These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Experiment Based Teaching of Solar Cell Operation and Characterization Using the SolarLab Platform  

E-print Network

S. V. Spataru, D. Sera, T. Kerekes, R. Teodorescu Department of Energy Technology Aalborg University of Energy Technology, Aalborg University. Keywords: characterization, experiment based, modelling, solar of crystalline silicon and thin film solar cells under variable illumination conditions, temperature, angle

Sera, Dezso

2

A Dust Characterization Experiment for Solar Cells Operating on Mars  

NASA Technical Reports Server (NTRS)

During the Viking and Pathfinder missions to Mars, significant amounts of dust accumulated on the spacecrafts. In Pathfinder's case, the dust obscured the solar panels on the lander and the rover degrading their output current. The material adherence experiment aboard the Pathfinder rover quantified the rate of decrease in short circuit current at 0.28% per day. This rate is unacceptably high for long duration missions. In response, NASA has developed the Dust Accumulation and Removal Technology (DART) experiment. DART has three instruments for characterizing dust settling out of the atmosphere and tests two methods to keep dust from settling on solar cells.

Jenkins, Phillip; Landis, Geoffrey A.; Krasowski, Michael; Greer, Lawrence; Wilt, David; Baraona, Cosmo; Scheiman, David; Lekki, John

2001-01-01

3

Solar cell experiments for space: past, present and future  

NASA Astrophysics Data System (ADS)

Since the early beginnings of the space age in the 1950s, solar cells have been considered as the primary choice for long term electrical power generation of satellites and space systems. This is mainly due to their high power/mass ratio and the good scalability of solar modules according to the power requirements of a space mission. During the last decades, detailed solar cell material studies including the non-trivial interaction with high-energy space particles have led to continuous and significant improvements in device efficiency. This allowed the powering of advanced space systems like the International Space Station, rovers on the Martian surface as well as satellites which have helped to understand the universe and our planet. It is noteworthy that in addition to their success in space, these photovoltaic technologies have also broken ground for the application of photovoltaic systems in terrestrial systems. This paper discusses the development of space solar cells, gives insight into related experiments like the analysis of the interaction with space particles and provides an overview on challenges and requirements for future space missions.

Hoheisel, R.; Messenger, S. R.; Lumb, M. P.; Gonzalez, M.; Bailey, C. G.; Scheiman, D. A.; Maximenko, S.; Jenkins, P. P.; Walters, R. J.

2013-03-01

4

Three year performance of the NTS-2 solar cell experiment  

NASA Technical Reports Server (NTRS)

Twelve different solar cell modules from the NTS 2 experiment are functioning after more than three years in a severe trapped radiation orbit of 20,367 km (10,990 nm) circular, 63 deg inclination. The rate of maximum power degradation may be fit to a predicted rate which is based on twice the value of 1 MeV electron equivalent damage fluence calculated from the space electron model AEI 7. The photovoltaic parameters of the cells are compared to their original values to demonstrate rank order of performance.

Statler, R. L.; Walker, D. H.

1980-01-01

5

Solar-cell power system for the BESS Polar Experiment  

NASA Astrophysics Data System (ADS)

The Balloon-born Experiment with a Superconducting Spectrometer (BESS), aiming to search for antiparticle/antimatter in the cosmic radiation, successfully carried out two long-duration flights over Antarctica in 2004 (BESS Polar-I, 8.5days) and 2007/2008 (BESS Polar-II, 24.5days science, 29.5 days total). To achieve the long duration flights, establishment of a reliable power supply system was one of our new challenges. The requirements for the new system were to enable detector system operation with a capacity of 500W for a flight period of 30 days, and the total weight was required to be less than 300kg from the view point of the global payload weight constraints. To meet these requirements, we adopted solar panels (Sharp NT3436BD solar cell modules) as a power source. Thanks to their high efficiency and light weight, we could design a simple and compact omni-directional solar array structure with enough power generation capability and mechanical strength. Moreover, because each side of the structure is designed to have the same solar-cell area, no directional control is required. This was preferred because the superconducting magnet controls the direction of the instrument and a directional system for the solar array would have to incorporate independent azimuth control. The basic performance was first verified through two technical flights. Subsequently, this system was flown for 8.5 days and nearly 30 days over Antarctica successfully supplying the electric power fro instrument as expected. In the paper, an overview and flight performance of the solar power system will be presented.

Hasegawa, Masaya

6

AFRL Thin Film Solar Cell Development and Upcoming Flight Experiments  

Microsoft Academic Search

The many advantages of thin film solar cells, namely flexibility, high radiation resistance, low mass, and low cost production, will go untapped until space environmental effects on them are well understood, which requires on-orbit testing. In response to the need to perform on-orbit testing of thin film solar cells, the Space Vehicles Directorate of the Air Force Research Laboratory (AFRL)

Jennifer E. Granata; Paul E. Hausgen; Donna Senft; Pawel Tlomak; John Merrill

2005-01-01

7

Light Trapping for Silicon Solar Cells: Theory and Experiment  

NASA Astrophysics Data System (ADS)

Crystalline silicon solar cells have been the mainstream technology for photovoltaic energy conversion since their invention in 1954. Since silicon is an indirect band gap material, its absorption coefficient is low for much of the solar spectrum, and the highest conversion efficiencies are achieved only in cells that are thicker than about 0.1 mm. Light trapping by total internal reflection is important to increase the optical absorption in silicon layers, and becomes increasingly important as the layers are thinned. Light trapping is typically characterized by the enhancement of the absorptance of a solar cell beyond the value for a single pass of the incident beam through an absorbing semiconductor layer. Using an equipartition argument, in 1982 Yablonovitch calculated an enhancement of 4n2 , where n is the refractive index. We have extracted effective light-trapping enhancements from published external quantum efficiency spectra in several dozen silicon solar cells. These results show that this "thermodynamic" enhancement has never been achieved experimentally. The reasons for incomplete light trapping could be poor anti-reflection coating, inefficient light scattering, and parasitic absorption. We report the light-trapping properties of nanocrystalline silicon nip solar cells deposited onto two types of Ag/ZnO backreflectors at United Solar Ovonic, LLC. We prepared the first type by first making silver nanparticles onto a stainless steel substrate, and then overcoating the nanoparticles with a second silver layer. The second type was prepared at United Solar using a continuous silver film. Both types were then overcoated with a ZnO film. The root mean square roughness varied from 27 to 61 nm, and diffuse reflectance at 1000 nm wavelength varied from 0.4 to 0.8. The finished cells have a thin, indium-tin oxide layer on the top that acts as an antireflection coating. For both backreflector types, the short-circuit photocurrent densities J SC for solar illumination were about 25 mA/cm2 for 1.5 micron cells. We also measured external quantum efficiency spectra and optical reflectance spectra, which were only slightly affected by the back reflector morphology. We performed a thermodynamic calculation for the optical absorptance in the silicon layer and the top oxide layer to explain the experimental results; the calculation is an extension of previous work by Stuart and Hall that incorporates the antireflection properties and absorption in the top oxide film. From our calculations and experimental measurements, we concluded that parasitic absorption in this film is the prominent reason for incomplete light trapping in these cells. To reduce the optical parasitic loss in the top oxide layer, we propose a bilayer design, and show the possible benefits to the photocurrent density.

Zhao, Hui

8

ATS-5 solar cell experiment results after one year in synchronous orbit  

NASA Technical Reports Server (NTRS)

The results of the ATS-5 solar cell experiment after one year in synchronous orbit are reported. A partial failure in the experimental electronics package has caused a loss of data from half the 80 experimental solar cells. Procedures for extracting data due to a partial spacecraft failure are described and discussed. Data from the remaining 40 solar cells, including 15 mounted on a thin flexible structure are analyzed. Data are corrected to a solar intensity of 140 mW/sq cm and a temperature of 25 C. It was found that after one year in synchronous orbit: (1) cells with 1.52-mm-thick coverslides did not show a clear-cut advantage over those with 0.15-mm coverslides, (2) cells with solderless grid lines are degrading at the same rate as are cells with solder-dipped grid lines, (3) cells not quite completely covered with coverslides suffered a large power loss in comparison to cells fully covered, (4) no clear-cut advantage of 10-cm cells over 2-cm cells has yet been observed, (5) cells mounted on the flexible panel with relatively little backshielding did not degrade any faster than those with substantial backshielding, and (6) the flight data in large part confirms the adequacy of the ground-based techniques used in our preflight radiation test program.

Anspaugh, B. E.

1972-01-01

9

Solar cell  

SciTech Connect

A solar cell and a method of manufacturing the same are disclosed. The solar cell has a semiconducor substrate having a major surface for receiving light, a p-n junction for photovoltatic generation therein and a thin alumina coating layer on the major surface of the semiconductor substrate. The alumina coating layer includes H radicals and OH radicals.

Nakano, H.; Kato, T.; Morita, H.

1984-07-31

10

Results of the first 150 days of the NTS-1 solar cell experiments  

NASA Technical Reports Server (NTRS)

Twelve solar cell experiments were on the Naval Research Laboratory NTS-1 satellite launched on 14 July 1974, into a 13,260 km circular orbit at an inclination of 125 deg. The experiment comprises: 2 ohm-cm n/p, lithium-diffused p/n, violet n/p, p(+) back surface field, and ultra-thin wrap around contact cells. The short-circuit current of the experiments ranged from 2 to 12 percent higher in space than under solar simulators. During the 5 year life of the satellite, the experiments will be exposed to radiation equivalent to 2 x 10 to the 15th power 1-MeV electron cm/2 and to nearly 5500 thermal cycles.

Statler, R. L.

1974-01-01

11

The effect of the low Earth orbit environment on space solar cells: Results of the Advanced Photovoltaic Experiment (S0014)  

NASA Technical Reports Server (NTRS)

The results of post-flight performance testing of the solar cells flown on the Advanced Photovoltaic Experiment are reported. Comparison of post-flight current-voltage characteristics with similar pre-flight data revealed little or no change in solar cell conversion efficiency, confirming the reliability and endurance of space photovoltaic cells. This finding is in agreement with the lack of significant physical changes in the solar cells despite nearly six years in the low Earth orbit environment.

Brinker, David J.; Hickey, John R.; Scheiman, David A.

1993-01-01

12

Analysis of space environment damage to solar cell assemblies from LDEF experiment A0171-GSFC test plate  

NASA Technical Reports Server (NTRS)

The results of the postflight analysis of the solar cell assemblies from the LDEF (Long Duration Exposure facility) experiment A0171 is provided in this NASA sponsored research project. The following data on this research are provided as follows: (1) solar cell description, including, substrate composition and thickness, crystal orientation, anti-reflective coating composition and thickness; (2) preflight characteristics of the solar cell assemblies with respect to current and voltage; and (3) post-flight characteristics of the solar cell assemblies with respect to voltage and current. These solar cell assemblies are part of the Goddard Space Flight Center test plate which was designed to test the space environment effects (radiation, atomic oxygen, thermal cycling, meteoroid and debris) on conductively coated solar cell coversheets, various electrical bond materials, solar cell performance, and other material properties where feasible.

Hill, David C.; Rose, M. Frank

1994-01-01

13

Solar array flight experiment  

NASA Technical Reports Server (NTRS)

Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

1986-01-01

14

Displacement Damage Effects in Solar Cells: Mining Damage From the Microelectronics and Photonics Test Bed Space Experiment  

NASA Technical Reports Server (NTRS)

The objective is to develop an improved space solar cell radiation response analysis capability and to produce a computer modeling tool which implements the analysis. This was accomplished through analysis of solar cell flight data taken on the Microelectronics and Photonics Test Bed experiment. This effort specifically addresses issues related to rapid technological change in the area of solar cells for space applications in order to enhance system performance, decrease risk, and reduce cost for future missions.

Hardage, Donna (Technical Monitor); Walters, R. J.; Morton, T. L.; Messenger, S. R.

2004-01-01

15

Germany's Solar Experiment  

NSDL National Science Digital Library

This NOVA video podcast is about Germany's solar experiment. Munich's solar panel farm lines the Autobahn and countryside in a massive effort to prove solar's feasibility as a practical renewable energy source.

NOVA

16

Materials on the International Space Station - Forward Technology Solar Cell Experiment  

NASA Technical Reports Server (NTRS)

This paper describes a space solar cell experiment currently being built by the Naval Research Laboratory (NRL) in collaboration with NASA Glenn Research Center (GRC), and the US Naval Academy (USNA). The experiment has been named the Forward Technology Solar Cell Experiment (FTSCE), and the purpose is to rapidly put current and future generation space solar cells on orbit and provide validation data for these technologies. The FTSCE is being fielded in response to recent on-orbit and ground test anomalies associated with space solar arrays that have raised concern over the survivability of new solar technologies in the space environment and the validity of present ground test protocols. The FTSCE is being built as part of the Fifth Materials on the International Space Station (MISSE) Experiment (MISSE-5), which is a NASA program to characterize the performance of new prospective spacecraft materials when subjected to the synergistic effects of the space environment. Telemetry, command, control, and communication (TNC) for the FTSCE will be achieved through the Amateur Satellite Service using the PCSat2 system, which is an Amateur Radio system designed and built by the USNA. In addition to providing an off-the-shelf solution for FTSCE TNC, PCSat2 will provide a communications node for the Amateur Radio satellite system. The FTSCE and PCSat2 will be housed within the passive experiment container (PEC), which is an approximately 2ft x2ft x 4in metal container built by NASA Langley Research Center (NASA LaRC) as part of the MISSE-5 program. NASA LaRC has also supplied a thin film materials experiment that will fly on the exterior of the thermal blanket covering the PCSat2. The PEC is planned to be transported to the ISS on a Shuttle flight. The PEC will be mounted on the exterior of the ISS by an astronaut during an extravehicular activity (EVA). After nominally one year, the PEC will be retrieved and returned to Earth. At the time of writing this paper, the subsystems of the experiment are being integrated at NRL, and we are preparing to commence environmental testing.

Walters, R. J.; Garner, J. C.; Lam, S. N.; Vazquez, J. A.; Braun, W. R.; Ruth, R. E.; Lorentzen, J. R.; Bruninga, R.; Jenkins, P. P.; Flatico, J. M.

2005-01-01

17

Solar cells  

NASA Astrophysics Data System (ADS)

The history, state of the art, and future prospects of solar cells are reviewed. Solar cells are already competitive in a wide range of low-power applications, and during the 1980's they are expected to become cheaper to run than diesel or gasoline generators, the present mainstay of isolated communities. At this stage they will become attractive for water pumping, irrigation, and rural electrification, particularly in developing countries. With further cost reduction, they may be used to augment grid supplies in domestic, commercial, institutional, and industrial premises. Cost reduction to the stage where photovoltaics becomes economic for large-scale power generation in central stations depends on a technological breakthrough in the development of thin-film cells. DOE aims to reach this goal by 1990, so that by the end of the century about 20% of the estimated annual additions to their electrical generating capacity will be photovoltaic.

Treble, F. C.

1980-11-01

18

Photoelectrochemical Solar Cells.  

ERIC Educational Resources Information Center

This introduction to photoelectrochemical (PEC) cells reviews topics pertaining to solar energy conversion and demonstrates the ease with which a working PEC cell can be prepared with n-type silicon as the photoanode and a platinum counter electrode (both immersed in ethanolic ferrocene/ferricenium solutions). Experiments using the cell are

McDevitt, John T.

1984-01-01

19

Forward Technology Solar Cell Experiment (FTSCE) for MISSE-5 Verified and Readied for Flight on STS-114  

NASA Technical Reports Server (NTRS)

The Forward Technology Solar Cell Experiment (FTSCE) is a space solar cell experiment built as part of the Fifth Materials on the International Space Station Experiment (MISSE-5): Data Acquisition and Control Hardware and Software. It represents a collaborative effort between the NASA Glenn Research Center, the Naval Research Laboratory, and the U.S. Naval Academy. The purpose of this experiment is to place current and future solar cell technologies on orbit where they will be characterized and validated. This is in response to recent on-orbit and ground test results that raised concerns about the in-space survivability of new solar cell technologies and about current ground test methodology. The various components of the FTSCE are assembled into a passive experiment container--a 2- by 2- by 4-in. folding metal container that will be attached by an astronaut to the outer structure of the International Space Station. Data collected by the FTSCE will be relayed to the ground through a transmitter assembled by the U.S. Naval Academy. Data-acquisition electronics and software were designed to be tolerant of the thermal and radiation effects expected on orbit. The experiment has been verified and readied for flight on STS-114.

Jenkins, Phillip P.; Krasowski, Michael J.; Greer, Lawrence C.; Flatico, Joseph M.

2005-01-01

20

Simple Experiments on the Use of Solar Energy  

ERIC Educational Resources Information Center

Describes 5 solar energy experiments that can be used in secondary school: flat-plate collector, solar thermoelectric generator, simple concentrators, solar cell, and natural storage of solar energy. (MLH)

Vella, G. J.; Goldsmid, H. J.

1976-01-01

21

Solar cells for solar power satellites  

NASA Technical Reports Server (NTRS)

The concept of a solar-cell array for a solar power satellite is developed to permit evaluation of its economic feasibility for generating power for delivery to public utilities on earth. Gallium arsenide solar cells were considered but it could not be assured that the world gallium resources could support constructions of two solar power satellites per year. Therefore, for preliminary design an array blanket made from 5 by 10 cm silicon solar cells, 50 microns thick, and electrostatically bonded between borosilicate glass sheets was adopted. In annealing experiments, a radiated 50 microns thick cell was restored to its initial performance in a 500 C. Solar-cell efficiency effects significantly the solar power satellite mass, which varies from 90,000 metric tons for 20 percent cells to 120,000 metric tons for 12 percent cells. The anticipated cost of delivered power, based on 1977 dollars, varies from 4 cents per kWh with 18 percent cells, to 5 cents per kWh for 12 percent efficient cells.

Oman, H.

1978-01-01

22

Molybdenum solar neutrino experiment  

SciTech Connect

The goal of the molybdenum solar neutrino experiment is to deduce the /sup 8/B solar neutrino flux, averaged over the past several million years, from the concentration of /sup 98/Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the /sup 8/B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure /sup 98/Tc (4.2 Myr), also produced by /sup 8/B neutrinos, and possibly /sup 97/Tc (2.6 Myr), produced by lower energy neutrinos.

Wolfsberg, K.; Cowan, G.A.; Bryant, E.A.; Daniels, K.S.; Downey, S.W.; Haxton, W.C.; Niesen, V.G.; Nogar, N.S.; Miller, C.M.; Rokop, D.J.

1984-01-01

23

Indium phosphide solar cells  

NASA Technical Reports Server (NTRS)

The direction for InP solar cell research; reduction of cell cost; increase of cell efficiency; measurements needed to better understand cell performance; n/p versus p/n; radiation effects; major problems in cell contacting; and whether the present level of InP solar cell research in the USA should be maintained, decreased, or increased were considered.

Weinberg, Irving

1991-01-01

24

Solar Photovoltaic Cells.  

ERIC Educational Resources Information Center

Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide

Mickey, Charles D.

1981-01-01

25

Solar array experiments on the Sphinx satellite  

NASA Technical Reports Server (NTRS)

The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations; the edge illuminated-multijunction cells, the Teflon encased cells and the violet cells.

Stevens, N. J.

1973-01-01

26

Nanocoax Solar Cells  

Microsoft Academic Search

A novel architecture for high efficiency solar energy conversion, employing separated photo-- and --voltaic pathways and antenna-based light collection, is described. This material-independent architecture solves the ``thick-and-thin'' conundrum of solar photovoltaics, wherein solar cells must be thick enough to absorb light yet thin enough to allow for charge extraction. Our solar cells are comprised of arrays of high aspect ratio,

M. J. Naughton; K. Kempa; Z. F. Ren; J. Rybczynski; T. Paudel; Y. Gao; Y. Xu

2008-01-01

27

Solar cell device  

SciTech Connect

A solar cell array is equipped with serially or parallel connected reverse polarity diodes formed simultaneously with the array. The diodes are constituted by one or more solar cells of the array which may be shaded to prevent photoelectric conversion, and which are electrically connected in reverse polarity with respect to the remaining cells.

Nishiura, M.; Haruki, H.; Miyagi, M.; Sakai, H.; Uchida, Y.

1984-06-26

28

The advanced solar cell orbital test  

NASA Technical Reports Server (NTRS)

The motivation for advanced solar cell flight experiments is discussed and the Advanced Solar Cell Orbital Test (ASCOT) flight experiment is described. Details of the types of solar cells included in the test and the kinds of data to be collected are given. The orbit will expose the cells to a sufficiently high radiation dose that useful degradation data will be obtained in the first year.

Marvin, D. C.; Gates, M.

1991-01-01

29

Solar cell encapsulation  

NASA Technical Reports Server (NTRS)

A polymer syrup for encapsulating solar cell assemblies. The syrup includes uncrosslinked poly(n-butyl)acrylate dissolved in n-butyl acrylate monomer. Preparation of the poly(n-butyl)acrylate and preparation of the polymer syrup is disclosed. Methods for applying the polymer syrup to solar cell assemblies as an encapsulating pottant are described. Also included is a method for solar cell construction utilizing the polymer syrup as a dual purpose adhesive and encapsulating material.

Gupta, Amitava (Inventor); Ingham, John D. (Inventor); Yavrouian, Andre H. (Inventor)

1983-01-01

30

Heterojunction solar cell  

DOEpatents

A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

Olson, J.M.

1994-08-30

31

Fundamentals of solar cells  

Microsoft Academic Search

This text is addressed to upper level graduate students with background in solid state physics and to scientists and engineers involved in solar cell research. The author aims to present fundamental physical principles rather than the state-of-the-art. Specific devices are used to illustrate basic phenomena and to indicate possibilities for innovative design. Contents, abridged: Solar insolation. The calculation of solar

A. L. Farhenbruch; R. H. Bube

1983-01-01

32

Experimenting with Solar Energy  

ERIC Educational Resources Information Center

Over the past 25 years, the author has had the opportunity to study the subject of solar energy and to get involved with the installation, operation, and testing of solar energy systems. His work has taken him all over the United States and put him in contact with solar experts from around the world. He has also had the good fortune of seeing some

Roman, Harry T.

2004-01-01

33

Solar cell shingle  

NASA Technical Reports Server (NTRS)

A solar cell shingle was made of an array of solar cells on a lower portion of a substantially rectangular shingle substrate made of fiberglass cloth or the like. The solar cells may be encapsulated in flourinated ethylene propylene or some other weatherproof translucent or transparent encapsulant to form a combined electrical module and a roof shingle. The interconnected solar cells were connected to connectors at the edge of the substrate through a connection to a common electrical bus or busses. An overlap area was arranged to receive the overlap of a cooperating similar shingle so that the cell portion of the cooperating shingle may overlie the overlap area of the roof shingle. Accordingly, the same shingle serves the double function of an ordinary roof shingle which may be applied in the usual way and an array of cooperating solar cells from which electrical energy may be collected.

Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G. (inventors)

1977-01-01

34

Solar cells for solar power satellites  

Microsoft Academic Search

The concept of a solar-cell array for a solar power satellite is developed to permit evaluation of its economic feasibility for generating power for delivery to public utilities on earth. Gallium arsenide solar cells were considered but it could not be assured that the world gallium resources could support constructions of two solar power satellites per year. Therefore, for preliminary

H. Oman

1978-01-01

35

Heterostructure solar cells  

NASA Technical Reports Server (NTRS)

The performance of gallium arsenide solar cells grown on Ge substrates is discussed. In some cases the substrate was thinned to reduce overall cell weight with good ruggedness. The conversion efficiency of 2 by 2 cm cells under AMO reached 17.1 percent with a cell thickness of 6 mils. The work described forms the basis for future cascade cell structures, where similar interconnecting problems between the top cell and the bottom cell must be solved. Applications of the GaAs/Ge solar cell in space and the expected payoffs are discussed.

Chang, K. I.; Yeh, Y. C. M.; Iles, P. A.; Morris, R. K.

1987-01-01

36

Sub-bandgap absorption in organic solar cells: experiment and theory.  

PubMed

Most high-performance organic solar cells involve bulk-heterojunctions in order to increase the active donor-acceptor interface area. The power conversion efficiency depends critically on the nano-morphology of the blend and the interface. Spectroscopy of the sub-bandgap region, i.e., below the bulk absorption of the individual components, provides unique opportunities to study interface-related properties. We present absorption measurements in the sub-bandgap region of bulk heterojunctions made of poly(3-hexylthiophene-2,5-diyl) as an electron donor and [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as an electron acceptor and compare them with quantum-chemical calculations and recently published data on the external quantum efficiency (EQE). The very weak absorption of the deep sub-bandgap region measured by the ultra-sensitive Photothermal Deflection Spectroscopy (PDS) features Urbach tails, polaronic transitions, conventional excitons, and possibly charge-transfer states. The quantum-chemical calculations allow characterizing some of the unsettled spectral features. PMID:23929440

Beenken, Wichard J D; Herrmann, Felix; Presselt, Martin; Hoppe, Harald; Shokhovets, Sviatoslav; Gobsch, Gerhard; Runge, Erich

2013-10-21

37

Solar cell radiation handbook  

NASA Technical Reports Server (NTRS)

Solar cell theory cells are manufactured, and how they are modeled mathematically is reviewed. The interaction of energetic charged particle radiation with solar cells is discussed in detail and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Finally, an extensive body of data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence is presented.

Tada, H. Y.; Carter, J. R., Jr.

1977-01-01

38

Solar Neutrino Experiments: New Physics?  

E-print Network

Physics beyond the simplest version of the standard electroweak model is required to reconcile the results of the chlorine and the Kamiokande solar neutrino experiments. None of the 1000 solar models in a full Monte Carlo simulation is consistent with the results of the chlorine or the Kamiokande experiments. Even if the solar models are forced articficially to have a ${}^8 B$ neutrino flux in agreement with the Kamiokande experiment, none of the fudged models agrees with the chlorine observations. This comparison shows that consistency of the chlorine and Kamiokande experiments requires some physical process that changes the shape of the ${}^8 B$ neutrino energy spectrum. The GALLEX and SAGE experiments, which currently have large statistical uncertainties, differ from the predictions of the standard solar model by $2 \\sigma$ and $3 \\sigma$, respectively. The possibility that the neutrino experiments are incorrect is briefly discussed.

John N. Bahcall

1993-07-07

39

Solar cell activation system  

SciTech Connect

A system for activating solar cells involves the use of phosphorescent paint, the light from which is amplified by a thin magnifying lens and used to activate solar cells. In a typical system, a member painted with phosphorescent paint is mounted adjacent a thin magnifying lens which focuses the light on a predetermined array of sensitive cells such as selenium, cadmium or silicon, mounted on a plastic board. A one-sided mirror is mounted adjacent the cells to reflect the light back onto said cells for purposes of further intensification. The cells may be coupled to rechargeable batteries or used to directly power a small radio or watch.

Apelian, L.

1983-07-05

40

Solar cell radiation handbook  

NASA Technical Reports Server (NTRS)

The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

1982-01-01

41

Dye Sensitized Solar Cells  

PubMed Central

Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

Wei, Di

2010-01-01

42

Photovoltaic solar cell  

DOEpatents

A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

2014-05-20

43

Photovoltaic solar cell  

DOEpatents

A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

2013-11-26

44

Solar cell array interconnects  

DOEpatents

Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Colella, Nicolas J. (Livermore, CA); Williams, Kenneth A. (Livermore, CA)

1995-01-01

45

Integrated solar cell and battery  

SciTech Connect

An integrated solar cell and battery is described comprising: (a) a substrate; and (b) a solar cell and a thin film battery including a solid electrolyte, deposited by thin film deposition techniques on the substrate; (c) the substrate and the solar cell together comprising a bulk type solar cell.

Little, R.G.

1988-04-26

46

Thin silicon solar cells  

SciTech Connect

The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Cotter, J.; Hughes-Lampros, T.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M. [Astro Power Inc., Solar Park, Newark, DE (United States)

1992-12-01

47

Inside a Solar Cell  

NSDL National Science Digital Library

Based on a NOVA Online lesson, Teachers' Domain presents this interactive activity that provides reading material and animations to help students learn the basics of photovoltaic cells, including how a solar cell converts solar energy into electricity and the components of the unit (silicon layers, metal backing, antireflective coating, and metal conductor strips). On the site, visitors will also find a supplemental background essay, discussion questions, and standards alignment from Teachers' Domain.

48

Lightweight solar cell  

SciTech Connect

A lightweight solar cell is described comprising: (a) an LD aerogel substrate having a density of between 10-1,000 mg/cc, the surface of the substrate being polished (b) a dielectric planarization layer being applied to the polished surface, and (c) at least one layer of PV material deposited thereon. The solar cell having a plurality of PV layers deposited on the planarization layer.

Hotaling, S.P.

1993-06-22

49

Screening of solar cells  

SciTech Connect

Because solar cells in a production batch are not identical, screening is performed to obtain similar cells for aggregation into arrays. A common technique for screening is based on a single operating point of the I-V characteristic of the cell, usually the maximum power point. As a result, inferior cell matching may occur at the actual operating points. Screening solar cells based on the entire I-V characteristic will inherently result in more similar cells in the array. An array consisting of more similar cells is likely to have better overall characteristics and more predictable performance. Solar cell screening methods and cell ranking are discussed. The concept of a mean cell is defined as a cell 'best' representing all the cells in the production batch. The screening and ranking of all cells are performed with respect to the mean cell. The comparative results of different screening methods are illustrated on a batch of 50 silicon cells of the Space Station Freedom.

Appelbaum, J.; Chait, A.; Thompson, D.A.

1993-07-01

50

Solar neutrino experiments  

Microsoft Academic Search

New results are presented for absorption cross sections of nine possible detectors of solar neutrinos (⁷Li, ³⁷Cl, ⁵¹V, ⁵⁵Mn, ⁷¹Ga, ⁸¹Br, ⁸⁷Rb, ¹¹⁵In, and ²°⁵Tl). Special attention is given to nuclear physics uncertainties. The calculated cross sections are used (with the aid of illustrative solar models and ad hoc assumptions about neutrino propagation) to discuss what can be learned about

John Bahcall

1978-01-01

51

Solar Dynamics Observatory/ Extreme Ultraviolet Variability Experiment  

E-print Network

Solar Dynamics Observatory/ EVE Extreme Ultraviolet Variability Experiment Frequently Asked and model solar extreme ultraviolet irradiance variations due to solar flares, solar rotation, and solar and structure of the Sun. What is solar variability? Solar radiation varies on all time scales ranging from

Mojzsis, Stephen J.

52

Characterizing Variability in Smestad and Gratzel's Nanocrystalline Solar Cells: A Collaborative Learning Experience in Experimental Design  

ERIC Educational Resources Information Center

This article describes a collaborative learning experience in experimental design that closely approximates what practicing statisticians and researchers in applied science experience during consulting. Statistics majors worked with a teaching assistant from the chemistry department to conduct a series of experiments characterizing the variation

Lawson, John; Aggarwal, Pankaj; Leininger, Thomas; Fairchild, Kenneth

2011-01-01

53

Developing a Solar Experiment Unit.  

ERIC Educational Resources Information Center

Suggesting that selected research activities be integrated into engineering technology programs to give students experiences in new technology, this article discusses a project incorporating teaching, research, and service. A photograph and description of the solar experiment unit resulting from the project are provided. The unit runs on air,

Ting, Kuan-Chong

1983-01-01

54

Inside a Solar Cell  

NSDL National Science Digital Library

This set of six interactive slides showcases how a typical photovoltaic cell converts solar energy into electricity. Explore the components of a photovoltaic cell, including the silicon layers, metal backing, antireflective coating, and metal conductor strips. Using animations, investigate why the silicon layers are doped with phosphorous and boron, and how an electric field is used to generate electricity from sunlight.

NOVA

55

Transparent solar cell module  

NASA Technical Reports Server (NTRS)

Modified solar cell module uses high transmission glass and adhesives, and heat dissipation to boost power per unit area by 25% (9.84% efficiency based on cell area at 60 C and 100 mW/sq cm flux). Design is suited for automatic production and is potentially more cost effective.

Antonides, G. J.; Dillard, P. A.; Fritz, W. M.; Lott, D. P.

1979-01-01

56

Parameterization of solar cells  

NASA Technical Reports Server (NTRS)

The aggregation (sorting) of the individual solar cells into an array is commonly based on a single operating point on the current-voltage (I-V) characteristic curve. An alternative approach for cell performance prediction and cell screening is provided by modeling the cell using an equivalent electrical circuit, in which the parameters involved are related to the physical phenomena in the device. These analytical models may be represented by a double exponential I-V characteristic with seven parameters, by a double exponential model with five parameters, or by a single exponential equation with four or five parameters. In this article we address issues concerning methodologies for the determination of solar cell parameters based on measured data points of the I-V characteristic, and introduce a procedure for screening of solar cells for arrays. We show that common curve fitting techniques, e.g., least squares, may produce many combinations of parameter values while maintaining a good fit between the fitted and measured I-V characteristics of the cell. Therefore, techniques relying on curve fitting criteria alone cannot be directly used for cell parameterization. We propose a consistent procedure which takes into account the entire set of parameter values for a batch of cells. This procedure is based on a definition of a mean cell representing the batch, and takes into account the relative contribution of each parameter to the overall goodness of fit. The procedure is demonstrated on a batch of 50 silicon cells for Space Station Freedom.

Appelbaum, J.; Chait, A.; Thompson, D.

1992-01-01

57

Solar mesosphere explorer: Experiment description  

NASA Technical Reports Server (NTRS)

The Solar Mesosphere Explorer (SME) satellite experiments will provide a comprehensive study of atmospheric ozone and the processes which form and destroy it. Five instruments to be carried on the spacecraft will measure the ozone density and altitude distribution, monitor the incoming solar radiation, and measure other atmospheric constituents which affect ozone. The investigative approach concept, methods and procedures, preflight studies, and orbits and mission lifetime are presented. Descriptions of the instruments are also presented.

1977-01-01

58

The Boron Solar Neutrino Experiment  

Microsoft Academic Search

Neutrino excitation of the nuclear levels (NUEX) of 11B and charged-current (CC) excited inverse beta-decay of 11B to 11C, provide a double mode detection of solar nu's in a target of boron. Aspects of detector techniques and backgrounds in the Boron solar nu experiment, now under development, as well as its response to various non-standard nu scenarios are presented.

R. S. Raghavan

1987-01-01

59

Broad spectrum solar cell  

DOEpatents

An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA); Wu, Junqiao (Richmond, CA); Schaff, William J. (Ithaca, NY)

2007-05-15

60

EE580 Solar Cells Todd J. Kaiser  

E-print Network

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 06 · Solar Cell Materials & Structures 1Montana State University: Solar Cells Lecture 6: Solar Cells Solar Cell Technologies · A) Crystalline Silicon · B) Thin Film · C) Group III-IV Cells 2Montana State University: Solar Cells Lecture 6: Solar

Kaiser, Todd J.

61

Photovoltaic Experiment Using Light from a Solar Simulator Lamp.  

ERIC Educational Resources Information Center

A photovoltaic cell experiment utilizing the convenience of a solar simulating type lamp is described. Insight into the solid state aspect of a solar cell is gained by the student in studying the characteristics, and deducing from them cell parameters and efficiency. (Author/CS)

Chow, R. H.

1980-01-01

62

Flexible Solar Cells  

NASA Technical Reports Server (NTRS)

Solar cell "modules" are plastic strips coated with thin films of photovoltaic silicon that collect solar energy for instant conversion into electricity. Lasers divide the thin film coating into smaller cells to build up voltage. Developed by Iowa Thin Film Technologies under NASA and DOE grants, the modules are used as electrical supply for advertising displays, battery rechargers for recreational vehicles, and to power model airplanes. The company is planning other applications both in consumer goods and as a power source in underdeveloped countries.

1994-01-01

63

Solar cell radiation handbook  

NASA Technical Reports Server (NTRS)

A method is presented for predicting the degradation of a solar array in a space radiation environment. Solar cell technology which emphasizes the cell parameters that degrade in a radiation environment, is discussed along with the experimental techniques used in the evaluation of radiation effects. Other topics discussed include: theoretical aspects of radiation damage, methods for developing relative damage coefficients, nature of the space radiation environment, method of calculating equivalent fluence from electron and proton energy spectrums and relative damage coefficients, and comparison of flight data with estimated degradation.

Carter, J. R., Jr.; Tada, H. Y.

1973-01-01

64

TJ Solar Cell  

SciTech Connect

This talk will discuss recent developments in III-V multijunction photovoltaic technology which have led to the highest-efficiency solar cells ever demonstrated. The relationship between the materials science of III-V semiconductors and the achievement of record solar cell efficiencies will be emphasized. For instance, epitaxially-grown GAInP has been found to form a spontaneously-ordered GaP/InP (111) superlattice. This ordering affects the band gap of the material, which in turn affects the design of solar cells which incorporate GaInP. For the next generation of ultrahigh-efficiency III-V solar cells, we need a new semiconductor which is lattice-matched to GaAs, has a band gap of 1 eV, and has long minority-carrier diffusion lengths. Out of a number of candidate materials, the recently-discovered alloy GaInNAs appears to have the greatest promise. This material satisfies the first two criteria, but has to date shown very low diffusion lengths, a problem which is our current focus in the development of these next-generation cells.

Daniel Friedman

2009-04-17

65

Charge Photogeneration Experiments and Theory in Aggregated Squaraine Donor Materials for Improved Organic Solar Cell Efficiencies  

NASA Astrophysics Data System (ADS)

Fossil fuel consumption has a deleterious effect on humans, the economy, and the environment. Renewable energy technologies must be identified and commercialized as quickly as possible so that the transition to renewables can happen at a minimum of financial and societal cost. Organic photovoltaic cells offer an inexpensive and disruptive energy technology, if the scientific challenges of understanding charge photogeneration in a bulk heterojunction material can be overcome. At RIT, there is a strong focus on creating new materials that can both offer fundamentally important scientific results relating to quantum photophysics, and simultaneously assist in the development of strong candidates for future commercialized technology. In this presentation, the results of intensive materials characterization of a series of squaraine small molecule donors will be presented, as well as a full study of the fabrication and optimization required to achieve >4% photovoltaic cell efficiency. A relationship between the molecular structure of the squaraine and its ability to form nanoscale aggregates will be explored. Squaraine aggregation will be described as a unique optoelectronic probe of the structure of the bulk heterojunction. This relationship will then be utilized to explain changes in crystallinity that impact the overall performance of the devices. Finally, a predictive summary will be given for the future of donor material research at RIT.

