Science.gov

Sample records for solar dust corona

  1. LASCO/SOHO Observations of Dust in the Outer Solar Corona

    NASA Astrophysics Data System (ADS)

    Kimura, H.; Mann, I.; Goldstein, B.; Korendyke, C.; Howard, R.

    1999-09-01

    The solar F-corona emission is comprised of solar radiation scattered by dust particles and thermal radiation emitted from near-solar dust particles. The visible brightness is mainly produced by scattering at medium scattering angles from particles near the Sun and by enhanced forward scattering from particles near the observer. The infrared brightness originates from the thermal emission from hot particles near the Sun. Studies of the F-corona are usually limited by the influence of atmospheric stray light and by difficulties of the separation of the K-corona, produced by sunlight scattered at electrons. The K-corona decreases steeply with increasing elongation and has a smaller contribution to the outer coronal brightness. This outer corona is observed from the SOHO satellite where the lack of atmospheric stray light and an optimized suppression of instrumental stray light in the LASCO coronagraph allow for the detection of the coronal brightness as far out as about 30 solar radii from the center of the Sun. These observations yield the opportunity to study the properties of interplanetary dust in the inner solar system. We will present preliminary results from the analysis of the data from the LASCO C3 coronagraph at distances from 10 to 30 solar radii from the center of the Sun in 3 wavelength intervals between 0.4 and 1.1 micron. We compare the data to brightness calculations in order to discuss the distribution of dust grains in the inner solar system. The Solar Heliospheric Observatory, SOHO, is a joint scientific space mission developed by ESA and NASA. The Large Angle Spectrometric Coronagraph (LASCO) was developed and is operated jointly by the Naval Research Laboratory (USA), the Max-Planck-Institut fur Aeronomie (Germany), the Laboratoire d'Astronomie Spatiale (France) and the University of Birmingham (UK).

  2. Interaction between the solar corona plasma and the dust grains of the interplanetary medium

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Lemaire, J.

    2005-12-01

    When interplanetary grains approach the Sun, they undergo different processes like sublimation or vaporisation. The vaporized atoms constitute a source of heavy ions constantly modifying the composition of the solar wind and of the solar corona. We have adapted current models of heating and ablation of meteoroids entering Earth's atmosphere to the case of the solar corona. In particular, it is well known that the abundances ratios of iron and silicium compared to oxygen are larger in the solar corona and solar wind than in the solar photosphere. We study the possibility that this enrichment in the corona may be due to a continuous deposition of refractory material coming from the ablation of these interplanetary grains from distances of a few solar radii to the basis of the corona. We also calculate the amount of kinetic energy converted into heat and locally deposited in the deepest layers of the solar corona following the braking of the grains by the solar corona plasma.

  3. The New Solar Corona

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Poland, Arthur I.; Rabin, Douglas M.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We focus on new observational capabilities (Yohkoh, SoHO, TRACE) observations, modeling, approaches, and insights into physical processes of the solar corona. The most impressive new results and problems discussed in this article can be appreciated from the movies and available on the Annual Reviews web site.

  4. The New Solar Corona

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Poland, Arthur I.; Rabin, Douglas M.

    We focus on new observational capabilities (Yohkoh, SoHO, TRACE), observations, modeling approaches, and insights into physical processes of the solar corona. The most impressive new results and problems discussed in this article can be appreciated from the movies available on the Annual Reviews website and at http://www.lmsal.com/pub/araa/araa.html. "The Sun is new each day." Heraclites (ca 530-475 BC) "Everything flows." Heraclites (ca 530-475 BC)

  5. Polarization of the solar corona.

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.

    1972-01-01

    A method of obtaining polarized photographs of the solar corona during total eclipse is described. The required equipment is a reflex viewing type camera with a lens of adequate focal length to give an image of the corona a few millimeters in diameter at the focal plane. A sheet of linear polarizing filter material is placed directly in front of the lens. The filter is mounted in such a way so as to permit a set of four exposures of equal length to be taken after totality begins. Since the light of the corona is highly polarized, the resultant set of photographs will show marked differences in the shape of the corona.

  6. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.; Wagner, William (Technical Monitor)

    2001-01-01

    The solar corona, the hot, tenuous outer atmosphere of the Sun, exhibits many fascinating phenomena on a wide range of scales. One of the ways that the Sun can affect us here at Earth is through the large-scale structure of the corona and the dynamical phenomena associated with it, as it is the corona that extends outward as the solar wind and encounters the Earth's magnetosphere. The goal of our research sponsored by NASA's Supporting Research and Technology Program in Solar Physics is to develop increasingly realistic models of the large-scale solar corona, so that we can understand the underlying properties of the coronal magnetic field that lead to the observed structure and evolution of the corona. We describe the work performed under this contract.

  7. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    1998-01-01

    The coronal magnetic field defines the structure of the solar corona, the position of the heliospheric current sheet, the regions of fast and slow solar wind, and the most likely sites of coronal mass ejections. There are few measurements of the magnetic fields in the corona, but the line-of-sight component of the global magnetic fields in the photosphere have been routinely measured for many years (for example, at Stanford's Wilcox Solar Observatory, and at the National Solar Observatory at Kitt Peak). The SOI/MDI instrument is now providing high-resolution full-disk magnetograms several times a day. Understanding the large-scale structure of the solar corona and inner heliosphere requires accurately mapping the measured photospheric magnetic field into the corona and outward. Ideally, a model should not only extrapolate the magnetic field, but should self-consistently reconstruct both the plasma and magnetic fields in the corona and solar wind. Support from our NASA SR&T contract has allowed us to develop three-dimensional magnetohydrodynamic (MHD) computations of the solar corona that incorporate observed photospheric magnetic fields into the boundary conditions. These calculations not only describe the magnetic field in the corona and interplanetary spice, but also predict the plasma properties as well. Our computations thus far have been successful in reproducing many aspects of both coronal and interplanetary data, including the structure of the streamer belt, the location of coronal hole boundaries, and the position and shape of the heliospheric current sheet. The most widely used technique for extrapolating the photospheric magnetic field into the corona and heliosphere are potential field models, such as the potential field source-surface model (PFSS),and the potential field current-sheet (PFCS) model

