; Ehret, Anne; Stuhl, Louis S.

    2002-01-01

    This invention relates to dye sensitized polycrystalline photoelectrochemical solar cells for use in energy transduction from light to electricity. It concerns the utility of highly absorbing organic chromophores as sensitizers in such cells and the degree to which they may be utilized alone and in combination to produce an efficient photoelectrochemical cell, e.g., a regenerative solar cell.

  2. Work Station For Inverting Solar Cells

    NASA Technical Reports Server (NTRS)

    Feder, H.; Frasch, W.

    1982-01-01

    Final work station along walking-beam conveyor of solar-array assembly line turns each pretabbed solar cell over, depositing it back-side-up onto landing pad, which centers cell without engaging collector surface. Solar cell arrives at inverting work station collector-side-up with two interconnect tabs attached to collector side. Cells are inverted so that second soldering operation takes place in plain view of operator. Inversion protects collector from damage when handled at later stages of assembly.

  3. Extended Temperature Solar Cell Technology Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

    2004-01-01

    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

  4. Status of multijunction solar cells

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.; Chu, C. L.

    1996-01-01

    This paper describes Applied Solar's present activity on Multijunction (MJ) space cells. We have worked on a variety of MJ cells, both monolithic and mechanically stacked. In recent years, most effort has been directed to GaInP2/GaAs monolithic cells, grown on Ge substrates, and the status of this cell design will be reviewed here. MJ cells are in demand to provide satellite power because of the acceptance of the overwhelming importance of high efficiency to reduce the area, weight and cost of space PV power systems. The need for high efficiencies has already accelerated the production of GaAs/Ge cells, with efficiencies 18.5-19%. When users realized that MJ cells could provide higher efficiencies (from 22% to 26%) with only fractional increase in costs, the demand for production MJ cells increased rapidly. The main purpose of the work described is to transfer the MOCVD growth technology of MJ high efficiency cells to a production environment, providing all the space requirements of users.

  5. Supramolecular photochemistry and solar cells

    PubMed

    Iha

    2000-01-01

    Supramolecular photochemistry as well as solar cells are fascinating topics of current interest in Inorganic Photochemistry and very active research fields which have attracted wide attention in last two decades. A brief outline of the investigations in these fields carried out in our Laboratory of Inorganic Photochemistry and Energy Conversion is given here with no attempt of an exhaustive coverage of the literature. The emphasis is placed on recent work and information on the above mentioned subjects. Three types of supramolecular systems have been the focus of this work: (i) cage-type coordination compounds; (ii) second-sphere coordination compounds, exemplified by ion-pair photochemistry of cobalt complexes and (iii) covalently-linked systems. In the latter, modulation of the photoluminescence and photochemistry of some rhenium complexes are discussed. Solar energy conversion and development of thin-layer photoelectrochemical solar cells based on sensitization of nanocrystalline semiconductor films by some ruthenium polypyridyl complexes are presented as an important application that resulted from specifically engineered artificial assemblies. PMID:10932106

  6. Cell Radiation Experiment System

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    2010-01-01

    The cell radiation experiment system (CRES) is a perfused-cell culture apparatus, within which cells from humans or other animals can (1) be maintained in homeostasis while (2) being exposed to ionizing radiation during controlled intervals and (3) being monitored to determine the effects of radiation and the repair of radiation damage. The CRES can be used, for example, to determine effects of drug, radiation, and combined drug and radiation treatments on both normal and tumor cells. The CRES can also be used to analyze the effects of radiosensitive or radioprotectant drugs on cells subjected to radiation. The knowledge gained by use of the CRES is expected to contribute to the development of better cancer treatments and of better protection for astronauts, medical-equipment operators, and nuclear-power-plant workers, and others exposed frequently to ionizing radiation.

  7. Manufacturing method for solar silicon and measuring technical results on cells made of solar silicon

    NASA Astrophysics Data System (ADS)

    Aulich, H.; Cammerer, F.

    1984-10-01

    Solar silicon and solar cells were manufactured. Starting from cheap solar silicon and using known methods, monocrystalline disks were manufactured which were further processed to solar cells. The solar cell production technology is explained. Measurements on the solar cells show efficiencies up to 12.2%. The average efficiency of 10.2% is lower than the 11.3% of solar cells made of classical semiconductor material, due to the lower electron diffusion length in solar silicon.

  8. Energy Conversion: Nano Solar Cell

    NASA Astrophysics Data System (ADS)

    Yahaya, Muhammad; Yap, Chi Chin; Mat Salleh, Muhamad

    2009-09-01

    Problems of fossil-fuel-induced climate change have sparked a demand for sustainable energy supply for all sectors of economy. Most laboratories continue to search for new materials and new technique to generate clean energy at affordable cost. Nanotechnology can play a major role in solving the energy problem. The prospect for solar energy using Si-based technology is not encouraging. Si photovoltaics can produce electricity at 20-30 c//kWhr with about 25% efficiency. Nanoparticles have a strong capacity to absorb light and generate more electrons for current as discovered in the recent work of organic and dye-sensitized cell. Using cheap preparation technique such as screen-printing and self-assembly growth, organic cells shows a strong potential for commercialization. Thin Films research group at National University Malaysia has been actively involved in these areas, and in this seminar, we will present a review works on nanomaterials for solar cells and particularly on hybrid organic solar cell based on ZnO nanorod arrays. The organic layer consisting of poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEHPPV) and [6, 6]-phenyl C61-butyric acid 3-ethylthiophene ester (PCBE) was spin-coated on ZnO nanorod arrays. ZnO nanorod arrays were grown on FTO glass substrates which were pre-coated with ZnO nanoparticles using a low temperature chemical solution method. A gold electrode was used as the top contact. The device gave a short circuit current density of 2.49Ă—10-4 mA/cm2 and an open circuit voltage of 0.45 V under illumination of a projector halogen light at 100 mW/cm2.

  9. Silicon Solar Cell Process Development, Fabrication and Analysis

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Iles, P. A.; Tanner, D. P.

    1978-01-01

    Ribbon to Ribbon (RTR) solar cells processed from polycrystalline feedstock showed maximum AMO efficiency of 5.6%. Solar cells from single crystalline feedstock showed slightly higher efficiency than those from polycrystalline feedstock, indicating maximum efficiency of about 6.6% with SiO AR coating. Single crystalline control cells gave 11-12% AMO efficiencies demonstrating that the poor performance of the RTR solar was due to the low quality of material itself. Dendritic web solar cells from the standard process showed maximum AMO efficiency of 9.8% while efficiency of control solar cells were around 11-12%. Web solar cells from back surface field (BSF) process indicated maximum AMO efficiency of 10.9%. Some improvement in open circuit voltage was noticed from the BSF process. Small light spot scanning experiments were carried out on the solar cells from Wacker Silso, EFG, RTR, and dendritic web ribbons. Photoresponse results provided information on localized cell performance and grain size in polycrystalline material, and agreed quite well with the cell performance data, such as efficiency, minority carrier diffusion length, and spectral response.

  10. Method of making encapsulated solar cell modules

    NASA Technical Reports Server (NTRS)

    Anagnostou, E.; Forestieri, A. F. (inventors)

    1978-01-01

    Electrical connections to solar cells in a module are made at the same time the cells are encapsulated for protection. The encapsulating material is embossed to facilitate the positioning of the cells during assembly.

  11. Ion implanted junctions for silicon space solar cells

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Sanfacon, M. M.; Wolfson, R. G.

    1983-01-01

    This paper reviews the application of ion implantation to emitter and back surface field formation in silicon space solar cells. Experiments based on 2 ohm-cm boron-doped silicon are presented. It is shown that the implantation process is particularly compatible with formation of a high-quality back surface reflector. Large area solar cells with AM0 efficiency greater than 14 percent are reported.

  12. Silicon solar cells as a high-solar-intensity radiometer

    NASA Technical Reports Server (NTRS)

    Spisz, E. W.; Robson, R. R.

    1971-01-01

    The characteristics of a conventional, 1- by 2-cm, N/P, gridded silicon solar cell when used as a radiometer have been determined for solar intensity levels to 2800 mW/sq cm (20 solar constants). The short-circuit current was proportional to the radiant intensity for levels only to 700 mW/sq cm (5 solar constants). For intensity levels greater than 700 mW/sq cm, it was necessary to operate the cell in a photoconductive mode in order to obtain a linear relation between the measured current and the radiant intensity. When the solar cell was biased with a reverse voltage of -1 V, the measured current and radiant intensity were linearly related over the complete intensity range from 100 to 2800 mW/sq cm.

  13. Solar cell system having alternating current output

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (inventor)

    1980-01-01

    A monolithic multijunction solar cell was modified by fabricating an integrated circuit inverter on the back of the cell to produce a device capable of generating an alternating current output. In another embodiment, integrated curcuit power conditioning electronics was incorporated in a module containing a solar cell power supply.

  14. Solar cells using quantum funnels.

    PubMed

    Kramer, Illan J; Levina, Larissa; Debnath, Ratan; Zhitomirsky, David; Sargent, Edward H

    2011-09-14

    Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor. Using this concept we build a solar cell that benefits from enhanced fill factor as a result of this quantum funnel. This concept addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems. PMID:21827197

  15. Ultrasonic Bonding of Solar-Cell Leads

    NASA Technical Reports Server (NTRS)

    Frasch, W.

    1984-01-01

    Rolling ultrasonic spot-bonding method successfully joins aluminum interconnect fingers to silicon solar cells with copper metalization. Technique combines best features of ultrasonic rotary seam welding and ultrasonic spot bonding: allows fast bond cycles and high indexing speeds without use of solder or flux. Achieves reliable bonds at production rates without damage to solar cells. Bonding system of interest for all solar-cell assemblies and other assemblies using flat leads (rather than round wires).

  16. Bypass diode for a solar cell

    DOEpatents

    Rim, Seung Bum (Palo Alto, CA); Kim, Taeseok (San Jose, CA); Smith, David D. (Campbell, CA); Cousins, Peter J. (Menlo Park, CA)

    2012-03-13

    Bypass diodes for solar cells are described. In one embodiment, a bypass diode for a solar cell includes a substrate of the solar cell. A first conductive region is disposed above the substrate, the first conductive region of a first conductivity type. A second conductive region is disposed on the first conductive region, the second conductive region of a second conductivity type opposite the first conductivity type.

  17. New experimental techniques for solar cells

    NASA Technical Reports Server (NTRS)

    Lenk, R.

    1993-01-01

    Solar cell capacitance has special importance for an array controlled by shunting. Experimental measurements of solar cell capacitance in the past have shown disagreements of orders of magnitude. Correct measurement technique depends on maintaining the excitation voltage less than the thermal voltage. Two different experimental methods are shown to match theory well, and two effective capacitances are defined for quantifying the effect of the solar cell capacitance on the shunting system.

  18. Solar Cell Modules With Improved Backskin

    SciTech Connect

    Gonsiorawski, Ronald C.

    2003-12-09

    A laminated solar cell module comprises a front light transmitting support, a plurality of interconnected solar cells encapsulated by a light-transmitting encapsulant material, and an improved backskin formed of an ionomer/nylon alloy. The improved backskin has a toughness and melting point temperature sufficiently great to avoid any likelihood of it being pierced by any of the components that interconnect the solar cells.

  19. Laser-assisted solar cell metallization processing

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Gupta, S.; Mcmullin, P. G.; Palaschak, P. A.

    1985-01-01

    Laser-assisted processing techniques for producing high-quality solar cell metallization patterns are being investigated, developed, and characterized. The tasks comprising these investigations are outlined.

  20. Very High Efficiency Solar Cell Modules

    SciTech Connect

    Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

    2009-01-01

    The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

  1. Front contact solar cell with formed emitter

    DOEpatents

    Cousins, Peter John

    2012-07-17

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  2. Front contact solar cell with formed emitter

    DOEpatents

    Cousins, Peter John

    2014-11-04

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  3. Monolithic and mechanical multijunction space solar cells

    SciTech Connect

    Jain, R.K.; Flood, D.J.

    1992-08-01

    High-efficiency, lightweight, radiation-resistant solar cells are essential to meet the large power requirements of future space missions. Single-junction cells are limited in efficiency. Higher cell efficiencies could be realized by developing multijunction, multibandgap solar cells. Monolithic and mechanically stacked tandem solar cells surpassing single-junction cell efficiencies have been fabricated. This article surveys the current status of monolithic and mechanically stacked multibandgap space solar cells, and outlines problems yet to be resolved. The monolithic and mechanically stacked cells each have their own problems related to size, processing, current and voltage matching, weight, and other factors. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full-spectrum range simulators are also needed to measure efficiencies correctly. Cost issues are not addressed, since the two approaches are still in the developmental stage.

  4. Monolithic and mechanical multijunction space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1992-01-01

    High-efficiency, lightweight, radiation-resistant solar cells are essential to meet the large power requirements of future space missions. Single-junction cells are limited in efficiency. Higher cell efficiencies could be realized by developing multijunction, multibandgap solar cells. Monolithic and mechanically stacked tandem solar cells surpassing single-junction cell efficiencies have been fabricated. This article surveys the current status of monolithic and mechanically stacked multibandgap space solar cells, and outlines problems yet to be resolved. The monolithic and mechanically stacked cells each have their own problems related to size, processing, current and voltage matching, weight, and other factors. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full-spectrum range simulators are also needed to measure efficiencies correctly. Cost issues are not addressed, since the two approaches are still in the developmental stage.

  5. Method for processing silicon solar cells

    DOEpatents

    Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

    1997-05-06

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

  6. Method for processing silicon solar cells

    DOEpatents

    Tsuo, Y. Simon; Landry, Marc D.; Pitts, John R.

    1997-01-01

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

  7. Solar cell modules for plasma interaction evaluation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A plasma interaction analysis in support of the solar electric propulsion subsystem examined the effects of a large high voltage solar array interacting with an ion thruster produced plasma. Two solar array test modules consisting of 36 large area wraparound contact solar cells welded to a flexible Kapton integrated circuit substrate were abricated. The modules contained certain features of the effects of insulation, din-holes, and bonding of the cell to the substrate and a ground plane. The possibility of a significant power loss occurring due to the collection of charged particles on the solar array interconnects was the focus of the research.

  8. Operational experience from solar thermal energy projects

    SciTech Connect

    Cameron, C.P.

    1984-03-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  9. Operational Experience from Solar Thermal Energy Projects

    NASA Technical Reports Server (NTRS)

    Cameron, C. P.

    1984-01-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  10. Experiments on gravitational optics Solar Probe Project

    NASA Astrophysics Data System (ADS)

    Uspensky, G.

    Main features of the spacecraft "Solar Probe" project are treated. The project is designated for carrying out experiments on gravitational optics near the Sun by simultaneous transmittance of signals from the Earth and from the Probe and their subsequent receiving and processing onboard the Probe and on the Earth correspondingly. The signals propagation time delays' and wavelength' determination accuracies are estimated. It has been demonstrated, that these accuracies are better than delays values, predicted by existed theories of gravitation, by several orders of magnitude. The Probe missions scenarios are analyzed for flight of the Probe (with mass 230-300 kg) toward the Sun with the nearest approach of 15-30 solar radii and gravitational Venus flyby, using middle -class launchers of "Molniya"-type and heavy-lift launchers of "Proton"-class and electrical propulsion jets. The Probe design features are described, composition of scientific devices and service equipment is proposed.

  11. Solar power satellites - Heat engine or solar cells

    NASA Technical Reports Server (NTRS)

    Oman, H.; Gregory, D. L.

    1978-01-01

    A solar power satellite is the energy-converting element of a system that can deliver some 10 GW of power to utilities on the earth's surface. We evaluated heat engines and solar cells for converting sunshine to electric power at the satellite. A potassium Rankine cycle was the best of the heat engines, and 50 microns thick single-crystal silicon cells were the best of the photovoltaic converters. Neither solar cells nor heat engines had a clear advantage when all factors were considered. The potassium-turbine power plant, however, was more difficult to assemble and required a more expensive orbital assembly base. We therefore based our cost analyses on solar-cell energy conversion, concluding that satellite-generated power could be delivered to utilities for around 4 to 5 cents a kWh.

  12. Theoretical temperature dependence of solar cell parameters

    NASA Astrophysics Data System (ADS)

    Fan, John C. C.

    1986-05-01

    A simple formulation has been derived for the temperature dependence of cell parameters for any solar cell material. Detailed calculations have been performed for high-quality monocrystalline GaAs, Si and Ge cells. Preliminary experimental data for GaAs and Si cells are close to the calculated values. In general, the higher the energy gap of a material, the small is the temperature dependence of its solar cell parameters.

  13. Current and lattice matched tandem solar cell

    DOEpatents

    Olson, Jerry M. (Lakewood, CO)

    1987-01-01

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

  14. Plasmon Enhanced Hetero-Junction Solar Cell

    NASA Astrophysics Data System (ADS)

    Long, Gen; Ching, Levine; Sadoqi, Mostafa; Xu, Huizhong

    2015-03-01

    Here we report a systematic study of plasmon-enhanced hetero-junction solar cells made of colloidal quantum dots (PbS) and nanowires (ZnO), with/without metal nanoparticles (Au). The structure of solar cell devices was characterized by AFM, SEM and profilometer, etc. The power conversion efficiencies of solar cell devices were characterized by solar simulator (OAI TriSOL, AM1.5G Class AAA). The enhancement in the photocurrent due to introduction of metal nanoparticles was obvious. We believe this is due to the plasmonic effect from the metal nanoparticles. The correlation between surface roughness, film uniformity and device performance was also studied.

  15. Leveraging the Experimental Method to Inform Solar Cell Design

    ERIC Educational Resources Information Center

    Rose, Mary Annette; Ribblett, Jason W.; Hershberger, Heather Nicole

    2010-01-01

    In this article, the underlying logic of experimentation is exemplified within the context of a photoelectrical experiment for students taking a high school engineering, technology, or chemistry class. Students assume the role of photochemists as they plan, fabricate, and experiment with a solar cell made of copper and an aqueous solution of…

  16. Leveraging the Experimental Method to Inform Solar Cell Design

    ERIC Educational Resources Information Center

    Rose, Mary Annette; Ribblett, Jason W.; Hershberger, Heather Nicole

    2010-01-01

    In this article, the underlying logic of experimentation is exemplified within the context of a photoelectrical experiment for students taking a high school engineering, technology, or chemistry class. Students assume the role of photochemists as they plan, fabricate, and experiment with a solar cell made of copper and an aqueous solution of…

  17. Monolithic cells for solar fuels.

    PubMed

    Rongé, Jan; Bosserez, Tom; Martel, David; Nervi, Carlo; Boarino, Luca; Taulelle, Francis; Decher, Gero; Bordiga, Silvia; Martens, Johan A

    2014-12-01

    Hybrid energy generation models based on a variety of alternative energy supply technologies are considered the best way to cope with the depletion of fossil energy resources and to limit global warming. One of the currently missing technologies is the mimic of natural photosynthesis to convert carbon dioxide and water into chemical fuel using sunlight. This idea has been around for decades, but artificial photosynthesis of organic molecules is still far away from providing real-world solutions. The scientific challenge is to perform in an efficient way the multi-electron transfer reactions of water oxidation and carbon dioxide reduction using holes and single electrons generated in an illuminated semiconductor. In this tutorial review the design of photoelectrochemical (PEC) cells that combine solar water oxidation and CO2 reduction is discussed. In such PEC cells simultaneous transport and efficient use of light, electrons, protons and molecules has to be managed. It is explained how efficiency can be gained by compartmentalisation of the water oxidation and CO2 reduction processes by proton exchange membranes, and monolithic concepts of artificial leaves and solar membranes are presented. Besides transferring protons from the anode to the cathode compartment the membrane serves as a molecular barrier material to prevent cross-over of oxygen and fuel molecules. Innovative nano-organized multimaterials will be needed to realise practical artificial photosynthesis devices. This review provides an overview of synthesis techniques which could be used to realise monolithic multifunctional membrane-electrode assemblies, such as Layer-by-Layer (LbL) deposition, Atomic Layer Deposition (ALD), and porous silicon (porSi) engineering. Advances in modelling approaches, electrochemical techniques and in situ spectroscopies to characterise overall PEC cell performance are discussed. PMID:24526085

  18. Less-Costly Ion Implantation of Solar Cells

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.

    1984-01-01

    Experiments point way toward more relaxed controls over ion-implanation dosage and uniformity in solar-cell fabrication. Data indicate cell performance, measured by output current density at fixed voltage, virtually same whether implant is particular ion species or broad-beam mixture of several species.

  19. Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells.

    PubMed

    Lang, Felix; Gluba, Marc A; Albrecht, Steve; Rappich, Jörg; Korte, Lars; Rech, Bernd; Nickel, Norbert H

    2015-07-16

    Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with high electrical conductivity and optimal transparency. We address this challenge by implementing large-area graphene grown by chemical vapor deposition as a highly transparent electrode in perovskite solar cells, leading to identical charge collection efficiencies. Electrical performance of solar cells with a graphene-based contact reached those of solar cells with standard gold contacts. The optical transmission by far exceeds that of reference devices and amounts to 64.3% below the perovskite band gap. Finally, we demonstrate a four-terminal tandem device combining a high band gap graphene-contacted perovskite top solar cell (Eg = 1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg = 1.12 eV). PMID:26266857

  20. A numerical model for charge transport and energy conversion of perovskite solar cells.

    PubMed

    Zhou, Yecheng; Gray-Weale, Angus

    2016-02-01

    Based on the continuity equations and Poisson's equation, we developed a numerical model for perovskite solar cells. Due to different working mechanisms, the model for perovskite solar cells differs from that of silicon solar cells and Dye Sensitized Solar Cells. The output voltage and current are calculated differently, and in a manner suited in particular to perovskite organohalides. We report a test of our equations against experiment with good agreement. Using this numerical model, it was found that performances of solar cells increase with charge carrier's lifetimes, mobilities and diffusion lengths. The open circuit voltage (Voc) of a solar cell is dependent on light intensities, and charge carrier lifetimes. Diffusion length and light intensity determine the saturated current (Jsc). Additionally, three possible guidelines for the design and fabrication of perovskite solar cells are suggested by our calculations. Lastly, we argue that concentrator perovskite solar cells are promising. PMID:26791327

  1. Low-Reflectance Surfaces For Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.; Fatemi, Navid; Jenkins, Phillip P.

    1994-01-01

    Improved method for increasing solar cell efficiency has potential application for space-based and terrestrial solar power systems and optoelectronic devices. Etched low-angle grooves help recover reflected light. Light reflected from v-grooved surface trapped in cover glass and adhesive by total internal reflection. Reflected light redirected onto surface, and greater fraction of incident light absorbed, producing more electrical energy in InP solar photovoltaic cell.

  2. Si concentrator solar cell development. [Final report

    SciTech Connect

    Krut, D.D.

    1994-10-01

    This is the final report of a program to develop a commercial, high-efficiency, low-cost concentrator solar cell compatible with Spectrolab`s existing manufacturing infrastructure for space solar cells. The period covered is between 1991 and 1993. The program was funded through Sandia National Laboratories through the DOE concentrator initiative and, was also cost shared by Spectrolab. As a result of this program, Spectrolab implemented solar cells achieving an efficiency of over 19% at 200 to 300X concentration. The cells are compatible with DOE guidelines for a cell price necessary to achieve a cost of electricity of 12 cents a kilowatthour.

  3. Monolithic cascade-type solar cells

    NASA Technical Reports Server (NTRS)

    Yamamoto, S.; Shibukawa, A.; Yamaguchi, M.

    1985-01-01

    Solar cells consist of a semiconductor base, a bottom cell with a band-gap energy of E1, and a top cell with a band-gap energy of E2, and 0.96 E1 1.36 eV and (0.80 E + 0.77) eV E2 (0.80 E1 + 0.92) eV. A monolithic cascade-type solar cell was prepared with an n(+)-type GaAs base, a GaInAs bottom solar cell, and a GaAiInAs top solar cell. The surface of the cell is coated with a SiO antireflection film. The efficiency of the cell is 32%.

  4. Epitaxial silicon growth for solar cells

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Richman, D.

    1978-01-01

    Growth and fabrication procedures for the baseline solar cells are described along with measured cell parameters, and the results. Reproducibility of these results was established and the direction to be taken for higher efficiency is identified.

  5. Colloidal quantum dots in solar cells

    NASA Astrophysics Data System (ADS)

    Nikolenko, L. M.; Razumov, Vladimir F.