Spencer, Susan Demetra

66

NASA Facts, Solar Cells.  

ERIC Educational Resources Information Center

The design and function of solar cells as a source of electrical power for unmanned space vehicles is described in this pamphlet written for high school physical science students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review

National Aeronautics and Space Administration, Washington, DC.

67

Photoelectric solar cell array  

Microsoft Academic Search

A photoelectric solar cell device comprises a dispersing element exposed to the sun's radiation and followed in the optical path by photocells having different spectral sensitivities. Each photocell has its working surface so oriented that the light beam with the wavelength corresponding to the maximum spectral sensitivity of that photocell impinges on its working surface. The dispersing element is a

N. S. Lidorenko; V. V. Afian; R. G. Martirosian; S. V. Ryabikov; D. S. Strebkov; A. V. Vartanian

1983-01-01

68

Solar array flight dynamic experiment  

NASA Technical Reports Server (NTRS)

The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

Schock, R. W.

1986-01-01

69

Solar array flight dynamic experiment  

NASA Technical Reports Server (NTRS)

The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

Schock, Richard W.

1987-01-01

70

Solar-cell panel simulator  

Microsoft Academic Search

The energy generated by solar cells can be transformed into ac power by means of inverters. In most cases these inverters cannot be tested under real conditions, since large solar-cell arrays are not yet available at reasonable prices. Therefore, a circuit that simulates a solar-cell array has been developed.

D. Baert

1979-01-01

71

High efficiency solar cell structure  

SciTech Connect

The invention relates to a new-type of solar cell structure, and to a method of manufacturing same. The solar cell is designated as an MINP cell (Metal-Insulator-NP junction solar cell). Essentially, the MINP solar cell is an extremely shallow N-P junction cell with a MIS (Metal-Insulator-Semiconductor) type contact made to the top of the cell. Although combining features of the two technologies, no more processing steps are required than for a conventional P-N junction cell. The advantage of the MINP structure is its substantially improved efficiency.

Green, M.A.; Blakers, A.W.

1983-09-13

72

Solar array flight experiment/dynamic augmentation experiment  

NASA Technical Reports Server (NTRS)

This report presents the objectives, design, testing, and data analyses of the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE) that was tested aboard Shuttle in September 1984. The SAFE was a lightweight, flat-fold array that employed a thin polyimide film (Kapton) as a substrate for the solar cells. Extension/retraction, dynamics, electrical and thermal tests, were performed. Of particular interest is the dynamic behavior of such a large lightweight structure in space. Three techniques for measuring and analyzing this behavior were employed. The methodology for performing these tests, gathering data, and data analyses are presented. The report shows that the SAFE solar array technology is ready for application and that new methods are available to assess the dynamics of large structures in space.

Young, Leighton E.; Pack, Homer C., Jr.

1987-01-01

73

EE580 Solar Cells Todd J. Kaiser  

E-print Network

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 08 · Solar Cell Characterization 1Montana State University: Solar Cells Lecture 8: Characterization Solar Cell Operation n Emitter p Base Rear completing the circuit 2Montana State University: Solar Cells Lecture 8: Characterization Solar Cell

Kaiser, Todd J.

74

Coating Processes Boost Performance of Solar Cells  

NASA Technical Reports Server (NTRS)

NASA currently has spacecraft orbiting Mercury (MESSENGER), imaging the asteroid Vesta (Dawn), roaming the red plains of Mars (the Opportunity rover), and providing a laboratory for humans to advance scientific research in space (the International Space Station, or ISS). The heart of the technology that powers those missions and many others can be held in the palm of your hand - the solar cell. Solar, or photovoltaic (PV), cells are what make up the panels and arrays that draw on the Sun s light to generate electricity for everything from the Hubble Space Telescope s imaging equipment to the life support systems for the ISS. To enable NASA spacecraft to utilize the Sun s energy for exploring destinations as distant as Jupiter, the Agency has invested significant research into improving solar cell design and efficiency. Glenn Research Center has been a national leader in advancing PV technology. The Center s Photovoltaic and Power Technologies Branch has conducted numerous experiments aimed at developing lighter, more efficient solar cells that are less expensive to manufacture. Initiatives like the Forward Technology Solar Cell Experiments I and II in which PV cells developed by NASA and private industry were mounted outside the ISS have tested how various solar technologies perform in the harsh conditions of space. While NASA seeks to improve solar cells for space applications, the results are returning to Earth to benefit the solar energy industry.

2012-01-01

75

Solar PV- How A Solar Cell Works  

NSDL National Science Digital Library

The Advanced Technology Environmental and Energy Center (ATEEC) provides this document which will help instructors or anyone who would like to understand the basics of solar power and solar cells. Users must download this resource for viewing, which requires a free log-in. There is no cost to download the item.

Levander, Alejandro

76

EDITORIAL: Nanostructured solar cells Nanostructured solar cells  

NASA Astrophysics Data System (ADS)

Conversion into electrical power of even a small fraction of the solar radiation incident on the Earth's surface has the potential to satisfy the world's energy demands without generating CO2 emissions. Current photovoltaic technology is not yet fulfilling this promise, largely due to the high cost of the electricity produced. Although the challenges of storage and distribution should not be underestimated, a major bottleneck lies in the photovoltaic devices themselves. Improving efficiency is part of the solution, but diminishing returns in that area mean that reducing the manufacturing cost is absolutely vital, whilst still retaining good efficiencies and device lifetimes. Solution-processible materials, e.g. organic molecules, conjugated polymers and semiconductor nanoparticles, offer new routes to the low-cost production of solar cells. The challenge here is that absorbing light in an organic material produces a coulombically bound exciton that requires dissociation at a donor-acceptor heterojunction. A thickness of at least 100 nm is required to absorb the incident light, but excitons only diffuse a few nanometres before decaying. The problem is therefore intrinsically at the nano-scale: we need composite devices with a large area of internal donor-acceptor interface, but where each carrier has a pathway to the respective electrode. Dye-sensitized and bulk heterojunction cells have nanostructures which approach this challenge in different ways, and leading research in this area is described in many of the articles in this special issue. This issue is not restricted to organic or dye-sensitized photovoltaics, since nanotechnology can also play an important role in devices based on more conventional inorganic materials. In these materials, the electronic properties can be controlled, tuned and in some cases completely changed by nanoscale confinement. Also, the techniques of nanoscience are the natural ones for investigating the localized states, particularly at surfaces and interfaces, which are often the limiting factor in device performance. This issue provides concrete examples of how the techniques of nanoscience and nanotechnology can be used to understand, control and optimize the performance of novel photovoltaic devices. We are grateful to the contributors for submitting high-quality papers around a common theme, even though they may not normally consider their work to fall under the banner of 'nanotechnology'. We would also like to thank the editorial and production staff at Nanotechnology for their efficient and speedy work in putting this issue together.

Greenham, Neil C.; Grtzel, Michael

2008-10-01

77

Nanowire Solar Cells  

NASA Astrophysics Data System (ADS)

The nanowire geometry provides potential advantages over planar wafer-based or thin-film solar cells in every step of the photoconversion process. These advantages include reduced reflection, extreme light trapping, improved band gap tuning, facile strain relaxation, and increased defect tolerance. These benefits are not expected to increase the maximum efficiency above standard limits; instead, they reduce the quantity and quality of material necessary to approach those limits, allowing for substantial cost reductions. Additionally, nanowires provide opportunities to fabricate complex single-crystalline semiconductor devices directly on low-cost substrates and electrodes such as aluminum foil, stainless steel, and conductive glass, addressing another major cost in current photovoltaic technology. This review describes nanowire solar cell synthesis and fabrication, important characterization techniques unique to nanowire systems, and advantages of the nanowire geometry.

Garnett, Erik C.; Brongersma, Mark L.; Cui, Yi; McGehee, Michael D.

2011-08-01

78

Quantum Dot Solar Cells  

NASA Technical Reports Server (NTRS)

We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

2002-01-01

79

Nanocrystalline electrochemical solar cells  

SciTech Connect

Standard solar cells exploit the physics of semiconductors in which the energy of absorbed photons excites charge-carrier pairs which are subsequently separated by the influence of a solid state junction to provide a photovoltage. In the nanocrystalline electrochemical cell, the optical absorber is a dye monolayer which after photo-excitation injects electrons into a semiconductor substrate, with charge neutrality being restored by a chemical redox reaction. The circuit is completed through an electrolyte and a metallic counterlectrode. Present performance, industrial engagement in research and development and commercial prospects are presented.

McEvoy, A.J.; Graetzel, M. [Ecole Polytechnique Federale, Lausanne (Switzerland). Inst. de Chimie-Physique; Wittkopf, H.; Jestel, D.; Benemann, J. [Flachglas AG, Gelsenkirchen (Germany)

1994-12-31

80

Assembling solar-cell arrays  

NASA Technical Reports Server (NTRS)

Modified 70 mm movie film editor automatically attaches solar cells to flexible film substrate. Machine can rapidly and inexpensively assemble cells for solar panels at rate of 250 cells per minute. Further development is expected to boost production rate to 1000 cells per minute.

Bloch, J. T.; Hanger, R. T.; Nichols, F. W.

1979-01-01

81

SORCE: Solar Radiation and Climate Experiment  

NASA Technical Reports Server (NTRS)

Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

2002-01-01

82

Solar models, neutrino experiments, and helioseismology  

Microsoft Academic Search

The event rates and their recognized uncertainties are calculated for eleven solar neutrino experiments using accurate solar models. The same solar models are used to evaluate the frequency spectrum of the p and g oscillation modes of the sun and to compare with existing observations. A numerical table of the characteristics of the standard solar model is presented. Improved values

John Bahcall; Roger Ulrich

1988-01-01

83

Laser-assisted solar cell metallization processing  

NASA Technical Reports Server (NTRS)

Laser assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are investigated. The tasks comprising these investigations are summarized. Metal deposition experiments are carried out utilizing laser assisted pyrolysis of a variety of metal bearing polymer films and metalloorganic inks spun onto silicon substrates. Laser decomposition of spun on silver neodecanoate ink yields very promising results. Solar cell comb metallization patterns are written using this technique.

Dutta, S.

1984-01-01

84

Epitaxial solar cells fabrication  

NASA Technical Reports Server (NTRS)

Silicon epitaxy has been studied for the fabrication of solar cell structures, with the intent of optimizing efficiency while maintaining suitability for space applications. SiH2CL2 yielded good quality layers and junctions with reproducible impurity profiles. Diode characteristics and lifetimes in the epitaxial layers were investigated as a function of epitaxial growth conditions and doping profile, as was the effect of substrates and epitaxial post-gettering on lifetime. The pyrolytic decomposition of SiH4 was also used in the epitaxial formation of highly doped junction layers on bulk Si wafers. The effects of junction layer thickness and bulk background doping level on cell performance, in particular, open-circuit voltage, were investigated. The most successful solar cells were fabricated with SiH2 CL2 to grow p/n layers on n(+) substrates. The best performance was obtained from a p(+)/p/n/n(+) structure grown with an exponential grade in the n-base layer.

Daiello, R. V.; Robinson, P. H.; Kressel, H.

1975-01-01

85

Solar cell module lamination process  

DOEpatents

A solar cell module lamination process using fluoropolymers to provide protection from adverse environmental conditions and thus enable more extended use of solar cells, particularly in space applications. A laminate of fluoropolymer material provides a hermetically sealed solar cell module structure that is flexible and very durable. The laminate is virtually chemically inert, highly transmissive in the visible spectrum, dimensionally stable at temperatures up to about 200.degree. C. highly abrasion resistant, and exhibits very little ultra-violet degradation.

Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Aceves, Randy C. (Tracy, CA)

2002-01-01

86

Floating emitter solar cell  

NASA Technical Reports Server (NTRS)

A front surface contact floating emitter solar cell transistor is provided in a semiconductor body (n-type), in which floating emitter sections (p-type) are diffused or implanted in the front surface. Between the emitter sections, a further section is diffused or implanted in the front surface, but isolated from the floating emitter sections, for use either as a base contact to the n-type semiconductor body, in which case the section is doped n+, or as a collector for the adjacent emitter sections.

Chih, Sah (inventor); Cheng, Li-Jen (inventor)

1987-01-01

87

Cz bifacial solar cells  

SciTech Connect

High efficiencies have been achieved on bifacial solar cells made on FZ silicon. In the adaptation of the process to the more commonly used Cz material, attention has been paid to the influence of thermal processing on Cz, trying to avoid internal gettering effects related to oxygen precipitation. Lifetime measurements at different steps of the process have been carried out to quantify this influence. Reduction of thermal load by growth of a thin passivating oxide and deposition of a double antireflecting coating gives 17.7% when illuminate from the n{sup +} side 15.2% when illuminated from the p{sup +} one.

Canizo, C. del; Moehlecke, A.; Zanesco, I.; Luque, A.

2000-04-01

88

Monolithic tandem solar cell  

DOEpatents

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

Wanlass, M.W.

1994-06-21

89

Photoelectric solar cell array  

SciTech Connect

A photoelectric solar cell device comprises a dispersing element exposed to the sun's radiation and followed in the optical path by photocells having different spectral sensitivities. Each photocell has its working surface so oriented that the light beam with the wavelength corresponding to the maximum spectral sensitivity of that photocell impinges on its working surface. The dispersing element is a hologram representing light sources with different wavelengths. The photocells are positioned in the image planes of the light sources producing the light beams of the corresponding wavelengths.

Lidorenko, N.S.; Afian, V.V.; Martirosian, R.G.; Ryabikov, S.V.; Strebkov, D.S.; Vartanian, A.V.

1983-11-29

90

SEP solar array Shuttle flight experiment  

NASA Technical Reports Server (NTRS)

An experiment to verify the operational performance of a full-scale Solar Electric Propulsion (SEP) solar array is described. Scheduled to fly on the Shuttle in 1983, the array will be deployed from the bay for ten orbits, with dynamic excitation to test the structural integrity being furnished by the Orbiter verniers; thermal, electrical, and sun orientation characteristics will be monitored, in addition to safety, reliability, and cost effective performance. The blanket, with aluminum and glass as solar cell mass simulators, is 4 by 32 m, with panels (each 0.38 by 4 m) hinged together; two live Si cell panels will be included. The panels are bonded to stiffened graphite-epoxy ribs and are storable in a box in the bay. The wing support structure is detailed, noting the option of releasing the wing into space by use of the Remote Manipulator System if the wing cannot be refolded. Procedures and equipment for monitoring the array behavior are outlined, and comprise both analog data and TV recording for later playback and analysis. The array wing experiment will also aid in developing measurement techniques for large structure dynamics in space.

Elms, R. V., Jr.; Young, L. E.; Hill, H. C.

1981-01-01

91

Solar Energy Materials & Solar Cells 91 (2007) 13881391 Bifacial configurations for CdTe solar cells  

E-print Network

Solar Energy Materials & Solar Cells 91 (2007) 1388­1391 Bifacial configurations for CdTe solar cells A. Romeob,?, G. Khrypunovc , S. Galassinid , H. Zogga , A.N. Tiwaria,e a Thin Film Physics Group We present a different back contact for CdTe solar cell by the application of only a transparent

Romeo, Alessandro

92

Solar Panel of Photovoltaic Cells  

USGS Multimedia Gallery

Solar panels or arrays of photovoltaic cells convert renewable solar radiation into electricity by a clean and environmentally sound means. Collected solar energy can either be used instantly or stored in batteries for later use. These systems can be used as a component of a larger photovoltaic syst...

93

Schottky barrier solar cell  

NASA Technical Reports Server (NTRS)

A method of fabricating a Schottky barrier solar cell is described. The cell consists of a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive. A thin layer of heavily doped n-type polycrystalling germanium is deposited on the substrate after a passivation layer is deposited to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes to serve as a base layer on which a thin layer of gallium arsenide is vapor-epitaxilly grown followed by a thermally-grown oxide layer. A metal layer is deposited on the oxide layer and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer.

Stirn, R. J.; Yeh, Y. C. M. (inventors)

1981-01-01

94

Quantum junction solar cells.  

PubMed

Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. PMID:22881834

Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H

2012-09-12

95

Results from the high efficiency solar panel experiment flown on CRRES  

Microsoft Academic Search

Results from the high efficiency solar panel experiment (HESP) flown on the Combined Release and Radiation Effects Satellite (CRRES) are presented. The on-orbit solar cell degradation is correlated with the proton and electron environments. Comparisons between GaAs\\/Ge and Si solar cells are presented, and results from three different annealing methods of like GaAs solar cells are compared. Solar cell degradation

K. P. Ray; E. G. Mullen; T. M. Trumble

1993-01-01

96

Solar cell phone charger performance in indoor environment  

Microsoft Academic Search

Utilization of solar energy as a power source has been one of the most active fields in science and engineering. One of the recent developments is to use a solar panel to recharge a cell phone. In order to validate the feasibility of this promising application, we conducted experiments on solar cell efficiency under the indoor environment using a typical

Chengliu Li; Wenyan Jia; Quan Tao; Mingui Sun

2011-01-01

97

Lunar production of solar cells  

NASA Technical Reports Server (NTRS)

The feasibility of manufacturing of solar cells on the moon for spacecraft applications is examined. Because of the much lower escape velocity, there is a great advantage in lunar manufacture of solar cells compared to Earth manufacture. Silicon is abundant on the moon, and new refining methods allow it to be reduced and purified without extensive reliance on materials unavailable on the moon. Silicon and amorphous silicon solar cells could be manufactured on the moon for use in space. Concepts for the production of a baseline amorphous silicon cell are discussed, and specific power levels are calculated for cells designed for both lunar and Earth manufacture.

Landis, Geoffrey A.; Perino, Maria Antonietta

1989-01-01

98

Inversion layer MOS solar cells  

NASA Technical Reports Server (NTRS)

Inversion layer (IL) Metal Oxide Semiconductor (MOS) solar cells were fabricated. The fabrication technique and problems are discussed. A plan for modeling IL cells is presented. Future work in this area is addressed.

Ho, Fat Duen

1986-01-01

99

Stretchable polymer solar cell fibers.  

PubMed

Power yourself up: a sweater made from solar cells! Stretchable and wearable fibers are shown to be highly efficient polymer solar cells. Their stable energy conversion efficiency variation is below 10% even after 1000 bending cycles or stretching under a strain of 30%. These fibers can easily be woven into fabric from which any type of clothing can be made. PMID:25236579

Zhang, Zhitao; Yang, Zhibin; Deng, Jue; Zhang, Ye; Guan, Guozhen; Peng, Huisheng

2015-02-11

100

Supramolecular solar cells  

NASA Astrophysics Data System (ADS)

Supramolecular chemistry - chemistry of non-covalent bonds including different type of intermolecular interactions viz., ion-pairing, ion-dipole, dipole-dipole, hydrogen bonding, cation-pi and Van der Waals forces. Applications based on supramolecular concepts for developing catalysts, molecular wires, rectifiers, photochemical sensors have been evolved during recent years. Mimicking natural photosynthesis to build energy harvesting devices has become important for generating energy and solar fuels that could be stored for future use. In this dissertation, supramolecular chemistry is being explored for creating light energy harvesting devices. Photosensitization of semiconductor metal oxide nanoparticles, such as titanium dioxide (TiO2) and tin oxide (SnO2,), via host-guest binding approach has been explored. In the first part, self-assembly of different porphyrin macrocyclic compounds on TiO2 layer using axial coordination approach is explored. Supramolecular dye sensitized solar cells built based on this approach exhibited Incident Photon Conversion Efficiency (IPCE) of 36% for a porphyrin-ferrocene dyad. In the second part, surface modification of SnO2 with water soluble porphyrins and phthalocyanine resulted in successful self-assembly of dimers on SnO2 surface. IPCE more than 50% from 400 - 700 nm is achieved for the supramolecular self-assembled heterodimer photocells is achieved. In summary, the axial ligation and ion-pairing method used as supramolecular tools to build photocells, exhibited highest quantum efficiency of light energy conversion with panchromatic spectral coverage. The reported findings could be applied to create interacting molecular systems for next generation of efficient solar energy harvesting devices.

Subbaiyan, Navaneetha Krishnan

101

Testing of gallium arsenide solar cells on the CRRES vehicle  

NASA Astrophysics Data System (ADS)

A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage.

Trumble, T. M.

102

The challenges of organic polymer solar cells  

E-print Network

The technical and commercial prospects of polymer solar cells were evaluated. Polymer solar cells are an attractive approach to fabricate and deploy roll-to-roll processed solar cells that are reasonably efficient (total ...

Saif Addin, Burhan K. (Burhan Khalid)

2011-01-01

103

GaAs Solar Cell Radiation Handbook  

NASA Technical Reports Server (NTRS)

History of GaAs solar cell development is provided. Photovoltaic equations are described along with instrumentation techniques for measuring solar cells. Radiation effects in solar cells, electrical performance, and spacecraft flight data for solar cells are discussed. The space radiation environment and solar array degradation calculations are addressed.

Anspaugh, B. E.

1996-01-01

104

Germanium Nanocrystal Solar Cells  

NASA Astrophysics Data System (ADS)

Greenhouse gas concentrations in the atmosphere are approaching historically unprecedented levels from burning fossil fuels to meet the ever-increasing world energy demand. A rapid transition to clean energy sources is necessary to avoid the potentially catastrophic consequences of global warming. The sun provides more than enough energy to power the world, and solar cells that convert sunlight to electricity are commercially available. However, the high cost and low efficiency of current solar cells prevent their widespread implementation, and grid parity is not anticipated to be reached for at least 15 years without breakthrough technologies. Semiconductor nanocrystals (NCs) show promise for cheap multi-junction photovoltaic devices. To compete with photovoltaic materials that are currently commercially available, NCs need to be inexpensively cast into dense thin films with bulk-like electrical mobilities and absorption spectra that can be tuned by altering the NC size. The Group II-VI and IV-VI NC communities have had some success in achieving this goal by drying and then chemically treating colloidal particles, but the more abundant and less toxic Group IV NCs have proven more challenging. This thesis reports thin films of plasma-synthesized Ge NCs deposited using three different techniques, and preliminary solar cells based on these films. Germanium tetrachloride is dissociated in the presence of hydrogen in a nonthermal plasma to nucleate Ge NCs. Transmission electron microscopy and X-ray diffraction indicate that the particles are nearly monodisperse (standard deviations of 10-15% the mean particle diameter) and the mean diameter can be tuned from 4-15 nm by changing the residence time of the Ge NCs in the plasma. In the first deposition scheme, a Ge NC colloid is formed by reacting nanocrystalline powder with 1-dodecene and dispersing the functionalized NCs in a solvent. Films are then formed on substrates by drop-casting the colloid and allowing it to dry. As-deposited films are electrically insulating due to the long hydrocarbon molecules separating neighboring particles; however, mass spectrometry shows that annealing treatments successfully decompose these molecules. After annealing at 250 C, Ge NC films exhibit conductivities as large as 10-6 S/cm. In the second film deposition scheme, a Ge NC colloid is formed by dispersing Ge NCs in select solvents without further surface modification. While these "bare" NCs quickly agglomerate and flocculate in nearly all non-polar solvents, they remain stable in benzonitrile and 1,2-dichlorobenzene, among others. Thin-film field-effect transistors have been fabricated by spinning Ge NC colloids onto substrates and the films have been subjected to various annealing procedures. The devices show n-type, p -type, or ambipolar behavior depending on the annealing conditions, with Ge NC films annealed at 300C exhibiting electron saturation mobilities greater than 10-2 cm2/Vs and on-to-off ratios of 104. The final film deposition scheme involves the impaction of Ge NCs onto substrates downstream of the synthesis plasma via acceleration of the NCs through an orifice. This technique produces highly uniform films with densities greater than 50% of the density of bulk Ge. By varying the size of the Ge NCs, we have measured films with band gaps ranging from the bulk value of 0.7 eV to over 1.1 eV for films of 4 nm Ge NCs. Having deposited dense thin films with tunable band gaps and respectable mobilities, we have begun fabricating bilayer solar cells consisting of heterojunctions between Ge NC films and P3HT, Si NCs, or Si wafers. Preliminary devices exhibit opencircuit voltages and short-circuit currents as large as 0.3 V and 4 mA/cm 2, respectively.

Holman, Zachary Charles

105

Upconversion in solar cells  

PubMed Central

The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells. PMID:23413889

2013-01-01

106

Electrical performance calibration of space solar cells and panels  

NASA Astrophysics Data System (ADS)

Commonly used performance tests of solar cells and solar cell modules covering indoor and natural sunlight methods are reviewed. The historical and rational background of these methods is depicted and the experience gained at ESA/ESTEC in the framework of space and terrestrial programs is described. The general objectives and requirements of performance tests (classification of photovoltaic measurements, photovoltaic measurement requirements), indoor measurement methods (steady state solar simulator with reference cells, pulsed solar simulator with reference cells), and solar cell reference standards (calibration by balloon or aircraft at high altitude, calibration on ground in natural sunlight, calibration in space) are presented.

Bogus, K.; Larue, J. C.; Robben, A.

1984-10-01

107

Solar Energy Materials & Solar Cells 90 (2006) 664677 Invited article  

E-print Network

Solar Energy Materials & Solar Cells 90 (2006) 664­677 Invited article Recent developments in evaporated CdTe solar cells G. Khrypunova , A. Romeob , F. Kurdesauc , D.L. Ba¨ tznerd , H. Zogge , A Abstract Recent developments in the technology of high vacuum evaporated CdTe solar cells are reviewed

Romeo, Alessandro

108

Solar Week: Learning from Experience  

NASA Astrophysics Data System (ADS)

Solar Week is a week-long set of games and activities allowing students to interact directly with solar science and solar scientists. Solar Week was developed as a spin-off of the highly successful Yohkoh Public Outreach Project (YPOP). While YPOP provided access to solar images, movies and activities, the main goal of Solar Week was to enhance the participation of women, who are under-represented in the physical sciences. Solar Week achieves this by providing young women, primarily in grades 6-8, with access to role models in the sciences. The scientists participating in Solar Week are women from a variety of backgrounds and with a variety of scientific expertise. In this paper, our aim is to provide some insight into developing activity-based space science for the web and to discuss the lessons-learned from tailoring to a specific group of participants.

Alexander, D.; Hauck, K.

2003-12-01

109

Multiple Exciton Generation Solar Cells  

SciTech Connect

Heat loss is the major factor limiting traditional single junction solar cells to a theoretical efficiency of 32%. Multiple Exciton Generation (MEG) enables efficient use of the solar spectrum yielding a theoretical power conversion efficiency of 44% in solar cells under 1-sun conditions. Quantum-confined semiconductors have demonstrated the ability to generate multiple carriers but present-day materials deliver efficiencies far below the SQ limit of 32%. Semiconductor quantum dots of PbSe and PbS provide an active testbed for developing high-efficiency, inexpensive solar cells benefitting from quantum confinement effects. Here, we will present recent work of solar cells employing MEG to yield external quantum efficiencies exceeding 100%.

Luther, J. M.; Semonin, O. E.; Beard, M. C.; Gao, J.; Nozik, A. J.

2012-01-01

110

Solar electron source and thermionic solar cell  

NASA Astrophysics Data System (ADS)

Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed "Heat Trap" effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

Yaghoobi, Parham; Vahdani Moghaddam, Mehran; Nojeh, Alireza

2012-12-01

111

Solar array experiments on the SPHINX satellite. [Space Plasma High voltage INteraction eXperiment satellite  

NASA Technical Reports Server (NTRS)

The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations: the edge illuminated-multijunction cells, the teflon encased cells, and the violet cells.

Stevens, N. J.

1974-01-01

112

Module level solutions to solar cell polarization  

DOEpatents

A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.

Xavier, Grace (Fremont, CA), Li; Bo (San Jose, CA)

2012-05-29

113

How Many Solar Neutrino Experiments Are Wrong?  

E-print Network

Ten recently-published solar models give $\\7be$ neutrino fluxes that lie within a range of $\\pm 10$\\% of the average value, a convergence that is independent of uncertainties in the measured laboratory rate of the $\\7be(p,\\gamma)\\8b$ reaction. If nothing happens to solar neutrinos after they are created ({\\it a la} standard electroweak theory) and the operating solar neutrino experiments are correct, then the $\\7be$ solar neutrino flux must be less than 50\\% of the solar model value. At least three of the four existing solar neutrino experiments must be wrong {\\it if}: (1) standard electroweak theory is correct, and (2) the true $\\7be$ neutrino flux lies within the range predicted by standard solar models.

John N. Bahcall

1994-07-15

114

Voltage-dependent photocurrent transients of PTB7:PC70BM solar cells: Experiment and numerical simulation  

NASA Astrophysics Data System (ADS)

Transient photocurrent measurements on efficient polymer/fullerene solar cells based on a blend of the donor polymer PTB7 with the fullerene acceptor PC70BM are reported. In particular, we examine the light intensity dependence and voltage dependence of the turn-on and turn-off photocurrent dynamics of devices in response to a 200 ?s square light pulse. At short circuit, subtle changes in the turn-on and turn-off dynamics are observed consistent with charge-density-dependent transport phenomena. As the working voltage is moved from short circuit to open circuit, we observe the appearance of an initial transient photocurrent peak a few microseconds after turn-on before the device settles to steady state. Furthermore, we observe only a weak dependence of the charge extraction dynamics on the working voltage, with the amount of charge extracted monotonically decreasing as the working voltage is moved from short circuit to open circuit. This collection of features is interpreted with the aid of numerical simulations in terms of charge trapping, with increased trap-assisted recombination closer to open circuit. The operation of devices fabricated with and without the solvent additive di-iodooctane is also compared. Charge trapping features are reduced for optimized devices fabricated with the solvent additive compared to devices fabricated without. The use of the solvent additive di-iodooctane in this system is therefore important in minimizing trap-assisted recombination.

Li, Zhe; Lakhwani, Girish; Greenham, Neil C.; McNeill, Christopher R.

2013-07-01

115

On solar neutrino fluxes in radiochemical experiments  

E-print Network

We analyze fluctuations of the solar neutrino flux using data from the Homestake, GALLEX, GNO, SAGE and Super Kamiokande experiments. Spectral analysis and direct quantitative estimations show that the most stable variation of the solar neutrino flux is a quasi-five-year periodicity. The revised values of the mean solar neutrino flux are presented in Table 4. They were used to estimate the observed pp-flux of the solar electron neutrinos near the Earth. We consider two alternative explanations for the origin of a variable component of the solar neutrino deficit.

R. N. Ikhsanov; Yu. N. Gnedin; E. V. Miletsky

2005-12-08

116

Solar cells: A solid compromise  

NASA Astrophysics Data System (ADS)

Efficiency of power conversion and thermal stability usually don't go together in dye-sensitized solar cells. Now a novel combination of an amphiphilic dye and a polymer gel electrolyte features both these important properties.

Durrant, James R.; Haque, Saif A.

2003-06-01

117

Radiation effects in solar cells  

NASA Astrophysics Data System (ADS)

Two types of space solar cells, silicon single-junction and InGaP/GaAs/Ge triple-junction (3J) solar cells, have been primarily adopted for spacecraft. The conversion efficiencies of the solar cells under AM0, 1 sun condition are ~17% for silicon and ~30% for 3J cells. Radiation degradation occurs in space due to high-energy electrons and protons existing in space environment. The degradation is caused by radiation induced crystal defects which act as minority-carrier recombination centers and majority-carrier trap centers. The 3J cells are superior radiation resistant to the silicon cells, and this is mainly because the InGaP top-subcell has property of very high radiation resistance.

Imaizumi, Mitsuru; Ohshima, Takeshi

2013-05-01

118

Solar chimneys: simulation and experiment  

Microsoft Academic Search

The use of solar chimneys in buildings is one way to increment natural ventilation and, as a consequence, to improve indoor air quality. They are similar to conventional chimneys except that the south wall is replaced by a glazing. In order to compare the behaviour of a solar chimney with a conventional one, one of each was built in Porto.

Clito Afonso; Armando Oliveira

2000-01-01

119

CCMR: Nanocrystal Sensitized Solar Cells  

NSDL National Science Digital Library

Nanocrystal sensitized solar cells demonstrate a possible cheap solution to practical device manufacture. This research examined the feasibility of using lead sulfide nanocrystals to sensitize tin dioxide and titanium dioxide substrates for the purpose of making a functioning photovoltaic device. Challenges included optimizing the substrate materials as well as the thin films made from them. Results indicate that titanium dioxide produces more suitable thin films than tin dioxide. Also, the methods employed did produce a functioning solar cell after optimization.

Perry, Alexis

2009-08-15

120

Terrestrial concentrator solar cell module  

SciTech Connect

This patent describes a solar cell module having a plurality of discrete cell units wherein each cell unit constitutes a tandem cell comprising an upper cell of a first semiconductive material and a lower cell of a second semiconductive material. It comprises a housing having a base and an upper portion; primary outer lens elements supported by the housing upper portion; a secondary radiant energy concentrating element associated with each primary lens element for protecting the carrier tape against incident light; each of the solar cell units being thermally coupled to the base; and parallel spaced strips of conductive material carried by the tape with means for separately connecting the strips to predetermined contact surfaces of the upper and lower cells of each cell unit.

Fraas, L.M.; Mansoori, N.; Kim, N.B.; Avery, J.E.

1992-06-02

121

Origami-enabled deformable silicon solar cells  

SciTech Connect

Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Tu, Hongen; Xu, Yong [Electrical and Computer Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, Michigan 48202 (United States); Song, Zeming; Jiang, Hanqing, E-mail: hanqing.jiang@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Yu, Hongyu, E-mail: hongyu.yu@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States)

2014-02-24

122

Dust removal from solar cells  

NASA Technical Reports Server (NTRS)

A solar panel cleaning device includes a solar panel having a plurality of photovoltaic cells arranged in rows and embedded in the solar panel with space between the rows. A transparent dielectric overlay is affixed to the solar panel. A plurality of electrode pairs each of which includes an upper and a lower electrode are arranged on opposite sides of the transparent dielectric and are affixed thereto. The electrodes may be transparent electrodes which may be arranged without concern for blocking sunlight to the solar panel. The solar panel may be a dielectric and its dielectric properties may be continuously and spatially variable. Alternatively the dielectric used may have dielectric segments which produce different electrical field and which affects the wind "generated."

Ashpis, David E. (Inventor)

2011-01-01

123

SPDE: Solar Plasma Diagnostic Experiment  

NASA Technical Reports Server (NTRS)

The physics of the Solar corona is studied through the use of high resolution soft x-ray spectroscopy and high resolution ultraviolet imagery. The investigation includes the development and application of a flight instrument, first flown in May, 1992 on NASA sounding rocket 36.048. A second flight, NASA founding rocket 36.123, took place on 25 April 1994. Both flights were successful in recording new observations relevant to the investigation. The effort in this contract covers completion of the modifications to the existing rocket payload, its reflight, and the preliminary day reduction and analysis. Experience gained from flight 36.048 led us to plan several payload design modifications. These were made to improve the sensitivity balance between the UV and EUV spectrographs, to improve the scattered light rejection in the spectrographs, to protect the visible light rejection filter for the Normal Incidence X-ray Imager instrument (NIXI), and to prepare one new multilayer mirror coating to the NIXI. We also investigated the addition of a brassboard CCD camera to the payload to test it as a possible replacement for the Eastman type 101-07 film used by the SPDE instruments. This camera was included in the experimeter's data package for the Project Initiation Conference for the flight of NASA Mission 36.123, held in January, 1994, but for programmatic reasons was deleted from the final payload configuration. The payload was shipped to the White Sands Missile Range on schedule in early April. The launch and successful recovery took place on 25 April, in coordination with the Yohkoh satellite and a supporting ground-based observing campaign.

Bruner, Marilyn E.

1995-01-01

124

The small community solar thermal power experiment  

NASA Technical Reports Server (NTRS)

the objectives and current status of the Small Community Solar Thermal Power Experiment are discussed. The adjustments in programs goals made in response to the changing emphasis in the area of solar energy in national policy are addressed. Planned fabrication and testing activities for the test bed concentrator, power conversion assembly, and control system are outlined.

Kiceniuk, T.

1982-01-01

125

SORCE - The Solar Radiation and Climate Experiment  

Microsoft Academic Search

The NASA\\/EOS Solar Radiation and Climate Experiment (SORCE) will measure the total and the spectral irradiance from the Sun, providing inputs for understanding the Earth's climate. Four instruments provide irradiance measurements at wavelengths from 1 nm to longer than 2000 nm as follows: The Total Irradiance Monitor (TIM) measures total solar irradiance (TSI) to a relative standard uncertainty (1 sigma

G. Kopp; G. Rottman; J. Harder; G. Lawrence; B. McClintock; T. Woods

2001-01-01

126

EE580 Solar Cells Todd J. Kaiser  

E-print Network

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 09 · Photovoltaic Systems 1Montana State University: Solar Cells Lecture 9: PV Systems 11 Solar heating (70-90%) is more efficient than photovoltaic (15%-20%) but electricity generally is more useful than heat. Solar Cell Basics · Photovoltaic Systems

Kaiser, Todd J.

127

High voltage solar array experiments  

NASA Technical Reports Server (NTRS)

The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.

Kennerud, K. L.

1974-01-01

128

Wraparound-contact solar cells  

NASA Technical Reports Server (NTRS)

Positive and negative electrical contacts are on back surface of wraparound-contact solar cell. With both terminals on nonilluminated side, cells can be connected back-to-back, and interconnection of many cells can be automated by using printed-circuit techniques. Cells are made by screen-printing layer of dielectric around edge of cell and extending top contact over dielectric to back surface. Wraparound also facilitates application of transparent covers and encapsulants. Efficiencies of cells are in excess of seventeen percent.

Baraona, C. R.; Klucher, T. M.; Thornhill, J. W.; Scott-Monck, J.

1979-01-01

129

Solar exposure of LDEF experiment trays  

NASA Technical Reports Server (NTRS)

Exposure to solar radiation is one of the primary causes of degradation of materials on spacecraft. Accurate knowledge of solar exposure is needed to evaluate the performance of materials carried on the Long Duration Exposure Facility (LDEF) during its nearly 6 year orbital flight. Presented here are tables and figures of calculated solar exposure for the experiment rows, longerons, and end bays of the spacecraft as functions of time in orbit. The data covers both direct solar and earth reflected radiation. Results are expressed in cumulative equivalent sun hours (CESH) or the hours of direct, zero incidence solar radiation that would cause the same irradiance of a surface. Space end bays received the most solar radiation, 14,000 CESH; earth end bays received the least, 4,500 CESH. Row locations received between 6,400 CESH and 11,200 CESH with rows facing either eastward or westward receiving the most radiation and rows facing northward or southward receiving the least.