  8. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    1997-01-01

    Under this contract, we have continued our investigations of the large scale structure of the solar corona and inner heliosphere using global magnetohydrodynamic (MHD) simulations. These computations have also formed the basis for studies of coronal mass ejections (CMES) using realistic coronal configurations. We have developed a technique for computing realistic magnetohydrodynamic (MHD) computations of the solar corona and inner heliosphere. To perform computations that can be compared with specific observations, it is necessary to incorporate solar observations into the boundary conditions. We have used the Wilcox Solar Observatory synoptic maps (collected during a solar rotation by daily measurements of the line-of-sight magnetic field at central meridian) to specify the radial magnetic field (B,) at the photosphere. For the initial condition, we use a potential magnetic field consistent with the specified distribution of B, at the lower boundary, and a wind solution consistent with the specified plasma density and temperature at the solar surface. Together this initial condition forms a (non-equilibrium) approximation of the state of the solar corona for the time-dependent MHD computation. The MHD equations are then integrated in time to steady state. Here we describe solutions relevant to a recent solar eclipse, as well as Ulysses observations. We have also developed a model configuration of solar minimum, useful for studying CME initiation and propagation.

  9. Seeing the solar corona in three dimensions

    NASA Astrophysics Data System (ADS)

    Vásquez, Alberto M.

    2016-03-01

    The large availability and rich spectral coverage of today's observational data of the solar corona, and the high spatial and temporal resolution provided by many instruments, has enabled the evolution of three-dimensional (3D) physical models to a great level of detail. However, the 3D information provided by the data is rather limited as every instrument observes from a single angle of vision, or two at the most in the case of the STEREO mission. Two powerful available observational techniques to infer detailed 3D information of the solar corona from empirical data are stereoscopy and tomography. In particular, the technique known as differential emission measure tomography (DEMT) allows determination of the 3D distribution of the coronal electron density and temperature in the inner corona. This paper summarizes the main technical aspects of DEMT, reviews all published work based on it, and comments on its future development and applications.

  10. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    2001-01-01

    This report describes the progress made in the investigation of the solar corona using magnetohydrodynamic (MHD) simulations. Coronal mass ejections (CME) are believed to be the primary cause of nonrecurrent geomagnetic storms and these have been investigated through the use of three-dimensional computer simulation.

  11. Differential rotation in the solar corona

    NASA Technical Reports Server (NTRS)

    Weber, Mark; Acton, Loren W.; Alexander, David

    1994-01-01

    The soft X-ray telescope (SXT) instrument on board the Yohkoh satellite was designed to observe the solar corona for over three years. It was shown in previous works that different tracers of solar rotation, each sensitive to a different part of the solar atmosphere, yield varying results for the latitude dependence of the rotation rate; the differential rotation measured using photospheric structures is markedly different from that obtained using coronal tracers. The long term observations of the solar corona by the SXT make it ideal for the investigation of coronal differential rotation. The soft X-ray emission of the solar corona is used to trace out the rotation rate at different latitudes. This is done by dividing the solar disk into a number of latitude strips and carrying out a power-spectrum analysis of the total soft X-ray intensity in each strip over a twelve week period of the Yohkoh observations. The results are compared with the differential rotation rates obtained from other coronal tracers.

  12. The F and K components of the solar corona.

    NASA Technical Reports Server (NTRS)

    Calbert, R.; Beard, D. B.

    1972-01-01

    Numerical calculations of the F component are conducted for a large range of parameters, particle size distribution, minimum particle size, minimum approach to the sun, albedo, and spatial distribution. Various parametrized functional forms for the electron spatial distribution are assumed, and the parametrical elongation dependence of the K component is calculated. New and old data are analyzed by fitting the theoretical parametrized elongation dependence to observations of the total intensity of the solar corona. The orbital behavior of the dust is estimated together with the temperature and thermal emission.

  13. STOCHASTIC COUPLING OF SOLAR PHOTOSPHERE AND CORONA

    SciTech Connect

    Uritsky, Vadim M.; Ofman, Leon; Davila, Joseph M.; Coyner, Aaron J.

    2013-05-20

    The observed solar activity is believed to be driven by the dissipation of nonpotential magnetic energy injected into the corona by dynamic processes in the photosphere. The enormous range of scales involved in the interaction makes it difficult to track down the photospheric origin of each coronal dissipation event, especially in the presence of complex magnetic topologies. In this paper, we propose an ensemble-based approach for testing the photosphere-corona coupling in a quiet solar region as represented by intermittent activity in Solar and Heliospheric Observatory Michelson Doppler Imager and Solar TErrestrial RElations Observatory Extreme Ultraviolet Imager image sets. For properly adjusted detection thresholds corresponding to the same degree of intermittency in the photosphere and corona, the dynamics of the two solar regions is described by the same occurrence probability distributions of energy release events but significantly different geometric properties. We derive a set of scaling relations reconciling the two groups of results and enabling statistical description of coronal dynamics based on photospheric observations. Our analysis suggests that multiscale intermittent dissipation in the corona at spatial scales >3 Mm is controlled by turbulent photospheric convection. Complex topology of the photospheric network makes this coupling essentially nonlocal and non-deterministic. Our results are in an agreement with the Parker's coupling scenario in which random photospheric shuffling generates marginally stable magnetic discontinuities at the coronal level, but they are also consistent with an impulsive wave heating involving multiscale Alfvenic wave packets and/or magnetohydrodynamic turbulent cascade. A back-reaction on the photosphere due to coronal magnetic reconfiguration can be a contributing factor.