    2013-05-01

    Published data on the use of colloidal quantum dots in solar cells are analyzed and generalized. Various types of solar cells, their design and principles of operation are considered. The key factors influencing parameters of these devices are discussed. The bibliography includes 184 references.

  6. Thin solar cell and lightweight array

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr. (inventor); Weinberg, Irving (inventor)

    1991-01-01

    A thin, lightweight solar cell that utilizes front contact metallization is presented. Both the front light receiving surface of the solar cell and the facing surface of the cover glass are recessed to accommodate this metallization. This enables the two surfaces to meet flush for an optimum seal.

  7. Upconverter materials and upconversion solar-cell devices: simulation and characterization with broad solar spectrum illumination

    NASA Astrophysics Data System (ADS)

    Fischer, S.; Fröhlich, B.; Ivaturi, A.; Herter, B.; Wolf, S.; Krämer, K. W.; Richards, B. S.; Goldschmidt, J. C.

    2014-03-01

    Upconverter materials and upconverter solar devices were recently investigated with broad-band excitation revealing the great potential of upconversion to enhance the efficiency of solar cell at comparatively low solar concentration factors. In this work first attempts are made to simulate the behavior of the upconverter β-NaYF4 doped with Er3+ under broad-band excitation. An existing model was adapted to account for the lower absorption of broader excitation spectra. While the same trends as observed for the experiments were found in the simulation, the absolute values are fairly different. This makes an upconversion model that specifically considers the line shape function of the ground state absorption indispensable to achieve accurate simulations of upconverter materials and upconverter solar cell devices with broadband excitations, such as the solar radiation.

  8. A simplified solar cell array modelling program

    NASA Technical Reports Server (NTRS)

    Hughes, R. D.

    1982-01-01

    As part of the energy conversion/self sufficiency efforts of DSN engineering, it was necessary to have a simplified computer model of a solar photovoltaic (PV) system. This article describes the analysis and simplifications employed in the development of a PV cell array computer model. The analysis of the incident solar radiation, steady state cell temperature and the current-voltage characteristics of a cell array are discussed. A sample cell array was modelled and the results are presented.

  9. Fullerene surfactants and their use in polymer solar cells

    SciTech Connect

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  10. Nanowire-based All Oxide Solar Cells

    SciTech Connect

    Yang*, Benjamin D. Yuhas and Peidong; Yang, Peidong

    2008-12-07

    We present an all-oxide solar cell fabricated from vertically oriented zinc oxide nanowires and cuprous oxide nanoparticles. Our solar cell consists of vertically oriented n-type zinc oxide nanowires, surrounded by a film constructed from p-type cuprous oxide nanoparticles. Our solution-based synthesis of inexpensive and environmentally benign oxide materials in a solar cell would allow for the facile production of large-scale photovoltaic devices. We found that the solar cell performance is enhanced with the addition of an intermediate oxide insulating layer between the nanowires and the nanoparticles. This observation of the important dependence of the shunt resistance on the photovoltaic performance is widely applicable to any nanowire solar cell constructed with the nanowire array in direct contact with one electrode.

  11. Epitaxial silicon growth for solar cells

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Richman, D.

    1979-01-01

    The epitaxial procedures, solar cell fabrication, and evaluation techniques are described. The development of baseline epitaxial solar cell structures grown on high quality conventional silicon substrates is discussed. Diagnostic layers and solar cells grown on four potentially low cost silicon substrates are considered. The crystallographic properties of such layers and the performance of epitaxially grown solar cells fabricated on these materials are described. An advanced epitaxial reactor, the rotary disc, is described along with the results of growing solar cell structures of the baseline type on low cost substrates. The add on cost for the epitaxial process is assessed and the economic advantages of the epitaxial process as they relate to silicon substrate selection are examined.

  12. Silicon film solar cell process

    NASA Technical Reports Server (NTRS)

    Hall, R. B.; Mcneely, J. B.; Barnett, A. M.

    1984-01-01

    The most promising way to reduce the cost of silicon in solar cells while still maintaining performance is to utilize thin films (10 to 20 microns thick) of crystalline silicon. The method of solution growth is being employed to grow thin polycrystalline films of silicon on dissimilar substrates. The initial results indicate that, using tin as the solvent, this growth process only requires operating temperatures in the range of 800 C to 1000 C. Growth rates in the range of 0.4 to 2.0 microns per minute and grain sizes in the range of 20 to 100 microns were achieved on both quartz and coated steel substrates. Typically, an aspect ratio of two to three between the width and the Si grain thickness is seen. Uniform coverage of Si growth on quartz over a 2.5 x 2.5 cm area was observed.

  13. High-Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The vast majority of satellites and near-earth probes developed to date have relied upon photovoltaic power generation. If future missions to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. For example, the equilibrium temperature of a Mercury surface station will be about 450 C, and the temperature of solar arrays on the proposed "Solar Probe" mission will extend to temperatures as high as 2000 C (although it is likely that the craft will operate on stored power rather than solar energy during the closest approach to the sun). Advanced thermal design principles, such as replacing some of the solar array area with reflectors, off-pointing, and designing the cells to reflect rather than absorb light out of the band of peak response, can reduce these operating temperature somewhat. Nevertheless, it is desirable to develop approaches to high-temperature solar cell design that can operate under temperature extremes far greater than today's cells. Solar cells made from wide bandgap (WBG) compound semiconductors are an obvious choice for such an application. In order to aid in the experimental development of such solar cells, we have initiated a program studying the theoretical and experimental photovoltaic performance of wide bandgap materials. In particular, we have been investigating the use of GaP, SiC, and GaN materials for space solar cells. We will present theoretical results on the limitations on current cell technologies and the photovoltaic performance of these wide-bandgap solar cells in a variety of space conditions. We will also give an overview of some of NASA's cell developmental efforts in this area and discuss possible future mission applications.

  14. Report on the Brookhaven Solar Neutrino Experiment

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Evans, J. C. Jr.

    1976-09-22

    This report is intended as a brief statement of the recent developments and results of the Brookhaven Solar Neutrino Experiment communicated through Professor G. Kocharov to the Leningrad conference on active processes on the sun and the solar neutrino problem. The report summarizes the results of experiments performed over a period of 6 years, from April 1970 to January 1976. Neutrino detection depends upon the neutrino capture reaction /sup 37/Cl(..nu..,e/sup -/)/sup 37/Ar producing the isotope /sup 37/Ar (half life of 35 days). The detector contains 3.8 x 10/sup 5/ liters of C/sub 2/Cl/sub 4/ (2.2 x 10/sup 30/ atoms of /sup 37/Cl) and is located at a depth of 4400 meters of water equivalent (m.w.e.) in the Homestake Gold Mine at Lead, South Dakota, U.S.A. The procedures for extracting /sup 37/Ar and the counting techniques used were described in previous reports. The entire recovered argon sample was counted in a small gas proportional counter. Argon-37 decay events were characterized by the energy of the Auger electrons emitted following the electron capture decay and by the rise-time of the pulse. Counting measurements were continued for a period sufficiently long to observe the decay of /sup 37/Ar.

  15. Radiochemical Solar Neutrino Experiments - Successful and Otherwise.

    SciTech Connect

    Hahn,R.L.

    2008-05-25

    Over the years, several different radiochemical systems have been proposed as solar neutrino detectors. Of these, two achieved operating status and obtained important results that helped to define the current field of neutrino physics: the first solar-neutrino experiment, the Chlorine Detector ({sup 37}Cl) that was developed by chemist Raymond Davis and colleagues at the Homestake Mine, and the subsequent Gallium ({sup 71}Ga) Detectors that were operated by (a) the SAGE collaboration at the Baksan Laboratory and (b) the GALLEX/GNO collaborations at the Gran Sasso National Laboratory. These experiments have been extensively discussed in the literature and in many previous International Neutrino Conferences. In this paper, I present important updates to the results from SAGE and GALLEX/GNO. I also review the principles of the radiochemical detectors and briefly describe several different detectors that have been proposed. In light of the well-known successes that have been subsequently obtained by real-time neutrino detectors such as Kamiokande, Super-Kamiokande, SNO, and KamLAND, I do not anticipate that any new radiochemical neutrino detectors will be built. At present, only SAGE is still operating; the Chlorine and GNO radiochemical detectors have been decommissioned and dismantled.

  16. Orbiting solar observatory 8 high resolution ultraviolet spectrometer experiment

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Oscillations, physical properties of the solar atmosphere, motions in the quiet solar atmosphere, coronal holes, motions in solar active regions, solar flares, the structure of plage regions, an atlas, and aeronomy are summarized. Photometric sensitivity, scattered light, ghosts, focus and spectral resolution, wavelength drive, photometric sensitivity, and scattered light, are also summarized. Experiments are described according to spacecraft made and experiment type. Some of the most useful data reduction programs are described.

  17. Planar multijunction high voltage solar cells

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Chai, A. T.; Goradia, C.

    1980-01-01

    Technical considerations, preliminary results, and fabrication details are discussed for a family of high-voltage planar multi-junction (PMJ) solar cells which combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators.

  18. Laser-assisted solar cell metallization processing

    NASA Astrophysics Data System (ADS)

    Dutta, S.; Palaschak, P. A.

    1984-10-01

    Laser assisted processing techniques for producing high quality solar cell metallization patterns were developed and characterized. A comprehensive literature search initially yielded information on state of the art laser assisted techniques for metal deposition such as laser chemical vapor deposition and laser photolysis of organometallics, as well as laser enhanced electroplating. A compact system for the laser assisted photolysis of gas phase compounds was designed and constructed. Initial experiments on laser enhanced electroplating yielded very promising results with linewidths as narrow as 25 micro m and local plating speeds as high as 12 micro m/s being achieved. Metal deposition experiments werre carried out utilizing laser assisted pyrolysis of a variety of metal bearing polymer films and metallo-organic inks spun onto silicon substrates.

  19. Silicon solar cell efficiency: Practice and promise

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1972-01-01

    The maximum efficiency of silicon solar cells was calculated and yielded a value near 18%. Additionally, the performance of these high efficiency cells in a synchronous orbit radiation field was calculated and it is suggested that these cells would be superior to present silicon cells. The performance of conventional cells was analyzed and several areas in which performance gains may be achieved are discussed. These areas include improvements in diffused region profile, in reduction of excess forward currents in cells made from low resistivity material, and in the theory for describing complex solar cell structures.

  20. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  1. Research on crystalline silicon solar cells

    SciTech Connect

    Milstein, J.B.; Tsuo, Y.S.

    1984-06-01

    Since the 16th IEEE Photovoltaic Specialists Conference, the focus of the Crystalline Silicon Solar Cell Task at the Solar Energy Research Institute (SERI) has narrowed somewhat. Responsibility for silicon material preparation and ribbon growth were consolidated at the Jet Propulsion Laboratory (JPL) at the end of FY 1983. Five subcontracts were awarded under RFP No. RB-2-02090, Research on Basic Understanding of High Efficiency in Silicon Solar Cells. JPL and Oak Ridge National Laboratory are also working on high-efficiency solar cell research under SERI subcontract. Reports of past solar cell improvements have prompted appreciable interest in the physical, chemical, and electrical transport properties of grain boundaries and other electrically active defects. Studies to achieve better understanding of the hydrogen passivation process are being conducted at various subcontractors, and our in-house research continues. This paper presents the results of these efforts as well as future directions.

  2. Semiconductor quantum dot-sensitized solar cells

    PubMed Central

    Tian, Jianjun; Cao, Guozhong

    2013-01-01

    Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future. PMID:24191178

  3. Dye-sensitized Solar Cells for Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Roy, M. S.; Deol, Y. S.; Kumar, Manish; Prasad, Narottam; Janu, Yojana

    2011-10-01

    Dye-sensitized solar cells (DSSCs) also known as Gratzel cells, have attracted the interests of researchers to a great extent because of its cost effective and easy manufacturing process without involving highly sophisticated lithographic technique and high cost raw materials as usually seen in conventional solar cell. Based on simple photo-electrochemical process, it has got immense potential in converting solar energy to electrical power in remote and desert area where the supply of conventional power is not possible. The overall peak power-production efficiency of dye-sensitized solar cells has been reported around 11 percent, so they are best suited to low-density applications and the price-to-performance ratio obtained through these solar cells is superior to others. DSSCs have ability to absorb even diffused sunlight and therefore work in cloudy whether as well without much impact over the efficiency. The present communication deals with a review of our work on DSSCs wherein we have used cost effective natural dyes/pigments as a sensitizer of nc-TiO2 and discussed about various key factors affecting the conversion efficiency of DSSC.

  4. Development of gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The potential of ion implantation as a means of developing gallium arsenide solar cells with high efficiency performance was investigated. Computer calculations on gallium arsenide cell characteristics are presented to show the effects of surface recombination, junction space-charge recombination, and built-in fields produced by nonuniform doping of the surface region. The fabrication technology is summarized. Electrical and optical measurements on samples of solar cells are included.

  5. Orienting and Applying Flux to Solar Cells

    NASA Technical Reports Server (NTRS)

    Feder, H.; Frasch, W.

    1982-01-01

    Solar cells are oriented and fluxed automatically at first work station along solar-array assembly line. In under 2 seconds rotary drive rotates cell into proper position for applying solder flux to bus pad on collector side. When contact bus pad is in correct position, capstan drive is disengaged, and vacuum holddown beneath cell is turned on. Flux system lowers and applies preset amount of solder flux to bus pad. Two interconnect tabs are soldered to fluxed areas.

  6. Organic Tandem Solar Cells: Design and Formation

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chao

    In the past decade, research on organic solar cells has gone through an important development stage leading to major enhancements in power conversion efficiency, from 4% to 9% in single-junction devices. During this period, there are many novel processing techniques and device designs that have been proposed and adapted in organic solar-cell devices. One well-known device architecture that helps maximize the solar cell efficiency is the multi-junction tandem solar-cell design. Given this design, multiple photoactive absorbers as subcells are stacked in a monolithic fashion and assembled via series connection into one complete device, known as the tandem solar cell. Since multiple absorbers with different optical energy bandgaps are being applied in one tandem solar-cell device, the corresponding solar cell efficiency is maximized through expanded absorption spectrum and reduced carrier thermalization loss. In Chapter 3, the architecture of solution-processible, visibly transparent solar cells is introduced. Unlike conventional organic solar-cell devices with opaque electrodes (such as silver, aluminum, gold and etc.), the semi-transparent solar cells rely on highly transparent electrodes and visibly transparent photoactive absorbers. Given these two criteria, we first demonstrated the visibly transparent single-junction solar cells via the polymer absorber with near-infrared absorption and the top electrode based on solution-processible silver nanowire conductor. The highest visible transparency (400 Ëś 700 nm) of 65% was achieved for the complete device structure. More importantly, power conversion efficiency of 4% was also demonstrated. In Chapter 4, we stacked two semi-transparent photoactive absorbers in the tandem architecture in order to realize the semi-transparent tandem solar cells. A noticeable performance improvement from 4% to 7% was observed. More importantly, we modified the interconnecting layers with the incorporation of a thin conjugated polyelectrolyte layer functioning as the surface dipole formation layer to provide better electrical contact with the photoactive layer. Due to the effectiveness of the conjugated polyelectrolyte layer, performance improvement was also observed. Furthermore, other issues regarding the semi-transparent tandem solar cells (e.g., photocurrent matching, exterior color tuning, and transparency tuning) are all explored to optimize best performance. In Chapter 5 and 6, the architectures of double- and triple-junction tandem solar cells are explored. Theoretically, triple-junction tandem solar cells with three photoactive absorbers with cascaded energy bandgaps have the potential to achieve higher performance, in comparison with double-junction tandem solar cells. Such expectations can be ascribed to the minimized carrier thermalization loss and further improved light absorption. However, the design of triple-junction solar cells often involves sophisticated multiple layer deposition as well as substantial optimization. Therefore, there is a lack of successful demonstrations of triple-junction solar cells outperforming the double-junction counterparts. To solve the incompatible issues related to the layer deposition in the fabrication, we proposed a novel architecture of inverted-structure tandem solar cells with newly designed interconnecting layers. Our design of interconnecting layers does not only focus on maintaining the orthogonal solution processing advantages, but also provides an excellent compatibility in the energy level alignment to allow different absorber materials to be used. Furthermore, we also explored the light management inside the double- and triple-junction tandem solar cells. The study of light management was carried out through optical simulation method based transfer matrix formalism. The intention is to obtain a balanced photocurrent output from each subcells inside the tandem solar cell, thus the minimal recombination loss at the contact of interconnecting layers and the optimal efficiency can be expected. With help from simulations, we were able to calibrate the thickness of each photoactive layer as well as the thickness of interconnecting layers to achieve the optimized processing conditions. With the highest power conversion efficiency, 11.5%, triple-junction tandem solar cells outperform the double-junction tandem solar cells at 10.5%. In summary, this dissertation has provided practical solutions to the current demand of high-performance and easily manufactured organic solar cells from the solar cell industry. Particularly, triple-junction tandem solar cells with efficiencies over 11% should have great potential to contribute to high-efficiency solar-cell applications, whereas semi-transparent tandem solar cells with efficiency at 7% should be applicable to building-integrated applications.

  7. Calibration for the Borexino Solar Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Back, Henning O.; Vogelaar, R. Bruce; Gehman, Victor M.

    2000-10-01

    Borexino is a solar neutrino experiment at the Laboratori Nazionali del Gran Sasso in Italy designed to detect the mono-energetic 0.86 MeV ^7Be solar neutrino flux. Since electron - neutrino scattering does not have a unique signal; naturally occurring radioactivity becomes a significant part of the background, making calibration vital. Virginia Tech is primarily responsible for the insertion of both long- and short-lived radioactive sources into the inner vessel (the internal source) and the outer buffer (the external source) for calibration. The inner vessel (IV) is an 8.5-meter dia. nylon sphere concentric to a 13.7-meter dia. stainless steel sphere. Separating the two is the buffer region. The purpose for these sources is to: a) define a fiducial detection volume inside the IV, b) energy and time response of the detector, and c) study the alpha/beta separation efficiency as a function of energy and position. This talk will discuss design and status of the insertion systems, the positioning system for the internal source, and status of source choices and preparation.

  8. Development and fabrication of a solar cell junction processing system

    NASA Technical Reports Server (NTRS)

    Bunker, S.

    1981-01-01

    A solar cell junction processing system was developed and fabricated. A pulsed electron beam for the four inch wafers is being assembled and tested, wafers were successfully pulsed, and solar cells fabricated. Assembly of the transport locks is completed. The transport was operated successfully but not with sufficient reproducibility. An experiment test facility to examine potential scaleup problems associated with the proposed ion implanter design was constructed and operated. Cells were implanted and found to have efficiency identical to the normal Spire implant process.

  9. Solar cells based on gallium antimonide

    SciTech Connect

    Andreev, V. M.; Sorokina, S. V.; Timoshina, N. Kh.; Khvostikov, V. P. Shvarts, M. Z.

    2009-05-15

    Liquid-phase epitaxy and diffusion from the gas phase have been used to create various kinds of GaSb-based solar cell structures intended for use in cascaded solar-radiation converters. A narrow-gap (GaSb) solar cell was studied in tandem based on a combination of semiconductors GaAs-GaSb (two p-n junctions) and GaInP/GaAs-GaSb (three p-n junctions). The maximum efficiency of photovoltaic conversion in GaSb behind the wide-gap cells is {eta} = 6.5% (at sunlight concentration ratio of 275X, AM1.5D Low AOD spectrum)

  10. Bypass diode for a solar cell

    DOEpatents

    Rim, Seung Bum; Kim, Taeseok; Smith, David D; Cousins, Peter J

    2013-11-12

    Methods of fabricating bypass diodes for solar cells are described. In once embodiment, a method includes forming a first conductive region of a first conductivity type above a substrate of a solar cell. A second conductive region of a second conductivity type is formed on the first conductive region. In another embodiment, a method includes forming a first conductive region of a first conductivity type above a substrate of a solar cell. A second conductive region of a second conductivity type is formed within, and surrounded by, an uppermost portion of the first conductive region but is not formed in a lowermost portion of the first conductive region.

  11. Solar cell with silicon oxynitride dielectric layer

    DOEpatents

    Shepherd, Michael; Smith, David D

    2015-04-28

    Solar cells with silicon oxynitride dielectric layers and methods of forming silicon oxynitride dielectric layers for solar cell fabrication are described. For example, an emitter region of a solar cell includes a portion of a substrate having a back surface opposite a light receiving surface. A silicon oxynitride (SiO.sub.xN.sub.y, 0

  12. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1994-05-31

    A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

  13. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

    1994-01-01

    A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

  14. Solar Cell Production using UMG Silicon

    SciTech Connect

    Hovel, Harold; Prettyman, Kevin

    2009-09-21

    Materials studies and solar cells made from various blends of UMG Si are compared with reference solar (PV) grade in terms of efficiencies, voltages, currents, diffusion lengths, minority carrier lifetimes and compositions. The UMG material used in this study performed unexpectedly well when used in cells manufactured both in a lab environment and on a commercial PV line. The limited number of cells of each composition does not support a full statistical analysis. However in comparing solar efficiencies, it is clear that a relatively minor delta exists between UMG blends and the particular PV grade material used in this study. That delta is between zero and 0.5 percentage points.

  15. Thermodynamic efficiency limit of excitonic solar cells

    SciTech Connect

    Giebink, Noel C.; Wiederrecht, Gary P.; Wasielewski, Michael R.; Forrest, Stephen R.

    2011-01-01

    Excitonic solar cells, comprised of materials such as organic semiconductors, inorganic colloidal quantum dots, and carbon nanotubes, are fundamentally different than crystalline, inorganic solar cells in that photogeneration of free charge occurs through intermediate, bound exciton states. Here, we show that the Second Law of Thermodynamics limits the maximum efficiency of excitonic solar cells below the maximum of 31% established by Shockley and Queisser [J. Appl. Phys. 32, 510 (1961)] for inorganic solar cells (whose exciton-binding energy is small). In the case of ideal heterojunction excitonic cells, the free energy for charge transfer at the interface, ?G, places an additional constraint on the limiting efficiency due to a fundamental increase in the recombination rate, with typical -?G in the range 0.3 to 0.5 eV decreasing the maximum efficiency to 27% and 22%, respectively.