Bourassa, R. J.; Gillis, J. R.

1992-01-01

130

Report on solar neutrino experiments  

SciTech Connect

A summary is given of the status of solar neutrino research that includes results of the Brookhaven chlorine detector, a discussion of the development of the gallium, bromine, and lithium radiochemical detectors, and some proposals for direct counting detectors. The gallium and bromine radiochemical detectors are developed and are capable of giving critical information of interest about neutrino physics and the fusion reactions in the interior of the sun. A plan for building these detectors is outlined and a rough cost estimate is given. A review is given of the plans in the Soviet Union in solar neutrino research.

Davis, R. Jr.; Cleveland, B.T.; Rowley, J.K.

1984-01-01

131

Silicon concentrator solar cell research  

SciTech Connect

This report describes work conducted between December 1990 and May 1992 continuing research on silicon concentrator solar cells. The objectives of the work were to improve the performance of high-efficiency cells upon p-type substrates, to investigate the ultraviolet stability of such cells, to develop concentrator cells based on n-type substrates, and to transfer technology to appropriate commercial environments. Key results include the identification of contact resistance between boron-defused areas and rear aluminum as the source of anomalously large series resistance in both p- and n-type cells. A major achievement of the present project was the successful transfer of cell technology to both Applied Solar Energy Corporation and Solarex Corporation.

Green, M.A.; Zhao, J.; Wang, A.; Dai, X.; Milne, A.; Cai, S.; Aberle, A.; Wenham, S.R. [Univ. of New South Wales, Kensington, NSW (AU). Centre for Photovoltaic Devices and Systems

1993-06-01

132

Development of concentrator solar cells  

SciTech Connect

A limited pilot production run on PESC silicon solar cells for use at high concentrations (200 to 400 suns) is summarized. The front contact design of the cells was modified for operation without prismatic covers. The original objective of the contract was to systematically complete a process consolidation phase, in which all the, process improvements developed during the contract would be combined in a pilot production run. This pilot run was going to provide, a basis for estimating cell costs when produced at high throughput. Because of DOE funding limitations, the Photovoltaic Concentrator Initiative is on hold, and Applied Solar`s contract was operated at a low level of effort for most of 1993. The results obtained from the reduced scope pilot run showed the effects of discontinuous process optimization and characterization. However, the run provided valuable insight into the technical areas that can be optimized to achieve the original goals of the contract.

Not Available

1994-08-01

133

Highly Mismatched Alloys for Intermediate Band Solar Cells  

E-print Network

comparison to multijunction solar cells. A detailed balanceachieved with multijunction solar cells based on standardmultijunction designs for improving the power conversion efficiency of solar cells [

2005-01-01

134

Solar cell circuit and method for manufacturing solar cells  

NASA Technical Reports Server (NTRS)

The invention is a novel manufacturing method for making multi-junction solar cell circuits that addresses current problems associated with such circuits by allowing the formation of integral diodes in the cells and allows for a large number of circuits to readily be placed on a single silicon wafer substrate. The standard Ge wafer used as the base for multi-junction solar cells is replaced with a thinner layer of Ge or a II-V semiconductor material on a silicon/silicon dioxide substrate. This allows high-voltage cells with multiple multi-junction circuits to be manufactured on a single wafer, resulting in less array assembly mass and simplified power management.

Mardesich, Nick (Inventor)

2010-01-01

135

High-efficiency silicon solar cell research  

NASA Technical Reports Server (NTRS)

High efficiency solar cells were characterized. Silicon solar cell computer modeling was presented. New designs of matter insulator n-p (MINP) were discussed and a new structure called a floating emitter cell was proposed for 20% and higher efficiency. Various techniques for making high efficiency silicon solar cells were described.

Daud, T.

1984-01-01

136

Solar cell spectral response characterization  

NASA Technical Reports Server (NTRS)

The absolute spectral response of solar cells is reported in the 400-1000-nm spectral region. Measurements were performed using two different types of monochromatic sources: amplitude-stabilized CW laser lines and interference filters with an incandescent lamp. Both types of calibration procedures use electrical substitution radiometry as the basis of traceability to absolute SI units. The accuracy of the calibration is shown to be limited by the nonideal characteristics of the solar cells themselves, specifically spatial nonuniformities and nonlinearities induced by high light levels.

Zalewski, E. F.; Geist, J.

1979-01-01

137

New mounting improves solar-cell efficiency  

NASA Technical Reports Server (NTRS)

Method boosts output by about 20 percent by trapping and redirecting solar radiation without increasing module depth. Mounted solar-cell array is covered with internally reflecting plate. Plate is attached to each cell by transparent adhesive, and space between cells is covered with layer of diffusely reflecting material. Solar energy falling on space between cells is diffused and reflected internally by plate until it is reflected onto solar cell.

Shepard, N. F., Jr.

1980-01-01

138

Solar Energy Experiment for Beginning Chemistry.  

ERIC Educational Resources Information Center

Describes an experiment illustrating how such chemical concepts as light absorption, thermodynamics, and solid-state photovoltaics can be incorporated into solar energy education. Completed in a three-hour period, the experiment requires about two hours for data collections with the remaining hour devoted to calculations and comparison of results.

Davis, Clyde E.

1983-01-01

139

Evaluation of solar cell materials for a Solar Power Satellite  

NASA Technical Reports Server (NTRS)

Alternative solar cell materials being considered for the solar power satellite are described and price, production, and availability projections through the year 2000 are presented. The chief materials considered are silicon and gallium arsenide.

Glaser, P. E.; Almgren, D. W.; Csigi, K. I.

1980-01-01

140

Solar Radiation and Climate Experiment (SORCE) Satellite  

NASA Technical Reports Server (NTRS)

This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).

2003-01-01

141

Experimenting with Photoelectrochemical Cells in Drinking Straws: Practical Aids for Learning about Solar Energy in School or at Home  

ERIC Educational Resources Information Center

Photoelectrochemical cells using dye-sensitized ZnO with a Cu[superscript 2+]/Fe[superscript 2+]/Fe[superscript 3+] electrolyte can be easily made at home or in a school classroom with household chemicals and other readily available materials. The cells, which are made with wire housed within plastic drinking straws, have open-circuit voltages of

Appleyard, S. J.

2008-01-01

142

Solar Energy Materials & Solar Cells 91 (2007) 15991610 Improving solar cell efficiency using photonic band-gap materials  

E-print Network

) solar energy conversion systems (or solar cells) are the most widely used power systems. HoweverSolar Energy Materials & Solar Cells 91 (2007) 1599­1610 Improving solar cell efficiency using Propulsion Laboratory, California Institute of Technology, Mail Stop T1714 106, 4800 Oak Grove Drive

Dowling, Jonathan P.

143

Solar power tower development: Recent experiences  

SciTech Connect

Recent experiences with the 10 MW{sub e} Solar Two and the 2.5 MW{sub t} TSA (Technology Program Solar Air Receiver) demonstration plants are reported. The heat transfer fluids used in these solar power towers are molten-nitrate salt and atmospheric air, respectively. Lessons learned and suggested technology improvements for next-generation plants are categorized according to subsystem. The next steps to be taken in the commercialization process for each these new power plant technologies is also presented.

Tyner, C.; Kolb, G.; Prairie, M. [and others

1996-12-01

144

Asymmetric tandem organic solar cells  

NASA Astrophysics Data System (ADS)

Organic photovoltaics (OPVs) is an area that has attracted much attention recently as a potential low cost, sustainable source of energy with a good potential for full-scale commercialisation. Understanding the factors that determine the efficiency of such cells is therefore a high priority, as well as developing ways to boost efficiency to commercially-useful levels. In addition to an intensive search for new materials, significant effort has been spent on ways to squeeze more performance out of existing materials, such as multijunction cells. This thesis investigates double junction tandem cells in the context of small molecule organic materials. . Two different organic electron donor materials, boron subphthalocyanine chloride (SubPc) and aluminium phthalocyanine chloride (ClAlPc) were used as donors in heterojunctions with C60 to create tandem cells for this thesis. These materials have been previously used for solar cells and the absorption spectra of the donor materials complement each other, making them good candidates for tandem cell architectures. The design of the recombination layer between the cells is considered first, with silver nanoparticles demonstrated to work well as recombination centres for charges from the front and back sub-cells, necessary to avoid a charge build-up at the interface. The growth conditions for the nanoparticles are optimised, with the tandem cells outperforming the single heterojunction architecture. Optical modelling is considered as a method to improve the understanding of thin film solar cells, where interference effects from the reflective aluminium electrode are important in determining the magnitude of absorption a cell can achieve. The use of such modelling is first demonstrated in hybrid solar cells based on a SubPc donor with a titanium oxide (TiOx) acceptor; this system is ideal for observing the effects of interference as only the SubPc layer has significant absorption. The modelling is then applied to tandem cells where it is used to predict the short-circuit current (Jsc) generation of the sub-cells, which is not accessible experimentally. Current-matching is then used to predict the Jsc of the complete tandem device. . As a support to the optical modelling, ellipsometry measurements of thin films of ClAlPc are presented. These films of known thickness are analysed to extract the complex refractive index for use in optical modelling calculations. A dependence of the complex refractive index on film thickness and substrate is also noted. Finally, the external quantum efficiency (EQE) technique is considered as applied to solar cells, and an additional method is proposed to characterise current balancing in asymmetric tandem cells under illumination. This technique is verified experimentally by two separate sets of data..

Howells, Thomas J.

145

Solar-Cell Slide Rule  

NASA Technical Reports Server (NTRS)

Slide rule relates efficiency, impurity types, impurity concentrations, and process types. Solar cell slide rule calculations are determination of allowable impurity concentration for nonredistributive process, determination of impurity buildup factor for redistributive process and determination of allowable impurity concentration for redistributive process.

Yamakawa, K. A.

1983-01-01

146

Key Physical Mechanisms in Nanostructured Solar Cells  

SciTech Connect

The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

Dr Stephan Bremner

2010-07-21

147

EE580 Solar Cells Todd J. Kaiser  

E-print Network

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 05 · P-N Junction 1Montana State University: Solar Cells Lecture 5: P-N Junction P-N Junction · Solar Cell is a large area P-N junction electron (hole) positive) 2Montana State University: Solar Cells Lecture 5: P-N Junction p-n Junction p n P

Kaiser, Todd J.

148

Process of making solar cell module  

DOEpatents

A process is presented for the manufacture of solar cell modules. A solution comprising a highly plasticized polyvinyl butyral is applied to a solar cell array. The coated array is dried and sandwiched between at last two sheets of polyvinyl butyral and at least two sheets of a rigid transparent member. The sandwich is laminated by the application of heat and pressure to cause fusion and bonding of the solar cell array with the rigid transparent members to produce a solar cell module.

Packer, M.; Coyle, P.J.

1981-03-09

149

Solar Array Module Plasma Interaction Experiment (SAMPIE): Technical requirements document  

NASA Technical Reports Server (NTRS)

The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a NASA shuttle space flight experiment scheduled for launch in early 1994. The SAMPIE experiment will investigate plasma interactions of high voltage space power systems in low earth orbit. Solar cell modules, representing several technologies, will be biased to high voltages to characterize both arcing and plasma current collection. Other solar modules, specially modified in accordance with current theories of arcing and breakdown, will demonstrate the possibility of arc suppression. Finally, several test modules will be included to study the basic nature of these interactions. The science and technology goals for the project are defined in the Technical Requirements Document (TRD) which is presented here.

Hillard, G. Barry; Ferguson, Dale C.

1992-01-01

150

Investigation of carbon arc source as an AM0 solar simulator for use in characterizing multijunction solar cells  

Microsoft Academic Search

Optimization of multi-junction solar cell designs requires a solar simulator with a spectral irradiance that closely matches AM0. This is particularly true for multijunction solar cells designed to be used in radiation environments as well as cells that experience photo-degradation under AM0. The carbon arc source is being investigated to determine its suitability as an AM0 solar simulator for the

Jianzeng Xu; J. R. Woodyard

2000-01-01

151

Coupling flexible solar cell with parabolic trough solar-concentrator-prototype design and performance  

NASA Astrophysics Data System (ADS)

Solar cells are still too expensive (5-20/watt) to compete with traditional fossil fuel power generating methods (1/watt). Parabolic trough solar concentrator has the advantage of modest concentration ratio (10-100) which is well suited for coupling with solar cell. Thus using small area solar cell placed in the focal line of parabolic trough may be economically viable alternative to flat solar panels. We experiment with flexible solar cell (backed by water cooling pipe) placed in the focus of parabolic trough reflector. Another advantage of parabolic trough concentrator is very relaxed tracking requirement. For example, east-west oriented concentrator (aligned with the ecliptic plane) does not even need any tracking during core 4-6 hours around noon (when maximum illumination is available). The design and the performance of the prototype, as well as possible economical benefits of full scale projects are discussed in the presentation.

Panin, Alexander; Bergquist, Jonathon

2007-10-01

152

Titania solar cells: new photovoltaic technology  

Microsoft Academic Search

Titania solar cells are a new type of photovoltaic device invented by Professor Michael Grtzel at Ecole Polytechnique Federale de Lausanne (Switzerland). Titania solar cells convert sunlight directly into electricity through a process similar to photosynthesis. It has performance advantages over other solar cells, which include the ability to perform well in low light and shade, and to perform consistently

George Phani; Gavin Tulloch; David Vittorio; Igor Skryabin

2001-01-01

153

Light trapping in amorphous silicon solar cells  

Microsoft Academic Search

In order to simultaneously decrease the production costs of thin film silicon solar cells and obtain higher performances, the authors have studied the possibility to increase the light trapping effect within thin film silicon solar cells deposited on flexible plastic substrates. In this context, different nano-structure shapes useable for the back contacts of amorphous silicon solar cells on plastic substrates

Vanessa Terrazzoni-Daudrix; Joelle Guillet; Xavier Niquille; Arvind Shah; R. Morf; A. Tishchenko; V. Brioude; O. Parriaux; D. Fischer

154

Quantum Junction Solar Cells Jiang Tang,,  

E-print Network

To date, the bandgaps of light-absorbing semiconductors making up multijunction solar cells have been quantum dots offer avenues to inexpensive and robust multijunction solar cell architectures. RecentlyQuantum Junction Solar Cells Jiang Tang,, Huan Liu,, David Zhitomirsky, Sjoerd Hoogland, Xihua

155

EE580 Solar Cells Todd J. Kaiser  

E-print Network

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 02 Microfabrication ­ A combination · Photolithograpy · Depostion · Etching 1 Montana State University: Solar Cells Lecture 2: Microfabrication Flow Montana State University: Solar Cells Lecture 2: Microfabrication Questions · What is heat? · Heat

Kaiser, Todd J.

156

EE580 Solar Cells Todd J. Kaiser  

E-print Network

to the load 3Montana State University: Solar Cells Lecture 10: Summary Photovoltaic Effect Creation of Voltage Montana State University: Solar Cells Lecture 10: Summary 7 Photovoltaic Myth #3 · Grid-connected PV Photovoltaic Myth #7 · PV involves toxic materials ­ Minimal toxic materials in silicon solar cells, but used

Kaiser, Todd J.

157

Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS  

NASA Technical Reports Server (NTRS)

The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

Wilt, David M.

2004-01-01

158

Nanostructured Materials for Solar Cells  

NASA Technical Reports Server (NTRS)

The use of both inorganic and organic nanostructured materials in producing high efficiency photovoltaics is discussed in this paper. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of semiconductor quantum dots in an ordinary p-i-n solar cell. In addition, it has also recently been demonstrated that quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. A similar improvement in these types of cells has also been observed by employing single wall carbon nanotubes. This relatively new carbon allotrope may assist both in the disassociation of excitons as well as carrier transport through the composite material. This paper reviews the efforts that are currently underway to produce and characterize these nanoscale materials and to exploit their unique properties.

Bailey, Sheila; Raffaelle, Ryne; Castro, Stephanie; Fahey, S.; Gennett, T.; Tin, P.

2003-01-01

159

A novel chlorophyll solar cell  

NASA Astrophysics Data System (ADS)

The photosynthetic process is reviewed in order to produce a design for a chlorophyll solar cell. In a leaf, antenna chlorophyll absorbs light energy and conducts it to an energy trap composed of a protein and two chlorophyll molecules, which perform the oxidation-reduction chemistry. The redox potential of the trap changes from 0.4 to -0.6 V, which is sufficient to reduce nearby molecules with redox potentials in that range. The reduction occurs by transfer of an electron, and a chlorophyll solar cell would direct the transferred electron to a current carrier. Chlorophyll antenna and traps are placed on a metallic support immersed in an electron acceptor solution, and resulting electrons from exposure to light are gathered by a metallic current collector. Spinach chlorophyll extracted, purified, and applied in a cell featuring a Pt collector and an octane water emulsion resulted in intensity independent voltages.

Ludlow, J. C.

160

Nanowire perovskite solar cell.  

PubMed

Organolead iodide perovskite, CH3NH3PbI3, was prepared in the form of nanowire by means of a small quantity of aprotic solvent in two-step spin-coating procedure. One-dimensional nanowire perovskite with the mean diameter of 100 nm showed faster carrier separation in the presence of hole transporting layer and higher lateral conductivity than the three-dimensional nanocuboid crystal. Reduction in dimensionality resulted in the hypsochromic shift of both absorption and fluorescence spectra, indicative of more localized exciton states in nanowires. The best performing device employing nanowire CH3NH3PbI3 delivered photocurrent density of 19.12 mA/cm(2), voltage of 1.052 V, and fill factor of 0.721, leading to a power conversion efficiency (PCE) of 14.71% at standard AM 1.5G solar illumination. A small I-V hysteresis was observed, where a PCE at forward scan was measured to be 85% of the PCE at reverse scan. PMID:25710268

Im, Jeong-Hyeok; Luo, Jingshan; Franckevi?ius, Marius; Pellet, Norman; Gao, Peng; Moehl, Thomas; Zakeeruddin, Shaik Mohammed; Nazeeruddin, Mohammad Khaja; Grtzel, Michael; Park, Nam-Gyu

2015-03-11

161

Towards stable silicon nanoarray hybrid solar cells  

PubMed Central

Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viable alternative for harvesting solar energy. Here we show that Si nanoarray/PEDOT:PSS hybrid solar cells with improved stability can be fabricated via eliminating the water inclusion in the initial formation of the heterojunction between Si nanoarray and PEDOT:PSS. The Si nanoarray hybrid solar cells are stable against rapid degradation in the atmosphere environment for several months without encapsulation. This finding paves the way towards the real-world applications of Si nanoarray hybrid solar cells. PMID:24430057

He, W. W.; Wu, K. J.; Wang, K.; Shi, T. F.; Wu, L.; Li, S. X.; Teng, D. Y.; Ye, C. H.

2014-01-01

162

22. 8% efficient silicon solar cell  

SciTech Connect

A new silicon solar cell structure, the passivated emitter and rear cell, is described. The cell structure has yielded independently confirmed efficiencies of up to 22.8%, the highest ever reported for a silicon cell.

Blakers, A.W.; Wang, A.; Milne, A.M.; Zhao, J.; Green, M.A. (Solar Photovoltaic Laboratory, Joint Microelectronics Research Centre, University of New South Wales, Kensington 2033, Australia (AU))

1989-09-25

163

Solar axion search with the CAST experiment  

E-print Network

The CAST (CERN Axion Solar Telescope) experiment is searching for solar axions by their conversion into photons inside the magnet pipe of an LHC dipole. The analysis of the data recorded during the first phase of the experiment with vacuum in the magnet pipes has resulted in the most restrictive experimental limit on the coupling constant of axions to photons. In the second phase, CAST is operating with a buffer gas inside the magnet pipes in order to extent the sensitivity of the experiment to higher axion masses. We will present the first results on the $^{4}{\\rm He}$ data taking as well as the system upgrades that have been operated in the last year in order to adapt the experiment for the $^{3}{\\rm He}$ data taking. Expected sensitivities on the coupling constant of axions to photons will be given for the recent $^{3}{\\rm He}$ run just started in March 2008.

CAST Collaboration; E. Arik; S. Aune; D. Autiero; K. Barth; A. Belov; B. Beltrn; S. Borghi; F. S. Boydag; H. Bruninger; G. Cantatore; J. M. Carmona; S. A. Cetin; J. I. Collar; T. Dafni; M. Davenport; L. Di Lella; O. B. Dogan; C. Eleftheriadis; N. Elias; G. Fanourakis; E. Ferrer-Ribas; H. Fischer; J. Franz; J. Galn; E. Gazis; T. Geralis; I. Giomataris; S. Gninenko; H. Gmez; M. Hasinoff; F. H. Heinsius; I. Hikmet; D. H. H. Hoffmann; I. G. Irastorza; J. Jacoby; K. Jakov?i?; D. Kang; T. Karageorgopoulou; M. Karuza; K. Knigsmann; R. Kotthaus; M. Kr?mar; K. Kousouris; M. Kuster; B. Laki?; C. Lasseur; A. Liolios; A. Ljubi?i?; V. Lozza; G. Lutz; G. Luzn; D. Miller; J. Morales; T. Niinikoski; A. Nordt; A. Ortiz; T. Papaevangelou; M. J. Pivovaroff; A. Placci; G. Raiteri; G. Raffelt; H. Riege; A. Rodrguez; J. Ruz; I. Savvidis; Y. Semertzidis; P. Serpico; S. K. Solanki; R. Soufli; L. Stewart; M. Tsagri; K. van Bibber; J5D. Villar; J. Vogel; L. Walckiers; K. Zioutas

2008-10-10

164

Advanced Solar GaAs Array (ASGA) experiment on EURECA: Flight objectives and instrument configuration  

NASA Astrophysics Data System (ADS)

The Advanced Solar GaAs Array (ASGA) experiment consists of a solar panel with different GaAs solar cells to be flown by EURECA-1. During the whole mission electrical and thermal data relevant to different strings of cells are automatically recorded by dedicated electronics to check the performance trend of GaAs solar cells when exposed to the low Earth orbit environment. The EURECA flight gives an opportunity to evaluate the properties of standard and advanced GaAs solar cells over a period of 6 months. The EURECA environment (the same as that for the future space station) is characterized by: high number of eclipses, low radiation density, and atomic oxygen erosion. The ASGA experiment tests the effects of these physical aspects on different kind of cells. On the solar panel, concentrator and planar cells will be mounted.

Bertotti, L.; Flores, C.; Paletta, F.; Zuliani, L.

1986-11-01

165

Cell Radiation Experiment System  

NASA Technical Reports Server (NTRS)

The cell radiation experiment system (CRES) is a perfused-cell culture apparatus, within which cells from humans or other animals can (1) be maintained in homeostasis while (2) being exposed to ionizing radiation during controlled intervals and (3) being monitored to determine the effects of radiation and the repair of radiation damage. The CRES can be used, for example, to determine effects of drug, radiation, and combined drug and radiation treatments on both normal and tumor cells. The CRES can also be used to analyze the effects of radiosensitive or radioprotectant drugs on cells subjected to radiation. The knowledge gained by use of the CRES is expected to contribute to the development of better cancer treatments and of better protection for astronauts, medical-equipment operators, and nuclear-power-plant workers, and others exposed frequently to ionizing radiation.

Morrison, Dennis R.

2010-01-01

166

Solar Irradiance and Thermospheric Airglow Rocket Experiments  

NASA Technical Reports Server (NTRS)

This report describes work done in support of the Solar Irradiance and Thermospheric Air-glow Rocket Experiments at the University of Colorado for NASA grant NAG5-5021 under the direction of Dr. Stanley C. Solomon. (The overall rocket program is directed by Dr. Thomas N. Woods, formerly at the National Center for Atmospheric Research, and now also at the University of Colorado, for NASA grant NAG5-5141.) Grant NAG5-5021 provided assistance to the overall program through analysis of airglow and solar data, support of two graduate students, laboratory technical services, and field support. The general goals of the rocket program were to measure the solar extreme ultraviolet spectral irradiance, measure the terrestrial far-ultraviolet airglow, and analyze their relationship at various levels of solar activity, including near solar minimum. These have been met, as shown below. In addition, we have used the attenuation of solar radiation as the rocket descends through the thermosphere to measure density changes. This work demonstrates the maturity of the observational and modeling methods connecting energetic solar photon fluxes and airglow emissions through the processes of photoionization and photoelectron production and loss. Without a simultaneous photoelectron measurement, some aspects of this relationship remain obscure, and there are still questions pertaining to cascade contributions to molecular and atomic airglow emissions. However, by removing the solar irradiance as an "adjustable parameter" in the analysis, significant progress has been made toward understanding the relationship of far-ultraviolet airglow emissions to the solar and atmospheric conditions that control them.

Solomon, Stanley C.

1998-01-01

167

Solar Cell Simulation  

NSDL National Science Digital Library

In this activity, learners model the flow of energy from the sun as it enters a photovoltaic cell, moves along a wire and powers a load. The game-like atmosphere engages younger learners and helps them understand the continuous nature of the flow of energy. Note: to do this activity you need access to a large open area outside (e.g., a field or playground).

Susan Schleith

2007-01-01

168

Advanced solar cell  

SciTech Connect

A photovoltaic cell is described comprising: a layered extrinsic semiconductor having a substantially neutral base layer sandwiched between two heavily doped layers having opposite conductivity types to form a P-N junction within the semiconductor; and means for applying an externally generated electric field to the semiconductor to enhance a depletion region formed around the P-N junction to extend into the base layer when photo radiation impinges on the semiconductor.

Hingorani, N.G.; Mehta, H.

1993-06-01

169

TIMED Solar EUV Experiment: Phase E  

NASA Technical Reports Server (NTRS)

The timed Solar EUV Experiment (SEE) Phase E Annual Report for 2002 is presented. The contents include: 1) SEE Science Overview; 2) SEE Instrument Overview and Status; 3) Summary of SEE Data Products; 4) Summary of SEE Results; 5) Summary of SEE Related Talks and Papers; and 6) Future Plans for SEE Team. This paper is in viewgraph form.

Woods, Tom; Eparvier, Frank; Woodraska, Don; Rottman, Gary; Solomon, Stan; Roble, Ray; deToma, Guliana; White, Dick; Lean, Judith; Tobiska, Kent; Bailey, Scott

2002-01-01

170

Hybrid robotic wheelchair with photovoltanic solar cell and fuel cell  

Microsoft Academic Search

A hybrid robotic wheelchair powered by three energy sources, a battery, a photovoltanic solar cell, and a hydrogen fuel cell is proposed in this paper. The advantage of using a photovoltanic solar cell (a solar panel) is that it produces power without requiring use of fossil fuels. The advantage of using a fuel cell is that a hydrogen tank may

Y. Takahashi; S. Matsuo; K. Kawakami

2008-01-01

171

Solar cells Improved Hybrid Solar Cells via in situ UV Polymerization  

E-print Network

Solar cells Improved Hybrid Solar Cells via in situ UV Polymerization Sanja Tepavcevic, Seth B-enhanced solar energy conversion. By using this simple in situ UV polymerization method that couples mobility of the photoactive layer can be enhanced. 1. Introduction Hybrid solar cells have been developed

Sibener, Steven

172

High Temperature Solar Cell Development  

NASA Technical Reports Server (NTRS)

The majority of satellites and near-earth probes developed to date have used photovoltaic arrays for power generation. If future mission to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. In this paper, we derive the optimum bandgap as a function of the operating temperature.

Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

2004-01-01

173

Dye-Sensitized Solar Cells  

NSDL National Science Digital Library

This lesson from The Lawrence Hall of Science was taught in spring 2012 and teaches students about nano and environmental technologies. Students will create "dye-sensitized solar cells (DSSC) using nano-crystalline titanium dioxide." This page includes links to the Source Articles for the Hands-on Module and Project Staff Write-ups of the Hands-on Module. Additionally, five documents provide lecture and lab materials for instructor use.

174

Modeling and experiment of dye-sensitized solar cell with vertically aligned ZnO nanorods through chemical bath deposition  

NASA Astrophysics Data System (ADS)

A theoretical model based on electron diffusion differential equation and Schottky barrier model was developed to determine the current-voltage characteristics of DSSC. To verify the model DSSC with ZnO nanorods photoelectrode which was chemically bath deposited onto the TCO was fabricated. According to modeling results, increasing of recombination current density J at these interfaces results in a decrease in Schottky barrier height ?b and therefore improves the photovoltage under the open-circuit condition. It is found that the open-circuit voltage remains constant when the TCO/ZnO Schottky barrier height was varied in the range of 0.45 - 0.6 eV. This theoretical model consistents with the experimental result in which the fabricated DSSCs can produce conversion efficiency in the range of 0.98 - 1.16%. The trend in photovoltage calculated in the theoretical model basically agrees with the experimental result, although the calculated photocurrent is somewhat over estimated compared to the experimental results. The model presents that the ideality factor for ZnO nanorods, which also contributes to the enhancement of photovoltage, increases in the range of 2.75 - 3.0 as the annealing temperature is increased in the experiment.

Wahyuono, Ruri Agung; Risanti, Doty D.

2015-01-01

175

TROPIX: A solar electric propulsion flight experiment  

NASA Technical Reports Server (NTRS)

The Transfer Orbit Plasma Interaction Experiment (TROPIX) is a proposed scientific experiment and flight demonstration of a solar electric propulsion vehicle. Its mission goals are to significantly increase our knowledge of Earth's magnetosphere and its associated plasma environment and to demonstrate an operational solar electric upper stage (SEUS) for small launch vehicles. The scientific investigations and flight demonstration technology experiments are uniquely interrelated because of the spacecraft's interaction with the surrounding environment. The data obtained will complement previous studies of the Earth's magnetosphere and space plasma environment by supplying the knowledge necessary to attain the strategic objectives of the NASA Office of Space Science. This first operational use of a primary ion propulsion vehicle, designed to withstand the harsh environments from low Earth orbit to geosynchronous Earth orbit, may lead to the development of a new class of electric propulsion upper stages or space-based transfer vehicles and may improve future spacecraft design and safety.

Hickman, J. Mark; Hillard, G. Barry; Oleson, Steven R.

1993-01-01

176

Three-junction solar cell  

DOEpatents

A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

Ludowise, Michael J. (Cupertino, CA)

1986-01-01

177

Silicon solar cell fabrication technology  

NASA Technical Reports Server (NTRS)

The laser cell scanner was used to characterize a number of solar cells made in various materials. An electron beam-induced current (EBIC) study was performed using a stereoscan scanning electron microscope. Planar p-n junctions were analyzed. A theory for the EBIC based on the analytical solution of the ambipolar diffusion equation under the influence of electron beam excitation parameter z (which is related to beam penetration), the junction depth Z sub j, the beam current and the surface recombination, was formulated and tested. The effect of a grain boundary was studied.

Stafsudd, O. M.

1979-01-01

178

Spectral sensitization of nanocrystalline solar cells  

DOEpatents

This invention relates to dye sensitized polycrystalline photoelectrochemical solar cells for use in energy transduction from light to electricity. It concerns the utility of highly absorbing organic chromophores as sensitizers in such cells and the degree to which they may be utilized alone and in combination to produce an efficient photoelectrochemical cell, e.g., a regenerative solar cell.

Spitler, Mark T. (Concord, MA); Ehret, Anne (Malden, MA); Stuhl, Louis S. (Bedford, MA)

2002-01-01

179

Recent Advances in Solar Cell Technology  

NASA Technical Reports Server (NTRS)

The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

1996-01-01

180

Solar cell contacts  

NASA Technical Reports Server (NTRS)

Two experimental contact systems were examined and compared to a baseline contact system consisting of evaporated layers of titanium, palladium, and silver and an electroplated layer of copper. The first experimental contact system consisted of evaporated layers of titanium, nickel, and copper and an electroplated layer of copper. This system performed as well as the baseline system in all respects, including its response to temperature stress tests, to a humidity test, and to an accelerated aging test. In addition, the cost of this system is estimated to be only 43 percent of the cost of the baseline system at a production level of 25 MW/year. The second experimental contact system consisted of evaporated layers of nickel and copper and an electroplated layer of copper. Cells with this system show serious degradation in a temperature stress test at 350 C for 30 minutes. Auger electron spectroscopy was used to show that the evaporated nickel layer is not an adequate barrier to copper diffusion even at temperatures as low as 250 C. This fact brings into question the long-term reliability of this contact system.

Meier, D. L.; Campbell, R. B.; Davis, J. R., Jr.; Rai-Choudhury, P.; Sienkiewicz, L. J.

1982-01-01

181

Status of multijunction solar cells  

NASA Technical Reports Server (NTRS)

This paper describes Applied Solar's present activity on Multijunction (MJ) space cells. We have worked on a variety of MJ cells, both monolithic and mechanically stacked. In recent years, most effort has been directed to GaInP2/GaAs monolithic cells, grown on Ge substrates, and the status of this cell design will be reviewed here. MJ cells are in demand to provide satellite power because of the acceptance of the overwhelming importance of high efficiency to reduce the area, weight and cost of space PV power systems. The need for high efficiencies has already accelerated the production of GaAs/Ge cells, with efficiencies 18.5-19%. When users realized that MJ cells could provide higher efficiencies (from 22% to 26%) with only fractional increase in costs, the demand for production MJ cells increased rapidly. The main purpose of the work described is to transfer the MOCVD growth technology of MJ high efficiency cells to a production environment, providing all the space requirements of users.

Yeh, Y. C. M.; Chu, C. L.

1996-01-01

182

Extended Temperature Solar Cell Technology Development  

NASA Technical Reports Server (NTRS)

Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

2004-01-01

183

heat treatment for solar cells  

NASA Astrophysics Data System (ADS)

CdTe is an important compound semiconductor for solar cells, and its use in nanowire-based heterostructures may become a critical requirement, owing to the potential scarcity of tellurium. The effects of the CdCl2 heat treatment are investigated on the physical properties of vertically aligned ZnO/CdTe core-shell nanowire arrays grown by combining chemical bath deposition with close space sublimation. It is found that recrystallization phenomena are induced by the CdCl2 heat treatment in the CdTe shell composed of nanograins: its crystallinity is improved while grain growth and texture randomization occur. The presence of a tellurium crystalline phase that may decorate grain boundaries is also revealed. The CdCl2 heat treatment further favors the chlorine doping of the CdTe shell with the formation of chlorine A-centers and can result in the passivation of grain boundaries. The absorption properties of ZnO/CdTe core-shell nanowire arrays are highly efficient, and more than 80% of the incident light can be absorbed in the spectral range of the solar irradiance. The resulting photovoltaic properties of solar cells made from ZnO/CdTe core-shell nanowire arrays covered with CuSCN/Au back-side contact are also improved after the CdCl2 heat treatment. However, recombination and trap phenomena are expected to operate, and the collection of the holes that are mainly photo-generated in the CdTe shell from the CuSCN/Au back-side contact is presumably identified as the main critical point in these solar cells.

Consonni, Vincent; Renet, Sbastien; Garnier, Jrme; Gergaud, Patrice; Arts, Lluis; Michallon, Jrme; Rapenne, Laetitia; Appert, Estelle; Kaminski-Cachopo, Anne

2014-05-01

184

Silicon Solar Cell Process Development, Fabrication and Analysis  

NASA Technical Reports Server (NTRS)

Ribbon to Ribbon (RTR) solar cells processed from polycrystalline feedstock showed maximum AMO efficiency of 5.6%. Solar cells from single crystalline feedstock showed slightly higher efficiency than those from polycrystalline feedstock, indicating maximum efficiency of about 6.6% with SiO AR coating. Single crystalline control cells gave 11-12% AMO efficiencies demonstrating that the poor performance of the RTR solar was due to the low quality of material itself. Dendritic web solar cells from the standard process showed maximum AMO efficiency of 9.8% while efficiency of control solar cells were around 11-12%. Web solar cells from back surface field (BSF) process indicated maximum AMO efficiency of 10.9%. Some improvement in open circuit voltage was noticed from the BSF process. Small light spot scanning experiments were carried out on the solar cells from Wacker Silso, EFG, RTR, and dendritic web ribbons. Photoresponse results provided information on localized cell performance and grain size in polycrystalline material, and agreed quite well with the cell performance data, such as efficiency, minority carrier diffusion length, and spectral response.

Yoo, H. I.; Iles, P. A.; Tanner, D. P.

1978-01-01

185

Energy Conversion: Nano Solar Cell  

NASA Astrophysics Data System (ADS)

Problems of fossil-fuel-induced climate change have sparked a demand for sustainable energy supply for all sectors of economy. Most laboratories continue to search for new materials and new technique to generate clean energy at affordable cost. Nanotechnology can play a major role in solving the energy problem. The prospect for solar energy using Si-based technology is not encouraging. Si photovoltaics can produce electricity at 20-30 c//kWhr with about 25% efficiency. Nanoparticles have a strong capacity to absorb light and generate more electrons for current as discovered in the recent work of organic and dye-sensitized cell. Using cheap preparation technique such as screen-printing and self-assembly growth, organic cells shows a strong potential for commercialization. Thin Films research group at National University Malaysia has been actively involved in these areas, and in this seminar, we will present a review works on nanomaterials for solar cells and particularly on hybrid organic solar cell based on ZnO nanorod arrays. The organic layer consisting of poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEHPPV) and [6, 6]-phenyl C61-butyric acid 3-ethylthiophene ester (PCBE) was spin-coated on ZnO nanorod arrays. ZnO nanorod arrays were grown on FTO glass substrates which were pre-coated with ZnO nanoparticles using a low temperature chemical solution method. A gold electrode was used as the top contact. The device gave a short circuit current density of 2.4910-4 mA/cm2 and an open circuit voltage of 0.45 V under illumination of a projector halogen light at 100 mW/cm2.

Yahaya, Muhammad; Yap, Chi Chin; Mat Salleh, Muhamad

2009-09-01

186

Solar cell system having alternating current output  

NASA Technical Reports Server (NTRS)

A monolithic multijunction solar cell was modified by fabricating an integrated circuit inverter on the back of the cell to produce a device capable of generating an alternating current output. In another embodiment, integrated curcuit power conditioning electronics was incorporated in a module containing a solar cell power supply.