  14. Probing the Solar Corona with VLBI

    NASA Astrophysics Data System (ADS)

    Soja, Benedikt; Sun, Jing; Heinkelmann, Robert; Schuh, Harald; Böhm, Johannes

    2013-04-01

    Radio observations close to the Sun are sensitive to the dispersive effects of the Sun corona. This has been used to determine (among other parameters) the electron density in the corona during solar conjunctions with spacecrafts. Although geodetic Very Long Baseline Interferometry (VLBI) observations close to the Sun have already been performed before 2002 (but suspended afterwards) they have not yet been used for calculations of corona electron densities. Almost 10 years later the International VLBI Service for Geodesy and Astrometry (IVS) decided to schedule twelve 24 hours VLBI sessions in 2011 and 2012 including observations closer than 15 degrees to the heliocenter. Both the recent and the earlier sessions are analysed in order to determine electron densities of the Sun corona. Based on the ionospheric delay corrections derived from two-frequency VLBI measurements, other dispersive effects like instrumental biases and, most important of all, the Earth's ionosphere effects are estimated and then eliminated. The residual delays are used to successfully determine power-law parameters of the electron density of the Sun corona for several of these sessions. In some cases, scheduled observations close to the Sun had failed, making it impossible to derive meaningful results from them. Both, the successful and the lost observations were analysed including external information like Sunspot numbers and flare occurrences. The estimated electron densities were compared to previous models of the Sun corona derived by radio measurements to spacecrafts during solar conjunctions. Our investigations show that it is possible to use geodetic VLBI sessions with observations close to the Sun to determine electron densities of the corona. The success depends on the geometry, i.e. the source position with respect to the Sun, and on the schedule, which can be optimized for such investigations. Unpredictable disturbances at the Sun's surface, such as flares, play also a role. So far, the VLBI-derived corona parameters have lower quality than those derived from spacecraft-bound measurements. However, the advantage of VLBI is the possibility to monitor the electron density on a regular basis and to create a homogenous time series. This could improve our understanding of time dependent Sun processes.

  15. MASC: Magnetic Activity of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and orientation is primarily based on extrapolations from photospheric observations, not from direct measurements. These extrapolations require strong assumptions on critical but unobserved quantities and thus fail to accurately reproduce the complex topologies inferred from remote-sensing observations of coronal structures in white light, EUV, and X-rays. Direct measurements of the coronal magnetic field are also clearly identified by the international heliophysics community as a key element susceptible to lead to major breakthroughs in the understanding of our star. MASC is thus designed to answer the following top-level scientific questions: 1. What is the global magnetic field configuration in the corona? 2. What is the role of the magnetic field in the triggering of flares and CMEs? 3. What is the role of the magnetic field in the acceleration mechanisms of the solar winds? 4. What is the energy spectrum and in particular what are the highest energies to which charged particles can be accelerated in the solar corona? MASC will address these fundamental questions with a suite of instruments composed of an X-ray spectrometer, a UV / EUV imager, and a coronagraph working in the visible and at Lyman alpha. The spectrometer will provide information on the energetics of solar flares, in particular at very high energies of accelerated particles. The UV / EUV imager will provide constraints on the temperature of the flaring and non-flaring corona. The coronagraph will provide the number density of free electrons in the corona, maps of the outflow velocity of neutral hydrogen, and measurements of the coronal magnetic field, via the Hanle effect. These measurements will be performed at all steps of the flare-CME processes, thus providing a detailed picture of the solar coronal dynamics in the quiet and eruptive periods.

  16. Solar Corona Explorer: A mission for the physical diagnosis of the solar corona

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mission objectives and spacecraft requirements for the Solar Corona Explorer (SCE), a proposed free flying, unmanned solar research craft to be tenatively launched in 1987, were defined. The SCE's purpose is to investigate structure, dynamics and evolution of the corona, globally and in the required physical detail, to study the close coupling between the inner corona and the heliosphere. Investigative objectives are: (1) to understand the corona as the source of varying interplanetary plasma and of varying solar X-ray and extreme ultraviolet fluxes; (2) to develop the capabilities to model the corona with sufficient precision to forecast the Earth's variable environment in space, on the scales from weeks to years; (3) to develop an understanding of the physical processes that determine the dynamics and physical state of the coronal plasma, particularly acceleration processes; and (4) to develop insight and test theory on the Sun applicable to stellar coronae and winds, and in particular, to understand why cool stars put such a large fraction of their energy into X-rays. Considered related factors are: (1) duration of the mission; (2) onboard measuring instrumentation; (3) ground support equipment and procedures; and (4) programs of interpretation and modeling.

  17. Nonlinear Plasma Physics of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Priest, Eric R.

    2011-01-01

    As a tribute to Dennis Papadopoulos, we present a review of some recent ideas in solar coronal plasma physics. In particular we discuss some models of coronal heating, notably the coronal tectonics model, as well as some ideas on the nature of reconnection in three dimensions. In addition, we summarise a model for the time-dependent response of the corona to the sudden dissipation of a current sheet.

  18. Radio seismology of the outer solar corona

    NASA Astrophysics Data System (ADS)

    Zaqarashvili, Teimuraz; Melnik, Valentin; Brazhenko, Anatoliy; Panchenko, Mykhaylo; Konovalenko, Alexander; Dorovskyy, Vladimir; Rucker, Helmut

    2014-05-01

    Observed oscillations of coronal loops in extreme ultraviolet (EUV) lines have been successfully used to estimate plasma parameters in the inner corona (< 0.2R0, where R0 is the solar radius). However, coronal seismology in EUV lines fails for higher altitudes because of rapid decrease in line intensity. We aim to use radio observations to estimate the plasma parameters of the outer solar corona (> 0.2R0). We used the large Ukrainian radio telescope URAN-2 to observe type IV radio bursts at the frequency range of 8-32 MHz during the time interval of 09:50-12:30 UT on April 14, 2011. The burst was connected to C2.3 flare, which occurred in AR 11190 during 09:38-09:49 UT. The dynamic spectrum of radio emission shows clear quasi-periodic variations in the emission intensity at almost all frequencies. Wavelet analysis at four different frequencies (29 MHz, 25 MHz, 22 MHz, and 14 MHz) shows the quasi-periodic variation of emission intensity with periods of ~ 34 min and ~ 23 min. The periodic variations can be explained by the first and second harmonics of vertical kink oscillation of transequatorial coronal loops, which were excited by the same flare. The apex of transequatorial loops may reach up to 1.2 R0 altitude. We derive and solve the dispersion relation of trapped magnetohydrodynamic (MHD) oscillations in a longitudinally inhomogeneous magnetic slab. The analysis shows that a thin (with width to length ratio of 0.1), dense (with the ratio of internal and external densities of ≥ 20) magnetic slab with weak longitudinal inhomogeneity may trap the observed oscillations. Seismologically estimated Alfvén speed inside the loop at the height of ~ 1 R0 is ~ 1000 km s-1. The magnetic field strength at this height is estimated as ~ 0.9 G. Extrapolation of magnetic field strength to the inner corona gives ~ 10 G at the height of 0.1 R0. Radio observations can be successfully used for the sounding of the outer solar corona, where EUV observations of coronal loops fail. Therefore, radio seismology of the outer solar corona is complementary to EUV seismology of the inner corona. The research leading to these results has received funding from the Austrian 'Fonds zur Förderung der wissenschaftlichen Forschung' under project P24740-N27.