  16. Polymer-fullerene composite solar cells.

    PubMed

    Thompson, Barry C; Fréchet, Jean M J

    2008-01-01

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Polymer-based organic photovoltaic systems hold the promise for a cost-effective, lightweight solar energy conversion platform, which could benefit from simple solution processing of the active layer. The function of such excitonic solar cells is based on photoinduced electron transfer from a donor to an acceptor. Fullerenes have become the ubiquitous acceptors because of their high electron affinity and ability to transport charge effectively. The most effective solar cells have been made from bicontinuous polymer-fullerene composites, or so-called bulk heterojunctions. The best solar cells currently achieve an efficiency of about 5%, thus significant advances in the fundamental understanding of the complex interplay between the active layer morphology and electronic properties are required if this technology is to find viable application. PMID:18041798

  17. Assembly and characterization of quantum-dot solar cells

    NASA Astrophysics Data System (ADS)

    Leschkies, Kurtis Siegfried

    Environmentally clean renewable energy resources such as solar energy have gained significant attention due to a continual increase in worldwide energy demand. A variety of technologies have been developed to harness solar energy. For example, photovoltaic (or solar) cells based on silicon wafers can convert solar energy directly into electricity with high efficiency, however they are expensive to manufacture, and thus unattractive for widespread use. As the need for low-cost, solar-derived energy becomes more dire, strategies are underway to identify materials and photovoltaic device architectures that are inexpensive yet efficient compared to traditional silicon solar cells. Nanotechnology enables novel approaches to solar-to-electric energy conversion that may provide both high efficiencies and simpler manufacturing methods. For example, nanometer-size semiconductor crystallites, or semiconductor quantum dots (QDs), can be used as photoactive materials in solar cells to potentially achieve a maximum theoretical power conversion efficiency which exceeds that of current mainstay solar technology at a much lower cost. However, the novel concepts of quantum dot solar cells and their energy conversion designs are still very much in their infancy, as a general understanding of their assembly and operation is limited. This thesis introduces various innovative and novel solar cell architectures based on semiconductor QDs and provides a fundamental understanding of the operating principles that govern the performance of these solar cells. Such effort may lead to the advancement of current nanotechnology-based solar power technologies and perhaps new initiatives in nextgeneration solar energy conversion devices. We assemble QD-based solar cells by depositing photoactive QDs directly onto thin ZnO films or ZnO nanowires. In one scheme, we combine CdSe QDs and single-crystal ZnO nanowires to demonstrate a new type of quantum-dot-sensitized solar cell (QDSSC). An array of ZnO nanowires was grown vertically from a fluorine-doped-tin-oxide conducting substrate and decorated with an ensemble of CdSe QDs, capped with mercaptopropionic acid. When illuminated with visible light, the CdSe QDs absorb photons and inject electrons into the ZnO nanowires. The morphology of the nanowires then provided these photoinjected electrons with a direct and efficient electrical pathway to the photoanode. When using a liquid electrolyte as the hole transport medium, our quantum-dot-sensitized nanowire solar cells exhibited short-circuit current densities up to 2.1 mA/cm 2 and open-circuit voltages between 0.6--0.65 V when illuminated with 100 mW/cm2 of simulated AM1.5 light. Our QDSSCs also demonstrated internal quantum efficiencies as high as 50--60%, comparable to those reported for dye-sensitized solar cells made using similar nanowires. We found that the overall power conversion efficiency of these QDSSCs is largely limited by the surface area of the nanowires available for QD adsorption. Unfortunately, the QDs used to make these devices corrode in the presence of the liquid electrolyte and QDSSC performance degrades after several hours. Consequently, further improvements on the efficiency and stability of these QDSSCs required development of an optimal hole transport medium and a transition away from the liquid electrolyte. Towards improving the reliability of semiconductor QDs in solar cells, we developed a new type of all-solid-based solar cell based on heterojunctions between PbSe QDs and thin ZnO films. We found that the photovoltage obtained in these devices depends on QD size and increases linearly with the QD effective bandgap energy. Thus, these solar cells resemble traditional photovoltaic devices based on a semiconductor--semiconductor heterojunction but with the important difference that the bandgap energy of one of the semiconductors, and consequently the cell's photovoltage, can be varied by changing the size of the QDs. Under simulated 100 mW/cm2 AM1.5 illumination, these QD-based solar cells exhibit short-circuit current densities as high as 15 mA/cm2 and open-circuit voltages up to 0.45 V, larger than that achieved with solar cells based on junctions between PbSe QDs and metal films. Moreover, we found that incident-photon-to-current-conversion efficiency in these solar cells can be increased by replacing the ZnO films with a vertically-oriented array of single crystal ZnO nanowires, separated by distances comparable to the exciton diffusion length, and infiltrating this array with colloidal PbSe QDs. In this scheme, photogenerated excitons can encounter a donor--acceptor junction before they recombine. Thus, we were able to construct solar cells with thick QD absorber layers that were still capable of efficiently extracting charge despite short exciton or charge carrier diffusion lengths. When illuminated with the AM1.5 spectrum, these nanowire-based quantum-dot solar cells exhibited power conversion efficiencies approaching 2%, approximately three times higher than that achieved with thin film ZnO devices constructed with the same amount of QDs. Supporting experiments using field-effect transistors made from the PbSe QDs as well as the sensitivity of these transistors to nitrogen and oxygen gas show that the solar cells described above are unlikely to be operating like traditional p--n heterojunction solar cells. All data, including significant improvements in both photocurrent and power conversion efficiency with increasing nanowire length, suggest that these photovoltaic devices operate as excitonic solar cells.

  18. Cascade solar cell having conductive interconnects

    DOEpatents

    Borden, Peter G.; Saxena, Ram R.

    1982-10-26

    Direct ohmic contact between the cells in an epitaxially grown cascade solar cell is obtained by means of conductive interconnects formed through grooves etched intermittently in the upper cell. The base of the upper cell is directly connected by the conductive interconnects to the emitter of the bottom cell. The conductive interconnects preferably terminate on a ledge formed in the base of the upper cell.

  19. Apollony photonic sponge based photoelectrochemical solar cells.

    PubMed

    Ramiro-Manzano, Fernando; Atienzar, Pedro; Rodriguez, Isabelle; Meseguer, Francisco; Garcia, Hermenegildo; Corma, Avelino

    2007-01-21

    We have developed a quasi-fractal colloidal crystal to localize efficiently photons in a very broad optical spectral range; it has been applied to prepare dye sensitized photoelectrochemical solar (PES) cells able to harvest very efficiently photons from the ultraviolet (UV) and the visible (VIS) regions of the solar spectrum. PMID:17299626

  20. Annular Electrode Improves Solar-Cell Welds

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.; Forestieri, A. F.; Frey, W. E.

    1982-01-01

    Improved method of electrical-resistance welding of solar-cell inter-connections developed by using an annular welding-electrode shape. Improved weld electrode consists of two coaxial cylinders, outer one with annular cross section and inner one with circular cross section. Possible annular weld-electrode configurations result in better quality welds for interconnecting solar-array elements.

  1. Coupling of Luminescent Solar Concentrators to Plasmonic Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Yi

    To make inexpensive solar cells is a continuous goal for solar photovoltaic (PV) energy industry. Thin film solar cells of various materials have been developed and continue to emerge in order to replace bulk silicon solar cells. A thin film solar cell not only uses less material but also requires a less expensive refinery process. In addition, other advantages coming along with small thickness are higher open circuit voltage and higher conversion efficiency. However, thin film solar cells, especially those made of silicon, have significant optical losses. In order to address this problem, this thesis investigates the spectral coupling of thin films PV to luminescent solar concentrators (LSC). LSC are passive devices, consisting of plastic sheets embedded with fluorescent dyes which absorb part of the incoming radiation spectrum and emit at specific wavelength. The emitted light is concentrated by total internal reflection to the edge of the sheet, where the PVs are placed. Since the light emitted from the LSC edge is usually in a narrow spectral range, it is possible to employ diverse strategies to enhance PV absorption at the peak of the emission wavelength. Employing plasmonic nanostructures has been shown to enhance absorption of thin films via forward scattering, diffraction and localized surface plasmon. These two strategies are theoretically investigated here for improving the absorption and elevating the output power of a thin film solar cell. First, the idea of spectral coupling of luminescent solar concentrators to plasmonic solar cells is introduced to assess its potential for increasing the power output. This study is carried out employing P3HT/PC60BM organic solar cells and LSC with Lumogen Red dyes. A simplified spectral coupling analysis is employed to predict the power density, considering the output spectrum of the LSC equivalent to the emission spectrum of the dye and neglecting any angular dependence. Plasmonic tuning is conducted to enhance absorption at the emission peak of the dye. A factorial increase in the output power density of coupled PV as compared to PV exposed directly to solar spectrum is observed for high light concentration on the edge. These initial results motivated a more in-depth study of coupled LSC-PV system, which took into account the radiative transport inside the realistic LSC. These investigations were carried out on LSCs using Lumogen Red305 and Rhodamine 6G dyes coupled to pristine and plasmonic ultra-thin film silicon solar cells. Prediction based on detailed balance shows that the coupled LSC-plasmonic solar cell can generate 63.7 mW/cm2 with a photocurrent density of 71.3 mA/cm2 which is higher than that of cSi solar cells available on current market. The second part of the thesis focuses on PV absorption enhancement techniques. First, the effect of vertical positioning of plasmonic nanostructures on absorption enhancement was theoretically investigated to understand which one of the three mechanisms usually responsible for the enhancement (forward scattering, diffraction and localized surface plamson) plays the dominant role. Simulation results suggested that the maximum enhancement occurred when placing the nanostructures in the rear side of the cell because of longer path length due to scattering. The experimental effort then switched focus on substrate patterning, which is a less expensive alternative to plasmonic absorption enhancement. Specifically, a nanostructured substrate was prepared by a simple electrochemical process based on two-step aluminum anodization technique. The absorption of thin film silicon deposited on these substrates showed a broadband enhancement. The overall photocurrent density was up to 40% higher than that of films deposited on flat substrates. In conclusion, the studies carried out in this thesis indicate that spectral coupling of LSCs to thin film solar cells could lead to significant improvements in PV output power density. Moreover, while the absorption of thin film solar cells can be enhanced by plasmonic nanostructures, it is shown that alternative methods, such as direct deposition of the films on inexpensively nanostructured substrates could also be employed to obtain significant enhancements. Combining these strategies may lead to inexpensive solar power harvesting systems with significant economic benefits. These strategies are not material-specific but applicable to a wide range of thin film solar cells.

  2. Indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  3. Simultaneous reception of solar power and visible light communication using a solar cell

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Man; Won, Ji-San; Nahm, Seung-Hoon

    2014-04-01

    Solar cells are widely used in various applications. However, they are only used to harvest solar power. We propose and demonstrate a technique to use a solar cell as a simultaneous receiver of solar power and visible light communication (VLC) signals. First, we investigate the optic-to-electric conversion efficiency and the frequency response of a solar cell. Then, we demonstrate that a solar cell receiver can receive both solar power and VLC signals simultaneously. We also investigate the effect of solar power interference on the VLC performance. The results show that the VLC operation is successful even when the solar power is the maximum.

  4. Dye-sensitized solar cells

    DOEpatents

    Skotheim, Terje A. [Berkeley, CA

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  5. Dye-sensitized solar cells

    DOEpatents

    Skotheim, T.A.

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

  6. Double-walled carbon nanotube solar cells.

    PubMed

    Wei, Jinquan; Jia, Yi; Shu, Qinke; Gu, Zhiyi; Wang, Kunlin; Zhuang, Daming; Zhang, Gong; Wang, Zhicheng; Luo, Jianbin; Cao, Anyuan; Wu, Dehai

    2007-08-01

    We directly configured double-walled carbon nanotubes as energy conversion materials to fabricate thin-film solar cells, with nanotubes serving as both photogeneration sites and a charge carriers collecting/transport layer. The solar cells consist of a semitransparent thin film of nanotubes conformally coated on a n-type crystalline silicon substrate to create high-density p-n heterojunctions between nanotubes and n-Si to favor charge separation and extract electrons (through n-Si) and holes (through nanotubes). Initial tests have shown a power conversion efficiency of >1%, proving that DWNTs-on-Si is a potentially suitable configuration for making solar cells. Our devices are distinct from previously reported organic solar cells based on blends of polymers and nanomaterials, where conjugate polymers generate excitons and nanotubes only serve as a transport path. PMID:17608444

  7. Solar Cell Efficiency Tables (Version 28)

    SciTech Connect

    Green, M. A.; Emery, K.; King, D. L.; Hisikawa, Y.; Warta, W.

    2006-01-01

    Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since January, 2006 are reviewed.

  8. Solar Cell Efficiency Tables (Version 39)

    SciTech Connect

    Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D.

    2012-01-01

    Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since July 2011 are reviewed.

  9. Solar Cell Efficiency Tables (Version 34)

    SciTech Connect

    Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.

    2009-01-01

    Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since January, 2009 are reviewed.

  10. Advanced Silicon Space Solar Cells Using Nanotechnology

    SciTech Connect

    Gee, J.M.; Ruby, D.S.; Zaidi, S.H.

    1999-03-31

    Application of nanotechnology and advanced optical structures offer new possibilities for improved radiation tolerance in silicon solar cells. We describe the application of subwavelength diffractive structures to enhance optical absorption near the surface, and thereby improve the radiation tolerance.

  11. Perovskite solar cells: Continuing to soar

    NASA Astrophysics Data System (ADS)

    McGehee, Michael D.

    2014-09-01

    The dream of printing highly efficient solar cells is closer than ever to being realized. Solvent engineering has enabled the deposition of uniform perovskite semiconductor films that yield greater than 15% power-conversion efficiency.

  12. Solar cell array design handbook, volume 1

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1976-01-01

    Twelve chapters discuss the following: historical developments, the environment and its effects, solar cells, solar cell filters and covers, solar cell and other electrical interconnections, blocking and shunt diodes, substrates and deployment mechanisms, material properties, design synthesis and optimization, design analysis, procurement, production and cost aspects, evaluation and test, orbital performance, and illustrative design examples. A comprehensive index permits rapid locating of desired topics. The handbook consists of two volumes: Volume 1 is of an expository nature while Volume 2 contains detailed design data in an appendix-like fashion. Volume 2 includes solar cell performance data, applicable unit conversion factors and physical constants, and mechanical, electrical, thermal optical, magnetic, and outgassing material properties. Extensive references are provided.

  13. Toxicity of organometal halide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Babayigit, Aslihan; Ethirajan, Anitha; Muller, Marc; Conings, Bert

    2016-03-01

    In the last few years, the advent of metal halide perovskite solar cells has revolutionized the prospects of next-generation photovoltaics. As this technology is maturing at an exceptional rate, research on its environmental impact is becoming increasingly relevant.

  14. Colloidal Nanoparticles for Intermediate Band Solar Cells.

    PubMed

    Vörös, Márton; Galli, Giulia; Zimanyi, Gergely T

    2015-07-28

    The Intermediate Band (IB) solar cell concept is a promising idea to transcend the Shockley-Queisser limit. Using the results of first-principles calculations, we propose that colloidal nanoparticles (CNPs) are a viable and efficient platform for the implementation of the IB solar cell concept. We focused on CdSe CNPs and we showed that intragap states present in the isolated CNPs with reconstructed surfaces combine to form an IB in arrays of CNPs, which is well separated from the valence and conduction band edges. We demonstrated that optical transitions to and from the IB are active. We also showed that the IB can be electron doped in a solution, e.g., by decamethylcobaltocene, thus activating an IB-induced absorption process. Our results, together with the recent report of a nearly 10% efficient CNP solar cell, indicate that colloidal nanoparticle intermediate band solar cells are a promising platform to overcome the Shockley-Queisser limit. PMID:26042468

  15. Solar Cells: Slicing and Dicing Photons

    SciTech Connect

    Ellingson, R.

    2008-02-01

    Solar cells take advantage of our most abundant source of energy, the Sun. A technique that improves the conversion of photons to electrons could potentially lead to a dramatic improvement in device efficiency.

  16. Contact formation in gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar cell contact materials, are known to react readily with gallium arsenide. Experiments were performed to identify the mechanisms involved in these GaAs-metal interactions. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are explained by invoking this mechanism.

  17. Planar multijunction high voltage solar cell chip

    SciTech Connect

    Valco, G.J.; Kapoor, V.J.; Evans, J.C. Jr.

    1982-11-01

    Integrated circuit technology has been successfully developed to design and fabricate a new type of small area planar multijunction high voltage solar cell chip for concentrated sunlight applications. Each of these 1 x 1 cm solar cell chips was a monolithic device consisting of six internally series interconnected unit cells, fabricated on 75 ..mu..m thick p-type single crystal silicon substrate. Each chip consisted of 1.42 x 9.63 mm n/sup +//p collecting junctions on the back of the wafer. The illuminated front surface area was divided into 0.3 ..mu..m deep n/sup +/ regions which form front surface field regions corresponding to the n/sup +//p unit cells positioned beneath. A five photomask level photolithographic process together with a standard microelectronics batch process technique was employed to construct the PMJ solar cell chip. The open circuit voltage of the solar cell chip increased rapidly with illumination up to about 4 AMl suns, and then began to saturate at the sum of the individual unit cell voltages of 3.5 V above 4 AMl suns. A short circuit current density per unit cell of 300 mA/cm/sup 2/ at 20 AMl suns was observed. This low value is attributed to a low minority carrier diffusion length in the base region of the solar cell chip. The suggested process modifications should significantly increase the device efficiency.

  18. Transparent superstrate terrestrial solar cell module

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design, development, fabrication, and testing of the transparent solar cell module were examined. Cell performance and material process characteristics were determined by extensive tests and design modifications were made prior to preproduction fabrication. These tests included three cell submodules and two full size engineering modules. Along with hardware and test activity, engineering documentation was prepared and submitted.

  19. Handling Fixture for Solar-Cell Arrays

    NASA Technical Reports Server (NTRS)

    Dillard, P. A.; Higbee, D. W.

    1984-01-01

    Thin cells processed and stored safely. Major parts of handling fixture hold components of solar cell array modules safely, yet allow assembly process to proceed without interference. Fixture used with or without internal vacuum. Concept allows handling of thin, relatively-fragile cells, and offers potential for savings in silicon material and cost.

  20. Terahertz techniques for solar cell imaging

    NASA Astrophysics Data System (ADS)

    Minkevi?ius, L.; Suzanovi?ienÄ--, R.; Molis, G.; Krotkus, A.; Balakauskas, S.; Venckevi?ius, R.; Kašalynas, I.; ŠimkienÄ--, I.; Valušis, G.; TamošiĹ«nas, V.

    2013-12-01

    Rapid development in fabrication of solar cells requires innovations in characterization of the layers. Particular attention deserves structural imperfections which cannot be directly investigated by optical methods in a visible range. In this paper, we present two terahertz (THz) imaging approaches - Terahertz-Time Domain spectroscopy (THz-TDS)-based and continuous wave (CW) -based THz imaging - which can successfully serve as powerful experimental tool for versatile characterization of the solar cells.

  1. Recent advances in flexible perovskite solar cells.

    PubMed

    Susrutha, B; Giribabu, Lingamallu; Singh, Surya Prakash

    2015-10-11

    Flexible and low-weight thin-film perovskite solar cells have attracted considerable attention for developing large-area, roll-to-roll and differently shaped photovoltaics with improved power conversion efficiencies. In this review, we describe how researchers have adopted different approaches to enhance the device performance of the flexible perovskite solar cells to compete with rigid substrates with tailored electron/hole transport materials and flexible substrates. PMID:26198773

  2. Singlet fission: Towards efficient solar cells

    NASA Astrophysics Data System (ADS)

    Havlas, Zdeněk; Wen, Jin; Michl, Josef

    2015-12-01

    Singlet fission (SF) offers an opportunity to improve solar cell efficiency, but its practical use is hindered by the limited number of known efficient materials, limited knowledge of SF mechanism, mainly the relation between the dimer structure and SF efficiency and diffusion of the triplet states allowing injection of electrons into the solar cell semiconductor band. Here we report on our attempt to design new classes of chromophores and to study the relation between the structure and SF efficiency.

  3. Silicon solar cells, a manufacturing cost analysis

    NASA Technical Reports Server (NTRS)

    Grenon, L. A.; Coleman, M. G.

    1978-01-01

    A detailed cost analysis of solar cell module manufacturing, utilizing process sequences incorporating near-term technology, has been performed. The entire structuring of a factory to manufacture solar cell modules, starting from supplied polycrystalline silicon and other raw materials, was specified. This analysis then formed the basis for a sensitivity analysis of the major cost factors. The results of the cost and sensitivity analyses are presented here.

  4. High-temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Merritt, Danielle; Raffaelle, Ryne P.; Scheiman, David

    2005-01-01

    The vast majority of space probes to date have relied upon photovoltaic power generation. If future missions designed to probe environments close to the sun (Figure 1) will be able to use such power generation, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. The significant problem is that solar cells lose performance at high temperatures.

  5. Composite solar cell matrix is reliable, lightweight and flexible

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.

    1967-01-01

    Conducting strips mechanically and electrically connect individual solar cells into a linear array of cells, called a solar submodule, and then connect in series two or more submodules to form a solar cell matrix. Tiny perforations in the strip make it easy to solder them directly to the individual solar cells.

  6. Space solar cells: High efficiency and radiation damage

    NASA Technical Reports Server (NTRS)

    Brandhorst, H., Jr.; Bernatowicz, D. T.

    1980-01-01

    The progress and status of efforts to increase the end-of-life efficiency of solar cells for space use is assessed. High efficiency silicon solar cells, silicon solar cell radiation damage, GaAs solar cell performance and radiation damage and 30 percent devices are discussed.

  7. Solar array module plasma interactions experiment (SAMPIE) - Science and technology objectives

    NASA Technical Reports Server (NTRS)

    Hillard, G. B.; Ferguson, Dale C.

    1993-01-01

    The solar array module plasma interactions experiment (SAMPIE) is an approved NASA flight experiment manifested for Shuttle deployment in early 1994. The SAMPIE experiment is designed to investigate the interaction of high voltage space power systems with ionospheric plasma. To study the behavior of solar cells, a number of solar cell coupons (representing design technologies of current interest) will be biased to high voltages to measure both arcing and current collection. Various theories of arc suppression will be tested by including several specially modified cell coupons. Finally, SAMPIE will include experiments to study the basic nature of arcing and current collection. This paper describes the rationale for a space flight experiment, the measurements to be made, and the significance of the expected results. A future paper will present a detailed discussion of the engineering design.

  8. The Solar Array Module Plasma Interactions Experiment (SAMPIE): A shuttle-based plasma interaction experiment

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry

    1991-01-01

    The SAMPIE flight experiment, tentatively scheduled to fly on a shuttle mission in mid 1992, will investigate plasma interactions of high voltage space power systems. Solar cells representing a number of technologies will be biased to high voltage to study both negative potential arching and positive potential current collection characteristics. Additionally, several idealized metal/insulator mockups will be flown to study the basic nature of these interactions. Described here is the basic rationale for a space experiment as well as the measurements to be made and the significance of the expected results. The current design status of the flight hardware is presented.

  9. Status of GaAs solar cell production

    NASA Technical Reports Server (NTRS)

    Yeh, Milton; Ho, Frank; Iles, Peter A.

    1989-01-01

    Recent experience in producing GaAs solar cells, to meet the full requirements of space-array manufacturers is reviewed. The main problems have been in extending MOCVD technology to provide high throughput of high quality epitaxial layers, and to integrate the other important factors needed to meet the full range of user requirements. Some discussion of evolutionary changes is also given.

  10. Proton damage in GaAs solar cells

    NASA Astrophysics Data System (ADS)

    Wilson, J. W.; Walker, G. H.; Outlaw, R. A.

    1984-04-01

    A simplified model for the short-circuit current reduction caused by proton-induced radiation damage is described. The model accounts for the nonuniformity of defect production within heteroface GaAs shallow junction solar cells. The results from the model show agreement with the strong energy dependence observed in proton radiation damage experiments.

  11. Perovskite solar cells: from materials to devices.

    PubMed

    Jung, Hyun Suk; Park, Nam-Gyu

    2015-01-01

    Perovskite solar cells based on organometal halide light absorbers have been considered a promising photovoltaic technology due to their superb power conversion efficiency (PCE) along with very low material costs. Since the first report on a long-term durable solid-state perovskite solar cell with a PCE of 9.7% in 2012, a PCE as high as 19.3% was demonstrated in 2014, and a certified PCE of 17.9% was shown in 2014. Such a high photovoltaic performance is attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths. Nevertheless, there are lots of puzzles to unravel the basis for such high photovoltaic performances. The working principle of perovskite solar cells has not been well established by far, which is the most important thing for understanding perovksite solar cells. In this review, basic fundamentals of perovskite materials including opto-electronic and dielectric properties are described to give a better understanding and insight into high-performing perovskite solar cells. In addition, various fabrication techniques and device structures are described toward the further improvement of perovskite solar cells. PMID:25358818

  12. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  13. Multijunction Solar Cells Optimized for the Mars Surface Solar Spectrum

    NASA Technical Reports Server (NTRS)

    Edmondson, Kenneth M.; Fetzer, Chris; Karam, Nasser H.; Stella, Paul; Mardesich, Nick; Mueller, Robert

    2007-01-01

    This paper gives an update on the performance of the Mars Exploration Rovers (MER) which have been continually performing for more than 3 years beyond their original 90-day missions. The paper also gives the latest results on the optimization of a multijunction solar cell that is optimized to give more power on the surface of Mars.

  14. Ultraviolet (UV) X-Ray Solar Photography - Experiment S020

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This chart details Skylab's Ultraviolet (UV) X-Ray Solar Photography experiment (S020) in an Apollo Telescope Mount facility. It was designed to photograph normal and explosive areas within the solar atmosphere in the UV and x-ray spectra. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  15. Telescience operations with the solar array module plasma interaction experiment

    SciTech Connect

    Wald, L.W.; Bibyk, I.K.

    1995-09-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. Parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology.

  16. Comparative values of advanced space solar cells

    NASA Technical Reports Server (NTRS)

    Slifer, L. W., Jr.

    1982-01-01

    A methodology for deriving a first order dollar value estimate for advanced solar cells which consists of defining scenarios for solar array production and launch to orbit and the associated costs for typical spacecraft, determining that portion affected by cell design and performance and determining the attributable cost differences is presented. Break even values are calculated for a variety of cells; confirming that efficiency and related effects of radiation resistance and temperature coefficient are major factors; array tare mass, packaging and packing factor are important; but cell mass is of lesser significance. Associated dollar values provide a means of comparison.