Evans, J. C., Jr. (inventor)

1980-01-01

187

Development of stacked multiple bandgap solar cells  

Microsoft Academic Search

Stacked multiple bandgap solar cells utilize separate junctions or solar cells or selected properties which are combined in series both optically and electrically to obtain higher conversion efficiencies than can be achieved by any of the cells individually. Basic requirements for the successful fabrication of high efficiency tandem structures will be defined, and the apparent practical limitations on the formation

R. P. Ruth; J. J. Coleman; S. W. Zehr; R. D. Dupuis; H. T. Yang; D. L. Miller; P. D. Dapkus

1979-01-01

188

Amorphous Silicon-Carbon Nanostructure Solar Cells  

Microsoft Academic Search

Taking advantage of the ability to fabricate large area graphene and carbon nanotube networks (buckypaper), we produce Schottky junction solar cells using undoped hydrogenated amorphous silicon thin films and nanostructured carbon films. These films are useful as solar cell materials due their combination of optical transparency and conductance. In our cells, they behave both as a transparent conductor and as

Maria Schriver; Will Regan; Matthias Loster; Alex Zettl

2011-01-01

189

Search for new solar cell heats up  

SciTech Connect

Researchers are in the process of developing an organic solar energy cell with a plasticlike material that simplifies the complicated process of creating a working cell - one that is cheap, easy to produce and has a variety of potential applications. The chemical is polyacetylene and can be painted on anything to become a solar cell.

Lipkin, R.

1990-11-05

190

Ultrasonic Bonding of Solar-Cell Leads  

NASA Technical Reports Server (NTRS)

Rolling ultrasonic spot-bonding method successfully joins aluminum interconnect fingers to silicon solar cells with copper metalization. Technique combines best features of ultrasonic rotary seam welding and ultrasonic spot bonding: allows fast bond cycles and high indexing speeds without use of solder or flux. Achieves reliable bonds at production rates without damage to solar cells. Bonding system of interest for all solar-cell assemblies and other assemblies using flat leads (rather than round wires).

Frasch, W.

1984-01-01

191

Bypass diode for a solar cell  

DOEpatents

Bypass diodes for solar cells are described. In one embodiment, a bypass diode for a solar cell includes a substrate of the solar cell. A first conductive region is disposed above the substrate, the first conductive region of a first conductivity type. A second conductive region is disposed on the first conductive region, the second conductive region of a second conductivity type opposite the first conductivity type.

Rim, Seung Bum (Palo Alto, CA); Kim, Taeseok (San Jose, CA); Smith, David D. (Campbell, CA); Cousins, Peter J. (Menlo Park, CA)

2012-03-13

192

Solar Cell Modules With Improved Backskin  

DOEpatents

A laminated solar cell module comprises a front light transmitting support, a plurality of interconnected solar cells encapsulated by a light-transmitting encapsulant material, and an improved backskin formed of an ionomer/nylon alloy. The improved backskin has a toughness and melting point temperature sufficiently great to avoid any likelihood of it being pierced by any of the components that interconnect the solar cells.

Gonsiorawski, Ronald C. (Danvers, MA)

2003-12-09

193

Improved monolithic tandem solar cell  

SciTech Connect

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surf ace of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

Wanlass, M.W.

1991-04-23

194

Series of experiments for empirical validation of solar gain modeling in building energy simulation codesExperimental setup, test cell characterization, specifications and uncertainty analysis  

Microsoft Academic Search

Empirical validation of building energy simulation codes is an important component in understanding the capacity and limitations of the software. Within the framework of Task 34\\/Annex 43 of the International Energy Agency (IEA), a series of experiments was performed in an outdoor test cell. The objective of these experiments was to provide a high-quality data set for code developers and

H. Manz; P. Loutzenhiser; T. Frank; P. A. Strachan; R. Bundi; G. Maxwell

2006-01-01

195

A Surface-Controlled Solar Cell  

NASA Technical Reports Server (NTRS)

Open-circuit voltage and cell efficiency increased. Proposed technique for controlling recombination velocity on solar-cell surfaces provides cells of increased efficiency and open-circuit voltage. In present cells, uncontrolled surface recombination velocity degrades opencircuit voltage and efficiency. In cell using proposed technique, transparent conducting layer, insulated from cell contacts, biased to enable variable control of surface recombination velocity.

Daud, T.; Crotty, G. T.

1987-01-01

196

Monolithic and mechanical multijunction space solar cells  

SciTech Connect

High-efficiency, lightweight, radiation-resistant solar cells are essential to meet the large power requirements of future space missions. Single-junction cells are limited in efficiency. Higher cell efficiencies could be realized by developing multijunction, multibandgap solar cells. Monolithic and mechanically stacked tandem solar cells surpassing single-junction cell efficiencies have been fabricated. This article surveys the current status of monolithic and mechanically stacked multibandgap space solar cells, and outlines problems yet to be resolved. The monolithic and mechanically stacked cells each have their own problems related to size, processing, current and voltage matching, weight, and other factors. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full-spectrum range simulators are also needed to measure efficiencies correctly. Cost issues are not addressed, since the two approaches are still in the developmental stage.

Jain, R.K.; Flood, D.J. (NASA Lewis Research Center, Cleveland, OH (United States))

1993-05-01

197

Monolithic and mechanical multijunction space solar cells  

NASA Technical Reports Server (NTRS)

High-efficiency, lightweight, radiation-resistant solar cells are essential to meet the large power requirements of future space missions. Single-junction cells are limited in efficiency. Higher cell efficiencies could be realized by developing multijunction, multibandgap solar cells. Monolithic and mechanically stacked tandem solar cells surpassing single-junction cell efficiencies have been fabricated. This article surveys the current status of monolithic and mechanically stacked multibandgap space solar cells, and outlines problems yet to be resolved. The monolithic and mechanically stacked cells each have their own problems related to size, processing, current and voltage matching, weight, and other factors. More information is needed on the effect of temperature and radiation on the cell performance. Proper reference cells and full-spectrum range simulators are also needed to measure efficiencies correctly. Cost issues are not addressed, since the two approaches are still in the developmental stage.

Jain, Raj K.; Flood, Dennis J.

1992-01-01

198

Current and lattice matched tandem solar cell  

DOEpatents

A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

Olson, Jerry M. (Lakewood, CO)

1987-01-01

199

Current status of silicon solar cell technology  

NASA Technical Reports Server (NTRS)

In quest of higher efficiency, major progress has occurred in solar cell technology. Cell efficiency has climbed about 50 percent. Technical approaches leading to increased output include back surface fields, shallow junctions, improved antireflection coatings, surface texturizing, and fine grid patterns on the cell surface. The status of current solar cell technology and its incorporation into cell production is discussed. Research and development leading to improved performance and reduced cost are also described.

Brandhorst, H. W., Jr.

1975-01-01

200

Front contact solar cell with formed emitter  

DOEpatents

A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

Cousins, Peter John

2014-11-04

201

Front contact solar cell with formed emitter  

DOEpatents

A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

Cousins, Peter John (Menlo Park, CA)

2012-07-17

202

Leveraging the Experimental Method to Inform Solar Cell Design  

ERIC Educational Resources Information Center

In this article, the underlying logic of experimentation is exemplified within the context of a photoelectrical experiment for students taking a high school engineering, technology, or chemistry class. Students assume the role of photochemists as they plan, fabricate, and experiment with a solar cell made of copper and an aqueous solution of

Rose, Mary Annette; Ribblett, Jason W.; Hershberger, Heather Nicole

2010-01-01

203

New materials for solar cells - Tandem cells  

NASA Astrophysics Data System (ADS)

Cost efficiency in the manufacturing processes of the solar cell panels is discussed, noting the utilization of the III-V compound semiconductors (such as InSb or Ge) instead of silicon or gallium arsenide which have a complicated and expensive technology. A computation program is presented for a p-n junction using a set of nonlinear differential equations and taking into consideration such parameters as the mobility, the life space and the forbidden band. It is concluded that new, economic technologies should be directed toward blocking the UV light, acrylic elastomers, waterproof wood and paper materials and cost efficient silicon and fluorocarbon materials.

Dolocan, V.

204

Method for processing silicon solar cells  

DOEpatents

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

1997-05-06

205

Method for processing silicon solar cells  

DOEpatents

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

Tsuo, Y. Simon (Golden, CO); Landry, Marc D. (Lafayette, CO); Pitts, John R. (Lakewood, CO)

1997-01-01

206

Solar cell modules for plasma interaction evaluation  

NASA Technical Reports Server (NTRS)

A plasma interaction analysis in support of the solar electric propulsion subsystem examined the effects of a large high voltage solar array interacting with an ion thruster produced plasma. Two solar array test modules consisting of 36 large area wraparound contact solar cells welded to a flexible Kapton integrated circuit substrate were abricated. The modules contained certain features of the effects of insulation, din-holes, and bonding of the cell to the substrate and a ground plane. The possibility of a significant power loss occurring due to the collection of charged particles on the solar array interconnects was the focus of the research.

1981-01-01

207

Solar power satellites - Heat engine or solar cells  

NASA Technical Reports Server (NTRS)

A solar power satellite is the energy-converting element of a system that can deliver some 10 GW of power to utilities on the earth's surface. We evaluated heat engines and solar cells for converting sunshine to electric power at the satellite. A potassium Rankine cycle was the best of the heat engines, and 50 microns thick single-crystal silicon cells were the best of the photovoltaic converters. Neither solar cells nor heat engines had a clear advantage when all factors were considered. The potassium-turbine power plant, however, was more difficult to assemble and required a more expensive orbital assembly base. We therefore based our cost analyses on solar-cell energy conversion, concluding that satellite-generated power could be delivered to utilities for around 4 to 5 cents a kWh.

Oman, H.; Gregory, D. L.

1978-01-01

208

Operational Experience from Solar Thermal Energy Projects  

NASA Technical Reports Server (NTRS)

Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

Cameron, C. P.

1984-01-01

209

Operational experience from solar thermal energy projects  

NASA Astrophysics Data System (ADS)

Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

Cameron, C. P.

1984-03-01

210

Coupling of Luminescent Solar Concentrators to Plasmonic Solar Cells  

NASA Astrophysics Data System (ADS)

To make inexpensive solar cells is a continuous goal for solar photovoltaic (PV) energy industry. Thin film solar cells of various materials have been developed and continue to emerge in order to replace bulk silicon solar cells. A thin film solar cell not only uses less material but also requires a less expensive refinery process. In addition, other advantages coming along with small thickness are higher open circuit voltage and higher conversion efficiency. However, thin film solar cells, especially those made of silicon, have significant optical losses. In order to address this problem, this thesis investigates the spectral coupling of thin films PV to luminescent solar concentrators (LSC). LSC are passive devices, consisting of plastic sheets embedded with fluorescent dyes which absorb part of the incoming radiation spectrum and emit at specific wavelength. The emitted light is concentrated by total internal reflection to the edge of the sheet, where the PVs are placed. Since the light emitted from the LSC edge is usually in a narrow spectral range, it is possible to employ diverse strategies to enhance PV absorption at the peak of the emission wavelength. Employing plasmonic nanostructures has been shown to enhance absorption of thin films via forward scattering, diffraction and localized surface plasmon. These two strategies are theoretically investigated here for improving the absorption and elevating the output power of a thin film solar cell. First, the idea of spectral coupling of luminescent solar concentrators to plasmonic solar cells is introduced to assess its potential for increasing the power output. This study is carried out employing P3HT/PC60BM organic solar cells and LSC with Lumogen Red dyes. A simplified spectral coupling analysis is employed to predict the power density, considering the output spectrum of the LSC equivalent to the emission spectrum of the dye and neglecting any angular dependence. Plasmonic tuning is conducted to enhance absorption at the emission peak of the dye. A factorial increase in the output power density of coupled PV as compared to PV exposed directly to solar spectrum is observed for high light concentration on the edge. These initial results motivated a more in-depth study of coupled LSC-PV system, which took into account the radiative transport inside the realistic LSC. These investigations were carried out on LSCs using Lumogen Red305 and Rhodamine 6G dyes coupled to pristine and plasmonic ultra-thin film silicon solar cells. Prediction based on detailed balance shows that the coupled LSC-plasmonic solar cell can generate 63.7 mW/cm2 with a photocurrent density of 71.3 mA/cm2 which is higher than that of cSi solar cells available on current market. The second part of the thesis focuses on PV absorption enhancement techniques. First, the effect of vertical positioning of plasmonic nanostructures on absorption enhancement was theoretically investigated to understand which one of the three mechanisms usually responsible for the enhancement (forward scattering, diffraction and localized surface plamson) plays the dominant role. Simulation results suggested that the maximum enhancement occurred when placing the nanostructures in the rear side of the cell because of longer path length due to scattering. The experimental effort then switched focus on substrate patterning, which is a less expensive alternative to plasmonic absorption enhancement. Specifically, a nanostructured substrate was prepared by a simple electrochemical process based on two-step aluminum anodization technique. The absorption of thin film silicon deposited on these substrates showed a broadband enhancement. The overall photocurrent density was up to 40% higher than that of films deposited on flat substrates. In conclusion, the studies carried out in this thesis indicate that spectral coupling of LSCs to thin film solar cells could lead to significant improvements in PV output power density. Moreover, while the absorption of thin film solar cells can be enhanced by plasmonic nanostructures, it is shown th

Wang, Shu-Yi

211

Temperature coefficients of multijunction solar cells  

Microsoft Academic Search

Temperatures coefficients measured in solar simulators with those measured under AM0 solar illumination are compared to illustrate the challenges in making these measurements. It is shown that simulator measurements of the short-circuit current (?JSC\\/?T) are inaccurate due to the mismatch between the solar spectrum and the simulators at the bandgaps of the solar cells. Especially susceptible to error is the

G. F. Virshup; B.-C. Chung; M. L. Ristow; M. S. Kuryla; D. Brinker

1990-01-01

212

Sensitized energy transfer for organic solar cells, optical solar concentrators, and solar pumped lasers  

E-print Network

The separation of chromophore absorption and excitonic processes, such as singlet exciton fission and photoluminescence, offers several advantages to the design of organic solar cells and luminescent solar concentrators ...

Reusswig, Philip David

2014-01-01

213

Molecular weight dependent bimolecular recombination in organic solar cells.  

PubMed

Charge carrier recombination is studied in operational organic solar cells made from the polymer:fullerene system PCDTBT:PC71BM (poly[N-9''-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]: [6,6]-phenyl-C70-butyric acid methyl ester). A newly developed technique High Intensity Resistance dependent PhotoVoltage is presented for reliably quantifying the bimolecular recombination coefficient independently of variations in experimental conditions, thereby resolving key limitations of previous experimental approaches. Experiments are performed on solar cells of varying thicknesses and varying polymeric molecular weights. It is shown that solar cells made from low molecular weight PCDTBT exhibit Langevin recombination, whereas suppressed (non-Langevin) recombination is found in solar cells made with high molecular weight PCDTBT. PMID:25106609

Philippa, Bronson; Stolterfoht, Martin; White, Ronald D; Velusamy, Marrapan; Burn, Paul L; Meredith, Paul; Pivrikas, Almantas

2014-08-01

214

Molecular weight dependent bimolecular recombination in organic solar cells  

NASA Astrophysics Data System (ADS)

Charge carrier recombination is studied in operational organic solar cells made from the polymer:fullerene system PCDTBT:PC71BM (poly[N-9''-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]: [6,6]-phenyl-C70-butyric acid methyl ester). A newly developed technique High Intensity Resistance dependent PhotoVoltage is presented for reliably quantifying the bimolecular recombination coefficient independently of variations in experimental conditions, thereby resolving key limitations of previous experimental approaches. Experiments are performed on solar cells of varying thicknesses and varying polymeric molecular weights. It is shown that solar cells made from low molecular weight PCDTBT exhibit Langevin recombination, whereas suppressed (non-Langevin) recombination is found in solar cells made with high molecular weight PCDTBT.

Philippa, Bronson; Stolterfoht, Martin; White, Ronald D.; Velusamy, Marrapan; Burn, Paul L.; Meredith, Paul; Pivrikas, Almantas

2014-08-01

215

New Solar Cell Power Supply System Using a Boost Type Bidirectinal DC-DC Converter  

Microsoft Academic Search

A new solar cell power supply system is presented, in which the boost type bidirectional dc-dc converter and the simple control circuit with a small monitor solar cell are employed to track the maximum power point of the solar array. It is confirmed by the experiment that the new system has sufficiently precise tracking operation performance and satisfactorily high power

Hirofumi Matsuo; Fujio Kurokawa

1984-01-01

216

Si concentrator solar cell development. [Final report  

SciTech Connect

This is the final report of a program to develop a commercial, high-efficiency, low-cost concentrator solar cell compatible with Spectrolab`s existing manufacturing infrastructure for space solar cells. The period covered is between 1991 and 1993. The program was funded through Sandia National Laboratories through the DOE concentrator initiative and, was also cost shared by Spectrolab. As a result of this program, Spectrolab implemented solar cells achieving an efficiency of over 19% at 200 to 300X concentration. The cells are compatible with DOE guidelines for a cell price necessary to achieve a cost of electricity of 12 cents a kilowatthour.

Krut, D.D. [Spectrolab, Inc., Sylmar, CA (United States)

1994-10-01

217

Epitaxial silicon growth for solar cells  

NASA Technical Reports Server (NTRS)

Growth and fabrication procedures for the baseline solar cells are described along with measured cell parameters, and the results. Reproducibility of these results was established and the direction to be taken for higher efficiency is identified.

Daiello, R. V.; Robinson, P. H.; Richman, D.

1978-01-01

218

Monolithic cascade-type solar cells  

NASA Technical Reports Server (NTRS)

Solar cells consist of a semiconductor base, a bottom cell with a band-gap energy of E1, and a top cell with a band-gap energy of E2, and 0.96 E1 1.36 eV and (0.80 E + 0.77) eV E2 (0.80 E1 + 0.92) eV. A monolithic cascade-type solar cell was prepared with an n(+)-type GaAs base, a GaInAs bottom solar cell, and a GaAiInAs top solar cell. The surface of the cell is coated with a SiO antireflection film. The efficiency of the cell is 32%.

Yamamoto, S.; Shibukawa, A.; Yamaguchi, M.

1985-01-01

219

Monolithic cascade-type solar cells  

SciTech Connect

Solar cells consist of a semiconductor base, a bottom cell with a band-gap energy of E1, and a top cell with a band-gap energy of E2, and 0.96 E1 1.36 eV and (0.80 E + 0.77) eV E2 (0.80 E1 + 0.92) eV. A monolithic cascade-type solar cell was prepared with an n(+)-type GaAs base, a GaInAs bottom solar cell, and a GaAiInAs top solar cell. The surface of the cell is coated with a SiO antireflection film. The efficiency of the cell is 32%.

Yamamoto, S.; Shibukawa, A.; Yamaguchi, M.

1985-12-01

220

Monolithic cells for solar fuels.  

PubMed

Hybrid energy generation models based on a variety of alternative energy supply technologies are considered the best way to cope with the depletion of fossil energy resources and to limit global warming. One of the currently missing technologies is the mimic of natural photosynthesis to convert carbon dioxide and water into chemical fuel using sunlight. This idea has been around for decades, but artificial photosynthesis of organic molecules is still far away from providing real-world solutions. The scientific challenge is to perform in an efficient way the multi-electron transfer reactions of water oxidation and carbon dioxide reduction using holes and single electrons generated in an illuminated semiconductor. In this tutorial review the design of photoelectrochemical (PEC) cells that combine solar water oxidation and CO2 reduction is discussed. In such PEC cells simultaneous transport and efficient use of light, electrons, protons and molecules has to be managed. It is explained how efficiency can be gained by compartmentalisation of the water oxidation and CO2 reduction processes by proton exchange membranes, and monolithic concepts of artificial leaves and solar membranes are presented. Besides transferring protons from the anode to the cathode compartment the membrane serves as a molecular barrier material to prevent cross-over of oxygen and fuel molecules. Innovative nano-organized multimaterials will be needed to realise practical artificial photosynthesis devices. This review provides an overview of synthesis techniques which could be used to realise monolithic multifunctional membrane-electrode assemblies, such as Layer-by-Layer (LbL) deposition, Atomic Layer Deposition (ALD), and porous silicon (porSi) engineering. Advances in modelling approaches, electrochemical techniques and in situ spectroscopies to characterise overall PEC cell performance are discussed. PMID:24526085

Rong, Jan; Bosserez, Tom; Martel, David; Nervi, Carlo; Boarino, Luca; Taulelle, Francis; Decher, Gero; Bordiga, Silvia; Martens, Johan A

2014-12-01

221

Double-sided solar cell package  

NASA Technical Reports Server (NTRS)

In a solar cell array of terrestrial use, an improved double-sided solar cell package, consisting of a photovoltaic cell having a metallized P-contact strip and an N-contact grid, provided on opposite faces of the cell, a transparent tubular body forming an enclosure for the cell. A pedestal supporting the cell from within the enclosure comprising an electrical conductor connected with the P-contact strip provided for each face of the cell, and a reflector having an elongated reflective surface disposed in substantially opposed relation with one face of the cell for redirecting light were also included.

Shelpuk, B. (inventor)

1979-01-01

222

Operating characteristics of multijunction solar cells  

Microsoft Academic Search

Multijunction solar cells produced by Spectrolab are the most efficient solar cells in the world, with a record efficiency of over 40%. Cell designs have been modified for high performance in concentrator photovoltaic (CPV) systems with the potential for low-cost, high-volume manufacturing. High-performance CPV cells have been designed, tested, and entered into production for field testing in CPV systems. Performance

Geoffrey S. Kinsey; Peichen Pien; Peter Hebert; Raed A. Sherif

2009-01-01

223

(Melanin-Sensitized Solar Cell) : 696220016  

E-print Network

(Melanin-Sensitized Solar Cell) : : : 696220016 #12; #12;#12; #12;I PLD-sensitized solar cell use. In order to improve such question, this research used the melanin which the human body and the most biology had to regard the dye to catch the photon.The melanin met several requirements

224

Introduction to basic solar cell measurements  

NASA Technical Reports Server (NTRS)

The basic approaches to solar cell performance and diagnostic measurements are described. The light sources, equipment for I-V curve measurement, and the test conditions and procedures for performance measurement are detailed. Solar cell diagnostic tools discussed include analysis of I-V curves, series resistance and reverse saturation current determination, spectral response/quantum yield measurement, and diffusion length/lifetime determination.

Brandhorst, H. W., Jr.

1976-01-01

225

EE580 Solar Cells Todd J. Kaiser  

E-print Network

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 03 · Nature of Sunlight 1Montana State University: Solar Cells Lecture 3: Nature of Sunlight Wave-Particle Duality · Light acts as ­ Waves: photons ­ individual packets of energy · Photoelectric Effect · Blackbody Radiation 2Montana State

Kaiser, Todd J.

226

Upconverter materials and upconversion solar-cell devices: simulation and characterization with broad solar spectrum illumination  

NASA Astrophysics Data System (ADS)

Upconverter materials and upconverter solar devices were recently investigated with broad-band excitation revealing the great potential of upconversion to enhance the efficiency of solar cell at comparatively low solar concentration factors. In this work first attempts are made to simulate the behavior of the upconverter ?-NaYF4 doped with Er3+ under broad-band excitation. An existing model was adapted to account for the lower absorption of broader excitation spectra. While the same trends as observed for the experiments were found in the simulation, the absolute values are fairly different. This makes an upconversion model that specifically considers the line shape function of the ground state absorption indispensable to achieve accurate simulations of upconverter materials and upconverter solar cell devices with broadband excitations, such as the solar radiation.

Fischer, S.; Frhlich, B.; Ivaturi, A.; Herter, B.; Wolf, S.; Krmer, K. W.; Richards, B. S.; Goldschmidt, J. C.

2014-03-01

227

Epitaxial silicon growth for solar cells  

NASA Technical Reports Server (NTRS)

The epitaxial procedures, solar cell fabrication, and evaluation techniques are described. The development of baseline epitaxial solar cell structures grown on high quality conventional silicon substrates is discussed. Diagnostic layers and solar cells grown on four potentially low cost silicon substrates are considered. The crystallographic properties of such layers and the performance of epitaxially grown solar cells fabricated on these materials are described. An advanced epitaxial reactor, the rotary disc, is described along with the results of growing solar cell structures of the baseline type on low cost substrates. The add on cost for the epitaxial process is assessed and the economic advantages of the epitaxial process as they relate to silicon substrate selection are examined.

Daiello, R. V.; Robinson, P. H.; Richman, D.

1979-01-01

228

Planar multijunction high voltage solar cells  

NASA Technical Reports Server (NTRS)

Technical considerations, preliminary results, and fabrication details are discussed for a family of high-voltage planar multi-junction (PMJ) solar cells which combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators.

Evans, J. C., Jr.; Chai, A. T.; Goradia, C.

1980-01-01

229

Silicon film solar cell process  

NASA Technical Reports Server (NTRS)

The most promising way to reduce the cost of silicon in solar cells while still maintaining performance is to utilize thin films (10 to 20 microns thick) of crystalline silicon. The method of solution growth is being employed to grow thin polycrystalline films of silicon on dissimilar substrates. The initial results indicate that, using tin as the solvent, this growth process only requires operating temperatures in the range of 800 C to 1000 C. Growth rates in the range of 0.4 to 2.0 microns per minute and grain sizes in the range of 20 to 100 microns were achieved on both quartz and coated steel substrates. Typically, an aspect ratio of two to three between the width and the Si grain thickness is seen. Uniform coverage of Si growth on quartz over a 2.5 x 2.5 cm area was observed.

Hall, R. B.; Mcneely, J. B.; Barnett, A. M.

1984-01-01

230

Development of IBC solar cells  

NASA Astrophysics Data System (ADS)

The IBC solar cell has shown itself to be promising for concentrator applications. However, the optimum finger-width ratio has not been established and it would be useful to know whether passivation of the metallic contact areas using oxide or polysilicon would be a practical way of improving open circuit voltage. The use of IC technology with test structures to determine bulk lifetime, SRV, mobility and contact resistance would test the above possibilities and the correctness of the theoretical analysis. Initial results have that the optimum finger-width ratio is 4:1 and that the test structures provide consistent data on the parameters listed above, as well as bulk resistivity and diffused layer sheet resistances.

Parrott, J. E.; Elani, U.

231

High-Temperature Solar Cell Development  

NASA Technical Reports Server (NTRS)

The vast majority of satellites and near-earth probes developed to date have relied upon photovoltaic power generation. If future missions to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. For example, the equilibrium temperature of a Mercury surface station will be about 450 C, and the temperature of solar arrays on the proposed "Solar Probe" mission will extend to temperatures as high as 2000 C (although it is likely that the craft will operate on stored power rather than solar energy during the closest approach to the sun). Advanced thermal design principles, such as replacing some of the solar array area with reflectors, off-pointing, and designing the cells to reflect rather than absorb light out of the band of peak response, can reduce these operating temperature somewhat. Nevertheless, it is desirable to develop approaches to high-temperature solar cell design that can operate under temperature extremes far greater than today's cells. Solar cells made from wide bandgap (WBG) compound semiconductors are an obvious choice for such an application. In order to aid in the experimental development of such solar cells, we have initiated a program studying the theoretical and experimental photovoltaic performance of wide bandgap materials. In particular, we have been investigating the use of GaP, SiC, and GaN materials for space solar cells. We will present theoretical results on the limitations on current cell technologies and the photovoltaic performance of these wide-bandgap solar cells in a variety of space conditions. We will also give an overview of some of NASA's cell developmental efforts in this area and discuss possible future mission applications.

Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

2004-01-01

232

Silicon solar cell efficiency - Practice and promise.  

NASA Technical Reports Server (NTRS)

The maximum efficiency of silicon solar cells is calculated and yields a value near 18%. Additionally, the performance of these high efficiency cells in a synchronous orbit radiation field is calculated and indicates that these cells would be superior to present silicon cells at all times. The performance of conventional cells is analyzed and several areas in which performance gains may be achieved are discussed. These areas include improvements in diffused region profile, in reduction of excess forward currents in cells made from low resistivity material and in the theory for describing complex solar cell structures.

Brandhorst, H. W., Jr.

1972-01-01

233

Silicon solar cell efficiency: Practice and promise  

NASA Technical Reports Server (NTRS)

The maximum efficiency of silicon solar cells was calculated and yielded a value near 18%. Additionally, the performance of these high efficiency cells in a synchronous orbit radiation field was calculated and it is suggested that these cells would be superior to present silicon cells. The performance of conventional cells was analyzed and several areas in which performance gains may be achieved are discussed. These areas include improvements in diffused region profile, in reduction of excess forward currents in cells made from low resistivity material, and in the theory for describing complex solar cell structures.

Brandhorst, H. W., Jr.

1972-01-01

234

Laboratory experiments simulating solar wind driven magnetospheres  

SciTech Connect

Magnetosphere-solar wind interactions are simulated in a laboratory setting with a small permanent magnet driven by two types of supersonic plasma wind sources. The first higher speed, shorter duration plasma wind is from a laser blow-off plasma while the second longer duration, lower speed plasma wind is produced with a capacitor discharge driven coaxial electrode creating plasma jets. The stand off distance of the solar wind from the magnetosphere was measured to be 1.7{+-}0.3 cm for the laser-produced plasma experiment and 0.87{+-}0.03 cm for the coaxial electrode plasma experiment. The stand off distance of the plasma was calculated using data from HYADES[J. T. Larsen and S. M. Lane, J. Quant. Spectrosc. Radiat. Transf. 51, 179 (1994)] as 1.46{+-}0.02 cm for the laser-produced plasma, and estimated for the coaxial plasma jet as r{sub mp}=0.72{+-}0.07 cm. Plasma build up on the poles of the magnets, consistent with magnetosphere systems, was also observed.

Brady, P.; Ditmire, T. [Fusion Research Center, The University of Texas at Austin, Austin, Texas 78712 (United States); Horton, W.; Mays, M. L. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Zakharov, Y. [Institute of Laser Physics, Russian Academy of Sciences, Novosibirsk 630090, Av. Lavrentyeva 13/3 (Russian Federation)

2009-04-15

235

Orbiting solar observatory 8 high resolution ultraviolet spectrometer experiment  

NASA Technical Reports Server (NTRS)

Oscillations, physical properties of the solar atmosphere, motions in the quiet solar atmosphere, coronal holes, motions in solar active regions, solar flares, the structure of plage regions, an atlas, and aeronomy are summarized. Photometric sensitivity, scattered light, ghosts, focus and spectral resolution, wavelength drive, photometric sensitivity, and scattered light, are also summarized. Experiments are described according to spacecraft made and experiment type. Some of the most useful data reduction programs are described.

1980-01-01

236

Tandem photovoltaic solar cells and increased solar energy conversion efficiency  

NASA Technical Reports Server (NTRS)

Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

Loferski, J. J.

1976-01-01

237

Semiconductor quantum dot-sensitized solar cells  

PubMed Central

Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future. PMID:24191178

Tian, Jianjun; Cao, Guozhong

2013-01-01

238

Transparent conductive oxides for thin-film silicon solar cells  

NASA Astrophysics Data System (ADS)

This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses, the front TCO plays an important role for the light enhancement of thin-film silicon pin type solar cells. If the TCO is rough, light scattering at rough interfaces in the solar cell in combination with a highly reflective back contact leads to an increase in optical path length of the light. Multiple (total) internal reflectance leads to virtual 'trapping' of the light in the solar cell structure, allowing a further decrease in absorber thickness and thus thin-film silicon solar cell devices with higher and more stable efficiency. Here, the optical mechanisms involved in the light trapping in thin-film silicon solar cells have been studied, and two types of front TCO materials have been investigated with respect to their suitability as front TCO in thin-film silicon pin type solar cells. Undoped and aluminum doped zinc oxide layers have been fabricated for the first time by the expanding thermal plasma chemical vapour deposition (ETP CVD) technique at substrate temperatures between 150 C and 350 C, and successfully implemented as a front electrode material for amorphous silicon pin superstrate type solar cells. Solar cells with efficiencies comparable to cells on Asahi U-type reference TCO have been reproducibly obtained. A higher haze is needed for the ZnO samples studied here than for Asahi U-type TCO in order to achieve comparable long wavelength response of the solar cells. This is attributed to the different angular distribution of the scattered light, showing higher scattering intensities at large angles for the Asahi U-type TCO. A barrier at the TCO/p interface and minor collection problems may explain the slightly lower fill factors obtained for the cells on ETP ZnO. The solar cells deposited on the first doped ZnO:Al layers suffered from collection problems reducing the fill factor, and from shunting. This is attributed to the steep trenches, sharp features and vertical steps that have been identified at the TCO surface. ZnO:Al layers with granular structure, deposited at higher argon flow through the cascaded arc plasma source, allowed for fill factors of the solar cells up to 0.70, comparable to cells on undoped ZnO. The best solar cell on doped ZnO:Al deposited by ETP CVD achieved an efficiency of 9.3 % which is comparable to the 9.4 % obtained on Asahi U-type SnO2:F. Fluorinated tin oxide has been deposited by Atmospheric Chemical Vapor Deposition (APCVD) on glass from three different tin precursors, tetramethyltin, monobutyltin trichloride, and tin tetrachloride (TTC). TTC is the Sn precursor which resulted in the TCO with the best performance of a-Si:H pin solar cells. In accordance with the conclusions from our experiments with solar cells on undoped and aluminum doped zinc oxide, a high surface roughness and haze do not necessarily lead to a lower diode quality, and vice versa.

Lffler, J.

2005-04-01

239

The V-groove multijunction solar cell  

Microsoft Academic Search

A new type of silicon photovoltaic converter has been developed called the V-Groove Multijunction (VGMJ) solar cell. The VGMJ solar cell consists of an array of many individual diode elements connected in series to produce a high-voltage low-current output. All the elements of the cell are formed simultaneously from a single silicon wafer by V-groove etching. The results of detailed

TERRY I. CHAPPELL

1979-01-01

240

Improving Solar Cells With Polycrystalline Silicon  

NASA Technical Reports Server (NTRS)

In proposed solar-cell design, layers of polycrystalline silicon grown near front metal grid and back metal surface. Net electrical effect increases open-circuit voltage and short-circuit current, resulting in greater cell power output and energy conversion efficiency. Solar-cell configuration differs from existing one in that layers of doped polycrystalline silicon added to reduce recombination in emitter and back surface field regions.

Rohatgi, Ajeet; Campbell, Robert B.; Rai-Choudhury, Prosenjit

1987-01-01

241

LDEF solar cell radiation effects analysis  

NASA Technical Reports Server (NTRS)

Because of the extended time that the Long Duration Exposure Facility (LDEF) mission stayed in space, the solar cells on the satellite experienced greater environments than originally planned. The cells showed an overall degradation in performance that is due to the combined effects of the various space environments. The purpose of this analysis is to calculate the effect of the accumulated radiation on the solar cells, thereby helping Marshall Space Flight Center (MSFC) to unravel the relative power degradation from the different environments.

Rives, Carol J.; Azarewicz, Joseph L.; Massengill, Lloyd

1993-01-01

242

Performance study of solar cell arrays based on a Trough Concentrating Photovoltaic\\/Thermal system  

Microsoft Academic Search

The performances of solar cell arrays based on a Trough Concentrating Photovoltaic\\/Thermal (TCPV\\/T) system have been studied via both experiment and theoretical calculation. The IV characteristics of the solar cell arrays and the output performances of the TCPV\\/T system demonstrated that among the investigated four types of solar cell arrays, the triple junction GaAs cells possessed good performance characteristics and

Ming Li; Xu Ji; Guoliang Li; Shengxian Wei; YingFeng Li; Feng Shi

2011-01-01

243

Characterising dye-sensitized solar cells  

NASA Astrophysics Data System (ADS)

With growing energy and environmental concerns due to fossil fuel depletion and global warming there is an increasing attention being attracted by alternative and/or renewable sources of power such as biomass, hydropower, geothermal, wind and solar energy. In today's society there is a vast and in many cases not fully appreciated dependence on electrical power for everyday life and therefore devices such as PV cells are of enormous importance. The more widely used and commercially available silicon (semiconductor) based cells currently have the greatest efficiencies, however the manufacturing of these cells is complex and costly due to the cost and difficulty of producing and processing pure silicon. One new direction being explored is the development of dye-sensitised solar cells (DSSC). The SFI Strategic Research Centre for Solar Energy Conversion is a new research cluster based in Ireland, formed with the express intention of bringing together industry and academia to produce renewable energy solutions. Our specific area of research is in biomimetic dye sensitised solar cells and their electrical properties. We are currently working to develop test equipment, and optoelectronic models describing the performance and behaviors of dye-sensitised solar cells (Grtzel Cells). In this paper we describe some of the background to our work and also some of our initial experimental results. Based on these results we intend to characterise the opto-electrical properties and bulk characteristics of simple dye-sensitised solar cells and then to proceed to test new cell compositions.

Tobin, Laura L.; O'Reilly, Thomas; Zerulla, Dominic; Sheridan, John T.

2009-08-01

244

Heterojunction solar cell with passivated emitter surface  

DOEpatents

A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

1994-01-01

245

Bypass diode for a solar cell  

DOEpatents

Methods of fabricating bypass diodes for solar cells are described. In once embodiment, a method includes forming a first conductive region of a first conductivity type above a substrate of a solar cell. A second conductive region of a second conductivity type is formed on the first conductive region. In another embodiment, a method includes forming a first conductive region of a first conductivity type above a substrate of a solar cell. A second conductive region of a second conductivity type is formed within, and surrounded by, an uppermost portion of the first conductive region but is not formed in a lowermost portion of the first conductive region.

Rim, Seung Bum; Kim, Taeseok; Smith, David D; Cousins, Peter J

2013-11-12

246

Heterojunction solar cell with passivated emitter surface  

DOEpatents

A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

Olson, J.M.; Kurtz, S.R.

1994-05-31

247

Temperature coefficients of multijunction solar cells  

NASA Technical Reports Server (NTRS)

Temperature coefficients measured in solar simulators with those measured under AM0 solar illumination are compared to illustrate the challenges in making these measurements. It is shown that simulator measurements of the short-circuit current (delta Jsc/delta T) are inaccurate due to the mismatch between the solar spectrum and the simulators at the bandgaps of the solar cells. Especially susceptible to error is the delta Jsc/delta T of cells which are components in monolithic multijunction solar cells, such as GaAs filtered by 1.93-eV AlGaAs, which has an AM0 coefficient of 6.82 micro-A/sq cm/deg C, compared to a Xenon simulator coefficient of 22.2 micro-A/sq cm/deg C.

Virshup, G. F.; Chung, B.-C.; Ladle Ristow, M.; Kuryla, M. S.; Brinker, D.