  19. Radio seismology of the outer solar corona

    NASA Astrophysics Data System (ADS)

    Zaqarashvili, T. V.; Melnik, V. N.; Brazhenko, A. I.; Panchenko, M.; Konovalenko, A. A.; Franzuzenko, A. V.; Dorovskyy, V. V.; Rucker, H. O.

    2013-07-01

    Context. Observed oscillations of coronal loops in extreme ultraviolet (EUV) lines have been successfully used to estimate plasma parameters in the inner corona (<0.2 R0, where R0 is the solar radius). However, coronal seismology in EUV lines fails for higher altitudes because of rapid decrease in line intensity. Aims: We aim to use radio observations to estimate the plasma parameters of the outer solar corona (>0.2 R0). Methods: We used the large Ukrainian radio telescope URAN-2 to observe type IV radio bursts at the frequency range of 8-32 MHz during the time interval of 09:50-12:30 UT on April 14, 2011. The burst was connected to C2.3 flare, which occurred in AR 11190 during 09:38-09:49 UT. The dynamic spectrum of radio emission shows clear quasi-periodic variations in the emission intensity at almost all frequencies. Results: Wavelet analysis at four different frequencies (29 MHz, 25 MHz, 22 MHz, and 14 MHz) shows the quasi-periodic variation of emission intensity with periods of ~34 min and ~23 min. The periodic variations can be explained by the first and second harmonics of vertical kink oscillation of transequatorial coronal loops, which were excited by the same flare. The apex of transequatorial loops may reach up to 1.2 R0 altitude. We derive and solve the dispersion relation of trapped magnetohydrodynamic oscillations in a longitudinally inhomogeneous magnetic slab. The analysis shows that a thin (with width to length ratio of 0.1), dense (with the ratio of internal and external densities of ≥20) magnetic slab with weak longitudinal inhomogeneity of the Alfvén speed may trap the observed oscillations. Seismologically estimated Alfvén speed inside the loop at the height of ~1 R0 is ~1000 km s-1. The magnetic field strength at this height is estimated as ~0.9 G. Extrapolation of magnetic field strength to the inner corona gives ~10 G at the height of 0.1 R0. Conclusions: Radio observations can be successfully used for the sounding of the outer solar corona, where EUV observations of coronal loops fail. Therefore, radio seismology of the outer solar corona is complementary to EUV seismology of the inner corona.

  20. Energy Storage in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Wolfson, R.

    2000-12-01

    Coronal mass ejections (CMEs) involve the expulsion of some 1016 g of solar material into interplanetary space, at hundreds of kilometers per second. In one common scenario, the energy that powers a CME is stored gradually in the solar corona until a triggering event, instability, or loss of equilibrium initiates the mass ejection. Energy is required to open the coronal magnetic field, to accelerate the ejected material, and to lift the ejecta against solar gravity. In this work, we develop a model corona that includes both field-aligned (force-free) and cross-field electric currents supporting a mass distribution like that of the coronal helmet streamers in which many CMEs originate. We show how magnetic shear, when coupled with an appropriate mass distribution, can result in the buildup of energy sufficient to power a CME. We explore a range of shear profiles, and show that the ability of the corona to store sufficient energy for a CME may depend on the details of the shear applied to its magnetic footpoints. This work was supported by NASA grant NAG5-9733 to Middlebury College.

  1. Recycling of the Solar Corona's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Close, R. M.; Parnell, C. E.; Longcope, D. W.; Priest, E. R.

    2004-09-01

    Magnetic fields play a dominant role in the atmospheres of the Sun and other Sun-like stars. Outside sunspot regions, the photosphere of the so-called quiet Sun contains myriads of small-scale magnetic concentrations, with strengths ranging from the detection limit of ~1016 Mx up to ~3×1020 Mx. The tireless motion of these magnetic flux concentrations, along with the continual appearance and disappearance of opposite-polarity pairs of fluxes, releases a substantial amount of energy that may be associated with a whole host of physical processes in the solar corona, not least the enigma of coronal heating. We find here that the timescale for magnetic flux to be remapped in the quiet-Sun corona is, surprisingly, only 1.4 hr (around 1/10 of the photospheric flux recycling time), implying that the quiet-Sun corona is far more dynamic than previously thought. Besides leading to a fuller understanding of the origins of magnetically driven phenomena in our Sun's corona, such a process may also be crucial for the understanding of stellar atmospheres in general.

  2. Solar corona at high resolution

    NASA Technical Reports Server (NTRS)

    Golub, L.; Rosner, R.; Zombeck, M. V. Z.; Vaiana, G. S.

    1982-01-01

    The earth's surface is shielded from solar X rays almost completely by the atmosphere. It is, therefore, necessary to place X-ray detectors on rockets or orbiting satellites. Solar rays were detected for the first time in the late 1940's, using V-2 rockets. In 1960, the first true X-ray images of the sun were obtained with the aid of a simple pinhole camera. The spatial resolution of the X-ray images could be considerably improved by making use of reflective optics, operating at grazing incidence. Aspects of X-ray mirror developments are discussed along with the results obtained in coronal studies utilizing the new devices for the observation of solar X-ray emission. It is pointed out that the major achievements of the Skylab missions were due primarily to the unique opportunity to obtain data over an extended period of time. Attention is given to normal incidence X-ray optics, achievements possible by making use of high spatial resolution optics, and details of improved mirror design.

  3. Solar corona at high resolution

    NASA Astrophysics Data System (ADS)

    Golub, L.; Rosner, R.; Zombeck, M. V. Z.; Vaiana, G. S.