  17. Manufacture of Solar Cells on the Moon

    NASA Technical Reports Server (NTRS)

    Freundich, Alex; Ignatiev, Alex; Horton, Charles; Duke, Mike; Curren, Peter; Sibille, Laurent

    2005-01-01

    In support of the space exploration initiative a new architecture for the production of solar cells on the lunar surface is devised. The paper discusses experimental data on the fabrication and properties of lunar glass substrates, evaporated lunar regolith thin film (antireflect coatings and insulators), and preliminary attempts in the fabrication of thin film (silicon/II-VI) photovoltaic materials on lunar regolith substrates. A conceptual design for a solar powered robotic rover capable of fabricating solar cells directly on the lunar surface is provided. Technical challenges in the development of such a facility and strategies to alleviate perceived difficulties are discussed. Finally, preliminary cost benefit ratio analysis for different in situ solar cell production scenarios (using exclusively in-situ planetary resources or hybrid) are discussed.

  18. Optimization and performance of Space Station Freedom solar cells

    NASA Technical Reports Server (NTRS)

    Khemthong, S.; Hansen, N.; Bower, M.

    1991-01-01

    High efficiency, large area and low cost solar cells are the drivers for Space Station solar array designs. The manufacturing throughput, process complexity, yield of the cells, and array manufacturing technique determine the economics of the solar array design. The cell efficiency optimization of large area (8 x 8 m), dielectric wrapthrough contact solar cells are described. The results of the optimization are reported and the solar cell performance of limited production runs is reported.

  19. Thickness dependences of solar cell performance

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1982-01-01

    The significance of including factors such as the base resistivity loss for solar cells thicker than 100 microns and emitter and BSF layer recombination for thin cells in predicting the fill factor and efficiency of solar cells is demonstrated analytically. A model for a solar cell is devised with the inclusion of the dopant impurity concentration profile, variation of the electron and hole mobility with dopant concentration, the concentration and thermal capture and emission rates of the recombination center, device temperature, the AM1 spectra and the Si absorption coefficient. Device equations were solved by means of the transmission line technique. The analytical results were compared with those of low-level theory for cell performance. Significant differences in predictions of the fill factor resulted, and inaccuracies in the low-level approximations are discussed.

  20. The Sacramento power utility experience in solar

    SciTech Connect

    Smeloff, E.

    1993-12-31

    An overview of the development of three solar power technologies for use in Sacramento, California is provided. A central receiver power plant, Solar One, is being converted to a molten salt design with thermal energy storage by the Sacramento Municipal Utility District (SMUD) and six other utilities. SMUD is also investigating a solar dish/sterling engine system and technologies to reduce photovoltaic conversion costs.

  1. Advanced Solar Cells for Satellite Power Systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.; Weinberg, Irving

    1994-01-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  2. Nanoparticle Solar Cell Final Technical Report

    SciTech Connect

    Breeze, Alison, J; Sahoo, Yudhisthira; Reddy, Damoder; Sholin, Veronica; Carter, Sue

    2008-06-17

    The purpose of this work was to demonstrate all-inorganic nanoparticle-based solar cells with photovoltaic performance extending into the near-IR region of the solar spectrum as a pathway towards improving power conversion efficiencies. The field of all-inorganic nanoparticle-based solar cells is very new, with only one literature publication in the prior to our project. Very little is understood regarding how these devices function. Inorganic solar cells with IR performance have previously been fabricated using traditional methods such as physical vapor deposition and sputtering, and solution-processed devices utilizing IR-absorbing organic polymers have been investigated. The solution-based deposition of nanoparticles offers the potential of a low-cost manufacturing process combined with the ability to tune the chemical synthesis and material properties to control the device properties. This work, in collaboration with the Sue Carter research group at the University of California, Santa Cruz, has greatly expanded the knowledge base in this field, exploring multiple material systems and several key areas of device physics including temperature, bandgap and electrode device behavior dependence, material morphological behavior, and the role of buffer layers. One publication has been accepted to Solar Energy Materials and Solar Cells pending minor revision and another two papers are being written now. While device performance in the near-IR did not reach the level anticipated at the beginning of this grant, we did observe one of the highest near-IR efficiencies for a nanoparticle-based solar cell device to date. We also identified several key parameters of importance for improving both near-IR performance and nanoparticle solar cells in general, and demonstrated multiple pathways which showed promise for future commercialization with further research.

  3. Development and fabrication of a solar cell junction processing system

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A processing system capable of producing solar cell junctions by ion implantation followed by pulsed electron beam annealing was developed and constructed. The machine was to be capable of processing 4-inch diameter single-crystal wafers at a rate of 10(7) wafers per year. A microcomputer-controlled pulsed electron beam annealer with a vacuum interlocked wafer transport system was designed, built and demonstrated to produce solar cell junctions on 4-inch wafers with an AMI efficiency of 12%. Experiments showed that a non-mass-analyzed (NMA) ion beam could implant 10 keV phosphorous dopant to form solar cell junctions which were equivalent to mass-analyzed implants. A NMA ion implanter, compatible with the pulsed electron beam annealer and wafer transport system was designed in detail but was not built because of program termination.

  4. Large area space solar cell assemblies

    NASA Technical Reports Server (NTRS)

    Nowlan, M. J.; Spitzer, M. B.

    1982-01-01

    Results of the development of a 34.3 sq cm space solar cell and integral glass cover are presented. Average AM(0) cell efficiency is 14 percent. The cell design includes a high performance back surface reflector yielding a thermal alpha of approximately 0.66. A novel process is described which integrates cell fabrication and encapsulation thereby achieving a reduction of encapsulation cost. Test results indicate the potential of this new technology.

  5. Emitter Wrap-Through solar cell

    SciTech Connect

    Gee, J.M.; Schubert, W.K.; Basore, P.A.

    1992-01-01

    The authors present a new cell concept (Emitter Wrap-Through or EWT) for a back-contact cell. The cell has laser-drilled vias to wrap the emitter on the front surface to contacts on the back surface and uses a potentially low-cost process sequence. Modeling calculations show that efficiencies of 18 and 21% are possible with large-area solar-grade multi- and monocrystalline silicon EWT cells, respectively.

  6. Emitter Wrap-Through solar cell

    NASA Astrophysics Data System (ADS)

    Gee, J. M.; Schubert, W. K.; Basore, P. A.

    The authors present a new cell concept (Emitter Wrap-Through or EWT) for a back-contact cell. The cell has laser-drilled vias to wrap the emitter on the front surface to contacts on the back surface and uses a potentially low-cost process sequence. Modeling calculations show that efficiencies of 18 and 21% are possible with large-area solar-grade multi- and monocrystalline silicon EWT cells, respectively.

  7. MIS silicon solar cells: potential advantages

    SciTech Connect

    Cheek, G.; Mertens, R.

    1981-05-01

    Recent progress with silicon solar cells based on the MIS or SIS structure is reviewed. To be competitive with pn junction technology in the near term, these cells must be much cheaper or have a higher efficiency in a production environment. Apparently, the minority carrier MIS cells have the greatest potential for large-scale applications. The data currently indicate that all types of MIS/SIS cells have some inherent instability problems.

  8. Plastic Schottky-barrier solar cells

    DOEpatents

    Waldrop, J.R.; Cohen, M.J.

    1981-12-30

    A photovoltaic cell structure is fabricated from an active medium including an undoped polyacetylene, organic semiconductor. When a film of such material is in rectifying contact with a metallic area electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates a magnesium layer on the undoped polyacetylene film. With the proper selection and location of elements a photovoltaic cell structure and solar cell are obtained.

  9. The effect of the low Earth orbit environment on space solar cells

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.; Brasted, Donald K.

    1990-01-01

    The results of a space flight experiment designed to provide reference cell standards for photovoltaic measurements as well as to investigate the solar spectrum and the effect of long-term exposure of solar cells to the space environment are presented. This experiment, the Advanced Photovoltaic Experiment (APEX), was launched into low Earth orbit as part of the Long Duration Exposure Facility in 1984 and retrieved 69 months later. APEX contained over 150 solar cells of a wide variety of materials, designs and coverglasses. Data on cell performance was recorded for the first year-on-orbit.

  10. Third Working Meeting on Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Walker, G. H. (Compiler)

    1976-01-01

    Research results are reported for GaAs Schottky barrier solar cells, GaAlAs/GaAs heteroface solar cells, and GaAlAs graded band gap solar cells. Related materials studies are presented. A systems study for GaAs and Si solar concentrator systems is given.

  11. Efficient bulk heterojunction organic solar cell with antireflective subwavelength structure

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Seon; Kwon, Sooncheol; Lee, Kwanghee; Jang, Jae-Hyung

    2015-03-01

    Bulk heterojunction (BHJ)-based organic solar cells realized on glass substrates incorporating antireflective nanoscale subwavelength structures (SWSs) can harness more solar power, leading to greater electrical output power. The power conversion efficiency of the SWS integrated BHJ-based organic solar cell was relatively improved by 7.2% compared with that of conventional solar cell without SWS.

  12. Solar cooking experiments with different foods

    SciTech Connect

    Devadas, R.P.; Jagadeesan, G.

    1992-12-31

    This paper describes studies with a variety of solar cookers at Avinashilingam Deemed University, India. The objective of the studies was to determine the following: the time needed for cooking various foods; the amount of fuel conserved; and suitable menus for use with the cooker. It was concluded that, on bright sunny days, the solar cooker can be used satisfactorily for preparing cereals, legumes, vegetables, roots and tubers, bakery items, eggs and groundnuts. Inadequate and intermittent sunshine, fluctuation in wind velocity, clouds, rain and other environmental factors could affect the solar intensity which, in turn, would affect the cooking time. The palatability of solar cooked items was satisfactory when compared to items cooked using firewood, kerosene or gas. Among the various solar cooking devices, the box type cookers were found to have advantages over the basket type due to convenience in handling. However, it is not possible to prepare certain items commonly used in India using the box type cookers.

  13. Lanthanide ions as spectral converters for solar cells.

    PubMed

    van der Ende, Bryan M; Aarts, Linda; Meijerink, Andries

    2009-12-21

    The use of lanthanide ions to convert photons to different, more useful, wavelengths is well-known from a wide range of applications (e.g. fluorescent tubes, lasers, white light LEDs). Recently, a new potential application has emerged: the use of lanthanide ions for spectral conversion in solar cells. The main energy loss in the conversion of solar energy to electricity is related to the so-called spectral mismatch: low energy photons are not absorbed by a solar cell while high energy photons are not used efficiently. To reduce the spectral mismatch losses both upconversion and downconversion are viable options. In the case of upconversion two low energy infrared photons that cannot be absorbed by the solar cell, are added up to give one high energy photon that can be absorbed. In the case of downconversion one high energy photon is split into two lower energy photons that can both be absorbed by the solar cell. The rich and unique energy level structure arising from the 4f(n) inner shell configuration of the trivalent lanthanide ions gives a variety of options for efficient up- and downconversion. In this perspective an overview will be given of recent work on photon management for solar cells. Three topics can be distinguished: (1) modelling of the potential impact of spectral conversion on the efficiency of solar cells; (2) research on up- and downconversion materials based on lanthanides; and (3) proof-of-principle experiments. Finally, an outlook will be given, including issues that need to be resolved before wide scale application of up- and downconversion materials can be anticipated. PMID:20024374

  14. Solar Cells in the School Physics Laboratory.

    ERIC Educational Resources Information Center

    Mikulski, Kazimeirz

    1996-01-01

    Discusses the goals of experiments which show examples of the use of solar energy on a scale suitable for a school laboratory. Highlights the history of discoveries and developments in photoelectricity. Presents investigations and experiments, that can be performed by students. (JRH)

  15. Microstructural analysis of solar cell welds

    NASA Technical Reports Server (NTRS)

    Moore, T. J.; Watson, G. K.; Baraona, C. R.

    1982-01-01

    Parallel-gap resistance welding of silicon solar cells with copper interconnects results in complex microstructural variations that depend on the welding variables. At relatively low heat input solid-state welds are produced. At medium heat the Ag-Cu eutectic forms resulting in a braze joint. High heat produces a fusion weld with complete melting of the silver layer on the silicon solar cell. If the silicon is also melted, cracking occurs in the silicon cell below the weld nugget. These determinations were made using light microscopy, microprobe, and scanning electron microscopy analyses.

  16. Optical designs for improved solar cell performance

    NASA Astrophysics Data System (ADS)

    Kosten, Emily Dell

    The solar resource is the most abundant renewable resource on earth, yet it is currently exploited with relatively low efficiencies. To make solar energy more affordable, we can either reduce the cost of the cell or increase the efficiency with a similar cost cell. In this thesis, we consider several different optical approaches to achieve these goals. First, we consider a ray optical model for light trapping in silicon microwires. With this approach, much less material can be used, allowing for a cost savings. We next focus on reducing the escape of radiatively emitted and scattered light from the solar cell. With this angle restriction approach, light can only enter and escape the cell near normal incidence, allowing for thinner cells and higher efficiencies. In Auger-limited GaAs, we find that efficiencies greater than 38% may be achievable, a significant improvement over the current world record. To experimentally validate these results, we use a Bragg stack to restrict the angles of emitted light. Our measurements show an increase in voltage and a decrease in dark current, as less radiatively emitted light escapes. While the results in GaAs are interesting as a proof of concept, GaAs solar cells are not currently made on the production scale for terrestrial photovoltaic applications. We therefore explore the application of angle restriction to silicon solar cells. While our calculations show that Auger-limited cells give efficiency increases of up to 3% absolute, we also find that current amorphous silicion-crystalline silicon heterojunction with intrinsic thin layer (HIT) cells give significant efficiency gains with angle restriction of up to 1% absolute. Thus, angle restriction has the potential for unprecedented one sun efficiencies in GaAs, but also may be applicable to current silicon solar cell technology. Finally, we consider spectrum splitting, where optics direct light in different wavelength bands to solar cells with band gaps tuned to those wavelengths. This approach has the potential for very high efficiencies, and excellent annual power production. Using a light-trapping filtered concentrator approach, we design filter elements and find an optimal design. Thus, this thesis explores silicon microwires, angle restriction, and spectral splitting as different optical approaches for improving the cost and efficiency of solar cells.

  17. Solar Cell Calibration and Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Brinker, Dave; Curtis, Henry; Jenkins, Phillip; Scheiman, Dave

    1997-01-01

    The increasing complexity of space solar cells and the increasing international markets for both cells and arrays has resulted in workshops jointly sponsored by NASDA, ESA and NASA. These workshops are designed to obtain international agreement on standardized values for the AMO spectrum and constant, recommend laboratory measurement practices and establish a set of protocols for international comparison of laboratory measurements. A working draft of an ISO standard, WDI 5387, 'Requirements for Measurement and Calibration Procedures for Space Solar Cells' was discussed with a focus on the scope of the document, a definition of primary standard cell, and required error analysis for all measurement techniques. Working groups addressed the issues of Air Mass Zero (AMO) solar constant and spectrum, laboratory measurement techniques, and the international round robin methodology. A summary is presented of the current state of each area and the formulation of the ISO document.

  18. High efficiency low cost solar cell power

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Blocker, W.

    1978-01-01

    A concept for generating high-efficiency, low-cost, solar-cell power is outlined with reference to solar cell parameters, optical concentrators, and thermal control procedures. A design for a 12.5-kw power module for space operation is discussed noting the optical system, spectrum splitter, light conversion system, cell cooling, power conditioner, and tracking mechanism. It is found that for an unconcentrated array, efficiency approaches 60% when ten or more bandgaps are used. For a 12-band system, a computer program distributed bandgaps for maximum efficiency and equal cell currents. Rigid materials and thin films have been proposed for optical components and prisms, gratings, and dichroic mirrors have been recommended for spectrum splitting. Various radiator concepts are noted including that of Weatherston and Smith (1960) and Hedgepeth and Knapp (1978). The concept may be suitable for the Solar Power Satellite.

  19. Inexpensive Antireflection Coating for Solar Cells

    NASA Technical Reports Server (NTRS)

    Tracy, C. E.; Kern, W.; Vibronek, R. D.

    1982-01-01

    Continuous method for applying antireflection coating to solar cells increases efficiency of devices by preventing energy from being reflected away, but adds little to manufacturing cost. Method consists of spraying solution on cells or glass collector plates, drying sprayed layer, and curing it. Solution is formulated to spread evenly over surfaces.

  20. Method of restoring degraded solar cells

    DOEpatents

    Staebler, D.L.

    1983-02-01

    Amorphous silicon solar cells have been shown to have efficiencies which degrade as a result of long exposure to light. Annealing such cells in air at a temperature of about 200 C for at least 30 minutes restores their efficiency. 2 figs.

  1. Walking-Beam Solar-Cell Conveyor

    NASA Technical Reports Server (NTRS)

    Feder, H.; Frasch, W.

    1982-01-01

    Microprocessor-controlled walking-beam conveyor moves cells between work stations in automated assembly line. Conveyor has arm at each work station. In unison arms pick up all solar cells and advance them one station; then beam retracks to be in position for next step. Microprocessor sets beam stroke, speed, and position.

  2. Improved Solar-Cell Tunnel Junction

    NASA Technical Reports Server (NTRS)

    Daud, T.; Kachare, A.

    1986-01-01

    Efficiency of multiple-junction silicon solar cells increased by inclusion of p+/n+ tunnel junctions of highly doped GaP between component cells. Relatively low recombination velocity at GaP junction principal reason for recommending this material. Relatively wide band gap also helps increase efficiency by reducing optical losses.

  3. Method of restoring degraded solar cells

    DOEpatents

    Staebler, David L. (Lawrenceville, NJ)

    1983-01-01

    Amorphous silicon solar cells have been shown to have efficiencies which degrade as a result of long exposure to light. Annealing such cells in air at a temperature of about 200.degree. C. for at least 30 minutes restores their efficiency.

  4. Liquid cooled, linear focus solar cell receiver

    DOEpatents

    Kirpich, A.S.

    1983-12-08

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  5. High-efficiency concentrator silicon solar cells

    SciTech Connect

    Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. . Solid-State Electronics Lab.)

    1990-11-01

    This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

  6. - and Perovskite-Sensitised Mesoscopic Solar Cells

    NASA Astrophysics Data System (ADS)

    Grätzel, Michael; Durrant, James R.

    2015-10-01

    The following sections are included: * Introduction * Historical background * Mode of function of dye-sensitised solar cells * DSSC research and development * Solid-state mesoscopic cells based on molecular dyes or perovskite pigments as sensitisers * Pilot production of modules, field tests and commercial DSSC development * Outlook * Acknowledgements * References

  7. Liquid cooled, linear focus solar cell receiver

    DOEpatents

    Kirpich, Aaron S. (Broomall, PA)

    1985-01-01

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  8. Thin-Film Technology in Intermediate Band Solar Cells: Advanced Concepts for Chalcopyrite Solar Cells

    NASA Astrophysics Data System (ADS)

    Marrón, David Fuertes

    Combining the two key factors of high performance and low cost into a single solar cell is the major challenge of research on photovoltaics. It is not easy to conceive a practical approach to such a device if not based on thin-film technology. Yet, it appears equally clear that current thin-film solar cells must upgrade their performance by some means in order to meet satisfactory energy conversion efficiencies. The incorporation of novel photovoltaic concepts, particularly the intermediate band solar cell, into thin-film technologies is expected to cross-fertilize both fields. In this chapter, we will outline the potential benefits ofthin-film intermediate band solar cells (TF-IBSC) and describe two different approaches toward its practical implementation. Particular attention will be devoted to devices based on chalcopyrite absorbers, currently leading the efficiency records of thin-film solar cells, and characterized by material properties well suited for this purpose.

  9. Generating AC With Rotating Solar Cells

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.

    1993-01-01

    Rotating solar photovoltaic cells or batteries connected to suitable mechanical and/or electronic commutators produce nearly sinusoidal alternating current. Eliminates need for inverter circuitry and its attendant power-consumption and heat-dissipation problems, but imposes need for low-power-consumption rotary mechanism. Intended for use aboard spacecraft, also useful in special terrestrial situations where solar electric power must be transmitted over powerlines from one remote location to another.

  10. Solar Cell Efficiency Tables (Version 33)

    SciTech Connect

    Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.

    2009-01-01

    Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since July 2008 are reviewed. Efficiencies are updated to the new reference solar spectrum tabulated in IEC 60904-3 Ed. 2 revised in April 2008 and an updated list of recognised test centres is also included.

  11. Silicon solar cell process. Development, fabrication and analysis

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Iles, P. A.; Tanner, D. P.

    1978-01-01

    Solar cells were fabricated from unconventional silicon sheets, and the performances were characterized with an emphasis on statistical evaluation. A number of solar cell fabrication processes were used and conversion efficiency was measured under AMO condition at 25 C. Silso solar cells using standard processing showed an average efficiency of about 9.6%. Solar cells with back surface field process showed about the same efficiency as the cells from standard process. Solar cells from grain boundary passivation process did not show any improvements in solar cell performance.

  12. CZTSSe thin film solar cells: Surface treatments

    NASA Astrophysics Data System (ADS)

    Joglekar, Chinmay Sunil

    Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

  13. Results from the Borexino Solar Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Calaprice, Frank; Galbiati, Cristiano; Wright, Alex; Ianni, Aldo

    2012-11-01

    Borexino is a low-background liquid scintillation detector currently acquiring solar and terrestrial neutrino data at the Gran Sasso underground laboratory in Italy. Since the start of operations in 2007, Borexino has produced measurements of 7Be, 8B, and pep solar neutrinos, as well as measurements of terrestrial and long-baseline reactor antineutrinos. The measurements were made possible by the development of low-background scintillator spectroscopy that enabled direct detection of sub-MeV solar neutrinos. The general design features of the detector are described together with current results and prospects for future measurements.

  14. Method of fabricating a solar cell array

    DOEpatents

    Lazzery, Angelo G. (Oaklyn, NJ); Crouthamel, Marvin S. (Pennsauken, NJ); Coyle, Peter J. (Oaklyn, NJ)

    1982-01-01

    A first set of pre-tabbed solar cells are assembled in a predetermined array with at least part of each tab facing upward, each tab being fixed to a bonding pad on one cell and abutting a bonding pad on an adjacent cell. The cells are held in place with a first vacuum support. The array is then inverted onto a second vacuum support which holds the tabs firmly against the cell pads they abut. The cells are exposed to radiation to melt and reflow the solder pads for bonding the tab portions not already fixed to bonding pads to these pads.

  15. Arcing rates for High Voltage Solar Arrays - Theory, experiment, and predictions

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi

    1992-01-01

    All solar arrays have biased surfaces that can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative, then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays that ascribes the arcing to electric field runaway at the interface of the plasma, conductor, and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array experiment that will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail with the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.

  16. The arcing rate for a High Voltage Solar Array - Theory, experiment and predictions

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi

    1992-01-01

    All solar arrays have biased surfaces which can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays which ascribes the arcing to electric field runaway at the interface of the plasma, conductor and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array (HVSA) experiment which will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail to the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.

  17. Scanning Probe Microscopy of Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Reid, Obadiah G.

    Nanostructured composites of organic semiconductors are a promising class of materials for the manufacture of low-cost solar cells. Understanding how the nanoscale morphology of these materials affects their efficiency as solar energy harvesters is crucial to their eventual potential for large-scale deployment for primary power generation. In this thesis we describe the use of optoelectronic scanning-probe based microscopy methods to study this efficiency-structure relationship with nanoscale resolution. In particular, our objective is to make spatially resolved measurements of each step in the power conversion process from photons to an electric current, including charge generation, transport, and recombination processes, and correlate them with local device structure. We have achieved two aims in this work: first, to develop and apply novel electrically sensitive scanning probe microscopy experiments to study the optoelectronic materials and processes discussed above; and second, to deepen our understanding of the physics underpinning our experimental techniques. In the first case, we have applied conductive-, and photoconductive atomic force (cAFM & pcAFM) microscopy to measure both local photocurrent collection and dark charge transport properties in a variety of model and novel organic solar cell composites, including polymer/fullerene blends, and polymer-nanowire/fullerene blends, finding that local heterogeneity is the rule, and that improvements in the uniformity of specific beneficial nanostructures could lead to large increases in efficiency. We have used scanning Kelvin probe microscopy (SKPM) and time resolved-electrostatic force microscopy (trEFM) to characterize all-polymer blends, quantifying their sensitivity to photochemical degradation and the subsequent formation of local charge traps. We find that while trEFM provides a sensitive measure of local quantum efficiency, SKPM is generally unsuited to measurements of efficiency, less sensitive than trEFM, and of greater utility in identifying local changes in steady-state charge density that can be associated with charge trapping. In the second case, we have developed a new understanding of charge transport between a sharp AFM tip and planar substrates applicable to conductive and photoconductive atomic force microscopy, and shown that hole-only transport characteristics can be easily obtained including quantitative values of the charge carrier mobility. Finally, we have shown that intensity-dependent photoconductive atomic force microscopy measurements can be used to infer the 3D structure of organic photovoltaic materials, and gained new insight into the influence vertical composition of the these devices can have on their open-circuit voltage and its intensity dependence.