1990-01-01

248

Solar cell anomaly detection method and apparatus  

NASA Technical Reports Server (NTRS)

A method is provided for detecting cracks and other imperfections in a solar cell, which includes scanning a narrow light beam back and forth across the cell in a raster pattern, while monitoring the electrical output of the cell to find locations where the electrical output varies significantly. The electrical output can be monitored on a television type screen containing a raster pattern with each point on the screen corresponding to a point on the solar cell surface, and with the brightness of each point on the screen corresponding to the electrical output from the cell which was produced when the light beam was at the corresponding point on the cell. The technique can be utilized to scan a large array of interconnected solar cells, to determine which ones are defective.

Miller, Emmett L. (Inventor); Shumka, Alex (Inventor); Gauthier, Michael K. (Inventor)

1981-01-01

249

Solar array module plasma interactions experiment (SAMPIE) - Science and technology objectives  

NASA Technical Reports Server (NTRS)

The solar array module plasma interactions experiment (SAMPIE) is an approved NASA flight experiment manifested for Shuttle deployment in early 1994. The SAMPIE experiment is designed to investigate the interaction of high voltage space power systems with ionospheric plasma. To study the behavior of solar cells, a number of solar cell coupons (representing design technologies of current interest) will be biased to high voltages to measure both arcing and current collection. Various theories of arc suppression will be tested by including several specially modified cell coupons. Finally, SAMPIE will include experiments to study the basic nature of arcing and current collection. This paper describes the rationale for a space flight experiment, the measurements to be made, and the significance of the expected results. A future paper will present a detailed discussion of the engineering design.

Hillard, G. B.; Ferguson, Dale C.

1993-01-01

250

Concepts of learning and experience in developing solar thermal technologies  

Microsoft Academic Search

This study presents a picture of development of solar thermal technology, using the learning and experience curve concepts. The cost estimates for solar thermal energy technologies are made assuming a fixed production process, characterized by standard capacity factors, overhead, and labor costs. The learning curve is suggested as a generalization of the costs of potential solar energy system. The concept

F Krawiec

1983-01-01

251

Recent experience with large solar thermal systems in The Netherlands  

Microsoft Academic Search

Since 1995, two large solar thermal systems (1200 and 2400 m2) have been realized in The Netherlands for industrial purposes. It is expected that large solar systems will be used more often in the coming years. For that reason and for the benefit of successful solar projects, important practical experience with these large systems is reported. In 1995\\/1996, a system

T. P Bokhoven; J Van Dam; P Kratz

2001-01-01

252

Germanium-on-glass solar cells  

Microsoft Academic Search

We report on the fabrication and characterization of Ge solar cells on glass realized by layer transfer and epitaxial regrowth. These devices exhibit typical conversion efficiency exceeding 2.4% under AM1.5 irradiation and maximum efficiency of 3.7% under concentrated excitation. This approach enables flexible and affordable multi-junction engineering for solar energy conversion.

Lorenzo Colace; Vito Sorianello; Carlo Maragliano; Gaetano Assanto; D. Fulgoni; L. Nash; M. Palmer

2011-01-01

253

Radiation degradation of solar cell arrays  

NASA Technical Reports Server (NTRS)

A method of incorporating a detailed solar cell radiation degradation model into a convenient computational scheme suitable for the solar electric propulsion system is outlined. The study shows that several existing codes may be applied in sequence to solve the problem.

Hill, C. W.

1975-01-01

254

Indium oxide/n-silicon heterojunction solar cells  

DOEpatents

A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

1982-12-28

255

Dye-sensitized solar cells  

DOEpatents

A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

Skotheim, T.A.

1980-03-04

256

Dye-sensitized solar cells  

DOEpatents

A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

Skotheim, Terje A. [Berkeley, CA

1980-03-04

257

* Corresponding author. Solar Energy Materials & Solar Cells 58 (1999) 209}218  

E-print Network

* Corresponding author. Solar Energy Materials & Solar Cells 58 (1999) 209}218 A highly e$cient and stable CdTe/CdS thin "lm solar cell N. Romeo, A. Bosio, R. Tedeschi*, A. Romeo, V. Canevari Dipartimento$cient and stable CdTe/CdS thin "lm solar cells. Our cells are prepared in three subsequent phases. Firstly, we

Romeo, Alessandro

258

Integration of Solar Cells on Top of CMOS ChipsPart II: CIGS Solar Cells  

Microsoft Academic Search

We present the monolithic integration of deep- submicrometer complementary metal-oxide-semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance, and the solar cells on top show an efficiency of 8.4 0.8% and a yield of 84%, both values being close to the glass

Jiwu Lu; Wei Liu; Alexey Y. Lu; Yun Sun; Jurriaan Lu

2011-01-01

259

Monolithic solar cell panel of amorphous silicon  

Microsoft Academic Search

A monolithic solar cell panel has been fabricated using hydrogenated amorphous silicon (a-Si:H) as the semiconductor material. This device consists of a plate glass substrate bearing a number of long, narrow, parallel cells electrically connected in series along the lengths of the cells. It features several characteristics which make it uniquely attractive for large area devices (up to several sq

J. J. Hanak

1979-01-01

260

Terrestrial solar cells present and future  

Microsoft Academic Search

In this paper the principles of operation of various types of solar cell are described. Progress in photovoltaics is traced through the development of the monocrystalline silicon cell for space applications where the emphasis is upon reliability and power\\/weight ratio, to terrestrial cells where the emphasis is upon low-cost production. The role of other contenders such as polycrystalline silicon, amorphous

B. T. Debney; J. R. Knight

1978-01-01

261

Transparent superstrate terrestrial solar cell module  

NASA Technical Reports Server (NTRS)

The design, development, fabrication, and testing of the transparent solar cell module were examined. Cell performance and material process characteristics were determined by extensive tests and design modifications were made prior to preproduction fabrication. These tests included three cell submodules and two full size engineering modules. Along with hardware and test activity, engineering documentation was prepared and submitted.

1977-01-01

262

LDEF (Prelaunch), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08  

NASA Technical Reports Server (NTRS)

LDEF (Prelaunch), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 EL-1994-00044 LDEF (Prelaunch), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 The prelaunch photograph was taken in SAEF II at KSC prior to installation of the Solar Array Materials Passive LDEF Experiment (SAMPLE) on the LDEF. Six (6) plates of passive components, provided by various experiment organizations and designated plate I thru plate VI, are shown mounted in a three (3) inch deep LDEF peripheral tray. All six plates are aluminum and attach to the LDEF experiment tray with non-magnetic stainless steel fasteners. Plate I, located in the upper right corner, consist of a combination of solar cells with and without covers, solar cell modules and solar arrays assembled on the baseplate. Plate II in the upper center section, has twenty seven (27) composite samples, carbon fiber and glass fiber, mounted on the baseplate. Plate III, in the upper left corner, consist mostly of metallized and thin polymeric films (Kapton, Mylar, TEFLON , white Tedlar,etc.). Plate IV located in the lower right corner consist of metals and coatings mounted in an aluminum baseplate and covered with a thin aluminum coverplate that partially mask the specimen. Plate V contained thermal plastics and structural film configured into tensile and shear specimen. Plate VI was populated with solar cells and associate components (covers, encapsulants,adhesives, etc.).

1984-01-01

263

Investigating dye-sensitised solar cells  

NASA Astrophysics Data System (ADS)

At present there is considerable global concern in relation to environmental issues and future energy supplies, for instance climate change (global warming) and the rapid depletion of fossil fuel resources. This trepidation has initiated a more critical investigation into alternative and renewable sources of power such as geothermal, biomass, hydropower, wind and solar energy. The immense dependence on electrical power in today's society has prompted the manufacturing of devices such as photovoltaic (PV) cells to help alleviate and replace current electrical demands of the power grid. The most popular and commercially available PV cells are silicon solar cells which have to date the greatest efficiencies for PV cells. The drawback however is that the manufacturing of these cells is complex and costly due to the expense and difficulty of producing and processing pure silicon. One relatively inexpensive alternative to silicon PV cells that we are currently studying are dye-sensitised solar cells (DSSC or Grtzel Cells). DSSC are biomimetic solar cells which are based on the process of photosynthesis. The SFI Strategic Research Centre for Solar Energy Conversion is a research cluster based in Ireland formed with the express intention of bringing together industry and academia to produce renewable energy solutions. Our specific research area is in DSSC and their electrical properties. We are currently developing testing equipment for arrays of DSSC and developing optoelectronic models which todescribe the performance and behaviour of DSSCs.

Tobin, Laura L.; O'Reilly, Thomas; Zerulla, Dominic; Sheridan, John T.

2010-05-01

264

Perovskite solar cells: Continuing to soar  

NASA Astrophysics Data System (ADS)

The dream of printing highly efficient solar cells is closer than ever to being realized. Solvent engineering has enabled the deposition of uniform perovskite semiconductor films that yield greater than 15% power-conversion efficiency.

McGehee, Michael D.

2014-09-01

265

Solar cell array design handbook, volume 1  

NASA Technical Reports Server (NTRS)

Twelve chapters discuss the following: historical developments, the environment and its effects, solar cells, solar cell filters and covers, solar cell and other electrical interconnections, blocking and shunt diodes, substrates and deployment mechanisms, material properties, design synthesis and optimization, design analysis, procurement, production and cost aspects, evaluation and test, orbital performance, and illustrative design examples. A comprehensive index permits rapid locating of desired topics. The handbook consists of two volumes: Volume 1 is of an expository nature while Volume 2 contains detailed design data in an appendix-like fashion. Volume 2 includes solar cell performance data, applicable unit conversion factors and physical constants, and mechanical, electrical, thermal optical, magnetic, and outgassing material properties. Extensive references are provided.

Rauschenbach, H. S.

1976-01-01

266

Heavily doped polysilicon-contact solar cells  

NASA Technical Reports Server (NTRS)

The first use of a (silicon)/heavily doped polysilicon)/(metal) structure to replace the conventional high-low junction or back-surface-field (BSF) structure of silicon solar cells is reported. Compared with BSF and back-ohmic-contact (BOC) control samples, the polysilicon-back solar cells show improvements in red spectral response (RSR) and open-circuit voltage. Measurement reveals that a decrease in effective surface recombination velocity S is responsible for this improvement. Decreased S results for n-type (Si:As) polysilicon, consistent with past findings for bipolar transistors, and for p-type (Si:B) polysilicon, reported here for the first time. Though the present polysilicon-back solar cells are far from optimal, the results suggest a new class of designs for high efficiency silicon solar cells. Detailed technical reasons are advanced to support this view.

Lindholm, F. A.; Neugroschel, A.; Arienzo, M.; Iles, P. A.

1985-01-01

267

Selective laser patterning in organic solar cells  

NASA Astrophysics Data System (ADS)

Selective laser patterning for integrative serious connection has been industrially established in inorganic thin film solar cells based on glass substrates since a few years. In organic solar cells (OSC) the used materials significantly differ in terms of their patterning behavior. Due to their processability by wet chemical methods inverted architectures are often preferred in organic solar cells which allow the patterning by ultrashort laser pulses in substrate and superstrate configuration. Starting with an introduction of the ablation mechanisms taking place in OSC thin films, an overview of the current state-of-the-art in laser patterning of organic solar cells is presented. Besides progress in research also current achievements in industrial applications are illustrated.

Abreu Fernandes, S.; Maragkaki, S.; Ostendorf, A.

2014-10-01

268

Texturization of multicrystalline silicon solar cells  

E-print Network

A significant efficiency gain for crystalline silicon solar cells can be achieved by surface texturization. This research was directed at developing a low-cost, high-throughput and reliable texturing method that can create ...

Li, Dai-Yin

2010-01-01

269

Rational design of hybrid organic solar cells  

E-print Network

In this thesis, we will present a novel design for a nano-structured organic-inorganic hybrid photovoltaic material that will address current challenges in bulk heterojunction (BHJ) organic-based solar cell materials. ...

Lentz, Levi (Levi Carl)

2014-01-01

270

Colloidal cluster phases and solar cells  

E-print Network

The arrangement of soft materials through solution processing techniques is a topic of profound importance for next generation solar cells; the resulting morphology has a major influence on construction, performance and ...

Mailer, Alastair George

2012-11-28

271

Status of silicon solar cell technology  

NASA Technical Reports Server (NTRS)

It is pointed out that during the time from 1970 to 1976 the efficiency of solar cells has increased from 10.5 to 15.5%. Most of the increased output has resulted from increased short circuit current. Advances leading to this improvement in performance are discussed, taking into account a reduction in the area covered by the grid pattern, the use of antireflection coatings, and the employment of surface texturizing. A widespread use of solar cells for nonspace applications requires a reduction in the cost of solar cell arrays from the present $20 per watt to 10 to 50 cents per watt. Approaches for achieving this objective are considered. Attention is given to an automated, high volume production of solar cells made from ribbon silicon or thin film layers.

Brandhorst, H. W., Jr.

1976-01-01

272

Nanocomposites for organic and hybrid organic-inorganic solar cells  

Microsoft Academic Search

The importance of nanocomposites materials such as carbon nanotubes-polymers composites for the efficient realization of innovative solar cells based on organic as well hybrid organic-inorganic solar cells is more and more evident. We present a study on the realization of dye sensitized solar cells (DSSC) and sublimation deposited solar cells, considering the impact of using nanocomposite materials in the different

A. Reale; T. M. Brown; A. Di Carlo; F. Giannini; F. Brunetti; E. Leonardi; M. Lucci; M. L. Terranova; S. Orlanducci; E. Tamburri; F. Toschi; V. Sessa

2006-01-01

273

Space solar cells: High efficiency and radiation damage  

NASA Technical Reports Server (NTRS)

The progress and status of efforts to increase the end-of-life efficiency of solar cells for space use is assessed. High efficiency silicon solar cells, silicon solar cell radiation damage, GaAs solar cell performance and radiation damage and 30 percent devices are discussed.

Brandhorst, H., Jr.; Bernatowicz, D. T.

1980-01-01

274

High-voltage solar-cell chip  

NASA Technical Reports Server (NTRS)

Integrated circuit technology has been successfully applied to the design and fabrication of 0.5 x 0.5-cm planar multijunction solar-cell chips. Each of these solar cells consisted of six voltage-generating unit cells monolithically connected in series and fabricated on a 75-micron-thick, p-type, single crystal, silicon substrate. A contact photolithic process employing five photomask levels together with a standard microelectronics batch-processing technique were used to construct the solar-cell chip. The open-circuit voltage increased rapidly with increasing illumination up to 5 AM1 suns where it began to saturate at the sum of the individual unit-cell voltages at a maximum of 3.0 V. A short-circuit current density per unit cell of 240 mA/sq cm was observed at 10 AM1 suns.

Kapoor, V. J.; Valco, G. J.; Skebe, G. G.; Evans, J. C., Jr.

1985-01-01

275

Transparent electrode materials for solar cells  

Microsoft Academic Search

Alternatives for replacing the expensive ITO are explored and Poly(ethylene dioxythiophene):polystyrene sulfonate (PEDOT:PSS) is introduced as one possibility. We present the first small-molecule organic solar cells employing only PEDOT:PSS as transparent electrode. Solar cells on glass and on flexible plastic foil were prepared, using a p-doped hole transporting material, zinc phthalocyanine (ZnPc) and C60 as donor-acceptor heterojunction, and an exciton

Jan Meiss; Christian L. Uhrich; Karsten Fehse; Steffen Pfuetzner; Moritz K. Riede; Karl Leo

2008-01-01

276

Hairlike carbon-fiber-based solar cell  

Microsoft Academic Search

This paper reports the fabrication and photovoltaic (PV) demonstration of macro-length, micron-diameter hairlike solar cells. In this design of cylindrical silicon solar cell with a radial p-n architecture, the carbon fiber (CF) serves as the core electrode as well as fabrication substrate, and polysilicon (poly-Si) is used as the shell photoactive material. Uniform deposition of poly-Si on the cylindrical-shape CF

Wenjun Xu; Seungkeun Choi; M. G. Allen

2010-01-01

277

Cutting carbon nanotubes for solar cell application  

Microsoft Academic Search

This paper presents the application of cutting multiwalled carbon nanotubes (cut-MWNTs) in solar cell. Cutting of MWNTs is performed by plasma fluorination and followed by defluorination. Cut-MWNTs with lengths of 50-200 nm are incorporated in a poly(3-octylthiophene)\\/n-Si heterojunction solar cell. We found that a device fabricated with cut-MWNTs shows much better performance than that of a device with pristine MWNTs.

Golap Kalita; Sudip Adhikari; Hare Ram Aryal; Masayoshi Umeno; Rakesh Afre; Tetsuo Soga; Maheshwar Sharon

2008-01-01

278

Nanowire dye-sensitized solar cells  

Microsoft Academic Search

Excitonic solar cells-including organic, hybrid organic-inorganic and dye-sensitized cells (DSCs)-are promising devices for inexpensive, large-scale solar energy conversion. The DSC is currently the most efficient and stable excitonic photocell. Central to this device is a thick nanoparticle film that provides a large surface area for the adsorption of light-harvesting molecules. However, nanoparticle DSCs rely on trap-limited diffusion for electron transport,

Matt Law; Lori E. Greene; Justin C. Johnson; Richard Saykally; Peidong Yang

2005-01-01

279

Telescience operations with the solar array module plasma interaction experiment  

NASA Technical Reports Server (NTRS)

The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).

Wald, Lawrence W.; Bibyk, Irene K.

1995-01-01

280

Perovskite solar cells: from materials to devices.  

PubMed

Perovskite solar cells based on organometal halide light absorbers have been considered a promising photovoltaic technology due to their superb power conversion efficiency (PCE) along with very low material costs. Since the first report on a long-term durable solid-state perovskite solar cell with a PCE of 9.7% in 2012, a PCE as high as 19.3% was demonstrated in 2014, and a certified PCE of 17.9% was shown in 2014. Such a high photovoltaic performance is attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths. Nevertheless, there are lots of puzzles to unravel the basis for such high photovoltaic performances. The working principle of perovskite solar cells has not been well established by far, which is the most important thing for understanding perovksite solar cells. In this review, basic fundamentals of perovskite materials including opto-electronic and dielectric properties are described to give a better understanding and insight into high-performing perovskite solar cells. In addition, various fabrication techniques and device structures are described toward the further improvement of perovskite solar cells. PMID:25358818

Jung, Hyun Suk; Park, Nam-Gyu

2015-01-01

281

Multijunction Solar Cells Optimized for the Mars Surface Solar Spectrum  

NASA Technical Reports Server (NTRS)

This paper gives an update on the performance of the Mars Exploration Rovers (MER) which have been continually performing for more than 3 years beyond their original 90-day missions. The paper also gives the latest results on the optimization of a multijunction solar cell that is optimized to give more power on the surface of Mars.

Edmondson, Kenneth M.; Fetzer, Chris; Karam, Nasser H.; Stella, Paul; Mardesich, Nick; Mueller, Robert

2007-01-01

282

Manufacture of Solar Cells on the Moon  

NASA Technical Reports Server (NTRS)

In support of the space exploration initiative a new architecture for the production of solar cells on the lunar surface is devised. The paper discusses experimental data on the fabrication and properties of lunar glass substrates, evaporated lunar regolith thin film (antireflect coatings and insulators), and preliminary attempts in the fabrication of thin film (silicon/II-VI) photovoltaic materials on lunar regolith substrates. A conceptual design for a solar powered robotic rover capable of fabricating solar cells directly on the lunar surface is provided. Technical challenges in the development of such a facility and strategies to alleviate perceived difficulties are discussed. Finally, preliminary cost benefit ratio analysis for different in situ solar cell production scenarios (using exclusively in-situ planetary resources or hybrid) are discussed.

Freundich, Alex; Ignatiev, Alex; Horton, Charles; Duke, Mike; Curren, Peter; Sibille, Laurent

2005-01-01

283

Thickness dependences of solar cell performance  

NASA Technical Reports Server (NTRS)

The significance of including factors such as the base resistivity loss for solar cells thicker than 100 microns and emitter and BSF layer recombination for thin cells in predicting the fill factor and efficiency of solar cells is demonstrated analytically. A model for a solar cell is devised with the inclusion of the dopant impurity concentration profile, variation of the electron and hole mobility with dopant concentration, the concentration and thermal capture and emission rates of the recombination center, device temperature, the AM1 spectra and the Si absorption coefficient. Device equations were solved by means of the transmission line technique. The analytical results were compared with those of low-level theory for cell performance. Significant differences in predictions of the fill factor resulted, and inaccuracies in the low-level approximations are discussed.

Sah, C. T.

1982-01-01

284

Development and fabrication of a solar cell junction processing system  

NASA Technical Reports Server (NTRS)

A processing system capable of producing solar cell junctions by ion implantation followed by pulsed electron beam annealing was developed and constructed. The machine was to be capable of processing 4-inch diameter single-crystal wafers at a rate of 10(7) wafers per year. A microcomputer-controlled pulsed electron beam annealer with a vacuum interlocked wafer transport system was designed, built and demonstrated to produce solar cell junctions on 4-inch wafers with an AMI efficiency of 12%. Experiments showed that a non-mass-analyzed (NMA) ion beam could implant 10 keV phosphorous dopant to form solar cell junctions which were equivalent to mass-analyzed implants. A NMA ion implanter, compatible with the pulsed electron beam annealer and wafer transport system was designed in detail but was not built because of program termination.

1984-01-01

285

Advanced Solar Cells for Satellite Power Systems  

NASA Technical Reports Server (NTRS)

The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

Flood, Dennis J.; Weinberg, Irving

1994-01-01

286

Nanoscale Charge Transport in Excitonic Solar Cells  

SciTech Connect

Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

Venkat Bommisetty, South Dakota State University

2011-06-23

287

How Well Do Standard Solar Models Describe the Results of Solar Neutrino Experiments?  

E-print Network

The neutrino fluxes calculated from the 14 standard solar models published recently in refereed journals are inconsistent with the results of the 4 pioneering solar neutrino experiments if nothing happens to the neutrinos after they are created in the solar interior. The calculated fluxes and the experimental results are in good agreement if neutrino oscillations occur.

John Bahcall

1996-06-26

288

Nanoparticle Solar Cell Final Technical Report  

SciTech Connect

The purpose of this work was to demonstrate all-inorganic nanoparticle-based solar cells with photovoltaic performance extending into the near-IR region of the solar spectrum as a pathway towards improving power conversion efficiencies. The field of all-inorganic nanoparticle-based solar cells is very new, with only one literature publication in the prior to our project. Very little is understood regarding how these devices function. Inorganic solar cells with IR performance have previously been fabricated using traditional methods such as physical vapor deposition and sputtering, and solution-processed devices utilizing IR-absorbing organic polymers have been investigated. The solution-based deposition of nanoparticles offers the potential of a low-cost manufacturing process combined with the ability to tune the chemical synthesis and material properties to control the device properties. This work, in collaboration with the Sue Carter research group at the University of California, Santa Cruz, has greatly expanded the knowledge base in this field, exploring multiple material systems and several key areas of device physics including temperature, bandgap and electrode device behavior dependence, material morphological behavior, and the role of buffer layers. One publication has been accepted to Solar Energy Materials and Solar Cells pending minor revision and another two papers are being written now. While device performance in the near-IR did not reach the level anticipated at the beginning of this grant, we did observe one of the highest near-IR efficiencies for a nanoparticle-based solar cell device to date. We also identified several key parameters of importance for improving both near-IR performance and nanoparticle solar cells in general, and demonstrated multiple pathways which showed promise for future commercialization with further research.

Breeze, Alison, J; Sahoo, Yudhisthira; Reddy, Damoder; Sholin, Veronica; Carter, Sue

2008-06-17

289

Multijunction high-voltage solar cell  

NASA Technical Reports Server (NTRS)

Multijunction cell allows for fabrication of high-voltage solar cell on single semiconductor wafer. Photovoltaic energy source using cell is combined on wafer with circuit it is to power. Cell consists of many voltage-generating regions internally or externally interconnected to give desired voltage and current combination. For computer applications, module is built on silicon wafer with energy for internal information processing and readouts derived from external light source.

Evans, J. C., Jr.; Goradia, C.; Chai, A. T.

1981-01-01

290

Plastic Schottky-barrier solar cells  

DOEpatents

A photovoltaic cell structure is fabricated from an active medium including an undoped polyacetylene, organic semiconductor. When a film of such material is in rectifying contact with a metallic area electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates a magnesium layer on the undoped polyacetylene film. With the proper selection and location of elements a photovoltaic cell structure and solar cell are obtained.

Waldrop, J.R.; Cohen, M.J.

1981-12-30

291

MIS silicon solar cells: potential advantages  

SciTech Connect

Recent progress with silicon solar cells based on the MIS or SIS structure is reviewed. To be competitive with pn junction technology in the near term, these cells must be much cheaper or have a higher efficiency in a production environment. Apparently, the minority carrier MIS cells have the greatest potential for large-scale applications. The data currently indicate that all types of MIS/SIS cells have some inherent instability problems.

Cheek, G.; Mertens, R.

1981-05-01

292

High voltage planar multijunction solar cell  

NASA Technical Reports Server (NTRS)

A high voltage multijunction solar cell is provided wherein a plurality of discrete voltage generating regions or unit cells are formed in a single generally planar semiconductor body. The unit cells are comprised of doped regions of opposite conductivity type separated by a gap or undiffused region. Metal contacts connect adjacent cells together in series so that the output voltages of the individual cells are additive. In some embodiments, doped field regions separated by a overlie the unit cells but the cells may be formed in both faces of the wafer.

Evans, J. C., Jr.; Chai, A. T.; Goradia, C. P. (inventors)

1982-01-01

293

Cytotoxicity Testing: Cell Experiments  

NASA Astrophysics Data System (ADS)

Screening for new anticancer agents has traditionally been done with in vitro cell culture methods. Even in the genomic era of target-driven drug design, screening for cytotoxic activity is still a standard tool in the search for new anticancer agents, especially if the mode of action of a substance is not yet known. A wide variety of cell culture methods with unique end-points are available for testing the anticancer potential of a substance. Each has its advantages and disadvantages, which must be weighed in the decision to use a particular method. Often several complementary methods are used to gain information on the mode of action of a substance.

Grnert, Renate; Westendorf, Aron; Buczkowska, Magdalena; Hnsch, Mareike; Grunert, Sybil; Bednarski, Patrick J.

294

November 21, 2000 PV Lesson Plan 1 Solar Cells  

E-print Network

November 21, 2000 PV Lesson Plan 1 ­ Solar Cells Prepared for the Oregon Million Solar Roofs High School Gary Grace ­ South Eugene High School In Schools #12;1 Solar Cells Lesson Plan Content: In this lesson, students are introduced to the basic physics and chemistry behind the operation of a solar cell

Oregon, University of

295

EE Times: Semi News Groups claim breakthroughs in solar cells  

E-print Network

claim to offer nearly twice the efficiency as silicon in solar cells. But solar cells based concentrator photovoltaic (CPV) modules for large- scale solar power generation. Semprius' microEE Times: Semi News Groups claim breakthroughs in solar cells Mark LaPedus Page 1 of 2 EE Times (05

Rogers, John A.

296

Third Working Meeting on Gallium Arsenide Solar Cells  

NASA Technical Reports Server (NTRS)

Research results are reported for GaAs Schottky barrier solar cells, GaAlAs/GaAs heteroface solar cells, and GaAlAs graded band gap solar cells. Related materials studies are presented. A systems study for GaAs and Si solar concentrator systems is given.

Walker, G. H. (compiler)

1976-01-01

297

Method of restoring degraded solar cells  

DOEpatents

Amorphous silicon solar cells have been shown to have efficiencies which degrade as a result of long exposure to light. Annealing such cells in air at a temperature of about 200.degree. C. for at least 30 minutes restores their efficiency.

Staebler, David L. (Lawrenceville, NJ)

1983-01-01

298

Simulating multiple quantum well solar cells  

Microsoft Academic Search

The quantum well solar cell (QWSC) has been proposed as a route to higher efficiency than that attainable by homojunction devices. Previous studies have established that carriers escape the quantum wells with high efficiency in forward bias and contribute to the photocurrent. Progress in resolving the efficiency limits of these cells has been dogged by the lack of a theoretical

James P. Connolly; Jenny Nelson; Keith W. J. Barnham; Ian Ballard; C. Roberts; J. S. Roberts; C. T. Foxon

2000-01-01

299

High-efficiency concentrator silicon solar cells  

SciTech Connect

This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

1990-11-01

300

Liquid cooled linear focus solar cell receiver  

SciTech Connect

Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

Kirpich, A.S.

1985-01-01

301

Liquid cooled, linear focus solar cell receiver  

DOEpatents

Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

Kirpich, Aaron S. (Broomall, PA)

1985-01-01

302

Method of restoring degraded solar cells  

DOEpatents

Amorphous silicon solar cells have been shown to have efficiencies which degrade as a result of long exposure to light. Annealing such cells in air at a temperature of about 200 C for at least 30 minutes restores their efficiency. 2 figs.

Staebler, D.L.

1983-02-01

303

Photovoltaic solar cells performance at elevated temperatures  

Microsoft Academic Search

It is well known that efficiency of photovoltaic solar cells decreases with an increase of temperature, and cooling is necessary at high illumination conditions such as concentrated sunlight, or cosmic or tropical conditions. The purpose of present study was to investigate the opposite option: to make a cell work at relatively high temperature (around 100200 C) and use the excessive

David Meneses-Rodr??guez; Paul P. Horley; Jess Gonzlez-Hernndez; Yuri V. Vorobiev; Peter N. Gorley

2005-01-01

304

- and Perovskite-Sensitised Mesoscopic Solar Cells  

NASA Astrophysics Data System (ADS)

The following sections are included: * Introduction * Historical background * Mode of function of dye-sensitised solar cells * DSSC research and development * Solid-state mesoscopic cells based on molecular dyes or perovskite pigments as sensitisers * Pilot production of modules, field tests and commercial DSSC development * Outlook * Acknowledgements * References

Grtzel, Michael; Durrant, James R.

2015-10-01

305

Liquid cooled, linear focus solar cell receiver  

DOEpatents

Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

Kirpich, A.S.

1983-12-08

306

Optical designs for improved solar cell performance  

NASA Astrophysics Data System (ADS)

The solar resource is the most abundant renewable resource on earth, yet it is currently exploited with relatively low efficiencies. To make solar energy more affordable, we can either reduce the cost of the cell or increase the efficiency with a similar cost cell. In this thesis, we consider several different optical approaches to achieve these goals. First, we consider a ray optical model for light trapping in silicon microwires. With this approach, much less material can be used, allowing for a cost savings. We next focus on reducing the escape of radiatively emitted and scattered light from the solar cell. With this angle restriction approach, light can only enter and escape the cell near normal incidence, allowing for thinner cells and higher efficiencies. In Auger-limited GaAs, we find that efficiencies greater than 38% may be achievable, a significant improvement over the current world record. To experimentally validate these results, we use a Bragg stack to restrict the angles of emitted light. Our measurements show an increase in voltage and a decrease in dark current, as less radiatively emitted light escapes. While the results in GaAs are interesting as a proof of concept, GaAs solar cells are not currently made on the production scale for terrestrial photovoltaic applications. We therefore explore the application of angle restriction to silicon solar cells. While our calculations show that Auger-limited cells give efficiency increases of up to 3% absolute, we also find that current amorphous silicion-crystalline silicon heterojunction with intrinsic thin layer (HIT) cells give significant efficiency gains with angle restriction of up to 1% absolute. Thus, angle restriction has the potential for unprecedented one sun efficiencies in GaAs, but also may be applicable to current silicon solar cell technology. Finally, we consider spectrum splitting, where optics direct light in different wavelength bands to solar cells with band gaps tuned to those wavelengths. This approach has the potential for very high efficiencies, and excellent annual power production. Using a light-trapping filtered concentrator approach, we design filter elements and find an optimal design. Thus, this thesis explores silicon microwires, angle restriction, and spectral splitting as different optical approaches for improving the cost and efficiency of solar cells.

Kosten, Emily Dell

307

Microstructural analysis of solar cell welds  

NASA Technical Reports Server (NTRS)

Parallel-gap resistance welding of silicon solar cells with copper interconnects results in complex microstructural variations that depend on the welding variables. At relatively low heat input solid-state welds are produced. At medium heat the Ag-Cu eutectic forms resulting in a braze joint. High heat produces a fusion weld with complete melting of the silver layer on the silicon solar cell. If the silicon is also melted, cracking occurs in the silicon cell below the weld nugget. These determinations were made using light microscopy, microprobe, and scanning electron microscopy analyses.

Moore, T. J.; Watson, G. K.; Baraona, C. R.

1982-01-01

308

Collection efficiency measurements for solar cell research  

NASA Technical Reports Server (NTRS)

A system was established for measuring absolute, spectral collection efficiency that is well suited to solar cell research and development. Determination of spectral collection efficiency involves measurements of the incident photon intensity, the device reflection coefficient, and the cell short circuit current. A monochromatic photon flux is obtained with a high intensity Bausch and Lomb monochromator, and an Epply thermopile detector is used to measure incident intensity. Normal incidence reflectivity measurements are achieved with a prism type beam splitter. The experimental approach is discussed, measurements of the reflectivity of evaporated silver films are considered. Collection efficiency measurements of silicon solar cells are presented, and collection efficiency studies of Cu20 solar cells are discussed.

Hampton, H. L.; Olsen, L. C.

1976-01-01

309

Measurement techniques for solar cells  

NASA Astrophysics Data System (ADS)

The laser scanner was used to examine a variety of devices: Cu2S/Cds cells; silicon tandem junction cells; Zn3P2 Schottky diode specimens; and edge-fed growth polycrystalline silicon cells. It is possible to detect cell design and processing induced losses in conversion efficiency, areas of missing antireflection coatings, lack of ohmic contact of the metallization to the cell, breaks in cell metallization fingers, fine cracks, scratches, and silicon carbide inclusions.

Sawyer, D. E.; Kessler, K. K.; Russell, T. J.; Lankford, W. F.; Schafft, H. A.

1981-01-01

310

Electron Radiation Damage of (alga) As-gaas Solar Cells  

NASA Technical Reports Server (NTRS)

Solar cells (2 cm by 2 cm (AlGa) As-GaAs cells) were fabricated and then subjected to irradiation at normal incidence by electrons. The influence of junction depth and n-type buffer layer doping level on the cell's resistance to radiation damage was investigated. The study shows that (1) a 0.3 micrometer deep junction results in lower damage to the cells than does a 0.5 micrometer junction, and (2) lowering the n buffer layer doping density does not improve the radiation resistance of the cell. Rather, lowering the doping density decreases the solar cell's open circuit voltage. Some preliminary thermal annealing experiments in vacuum were performed on the (AlGa)As-GaAs solar cells damaged by 1-MeV electron irradiation. The results show that cell performance can be expected to partially recover at 200 C with more rapid and complete recovery occurring at higher temperature. For a 0.5hr anneal at 400 C, 90% of the initial power is recovered. The characteristics of the (AlGa)As-GaAs cells both before and after irradiation are described.

Loo, R.; Kamath, G. S.; Knechtli, R.

1979-01-01

311

The arcing rate for a High Voltage Solar Array - Theory, experiment and predictions  

NASA Technical Reports Server (NTRS)

All solar arrays have biased surfaces which can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays which ascribes the arcing to electric field runaway at the interface of the plasma, conductor and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array (HVSA) experiment which will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail to the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.

Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi

1992-01-01

312

Arcing rates for High Voltage Solar Arrays - Theory, experiment, and predictions  

NASA Technical Reports Server (NTRS)

All solar arrays have biased surfaces that can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative, then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays that ascribes the arcing to electric field runaway at the interface of the plasma, conductor, and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array experiment that will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail with the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.

Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi

1992-01-01

313

Development of a large area space solar cell assembly  

NASA Technical Reports Server (NTRS)

The development of a large area high efficiency solar cell assembly is described. The assembly consists of an ion implanted silicon solar cell and glass cover. The important attributes of fabrication are the use of a back surface field which is compatible with a back surface reflector, and integration of coverglass application and cell fabrications. Cell development experiments concerned optimization of ion implantation processing of 2 ohm-cm boron-doped silicon. Process parameters were selected based on these experiments and cells with area of 34.3 sq cm wre fabricated. The average AMO efficiency of the twenty-five best cells was 13.9% and the best bell had an efficiency of 14.4%. An important innovation in cell encapsulation was also developed. In this technique, the coverglass is applied before the cell is sawed to final size. The coverglass and cell are then sawed as a unit. In this way, the cost of the coverglass is reduced, since the tolerance on glass size is relaxed, and costly coverglass/cell alignment procedures are eliminated. Adhesive investigated were EVA, FEP-Teflon sheet and DC 93-500. Details of processing and results are reported.

Spitzer, M. B.

1982-01-01

314

Design and Implementation of an Auto Bonding Manufacturing Process for Space Solar Cells  

Microsoft Academic Search

This article presents a new manufacturing process of bonding anti-irradiation cover glasses to silicon solar cells with silicone adhesive. Due to the disadvantages of traditional manual operation, a new manufacturing process was designed considering the characteristics of solar cells, cover glasses, and silicone adhesive, and was complemented by an automatic system based on an industrial robot. Experiments indicated that the

H. Zhao; Z. Fu; Y. X. Wu; Y. Z. Zhao

2007-01-01

315

Neutral color semitransparent microstructured perovskite solar cells.  