    The earth's surface is shielded from solar X rays almost completely by the atmosphere. It is, therefore, necessary to place X-ray detectors on rockets or orbiting satellites. Solar rays were detected for the first time in the late 1940's, using V-2 rockets. In 1960, the first true X-ray images of the sun were obtained with the aid of a simple pinhole camera. The spatial resolution of the X-ray images could be considerably improved by making use of reflective optics, operating at grazing incidence. Aspects of X-ray mirror developments are discussed along with the results obtained in coronal studies utilizing the new devices for the observation of solar X-ray emission. It is pointed out that the major achievements of the Skylab missions were due primarily to the unique opportunity to obtain data over an extended period of time. Attention is given to normal incidence X-ray optics, achievements possible by making use of high spatial resolution optics, and details of improved mirror design.

  4. Radiative Heating of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Moran, Thomas G.

    2011-10-01

    We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave "coherence time" and "coherence volume" for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity "kicks" to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 × 10-21 to 4.0 × 10-20 W, as compared with non-loop radiative loss rates of ≈1 × 10-20 W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

  5. Scintillation effects on radio wave propagation through solar corona

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Sue, M. K.; Bedrossian, A.; Sniffin, R. W.

    2002-01-01

    When RF waves pass through the solar corona and solar wind regions close to the Sun, strong scintillation effects appear at their amplitude, frequency and phase, especially in the regions very close to the Sun (less than 4 solar radius).

  6. Observations of the White Light Corona from Solar Orbiter and Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Howard, R. A.; Thernisien, A. F.; Vourlidas, A.; Plunkett, S. P.; Korendyke, C. M.; Sheeley, N. R.; Morrill, J. S.; Socker, D. G.; Linton, M. G.; Liewer, P. C.; De Jong, E. M.; Velli, M. M.; Mikic, Z.; Bothmer, V.; Lamy, P. L.

    2011-12-01

    The SoloHI instrument on Solar Orbiter and the WISPR instrument on Solar Probe+ will make white light coronagraphic images of the corona as the two spacecraft orbit the Sun. The minimum perihelia for Solar Orbiter is about 60 Rsun and for SP+ is 9.5 Rsun. The wide field of view of the WISPR instrument (about 105 degrees radially) corresponds to viewing the corona from 2.2 Rsun to 20 Rsun. Thus the entire Thomson hemisphere is contained within the telescope's field and we need to think of the instrument as being a traditional remote sensing instrument and then transitioning to a local in-situ instrument. The local behavior derives from the fact that the maximum Thomson scattering will favor the electron plasma close to the spacecraft - exactly what the in-situ instruments will be sampling. SoloHI and WISPR will also observe scattered light from dust in the inner heliosphere, which will be an entirely new spatial regime for dust observations from a coronagraph, which we assume to arise from dust in the general neighborhood of about half way between the observer and the Sun. As the dust grains approach the Sun, they evaporate and do not contribute to the scattering. A dust free zone has been postulated to exist somewhere inside of 5 Rsun where all dust is evaporated, but this has never been observed. The radial position where the evaporation occurs will depend on the precise molecular composition of the individual grains. The orbital plane of Solar Orbiter will gradually increase up to about 35 degrees, enabling a very different view through the zodiacal dust cloud to test the models generated from in-ecliptic observations. In this paper we will explore some of the issues associated with the observation of the dust and will present a simple model to explore the sensitivity of the instrument to observe such evaporations.

  7. VARIABLE WINDS AND DUST FORMATION IN R CORONAE BOREALIS STARS

    SciTech Connect

    Clayton, Geoffrey C.; Zhang Wanshu; Geballe, T. R. E-mail: wzhan21@lsu.edu

    2013-08-01

    We have observed P-Cygni and asymmetric, blue-shifted absorption profiles in the He I {lambda}10830 lines of 12 R Coronae Borealis stars over short (1 month) and long (3 yr) timescales to look for variations linked to their dust-formation episodes. In almost all cases, the strengths and terminal velocities of the line vary significantly and are correlated with dust formation events. Strong absorption features with blue-shifted velocities {approx}400 km s{sup -1} appear during declines in visible brightness and persist for about 100 days after recovery to maximum brightness. Small residual winds of somewhat lower velocity are present outside of the decline and recovery periods. The correlations support models in which recently formed dust near the star is propelled outward at high speed by radiation pressure and drags the gas along with it.

  8. Common Periodicities of Gle's and Solar Corona

    NASA Astrophysics Data System (ADS)

    Perez-Peraza, Jorge Alberto; Velasco Herrera, Victor Manuel; Miroshnichenko, Leonty I.; Vashenyuk, Eduard V.

    Using different techniques of Wavelet Analysis, particularly, cross-wavelet coherence and the Global Wavelet Spectrum, we analyze data of intensity of 70 GLE's of the solar cycles 17 -23 vs data of the solar corona. We have found common periodicities of short period (2.8, 5.2 and 27 days), medium period (0.5, 1.2, 1.8, 3.2) as well as a the 4.6 and 11 yrs. periodicities. The two later are continuous over all the time interval, with a high synchronization and linear phase. In contrast, the short and medium periodicities are rather concentrated around the maximums of solar cycles, with some few cases in the minimums of solar activity, and present in general a complex phase. Results are discussed in terms of the works of others authors related to periodicities of the solar dynamo, solar atmosphere, interplanetary space and cosmic rays. We also evaluated the power anomalies of solar activity by means of sunspots, and have found that anomalies are positives when the GLE 's are of high intensity (higher than 100