  18. Solar heating of GaAs nanowire solar cells.

    PubMed

    Wu, Shao-Hua; Povinelli, Michelle L

    2015-11-30

    We use a coupled thermal-optical approach to model the operating temperature rise in GaAs nanowire solar cells. We find that despite more highly concentrated light absorption and lower thermal conductivity, the overall temperature rise in a nanowire structure is no higher than in a planar structure. Moreover, coating the nanowires with a transparent polymer can increase the radiative cooling power by 2.2 times, lowering the operating temperature by nearly 7 K. PMID:26698787

  19. Hypervelocity Impact Testing of Space Station Freedom Solar Cells

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Best, Steve R.; Myhre, Craig A.

    1994-01-01

    Solar array coupons designed for the Space Station Freedom electrical power system were subjected to hypervelocity impacts using the HYPER facility in the Space Power Institute at Auburn University and the Meteoroid/Orbital Debris Simulation Facility in the Materials and Processes Laboratory at the NASA Marshall Space Flight Center. At Auburn, the solar cells and array blanket materials received several hundred impacts from particles in the micron to 100 micron range with velocities typically ranging from 4.5 to 10.5 km/s. This fluence of particles greatly exceeds what the actual components will experience in low earth orbit. These impacts damaged less than one percent of total area of the solar cells and most of the damage was limited to the cover glass. There was no measurable loss of electrical performance. Impacts on the array blanket materials produced even less damage and the blanket materials proved to be an effective shield for the back surface of the solar cells. Using the light gas gun at MSFC, one cell of a four cell coupon was impacted by a 1/4 inch spherical aluminum projectile with a velocity of about 7 km/s. The impact created a neat hole about 3/8 inch in diameter. The cell and coupon were still functional after impact.

  20. Electron Radiation Damage of (alga) As-gaas Solar Cells

    NASA Technical Reports Server (NTRS)

    Loo, R.; Kamath, G. S.; Knechtli, R.

    1979-01-01

    Solar cells (2 cm by 2 cm (AlGa) As-GaAs cells) were fabricated and then subjected to irradiation at normal incidence by electrons. The influence of junction depth and n-type buffer layer doping level on the cell's resistance to radiation damage was investigated. The study shows that (1) a 0.3 micrometer deep junction results in lower damage to the cells than does a 0.5 micrometer junction, and (2) lowering the n buffer layer doping density does not improve the radiation resistance of the cell. Rather, lowering the doping density decreases the solar cell's open circuit voltage. Some preliminary thermal annealing experiments in vacuum were performed on the (AlGa)As-GaAs solar cells damaged by 1-MeV electron irradiation. The results show that cell performance can be expected to partially recover at 200 C with more rapid and complete recovery occurring at higher temperature. For a 0.5hr anneal at 400 C, 90% of the initial power is recovered. The characteristics of the (AlGa)As-GaAs cells both before and after irradiation are described.

  1. Fracture strength of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1979-01-01

    A test program was developed to determine the nature and source of the flaw controlling the fracture of silicon solar cells and to provide information regarding the mechanical strength of cells. Significant changes in fracture strengths were found in seven selected in-process wafer-to-cell products from a manufacturer's production line. The fracture strength data were statistically analyzed and interpreted in light of the exterior flaw distribution of the samples.

  2. Method of manufacturing a solar cell panel

    SciTech Connect

    Dubois, P.

    1982-03-30

    The photovoltaic cells are retained and protected by a transparent elastomer layer extruded when hot prior to vulcanization and applied against the cells with a slight pressure to cause it to go into the spaces between cells, and vulcanized by heating, for example at 110* C. Or at 180* C., thanks to the presence of incorporated peroxides. Application in the production of electricity from solar energy.

  3. Fabricating solar cells with silicon nanoparticles

    DOEpatents

    Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

    2014-09-02

    A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

  4. Plasmonic ITO-free polymer solar cell.

    PubMed

    Lin, Ming-Yi; Kang, Yu Ling; Chen, Yu-Cheng; Tsai, Tsung-Han; Lin, Shih-Chieh; Huang, Yi-Hsiang; Chen, Yi-Jiun; Lu, Chun-Yang; Lin, Hoang Yan; Wang, Lon A; Wu, Chung-Chih; Lee, Si-Chen

    2014-03-10

    The aluminum and sliver multilayered nano-grating structure is fabricated by laser interference lithography and the intervals between nanoslits is filled with modified PEDOT:PSS. The grating structured transparent electrode functions as the anti-reflection layer which not only decreases the reflected light but also increases the absorption of the active layer. The performances of P3HT:PC??BM solar cells are studied experimentally and theoretically in detail. The field intensities of the transverse magnetic (TM) and transverse electrical (TE) waves distributed in the active layer are simulated by rigorous coupled wave analysis (RCWA). The power conversion efficiency of the plasmonic ITO-free polymer solar cell can reach 3.64% which is higher than ITO based polymer solar cell with efficiency of 3.45%. PMID:24922253

  5. Space solar cell research - Problems and potential

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1986-01-01

    The value of a passive, maintenance-free, renewable energy source was immediately recognized in the early days of the space program, and the silicon solar cell, despite its infancy, was quickly pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved because of a variety of factors, ranging from improvements in silicon single crystal material, to better device designs, to a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. This paper will give a brief overview of some of the opportunities and challenges for space photovoltaic applications, and will discuss some of the current reseach directed at achieving high efficiency and controlling the effects of radiation damage in space solar cells.

  6. Space solar cell research: Problems and potential

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1986-01-01

    The value of a passive, maintenance-free, renewable energy source was apparent in the early days of the space program, and the silicon solar cell was pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved through improvements in silicon single crystal material, better device designs, and a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. A brief overview of some of the opportunities and challenges for space photovoltaic applications is given, and some of the current research directed at achieving high efficiency and controlling radiation damage in space solar cells is discussed.

  7. Summary of solar cell data from the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank

    1994-01-01

    The contractor has obtained and reviewed data relating solar cells assemblies (SCA's) flown as part of the following LDEF experiments: the Advanced Photovoltaic Experiment (S0014); the Solar Array Materials Passive LDEF Experiment (A0171); the Advanced Solar Cell and Coverglass Analysis Experiment (M0003-4); the LDEF Heat Pipe Experiment (S1001); the Evaluation of Thermal Control Coatings Y Solar Cells Experiment (S1002); and the Space Plasma-High Voltage Drainage Experiment (A0054). Where possible, electrical data have been tabulated and correlated with various environmental effects, including meteoroid and debris impacts, radiation exposure, atomic oxygen exposure, contamination, UV radiation exposure, and thermal cycling. The type, configuration, and location of all SCA's are documented here. By gathering all data and results together, a comparison of the survivability of the various types and configurations can be made.

  8. Nano-photonic Light Trapping In Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Callahan, Dennis M., Jr.

    Over the last several decades there have been significant advances in the study and understanding of light behavior in nanoscale geometries. Entire fields such as those based on photonic crystals, plasmonics and metamaterials have been developed, accelerating the growth of knowledge related to nanoscale light manipulation. Coupled with recent interest in cheap, reliable renewable energy, a new field has blossomed, that of nanophotonic solar cells. In this thesis, we examine important properties of thin-film solar cells from a nanophotonics perspective. We identify key differences between nanophotonic devices and traditional, thick solar cells. We propose a new way of understanding and describing limits to light trapping and show that certain nanophotonic solar cell designs can have light trapping limits above the so called ray-optic or ergodic limit. We propose that a necessary requisite to exceed the traditional light trapping limit is that the active region of the solar cell must possess a local density of optical states (LDOS) higher than that of the corresponding, bulk material. Additionally, we show that in addition to having an increased density of states, the absorber must have an appropriate incoupling mechanism to transfer light from free space into the optical modes of the device. We outline a portfolio of new solar cell designs that have potential to exceed the traditional light trapping limit and numerically validate our predictions for select cases. We emphasize the importance of thinking about light trapping in terms of maximizing the optical modes of the device and efficiently coupling light into them from free space. To further explore these two concepts, we optimize patterns of superlattices of air holes in thin slabs of Si and show that by adding a roughened incoupling layer the total absorbed current can be increased synergistically. We suggest that the addition of a random scattering surface to a periodic patterning can increase incoupling by lifting the constraint of selective mode occupation associated with periodic systems. Lastly, through experiment and simulation, we investigate a potential high efficiency solar cell architecture that can be improved with the nanophotonic light trapping concepts described in this thesis. Optically thin GaAs solar cells are prepared by the epitaxial liftoff process by removal from their growth substrate and addition of a metallic back reflector. A process of depositing large area nano patterns on the surface of the cells is developed using nano imprint lithography and implemented on the thin GaAs cells.

  9. Development of a large area space solar cell assembly

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.

    1982-01-01

    The development of a large area high efficiency solar cell assembly is described. The assembly consists of an ion implanted silicon solar cell and glass cover. The important attributes of fabrication are the use of a back surface field which is compatible with a back surface reflector, and integration of coverglass application and cell fabrications. Cell development experiments concerned optimization of ion implantation processing of 2 ohm-cm boron-doped silicon. Process parameters were selected based on these experiments and cells with area of 34.3 sq cm wre fabricated. The average AMO efficiency of the twenty-five best cells was 13.9% and the best bell had an efficiency of 14.4%. An important innovation in cell encapsulation was also developed. In this technique, the coverglass is applied before the cell is sawed to final size. The coverglass and cell are then sawed as a unit. In this way, the cost of the coverglass is reduced, since the tolerance on glass size is relaxed, and costly coverglass/cell alignment procedures are eliminated. Adhesive investigated were EVA, FEP-Teflon sheet and DC 93-500. Details of processing and results are reported.

  10. Design and fabrication of solar cell modules

    NASA Technical Reports Server (NTRS)

    Shaughnessy, T. P.

    1978-01-01

    A program conducted for design, fabrication and evaluation of twelve silicon solar cell modules is described. The purpose of the program was to develop a module design consistent with the requirements and objectives of JPL specification and to also incorporate elements of new technologies under development to meet LSSA Project goals. Module development emphasized preparation of a technically and economically competitive design based upon utilization of ion implanted solar cells and a glass encapsulation system. The modules fabricated, tested and delivered were of nominal 2 X 2 foot dimensions and 20 watt minimum rating. Basic design, design rationale, performance and results of environmental testing are described.

  11. Solar cell array with lightweight support structure

    SciTech Connect

    Gounder, R.N.

    1983-07-19

    A panel comprising an aluminum honeycomb core and outer face skins of Kevlar, a bi-directional epoxy-reinforced polyparabenzamide fabric which is a thermal and electrical insulator adhering to the core and forming the opposite flat surfaces of the panel. Solar cells are glued directly to one face skin while a set of epoxy-reinforced carbon fiber stiffeners are glued to the other face skin. The composite structure has a coefficient of thermal expansion closely matching that of the solar cells providing a very lightweight and stiff structure.

  12. High throughput solar cell ablation system

    DOEpatents

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  13. High performance polymer tandem solar cell.

    PubMed

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd Rashid Bin; Jang, Jin

    2015-01-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells. PMID:26669577

  14. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  15. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2015-07-21

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  16. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2014-07-22

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

  17. High performance polymer tandem solar cell

    PubMed Central

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd. Rashid bin; Jang, Jin

    2015-01-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells. PMID:26669577

  18. High throughput solar cell ablation system

    SciTech Connect

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2014-10-14

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  19. Solar cell having improved back surface reflector

    NASA Technical Reports Server (NTRS)

    Chai, A. T. (inventor)

    1982-01-01

    The operating temperature is reduced and the output of a solar cell is increased by using a solar cell which carries electrodes in a grid finger pattern on its back surface. These electrodes are sintered at the proper temperature to provide good ohmic contact. After sintering, a reflective material is deposited on the back surface by vacuum evaporation. Thus, the application of the back surface reflector is separate from the back contact formation. Back surface reflectors formed in conjunction with separate grid finger configuration back contacts are more effective than those formed by full back metallization of the reflector material.

  20. High performance polymer tandem solar cell

    NASA Astrophysics Data System (ADS)

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd. Rashid Bin; Jang, Jin

    2015-12-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells.

  1. A review of high-efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Rohatgi, A.

    Various parameters that affect solar cell efficiency were discussed. It is not understood why solar cells produced from less expensive Czochralski (Cz) silicon are less efficient than cells fabricated from more expensive float-zone (Fz) silicon. Performance characteristics were presented for recently produced, high-efficient solar cells fabricated by Westinghouse Electric Corp., Spire Corp., University of New South Wales, and Stanford University.

  2. Solar Cell Modules with Parallel Oriented Interconnections

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Twenty-four solar modules, half of which were 48 cells in an all-series electrical configuration and half of a six parallel cells by eight series cells were provided. Upon delivery of environmentally tested modules, low power outputs were discovered. These low power modules were determined to have cracked cells which were thought to cause the low output power. The cracks tended to be linear or circular which were caused by different stressing mechanisms. These stressing mechanisms were fully explored. Efforts were undertaken to determine the causes of cell fracture. This resulted in module design and process modifications. The design and process changes were subsequently implemented in production.

  3. GaAs solar cell development

    NASA Technical Reports Server (NTRS)

    Knechtli, R. C.; Kamath, S.; Loo, R.

    1977-01-01

    The motivation for developing GaAs solar cells is based on their superior efficiency when compared to silicon cells, their lower degradation with increasing temperature, and the expectation for better resistance to space radiation damage. The AMO efficiency of GaAs solar cells was calculated. A key consideration in the HRL technology is the production of GaAs cells of large area (greater than 4 sg cm) at a reasonable cost without sacrificing efficiency. An essential requirement for the successful fabrication of such cells is the ability to grow epitaxially a uniform layer of high quality GaAs (buffer layer) on state-of-the-art GaAs substrates, and to grow on this buffer layer the required than layer of (AlGa)As. A modified infinite melt liquid phase epitaxy (LPE) growth technique is detailed.

  4. Advances in solar cell welding technology

    NASA Astrophysics Data System (ADS)

    Chidester, L. G.; Lott, D. R.

    In addition to developing the rigid substrate welded conventional cell panels for an earlier U.S. flight program, LMSC recently demonstrated a welded lightweight array system using both 2 x 4 and 5.9 x 5.9 cm wraparound solar cells. This weld system uses infrared sensing of weld joint temperature at the cell contact metalization interface to precisely control weld energy on each joint. Modules fabricated using this weld control system survived low-earth-orbit simulated 5-year tests (over 30,000 cycles) without joint failure. The data from these specifically configured modules, printed circuit substrate with copper interconnect and dielectric wraparound solar cells, can be used as a basis for developing weld schedules for additional cell array panel types.

  5. Gaalas/Gaas Solar Cell Process Study

    NASA Technical Reports Server (NTRS)

    Almgren, D. W.; Csigi, K. I.

    1980-01-01

    Available information on liquid phase, vapor phase (including chemical vapor deposition) and molecular beam epitaxy growth procedures that could be used to fabricate single crystal, heteroface, (AlGa) As/GaAs solar cells, for space applications is summarized. A comparison of the basic cost elements of the epitaxy growth processes shows that the current infinite melt LPE process has the lower cost per cell for an annual production rate of 10,000 cells. The metal organic chemical vapor deposition (MO-CVD) process has the potential for low cost production of solar cells but there is currently a significant uncertainty in process yield, i.e., the fraction of active material in the input gas stream that ends up in the cell. Additional work is needed to optimize and document the process parameters for the MO-CVD process.

  6. Performance of single crystalline silicon solar cell with irradiance

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Purohit, A.; Nehra, Anshu; Nehra, S. P.; Dhaka, M. S.

    2015-06-01

    In this paper, the effect of irradiance on the performance parameters of single crystalline silicon solar cell is undertaken. The experiment was carried out employing solar cell simulator with varying irradiance in the range 115-550W/m2 at constant cell temperature 25°C. The results show that the short circuit current is found to be increased linearly with irradiance and the open circuit voltage is increased slightly. The fill factor, maximum power and cell efficiency are also found to be increased with irradiance. The efficiency is increased linearly at lower irradiance while slightly increased at higher. The results revealed that the irradiance has a dominant effect on the performance parameters. The results are in good agreement with the available literature.

  7. Multi-junction solar cell device

    DOEpatents

    Friedman, Daniel J. (Lakewood, CO); Geisz, John F. (Wheat Ridge, CO)

    2007-12-18

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  8. Solar Energy Experiments for High School and College Students.

    ERIC Educational Resources Information Center

    Norton, Thomas W.; And Others

    This publication contains eighteen experiments and eight classroom activities. The experiments are of varying difficulty and cover the important aspects of solar energy utilization. Each experiment is self-contained, with its own introduction and background information. Energy measurements are emphasized and techniques for collector efficiency…

  9. Solar Energy Experiments for High School and College Students.

    ERIC Educational Resources Information Center

    Norton, Thomas W.; And Others

    This publication contains eighteen experiments and eight classroom activities. The experiments are of varying difficulty and cover the important aspects of solar energy utilization. Each experiment is self-contained, with its own introduction and background information. Energy measurements are emphasized and techniques for collector efficiency…

  10. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2014-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.

  11. Nanostructured inorganic/polymer solar cells

    NASA Astrophysics Data System (ADS)

    Gowrishankar, Vignesh

    The use of polymers in solar cells shows great promise for achieving high power-conversion efficiencies at low cost. Polymers have the distinct advantage of being easily solution-processable, while possibly having larger absorption coefficients than conventional inorganic semiconductors. Thus, small amounts of cheaply-processed polymer can be used to make inexpensive solar cells. However, polymers suffer from poor exciton (electron-hole pair) diffusion lengths which are significantly smaller than the typical thicknesses needed by polymers to absorb a large number of solar photons. While other solutions to this problem exist, one promising solution is the use of an ordered nanostructure comprising an inorganic-semiconductor scaffold with infiltrated polymer, which essentially facilitates strong absorption and efficient exciton harvesting concomitantly. Other advantages of such a nanostructure include improved charge extraction and greater control over charge transfer and other processes occurring at the semiconductor interface. In this thesis, I first present an analysis supporting the need for cheaper solar cells, after which I provide the reader with relevant background on nanostructured inorganic/polymer solar cells. Next, I describe the fabrication process for making suitable nanostructures in silicon and hydrogenated amorphous-silicon (a-Si:H). Nanopillared a-Si:H can be directly used as a scaffold for making polymer-based, nanostructured solar cells. The complete device physics of the a-Si:H/polymer system is then studied. It is found that energy transfer can occur from the polymers to a-Si:H. The nanostructured devices are found to exhibit improved efficiency compared to planar (bilayer) devices. However, even higher efficiencies are expected on switching the scaffold material from a-Si:H to a non-absorber such as titania. The fabrication process for creating a nanostructured scaffold in titania, using soft-lithography, is then described. Solar cells made using the titania scaffold are indeed more efficient. Finally, I present some ideas for achieving power-conversion efficiencies > 5%. The appendix features a high-efficiency solar cell containing a polymer that does not absorb much light but performs other vital functions.

  12. Thin Film Solar Array Experiment Of "IKAROS" In Space

    NASA Astrophysics Data System (ADS)

    Tanaka, Koji; Soma, Eriko; Yokota, Rikio; Shimazaki, Kazunori; Hosoda, Satoshi; Ikaros Demonstration Team

    2011-10-01

    We developed a light weight and a flexible solar power generation system that is installed on the small solar power demonstrator "IKAROS" (Interplanetary Kite- craft Accelerated by Radiation Of the Sun). IKAROS was launched on 21 May 2010 with "AKATSUKI" toward the Venus. IKAROS's sail made of polyimide with a thickness of 7.5 micro meters has a square shape with the diagonal length of 20 m and is fitted with the thin film solar arrays, the steering devices and dust- counter sensors. This paper describes the structural consideration of the solar array and comparison between the results of the onboard data of the thin film solar array and the results of the space environmental evaluation tests of the thin film solar cell using the ground facilities.

  13. Landsat 7 Solar Array Testing Experiences

    NASA Technical Reports Server (NTRS)

    Helfrich, Daniel

    2000-01-01

    This paper covers the extensive Landsat 7 solar array flight qualification testing effort. Details of the mechanical design of the solar array and its retention/release system are presented. A testing chronology is provided beginning with the onset of problems encountered at the subsystem level and carrying through the third and final powered-spacecraft ground deployment test. Design fixes and other changes are explained in the same order as they became necessary to flight-qualify the array. Some interesting lessons learned are included along with key references.

  14. The Solar Array Module Plasma Interactions Experiment (SAMPIE): Science and technology objectives

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry

    1992-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is an approved NASA Space Shuttle space flight experiment to be launched in Jul. 1993. The SAMPIE experiment is designed to investigate the interaction of high voltage space power systems with ionospheric plasma. To study the behavior of solar cells, a number of cell coupons, representing technologies of current interest, will be biased to high voltages to characterize both negative potential arcing and positive potential current collection. Additionally, various theories of arc suppression will be tested by including several specially modified cell coupons. Finally, SAMPIE will include experiments to study the basic nature of these interactions. The rationale for a space flight experiment, the measurements to be made, the significance of the expected results, and the current design status of the flight hardware are described.

  15. Evaluation of solar cells for potential space satellite power applications

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The evaluation focused on the following subjects: (1) the relative merits of alternative solar cell materials, based on performance and availability, (2) the best manufacturing methods for various solar cell options and the effects of extremely large production volumes on their ultimate costs and operational characteristics, (3) the areas of uncertainty in achieving large solar cell production volumes, (4) the effects of concentration ratios on solar array mass and system performance, (5) the factors influencing solar cell life in the radiation environment during transport to and in geosynchronous orbit, and (6) the merits of conducting solar cell manufacturing operations in space.

  16. Nanostructured Semiconductor Device Design in Solar Cells

    NASA Astrophysics Data System (ADS)

    Dang, Hongmei

    We demonstrate the use of embedded CdS nanowires in improving spectral transmission loss and the low mechanical and electrical robustness of planar CdS window layer and thus enhancing the quantum efficiency and the reliability of the CdS-CdTe solar cells. CdS nanowire window layer enables light transmission gain at 300nm-550nm. A nearly ideal spectral response of quantum efficiency at a wide spectrum range provides an evidence for improving light transmission in the window layer and enhancing absorption and carrier generation in absorber. Nanowire CdS/CdTe solar cells with Cu/graphite/silver paste as back contacts, on SnO2/ITO-soda lime glass substrates, yield the highest efficiency of 12% in nanostructured CdS-CdTe solar cells. Reliability is improved by approximately 3 times over the cells with the traditional planar CdS counterpart. Junction transport mechanisms are delineated for advancing the basic understanding of device physics at the interface. Our results prove the efficacy of this nanowire approach for enhancing the quantum efficiency and the reliability in windowabsorber type solar cells (CdS-CdTe, CdS-CIGS and CdS-CZTSSe etc) and other optoelectronic devices. We further introduce MoO3-x as a transparent, low barrier back contact. We design nanowire CdS-CdTe solar cells on flexible foils of metals in a superstrate device structure, which makes low-cost roll-to-roll manufacturing process feasible and greatly reduces the complexity of fabrication. The MoO3 layer reduces the valence band offset relative to the CdTe, and creates improved cell performance. Annealing as-deposited MoO3 in N 2 reduces series resistance from 9.98 O/cm2 to 7.72 O/cm2, and hence efficiency of the nanowire solar cell is improved from 9.9% to 11%, which efficiency comparable to efficiency of planar counterparts. When the nanowire solar cell is illuminated from MoO 3-x /Au side, it yields an efficiency of 8.7%. This reduction in efficiency is attributed to decrease in Jsc from 25.5mA/cm2 to 21mA/cm2 due to light transmission loss in the MoO 3-x /Au electrode. Even though these nanowire solar cells, when illuminated from back side exhibit better performance than that of nanopillar CdS-CdTe solar cells, further development of transparent back contacts of CdTe could enable a low-cost roll-to-roll fabrication process for the superstrate structure-nanowire solar cells on Al foil substrate.