PubMed

Neutral-colored semitransparent solar cells are commercially desired to integrate solar cells into the windows and cladding of buildings and automotive applications. Here, we report the use of morphological control of perovskite thin films to form semitransparent planar heterojunction solar cells with neutral color and comparatively high efficiencies. We take advantage of spontaneous dewetting to create microstructured arrays of perovskite "islands", on a length-scale small enough to appear continuous to the eye yet large enough to enable unattenuated transmission of light between the islands. The islands are thick enough to absorb most visible light, and the combination of completely absorbing and completely transparent regions results in neutral transmission of light. Using these films, we fabricate thin-film solar cells with respectable power conversion efficiencies. Remarkably, we find that such discontinuous films still have good rectification behavior and relatively high open-circuit voltages due to the inherent rectification between the n- and p-type charge collection layers. Furthermore, we demonstrate the ease of "color-tinting" such microstructured perovksite solar cells with no reduction in performance, by incorporation of a dye within the hole transport medium. PMID:24467381

Eperon, Giles E; Burlakov, Victor M; Goriely, Alain; Snaith, Henry J

2014-01-28

316

CZTSSe thin film solar cells: Surface treatments  

NASA Astrophysics Data System (ADS)

Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

Joglekar, Chinmay Sunil

317

Printable CIGS thin film solar cells  

NASA Astrophysics Data System (ADS)

Among the various thin film solar cells in the market, CuInGaSe thin film solar cells have been considered as the most promising alternatives to crystalline silicon solar cells because of their high photo-electricity conversion efficiency, reliability, and stability. However, many fabrication methods of CIGS thin film are based on vacuum processes such as evaporation and sputtering techniques which are not cost efficient. This work develops a solution method using paste or ink liquid spin-coated on glass that would be competitive to conventional ways in terms of cost effective, non-vacuum needed, and quick processing. A mixture precursor was prepared by dissolving appropriate amounts of composition chemicals. After the mixture solution was cooled, a viscous paste was prepared and ready for spin-coating process. A slight bluish CIG thin film on substrate was then put in a tube furnace with evaporation of metal Se followed by depositing CdS layer and ZnO nanoparticle thin film coating to complete a solar cell fabrication. Structure, absorption spectrum, and photo-electricity conversion efficiency for the as-grown CIGS thin film solar cell are under study.

Fan, Xiaojuan

2013-03-01

318

Nanocluster production for solar cell applications  

NASA Astrophysics Data System (ADS)

This research focuses on the fabrication and characterization of silver (Ag) and silicon (Si) nanoclusters that might be used for solar cell applications. Silver and silicon nanoclusters have been synthesized by means of dc magnetron sputtering and inert gas condensation inside an ultra-high vacuum compatible system. We have found that nanocluster size distributions can be tuned by various source parameters, such as the sputtering discharge power, flow rate of argon inert gas, and aggregation length. Quadrupole mass filter and transmission electron microscopy were used to evaluate the size distribution of Ag and Si nanoclusters. Ag nanoclusters with average size in the range of 3.6-8.3 nm were synthesized (herein size refers to the nanocluster diameter), whereas Si nanoclusters' average size was controlled to range between 2.9 and 7.4 nm by controlling the source parameters. This work illustrates the ability of controlling the Si and Ag nanoclusters' sizes by proper optimization of the operation conditions. By controlling nanoclusters' sizes, one can alter their surface properties to suit the need to enhance solar cell efficiency. Herein, Ag nanoclusters were deposited on commercial polycrystalline solar cells. Short circuit current (ISC), open circuit voltage (VOC), fill factor, and efficiency (?) were obtained under light source with an intensity of 30 mW/cm2. A 22.7% enhancement in solar cell efficiency could be measured after deposition of Ag nanoclusters, which demonstrates that Ag nanoclusters generated in this work are useful to enhance solar cell efficiency.

Al Dosari, Haila M.; Ayesh, Ahmad I.

2013-08-01

319

Experiments on solar photovoltaic power generation using concentrator and liquid cooling  

NASA Technical Reports Server (NTRS)

Calculations and experimental data are presented leading to the development of a practical, economical solar photovoltaic power supply. The concept involves concentration of sunlight up to about 100 times normal solar intensity in a solar tracking collector and directing this to an array of solar cells. The cells are immersed in water circulated from a thermal reservoir which limits cell temperature rise to about 20 C above ambient during the day and which cools to ambient temperature during the night. Experiments were conducted on solar cells using a Fresnel lens for magnification, a telescope equatorial mount with clock drive, and tap water circulated through the solar cell holder cavity. Test results show that cells operate satisfactorily under these conditions. Power outputs achieved experimentally with cell optimized for 25 suns were linear with concentration to about 15 suns. Cells optimized for 100 suns were not available, but a corresponding linear relation of power output with concentration is anticipated. Test results have been used in a design analysis of the cost of systems utilizing this technique.

Beam, B. H.; Hansen, C. F.

1975-01-01

320

Hypervelocity Impact Testing of Space Station Freedom Solar Cells  

NASA Technical Reports Server (NTRS)

Solar array coupons designed for the Space Station Freedom electrical power system were subjected to hypervelocity impacts using the HYPER facility in the Space Power Institute at Auburn University and the Meteoroid/Orbital Debris Simulation Facility in the Materials and Processes Laboratory at the NASA Marshall Space Flight Center. At Auburn, the solar cells and array blanket materials received several hundred impacts from particles in the micron to 100 micron range with velocities typically ranging from 4.5 to 10.5 km/s. This fluence of particles greatly exceeds what the actual components will experience in low earth orbit. These impacts damaged less than one percent of total area of the solar cells and most of the damage was limited to the cover glass. There was no measurable loss of electrical performance. Impacts on the array blanket materials produced even less damage and the blanket materials proved to be an effective shield for the back surface of the solar cells. Using the light gas gun at MSFC, one cell of a four cell coupon was impacted by a 1/4 inch spherical aluminum projectile with a velocity of about 7 km/s. The impact created a neat hole about 3/8 inch in diameter. The cell and coupon were still functional after impact.

Christie, Robert J.; Best, Steve R.; Myhre, Craig A.

1994-01-01

321

Scanning Probe Microscopy of Organic Solar Cells  

NASA Astrophysics Data System (ADS)

Nanostructured composites of organic semiconductors are a promising class of materials for the manufacture of low-cost solar cells. Understanding how the nanoscale morphology of these materials affects their efficiency as solar energy harvesters is crucial to their eventual potential for large-scale deployment for primary power generation. In this thesis we describe the use of optoelectronic scanning-probe based microscopy methods to study this efficiency-structure relationship with nanoscale resolution. In particular, our objective is to make spatially resolved measurements of each step in the power conversion process from photons to an electric current, including charge generation, transport, and recombination processes, and correlate them with local device structure. We have achieved two aims in this work: first, to develop and apply novel electrically sensitive scanning probe microscopy experiments to study the optoelectronic materials and processes discussed above; and second, to deepen our understanding of the physics underpinning our experimental techniques. In the first case, we have applied conductive-, and photoconductive atomic force (cAFM & pcAFM) microscopy to measure both local photocurrent collection and dark charge transport properties in a variety of model and novel organic solar cell composites, including polymer/fullerene blends, and polymer-nanowire/fullerene blends, finding that local heterogeneity is the rule, and that improvements in the uniformity of specific beneficial nanostructures could lead to large increases in efficiency. We have used scanning Kelvin probe microscopy (SKPM) and time resolved-electrostatic force microscopy (trEFM) to characterize all-polymer blends, quantifying their sensitivity to photochemical degradation and the subsequent formation of local charge traps. We find that while trEFM provides a sensitive measure of local quantum efficiency, SKPM is generally unsuited to measurements of efficiency, less sensitive than trEFM, and of greater utility in identifying local changes in steady-state charge density that can be associated with charge trapping. In the second case, we have developed a new understanding of charge transport between a sharp AFM tip and planar substrates applicable to conductive and photoconductive atomic force microscopy, and shown that hole-only transport characteristics can be easily obtained including quantitative values of the charge carrier mobility. Finally, we have shown that intensity-dependent photoconductive atomic force microscopy measurements can be used to infer the 3D structure of organic photovoltaic materials, and gained new insight into the influence vertical composition of the these devices can have on their open-circuit voltage and its intensity dependence.

Reid, Obadiah G.

322

Summary of solar cell data from the Long Duration Exposure Facility (LDEF). Final report, 21 July 1993-19 August 1994  

SciTech Connect

The Long Duration Exposure Facility (LDEF) was composed of many separate experiments, some of which contained solar cells. These solar cells were distributed at various positions on the LDEF and, therefore, were exposed to the space environment with an orientational dependence. This report will address the space environmental effects on solar cells and solar cell assemblies (SCA's), including electrical interconnects and associated insulation blankets where flown in conjunction with solar cells.

Hill, D.C.; Rose, M.F.

1994-10-01

323

Development of irradiation methods and degradation modeling for state-of-the-art space solar cells  

NASA Astrophysics Data System (ADS)

Japan Atomic Energy Agency (JAEA) together with Japan Aerospace Exploration Agency (JAXA) has developed an insitu evaluation technique for understanding radiation response of space solar cells, by which the electrical characteristics of solar cells can be measured under AM0 light illumination during proton/electron irradiation experiments (Simultaneous method). Using the simultaneous method, we revealed the radiation degradation of multi-junction solar cells such as InGaP/GaAs/Ge triple junction (3J) solar cells. A modeling of the radiation degradation of 3J solar cells based on the Non-Ionizing Energy Loss (NIEL) concept was established. Flexible multi-junction solar cells are under development for space applications.

Ohshima, Takeshi; Sato, Shin-ichiro; Sumita, Taishi; Nakamura, Tetsuya; Imaizumi, Mitsuru

2014-06-01

324

Nano-photonic Light Trapping In Thin Film Solar Cells  

NASA Astrophysics Data System (ADS)

Over the last several decades there have been significant advances in the study and understanding of light behavior in nanoscale geometries. Entire fields such as those based on photonic crystals, plasmonics and metamaterials have been developed, accelerating the growth of knowledge related to nanoscale light manipulation. Coupled with recent interest in cheap, reliable renewable energy, a new field has blossomed, that of nanophotonic solar cells. In this thesis, we examine important properties of thin-film solar cells from a nanophotonics perspective. We identify key differences between nanophotonic devices and traditional, thick solar cells. We propose a new way of understanding and describing limits to light trapping and show that certain nanophotonic solar cell designs can have light trapping limits above the so called ray-optic or ergodic limit. We propose that a necessary requisite to exceed the traditional light trapping limit is that the active region of the solar cell must possess a local density of optical states (LDOS) higher than that of the corresponding, bulk material. Additionally, we show that in addition to having an increased density of states, the absorber must have an appropriate incoupling mechanism to transfer light from free space into the optical modes of the device. We outline a portfolio of new solar cell designs that have potential to exceed the traditional light trapping limit and numerically validate our predictions for select cases. We emphasize the importance of thinking about light trapping in terms of maximizing the optical modes of the device and efficiently coupling light into them from free space. To further explore these two concepts, we optimize patterns of superlattices of air holes in thin slabs of Si and show that by adding a roughened incoupling layer the total absorbed current can be increased synergistically. We suggest that the addition of a random scattering surface to a periodic patterning can increase incoupling by lifting the constraint of selective mode occupation associated with periodic systems. Lastly, through experiment and simulation, we investigate a potential high efficiency solar cell architecture that can be improved with the nanophotonic light trapping concepts described in this thesis. Optically thin GaAs solar cells are prepared by the epitaxial liftoff process by removal from their growth substrate and addition of a metallic back reflector. A process of depositing large area nano patterns on the surface of the cells is developed using nano imprint lithography and implemented on the thin GaAs cells.

Callahan, Dennis M., Jr.

325

A review of the homestake solar neutrino experiment  

NASA Astrophysics Data System (ADS)

The observations from the Homestake radiochemical solar neutrino experiment over the period 1970 to 1992 are given. The observations will be compared to those from the Kamiokande II experiment, the gallium experiments and solar model calculations. A discussion is given of the question of a possible variation of the solar neutrino flux in anticorrelation with the solar activity cycle. The operation of the Homestake experiment, the sensitivity to the solar neutrino spectrum, the background processes and the various tests that have been performed are given in some detail. The Homestake and Kamiokande II experiments are compared on the basis of the standard model and the flux of 8B neutrinos. There is agreement between these two experiments during the period June 1987 to April 1990 when both experiments were observing. The average 8B neutrino flux during this period was (2.2 0.2) 10 6 cm -2sec -1. A non-standard solar model of Sienkiewicz, Bahcall, and Paczynski (1990) which presumes that 50% of the core of the Sun is continually mixed on a slow time scale accounts for this reduced 8B flux and the total neutrino capture rate of the chlorine and gallium experiments.

Davis, Raymond

326

The Solar Array Module Plasma Interactions Experiment (SAMPIE): Science and technology objectives  

NASA Technical Reports Server (NTRS)

The Solar Array Module Plasma Interactions Experiment (SAMPIE) is an approved NASA Space Shuttle space flight experiment to be launched in Jul. 1993. The SAMPIE experiment is designed to investigate the interaction of high voltage space power systems with ionospheric plasma. To study the behavior of solar cells, a number of cell coupons, representing technologies of current interest, will be biased to high voltages to characterize both negative potential arcing and positive potential current collection. Additionally, various theories of arc suppression will be tested by including several specially modified cell coupons. Finally, SAMPIE will include experiments to study the basic nature of these interactions. The rationale for a space flight experiment, the measurements to be made, the significance of the expected results, and the current design status of the flight hardware are described.

Hillard, G. Barry

1992-01-01

327

Fabricating solar cells with silicon nanoparticles  

DOEpatents

A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

2014-09-02

328

Multichromophore light harvesting in hybrid solar cells.  

PubMed

A new technologically relevant method for multichromophore sensitizing of hybrid blend solar cells is presented. Two dyes having complementary absorption in the UV-visible regions are individually adsorbed on nanocrystalline TiO(2) powder. These dyed TiO(2) nanoparticles are blended with an organic hole-conductor (HC) Spiro-OMeTAD in desired compositions and applied on a conducting substrate by doctor-blading at room temperature to fabricate multichromophore-sensitized hybrid blend solar cells. The external quantum efficiency (EQE) of the single hybrid layer system fabricated with two dyes, that absorb mainly UV (TPD dye) and visible regions (Ru-TPA-NCS dye), exhibited a clear panchromatic response with the sum of the EQE characteristics of each single dye cell. The first results of a multichromophore-sensitized solid-state solar cell showed J(sc) of 2.1 mA cm(-2), V(oc) of 645 mV, FF of 47% and efficiency of 0.65% at AM 1.5 G, 100 mW cm(-2) illumination intensity. The J(sc) of the multichromophore cell is the sum of the individually dyed solar cells. The process described here is technically very innovative and very simple in procedure. It has potentials to be adopted for panchromatic sensitization using more than two dyes in a single hybrid layer or layer-wise fabrication of a tandem structure at room temperature. PMID:21695348

Bandara, Jayasundera; Willinger, Katja; Thelakkat, Mukundan

2011-07-28

329

Metallization for large-area solar cells  

NASA Technical Reports Server (NTRS)

In large area, low cost solar cells of any type, the contact and grid structure metallization is an important factor which has an effect on the efficiency of the solar cell and its reliability. The present investigation is concerned with aspects of solar cell efficiency. An optimized metallization design leads to minimum total power loss, which is related to a simultaneous minimization of ohmic voltage drops and of shading of the front surface of the cell by the overlaid metal. The requirements regarding the design for a low-loss metallization pattern for the front surface of large area solar cells are represented by a set of design rules listed in a table. The total shading and voltage drop on such cells can be held to about 5%. However, not every metallization process is suited for meeting the requirements of the low-cost design. The low losses can be achieved only by use of several bus lines containing a bulk conductor, such as a wire.

Wolf, M.

1981-01-01

330

Large area monolithic organic solar cells  

NASA Astrophysics Data System (ADS)

Although efficiencies of > 10% have recently been achieved in laboratory-scale organic solar cells, these competitive performance figures are yet to be translated to large active areas and geometries relevant for viable manufacturing. One of the factors hindering scale-up is a lack of knowledge of device physics at the sub-module level, particularly cell architecture, electrode geometry and current collection pathways. A more in depth understanding of how photocurrent and photovoltage extraction can be optimised over large active areas is urgently needed. Another key factor suppressing conversion efficiencies in large area cells is the relatively high sheet resistance of the transparent conducting anode - typically indium tin oxide. Hence, to replace ITO with alternative transparent conducting anodes is also a high priority on the pathway to viable module-level organic solar cells. In our paper we will focus on large area devices relevant to sub-module scales - 5 cm 5 cm monolithic geometry. We have applied a range of experimental techniques to create a more comprehensive understanding of the true device physics that could help make large area, monolithic organic solar cells more viable. By employing this knowledge, a novel transparent anode consisting of molybdenum oxide (MoOx) and silver (Ag) is developed to replace ITO and PEDOT-free large area solar cell sub-modules, acting as both a transparent window and hole-collecting electrode. The proposed architecture and anode materials are well suited to high throughput, low cost all-solution processing.

Jin, Hui; Tao, Cheng; Hambsch, Mike; Pivrikas, Almantas; Velusamy, Marappan; Aljada, Muhsen; Zhang, Yuliang; Burn, Paul L.; Meredith, Paul

2012-11-01

331

Space solar cell research - Problems and potential  

NASA Technical Reports Server (NTRS)

The value of a passive, maintenance-free, renewable energy source was immediately recognized in the early days of the space program, and the silicon solar cell, despite its infancy, was quickly pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved because of a variety of factors, ranging from improvements in silicon single crystal material, to better device designs, to a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. This paper will give a brief overview of some of the opportunities and challenges for space photovoltaic applications, and will discuss some of the current reseach directed at achieving high efficiency and controlling the effects of radiation damage in space solar cells.

Flood, Dennis J.

1986-01-01

332

Space solar cell research: Problems and potential  

NASA Technical Reports Server (NTRS)

The value of a passive, maintenance-free, renewable energy source was apparent in the early days of the space program, and the silicon solar cell was pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved through improvements in silicon single crystal material, better device designs, and a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. A brief overview of some of the opportunities and challenges for space photovoltaic applications is given, and some of the current research directed at achieving high efficiency and controlling radiation damage in space solar cells is discussed.

Flood, D. J.

1986-01-01

333

High voltage v-groove solar cell  

NASA Technical Reports Server (NTRS)

A high voltage multijunction solar cell comprises a number of discrete voltage generating regions, or unit cells, which are formed in a single semiconductor wafer and are connected together so that the voltages of the individual cells are additive. The unit cells comprise doped regions of opposite conductivity types separated by a gap. The method includes forming V-shaped grooves in the wafer and orienting the wafer so that ions of one conductivity type can be implanted in one face of the groove while the other face is shielded. A metallization layer is applied and selectively etched away to provide connections between the unit cells.

Evans, J. C., Jr.; Chai, A. T.; Goradia, C. P. (inventors)

1983-01-01

334

Deployment Experiment for Ultralarge Solar Sail System (UltraSail)  

E-print Network

Deployment Experiment for Ultralarge Solar Sail System (UltraSail) Byoungsam Woo, Kevin M. Ertmer.2514/1.51519 UltraSail is a next-generation high-payoff system with very large (kilometers-squared class) solar sails of the UltraSail system. A potential problem associated with trapped air between film layers was identified

Carroll, David L.

335

A review of high-efficiency silicon solar cells  

NASA Technical Reports Server (NTRS)

Various parameters that affect solar cell efficiency were discussed. It is not understood why solar cells produced from less expensive Czochralski (Cz) silicon are less efficient than cells fabricated from more expensive float-zone (Fz) silicon. Performance characteristics were presented for recently produced, high-efficient solar cells fabricated by Westinghouse Electric Corp., Spire Corp., University of New South Wales, and Stanford University.

Rohatgi, A.

1986-01-01

336

Application of photovoltaic solar cells in planar antenna structures  

Microsoft Academic Search

This paper describes the application of photovoltaic solar cells in planar antenna structures. The radiating patch element of a planar antenna is replaced by a solar cell. The original feature of a solar cell (DC current generation) remains, but additionally the cell is now able to receive and transmit electromagnetic waves. For a proper performance of these functions a RF-DC

C. Bendel; J. Kirchhof; N. Henze

2003-01-01

337

Assessing the Solar Power Satellite - The OTA experience  

Microsoft Academic Search

A review of an Office of Technology Assessment examination of SPS potentials and problems as an energy source is presented, along with an examination of the SPS effects on other space systems. The SPS configuration considered included solar cell conversion to klystron transmission to rectennas, with the solid-state converters located on the back of each solar panel. A LEO-based laser

R. A. Williamson; S. Weisburd; A. Wasserman

1981-01-01

338

Gaalas/Gaas Solar Cell Process Study  

NASA Technical Reports Server (NTRS)

Available information on liquid phase, vapor phase (including chemical vapor deposition) and molecular beam epitaxy growth procedures that could be used to fabricate single crystal, heteroface, (AlGa) As/GaAs solar cells, for space applications is summarized. A comparison of the basic cost elements of the epitaxy growth processes shows that the current infinite melt LPE process has the lower cost per cell for an annual production rate of 10,000 cells. The metal organic chemical vapor deposition (MO-CVD) process has the potential for low cost production of solar cells but there is currently a significant uncertainty in process yield, i.e., the fraction of active material in the input gas stream that ends up in the cell. Additional work is needed to optimize and document the process parameters for the MO-CVD process.

Almgren, D. W.; Csigi, K. I.

1980-01-01

339

Back surface reflectors for solar cells  

NASA Technical Reports Server (NTRS)

Sample solar cells were fabricated to study the effects of various back surface reflectors on the device performance. They are typical 50 micrometers thick, space quality, silicon solar cells except for variations of the back contact configuration. The back surfaces of the sample cells are polished to a mirror like finish, and have either conventional full contacts or grid finger contacts. Measurements and evaluation of various metallic back surface reflectors, as well as cells with total internal reflection, are presented. Results indicate that back surface reflectors formed using a grid finger back contact are more effective reflectors than cells with full back metallization and that Au, Ag, or Cu are better back surface reflector metals than Al.

Chai, A. T.

1980-01-01

340

GaAs solar cell development  

NASA Technical Reports Server (NTRS)

The motivation for developing GaAs solar cells is based on their superior efficiency when compared to silicon cells, their lower degradation with increasing temperature, and the expectation for better resistance to space radiation damage. The AMO efficiency of GaAs solar cells was calculated. A key consideration in the HRL technology is the production of GaAs cells of large area (greater than 4 sg cm) at a reasonable cost without sacrificing efficiency. An essential requirement for the successful fabrication of such cells is the ability to grow epitaxially a uniform layer of high quality GaAs (buffer layer) on state-of-the-art GaAs substrates, and to grow on this buffer layer the required than layer of (AlGa)As. A modified infinite melt liquid phase epitaxy (LPE) growth technique is detailed.

Knechtli, R. C.; Kamath, S.; Loo, R.

1977-01-01

341

Modeling light trapping in nanostructured solar cells.  

PubMed

The integration of nanophotonic and plasmonic structures with solar cells offers the ability to control and confine light in nanoscale dimensions. These nanostructures can be used to couple incident sunlight into both localized and guided modes, enhancing absorption while reducing the quantity of material. Here we use electromagnetic modeling to study the resonances in a solar cell containing both plasmonic metal back contacts and nanostructured semiconductor top contacts, identify the local and guided modes contributing to enhanced absorption, and optimize the design. We then study the role of the different interfaces and show that Al is a viable plasmonic back contact material. PMID:22082201

Ferry, Vivian E; Polman, Albert; Atwater, Harry A

2011-12-27

342

Design and fabrication of solar cell modules  

NASA Technical Reports Server (NTRS)

A program conducted for design, fabrication and evaluation of twelve silicon solar cell modules is described. The purpose of the program was to develop a module design consistent with the requirements and objectives of JPL specification and to also incorporate elements of new technologies under development to meet LSSA Project goals. Module development emphasized preparation of a technically and economically competitive design based upon utilization of ion implanted solar cells and a glass encapsulation system. The modules fabricated, tested and delivered were of nominal 2 X 2 foot dimensions and 20 watt minimum rating. Basic design, design rationale, performance and results of environmental testing are described.

Shaughnessy, T. P.

1978-01-01

343

Patternable conjugated polymers for organic solar cells  

NASA Astrophysics Data System (ADS)

Photocrosslinking is known as a suitable method for patterning organic semiconductors in organic light emitting diodes. We extend this concept to the field of organic solar cells using conjugated polymers bearing sidechains with photocrosslinkable oxetane units. By UV irradiation in the presence of a photo acid generator the oxetane groups polymerize, leading to the formation of a densely crosslinked, and thus insoluble, network of a low-bandgap polymer. In this paper we present the synthesis of two novel photocrosslinkable low-bandgap polymers PFDTBTOx and PCDTBTOx and discuss several strategies for the fabrication of organic solar cells taking advantage of the novel crosslinkable materials.

Strohriegl, Peter; Knauer, Philipp; Saller, Christina; Scheler, Esther

2013-10-01

344

High throughput solar cell ablation system  

DOEpatents

A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

2012-09-11

345

High throughput solar cell ablation system  

DOEpatents

A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

2014-10-14

346

Solar cell having improved back surface reflector  

NASA Technical Reports Server (NTRS)

The operating temperature is reduced and the output of a solar cell is increased by using a solar cell which carries electrodes in a grid finger pattern on its back surface. These electrodes are sintered at the proper temperature to provide good ohmic contact. After sintering, a reflective material is deposited on the back surface by vacuum evaporation. Thus, the application of the back surface reflector is separate from the back contact formation. Back surface reflectors formed in conjunction with separate grid finger configuration back contacts are more effective than those formed by full back metallization of the reflector material.

Chai, A. T. (inventor)

1982-01-01

347

Solar cell having improved back surface reflector  

NASA Astrophysics Data System (ADS)

The operating temperature is reduced and the output of a solar cell is increased by using a solar cell which carries electrodes in a grid finger pattern on its back surface. These electrodes are sintered at the proper temperature to provide good ohmic contact. After sintering, a reflective material is deposited on the back surface by vacuum evaporation. Thus, the application of the back surface reflector is separate from the back contact formation. Back surface reflectors formed in conjunction with separate grid finger configuration back contacts are more effective than those formed by full back metallization of the reflector material.

Chai, A. T.

1982-10-01

348

Solar recharging system for hearing aid cells.  

PubMed

We present a solar recharging system for nickel-cadmium cells of interest in areas where batteries for hearing aids are difficult to obtain. The charger has sun cells at the top. Luminous energy is converted into electrical energy, during the day and also at night if there is moonlight. The cost of the charger and hearing aid is very low at 35 US$. The use of solar recharging for hearing aids would be useful in alleviating the problems of deafness in parts of developing countries where there is no electricity. PMID:7964140

Gmez Estancona, N; Tena, A G; Torca, J; Urruticoechea, L; Muiz, L; Aristimuo, D; Unanue, J M; Torca, J; Urruticoechea, A

1994-09-01

349

Solar cell contact formation using laser ablation  

DOEpatents

The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

Harley, Gabriel; Smith, David D.; Cousins, Peter John

2014-07-22

350

Solar cell contact formation using laser ablation  

DOEpatents

The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

Harley, Gabriel; Smith, David; Cousins, Peter

2012-12-04

351

Applications of carbon materials in photovoltaic solar cells  

Microsoft Academic Search

Carbon-based photovoltaic cells (PVCs) have attracted a great deal of interest for both scientific fundamentals and potential applications. In this paper, applications of various carbon materials in PVCs, especially in silicon-based solar cells, organic solar cells and dye-sensitized solar cells, are reviewed. The roles carbon materials played in the PVCs are discussed. Further research on solar cells comprised solely of

Hongwei Zhu; Jinquan Wei; Kunlin Wang; Dehai Wu

2009-01-01

352

Coupling flexible solar cell with parabolic trough solar-concentrator-prototype design and performance  

Microsoft Academic Search

Solar cells are still too expensive (5-20\\/watt) to compete with traditional fossil fuel power generating methods (1\\/watt). Parabolic trough solar concentrator has the advantage of modest concentration ratio (10-100) which is well suited for coupling with solar cell. Thus using small area solar cell placed in the focal line of parabolic trough may be economically viable alternative to flat solar

Alexander Panin; Jonathon Bergquist

2007-01-01

353

Multi-junction solar cell device  

DOEpatents

A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

Friedman, Daniel J. (Lakewood, CO); Geisz, John F. (Wheat Ridge, CO)

2007-12-18

354

Solar Energy Experiments for High School and College Students.  

ERIC Educational Resources Information Center

This publication contains eighteen experiments and eight classroom activities. The experiments are of varying difficulty and cover the important aspects of solar energy utilization. Each experiment is self-contained, with its own introduction and background information. Energy measurements are emphasized and techniques for collector efficiency

Norton, Thomas W.; And Others

355

High efficiency silicon concentrator solar cells  

NASA Astrophysics Data System (ADS)

Techniques were investigated for improving the energy conversion efficiency of silicon concentrator solar cells. This aim was achieved with the demonstration of bifacially contacted silicon concentrator solar cells of markedly superior performance. An additional achievement was the demonstration of substantial improvements in the performance of non-concentrating, one-sun cells. The improvements in the one-sun cell area were achieved by optimization of the Passivated Emitter Solar Cell (PESC) technology. Aluminum gettering and emitter surface oxide-passivation played key roles for the PESC cells. The optimized PESC one-sun cell demonstrated an independently confirmed efficiency of 21.4 percent. The optimized PESC technology was also successfully applied to the fabrication of silicon concentrator cells on low resistivity substrates. The effects of metal contact resistance and heavy phosphorus diffusion were areas requiring additional careful investigation in this case. A concentrator cell after optimization demonstrated 23.4 percent efficiency at 100 suns, again independently confirmed. Although very high by normal standards, the efficiency was limited by the trade-off of the resistance and the shading of the front metal fingers. The need for the trade-off was eliminated by the application of prismatic covers, which steer the incident light onto the cell active areas avoiding metal fingers. The Passivated Emitter and Rear Cells (PERC) incorporating TCA (trichloro-ethane) processing improved the one-sun cell efficiency further to 21.8 percent. The improvement came from low recombination at surfaces and in the bulk resulting from the TCA processing and from reduced rear contact area. Antireflection coatings and prismatic cover design were also theoretically optimized. When combined with light trapping techniques, 27 percent efficiency silicon concentrator cell will be obtained with this approach in the near future.

Zhao, Jianhua

1990-06-01

356

Plastic solar cells with engineered interfaces  

NASA Astrophysics Data System (ADS)

We discuss here bulk-heterojunction polymer solar cells with engineered interfaces to achieve desired phase separations (vertical and horizontal), molecule orientations, ohmic contacts, and electronic properties for device performance maximization, and to enhance the device durability by eliminating corrosive interfacial layers. The strategies discussed include development of novel interfacial layers such as self-assembled organic layers and inorganic metal oxide layers, and using inverted cell architectures. Interface engineering leads to optimal active layer morphologies and to polymer ?- orientation, as well as maximum open circuit voltage. Using p-type NiO as the anode hole transporting/electron blocking layer results in dramatically enhanced device performance of P3HT/PCBM polymer solar cells with PCEs up to 5%. Electrical property and surface morphology investigations of NiO elucidate the mechanism for the enhanced performance. Other novel interfacial materials such as self-assembled organic monolayers and graphene oxide (GO) have also been incorporated into polymer solar cells to achieve comparable PCEs with improved device stability. Using ZnO as electron transporting/hole blocking layer and employing an inverted device architecture, polymer solar cells achieve desired molecule ?-orientation and vertical phase separation, therefore extremely high fill factors and promising power conversion efficiencies. In addition to interfacial layer materials, active layer components with state-of-the-art device performance, both polymer and small molecule developed in this laboratory, will also be discussed.

Guo, Xugang; Marks, Tobin J.

2013-03-01

357

Development of economical improved thick film solar cell contact  

NASA Technical Reports Server (NTRS)

Metal screened electrodes were investigated with base metal pastes and silver systems being focused upon. Contact resistance measurements were refined. A facility allowing fixing in hydrogen and other atmospheres was acquired. Several experiments were made applying screenable pastes to solar cells. Doping investigations emphasized eutectic alloys reduced to powders. Metal systems were reviewed and base metal experiments were done with nickel and copper using lead and tin as the frit metals. Severe adhesion problems were experienced with hydrogen atmospheres in all metal systems. A two step firing schedule was devised. Aluminum-silicon and aluminum-germanium eutectic doping additions to copper pastes were tried on 2 1/4 in diameter solar cell back contacts, both with good results.

Ross, B.

1979-01-01

358

Electrical overstress failure in silicon solar cells  

SciTech Connect

A solar-cell electrical-overstress-failure model and the results of experimental measurements of threshold pulsed failure currents on four types of silicon solar cells are presented. The transient EMP field surrounding a lightning stroke has been identified as a potential threat to a photovoltaic array, yet failure analysis of solar cells in a pulsed environment had not previously been reported. Failure in the low-resistivity concentrator cells at pulse widths between 1 ..mu..s and 1 ms occurred initially in the junction. Finger damage in the form of silver melting occurs at currents only slightly greater than that required for junction damage. The result of reverse-bias transient-overstress tests on high-resistivity (10 ..cap omega..cm) cells demonstrated that the predominant failure mode was due to edge currents. These flat-plate cells failed at currents of only 4 to 20 A, which is one or two orders of magnitude below the model predictions. It thus appears that high-resistivity flat-plate cells are quite vulnerable to electrical overstress which could be produced by a variety of mechanisms.

Pease, R.L.; Barnum, J.R.; van Lint, V.A.J.; Vulliet, W.V.; Wrobel, T.F.

1982-11-01

359

Electrical overstress failure in silicon solar cells  

NASA Astrophysics Data System (ADS)

A solar-cell electrical-overstress-failure model and the results of experimental measurements of threshold pulsed failure currents on four types of silicon solar cells are presented. The transient electromagnet pulse field surrounding a lightning stroke was identified as a potential threat to a photovoltaic array, yet failure analysis of solar cells in a pulsed environment had not previously been reported. Failure in the low-resistivity concentrator cells at pulse widths between 1 SIGMA and 1 ms occurred initially in the junction. Finger damage in the form of silver melting occurs at currents only slightly greater than that required for junction damage. The result of reverse-bias transient-overstress tests on high-resistivity (10 LAMBDA cm) cells demonstrated that the predominant failure mode was due to edge currents. These flat-plate cells failed at currents of only 4 to 20 A, which is one or two orders of magnitude below the model predictions. It thus appears that high-resistivity flat-plate cells are quite vulnerable to electrical overstress which could be produced by a variety of mechanisms.

Pease, R. L.; Barnum, J. R.; Vanlint, V. A. J.; Vulliet, W. V.; Wrobel, T. F.

1982-11-01

360

Evaluation of solar cells for potential space satellite power applications  

NASA Technical Reports Server (NTRS)

The evaluation focused on the following subjects: (1) the relative merits of alternative solar cell materials, based on performance and availability, (2) the best manufacturing methods for various solar cell options and the effects of extremely large production volumes on their ultimate costs and operational characteristics, (3) the areas of uncertainty in achieving large solar cell production volumes, (4) the effects of concentration ratios on solar array mass and system performance, (5) the factors influencing solar cell life in the radiation environment during transport to and in geosynchronous orbit, and (6) the merits of conducting solar cell manufacturing operations in space.

1977-01-01

361

Saudi Arabia's experience in solar energy applications  

NASA Astrophysics Data System (ADS)

The progress in solar energy research in Saudi Arabia is discussed with emphasis on the efforts of a government research entity - King Adbulaziz City for Science and Technology (KACST). Three programs currently underway at KACST are considered: the continuation of activities initiated under the Solar Energy Research American/Saudi (SOLERAS) program, a Saudi/German program, and projects developed and conducted completely by KACST. The objectives, management structure, and program organization of SOLEARS are outlined, and attention is focused on urban, rural/agricultural, and industrial applications as well as resource development activities and accomplishments. Solar-hydrogen projects pursued together with Germany are reviewed, and their objectives, program management, and technical plans are covered. Domestic programs dealing with photovoltaic-powered lightning and hot-water systems are summarized.

Huraib, Fahad S.

362

Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal  

NASA Technical Reports Server (NTRS)

A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.

Masters, R. M.

1975-01-01

363

Bandgap tuning of multiferroic oxide solar cells  

NASA Astrophysics Data System (ADS)

Multiferroic films are increasingly being studied for applications in solar energy conversion because of their efficient ferroelectric polarization-driven carrier separation and above-bandgap generated photovoltages, which in principle can lead to energy conversion efficiencies beyond the maximum value (?34%) reported in traditional silicon-based bipolar heterojunction solar cells. However, the efficiency reported so far is still too low (<2%) to be considered for commercialization. Here, we demonstrate a new approach to effectively tune the bandgap of double perovskite multiferroic oxides by engineering the cationic ordering for the case of Bi2FeCrO6. Using this approach, we report a power conversion efficiency of 8.1% under AM 1.5?G irradiation (100?mW?cm?2) for Bi2FeCrO6 thin-film solar cells in a multilayer configuration.

Nechache, R.; Harnagea, C.; Li, S.; Cardenas, L.; Huang, W.; Chakrabartty, J.; Rosei, F.

2015-01-01

364

Landsat 7 Solar Array Testing Experiences  

NASA Technical Reports Server (NTRS)

This paper covers the extensive Landsat 7 solar array flight qualification testing effort. Details of the mechanical design of the solar array and its retention/release system are presented. A testing chronology is provided beginning with the onset of problems encountered at the subsystem level and carrying through the third and final powered-spacecraft ground deployment test. Design fixes and other changes are explained in the same order as they became necessary to flight-qualify the array. Some interesting lessons learned are included along with key references.

Helfrich, Daniel

2000-01-01

365

Studies of silicon pn junction solar cells  

NASA Technical Reports Server (NTRS)

Modifications of the basic Shockley equations that result from the random and nonrandom spatial variations of the chemical composition of a semiconductor were developed. These modifications underlie the existence of the extensive emitter recombination current that limits the voltage over the open circuit of solar cells. The measurement of parameters, series resistance and the base diffusion length is discussed. Two methods are presented for establishing the energy bandgap narrowing in the heavily-doped emitter region. Corrections that can be important in the application of one of these methods to small test cells are examined. Oxide-charge-induced high-low-junction emitter (OCI-HLE) test cells which exhibit considerably higher voltage over the open circuit than was previously seen in n-on-p solar cells are described.

Lindholm, F. A.; Neugroschel, A.

1977-01-01

366

Direct-Write Contacts for Solar Cells  

SciTech Connect

We report on our project to develop inkjet printable contacts for solar cells. Ag, Cu, and Ni metallizations were inkjet printed with near vacuum deposition quality. Thick, highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si, and PCB have been printed at 100-200 C in air and N2, respectively. Ag grids were inkjet-printed on Si solar cells and fired through silicon nitride AR layer at 850 C resulting in 8% cells. Next-generation multicomponent inks (including etching agents) have also been developed with improved fire-through contacts leading to higher cell efficiencies. The approach developed can be easily extended to other conductors such as Pt, Pd, and Au, etc. In addition, PEDOT-PSS polymer-based conductors were inkjet-printed with the conductivity as good or better than those of polymer-based conductors.