  9. Shock Acceleration in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Sandroos, Arto

    2010-03-01

    In this thesis acceleration of energetic particles at collisionless shock waves in space plasmas is studied using numerical simulations, with an emphasis on physical conditions applicable to the solar corona. The thesis consists of four research articles and an introductory part that summarises the main findings reached in the articles and discusses them with respect to theory of diffusive shock acceleration and observations. This thesis gives a brief review of observational properties of solar energetic particles and discusses a few open questions that are currently under active research. For example, in a few large gradual solar energetic particle events the heavy ion abundance ratios and average charge states show characteristics at high energies that are typically associated with flare-accelerated particles, i.e. impulsive events. The role of flare-accelerated particles in these and other gradual events has been discussed a lot in the scientific community, and it has been questioned if and how the observed features can be explained in terms of diffusive shock acceleration at shock waves driven by coronal mass ejections. The most extreme solar energetic particle events are the so-called ground level enhancements where particle receive so high energies that they can penetrate all the way through Earth's atmosphere and increase radiation levels at the surface. It is not known what conditions are required for acceleration into GeV/nuc energies, and the presence of both very fast coronal mass ejections and X-class solar flares makes it difficult to determine what is the role of these two accelerators in ground level enhancements. The theory of diffusive shock acceleration is reviewed and its predictions discussed with respect to the observed particle characteristics. We discuss how shock waves can be modeled and describe in detail the numerical model developed by the author. The main part of this thesis consists of the four scientific articles that are based on results of the numerical shock acceleration model developed by the author. The novel feature of this model is that it can handle complex magnetic geometries which are found, for example, near active regions in the solar corona. We show that, according to our simulations, diffusive shock acceleration can explain the observed variations in abundance ratios and average charge states, provided that suitable seed particles and magnetic geometry are available for the acceleration process in the solar corona. We also derive an injection threshold for diffusive shock acceleration that agrees with our simulation results very well, and which is valid under weakly turbulent conditions. Finally, we show that diffusive shock acceleration can produce GeV/nuc energies under suitable coronal conditions, which include the presence of energetic seed particles, a favourable magnetic geometry, and an enhanced level of ambient turbulence.

  10. Dynamics and energetics of the solar corona

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1992-01-01

    The primary objective of this research program is to improve our understanding of the dynamics and energetics of the solar corona both in the quiescent dynamic equilibrium state when coronal structure is dominated by the equatorial streamer belt and in the eruptive state when coronal plasma is ejected into the interplanetary medium. Numerical solutions of the time-dependent magnetohydrodynamic (MHD) equations and comparisons of the computed results with observations form the core of the approach to achieving this objective. Some of the specific topics that have been studied are: (1) quiescent coronal streamers in an atmosphere dominated by a dipole magnetic field at large radii, (2) the formation of coronal mass ejections (CMEs) in quiescent streamers due to the emergence of new magnetic flux and due to photospheric shear motion, (3) MHD shock formation near the leading edge of CMEs, (4) coronal magnetic arcade eruption as a result of applied photospheric shear motion, and (5) the three-dimensional structure of CMEs.

  11. The Solar Corona at the 2015 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Carter, Allison L.

    2015-04-01

    We report on our successful observations of the solar corona at the 20 March 2015 total solar eclipse from our site at a latitude of about 78° on the Svalbard archipelago, and related observations by colleagues aloft. Our equipment included cameras for imaging at a variety of scales for use in making high-contrast composites, as reported our Astrophysical Journal article (2015) about our 2012 total solar eclipse observations and similar articles about the corona and changes in it at previous total eclipses. Our Svalbard equipment also included a spectrograph, with which we continued our monitoring of the ratio of the Fe XIV and Fe X coronal lines, which has recently been >1 with the solar maximum, a reversal from <1 at earlier eclipses closer to the last solar minimum. Our 2013 observations from Gabon showed two coronal mass ejections and an erupting prominence; the 2015 eclipse showed an erupting prominence and some unusual coronal structure in an overall coronal shape typical of solar maximum. We use our ground-based eclipse observations to fill the gap in imaging between the SDO and SWAP (17.4 nm) EUV observations on the solar disk and the inner location of the LASCO C2 occultation disk, with STEREO observations providing the possibility of three-dimensional interpretations. Our expedition was supported by a grant (9616-14) from the Committee for Research and Exploration of the National Geographic Society.

  12. A study of the background corona near solar minimum

    NASA Technical Reports Server (NTRS)

    Saito, K.; Poland, A. I.; Munro, R. H.

    1977-01-01

    Equatorial and polar K and F coronal components during the declining phase of the solar cycle are studied through use of the white light coronagraph data obtained by Skylab. At this phase of the solar cycle, streams and holes dominate the equatorial corona (approximately 50 and 30% of the time, respectively) between 2.5 and 5.5 solar radii; however, two episodes are noted when equatorial background density of the corona could be distinguished. The derived background density is less than 15% below values predicted by the models of Newkirk (1967) and Saito (1970). The brightness of the F-corona is also discussed.

  13. Solar corona/prominence seen through the White Light Coronograph

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The solar corona and a solar prominence as seen through the White Light Coronograph, Skylab Experiment S052, on January 17, 1974. This view was reproduced from a television transmission made by a TV camera aboard the Skylab space station in Earth orbit. The bright spot is a burn in the vidicon. The solar corona is the halo around the Sun which is normally visible only at the time of solar eclipse by the Moon. The Skylab coronography uses an externally-mounted disk system which occults the brilliant solar surface while allowing the fainter radiation of the corona to enter an annulus and be photographed. A mirror system allows either TV viewing of the corona or photographic recording of the image.

  14. RADIO OBSERVATIONS OF THE SOLAR CORONA DURING AN ECLIPSE

    SciTech Connect

    Kathiravan, C.; Ramesh, R.; Barve, Indrajit V.; Rajalingam, M. E-mail: ramesh@iiap.res.in E-mail: rajalingam@iiap.res.in

    2011-04-01

    We carried out radio observations of the solar corona at 170 MHz during the eclipse of 2008 August 1, from the Gauribidanur observatory located about 100 km north of Bangalore in India. The results indicate the presence of a discrete radio source of very small angular dimension ({approx}15'') in the corona from where the observed radiation originated.

  15. Solar Corona on 10.21.2010 - Duration: 9 seconds.

    NASA Video Gallery

    The solar corona on 2010/10/21, observed by SDO’s AIA. The false colors represent images taken with different filters that are sensitive to distinct coronal temperatures: blue for one million de...

  16. Solar Corona on 08.01.2010 - Duration: 38 seconds.

    NASA Video Gallery

    The solar corona on 2010/08/01, observed by SDO’s AIA. The false colors represent images taken with different filters that are sensitive to distinct coronal temperatures: blue- 1 million degrees...

  17. Heating of the Solar Corona: Review

    NASA Astrophysics Data System (ADS)

    Erdélyi, R.