  17. Photonic crystal geometry for organic solar cells.

    PubMed

    Ko, Doo-Hyun; Tumbleston, John R; Zhang, Lei; Williams, Stuart; DeSimone, Joseph M; Lopez, Rene; Samulski, Edward T

    2009-07-01

    We report organic solar cells with a photonic crystal nanostructure embossed in the photoactive bulk heterojunction layer, a topography that exhibits a 3-fold enhancement of the absorption in specific regions of the solar spectrum in part through multiple excitation resonances. The photonic crystal geometry is fabricated using a materials-agnostic process called PRINT wherein highly ordered arrays of nanoscale features are readily made in a single processing step over wide areas (approximately 4 cm(2)) that is scalable. We show efficiency improvements of approximately 70% that result not only from greater absorption, but also from electrical enhancements. The methodology is generally applicable to organic solar cells and the experimental findings reported in our manuscript corroborate theoretical expectations. PMID:19492804

  18. High-performance silicon nanohole solar cells.

    PubMed

    Peng, Kui-Qing; Wang, Xin; Li, Li; Wu, Xiao-Ling; Lee, Shuit-Tong

    2010-05-26

    We demonstrate Si nanohole arrays as a superior sunlight-absorbing nanostructure for photovoltaic solar cell applications. Under 1 sun AM1.5G illumination, a Si nanohole solar cell with p-n junctions via P diffusion exhibited a open-circuit voltage of 566.6 mV, a short-circuit current density of 32.2 mA/cm(2), and a remarkable power conversion efficiency of 9.51%, which is higher than that of its counterparts based on Si nanowires, planar Si, and pyramid-textured Si. The nanohole array geometry presents a novel and viable method fo cost-efficient solar energy conversion. PMID:20426468

  19. Bandgap tuning of multiferroic oxide solar cells

    NASA Astrophysics Data System (ADS)

    Nechache, R.; Harnagea, C.; Li, S.; Cardenas, L.; Huang, W.; Chakrabartty, J.; Rosei, F.

    2015-01-01

    Multiferroic films are increasingly being studied for applications in solar energy conversion because of their efficient ferroelectric polarization-driven carrier separation and above-bandgap generated photovoltages, which in principle can lead to energy conversion efficiencies beyond the maximum value (˜34%) reported in traditional silicon-based bipolar heterojunction solar cells. However, the efficiency reported so far is still too low (<2%) to be considered for commercialization. Here, we demonstrate a new approach to effectively tune the bandgap of double perovskite multiferroic oxides by engineering the cationic ordering for the case of Bi2FeCrO6. Using this approach, we report a power conversion efficiency of 8.1% under AM 1.5 G irradiation (100 mW cm-2) for Bi2FeCrO6 thin-film solar cells in a multilayer configuration.

  20. The properties and production of solar cells

    NASA Astrophysics Data System (ADS)

    Hill, R.

    The operational characteristics, techniques of large scale production, the use, and materials for solar cells are reviewed. Attention is given to optimizing cell performance. A maximum theoretical efficiency of 40% is possible, with laboratory specimens thus far attaining 20% levels and mass-produced cells 10-18%. Series and parallel connections of cells in modules to yield specific outputs are considered, together with nominal construction considerations to make the modules resistant to environmental corrosion and the effects of shading from other modules. Ribbon, crystal ingot, and thin film production technologies are discussed, with mention made of the fact that crystalline cells are more expensive, yet have the highest efficiencies, while thin films offer low-cost, mass-production advantages although only 5% efficiencies have been attained with production-scale thin films. Finally, solar cell materials, including Si, CdS, InP, GaAs, and CdTe are investigated, along with prospects for indigenous solar cell production facilities in various countries.

  1. Electrical overstress failure in silicon solar cells

    SciTech Connect

    Pease, R.L.; Barnum, J.R.; van Lint, V.A.J.; Vulliet, W.V.; Wrobel, T.F.

    1982-11-01

    A solar-cell electrical-overstress-failure model and the results of experimental measurements of threshold pulsed failure currents on four types of silicon solar cells are presented. The transient EMP field surrounding a lightning stroke has been identified as a potential threat to a photovoltaic array, yet failure analysis of solar cells in a pulsed environment had not previously been reported. Failure in the low-resistivity concentrator cells at pulse widths between 1 ..mu..s and 1 ms occurred initially in the junction. Finger damage in the form of silver melting occurs at currents only slightly greater than that required for junction damage. The result of reverse-bias transient-overstress tests on high-resistivity (10 ..cap omega..cm) cells demonstrated that the predominant failure mode was due to edge currents. These flat-plate cells failed at currents of only 4 to 20 A, which is one or two orders of magnitude below the model predictions. It thus appears that high-resistivity flat-plate cells are quite vulnerable to electrical overstress which could be produced by a variety of mechanisms.

  2. Electrical overstress failure in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Pease, R. L.; Barnum, J. R.; Vanlint, V. A. J.; Vulliet, W. V.; Wrobel, T. F.

    1982-11-01

    A solar-cell electrical-overstress-failure model and the results of experimental measurements of threshold pulsed failure currents on four types of silicon solar cells are presented. The transient electromagnet pulse field surrounding a lightning stroke was identified as a potential threat to a photovoltaic array, yet failure analysis of solar cells in a pulsed environment had not previously been reported. Failure in the low-resistivity concentrator cells at pulse widths between 1 SIGMA and 1 ms occurred initially in the junction. Finger damage in the form of silver melting occurs at currents only slightly greater than that required for junction damage. The result of reverse-bias transient-overstress tests on high-resistivity (10 LAMBDA cm) cells demonstrated that the predominant failure mode was due to edge currents. These flat-plate cells failed at currents of only 4 to 20 A, which is one or two orders of magnitude below the model predictions. It thus appears that high-resistivity flat-plate cells are quite vulnerable to electrical overstress which could be produced by a variety of mechanisms.

  3. Burst annealing of high temperature GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Brothers, P. R.; Horne, W. E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles.

  4. Center punched solar cell module development effort

    NASA Technical Reports Server (NTRS)

    Ross, R. E.; Mortensen, W. E.

    1978-01-01

    The results are given of an advanced module development program with the objective of providing a low cost solar cell mechanical interconnect design. The design approach, which avoids soldering or welding operations, lends itself to automated assembly techniques thus supporting the Low-Cost Silicon Solar Array Project goals. The first group of six modules contained aluminum contact cells and the second group of six modules contained silver-titanium-palladium contact cells. Extensive component and environmental testing at the module level showed that reliable cell mechanical interconnection can be achieved when utilizing the proper electrical contact materials and pressures. A discussion is given of the module design, manufacturing procedure, test program, significant problem areas and solutions, and conclusions and recommendations as formulated and conducted by XEOS.

  5. Hot electron plasmon-protected solar cell.

    PubMed

    Kong, J; Rose, A H; Yang, C; Wu, X; Merlo, J M; Burns, M J; Naughton, M J; Kempa, K

    2015-09-21

    A solar cell based on a hot electron plasmon protection effect is proposed and made plausible by simulations, non-local modeling of the response, and quantum mechanical calculations. In this cell, a thin-film, plasmonic metamaterial structure acts as both an efficient photon absorber in the visible frequency range and a plasmonic resonator in the IR range, the latter of which absorbs and protects against phonon emission the free energy of the hot electrons in an adjacent semiconductor junction. We show that in this structure, electron-plasmon scattering is much more efficient than electron-phonon scattering in cooling-off hot electrons, and the plasmon-stored energy is recoverable as an additional cell voltage. The proposed structure could become a prototype of a new generation of high efficiency solar cells. PMID:26406739

  6. Studies of silicon pn junction solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.

    1977-01-01

    Modifications of the basic Shockley equations that result from the random and nonrandom spatial variations of the chemical composition of a semiconductor were developed. These modifications underlie the existence of the extensive emitter recombination current that limits the voltage over the open circuit of solar cells. The measurement of parameters, series resistance and the base diffusion length is discussed. Two methods are presented for establishing the energy bandgap narrowing in the heavily-doped emitter region. Corrections that can be important in the application of one of these methods to small test cells are examined. Oxide-charge-induced high-low-junction emitter (OCI-HLE) test cells which exhibit considerably higher voltage over the open circuit than was previously seen in n-on-p solar cells are described.

  7. Harmful Shunting Mechanisms Found in Silicon Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-05-01

    Scientists developed near-field optical microscopy for imaging electrical breakdown in solar cells and identified critical electrical breakdown mechanisms operating in industrial silicon and epitaxial silicon solar cells.

  8. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J. (Lawrenceville, NJ)

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  9. Metalizing Solar Cells by Selective Electroplating

    NASA Technical Reports Server (NTRS)

    Dutta, S.; Palaschak, P. A.

    1986-01-01

    Contact patterns traced by laser scanning. Conductor paths deposited on silicon solar-cell wafers by laser irradiation followed by electroplating. Laser-assisted metalization technique offers better resolution and lower contact resistance than does conventional metalization by screen printing. At the same time, less expensive than metalization with masks and photolithography.

  10. Perovskite Solar Cells: Beyond Methylammonium Lead Iodide.

    PubMed

    Boix, Pablo P; Agarwala, Shweta; Koh, Teck Ming; Mathews, Nripan; Mhaisalkar, Subodh G

    2015-03-01

    Organic-inorganic lead halide based perovskites solar cells are by far the highest efficiency solution-processed solar cells, threatening to challenge thin film and polycrystalline silicon ones. Despite the intense research in this area, concerns surrounding the long-term stability as well as the toxicity of lead in the archetypal perovskite, CH3NH3PbI3, have the potential to derail commercialization. Although the search for Pb-free perovskites have naturally shifted to other transition metal cations and formulations that replace the organic moiety, efficiencies with these substitutions are still substantially lower than those of the Pb-perovskite. The perovskite family offers rich multitudes of crystal structures and substituents with the potential to uncover new and exciting photophysical phenomena that hold the promise of higher solar cell efficiencies. In addressing materials beyond CH3NH3PbI3, this Perspective will discuss a broad palette of elemental substitutions, solid solutions, and multidimensional families that will provide the next fillip toward market viability of the perovskite solar cells. PMID:26262670

  11. Screening Mechanically-Defective Solar Cells

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1987-01-01

    Flexure test eliminates failure-prone wafers before further processing. Probability of cracking of silicon solar cells substantially reduced by mechanical proof testing of silicon wafers before further processing, according to report. Report based on study demonstrating weak wafers eliminated by subjecting all wafers in manufacturing batch to biaxial-flexure test.

  12. Low cost silicon solar cell array

    NASA Technical Reports Server (NTRS)

    Bartels, F. T. C.

    1974-01-01

    The technological options available for producing low cost silicon solar cell arrays were examined. A project value of approximately $250/sq m and $2/watt is projected, based on mass production capacity demand. Recommendations are included for the most promising cost reduction options.

  13. Method of fabricating a solar cell

    DOEpatents

    Pass, Thomas; Rogers, Robert

    2014-02-25

    Methods of fabricating solar cells are described. A porous layer may be formed on a surface of a substrate, the porous layer including a plurality of particles and a plurality of voids. A solution may be dispensed into one or more regions of the porous layer to provide a patterned composite layer. The substrate may then be heated.

  14. Phthalocyanine Blends Improve Bulk Heterojunction Solar Cells

    PubMed Central

    Varotto, Alessandro; Nam, Chang-Yong; Radivojevic, Ivana; Tomé, Joao; Cavaleiro, José A.S.; Black, Charles T.; Drain, Charles Michael

    2010-01-01

    A core phthalocyanine platform allows engineering the solubility properties the band gap; shifting the maximum absorption toward the red. A simple method to increase the efficiency of heterojunction solar cells uses a self-organized blend of the phthalocyanine chromophores fabricated by solution processing. PMID:20136126

  15. Screen printed interdigitated back contact solar cell

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.; Mazaris, G. A.; Chai, A. T. (Inventor)

    1984-01-01

    Interdigitated back contact solar cells are made by screen printing dopant materials onto the back surface of a semiconductor substrate in a pair of interdigitated patterns. These dopant materials are then diffused into the substrate to form junctions having configurations corresponding to these patterns. Contacts having configurations which match the patterns are then applied over the junctions.

  16. Studies of heteroface solar cell performance

    NASA Technical Reports Server (NTRS)

    Feucht, D. L.; Milnes, A. G.

    1975-01-01

    The development, fabrication, and failure modes of AlxGa(1-x)As-GaAs heteroface solar cells are described. Crystal growth, the diffusion of Zn into the GaAs layer to form the p-n junction, SEM studies of the diffusion length of GaAs, and procedures for making ohmic contacts are discussed.

  17. Aluminum doping improves silicon solar cells

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Aluminum doped silicon solar cells with resistivities in the 10- to 20-ohm centimeter range have broad spectral response, high efficiency and long lifetimes in nuclear radiation environments. Production advantages include low material rejection and increased production yields, and close tolerance control.

  18. Metal electrode for amorphous silicon solar cells

    DOEpatents

    Williams, Richard (Princeton, NJ)

    1983-01-01

    An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

  19. Glasses for Solar-Cell Arrays

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1982-01-01

    Report presents data on glass for encapsulation of solar-cell arrays, with special emphasis on materials and processes for automated high-volume production of low-cost arrays. Commercial suppliers of glass are listed. Factors that affect the cost of glass are examined: type (sheet, float, or plate), formulation, and energy consumed in manufacturing.

  20. Fast Electronic Solar Cell Tester

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Saylor, C. R.

    1983-01-01

    Microcomputer controlled system gather current and voltage data. System consists of light source, microcomputer, programable dc power supply, analog/ digital interface, and data storage display equipment. Applies series of test loads to cell via programable dc power supply to obtain I/V characteristic curve and key cell-peformance parameter. Apparatus and programming technique are applicable to devices such as batteries and sensors.

  1. Plastic Schottky barrier solar cells

    DOEpatents

    Waldrop, James R.; Cohen, Marshall J.

    1984-01-24

    A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.

  2. Development of economical improved thick film solar cell contact

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1979-01-01

    Metal screened electrodes were investigated with base metal pastes and silver systems being focused upon. Contact resistance measurements were refined. A facility allowing fixing in hydrogen and other atmospheres was acquired. Several experiments were made applying screenable pastes to solar cells. Doping investigations emphasized eutectic alloys reduced to powders. Metal systems were reviewed and base metal experiments were done with nickel and copper using lead and tin as the frit metals. Severe adhesion problems were experienced with hydrogen atmospheres in all metal systems. A two step firing schedule was devised. Aluminum-silicon and aluminum-germanium eutectic doping additions to copper pastes were tried on 2 1/4 in diameter solar cell back contacts, both with good results.

  3. GaAs solar cell development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The four (AlGa)As-GaAs solar cells were fabricated and will be delivered for radiation damage testing using 1 MeV electrons. These cells were LPE grown at 700 C for 4 minutes. The junction depth was measured to be 0.3 micron using a secondary electron microscope. The radiation model for the shallow junction cells was verified. Some mesa diodes were also fabricated and will be irradiated along with the cells for parallel evaluations of their electrical characteristics.

  4. High efficiency ultrathin silicon solar cells

    NASA Technical Reports Server (NTRS)

    Storti, G.; Wrigley, C. Y.

    1979-01-01

    This paper summarizes developments in ultrathin, (50 micron), silicon solar cells for high power-to-weight ratio space power systems. The fabrication technology developments included uniformly thinning oriented silicon slices, enhancement of internal reflection, optimizing high-temperature processes, surface texturing and back surface field enhancement. The best textured-surface ultrathin cells have achieved 14.3% AMO efficiency, while pilot-manufacturing quantities of smooth-surfaced cells have been fabricated with efficiencies of 12%. Data are presented on cell structure, fabrication collection efficiencies and optical properties.

  5. High efficiency silicon MINP solar cells

    SciTech Connect

    Olsen, L.C.; Addis, F.W.; Dunham, G.; Miller, W.A.

    1984-05-01

    Investigations of high efficiency MINP silicon solar cells are discussed. Emphasis is placed on cell characterization to develop a basic understanding of current transport mechanisms which limit cell efficiency. Fabrication and characterization of cells are discussed which are based on 0.2 ohm-cm substrates, diffused emitters on the order of 0.15 to 0.20 ..mu..m deep, and with Mg MIS collector grids. A total area, AM1 efficiency of 16.8% has been achieved. Detailed analyses of photocurrent and currentloss mechanisms are presented and utilized to predict future directions of research.

  6. Status of silicon solar cell technology

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1976-01-01

    Major progress in solar cell technology leading to increased efficiency has occurred since 1970. Technical approaches leading to this increased output include surface texturing, improved antireflection coatings, reduced grid pattern area coverage, shallow junctions and back surface fields. The status of these developments and their incorporation into cell production is discussed. Future research and technology trends leading to further efficiency increases and substantial cost reductions are described.

  7. Diketopyrrolopyrrole Polymers for Organic Solar Cells.

    PubMed

    Li, Weiwei; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J

    2016-01-19

    Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a result, the power conversion efficiencies (PCEs) of solar cells based on conjugated polymers as electron donor and fullerene derivatives as electron acceptor have exceeded 10% in single-junction and 11% in multijunction devices. Despite these efforts, it is notoriously difficult to establish thorough structure-property relationships that will be required to further optimize existing high-performance polymers to their intrinsic limits. In this Account, we highlight progress on the development and our understanding of diketopyrrolopyrrole (DPP) based conjugated polymers for polymer solar cells. The DPP moiety is strongly electron withdrawing and its polar nature enhances the tendency of DPP-based polymers to crystallize. As a result, DPP-based conjugated polymers often exhibit an advantageously broad and tunable optical absorption, up to 1000 nm, and high mobilities for holes and electrons, which can result in high photocurrents and good fill factors in solar cells. Here we focus on the structural modifications applied to DPP polymers and rationalize and explain the relationships between chemical structure and organic photovoltaic performance. The DPP polymers can be tuned via their aromatic substituents, their alkyl side chains, and the nature of the π-conjugated segment linking the units along the polymer chain. We show that these building blocks work together in determining the molecular conformation, the optical properties, the charge carrier mobility, and the solubility of the polymer. We identify the latter as a decisive parameter for DPP-based organic solar cells because it regulates the diameter of the semicrystalline DPP polymer fibers that form in the photovoltaic blends with fullerenes via solution processing. The width of these fibers and the photon energy loss, defined as the energy difference between optical band gap and open-circuit voltage, together govern to a large extent the quantum efficiency for charge generation in these blends and thereby the power conversion efficiency of the photovoltaic devices. Lowering the photon energy loss and maintaining a high quantum yield for charge generation is identified as a major pathway to enhance the performance of organic solar cells. This can be achieved by controlling the structural purity of the materials and further control over morphology formation. We hope that this Account contributes to improved design strategies of DPP polymers that are required to realize new breakthroughs in organic solar cell performance in the future. PMID:26693798

  8. Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal

    NASA Technical Reports Server (NTRS)

    Masters, R. M.

    1975-01-01

    A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.

  9. High efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. Tang

    1986-01-01

    A review of the entire research program since its inception ten years ago is given. The initial effort focused on the effects of impurities on the efficiency of silicon solar cells to provide figures of maximum allowable impurity density for efficiencies up to about 16 to 17%. Highly accurate experimental techniques were extended to characterize the recombination properties of the residual imputities in the silicon solar cell. A numerical simulator of the solar cell was also developed, using the Circuit Technique for Semiconductor Analysis. Recent effort focused on the delineation of the material and device parameters which limited the silicon efficiency to below 20% and on an investigation of cell designs to break the 20% barrier. Designs of the cell device structure and geometry can further reduce recombination losses as well as the sensitivity and criticalness of the fabrication technology required to exceed 20%. Further research is needed on the fundamental characterization of the carrier recombination properties at the chemical impurity and physical defect centers. It is shown that only single crystalline silicon cell technology can be successful in attaining efficiencies greater than 20%.

  10. Piezoresistance and solar cell efficiency

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.

    1987-01-01

    Diffusion-induced stresses in silicon are shown to result in large localized changes in the minority-carrier mobility which in turn can have a significant effect on cell output. Evidence is given that both compressive and tensile stresses can be generated in either the emitter or the base region. Tensile stresses in the base appear to be much more effective in altering cell performance than do compressive stresses. While most stress-related effects appear to degrade cell efficiency, this is not always the case. Evidence is presented showing that arsenic-induced stresses can result in emitter characteristics comparable to those found in the MINP cell without requiring a high degree of surface passivation.

  11. Labeling Solar-Cell Modules

    NASA Technical Reports Server (NTRS)

    Watson, E. G.; Coyle, P. J.

    1984-01-01

    Photocopying machine produces durable identification label. Process used for double glass photovoltaic-cell modules. Matrix of cells sandwiched between thin, flexible glass mats and covered above and below by protective sheets of glass. Label contains such information as manufacturer, model number, voltage and power ratings, and serial number. May also contain electrical-shock hazard warning and identification of positive and negative terminals. Method saves expense of procuring and applying conventional labels.

  12. The NASA program for standardizing silicon solar cells

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.; Forestieri, A. F.

    1974-01-01

    The program is discussed which was initiated to formulate standard silicon solar cell and cover specifications. The program includes (1) compilation of solar cell and cover specifications, both past and present (2) elicitation of inputs from major users and suppliers and (3) establishment of tentative standardized solar cell and cover specifications.

  13. Solar-Cell Cover Glass Would Reduce Reflectance Loss

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1991-01-01

    Proposed faceted cover glass takes advantage of total internal reflection to increase efficiency of solar photovoltaic cell. Angled facets of cover glass refract light as it enters. Portion of light reflected at surface of solar cell undergoes total internal reflection at surface of cover glass, rather than partially escaping, and returns to surface of solar cell.

  14. Flexible thermal cycle test equipment for concentrator solar cells

    DOEpatents

    Hebert, Peter H.; Brandt, Randolph J.

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  15. Photon ratchet intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Ekins-Daukes, N. J.; Farrell, D. J.; Phillips, C. C.

    2012-06-01

    In this paper, we propose an innovative concept for solar power conversion—the "photon ratchet" intermediate band solar cell (IBSC)—which may increase the photovoltaic energy conversion efficiency of IBSCs by increasing the lifetime of charge carriers in the intermediate state. The limiting efficiency calculation for this concept shows that the efficiency can be increased by introducing a fast thermal transition of carriers into a non-emissive state. At 1 sun, the introduction of a "ratchet band" results in an increase of efficiency from 46.8% to 48.5%, due to suppression of entropy generation.

  16. Space solar cell technology development - A perspective

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  17. Hypervelocity Impact Studies on Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Best, Stevie R.

    2001-01-01

    Space environmental effects have caused severe problems as satellites move toward increased power and operating voltage levels. The greatest unknown, however, is the effect of high velocity micrometeoroid impacts on high voltage arrays (>200V). Understanding such impact phenomena is necessary for the design of future reliable, high voltage solar arrays, especially for Space Solar Power applications. Therefore, the objective of this work was to study the effect of hypervelocity impacts on high voltage solar arrays. Initially, state of the art, 18% efficient GaAs solar cell strings were targeted. The maximum bias voltage on a two-cell string was -200 V while the adjacent string was held at -140 V relative to the plasma potential. A hollow cathode device provided the plasma. Soda lime glass particles 40-120 micrometers in diameter were accelerated in the Hypervelocity Impact Facility to velocities as high as 11.6 km/sec. Coordinates and velocity were obtained for each of the approximately 40 particle impact sites on each shot. Arcing did occur, and both discharging and recharging of arcs between the two strings was observed. The recharging phenomena appeared to stop at approximately 66V string differential. No arcing was observed at 400 V on concentrator cell modules for the Stretched Lens Array.