Kaydanova, T.; van Hest, M.F.A.M.; Miedaner, A.; Curtis, C. J.; Alleman, J. L.; Dabney, M. S.; Garnett, E.; Shaheen, S.; Ginley, D. S.; Smith, L.; Collins, R.; Hanoka, J. I.; Gabor, A. M.

2005-01-01

367

Center punched solar cell module development effort  

NASA Technical Reports Server (NTRS)

The results are given of an advanced module development program with the objective of providing a low cost solar cell mechanical interconnect design. The design approach, which avoids soldering or welding operations, lends itself to automated assembly techniques thus supporting the Low-Cost Silicon Solar Array Project goals. The first group of six modules contained aluminum contact cells and the second group of six modules contained silver-titanium-palladium contact cells. Extensive component and environmental testing at the module level showed that reliable cell mechanical interconnection can be achieved when utilizing the proper electrical contact materials and pressures. A discussion is given of the module design, manufacturing procedure, test program, significant problem areas and solutions, and conclusions and recommendations as formulated and conducted by XEOS.

Ross, R. E.; Mortensen, W. E.

1978-01-01

368

Plastic Schottky barrier solar cells  

DOEpatents

A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.

Waldrop, James R. (Thousand Oaks, CA); Cohen, Marshall J. (Thousand Oaks, CA)

1984-01-24

369

High temperature investigations of crystalline silicon solar cell materials  

E-print Network

Crystalline silicon solar cells are a promising candidate to provide a sustainable, clean energy source for the future. In order to bring about widespread adoption of solar cells, much work is needed to reduce their cost. ...

Hudelson, George David Stephen, III

2009-01-01

370

Harmful Shunting Mechanisms Found in Silicon Solar Cells (Fact Sheet)  

SciTech Connect

Scientists developed near-field optical microscopy for imaging electrical breakdown in solar cells and identified critical electrical breakdown mechanisms operating in industrial silicon and epitaxial silicon solar cells.

Not Available

2011-05-01

371

Photovoltaic nanocrystal scintillators hybridized on Si solar cells  

E-print Network

Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit@bilkent.edu.tr Abstract: We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated

Demir, Hilmi Volkan

372

Efficiency limits of quantum well solar cells  

Microsoft Academic Search

The quantum well solar cell (QWSC) has been proposed as a flexible means to\\u000aensuring current matching for tandem cells. This paper explores the further\\u000aadvantage afforded by the indication that QWSCs operate in the radiative limit\\u000abecause radiative contribution to the dark current is seen to dominate in\\u000aexperimental data at biases corresponding to operation under concentration. The\\u000adark

J. P. Connolly; I. M. Ballard; K. W. J. Barnham; D. B. Bushnell; T. N. D. Tibbits; J. S. Roberts

2010-01-01

373

Status of silicon solar cell technology  

NASA Technical Reports Server (NTRS)

Major progress in solar cell technology leading to increased efficiency has occurred since 1970. Technical approaches leading to this increased output include surface texturing, improved antireflection coatings, reduced grid pattern area coverage, shallow junctions and back surface fields. The status of these developments and their incorporation into cell production is discussed. Future research and technology trends leading to further efficiency increases and substantial cost reductions are described.

Brandhorst, H. W., Jr.

1976-01-01

374

Studies of heteroface solar cell performance  

NASA Technical Reports Server (NTRS)

The development, fabrication, and failure modes of AlxGa(1-x)As-GaAs heteroface solar cells are described. Crystal growth, the diffusion of Zn into the GaAs layer to form the p-n junction, SEM studies of the diffusion length of GaAs, and procedures for making ohmic contacts are discussed.

Feucht, D. L.; Milnes, A. G.

1975-01-01

375

Glasses for Solar-Cell Arrays  

NASA Technical Reports Server (NTRS)

Report presents data on glass for encapsulation of solar-cell arrays, with special emphasis on materials and processes for automated high-volume production of low-cost arrays. Commercial suppliers of glass are listed. Factors that affect the cost of glass are examined: type (sheet, float, or plate), formulation, and energy consumed in manufacturing.

Bouquet, F. L.

1982-01-01

376

Modeling and analysis of multijunction solar cells  

Microsoft Academic Search

The modeling of high efficiency, multijunction (MJ) solar cells away from the radiative limit is presented. In the model, we quantify the effect of non-radiative recombination by using radiative efficiency as a figure of merit to extract realistic values of performance under different spectral conditions. This approach represents a deviation from the traditional detailed balance approximation, where losses in the

Mara Gonzlez; Ngai Chan; Nicholas J. Ekins-Daukes; Jessica G. J. Adams; Paul Stavrinou; Igor Vurgaftman; Jerry R. Meyer; Joshua Abell; Robert J. Walters; Cory D. Cress; Phillip P. Jenkins

2011-01-01

377

Performance of diffused vertical multijunction solar cell  

Microsoft Academic Search

The paper presents an analytical investigation of the conversion efficiency of a diffused vertical multijunction solar cell, neglecting the effects of surface recombination velocity and non-Ohmic contacts. Optimal efficiency was sought in relation to the width of the p and n regions and the magnitude of the built-in field. It was found that the conversion efficiency was largely dependent on

M. S. Sodha; A. K. Agarwal

1976-01-01

378

Phthalocyanine Blends Improve Bulk Heterojunction Solar Cells  

PubMed Central

A core phthalocyanine platform allows engineering the solubility properties the band gap; shifting the maximum absorption toward the red. A simple method to increase the efficiency of heterojunction solar cells uses a self-organized blend of the phthalocyanine chromophores fabricated by solution processing. PMID:20136126

Varotto, Alessandro; Nam, Chang-Yong; Radivojevic, Ivana; Tom, Joao; Cavaleiro, Jos A.S.; Black, Charles T.; Drain, Charles Michael

2010-01-01

379

Performance of diffused vertical multijunction solar cell  

Microsoft Academic Search

From the behavior of the conversion efficiency of vertical multijunction diffused solar cell, it is concluded that efficiency is largely dependent on the built-in-field. This built-in-field, in turn, is a function of the equilibrium carrier concentration profile which is governed by the diffusion technique and can be controlled easily to obtain optimum results.

M. S. Sodha; A. K. Agarwal

1976-01-01

380

Trough Coating Solar Cells Without Spillover  

NASA Technical Reports Server (NTRS)

Problem with trough coating of silicon on ceramic - spillover of molten silicon - overcome by combination of redesigned heaters and tiltable trough. Modifications make it possible to coat virtually any length of ceramic with film of solar-cell-grade silicon. Previously, maximum length coated before spillover occurred was 2 inches (5.1 cm).

Heaps, J. D.

1986-01-01

381

Metal electrode for amorphous silicon solar cells  

DOEpatents

An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

Williams, Richard (Princeton, NJ)

1983-01-01

382

Amorphous Siliconbased Solar Cells Xunming Deng1  

E-print Network

transistor), GaAs and the other III-V compounds (the basis for many light emitters), and CdS (often used light when excited by the current. Amorphous silicon was deposited as a thin film on substrates inserted efficient solar cells using a silane glow discharge to deposit films. In 1976, he and Christopher Wronski

Schiff, Eric A.

383

Perovskite solar cells prepared by flash evaporation.  

PubMed

A simple vacuum deposition method for the preparation of high quality hybrid organic-inorganic methylammonium lead iodide perovskite thin films is reported. When sandwiched in between organic charge transporting layers, such films lead to solar cells with a power conversion efficiency of 12.2%. PMID:25823717

Longo, Giulia; Gil-Escrig, Lidn; Degen, Maarten J; Sessolo, Michele; Bolink, Henk J

2015-04-14

384

Amorphous silicon nanocone array solar cell.  

PubMed

In the hydrogenated amorphous silicon [a-Si:H]-thin film solar cell, large amounts of traps reduce the carrier's lifetime that limit the photovoltaic performance, especially the power conversion efficiency. The nanowire structure is proposed to solve the low efficiency problem. In this work, we propose an amorphous silicon [a-Si]-solar cell with a nanocone array structure were implemented by reactive-ion etching through a polystyrene nanosphere template. The amorphous-Si nanocone exhibits absorption coefficient around 5 105/cm which is similar to the planar a-Si:H layer in our study. The nanostructure could provide the efficient carrier collection. Owing to the better carrier collection efficiency, efficiency of a-Si solar cell was increased from 1.43% to 1.77% by adding the nanocone structure which has 24% enhancement. Further passivation of the a-Si:H surface by hydrogen plasma treatment and an additional 10-nm intrinsic-a-Si:H layer, the efficiency could further increase to 2.2%, which is 54% enhanced as compared to the planar solar cell. The input-photon-to-current conversion efficiency spectrum indicates the efficient carrier collection from 300 to 800 nm of incident light. PMID:22395021

Thiyagu, Subramani; Pei, Zingway; Jhong, Ming-Sian

2012-01-01

385

Amorphous silicon nanocone array solar cell  

PubMed Central

In the hydrogenated amorphous silicon [a-Si:H]-thin film solar cell, large amounts of traps reduce the carrier's lifetime that limit the photovoltaic performance, especially the power conversion efficiency. The nanowire structure is proposed to solve the low efficiency problem. In this work, we propose an amorphous silicon [a-Si]-solar cell with a nanocone array structure were implemented by reactive-ion etching through a polystyrene nanosphere template. The amorphous-Si nanocone exhibits absorption coefficient around 5 105/cm which is similar to the planar a-Si:H layer in our study. The nanostructure could provide the efficient carrier collection. Owing to the better carrier collection efficiency, efficiency of a-Si solar cell was increased from 1.43% to 1.77% by adding the nanocone structure which has 24% enhancement. Further passivation of the a-Si:H surface by hydrogen plasma treatment and an additional 10-nm intrinsic-a-Si:H layer, the efficiency could further increase to 2.2%, which is 54% enhanced as compared to the planar solar cell. The input-photon-to-current conversion efficiency spectrum indicates the efficient carrier collection from 300 to 800 nm of incident light. PMID:22395021

2012-01-01

386

Method of manufacturing a solar cell  

SciTech Connect

A method of making a solar cell has the following steps: (1) formation of a surface layer including a dopant on a silicon substrate wherein the surface layer has a higher laser absorption index than the silicon substrate; (2) irradiation by laser of the surface layer to form a junction in the silicon substrate.

Morita, H.; Kato, T.; Onoe, A.; Washida, H.

1984-09-04

387

Prepolymer Syrup for Encapsulating Solar Cells  

NASA Technical Reports Server (NTRS)

Clear polymer syrup, made by disolving n-butyl acrylate prepolymer in monomer, used to encapsulate solar cells by any of three standard processes (dipping, multiple coating, or automated machine coating). Use of cyclohexane instead of methanol/water solvent during initial polymerization stage maintains high molecular weight and raises yield of linear polymer to essentially 100 percent.

Gupta, A.; Ingham, J. D.; Yavrouian, A. H.

1982-01-01

388

Low cost silicon solar cell array  

NASA Technical Reports Server (NTRS)

The technological options available for producing low cost silicon solar cell arrays were examined. A project value of approximately $250/sq m and $2/watt is projected, based on mass production capacity demand. Recommendations are included for the most promising cost reduction options.

Bartels, F. T. C.

1974-01-01

389

Method of fabricating a solar cell  

DOEpatents

Methods of fabricating solar cells are described. A porous layer may be formed on a surface of a substrate, the porous layer including a plurality of particles and a plurality of voids. A solution may be dispensed into one or more regions of the porous layer to provide a patterned composite layer. The substrate may then be heated.

Pass, Thomas; Rogers, Robert

2014-02-25

390

Basic mechanisms governing solar-cell efficiency  

NASA Technical Reports Server (NTRS)

The efficiency of a solar cell depends on the material parameters appearing in the set of differential equations that describe the transport, recombination, and generation of electrons and holes. This paper describes the many basic mechanisms occurring in semiconductors that can control these material parameters.

Lindholm, F. A.; Neugroschel, A.; Sah, C. T.

1976-01-01

391

Large area Czochralski silicon for solar cells  

NASA Technical Reports Server (NTRS)

A detailed model of a typical Czochralski silicon crystal puller is utilized to predict maximum crystal growth rate as a function of various furnace parameters. Results of this analysis, when combined with multiblade slurry sawing, indicate that the Czochralski process is highly attractive for achieving near-term cost reduction of solar cell silicon.

Rea, S. N.; Wakefield, G. F.

1976-01-01

392

Improved method of solar-cell assembly  

NASA Technical Reports Server (NTRS)

Method bonds solar-cell modules between rigid or flexible base and plastic protective cover. Method relies on using one of several commercially-available, transparent, silicone adhesives as bonding agent. Should it ever be necessary to repair or replace some part of assembly, it may be possible to remove cover without destroying package since adhesive remains flexible.

Broder, J. D.; Forestieri, A. F.; Mandelkorn, J.

1979-01-01

393

Semitransparent ultrathin CdTe solar cells Semitransparent ultrathin CdTe solar cells and durabilityand durability  

E-print Network

: · Window area >> rooftop space · PV windows produce power and reduce Solar Heat Gain (SHG). Generate power bl d ) (very poor aesthetics) (good efficiency but venetian blind appearance, expensive) Solar RoofSemitransparent ultrathin CdTe solar cells Semitransparent ultrathin CdTe solar cells

Rollins, Andrew M.

394

The solar activity measurements experiments (SAMEX) for improved scientific understanding of solar activity  

NASA Technical Reports Server (NTRS)

The Solar Activity Measurements Experiments (SAMEX) mission is described. It is designed to provide a look at the interactions of magnetic fields and plasmas that create flares and other explosive events on the sun in an effort to understand solar activity and the nature of the solar magnetic field. The need for this mission, the instruments to be used, and the expected benefits of SAMEX are discussed.

1989-01-01

395

Multijunction Solar Cells on Epitaxial Templates  

NASA Astrophysics Data System (ADS)

Future ultrahigh efficiency multijunction solar cells will employ designs that feature three or four or more subcells utilizing lattice-mismatched structures to achieve an optimal band gap sequence for solar energy conversion. While lattice-mismatched multijunction cells have been fabricated recently using metamorphic growth approaches, use of direct wafer bonding techniques to enable lattice mismatch accommodation at the subcell interfaces allows considerably more design freedom and inherently higher-quality, defect-free active regions. This thesis presents new results on wafer bonding and layer transfer for integration of materials with large lattice mismatch, as well as modeling work to better understand the key material parameters in the design of new multijunction solar cells. GaInP/GaAs dual junction solar cells on Ge/Si templates were fabricated using wafer bonding and ion implantation induced layer transfer techniques. Following layer transfer, the surface of the 1.4 mum thick transferred Ge(100) has an as-transferred RMS roughness of 20 nm and a near surface layer containing a high density of ion implantation-induced defects. The RMS roughness has been reduced to <1 nm. In addition, the effects of changing the strain state of the template substrate on the performance of the devices has been explored by comparing devices grown on Ge/Si and Ge/sapphire. The CTE mismatch between Si and GaAs/GaInP materials induces a tensile strain, whereas the sapphire substrate induces a compressive strain. An analytical p-n junction device physics model for GaInP/GaAs/InGaAsP/InGaAs four junction solar cells was developed. Real behavior of solar cells is accounted for by including: free carrier absorption, temperature and doping effects on carrier mobility, as well as two recombination pathways: Shockley-Read-Hall recombination from a single mid gap trap level and surface recombination. Upper bounds set by detailed balance calculations can be approached by letting the parameters approach ideal conditions. Detailed balance calculations always benefit from added subcells, current matching requirements in series connected p-n multijunctions indicate a minimum performance required from added subcells for net contribution to the overall device. This model allows novel solar cell structures to be evaluated by providing realistic predictions of the performance limitations of these multijunction devices.

Archer, Melissa Jane

396

New Materials for Chalcogenide Based Solar Cells  

NASA Astrophysics Data System (ADS)

Thin film solar cells based on copper indium gallium diselenide (CIGS) have achieved efficiencies exceeding 20 %. The p-n junction in these solar cells is formed between a p-type CIGS absorber layer and a composite n-type film that consists of a 50-100 nm thin n-type CdS followed by a 50-200 nm thin n-type ZnO. This dissertation focuses on developing materials for replacing CdS and ZnO films to improve the damp-heat stability of the solar cells and for minimizing the use of Cd. Specifically, I demonstrate a new CIGS solar cell with better damp heat stability wherein the ZnO layer is replaced with SnO2. The efficiency of solar cells made with SnO2 decreased less than 5 % after 120 hours at 85 C and 85 % relative humidity while the efficiency of solar cells made with ZnO declined by more than 70 %. Moreover, I showed that a SnO2 film deposited on top of completed CIGS solar cells significantly increased the device lifetime by forming a barrier against water diffusion. Semicrystalline SnO2 films deposited at room temperature had nanocrystals embedded in an amorphous matrix, which resulted in films without grain boundaries. These films exhibited better damp-heat stability than ZnO and crystalline SnO2 films deposited at higher temperature and this difference is attributed to the lack of grain boundary water diffusion. In addition, I studied CBD of Zn1-xCdxS from aqueous solutions of thiourea, ethylenediaminetetraacetic acid and zinc and cadmium sulfate. I demonstrated that films with varying composition (x) can be deposited through CBD and studied the structure and composition variation along the films' thickness. However, this traditional chemical bath deposition (CBD) approach heats the entire solution and wastes most of the chemicals by homogenous particle formation. To overcome this problem, I designed and developed a continuous-flow CBD approach to utilize the chemicals efficiently and to eliminate homogenous particle formation. Only the substrate is heated to the deposition temperature while the CBD solution is rapidly circulated between the bath and a chilled reservoir. We have demonstrated Zn1-x CdxS films for a variety of (x) values, with and without varying (x) across film thickness.

Tosun, Banu Selin

397

High efficiency crystalline silicon solar cells  

NASA Technical Reports Server (NTRS)

A review of the entire research program since its inception ten years ago is given. The initial effort focused on the effects of impurities on the efficiency of silicon solar cells to provide figures of maximum allowable impurity density for efficiencies up to about 16 to 17%. Highly accurate experimental techniques were extended to characterize the recombination properties of the residual imputities in the silicon solar cell. A numerical simulator of the solar cell was also developed, using the Circuit Technique for Semiconductor Analysis. Recent effort focused on the delineation of the material and device parameters which limited the silicon efficiency to below 20% and on an investigation of cell designs to break the 20% barrier. Designs of the cell device structure and geometry can further reduce recombination losses as well as the sensitivity and criticalness of the fabrication technology required to exceed 20%. Further research is needed on the fundamental characterization of the carrier recombination properties at the chemical impurity and physical defect centers. It is shown that only single crystalline silicon cell technology can be successful in attaining efficiencies greater than 20%.

Sah, C. Tang

1986-01-01

398

Optimum operating conditions of a solar cell panel and prediction of solar radiation in Sanaa, Yemen  

Microsoft Academic Search

Results of a study of the performance of solar cells under nominal operating conditions in Yemen are reported. The solar cell panel comprised 14 Si cells of .003 sq m surface area each, and was mounted on a rooftop with the solar radiation being measured by a pyranometer. Further monitoring was performed of the panel surface temperature, the ambient air

A. Khogali; M. R. I. Ramadan

1982-01-01

399

Space solar cell technology development - A perspective  

NASA Technical Reports Server (NTRS)

The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

Scott-Monck, J.

1982-01-01

400

Piezoresistance and solar cell efficiency  

NASA Technical Reports Server (NTRS)

Diffusion-induced stresses in silicon are shown to result in large localized changes in the minority-carrier mobility which in turn can have a significant effect on cell output. Evidence is given that both compressive and tensile stresses can be generated in either the emitter or the base region. Tensile stresses in the base appear to be much more effective in altering cell performance than do compressive stresses. While most stress-related effects appear to degrade cell efficiency, this is not always the case. Evidence is presented showing that arsenic-induced stresses can result in emitter characteristics comparable to those found in the MINP cell without requiring a high degree of surface passivation.

Weizer, Victor G.

1987-01-01

401

Nanocluster production for solar cell applications  

SciTech Connect

This research focuses on the fabrication and characterization of silver (Ag) and silicon (Si) nanoclusters that might be used for solar cell applications. Silver and silicon nanoclusters have been synthesized by means of dc magnetron sputtering and inert gas condensation inside an ultra-high vacuum compatible system. We have found that nanocluster size distributions can be tuned by various source parameters, such as the sputtering discharge power, flow rate of argon inert gas, and aggregation length. Quadrupole mass filter and transmission electron microscopy were used to evaluate the size distribution of Ag and Si nanoclusters. Ag nanoclusters with average size in the range of 3.68.3 nm were synthesized (herein size refers to the nanocluster diameter), whereas Si nanoclusters' average size was controlled to range between 2.9 and 7.4 nm by controlling the source parameters. This work illustrates the ability of controlling the Si and Ag nanoclusters' sizes by proper optimization of the operation conditions. By controlling nanoclusters' sizes, one can alter their surface properties to suit the need to enhance solar cell efficiency. Herein, Ag nanoclusters were deposited on commercial polycrystalline solar cells. Short circuit current (I{sub SC}), open circuit voltage (V{sub OC}), fill factor, and efficiency (?) were obtained under light source with an intensity of 30 mW/cm{sup 2}. A 22.7% enhancement in solar cell efficiency could be measured after deposition of Ag nanoclusters, which demonstrates that Ag nanoclusters generated in this work are useful to enhance solar cell efficiency.

Al Dosari, Haila M.; Ayesh, Ahmad I. [Department of Physics, United Arab Emirates University, P. O. Box 15551, Al Ain (United Arab Emirates)] [Department of Physics, United Arab Emirates University, P. O. Box 15551, Al Ain (United Arab Emirates)

2013-08-07

402

Exotic Solutions to the Solar Neutrino Problem and Some Implications for Low Energy Solar Neutrino Experiments  

E-print Network

In this talk, I review, from the phenomenological point of view, solutions to the solar neutrino problem, which are not provided by the conventional neutrino oscillation induced by mass and flavor mixing, and show that they can provide a good fit to the observed data. I also consider some simple implications for low energy solar neutrino experiments.

H. Nunokawa

2001-05-03

403

Determination of the solar cell panel installation angle  

Microsoft Academic Search

The output power of the solar cell panel is highly affected by the sunlight incident angle. The efficiency can be improved if the solar cell panel is properly installed with the optimum angle. The relationship between the sunlight incident angle and the sunlight radiation intensity on the solar cell panel surface is presented in this paper. Genetic algorithms with climatic

Yaow-Ming Chen; Hsu-Chin Wu

2001-01-01

404

50 micron - Silicon solar cell assembly and testing  

Microsoft Academic Search

An ultrathin silicon solar cell developed recently is advantageous for the high power spacecraft. A solar panel assembly technique suitable for the ultrathin silicon cell has been developed and established. Two types of welding methods, the parallel gap welding method (PGW) and improved solar welding method (ISW), have been introduced to interconnect these cells into the form of arrays, and

Hidekazu Hashimoto; Yasuhiro Aoki; Masakazu Iwakami; Hiroshi Nishiyama

1986-01-01

405

The NASA program for standardizing silicon solar cells  

NASA Technical Reports Server (NTRS)

The program is discussed which was initiated to formulate standard silicon solar cell and cover specifications. The program includes (1) compilation of solar cell and cover specifications, both past and present (2) elicitation of inputs from major users and suppliers and (3) establishment of tentative standardized solar cell and cover specifications.

Bifano, W. J.; Forestieri, A. F.

1974-01-01

406

Flexible thermal cycle test equipment for concentrator solar cells  

DOEpatents

A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

Hebert, Peter H. (Glendale, CA); Brandt, Randolph J. (Palmdale, CA)

2012-06-19

407

Introducing Metal Atoms to Organic Solar Cell Materials  

E-print Network

Introducing Metal Atoms to Organic Solar Cell Materials Tsuyoshi SUZUKI (D2)! Photoelectric Conversion Chemistry Laboratory! 2013/05/27! #12;Principles of Organic Solar Cells (OSCs)! 2Organic Seminar layer Al ITO Buffer layer n Principle OPV Device Structure Compared to Inorganic Solar Cells

Katsumoto, Shingo

408

Defects detection in crystalline silicon solar cells based on electroluminescence imaging  

NASA Astrophysics Data System (ADS)

In the use of crystalline silicon solar cells, the micro defects, such as cracks, the grain boundary dislocation, broken metal grid fingers, etc., will seriously affect the efficiency and the life of crystalline silicon solar cells. Therefore, it is necessary to detect the micro defects of Si solar cells rapidly and accurately in the production process. In this paper, firstly, the relationship between the electroluminescence (EL) intensity from Si solar cells under the forward bias and minority carrier diffusion length is simulated based on the calculation under the condition of ideal P-N junction model. There exists one to one quantitative agreement. We find that the relationship referred above is nonlinear. Secondly, the relationship between the defects in Si solar cells and minority carrier diffusion length (EL intensity) is summed up. The defects and minority carrier lifetime are also in accord with this relationship. Based upon these, the micro defects in Si solar cells could be made out in theory. With experiments, the defects in c-Si solar cells and poly-Si solar cells are detected clearly from EI images. Theory analysis and experiments show that the method is reasonable and efficient.

Jiang, Xiao-yu; Wang, Chao; Wang, Xi; Zong, Yan-tao; Pei, Chuang

2011-08-01

409

Luminescent solar concentrators and all-inorganic nanoparticle solar cells for solar energy harvesting  

NASA Astrophysics Data System (ADS)

Increasing energy demand and the parallel increase of greenhouse gas emissions are challenging researchers to find new and cleaner energy sources. Solar energy harvesting is arguably the most promising candidate for replacing fossil-fuel power generation. Photovoltaics are the most direct way of collecting solar energy; cost continues to hinder large-scale implementation of photovoltaics, however. Therefore, alternative technologies that will allow the extraction of solar power, while maintaining the overall costs of fabrication, installation, collection, and distribution low, must be explored. This thesis focuses on the fabrication and testing of two types of devices that step up to this challenge: the luminescent solar concentrator (LSC) and all-inorganic nanoparticle solar cells. In these devices I make use of novel materials, semiconducting polymers and inorganic nanoparticles, both of which have lower costs than the crystalline materials used in the fabrication of traditional photovoltaics. Furthermore, the cost of manufacturing LSCs and the nanoparticle solar cells is lower than the manufacturing cost of traditional optics-based concentrators and crystalline solar cells. An LSC is essentially a slab of luminescent material that acts as a planar light pipe. The LSC absorbs incoming photons and channels fluoresced photons toward appropriately located solar cells, which perform the photovoltaic conversion. By covering large areas with relatively inexpensive fluorescing organic dyes or semiconducting polymers, the area of solar cell needed is greatly reduced. Because semiconducting polymers and quantum dots may have small absorption/emission band overlaps, tunable absorption, and longer lifetimes, they are good candidates for LSC fabrication, promising improvement with respect to laser dyes traditionally used to fabricate LSCs. Here the efficiency of LSCs consisting of liquid solutions of semiconducting polymers encased in glass was measured and compared to the efficiency of LSCs based on small molecule laser dyes and on quantum dots. Factors affecting the optical efficiency of the system such as the luminescing properties of the fluorophors were examined. The experimental results were compared to Monte-Carlo simulations. Our results suggest that commercially available quantum dots cannot serve as viable LSC dyes because of large absorption/emission band overlap and relatively low quantum yield. Materials such as Red F demonstrate that semi-conducting polymers with high quantum yield and small absorption/emission band overlap are good candidates for LSCs. Recently, a solar cell system based purely on CdSe and Cite nanoparticles as the absorbing materials was proposed ans it was suggested that its operational mechanism was that of polymer donor/acceptor systems. Here we present solar cells consisting of a sintered active bilayer of CdSe and PbSe nanoparticles in the structure ITO/CdSe/interlayer/PbSe/Al, where an interlayer of LiF or Al2O3 was found necessary to prevent low shunt resistance from suppressing the photovoltaic behavior. We fabricated unoptimized solar cells with a short-circuit current of 6 mA/cm2, an open-circuit voltage of 0.18 V, and a fill factor of 41%. External quantum efficiency spectra revealed that photons from the infrared portion of the spectrum were not collected, suggesting that the low bandgap PbSe film did not contribute to the photocurrent of the structure despite exhibiting photoconductivity. Other measurements, however, showed that the PbSe film was indeed necessary to produce a photovoltage and transport electrons. Through sintering, the nanoparticle films acquired bandgaps similar to those of the corresponding bulk materials and became more conductive. Because the PbSe films were found to be considerably more conductive than the CdSe ones, we suggest that the PbSe layer is effectively behaving like a low conductivity electrical contact. Therefore, in contrast to the photovoltaics presented in the seminal research on CdSe/Cite solar cells, the CdSe/PbSe solar cell system presented here d

Sholin, Veronica

410

Hypervelocity Impact Studies on Solar Cell Modules  

NASA Technical Reports Server (NTRS)

Space environmental effects have caused severe problems as satellites move toward increased power and operating voltage levels. The greatest unknown, however, is the effect of high velocity micrometeoroid impacts on high voltage arrays (>200V). Understanding such impact phenomena is necessary for the design of future reliable, high voltage solar arrays, especially for Space Solar Power applications. Therefore, the objective of this work was to study the effect of hypervelocity impacts on high voltage solar arrays. Initially, state of the art, 18% efficient GaAs solar cell strings were targeted. The maximum bias voltage on a two-cell string was -200 V while the adjacent string was held at -140 V relative to the plasma potential. A hollow cathode device provided the plasma. Soda lime glass particles 40-120 micrometers in diameter were accelerated in the Hypervelocity Impact Facility to velocities as high as 11.6 km/sec. Coordinates and velocity were obtained for each of the approximately 40 particle impact sites on each shot. Arcing did occur, and both discharging and recharging of arcs between the two strings was observed. The recharging phenomena appeared to stop at approximately 66V string differential. No arcing was observed at 400 V on concentrator cell modules for the Stretched Lens Array.

Brandhorst, Henry W., Jr.; Best, Stevie R.

2001-01-01

411

The emergence of perovskite solar cells  

NASA Astrophysics Data System (ADS)

The past two years have seen the unprecedentedly rapid emergence of a new class of solar cell based on mixed organic-inorganic halide perovskites. Although the first efficient solid-state perovskite cells were reported only in mid-2012, extremely rapid progress was made during 2013 with energy conversion efficiencies reaching a confirmed 16.2% at the end of the year. This increased to a confirmed efficiency of 17.9% in early 2014, with unconfirmed values as high as 19.3% claimed. Moreover, a broad range of different fabrication approaches and device concepts is represented among the highest performing devices -- this diversity suggests that performance is still far from fully optimized. This Review briefly outlines notable achievements to date, describes the unique attributes of these perovskites leading to their rapid emergence and discusses challenges facing the successful development and commercialization of perovskite solar cells.

Green, Martin A.; Ho-Baillie, Anita; Snaith, Henry J.

2014-07-01

412

Transparent electrode materials for solar cells  

NASA Astrophysics Data System (ADS)

Alternatives for replacing the expensive ITO are explored and Poly(ethylene dioxythiophene):polystyrene sulfonate (PEDOT:PSS) is introduced as one possibility. We present the first small-molecule organic solar cells employing only PEDOT:PSS as transparent electrode. Solar cells on glass and on flexible plastic foil were prepared, using a p-doped hole transporting material, zinc phthalocyanine (ZnPc) and C60 as donor-acceptor heterojunction, and an exciton blocking layer. Different methods to structure the PEDOT:PSS electrodes were investigated and are presented. As proof of principle, non-optimized prototype cells with efficiencies of over 0.7% on glass and 0.9% on flexible plastic foil substrate were obtained.

Meiss, Jan; Uhrich, Christian L.; Fehse, Karsten; Pfuetzner, Steffen; Riede, Moritz K.; Leo, Karl

2008-04-01

413

Enhancing Solar Cell Efficiencies through 1-D Nanostructures  

PubMed Central

The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

2009-01-01

414

Thermal runaway in multijunction solar cells  

NASA Astrophysics Data System (ADS)

A small fraction of GaInP2/GaAs/Ge triple junction solar cells exposed to the 6 concentrated air mass zero spectrum at 523 K for 5 min was found to be severely shunted afterwards. A combination of electroluminescence imaging and focused ion beam cross sectioning revealed that pre-existing top-middle cell shunts were responsible for the observed degradation. Joule heating in the shunt resistance limiting Ge substrate is modeled and exhibits a thermal runaway effect above a critical voltage, in agreement with the experimental observation. The implications for current and future multijunction cells are discussed.

Zimmermann, Claus G.

2013-06-01

415

Development of integral covers on solar cells  

NASA Technical Reports Server (NTRS)

The electron-beam technique for evaporating a dielectric material onto solar cells is investigated. A process has been developed which will provide a highly transparent, low stress, 2 mil thick cover capable of withstanding conventional space type qualification tests including humidity, thermal shock, and thermal cycling. The covers have demonstrated the ability to withstand 10 to the 15th power 1 MeV electrons and UV irradiation with minor darkening. Investigation of the cell AR coating has produced a space qualifiable titanium oxide coating which will give an additional 6% current output over similar silicon oxide coated cells when covered by glass.

Stella, P.; Somberg, H.

1971-01-01

416

The multiple junction edge illuminated solar cell  

NASA Technical Reports Server (NTRS)

The multiple junction edge illuminated solar cell was devised for high voltage low current applications. Devices to be flight tested in early 1974 with 96 series connected PNN+ junctions in a 2 cm X 2.3 cm size deliver 36 volts at 1 milliampere. Test data of M-J cells fabricated with resistivities of 10, 50, 100, 200, 450, and 1000 ohm cm silicon are presented and problem areas are discussed. An additional potential application of the M-J cell lies in ultilization of its high intensity performance that has been demonstrated at levels in excess of 100 AMO suns.

Sater, B. I.; Brandhorst, H. W., Jr.; Riley, T. J.; Hart, R. E., Jr.

1973-01-01

417

Multijunction high voltage concentrator solar cells  

NASA Technical Reports Server (NTRS)

The standard integrated circuit technology has been developed to design and fabricate new innovative planar multi-junction solar cell chips for concentrated sunlight applications. This 1 cm x 1 cm cell consisted of several voltage generating regions called unit cells which were internally connected in series within a single chip resulting in high open circuit voltages. Typical open-circuit voltages of 3.6 V and short-circuit currents of 90 ma were obtained at 80 AM1 suns. A dramatic increase in both short circuit current and open circuit voltage with increased light levels was observed.

Valco, G. J.; Kapoor, V. J.; Evans, J. C.; Chai, A.-T.

1981-01-01

418

Radiation tolerance of vertical junction solar cells  

NASA Technical Reports Server (NTRS)

Extensive radiation testing of vertical junction (VJ) solar cells demonstrated a radiation tolerance better than both planar silicon cells and at least one type of (AlGa)As-GaAs cell. Due to tradeoffs between short circuit current and open circuit voltage, the end of life (10 to the 16th power 1 MeV electrons/sq cm) maximum power point is nearly independent of bulk resistivity between 2 and 10 ohm cm, increases slightly with increasing wafer thickness between 3 and 11 mils, and increases slightly with increasing groove depth between 1 and 3 mils.

Schelnine, A.; Wohlgemuth, J.

1980-01-01

419

Solar Airplanes and Regenerative Fuel Cells  

NASA Technical Reports Server (NTRS)

A solar electric aircraft with the potential to "fly forever" has captured NASA's interest, and the concept for such an aircraft was pursued under Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project. Feasibility of this aircraft happens to depend on the successful development of solar power technologies critical to NASA's Exploration Initiatives; hence, there was widespread interest throughout NASA to bring these technologies to a flight demonstration. The most critical is an energy storage system to sustain mission power during night periods. For the solar airplane, whose flight capability is already limited by the diffuse nature of solar flux and subject to latitude and time of year constraints, the feasibility of long endurance flight depends on a storage density figure of merit better than 400-600 watt-hr per kilogram. This figure of merit is beyond the capability of present day storage technologies (other than nuclear) but may be achievable in the hydrogen-oxygen regenerative fuel cell (RFC). This potential has led NASA to undertake the practical development of a hydrogen-oxygen regenerative fuel cell, initially as solar energy storage for a high altitude UAV science platform but eventually to serve as the primary power source for NASAs lunar base and other planet surface installations. Potentially the highest storage capacity and lowest weight of any non-nuclear device, a flight-weight RFC aboard a solar-electric aircraft that is flown continuously through several successive day-night cycles will provide the most convincing demonstration that this technology's widespread potential has been realized. In 1998 NASA began development of a closed cycle hydrogen oxygen PEM RFC under the Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project and continued its development, originally for a solar electric airplane flight, through FY2005 under the Low Emissions Alternative Power (LEAP) project. Construction of the closed loop system began in 2002 at the NASA Glenn Research Center in Cleveland, Ohio. System checkout was completed, and testing began, in July of 2003. The initial test sequences were done with only a fuel cell or electrolyzer in the test rig. Those tests were used to verify the test apparatus, procedures, and software. The first complete cycles of the fully closed loop, regenerative fuel cell system were successfully completed in the following September. Following some hardware upgrades to increase reactant recirculation flow, the test rig was operated at full power in December 2003 and again in January 2004. In March 2004 a newer generation of fuel cell and electrolyzer stacks was substituted for the original hardware and these stacks were successfully tested at full power under cyclic operation in June of 2004.

Bents, David J.