    2005-06-01

    The heating of solar and stellar chromospheres and coronae are one of the key fundamental and yet unresolved questions of modern space and plasma physics. In spite of the multi-fold efforts spanning over half a century including the many superb technological advances and theoretical developments (both analytical and computational) the unveiling of the subtles of coronal heating still remained an exciting job for the 21st century! In the present paper I review the various popular heating mechanisms put forward in the existing extensive literature. The heating processes are, somewhat arbitrarily, classified as hydrodynamic (HD), magnetohydrodynamic (MHD) or kinetic based on the model medium. These mechanisms are further divided based on the time scales of the ultimate dissipation involved (i.e. AC and DC heating, turbulent heating). In particular, attention is paid to discuss shock dissipation, Landau damping, mode coupling, resonant absorption, phase mixing, and, reconnection. Finally, I briefly review the various observational consequences of the many proposed heating mechanisms and confront them with high-resolution ground-based and satellite data currently available.

  18. The corona associated with solar filaments

    NASA Technical Reports Server (NTRS)

    Chapman, R. D.

    1981-01-01

    Spectroheliograms in high temperature ions such as Fe XV show the existence of both filaments that are brighter than the ambient corona and filaments that are darker than the ambient corona. The relationship of the filaments to photospheric magnetograms is described, and a possible physical mechanism to explain the differences is discussed.

  19. New Images of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Gurman, Joseph B.; Thompson, Barbara J.; Newmark, Jeffrey A.; Deforest, Craig E.

    In 1.5 years of operation, The Extreme Ultraviolet Imaging Telescope (EIT) on SOHO has obtained over 40,000 images of the Sun in four wavebands between 171 Angstroms and 304 Angstroms, with spatial resolution limited only by the pixel scale of 2.59 arcsec. These images, and in particular compilations of time series of images into digital movies, have changed several of our ideas about the corona at temperatures of 0.9 - 2.5 MK. For the first time, we are able to see outflow in polar plumes and microjets inputting momentum into the high-speed, polar wind flow. For the first time, in conjunction with the LASCO coronagraphs and ground-based He I imagers, we have been able to see all the structures involved in coronal mass ejections (CMEs), from the surface of the Sun to 30 solar radii above it. In several cases, we have been able to observe directly the dramatic Moreton waves emanating from the active region where the CMEs originate, and radiating across virtually the entire visible hemisphere of the Sun. We interpret these large-scale coronal disturbances as fast-mode waves. Such events appear in the SOHO-LASCO coronagraphs as earthward-directed, and several have been detected by solar wind monitoring experiments on SOHO and other spacecraft. We have been able to view a variety of small-scale phenomena as well, including motions in prominences and filaments, macrospicular and polar microjet eruptions, and fine structures in the polar crown filament belt. The multi-wavelength capability of EIT makes it possible to determine the temperature of the coronal plasma and, here, too, we have been afforded a novel view: the heating in coronal active regions occurs over a considerably larger area than the high-density loops structures alone (i.e., bright features) would indicate.

  20. Results of observations of the dust distribution in the F-corona of the sun

    NASA Astrophysics Data System (ADS)

    Shestakova, L. I.; Demchenko, B. I.

    2016-03-01

    The results of modeling of the distribution of dust in the circumsolar zone are presented. The dust distribution was retrieved from observations of the line-of-sight velocities in the F-corona to the distances of 7-11 solar radii during the total eclipses of the Sun in different years: on July 31, 1981; August 11, 1991; March 29, 2006; and August 1, 2008. Comparison of the results has shown that the dust composition varies from year to year and the dust is dynamically nonuniform. In addition to the dust related to the zodiacal cloud and concentrating to the ecliptic plane, the dust of retrograde motion and the ejections and accretion in the polar regions are observed. From the results of observations of eclipses on July 31, 1981, August 11, 1991, and August 1, 2008, the east-west asymmetry in a sign of the line-of-sight velocities was detected: they are negative to the east of the Sun and positive to the west. Such distribution of the velocities is indicative of the nearecliptic orbital dust motion, whose direction coincides with that of the motion of the planets. In the course of the eclipse of March 29, 2006, almost no dynamical connection with the zodiacal cloud was found. At the same time, the direction, where the observed velocities are largest in value and opposite in sign on opposite sides of the Sun, was determined, which provides evidence of the orbital motion deviating from the ecliptic plane. The results of observations in 2006 reveal a clear genetic connection of the observed orbital motion of dust with the parent comets of the Kreutz family found near the Sun close to the eclipse date. The velocities observed near the symmetry line in the plane of the sky grow by absolute value with increasing the elongation, which may take place, if the line of sight croßses an empty zone that is free of dust. The modeling of the data of observations near the symmetry plane allowed the parameters of the dust distribution near the sublimation zone to be obtained. In 2006, the "black" cometary dust with a low albedo ( A = 0.05) was observed; it showed high values of the power-law exponents in the distance distribution of the dust concentration ( V = 2.2 > 1) and in the size distribution of grains (γ = 5.2 > 4.0) and a strong radiation pressure (β = 0.70-0.74). We estimated the mean radius of grains as ≈0.8-0.9 µm and the radius of the dust-free zone as ≈9.1-9.2 solar radii. The latter corresponds to the distances, where the low-melt components of olivines and pyroxenes disintegrate. In 2008, the observed zodiacal dust concentrating to the ecliptic plane demonstrated the canonical parameters: A = 0.1-0.2, V ≈ 1, ß ≈ 0, γ = 4.0, the mean radii of grains were 0.9-1.2 µm, and the radius of the dust-free zone was 7.0-7.6 solar radii.