  18. Solar Airplanes and Regenerative Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    2007-01-01

    A solar electric aircraft with the potential to "fly forever" has captured NASA's interest, and the concept for such an aircraft was pursued under Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project. Feasibility of this aircraft happens to depend on the successful development of solar power technologies critical to NASA's Exploration Initiatives; hence, there was widespread interest throughout NASA to bring these technologies to a flight demonstration. The most critical is an energy storage system to sustain mission power during night periods. For the solar airplane, whose flight capability is already limited by the diffuse nature of solar flux and subject to latitude and time of year constraints, the feasibility of long endurance flight depends on a storage density figure of merit better than 400-600 watt-hr per kilogram. This figure of merit is beyond the capability of present day storage technologies (other than nuclear) but may be achievable in the hydrogen-oxygen regenerative fuel cell (RFC). This potential has led NASA to undertake the practical development of a hydrogen-oxygen regenerative fuel cell, initially as solar energy storage for a high altitude UAV science platform but eventually to serve as the primary power source for NASAs lunar base and other planet surface installations. Potentially the highest storage capacity and lowest weight of any non-nuclear device, a flight-weight RFC aboard a solar-electric aircraft that is flown continuously through several successive day-night cycles will provide the most convincing demonstration that this technology's widespread potential has been realized. In 1998 NASA began development of a closed cycle hydrogen oxygen PEM RFC under the Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project and continued its development, originally for a solar electric airplane flight, through FY2005 under the Low Emissions Alternative Power (LEAP) project. Construction of the closed loop system began in 2002 at the NASA Glenn Research Center in Cleveland, Ohio. System checkout was completed, and testing began, in July of 2003. The initial test sequences were done with only a fuel cell or electrolyzer in the test rig. Those tests were used to verify the test apparatus, procedures, and software. The first complete cycles of the fully closed loop, regenerative fuel cell system were successfully completed in the following September. Following some hardware upgrades to increase reactant recirculation flow, the test rig was operated at full power in December 2003 and again in January 2004. In March 2004 a newer generation of fuel cell and electrolyzer stacks was substituted for the original hardware and these stacks were successfully tested at full power under cyclic operation in June of 2004.

  19. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    PubMed Central

    2009-01-01

    The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  20. Cu(In,Ga)Se2 and Related Solar Cells

    NASA Astrophysics Data System (ADS)

    Rau, Uwe; Schock, Hans W.

    2015-10-01

    The following sections are included: * Introduction * Material properties * Cell and module technology * Device physics * Wide-gap chalcopyrites * Kesterite (CZTS) solar cells * Conclusions * References

  1. Multijunction high voltage concentrator solar cells

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Kapoor, V. J.; Evans, J. C.; Chai, A.-T.

    1981-01-01

    The standard integrated circuit technology has been developed to design and fabricate new innovative planar multi-junction solar cell chips for concentrated sunlight applications. This 1 cm x 1 cm cell consisted of several voltage generating regions called unit cells which were internally connected in series within a single chip resulting in high open circuit voltages. Typical open-circuit voltages of 3.6 V and short-circuit currents of 90 ma were obtained at 80 AM1 suns. A dramatic increase in both short circuit current and open circuit voltage with increased light levels was observed.

  2. Development of integral covers on solar cells

    NASA Technical Reports Server (NTRS)

    Stella, P.; Somberg, H.

    1971-01-01

    The electron-beam technique for evaporating a dielectric material onto solar cells is investigated. A process has been developed which will provide a highly transparent, low stress, 2 mil thick cover capable of withstanding conventional space type qualification tests including humidity, thermal shock, and thermal cycling. The covers have demonstrated the ability to withstand 10 to the 15th power 1 MeV electrons and UV irradiation with minor darkening. Investigation of the cell AR coating has produced a space qualifiable titanium oxide coating which will give an additional 6% current output over similar silicon oxide coated cells when covered by glass.

  3. Accelerated stress testing of terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Prince, J. L.; Lathrop, J. W.

    1979-01-01

    A program to investigate the reliability characteristics of unencapsulated low-cost terrestrial solar cells using accelerated stress testing is described. Reliability (or parametric degradation) factors appropriate to the cell technologies and use conditions were studied and a series of accelerated stress tests was synthesized. An electrical measurement procedure and a data analysis and management system was derived, and stress test fixturing and material flow procedures were set up after consideration was given to the number of cells to be stress tested and measured and the nature of the information to be obtained from the process. Selected results and conclusions are presented.

  4. Rational Strategies for Efficient Perovskite Solar Cells.

    PubMed

    Seo, Jangwon; Noh, Jun Hong; Seok, Sang Il

    2016-03-15

    A long-standing dream in the large scale application of solar energy conversion is the fabrication of solar cells with high-efficiency and long-term stability at low cost. The realization of such practical goals depends on the architecture, process and key materials because solar cells are typically constructed from multilayer heterostructures of light harvesters, with electron and hole transporting layers as a major component. Recently, inorganic-organic hybrid lead halide perovskites have attracted significant attention as light absorbers for the fabrication of low-cost and high-efficiency solar cells via a solution process. This mainly stems from long-range ambipolar charge transport properties, low exciton binding energies, and suitable band gap tuning by managing the chemical composition. In our pioneering work, a new photovoltaic platform for efficient perovskite solar cells (PSCs) was proposed, which yielded a high power conversion efficiency (PCE) of 12%. The platform consisted of a pillared architecture of a three-dimensional nanocomposite of perovskites fully infiltrating mesoporous TiO2, resulting in the formation of continuous phases and perovskite domains overlaid with a polymeric hole conductor. Since then, the PCE of our PSCs has been rapidly increased from 3% to over 20% certified efficiency. The unprecedented increase in the PCE can be attributed to the effective integration of the advantageous attributes of the refined bicontinuous architecture, deposition process, and composition of perovskite materials. Specifically, the bicontinuous architectures used in the high efficiency comprise a layer of perovskite sandwiched between mesoporous metal-oxide layer, which is a very thinner than that of used in conventional dye-sensitized solar cells, and hole-conducting contact materials with a metal back contact. The mesoporous scaffold can affect the hysteresis under different scan direction in measurements of PSCs. The hysteresis also greatly depends on the cell architecture and perovskite composition. In this Account, we will describe what we do with major aspects including (1) the film morphology through the development of intermediate chemistry retarding the rapid reaction between methylammonium or formamidinium iodide and lead halide (PbI2) for improved perovskite film formation; (2) the phase stability and band gap tuning of the perovskite layer through the materials engineering; (3) the development of electron and hole transporting materials for carrier-selective contacting layers; and (4) the adoption of p-i-n and n-i-p architectures depending on the position of the electron or hole conducting layer in front of incident light. Finally, we will summarize the recent incredible achievements in PSCs, and finally provide challenges facing the future development and commercialization of PSCs. PMID:26950188

  5. Solar Constant (SOLCON) Experiment: Ground Support Equipment (GSE) software development

    NASA Technical Reports Server (NTRS)

    Gibson, M. Alan; Thomas, Susan; Wilson, Robert

    1991-01-01

    The Solar Constant (SOLCON) Experiment, the objective of which is to determine the solar constant value and its variability, is scheduled for launch as part of the Space Shuttle/Atmospheric Laboratory for Application and Science (ATLAS) spacelab mission. The Ground Support Equipment (GSE) software was developed to monitor and analyze the SOLCON telemetry data during flight and to test the instrument on the ground. The design and development of the GSE software are discussed. The SOLCON instrument was tested during Davos International Solar Intercomparison, 1989 and the SOLCON data collected during the tests are analyzed to study the behavior of the instrument.

  6. Device Physics of Nanoscale Interdigitated Solar Cells (Poster)

    SciTech Connect

    Metzger, W.; Levi, D.

    2008-05-01

    Nanoscale interdigitated solar cell device architectures are being investigated for organic and inorganic solar cell devices. Due to the inherent complexity of these device designs quantitative modeling is needed to understand the device physics. Theoretical concepts have been proposed that nanodomains of different phases may form in polycrystalline CIGS solar cells. These theories propose that the nanodomains may form complex 3D intertwined p-n networks that enhance device performance.Recent experimental evidence offers some support for the existence of nanodomains in CIGS thin films. This study utilizes CIGS solar cells to examine general and CIGS-specific concepts in nanoscale interdigitated solar cells.

  7. New technology developments of solar cell fabrication by NEDO

    SciTech Connect

    Katsumata, Hiroshi; Ihara, Takuro; Tatekura, Fujio

    1994-12-31

    The development of solar cell fabrication technologies is being conducted in the 1993--96 segment of the ``New Sunshine Program.`` To date, a conversion efficiency of above 20% has been obtained with solar cells using III-V-group compound semiconductors and single crystal silicon. Challenging R and D is under way on solar cells using amorphous silicon, polycrystalline silicon, and compound thin film, designed to lower solar cell production costs. This paper describes the goals, content, and present situations of development with these solar cell fabrication technologies.

  8. Production technology for high efficiency ion implanted solar cells

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.; Minnucci, J. A.; Greenwald, A. C.; Josephs, R. H.

    1978-01-01

    Ion implantation is being developed for high volume automated production of silicon solar cells. An implanter designed for solar cell processing and able to properly implant up to 300 4-inch wafers per hour is now operational. A machine to implant 180 sq m/hr of solar cell material has been designed. Implanted silicon solar cells with efficiencies exceeding 16% AM1 are now being produced and higher efficiencies are expected. Ion implantation and transient processing by pulsed electron beams are being integrated with electrostatic bonding to accomplish a simple method for large scale, low cost production of high efficiency solar cell arrays.

  9. Semi-transparent inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Winkler, T.; Tilgner, M.; Flügge, H.; Schmale, S.; Bülow, T.; Meyer, J.; Johannes, H.-H.; Riedl, T.; Kowalsky, W.

    2009-08-01

    We will present efficient semi-transparent bulk-heterojunction [regioregular of poly(3-hexylthiophene): (6,6)-phenyl C61 butyric acid methyl ester] solar cells with an inverted device architecture. Highly transparent ZnO and TiO2 films prepared by Atomic Layer Deposition are used as cathode interlayers on top of ITO. The topanode consists of a RF-sputtered ITO layer. To avoid damage due to the plasma deposition of this layer, a sputtering buffer layer of MoO3 is used as protection. This concept allows for devices with a transmissivity higher than 60 % for wavelengths 650 nm. The thickness of the MoO3 buffer has been varied in order to study its effect on the electrical properties of the solar cell and its ability to prevent possible damage to the organic active layers upon ITO deposition. Without this buffer or for thin buffers it has been found that device performance is very poor concerning the leakage current, the fill factor, the short circuit current and the power conversion efficiencies. As a reference inverted solar cells with a metal electrode (Al) instead of the ITO-top contact are used. The variation between the PCE of top versus conventional illumination of the semi-transparent cells was also examined and will be interpreted in view of the results of the optical simulation of the dielectric device stack with and without reflection top electrode. Power conversion efficiencies of 2-3 % for the opaque inverted solar cells and 1.5-2.5 % for the semi-transparent devices were obtained under an AM1.5G illumination.

  10. Efficient Cells Cut the Cost of Solar Power

    NASA Technical Reports Server (NTRS)

    2013-01-01

    If you visit Glenn Research Center, you might encounter a photovoltaic (PV) array that looks unlike anything you've ever seen. In fact, what one would normally identify as the panel is actually a series of curved mirrors called solar concentrators, engineered to reflect sunlight rather than absorb it. These concentrators gather, intensify, and focus sun beams upward, aiming at a fixture containing specialized silicon concentrated PV chips the actual solar cells. If you stay by the array for a while, you'll notice that the solar concentrators follow the path of the sun throughout the day, changing position to best capture and utilize the sunlight. The specialized chips that make the technology possible are the brainchild of Bernard Sater, an engineer who had worked at Glenn since the early 1960s before retiring to pursue his unique ideas for harnessing solar power. Sater contributed to multiple PV projects in the latter part of his career at the Center, including research and development on the International Space Station s solar arrays. In his spare time, he enjoyed tinkering with new approaches to solar power, experiments that resulted in the system installed at Glenn today. Sater s basic idea had two components. First, he wanted to create a silicon cell that was smaller, more efficient, and much lower cost than those available at the time. To ensure that the potential of such a chip could be realized, he also planned on pairing it with a system that could concentrate sunlight and focus it directly on the cell. When he retired from Glenn in 1994 to focus on researching and developing the technology full time, Sater found that NASA was interested in the concept and ready to provide funding, facilities, and expertise in order to assist in its development.

  11. Recent advances in sensitized mesoscopic solar cells.

    PubMed

    Grätzel, Michael

    2009-11-17

    Perhaps the largest challenge for our global society is to find ways to replace the slowly but inevitably vanishing fossil fuel supplies by renewable resources and, at the same time, avoid negative effects from the current energy system on climate, environment, and health. The quality of human life to a large degree depends upon the availability of clean energy sources. The worldwide power consumption is expected to double in the next 3 decades because of the increase in world population and the rising demand of energy in the developing countries. This implies enhanced depletion of fossil fuel reserves, leading to further aggravation of the environmental pollution. As a consequence of dwindling resources, a huge power supply gap of 14 terawatts is expected to open up by year 2050 equaling today's entire consumption, thus threatening to create a planetary emergency of gigantic dimensions. Solar energy is expected to play a crucial role as a future energy source. The sun provides about 120,000 terawatts to the earth's surface, which amounts to 6000 times the present rate of the world's energy consumption. However, capturing solar energy and converting it to electricity or chemical fuels, such as hydrogen, at low cost and using abundantly available raw materials remains a huge challenge. Chemistry is expected to make pivotal contributions to identify environmentally friendly solutions to this energy problem. One area of great promise is that of solar converters generally referred to as "organic photovoltaic cells" (OPV) that employ organic constituents for light harvesting or charge carrier transport. While this field is still in its infancy, it is receiving enormous research attention, with the number of publications growing exponentially over the past decade. The advantage of this new generation of solar cells is that they can be produced at low cost, i.e., potentially less than 1 U.S. $/peak watt. Some but not all OPV embodiments can avoid the expensive and energy-intensive high vacuum and materials purification steps that are currently employed in the fabrication of all other thin-film solar cells. Organic materials are abundantly available, so that the technology can be scaled up to the terawatt scale without running into feedstock supply problems. This gives organic-based solar cells an advantage over the two major competing thin-film photovoltaic devices, i.e., CdTe and CuIn(As)Se, which use highly toxic materials of low natural abundance. However, a drawback of the current embodiment of OPV cells is that their efficiency is significantly lower than that for single and multicrystalline silicon as well as CdTe and CuIn(As)Se cells. Also, polymer-based OPV cells are very sensitive to water and oxygen and, hence, need to be carefully sealed to avoid rapid degradation. The research discussed within the framework of this Account aims at identifying and providing solutions to the efficiency problems that the OPV field is still facing. The discussion focuses on mesoscopic solar cells, in particular, dye-sensitized solar cells (DSCs), which have been developed in our laboratory and remain the focus of our investigations. The efficiency problem is being tackled using molecular science and nanotechnology. The sensitizer constitutes the heart of the DSC, using sunlight to pump electrons from a lower to a higher energy level, generating in this fashion an electric potential difference, which can exploited to produce electric work. Currently, there is a quest for sensitizers that achieve effective harnessing of the red and near-IR part of sunlight, converting these photons to electricity better than the currently used generation of dyes. Progress in this area has been significant over the past few years, resulting in a boost in the conversion efficiency of the DSC that will be reviewed. PMID:19715294

  12. Process development for single-crystal silicon solar cells

    NASA Astrophysics Data System (ADS)

    Bohra, Mihir H.

    Solar energy is a viable, rapidly growing and an important renewable alternative to other sources of energy generation because of its abundant supply and low manufacturing cost. Silicon still remains the major contributor for manufacturing solar cells accounting for 80% of the market share. Of this, single-crystal solar cells account for half of the share. Laboratory cells have demonstrated 25% efficiency; however, commercial cells have efficiencies of 16% - 20% resulting from a focus on implementation processes geared to rapid throughput and low cost, thereby reducing the energy pay-back time. An example would be the use of metal pastes which dissolve the dielectric during the firing process as opposed to lithographically defined contacts. With current trends of single-crystal silicon photovoltaic (PV) module prices down to 0.60/W, almost all other PV technologies are challenged to remain cost competitive. This presents a unique opportunity in revisiting the PV cell fabrication process and incorporating moderately more expensive IC process practices into PV manufacturing. While they may drive the cost toward a 1/W benchmark, there is substantial room to "experiment", leading to higher efficiencies which will help maintain the overall system cost. This work entails a turn-key process designed to provide a platform for rapid evaluation of novel materials and processes. A two-step lithographic process yielding a baseline 11% - 13% efficient cell is described. Results of three studies have shown improvements in solar cell output parameters due to the inclusion of a back-surface field implant, a higher emitter doping and also an additional RCA Clean.

  13. Silicon solar cell process development, fabrication, and analysis

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Iles, P. A.; Leung, D. C.

    1980-01-01

    Solar cells from HEM, Dendritic Webs, and EFG ribbons were fabricated and characterized. The HEM solar cells showed only slight enhancement in cell performance after gettering steps (diffusion glass) were added. Dendritic webs from various growth runs indicated that performance of solar cells made from the webs was not as good as that of the conventional CZ cells. The EFG ribbons grown in CO ambient showed significant improvement in silicon quality.

  14. Development of standardized specifications for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.

    1977-01-01

    A space silicon solar cell assembly (cell and coverglass) specification aimed at standardizing the diverse requirements of current cell or assembly specifications was developed. This specification was designed to minimize both the procurement and manufacturing costs for space qualified silicon solar cell assembilies. In addition, an impact analysis estimating the technological and economic effects of employing a standardized space silicon solar cell assembly was performed.

  15. Highly efficient light management for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  16. Review on the application of nanostructure materials in solar cells

    NASA Astrophysics Data System (ADS)

    Afshar, Elham N.; Xosrovashvili, Georgi; Rouhi, Rasoul; Gorji, Nima E.

    2015-07-01

    In recent years, nanostructure materials have opened a promising route to future of the renewable sources, especially in the solar cells. This paper considers the advantages of nanostructure materials in improving the performance and stability of the solar cell structures. These structures have been employed for various performance/energy conversion enhancement strategies. Here, we have investigated four types of nanostructures applied in solar cells, where all of them are named as quantum solar cells. We have also discussed recent development of quantum dot nanoparticles and carbon nanotubes enabling quantum solar cells to be competitive with the conventional solar cells. Furthermore, the advantages, disadvantages and industrializing challenges of nanostructured solar cells have been investigated.

  17. Highly efficient light management for perovskite solar cells

    PubMed Central

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112

  18. Highly efficient light management for perovskite solar cells.

    PubMed

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112

  19. The small community solar thermal power experiment

    NASA Astrophysics Data System (ADS)

    Kiceniuk, T.

    1981-05-01

    Contractors were asked to develop a preferred system concept, to perform sensitivity analyses, and to outline recommended approaches for the follow-on design program of a one-megawatt solar thermal demonstration plant. The systems recommended by the contractors in each of the categories were: (1) McDonnell-Douglas Astronautics Company: Central tower with field of south-facing heliostats; (2) General Electric Company: Field of parabolic dishes with steam piped to a central turbine-generator unit; and (3) Ford Aerospace and Communications Corporation: Field of parabolic dishes with a Stirling cycle engine/generator unit at the focus of each dish. A description of each of the proposed experimental plants is given.

  20. Gravitation experiments during the total solar eclipse

    SciTech Connect

    Kuusela, T.; Jaeykkae, J.; Kiukas, J.; Multamaeki, T.; Ropo, M.; Vilja, I.

    2006-12-15

    The variations of the apparent vertical direction of the gravity field were measured with horizontal gravimeters acting as tilt meters during the total solar eclipse in Turkey in March 29, 2006. Three separated locations within the path of totality were chosen for observations, two spaced apart along the center line, and one off the center line. No anomaly was observed at the furthest location from the center line. Aperiodic oscillations in tilt were recorded at the two locations on the center line. These may be related to the eclipse phenomenon. The average tilt amplitude deviation during the eclipse over all locations and in all directions was 150 nrad, which can be regarded as a mean upper limit for the eclipse related changes in the tilt.

  1. Theoretical simulations of InGaN/Si mechanically stacked two-junction solar cell

    NASA Astrophysics Data System (ADS)

    Li, Zhidong; Xiao, Hongling; Wang, Xiaoliang; Wang, Cuimei; Deng, Qingwen; Jing, Liang; Ding, Jieqin; Hou, Xun

    2013-04-01

    In this study, potential efficiency of InGaN/Si mechanically stacked two-junction solar cell is theoretically investigated by optimizing the band gap and thickness of the top InGaN cell. Results show that the optimum conversion efficiency is 35.2% under AM 1.5 G spectral illuminations, with the bandgap and thickness of top InGaN solar cell are 2.0 eV and 600 nm, respectively. The results and discussion would be helpful in designing and fabricating high efficiency InGaN/Si mechanically stacked solar cell in experiment.

  2. High Concentrating GaAs Cell Operation Using Optical Waveguide Solar Energy System

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Case, J. A.; Timmons, M. L.

    2004-01-01

    This paper discusses the result of the concentrating photovoltaic (CPV) cell experiments conducted with the Optical Waveguide (OW) Solar Energy System. The high concentration GaAs cells developed by Research Triangle Institute (RTI) were combined with the OW system in a "fiber-on-cell" configuration. The sell performance was tested up to the solar concentration of 327. Detailed V-I characteristics, power density and efficiency data were collected. It was shown that the CPV cells combined with the OW solar energy system will be an effective electric power generation device.

  3. Development of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Solar cells and mesa diodes were fabricated by the implantation of zinc or beryllium ions into n-type gallium arsenide. Annealing temperatures above 750 C (zinc) or 650 C (beryllium) were found to produce 50% to 100% activation of the implanted ions. Junction depths of about 0.4 micron were produced by 600 keV zinc implants or 70 keV beryllium implants. P-layer sheet resistance was about 150 ohms for 2 x 10 to the 15th power cm/2 zinc or 1 x 10 to the 15th power cm/2 beryllium implants. This is sufficiently low for efficient solar cell fabrication. Contacting procedures were improved to yield reproducibly adherent, low resistance front and back contacts.

  4. Advanced Solar Cell Testing and Characterization

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Curtis, Henry; Piszczor, Michael

    2005-01-01

    The topic for this workshop stems from an ongoing effort by the photovoltaic community and U.S. government to address issues and recent problems associated with solar cells and arrays experienced by a number of different space systems. In April 2003, a workshop session was held at the Aerospace Space Power Workshop to discuss an effort by the Air Force to update and standardize solar cell and array qualification test procedures in an effort to ameliorate some of these problems. The organizers of that workshop session thought it was important to continue these discussions and present this information to the entire photovoltaic community. Thus, it was decided to include this topic as a workshop at the following SPRAT conference.

  5. Anomalous Hysteresis in Perovskite Solar Cells.

    PubMed

    Snaith, Henry J; Abate, Antonio; Ball, James M; Eperon, Giles E; Leijtens, Tomas; Noel, Nakita K; Stranks, Samuel D; Wang, Jacob Tse-Wei; Wojciechowski, Konrad; Zhang, Wei

    2014-05-01

    Perovskite solar cells have rapidly risen to the forefront of emerging photovoltaic technologies, exhibiting rapidly rising efficiencies. This is likely to continue to rise, but in the development of these solar cells there are unusual characteristics that have arisen, specifically an anomalous hysteresis in the current-voltage curves. We identify this phenomenon and show some examples of factors that make the hysteresis more or less extreme. We also demonstrate stabilized power output under working conditions and suggest that this is a useful parameter to present, alongside the current-voltage scan derived power conversion efficiency. We hypothesize three possible origins of the effect and discuss its implications on device efficiency and future research directions. Understanding and resolving the hysteresis is essential for further progress and is likely to lead to a further step improvement in performance. PMID:26270088

  6. High efficiency porphyrin sensitized mesoscopic solar cells

    NASA Astrophysics Data System (ADS)

    Giordano, Fabrizio; Yi, Chenyi; Teuscher, Joël.; Zakeeruddin, Shaik M.; Grätzel, Michael

    2014-10-01

    Dye-Sensitized Solar Cells (DSSC) represents a reliable technology, ready for the market and able to compete with silicon solar cells for specific fields of application. Porphyrin dyes allow reaching high power conversion efficiency in conjunction with cobalt redox electrolytes due to larger open circuit potentials. The bigger size of the cobalt complexes compared to standard iodide/triiodide redox couple hampers its percolation through the meso-porous TiO2 network, thus impairing the regeneration process. In case of porphyrin dyes mass transport problems in the electrolyte need to be carefully handled, due to the large size of the sensitizing molecule and the bulky cobalt complexes. Herein we report the study of structural variations on porphyrin sensitizers and their influence on the DSSC performance with cobalt based redox electrolyte.

  7. Compensated amorphous-silicon solar cell

    DOEpatents

    Devaud, G.

    1982-06-21

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

  8. LEO effects on conventional and unconventional solar cell cover materials

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.