2007-01-01

420

SEMICONDUCTOR DEVICES: Performance analysis of solar cell arrays in concentrating light intensity  

Microsoft Academic Search

Performance of concentrating photovoltaic\\/thermal system is researched by experiment and simulation calculation. The results show that the I-V curve of the GaAs cell array is better than that of crystal silicon solar cell arrays and the exergy produced by 9.51% electrical efficiency of the GaAs solar cell array can reach 68.93% of the photovoltaic\\/thermal system. So improving the efficiency of

Xu Yongfeng; Li Ming; Wang Liuling; Lin Wenxian; Xiang Ming; Zhang Xinghua; Wang Yunfeng; Wei Shengxian

2009-01-01

421

Experiences With Using Solar Photovoltaics to Heat Domestic Water  

Microsoft Academic Search

The solar photovoltaic (PV) industry continues to make progress in increasing the efficiency while reducing the manufacturing costs of PV cells. Economies of scale are being realized as manufacturers expand their production capabilities. Products are commercially available that integrate photovoltaic cells within building faade, fenestration, and roofing components. Legislation and incentive programs by government and commercial entities are supporting both

Brian P. Dougherty; A. Hunter Fanney

2003-01-01

422

Deng & Schiff, Amorphous Silicon Based Solar Cells rev. 7/30/2002, Page 1 Amorphous Silicon Based Solar Cells  

E-print Network

Deng & Schiff, Amorphous Silicon Based Solar Cells rev. 7/30/2002, Page 1 Amorphous Silicon Based Solar Cells Xunming Deng and Eric A. Schiff Table of Contents 1 Overview 3 1.1 Amorphous Silicon: The First Bipolar Amorphous Semiconductor 3 1.2 Designs for Amorphous Silicon Solar Cells: A Guided Tour 6

Deng, Xunming

423

Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output  

Microsoft Academic Search

Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage,

L. C. Dinetta; M. H. Hannon

1995-01-01

424

Process development for single-crystal silicon solar cells  

NASA Astrophysics Data System (ADS)

Solar energy is a viable, rapidly growing and an important renewable alternative to other sources of energy generation because of its abundant supply and low manufacturing cost. Silicon still remains the major contributor for manufacturing solar cells accounting for 80% of the market share. Of this, single-crystal solar cells account for half of the share. Laboratory cells have demonstrated 25% efficiency; however, commercial cells have efficiencies of 16% - 20% resulting from a focus on implementation processes geared to rapid throughput and low cost, thereby reducing the energy pay-back time. An example would be the use of metal pastes which dissolve the dielectric during the firing process as opposed to lithographically defined contacts. With current trends of single-crystal silicon photovoltaic (PV) module prices down to 0.60/W, almost all other PV technologies are challenged to remain cost competitive. This presents a unique opportunity in revisiting the PV cell fabrication process and incorporating moderately more expensive IC process practices into PV manufacturing. While they may drive the cost toward a 1/W benchmark, there is substantial room to "experiment", leading to higher efficiencies which will help maintain the overall system cost. This work entails a turn-key process designed to provide a platform for rapid evaluation of novel materials and processes. A two-step lithographic process yielding a baseline 11% - 13% efficient cell is described. Results of three studies have shown improvements in solar cell output parameters due to the inclusion of a back-surface field implant, a higher emitter doping and also an additional RCA Clean.

Bohra, Mihir H.

425

High Concentrating GaAs Cell Operation Using Optical Waveguide Solar Energy System  

NASA Technical Reports Server (NTRS)

This paper discusses the result of the concentrating photovoltaic (CPV) cell experiments conducted with the Optical Waveguide (OW) Solar Energy System. The high concentration GaAs cells developed by Research Triangle Institute (RTI) were combined with the OW system in a "fiber-on-cell" configuration. The sell performance was tested up to the solar concentration of 327. Detailed V-I characteristics, power density and efficiency data were collected. It was shown that the CPV cells combined with the OW solar energy system will be an effective electric power generation device.

Nakamura, T.; Case, J. A.; Timmons, M. L.

2004-01-01

426

Production technology for high efficiency ion implanted solar cells  

NASA Technical Reports Server (NTRS)

Ion implantation is being developed for high volume automated production of silicon solar cells. An implanter designed for solar cell processing and able to properly implant up to 300 4-inch wafers per hour is now operational. A machine to implant 180 sq m/hr of solar cell material has been designed. Implanted silicon solar cells with efficiencies exceeding 16% AM1 are now being produced and higher efficiencies are expected. Ion implantation and transient processing by pulsed electron beams are being integrated with electrostatic bonding to accomplish a simple method for large scale, low cost production of high efficiency solar cell arrays.

Kirkpatrick, A. R.; Minnucci, J. A.; Greenwald, A. C.; Josephs, R. H.

1978-01-01

427

Documentation and solar cell modules  

NASA Astrophysics Data System (ADS)

The Solarex Block V Group II module is a large frameless module intended for installation in a larger panel framework for use in intermediate to large size power system arrays. The module is a large one, based on a 0.125-inch thick tempered glass superstrate, containing 117 square cells, each one 10 cm on a side, arranged in a 13 series 9 parallel matrix. The design peak power at 25 C is in the 135-140 watt range. The module has a novel back sheet comprising a laminate of Tedlar, Mylar and a modified polyethylene. The Solarex Block V Group II module, designated Model C-120-10A, passed the JPL Block V qualification tests. A number of cracks were observed in cells in he two modules which underwent 200 thermal cycles, but the peak power change was less than 2% in each case.

1985-03-01

428

Efficient Cells Cut the Cost of Solar Power  

NASA Technical Reports Server (NTRS)

If you visit Glenn Research Center, you might encounter a photovoltaic (PV) array that looks unlike anything you've ever seen. In fact, what one would normally identify as the panel is actually a series of curved mirrors called solar concentrators, engineered to reflect sunlight rather than absorb it. These concentrators gather, intensify, and focus sun beams upward, aiming at a fixture containing specialized silicon concentrated PV chips the actual solar cells. If you stay by the array for a while, you'll notice that the solar concentrators follow the path of the sun throughout the day, changing position to best capture and utilize the sunlight. The specialized chips that make the technology possible are the brainchild of Bernard Sater, an engineer who had worked at Glenn since the early 1960s before retiring to pursue his unique ideas for harnessing solar power. Sater contributed to multiple PV projects in the latter part of his career at the Center, including research and development on the International Space Station s solar arrays. In his spare time, he enjoyed tinkering with new approaches to solar power, experiments that resulted in the system installed at Glenn today. Sater s basic idea had two components. First, he wanted to create a silicon cell that was smaller, more efficient, and much lower cost than those available at the time. To ensure that the potential of such a chip could be realized, he also planned on pairing it with a system that could concentrate sunlight and focus it directly on the cell. When he retired from Glenn in 1994 to focus on researching and developing the technology full time, Sater found that NASA was interested in the concept and ready to provide funding, facilities, and expertise in order to assist in its development.

2013-01-01

429

Semi-transparent inverted organic solar cells  

NASA Astrophysics Data System (ADS)

We will present efficient semi-transparent bulk-heterojunction [regioregular of poly(3-hexylthiophene): (6,6)-phenyl C61 butyric acid methyl ester] solar cells with an inverted device architecture. Highly transparent ZnO and TiO2 films prepared by Atomic Layer Deposition are used as cathode interlayers on top of ITO. The topanode consists of a RF-sputtered ITO layer. To avoid damage due to the plasma deposition of this layer, a sputtering buffer layer of MoO3 is used as protection. This concept allows for devices with a transmissivity higher than 60 % for wavelengths 650 nm. The thickness of the MoO3 buffer has been varied in order to study its effect on the electrical properties of the solar cell and its ability to prevent possible damage to the organic active layers upon ITO deposition. Without this buffer or for thin buffers it has been found that device performance is very poor concerning the leakage current, the fill factor, the short circuit current and the power conversion efficiencies. As a reference inverted solar cells with a metal electrode (Al) instead of the ITO-top contact are used. The variation between the PCE of top versus conventional illumination of the semi-transparent cells was also examined and will be interpreted in view of the results of the optical simulation of the dielectric device stack with and without reflection top electrode. Power conversion efficiencies of 2-3 % for the opaque inverted solar cells and 1.5-2.5 % for the semi-transparent devices were obtained under an AM1.5G illumination.

Schmidt, H.; Winkler, T.; Tilgner, M.; Flgge, H.; Schmale, S.; Blow, T.; Meyer, J.; Johannes, H.-H.; Riedl, T.; Kowalsky, W.

2009-08-01

430

Silicon solar cell process development, fabrication, and analysis  

NASA Technical Reports Server (NTRS)

Solar cells from HEM, Dendritic Webs, and EFG ribbons were fabricated and characterized. The HEM solar cells showed only slight enhancement in cell performance after gettering steps (diffusion glass) were added. Dendritic webs from various growth runs indicated that performance of solar cells made from the webs was not as good as that of the conventional CZ cells. The EFG ribbons grown in CO ambient showed significant improvement in silicon quality.

Yoo, H. I.; Iles, P. A.; Leung, D. C.

1980-01-01

431

Development of standardized specifications for silicon solar cells  

NASA Technical Reports Server (NTRS)

A space silicon solar cell assembly (cell and coverglass) specification aimed at standardizing the diverse requirements of current cell or assembly specifications was developed. This specification was designed to minimize both the procurement and manufacturing costs for space qualified silicon solar cell assembilies. In addition, an impact analysis estimating the technological and economic effects of employing a standardized space silicon solar cell assembly was performed.

Scott-Monck, J. A.

1977-01-01

432

Solar Constant (SOLCON) Experiment: Ground Support Equipment (GSE) software development  

NASA Technical Reports Server (NTRS)

The Solar Constant (SOLCON) Experiment, the objective of which is to determine the solar constant value and its variability, is scheduled for launch as part of the Space Shuttle/Atmospheric Laboratory for Application and Science (ATLAS) spacelab mission. The Ground Support Equipment (GSE) software was developed to monitor and analyze the SOLCON telemetry data during flight and to test the instrument on the ground. The design and development of the GSE software are discussed. The SOLCON instrument was tested during Davos International Solar Intercomparison, 1989 and the SOLCON data collected during the tests are analyzed to study the behavior of the instrument.

Gibson, M. Alan; Thomas, Susan; Wilson, Robert

1991-01-01

433

Solar terrestrial and plasma processes experiments on space station  

NASA Technical Reports Server (NTRS)

The currently planned utilization of the space station to perform investigations in solar terrestrial physics and plasma physics is outlined. The investigations and instrumentation planned for the Solar Terrestrial Observatory and its associated space station accommodation requirements are described. In addition, the planned placement of the Solar Terrestrial Observatory instruments are discussed along with typical operational scenarios. In the area of plasma physics, some preliminary plans for scientific investigations and for the accommodation of a plasma physics facility attached to the space station called the Plasma Processes Laboratory are outlined. These preliminary experiment concepts use the space environment around the space station as an unconfined plasma laboratory.

Roberts, W. T.; Kropp, J. L.; Taylor, W. W. L.; Shawhan, S. D.

1986-01-01

434

Recent advances in sensitized mesoscopic solar cells.  

PubMed

Perhaps the largest challenge for our global society is to find ways to replace the slowly but inevitably vanishing fossil fuel supplies by renewable resources and, at the same time, avoid negative effects from the current energy system on climate, environment, and health. The quality of human life to a large degree depends upon the availability of clean energy sources. The worldwide power consumption is expected to double in the next 3 decades because of the increase in world population and the rising demand of energy in the developing countries. This implies enhanced depletion of fossil fuel reserves, leading to further aggravation of the environmental pollution. As a consequence of dwindling resources, a huge power supply gap of 14 terawatts is expected to open up by year 2050 equaling today's entire consumption, thus threatening to create a planetary emergency of gigantic dimensions. Solar energy is expected to play a crucial role as a future energy source. The sun provides about 120,000 terawatts to the earth's surface, which amounts to 6000 times the present rate of the world's energy consumption. However, capturing solar energy and converting it to electricity or chemical fuels, such as hydrogen, at low cost and using abundantly available raw materials remains a huge challenge. Chemistry is expected to make pivotal contributions to identify environmentally friendly solutions to this energy problem. One area of great promise is that of solar converters generally referred to as "organic photovoltaic cells" (OPV) that employ organic constituents for light harvesting or charge carrier transport. While this field is still in its infancy, it is receiving enormous research attention, with the number of publications growing exponentially over the past decade. The advantage of this new generation of solar cells is that they can be produced at low cost, i.e., potentially less than 1 U.S. $/peak watt. Some but not all OPV embodiments can avoid the expensive and energy-intensive high vacuum and materials purification steps that are currently employed in the fabrication of all other thin-film solar cells. Organic materials are abundantly available, so that the technology can be scaled up to the terawatt scale without running into feedstock supply problems. This gives organic-based solar cells an advantage over the two major competing thin-film photovoltaic devices, i.e., CdTe and CuIn(As)Se, which use highly toxic materials of low natural abundance. However, a drawback of the current embodiment of OPV cells is that their efficiency is significantly lower than that for single and multicrystalline silicon as well as CdTe and CuIn(As)Se cells. Also, polymer-based OPV cells are very sensitive to water and oxygen and, hence, need to be carefully sealed to avoid rapid degradation. The research discussed within the framework of this Account aims at identifying and providing solutions to the efficiency problems that the OPV field is still facing. The discussion focuses on mesoscopic solar cells, in particular, dye-sensitized solar cells (DSCs), which have been developed in our laboratory and remain the focus of our investigations. The efficiency problem is being tackled using molecular science and nanotechnology. The sensitizer constitutes the heart of the DSC, using sunlight to pump electrons from a lower to a higher energy level, generating in this fashion an electric potential difference, which can exploited to produce electric work. Currently, there is a quest for sensitizers that achieve effective harnessing of the red and near-IR part of sunlight, converting these photons to electricity better than the currently used generation of dyes. Progress in this area has been significant over the past few years, resulting in a boost in the conversion efficiency of the DSC that will be reviewed. PMID:19715294

Grtzel, Michael

2009-11-17

435

LDEF (Postflight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08  

NASA Technical Reports Server (NTRS)

LDEF (Postflight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 EL-1994-00147 LDEF (Postflight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 The post flight photograph was taken in the SAEF II at KSC prior to removal of the experiment tray from the LDEF and shows the Solar Array Materials Passive LDEF Experiment (SAMPLE) on the LDEF. Six (6) plates of passive components, provided by various experiment organizations and designated plate I thru plate VI, are shown mounted in a three (3) inch deep LDEF peripheral tray. All six plates are aluminum and attach to the LDEF experiment tray with non-magnetic stainless steel fasteners. Plate I, located in the upper right corner, consist of a combination of solar cells with and without covers, solar cell modules and solar arrays assembled on the baseplate. Three of the four solar arrays are missing. Other components appear to be secure. Plate II in the top center section, has twenty seven (27) composite samples, carbon fiber and glass fiber, mounted on the baseplate. The composites appear to be intact with no physical damage. Plate III, in the upper left corner, consist of metallized and thin polymeric films (Kapton, Mylar, TEFLON , white Tedlar,etc.). The thin films without protective coatings sustained significant damage and most were destroyed. The thin film specimen hanging by one end in the flight photograph is missing. The metallized film apparently survived the mission with minimum damage. Plate IV located in the lower right corner consist of metals and coatings mounted in an aluminum baseplate and covered with a thin aluminum coverplate that partially mask the specimen. Several of the coatings appear to have darkened and a unique pattern of light brown discoloration appears around the outer edges of the mounting plate and along the lower edge of the coverplates. Plate V, in the lower center section, contained thermal plastics and structural film configured into tensile and shear specimen. All specimen, including the tape holding down the small specimen in the lower right corner, have darkened significantly during the extended time in space. Plate VI, in the lower left corner, is populated with solar cells and associated components such as covers, encapsulants,adhesives, etc. The solar cell components appear to be intact with no apparent physical damage.The colors of the specimen, however, appear to have darkened. The photographic lighting angle has significantly highlighted abrasions on the mounting plate surface.

1990-01-01

436

Outgassing of Flown and Unflown MIR Solar Cells  

NASA Technical Reports Server (NTRS)

A solar panel array with more than ten years space exposure was removed from the Mir core module in November 1997, and an eight panel section was returned to Earth in January 1998. Several solar cells were removed from panel eight of the returned array and placed in a high vacuum system with a residual gas analyzer (200 amu mass spectrometer) and a cold finger. Similar unflown solar cells of the same vintage were later obtained from Energia. Several of the unflown cells were also placed in the vacuum system and outgassed residues were collected on the LN2 cold finger. Almost 3 mg of outgassed residue was collected -from a string of three unflown solar cells over a period of 94 hours under vacuum. The collected residue was weighed with a microbalance, and then the residue was analyzed by FTIR spectroscopy, and by gas chromatograph-mass spectroscopy. About 25 outgassed constituents were separated by the gas chromatograph, and a high-resolution mass spectrum was obtained of each constituent. Molecular identifications have been made for the constituents. The constituents are primarily cyclic siloxanes, and several of the constituents are isomers of the same molecule. Most of the outgassed constituents have a molecular mass of about 500 amu. Almost one mg of residue was extracted from one sq cm of coverglass/adhesive from a flown solar cell by soaking in isopropyl alcohol for 30 minutes. The gas chromatograph separated about 20 constituents. The constituents are mostly cyclic siloxanes with linear branches, hydrocarbons, and phthalates. The typical molecular mass is about 600 amu. These identifications of specific outgassing molecules have resulted in a more complete understanding of the SiO(x) contamination on the Mir solar cell coverglasses, and on the MEEP experiment trays and optical specimens during the Shuttle-Mir Phase One flight experiment program. Adjusted outgassing rates based on the data reported here, and/or measured outgassing rates and specific molecular identifications of ISS hardware samples are needed to input into model predictions of induced environment effects of the ISS.

Harvey, Gale A.; Kinard, William H.; Wilson, Linda A.

2000-01-01

437

Atomic Layer Deposition of zinc oxide for solar cell applications  

NASA Astrophysics Data System (ADS)

Atomic Layer Deposition (ALD) is a vapor phase thin film deposition technique, performed at low substrate temperatures, which enables the deposition of extremely uniform thin films. This technique is scalable up to very large substrates, making it very interesting for industrial applications. On the other hand, ZnO, both undoped and aluminum doped is commonly used as a transparent electrode in solar cells based on Cu(In,Ga)Se2 (CIGS), and is usually deposited by Physical Vapor Deposition techniques. In this paper, we investigate the potential of ALD for the deposition of ZnO windows for solar cell applications. Thin films of a few hundreds of nanometers were grown by ALD, both undoped and doped with aluminum. They were studied by X-ray diffraction, electrical transport measurements, Atomic Force Microscopy and transmittance experiments.

Moret, M.; Abou Chaaya, A.; Bechelany, M.; Miele, P.; Robin, Y.; Briot, O.

2014-11-01

438

Spin dependent photocurrents in ribbon solar cells  

SciTech Connect

Spin Dependent Transport (SDT) is a method of identifying recombination centers which employs a microwave resonance condition to affect the recombination rate of minority carriers in a device. When this technique is used to analyze the diffusion-limited currents produced by long-wavelength optical excitation, it has the potential to chemically identify the major recombination sites in solar cells. We have used this resonance technique to analyze short circuit photocurrents in Edge-defined film-Fed Growth (EFG) ribbon silicon solar cells. At room temperature, our observed photocurrent resonances have zero-crossing g values and linewidths which are similar to SDT observations made on the trans-barrier currents in silicon bicrystals, and electron spin resonance signals seen in damaged silicon, and polycrystalline silicon. These dangling-bond-like SDT signals depend on cell illumination levels in a way that suggests that the values of recombination velocity at electrically active linear boundaries decrease with illumination intensity. Hydrogen processed cells show markedly smaller SDT response, consistent with the passivation of Si dangling bond defects. While most of our SDT observations have been made on n{sup +}/p EFG cells, we suggest that measurements made at low temperatures on other cell structures might uncover resonances due to other recombination centers in this material.

Seager, C.H.; Venturini, E.L.; Schubert, W.K.

1992-11-01

439

New high-efficiency silicon solar cells  

NASA Technical Reports Server (NTRS)

A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.

Daud, T.; Crotty, G. T.

1985-01-01

440

High efficiency porphyrin sensitized mesoscopic solar cells  

NASA Astrophysics Data System (ADS)

Dye-Sensitized Solar Cells (DSSC) represents a reliable technology, ready for the market and able to compete with silicon solar cells for specific fields of application. Porphyrin dyes allow reaching high power conversion efficiency in conjunction with cobalt redox electrolytes due to larger open circuit potentials. The bigger size of the cobalt complexes compared to standard iodide/triiodide redox couple hampers its percolation through the meso-porous TiO2 network, thus impairing the regeneration process. In case of porphyrin dyes mass transport problems in the electrolyte need to be carefully handled, due to the large size of the sensitizing molecule and the bulky cobalt complexes. Herein we report the study of structural variations on porphyrin sensitizers and their influence on the DSSC performance with cobalt based redox electrolyte.

Giordano, Fabrizio; Yi, Chenyi; Teuscher, Jol.; Zakeeruddin, Shaik M.; Grtzel, Michael

2014-10-01

441

Green-solvent-processed molecular solar cells.  

PubMed

High-efficiency bulk heterojunction (BHJ) organic solar cells with power conversion efficiencies of more than 5?% can be fabricated using the green solvent 2-MeTHF. The active layers comprise a blend of a molecular semiconductor donor with intermediate dimensions (X2) and the soluble fullerene derivative [6,6]-phenyl-C61 -butyricacidoctylester (PC61 BC8 ). A switch of the processing solvent from chloroform to 2-MeTHF leads to no negative impacts on the morphology and charge-transport properties of optimally performing BHJ films. Examinations by absorption spectroscopy, atomic force microscopy, and grazing incidence wide-angle X-ray scattering reveal no significant modification of morphology. These results show that green solvents can be excellent alternatives for large-area printing of high-performance organic photovoltaics (OPVs) and thus open new opportunities for sustainable mass production of organic solar cells and other optoelectronic devices. PMID:25389005

Chen, Xiaofen; Liu, Xiaofeng; Burgers, Mark A; Huang, Ye; Bazan, Guillermo C

2014-12-22

442

Advanced Solar Cell Testing and Characterization  

NASA Technical Reports Server (NTRS)

The topic for this workshop stems from an ongoing effort by the photovoltaic community and U.S. government to address issues and recent problems associated with solar cells and arrays experienced by a number of different space systems. In April 2003, a workshop session was held at the Aerospace Space Power Workshop to discuss an effort by the Air Force to update and standardize solar cell and array qualification test procedures in an effort to ameliorate some of these problems. The organizers of that workshop session thought it was important to continue these discussions and present this information to the entire photovoltaic community. Thus, it was decided to include this topic as a workshop at the following SPRAT conference.

Bailey, Sheila; Curtis, Henry; Piszczor, Michael

2005-01-01

443

Compensated amorphous-silicon solar cell  

DOEpatents

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

Devaud, G.

1982-06-21

444

Modeling of high efficiency solar cells under laser pulse for power beaming applications  

NASA Technical Reports Server (NTRS)

Solar cells have been used to convert sunlight to electrical energy for many years and also offer great potential for non-solar energy conversion applications. Their greatly improved performance under monochromatic light compared to sunlight, makes them suitable as photovoltaic (PV) receivers in laser power beaming applications. Laser beamed power to a PV array receiver could provide power to satellites, an orbital transfer vehicle, or a lunar base. Gallium arsenide (GaAs) and indium phosphide (InP) solar cells have calculated efficiencies of more than 50 percent under continuous illumination at the optimum wavelength. Currently high power free-electron lasers are being developed which operate in pulsed conditions. Understanding cell behavior under a laser pulse is important in the selection of the solar cell material and the laser. An experiment by NAsA lewis and JPL at the AVLIS laser facility in Livermore, CA presented experimental data on cell performance under pulsed laser illumination. Reference 5 contains an overview of technical issues concerning the use of solar cells for laser power conversion, written before the experiments were performed. As the experimental results showed, the actual effects of pulsed operation are more complicated. Reference 6 discusses simulations of the output of GaAs concentrator solar cells under pulsed laser illumination. The present paper continues this work, and compares the output of Si and GaAs solar cells.

Jain, Raj K.; Landis, Geoffrey A.

1994-01-01

445

Solar Energy Materials & Solar Cells 77 (2003) 319330 Structure and photoelectrochemical properties  

E-print Network

, and compared its photoelectrical properties as sensitizer in Gr.atzel-type solar cells with that of N3Solar Energy Materials & Solar Cells 77 (2003) 319­330 Letters Structure and photoelectrochemical Science B.V. All rights reserved. Keywords: Photoelectric conversion; Polypyridyl complex; Sensitization

Huang, Yanyi

446

Solar Energy Materials & Solar Cells 71 (2002) 261271 Photoelectric behavior of nanocrystalline TiO2  

E-print Network

Solar Energy Materials & Solar Cells 71 (2002) 261­271 Photoelectric behavior of nanocrystalline Ti; received in revised form 18 April 2001; accepted 30 May 2001 Abstract The photoelectric behavior of a black. A sandwich-type solar cell fabricated by this dye-sensitized nanocrystalline TiO2 film generated 6:1 mA cm?2

Huang, Yanyi

447

The photophysics of perovskite solar cells  

NASA Astrophysics Data System (ADS)

Solution-processed hybrid organic-inorganic perovskite solar cells, a newcomer to the photovoltaic arena, have taken the field by storm with their extraordinary power conversion efficiencies exceeding 17%. In this paper, the photophysics and the latest findings on the carrier dynamics and charge transfer mechanisms in this new class of photovoltaic material will be examined and distilled. Some open photophysics questions will also be discussed.

Sum, Tze Chien

2014-09-01

448

Microstructured extremely thin absorber solar cells  

Microsoft Academic Search

In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed by pressing a silicon stamp containing a ?m size raised grid structure into the TiO2 by use of a hydraulic

Matteo Biancardo; Frederik C. Krebs

2007-01-01

449

High efficiency silicon solar cell review  

NASA Technical Reports Server (NTRS)

An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.

Godlewski, M. P. (editor)

1975-01-01

450

Variation of solar cell sensitivity and solar radiation on tilted surfaces  

NASA Technical Reports Server (NTRS)

The validity is studied that one of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces. The variation of solar cell sensitivity to solar radiation is determined over a wide range of atmospheric condition. A new model was formulated that reduced the deviations between measured and predicted insolation to less than 3 percent. Evaluation of solar cell sensitivity data indicates small change (2-3 percent) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells is discussed.

Klucher, T. M.

1978-01-01

451

Gravitation experiments during the total solar eclipse  

SciTech Connect

The variations of the apparent vertical direction of the gravity field were measured with horizontal gravimeters acting as tilt meters during the total solar eclipse in Turkey in March 29, 2006. Three separated locations within the path of totality were chosen for observations, two spaced apart along the center line, and one off the center line. No anomaly was observed at the furthest location from the center line. Aperiodic oscillations in tilt were recorded at the two locations on the center line. These may be related to the eclipse phenomenon. The average tilt amplitude deviation during the eclipse over all locations and in all directions was 150 nrad, which can be regarded as a mean upper limit for the eclipse related changes in the tilt.

Kuusela, T.; Jaeykkae, J.; Kiukas, J.; Multamaeki, T.; Ropo, M.; Vilja, I. [Department of Physics, University of Turku, 20014 Turku (Finland)

2006-12-15

452

Development of integral covers for solar cells  

NASA Astrophysics Data System (ADS)

A process has been developed by which integral solar cell covers (ISCCs) can be applied directly to the front surface of solar cell modules. The covers are a codeposited mixture of silica and alumina. The tensile-stressed alumina serves to compensate for the compressive stress of the silica. These covers are applied by a plasma-activated chemial vapor deposition (PACVD), which is a low-temperature CVD process (145 C). The process utilizes a proprietery plasma-activated source to generate an activated oxygen species that simultaneously oxidizes silicon tetrahydride (silane) and trimethylaluminum, forming silica and alumina on the substrate surface. By adjusting the reactant flow rates, the stress of the codeposited covers stress can be adjusted to low levels, typically 0-3 kpsi. Besides serving to protect the pn junction of the solar cells from particle damage, the cover can also serve as an electrical insulator in high-voltage-array applications. A significant advantage of ISCCs over conventional covers is that the minimum degradation temperature of the assembly is significantly increased by elimination of the adhesive used to bond the conventional covers.

Adams, Craig D.; Morris, Robert K.

453

Thermal Characterization of Junction in Solar Cell Packages  

Microsoft Academic Search

This is the first report on the direct measurement of the junction temperature and on the determination of thermal resistance of a commercial amorphous silicon (a-Si) solar cell package under real operating conditions. Thermal transient method was utilized for the thermal characterization. Irradiation of sunlight to the solar cell package was found to induce significant heat generation inside the solar

Sun Ho Jang; Moo Whan Shin

2010-01-01

454

Infrared modulation spectroscopy of interfaces in amorphous silicon solar cells  

E-print Network

Infrared modulation spectroscopy of interfaces in amorphous silicon solar cells Kai Zhu a,1 , E Solar, Toano, VA 23168, USA Abstract We report infrared depletion modulation spectra for near-interface states in a-Si pin solar cells. The effect of ad- ditional visible illumination (optical bias

Schiff, Eric A.

455

Multilayer, Front-Contact Grid for Solar Cells  

NASA Technical Reports Server (NTRS)

Proposed multilayer, front-contact grid structure for solar cells optimizes collection of photogenerated current with minimum power losses. It is constructed of several layers of conducting grids. With multilayer concept, peak efficiency can occur at higher output-power levels. Because of this, higher solar concentrations can be applied to solar-cell arrays.

Milnes, A. G.; Flat, A.

1982-01-01

456

V-grooved silicon solar cells  

NASA Technical Reports Server (NTRS)

Silicon solar cells with macroscopic V-shaped grooves and microscopically texturized surfaces were made by preferential etching techniques. Various conditions for potassium hydroxide and hydrazine hydrate etching were investigated. Optical reflection losses from these surface were reduced. The reduced reflection occurred at all wavelengths and resulted in improved short circuit current and spectral response. Improved collection efficiency is also expected from this structure due to generation of carriers closer to the cell junction. Microscopic point measurements of collected current using a scanning electron microscope showed that current collected at the peaks of the texturized surface were only 80 percent of those collected in the valleys.

Baraona, C. R.; Brandhorst, H. W., Jr.

1975-01-01

457

AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack  

NASA Technical Reports Server (NTRS)

The AstroPower self-supporting, transparent AlGaAs top solar cell can be stacked upon any well-developed bottom solar cell for improved system performance. This is an approach to improve the performance and scale of space photovoltaic power systems. Mechanically stacked tandem solar cell concentrator systems based on the AlGaAs top concentrator solar cell can provide near term efficiencies of 36 percent (AMO, 100x). Possible tandem stack efficiencies greater than 38 percent (100x, AMO) are feasible with a careful selection of materials. In a three solar cell stack, system efficiencies exceed 41 percent (100x, AMO). These device results demonstrate a practical solution for a state-of-the-art top solar cell for attachment to an existing, well-developed solar cell.

Dinetta, L. C.; Hannon, M. H.; Mcneely, J. B.; Barnett, A. M.

1991-01-01

458

LDEF (Flight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08  

NASA Technical Reports Server (NTRS)

LDEF (Flight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 EL-1994-00666 LDEF (Flight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 The flight photograph was taken from the Orbiter aft flight deck during the LDEF retrieval prior to berthing the LDEF in the Orbiter cargo bay and shows the Solar Array Materials Passive LDEF Experiment (SAMPLE) on the LDEF. Six (6) plates of passive components, provided by various experiment organizations and designated plate I thru plate VI, are shown mounted in a three (3) inch deep LDEF peripheral tray. All six plates are aluminum and attach to the LDEF experiment tray with non-magnetic stainless steel fasteners. Plate I, located in the upper left corner, consist of a combination of solar cells with and without covers, solar cell modules and solar arrays assembled on the baseplate. Two of the four solar arrays are missing and one appears to be attached at only one corner. Other components appear to be secure. Plate II in the left center section, has twenty-seven (27) composite samples, carbon fiber and glass fiber, mounted on the baseplate. The composites appear to be intact with no physical damage. Plate III, in the lower left corner, consist mostly of metallized and thin polymeric films (Kapton, Mylar, TEFLON , white Tedlar,etc.). The thin films without protective coatings sustained significant damage and most were destroyed. The metallized film apparently survived with minimum damage. Plate IV located in the upper right corner consist of metals and coatings mounted in an aluminum baseplate and covered with a thin aluminum coverplate that partially mask the specimen. Several of the coatings appear to have changed to a darker color and a light brown discoloration appears around the outer edges of the mounting plate and along the right edge of the coverplates. Plate V, in the right center section, contained thermal plastics and structural film configured into tensile and shear specimen. All specimens, including the tape holding down the small specimen in the lower right corner, have darkened significantly during the extended time in space. Plate VI, in the lower right corner, is populated with solar cells and associated components such as covers, encapsulants,adhesives, etc.. The solar cell components appear to be intact with no apparent physical damage.The colors of the specimen, however, appear to have darkened.

1990-01-01

459

Measurement and Characterization of Concentrator Solar Cells II  

NASA Technical Reports Server (NTRS)

Concentrator solar cells are continuing to get more consideration for use in power systems. This interest is because concentrator systems can have a net lower cost per watt in solar cell materials plus ongoing improvements in sun-tracking technology. Quantitatively measuring the efficiency of solar cells under concentration is difficult. Traditionally, the light concentration on solar cells has been determined by using a ratio of the measured solar cell s short circuit current to that at one sun, this assumes that current changes proportionally with light intensity. This works well with low to moderate (<20 suns) concentration levels on "well-behaved" linear cells but does not apply when cells respond superlinearly, current increases faster than intensity, or sublinearly, current increases more slowly than intensity. This paper continues work on using view factors to determine the concentration level and linearity of the solar cell with mathematical view factor analysis and experimental results [1].

Scheiman, Dave; Sater, Bernard L.; Chubb, Donald; Jenkins, Phillip; Snyder, Dave

2005-01-01

460

SAGE: Solar Neutrino Data from SAGE, the Russian-American Gallium Solar Neutrino Experiment  

DOE Data Explorer

SAGE is a solar neutrino experiment based on the reaction 71Ga + n goes to 71Ge + e-. The 71Ge atoms are chemically extracted from a 50-metric ton target of Ga metal and concentrated in a sample of germane gas mixed with xenon. The atoms are then individually counted by observing their decay back to 71Ga in a small proportional counter. The distinguishing feature of the experiment is its ability to detect the low-energy neutrinos from proton-proton fusion. These neutrinos, which are made in the primary reaction that provides the Sun's energy, are the major component of the solar neutrino flux and have not been observed in any other way. To shield the experiment from cosmic rays, it is located deep underground in a specially built facility at the Baksan Neutrino Observatory in the northern Caucasus mountains of Russia. Nearly 100 measurements of the solar neutrino flux have been made during 1990-2000, and their combined result is a neutrino capture rate that is well below the prediction of the Standard Solar Model. The significant suppression of the solar neutrino flux that SAGE and other solar neutrino experiments have observed gives a strong indication for the existence of neutrino oscillations. [copied from the SAGE homepage at http://ewi.npl.washington.edu/SAGE/SAGE.html

SAGE Collaboration

461

Epitaxial solar-cell fabrication, phase 2  

NASA Technical Reports Server (NTRS)

Dichlorosilane (SiH2Cl2) was used as the silicon source material in all of the epitaxial growths. Both n/p/p(+) and p/n/n(+) structures were studied. Correlations were made between the measured profiles and the solar cell parameters, especially cell open-circuit voltage. It was found that in order to obtain consistently high open-circuit voltage, the epitaxial techniques used to grow the surface layer must be altered to obtain very abrupt doping profiles in the vicinity of the junction. With these techniques, it was possible to grow reproducibly both p/n/n(+) and n/p/p(+) solar cell structures having open-circuit voltages in the 610- to 630-mV range, with fill-factors in excess of 0.80 and AM-1 efficiencies of about 13%. Combinations and comparisons of epitaxial and diffused surface layers were also made. Using such surface layers, we found that the blue response of epitaxial cells could be improved, resulting in AM-1 short-circuit current densities of about 30 mA/cm sq. The best cells fabricated in this manner had AM-1 efficiency of 14.1%.

Daiello, R. V.; Robinson, P. H.; Kressel, H.

1977-01-01

462

Solar cell angle of incidence corrections  

NASA Technical Reports Server (NTRS)

Literature on solar array angle of incidence corrections was found to be sparse and contained no tabular data for support. This lack along with recent data on 27 GaAs/Ge 4 cm by 4 cm cells initiated the analysis presented in this paper. The literature cites seven possible contributors to angle of incidence effects: cosine, optical front surface, edge, shadowing, UV degradation, particulate soiling, and background color. Only the first three are covered in this paper due to lack of sufficient data. The cosine correction is commonly used but is not sufficient when the incident angle is large. Fresnel reflection calculations require knowledge of the index of refraction of the coverglass front surface. The absolute index of refraction for the coverglass front surface was not known nor was it measured due to lack of funds. However, a value for the index of refraction was obtained by examining how the prediction errors varied with different assumed indices and selecting the best fit to the set of measured values. Corrections using front surface Fresnel reflection along with the cosine correction give very good predictive results when compared to measured data, except there is a definite trend away from predicted values at the larger incident angles. This trend could be related to edge effects and is illustrated by a use of a box plot of the errors and by plotting the deviation of the mean against incidence angle. The trend is for larger deviations at larger incidence angles and there may be a fourth order effect involved in the trend. A chi-squared test was used to determine if the measurement errors were normally distributed. At 10 degrees the chi-squared test failed, probably due to the very small numbers involved or a bias from the measurement procedure. All other angles showed a good fit to the normal distribution with increasing goodness-of-fit as the angles increased which reinforces the very small numbers hypothesis. The contributed data only went to 65 degrees from normal which prevented any firm conclusions about extreme angle effects although a trend in the right direction was seen. Measurement errors were estimated and found to be consistent with the conclusions that were drawn. A controlled experiment using coverglasses and cells from the same lots and extending to larger incidence angles would probably lead to further insight into the subject area.

Burger, Dale R.; Mueller, Robert L.

1995-01-01

463

A Simple and Inexpensive Solar Energy Experiment.  

ERIC Educational Resources Information Center

An experiment is presented which utilizes the current solid state technology to demonstrate electrochemical generation of hydrogen gas, direct generation of electricity for pumping water, and energy conversion efficiency. The experimental module costs about $100 and can be used repeatedly. (BB)

Evans, J. H.; Pedersen, L. G.

1979-01-01

464

High efficiency carbon nanotube based solar cells for electronics devices  

Microsoft Academic Search

Due to the increasing energy needs and the demand for green source of energy, there has been a surge of interest in finding solutions for crossing the efficiency barriers of solar cells. Ranging from traditional Si-based solar cells, dye-sensitized solar cells (DSSC) and other organic cells have a theoretical limit on the efficiency of 30%. This paper provides an in-depth

Suraj Subash; Masud H Chowdhury

2009-01-01

465

Transparent antennas for solar cell integration  

NASA Astrophysics Data System (ADS)

Transparent patch antennas are microstrip patch antennas that have a certain level of optical transparency. Highly transparent patch antennas are potentially suitable for integration with solar panels of small satellites, which are becoming increasingly important in space exploration. Traditional patch antennas employed on small satellites compete with solar cells for surface area. However, a transparent patch antenna can be placed directly on top of solar cells and resolve the issue of competing for limited surface real est