    1991-01-01

    In 1984, the LDEF (Long Duration Exposure Facility) was placed in LEO (low earth orbit) for a mission planned to last approximately one year. The effects of the LDEF mission environment (micrometeorite/debris impacts, atomic, atomic oxygen, UV, and particulate radiation) on the samples are described. The relative importance of these interactions is highly dependent on orbital altitude. There is no evidence that the impacts with the test samples (including solar cells) caused any electrical degradation. Evidence from a number of LDEF experiments suggests that the majority of the impacts observed on this experiment were of space debris, rather than micrometeorite origin.

  9. Variation of solar cell sensitivity and solar radiation on tilted surfaces

    NASA Technical Reports Server (NTRS)

    Klucher, T. M.

    1978-01-01

    The validity is studied that one of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces. The variation of solar cell sensitivity to solar radiation is determined over a wide range of atmospheric condition. A new model was formulated that reduced the deviations between measured and predicted insolation to less than 3 percent. Evaluation of solar cell sensitivity data indicates small change (2-3 percent) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells is discussed.

  10. Accelerated stress testing of terrestrial solar cells

    SciTech Connect

    Lathrop, J.W.; Hawkins, D.C.; Prince, J.L.; Walker, H.A.

    1982-08-01

    The development of an accelerated test schedule for terrestrial solar cells is described. This schedule, based on anticipated failure modes deduced from a consideration of IC failure mechanisms, involves bias-temperature testing, humidity testing (including both 85-85 and pressure cooker stress), and thermal-cycle thermal-shock testing. Results are described for 12 different unencapsulated cell types. Both gradual electrical degradation and sudden catastrophic mechanical change were observed. These effects can be used to discriminate between cell types and technologies relative to their reliability attributes. Consideration is given to identifying laboratory failure modes which might lead to severe degradation in the field through second quadrant operation. Test results indicate that the ability of most cell types to withstand accelerated stress testing depends more on the manufacturer's design, processing, and worksmanship than on the particular metallization system. Preliminary tests comparing accelerated test results on encapsulated and unencapsulated cells are described.

  11. Gallium arsenide solar cell radiation damage study

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Herbert, G. A.; Kinnison, J. D.; Meulenberg, A.

    1989-01-01

    A thorough analysis has been made of electron- and proton- damaged GaAs solar cells suitable for use in space. It is found that, although some electrical parametric data and spectral response data are quite similar, the type of damage due to the two types of radiation is different. An I-V analysis model shows that electrons damage the bulk of the cell and its currents relatively more, while protons damage the junction of the cell and its voltages more. It is suggested that multiple defects due to protons in a strong field region such as a p/n junction cause the greater degradation in cell voltage, whereas the individual point defects in the quasi-neutral minority-carrier-diffusion regions due to electrons cause the greater degradation in cell current and spectral response.

  12. A light-trapping solar cell coverglass

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1990-01-01

    A novel method of reducing surface reflectivity which eliminates the need to texturize the surface of the cell is presented. A double light pass is achieved by using a light-trapping coverglass which redirects reflected light back to the cell surface by total internal reflection. This technique allows low-reflectance surfaces to be used on planar solar cells, including GaAs and InP, with the benefit of increasing the possible short-circuit current (and hence the efficiency) by 6 to 10 percent with no additional steps added to the cell manufacturing process. The coverglass design also has applications to reduction of grid shadowing and to light trapping within the cell.

  13. Spin dependent photocurrents in ribbon solar cells

    SciTech Connect

    Seager, C.H.; Venturini, E.L.; Schubert, W.K.

    1992-11-01

    Spin Dependent Transport (SDT) is a method of identifying recombination centers which employs a microwave resonance condition to affect the recombination rate of minority carriers in a device. When this technique is used to analyze the diffusion-limited currents produced by long-wavelength optical excitation, it has the potential to chemically identify the major recombination sites in solar cells. We have used this resonance technique to analyze short circuit photocurrents in Edge-defined film-Fed Growth (EFG) ribbon silicon solar cells. At room temperature, our observed photocurrent resonances have zero-crossing g values and linewidths which are similar to SDT observations made on the trans-barrier currents in silicon bicrystals, and electron spin resonance signals seen in damaged silicon, and polycrystalline silicon. These dangling-bond-like SDT signals depend on cell illumination levels in a way that suggests that the values of recombination velocity at electrically active linear boundaries decrease with illumination intensity. Hydrogen processed cells show markedly smaller SDT response, consistent with the passivation of Si dangling bond defects. While most of our SDT observations have been made on n{sup +}/p EFG cells, we suggest that measurements made at low temperatures on other cell structures might uncover resonances due to other recombination centers in this material.

  14. New high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1985-01-01

    A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.

  15. The photophysics of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Sum, Tze Chien

    2014-09-01

    Solution-processed hybrid organic-inorganic perovskite solar cells, a newcomer to the photovoltaic arena, have taken the field by storm with their extraordinary power conversion efficiencies exceeding 17%. In this paper, the photophysics and the latest findings on the carrier dynamics and charge transfer mechanisms in this new class of photovoltaic material will be examined and distilled. Some open photophysics questions will also be discussed.

  16. Solar-Cell-Junction Processing System

    NASA Technical Reports Server (NTRS)

    Bunker, S. N.; Armini, A. J.

    1986-01-01

    System under development reduces equipment costs. Processing system will produce solar-cell junctions on 4 in. (10.2 cm) round silicon wafers at rate of 10 to seventh power per year. System includes non-mass-analyzed ion implanter, microcomputer-controlled, pulsed-electron-beam annealer, and wafertransport system with vacuum interlock. These features eliminate large, expensive magnet and plates, circuitry, and power source otherwise needed for scanning.

  17. High efficiency silicon solar cell review

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P. (Editor)

    1975-01-01

    An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.

  18. Investigation of a CTS solar cell test patch under simulated geomagnetic substorm charging conditions

    NASA Technical Reports Server (NTRS)

    Bogus, K. P.

    1977-01-01

    The CTS solar array technology experiment which consists of a solar cell test patch on the Kapton-substrate solar array and the appertaining electronics unit has been operating in geostationary orbit for nearly 1 year without any malfunction although it is expected to be strongly influenced by charging effects on the array surface. The results of a post-launch test program show that the experiment would not survive a discharge due to electrostatic charging in the test patch area. In a simulated substorm, environment discharges were obtained only below a temperature threshold of about 30 C. With solar illumination, this threshold is reduced below 0 C.

  19. Outgassing of Flown and Unflown MIR Solar Cells

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Kinard, William H.; Wilson, Linda A.

    2000-01-01

    A solar panel array with more than ten years space exposure was removed from the Mir core module in November 1997, and an eight panel section was returned to Earth in January 1998. Several solar cells were removed from panel eight of the returned array and placed in a high vacuum system with a residual gas analyzer (200 amu mass spectrometer) and a cold finger. Similar unflown solar cells of the same vintage were later obtained from Energia. Several of the unflown cells were also placed in the vacuum system and outgassed residues were collected on the LN2 cold finger. Almost 3 mg of outgassed residue was collected -from a string of three unflown solar cells over a period of 94 hours under vacuum. The collected residue was weighed with a microbalance, and then the residue was analyzed by FTIR spectroscopy, and by gas chromatograph-mass spectroscopy. About 25 outgassed constituents were separated by the gas chromatograph, and a high-resolution mass spectrum was obtained of each constituent. Molecular identifications have been made for the constituents. The constituents are primarily cyclic siloxanes, and several of the constituents are isomers of the same molecule. Most of the outgassed constituents have a molecular mass of about 500 amu. Almost one mg of residue was extracted from one sq cm of coverglass/adhesive from a flown solar cell by soaking in isopropyl alcohol for 30 minutes. The gas chromatograph separated about 20 constituents. The constituents are mostly cyclic siloxanes with linear branches, hydrocarbons, and phthalates. The typical molecular mass is about 600 amu. These identifications of specific outgassing molecules have resulted in a more complete understanding of the SiO(x) contamination on the Mir solar cell coverglasses, and on the MEEP experiment trays and optical specimens during the Shuttle-Mir Phase One flight experiment program. Adjusted outgassing rates based on the data reported here, and/or measured outgassing rates and specific molecular identifications of ISS hardware samples are needed to input into model predictions of induced environment effects of the ISS.

  20. Advances in simulation study on organic small molecular solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Guo, Wenge; Li, Ming; Ma, Wentao; Meng, Sen

    2015-02-01

    Recently, more focuses have been put on organic semiconductors because of its advantages, such as its flexibility, ease of fabrication and potential low cost, etc. The reasons we pay highlight on small molecular photovoltaic material are its ease of purification, easy to adjust and determine structure, easy to assemble range units and get high carrier mobility, etc. Simulation study on organic small molecular solar cells before the experiment can help the researchers find relationship between the efficiency and structure parameters, properties of material, estimate the performance of the device, bring the optimization of guidance. Also, the applicability of the model used in simulation can be discussed by comparison with experimental data. This paper summaries principle, structure, progress of numerical simulation on organic small molecular solar cells.

  1. Bipolar polaron pair recombination in polymer/fullerene solar cells

    NASA Astrophysics Data System (ADS)

    Kupijai, Alexander J.; Behringer, Konstantin M.; Schaeble, Florian G.; Galfe, Natalie E.; Corazza, Michael; Gevorgyan, Suren A.; Krebs, Frederik C.; Stutzmann, Martin; Brandt, Martin S.

    2015-12-01

    We present a study of the rate-limiting spin-dependent charge-transfer processes in different polymer/fullerene bulk-heterojunction solar cells at 10 K . Observing central spin-locking signals in pulsed electrically detected magnetic resonance and an inversion of Rabi oscillations in multifrequency electron-double-resonance spectroscopy, we find that the spin response of both spin-coated and printed P3HT/PCBM and spin-coated PCDTBT/PCBM solar cells at low temperatures is governed by bipolar polaron pair recombination and quantitatively determine the polaron-polaron coupling strength with double electron-electron resonance experiments. Furthermore spin Hahn echo decay and inversion recovery measurements are performed to measure spin coherence and recombination times of the polaron pairs, respectively.

  2. Atomic Layer Deposition of zinc oxide for solar cell applications

    NASA Astrophysics Data System (ADS)

    Moret, M.; Abou Chaaya, A.; Bechelany, M.; Miele, P.; Robin, Y.; Briot, O.

    2014-11-01

    Atomic Layer Deposition (ALD) is a vapor phase thin film deposition technique, performed at low substrate temperatures, which enables the deposition of extremely uniform thin films. This technique is scalable up to very large substrates, making it very interesting for industrial applications. On the other hand, ZnO, both undoped and aluminum doped is commonly used as a transparent electrode in solar cells based on Cu(In,Ga)Se2 (CIGS), and is usually deposited by Physical Vapor Deposition techniques. In this paper, we investigate the potential of ALD for the deposition of ZnO windows for solar cell applications. Thin films of a few hundreds of nanometers were grown by ALD, both undoped and doped with aluminum. They were studied by X-ray diffraction, electrical transport measurements, Atomic Force Microscopy and transmittance experiments.

  3. Nanomaterials Enabled Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Dong, Pei

    Dye sensitized solar cells (DSCs), as the third generation of solar cells, have attracted tremendous attention for their unique properties. The semi-transparent nature, low-cost, environmental friendliness, and convenient manufacturing conditions of this generation of solar cells are promising aspects of DSCs that make them competitive in their future applications. However, much improvement in many aspects of DSCs' is required for the realization of its full potential. In this thesis, various nanomaterials, such as graphene, multi wall carbon nanotubes, vertically aligned single wall carbon nanotubes, hybrid structures and etc, have been used to improve the performance of DSCs. First, the application of graphene covered metal grids as transparent conductive electrodes in DSCs is explored. It is demonstrated that the mechanical properties of these flexible hybrid transparent electrodes, in both bending and stretching tests, are better than their oxide-based counter parts. Moreover, different kinds of carbon nanotubes, for instance vertically aligned single wall carbon nanotubes, have been used as a replacement for traditional platinum counter electrodes, in both iodine electrolyte, and sulfide-electrolyte. Further, a flexible, seamlessly connected, 3-dimensional vertically-aligned few wall carbon nanotubes graphene hybrid structures on Ni foil as DSCs' counter electrodes improve their efficiency significantly. All these nanomaterials enabled DSCs architectures achieve a comparable or better performance than standard brittle platinum/fluorine doped tin oxide combination. The large surface area of such nanomaterials in addition to the high electrical conductivity and their mechanical robustness provides a platform for significant enhancements in DSCs' performance.

  4. SAGE: Solar Neutrino Data from SAGE, the Russian-American Gallium Solar Neutrino Experiment

    DOE Data Explorer

    SAGE Collaboration

    SAGE is a solar neutrino experiment based on the reaction 71Ga + n goes to 71Ge + e-. The 71Ge atoms are chemically extracted from a 50-metric ton target of Ga metal and concentrated in a sample of germane gas mixed with xenon. The atoms are then individually counted by observing their decay back to 71Ga in a small proportional counter. The distinguishing feature of the experiment is its ability to detect the low-energy neutrinos from proton-proton fusion. These neutrinos, which are made in the primary reaction that provides the Sun's energy, are the major component of the solar neutrino flux and have not been observed in any other way. To shield the experiment from cosmic rays, it is located deep underground in a specially built facility at the Baksan Neutrino Observatory in the northern Caucasus mountains of Russia. Nearly 100 measurements of the solar neutrino flux have been made during 1990-2000, and their combined result is a neutrino capture rate that is well below the prediction of the Standard Solar Model. The significant suppression of the solar neutrino flux that SAGE and other solar neutrino experiments have observed gives a strong indication for the existence of neutrino oscillations. [copied from the SAGE homepage at http://ewi.npl.washington.edu/SAGE/SAGE.html

  5. Perovskite solar cells: High voltage from ordered fullerenes

    NASA Astrophysics Data System (ADS)

    Yan, Yanfa

    2016-01-01

    The open-circuit voltage is one of the parameters determining the efficiency of solar cells in converting solar radiation to electricity. Reducing the structural disorder in fullerene electron-transport layers is now shown to significantly improve the open-circuit voltage of perovskite solar cells.

  6. Multilayer, Front-Contact Grid for Solar Cells

    NASA Technical Reports Server (NTRS)

    Milnes, A. G.; Flat, A.

    1982-01-01

    Proposed multilayer, front-contact grid structure for solar cells optimizes collection of photogenerated current with minimum power losses. It is constructed of several layers of conducting grids. With multilayer concept, peak efficiency can occur at higher output-power levels. Because of this, higher solar concentrations can be applied to solar-cell arrays.

  7. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1975-01-01

    Variations in temperatures used in experimental processing and their effect on the resulting solar cell performance parameters were investigated. Diffusion temperature variation results in a fairly distinct optimum cell performance for diffusion temperatures in the immediate vicinity of 850 C. An additional effort was also devoted to redesign of the matallization gridline pattern for both minimum light blockage and minimum fill factor alteration due to series resistance. Efforts on improvement of tantalum oxide antireflection coatings were undertaken. Fifty 2 cm x 2 cm cells having a range of thicknesses have been submitted as the first sample group. These cells were processed under conditions tentatively identified during this first contractual quarter's experiments as being optimal for resulting cell performance.

  8. (abstract) Scaling Nominal Solar Cell Impedances for Array Design

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L; Wallace, Matthew T.; Iles, Peter

    1994-01-01

    This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.

  9. V-grooved silicon solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.; Brandhorst, H. W.

    1975-01-01

    Silicon solar cells with macroscopic V-shaped grooves and microscopically texturized surfaces have been made by preferential etching techniques. Various conditions for potassium hydroxide and hydrazine hydrate etching were investigated. Optical reflection losses from these surface were reduced. The reduced reflection occurred at all wavelengths and resulted in improved short circuit current and spectral response. Improved collection efficiency is also expected from this structure due to generation of carriers closer to the cell junction. Microscopic point measurements of collected current using a scanning electron microscope showed that current collected at the peaks of the texturized surface were only 80% of those collected in the valleys.

  10. Inversion layer solar cell fabrication and evaluation

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Inversion layer solar cells have been fabricated by etching through the diffused layer on p-type silicon wafers in a comb-like contact pattern. The charge separation comes from an induced p-n junction at the surface. This inverted surface is caused by a layer of transparent material applied to the surface that either contains free positive ions or that creates donor states at the interface. Cells have increased from 3 ma Isc to 100 ma by application of sodium silicate. The action is unstable, however, and decays with time.

  11. V-grooved silicon solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.; Brandhorst, H. W., Jr.

    1975-01-01

    Silicon solar cells with macroscopic V-shaped grooves and microscopically texturized surfaces were made by preferential etching techniques. Various conditions for potassium hydroxide and hydrazine hydrate etching were investigated. Optical reflection losses from these surface were reduced. The reduced reflection occurred at all wavelengths and resulted in improved short circuit current and spectral response. Improved collection efficiency is also expected from this structure due to generation of carriers closer to the cell junction. Microscopic point measurements of collected current using a scanning electron microscope showed that current collected at the peaks of the texturized surface were only 80 percent of those collected in the valleys.

  12. AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.; Mcneely, J. B.; Barnett, A. M.

    1991-01-01

    The AstroPower self-supporting, transparent AlGaAs top solar cell can be stacked upon any well-developed bottom solar cell for improved system performance. This is an approach to improve the performance and scale of space photovoltaic power systems. Mechanically stacked tandem solar cell concentrator systems based on the AlGaAs top concentrator solar cell can provide near term efficiencies of 36 percent (AMO, 100x). Possible tandem stack efficiencies greater than 38 percent (100x, AMO) are feasible with a careful selection of materials. In a three solar cell stack, system efficiencies exceed 41 percent (100x, AMO). These device results demonstrate a practical solution for a state-of-the-art top solar cell for attachment to an existing, well-developed solar cell.

  13. Modeling of high efficiency solar cells under laser pulse for power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1994-01-01

    Solar cells have been used to convert sunlight to electrical energy for many years and also offer great potential for non-solar energy conversion applications. Their greatly improved performance under monochromatic light compared to sunlight, makes them suitable as photovoltaic (PV) receivers in laser power beaming applications. Laser beamed power to a PV array receiver could provide power to satellites, an orbital transfer vehicle, or a lunar base. Gallium arsenide (GaAs) and indium phosphide (InP) solar cells have calculated efficiencies of more than 50 percent under continuous illumination at the optimum wavelength. Currently high power free-electron lasers are being developed which operate in pulsed conditions. Understanding cell behavior under a laser pulse is important in the selection of the solar cell material and the laser. An experiment by NAsA lewis and JPL at the AVLIS laser facility in Livermore, CA presented experimental data on cell performance under pulsed laser illumination. Reference 5 contains an overview of technical issues concerning the use of solar cells for laser power conversion, written before the experiments were performed. As the experimental results showed, the actual effects of pulsed operation are more complicated. Reference 6 discusses simulations of the output of GaAs concentrator solar cells under pulsed laser illumination. The present paper continues this work, and compares the output of Si and GaAs solar cells.

  14. A Comparative Study of the Prospective Solar Cells for NPSAT1

    NASA Astrophysics Data System (ADS)

    Mitchell, Sherri R.

    2002-09-01

    The Naval Postgraduate School's next satellite to be launched will be the technology demonstration experiment NPSAT1 in 2006. This satellite will be laden with some of the school's top research projects including on orbit solar cell I-V curve testing. The designers of this satellite were presented with three types of solar cells with which to power their satellite: silicon, gallium arsenide, and triple junction cells. This thesis evaluates those three types of cells on the merits of their advertised and tested efficiency, cost, performance, and reaction to radiation experiments. Although the triple junction cells have already been selected to provide solar power to the onboard experiments, the background justification for such cells is warranted.

  15. Manufacture and testing of a solar panel assembly comprising bifacial solar cells (AMOC-SPA)

    NASA Astrophysics Data System (ADS)

    Hoffmann, Uwe; Koch, Juergen W.

    1989-08-01

    The concept, manufacture and testing of the Solar Panel Assembly (SPA) are described. Bifacial solar cells, flexible harness, striped substrates and blanket integrated cushioning are all features of this solar panel. The SPA is designed to be modular. The power output, for an operating voltage of 7.2 V, was approximately 100 W for 192 5 cm by 5 cm solar cells, each under front and rear side illumination. Results of further tests and of a flight acceptance test are presented.

  16. Measurement and Characterization of Concentrator Solar Cells II

    NASA Technical Reports Server (NTRS)

    Scheiman, Dave; Sater, Bernard L.; Chubb, Donald; Jenkins, Phillip; Snyder, Dave

    2005-01-01

    Concentrator solar cells are continuing to get more consideration for use in power systems. This interest is because concentrator systems can have a net lower cost per watt in solar cell materials plus ongoing improvements in sun-tracking technology. Quantitatively measuring the efficiency of solar cells under concentration is difficult. Traditionally, the light concentration on solar cells has been determined by using a ratio of the measured solar cell s short circuit current to that at one sun, this assumes that current changes proportionally with light intensity. This works well with low to moderate (<20 suns) concentration levels on "well-behaved" linear cells but does not apply when cells respond superlinearly, current increases faster than intensity, or sublinearly, current increases more slowly than intensity. This paper continues work on using view factors to determine the concentration level and linearity of the solar cell with mathematical view factor analysis and experimental results [1].

  17. Epitaxial solar-cell fabrication, phase 2

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Kressel, H.

    1977-01-01

    Dichlorosilane (SiH2Cl2) was used as the silicon source material in all of the epitaxial growths. Both n/p/p(+) and p/n/n(+) structures were studied. Correlations were made between the measured profiles and the solar cell parameters, especially cell open-circuit voltage. It was found that in order to obtain consistently high open-circuit voltage, the epitaxial techniques used to grow the surface layer must be altered to obtain very abrupt doping profiles in the vicinity of the junction. With these techniques, it was possible to grow reproducibly both p/n/n(+) and n/p/p(+) solar cell structures having open-circuit voltages in the 610- to 630-mV range, with fill-factors in excess of 0.80 and AM-1 efficiencies of about 13%. Combinations and comparisons of epitaxial and diffused surface layers were also made. Using such surface layers, we found that the blue response of epitaxial cells could be improved, resulting in AM-1 short-circuit current densities of about 30 mA/cm sq. The best cells fabricated in this manner had AM-1 efficiency of 14.1%.

  18. Silicon solar cells by ion implantation and pulsed energy processing

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.; Minnucci, J. A.; Shaughnessy, T. S.; Greenwald, A. C.

    1976-01-01

    A new method for fabrication of silicon solar cells is being developed around ion implantation in conjunction with pulsed electron beam techniques to replace conventional furnace processing. Solar cells can be fabricated totally in a vacuum environment at room temperature. Cells with 10% AM0 efficiency have been demonstrated. High efficiency cells and effective automated processing capabilities are anticipated.

  19. A Simple and Inexpensive Solar Energy Experiment.

    ERIC Educational Resources Information Center

    Evans, J. H.; Pedersen, L. G.

    1979-01-01

    An experiment is presented which utilizes the current solid state technology to demonstrate electrochemical generation of hydrogen gas, direct generation of electricity for pumping water, and energy conversion efficiency. The experimental module costs about $100 and can be used repeatedly. (BB)

  20. Transparent antennas for solar cell integration

    NASA Astrophysics Data System (ADS)

    Yasin, Tursunjan

    Transparent patch antennas are microstrip patch antennas that have a certain level of optical transparency. Highly transparent patch antennas are potentially suitable for integration with solar panels of small satellites, which are becoming increasingly important in space exploration. Traditional patch antennas employed on small satellites compete with solar cells for surface area. However, a transparent patch antenna can be placed directly on top of solar cells and resolve the issue of competing for limited surface real estate. For such an integration, a high optical transparency of the patch antenna is required from the solar cells' point of view. On the other hand, the antenna should possess at least acceptable radiation properties at the same time. This dissertation focuses on some of the most important concerns from the perspective of small satellite applications. For example, an optimization method to simultaneously improve both optical transparency and radiation efficiency of the antenna is studied. Active integrated antenna design method is extended to meshed patch applications in an attempt to improve the overall power efficiency of the front end communication subsystem. As is well known, circular polarization is immune from Faraday rotation effect in the ionosphere and thus can avoid a 3-dB loss in geo-satellite communication. Therefore, this research also aims to present design methods for circularly polarized meshed patch antennas. Moreover, a meshed patch antenna capable of supporting a high communication data rate is investigated. Lastly, other types of transparent patch antennas are also analyzed and compared to meshed patches. In summary, many properties of transparent patch antennas are examined in order to meet different design requirements.