  1. Patchy reconnection in the solar corona

    NASA Astrophysics Data System (ADS)

    Guidoni, Silvina Esther

    2011-05-01

    Magnetic reconnection in plasmas, a process characterized by a change in connectivity of field lines that are broken and connected to other ones with different topology, owes its usefulness to its ability to unify a wide range of phenomena within a single universal principle. There are newly observed phenomena in the solar corona that cannot be reconciled with two-dimensional or steady-state standard models of magnetic reconnection. Supra-arcade downflows (SADs) and supra-arcade downflowing loops (SADLs) descending from reconnection regions toward solar post-flare arcades seem to be two different observational signatures of retracting, isolated reconnected flux tubes with irreducible three-dimensional geometries. This dissertation describes work in refining and improving a novel model of patchy reconnection, where only a small bundle of field lines is reconnected across a current sheet (magnetic discontinuity) and forms a reconnected thin flux tube. Traditional models have not been able to explain why some of the observed SADs appear to be hot and relatively devoid of plasma. The present work shows that plasma depletion naturally occurs in flux tubes that are reconnected across nonuniform current sheets and slide trough regions of decreasing magnetic field magnitude. Moreover, through a detailed theoretical analysis of generalized thin flux tube equations, we show that the addition to the model of pressure-driven parallel dynamics, as well as temperature-dependent, anisotropic viscosity and thermal conductivity is essential for self-consistently producing gas-dynamic shocks inside reconnected tubes that heat and compress plasma to observed temperatures and densities. The shock thickness can be as long as the entire tube and heat can be conducted along tube's legs, possibly driving chromospheric evaporation. We developed a computer program that solves numerically the thin flux tube equations that govern the retraction of reconnected tubes. Simulations carried out with this program corroborate our theoretical predictions. A comparison of these simulations with fully three-dimensional magnetohydrodynamic simulations is presented to assess the validity of the thin flux tube model. We also present an observational method based on total emission measure and mean temperature to determine where in the current sheet a tube was reconnected.

  2. Where no dust instrument has gone before: Dust science with Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Rodmann, Jens; Bothmer, Volker; Thernisien, Arnaud

    2015-04-01

    Solar Probe Plus will be a ground-breaking mission to explore the innermost regions of the solar system. By flying down to less than 10 solar radii (~0.05 AU), the mission will greatly enhance our knowledge of the Near-Sun dust environment. This region is governed by a poorly understood interplay of dust delivery by sungrazing comets and radiation forces, the destruction of dust by sublimation, and interactions of dust particles with the ambient coronal plasma. We will focus on two Solar Probe Plus instruments relevant for dust: (1) the Wide-field Imager for SolarPRobe (WISPR), a white-light heliospheric imager dedicated to study the solar wind, coronal mass ejections, and dust-plasma interactions; (2) the FIELDS Experiment aimed at electric and magnetic field measurements in the solar wind, that can also detect telltale voltage signatures of dust-particle impacts on the spacecraft. We will highlight recent simulations of the scattered-light emission from dust particles (F-corona) in order to assess the capabilities of the WISPR instrument to image the dust-free zone around the Sun. We will test whether dust density enhancements as predicted by dynamical simulations can be identified and resolved. Furthermore, we will discuss whether WISPR imagery will allow us to separate composition-dependent sublimation fronts, e.g. for silicates or carbonaceous dust. For FIELDS, we will present predictions for count rates and impact velocities of micron-sized dust particle hits expected over the 7-year mission.

  3. THE 2008 AUGUST 1 ECLIPSE SOLAR-MINIMUM CORONA UNRAVELED

    SciTech Connect

    Pasachoff, J. M.; Rusin, V.; Saniga, M.; Minarovjech, M.; Druckmueller, M.; Aniol, P.

    2009-09-10

    We discuss the results stemming from observations of the white-light and [Fe XIV] emission corona during the total eclipse of the Sun of 2008 August 1, in Mongolia (Altaj region) and in Russia (Akademgorodok, Novosibirsk, Siberia). Corresponding to the current extreme solar minimum, the white-light corona, visible up to 20 solar radii, was of a transient type with well pronounced helmet streamers situated above a chain of prominences at position angles 48 deg., 130 deg., 241 deg., and 322 deg. A variety of coronal holes, filled with a number of thin polar plumes, were seen around the poles. Furthering an original method of image processing, stars up to 12 mag, a Kreutz-group comet (C/2008 O1) and a coronal mass ejection (CME) were also detected, with the smallest resolvable structures being of, and at some places even less than, 1 arcsec. Differences, presumably motions, in the corona and prominences are seen even with the 19 minutes time difference between our sites. In addition to the high-resolution coronal images, which show the continuum corona (K-corona) that results from electron scattering of photospheric light, images of the overlapping green-emission-line (530.3 nm, [Fe XIV]) corona were obtained with the help of two narrow-passband filters (centered on the line itself and for the continuum in the vicinity of 529.1 nm, respectively), each with an FWHM of 0.15 nm. Through solar observations, on whose scheduling and details we consulted, with the Solar and Heliospheric Observatory, Hinode's XRT and SOT, Transition Region and Coronal Explorer, and STEREO, as well as Wilcox Solar Observatory and Solar and Heliospheric Observatory/Michelson Doppler Imager magnetograms, we set our eclipse observations in the context of the current unusually low and prolonged solar minimum.

  4. Probing the solar corona with very long baseline interferometry.

    PubMed

    Soja, B; Heinkelmann, R; Schuh, H

    2014-01-01

    Understanding and monitoring the solar corona and solar wind is important for many applications like telecommunications or geomagnetic studies. Coronal electron density models have been derived by various techniques over the last 45 years, principally by analysing the effect of the corona on spacecraft tracking. Here we show that recent observational data from very long baseline interferometry (VLBI), a radio technique crucial for astrophysics and geodesy, could be used to develop electron density models of the Sun's corona. The VLBI results agree well with previous models from spacecraft measurements. They also show that the simple spherical electron density model is violated by regional density variations and that on average the electron density in active regions is about three times that of low-density regions. Unlike spacecraft tracking, a VLBI campaign would be possible on a regular basis and would provide highly resolved spatial-temporal samplings over a complete solar cycle. PMID:24946791

  5. Probing the solar corona with very long baseline interferometry

    PubMed Central

    Soja, B.; Heinkelmann, R.; Schuh, H.

    2014-01-01

    Understanding and monitoring the solar corona and solar wind is important for many applications like telecommunications or geomagnetic studies. Coronal electron density models have been derived by various techniques over the last 45 years, principally by analysing the effect of the corona on spacecraft tracking. Here we show that recent observational data from very long baseline interferometry (VLBI), a radio technique crucial for astrophysics and geodesy, could be used to develop electron density models of the Sun’s corona. The VLBI results agree well with previous models from spacecraft measurements. They also show that the simple spherical electron density model is violated by regional density variations and that on average the electron density in active regions is about three times that of low-density regions. Unlike spacecraft tracking, a VLBI campaign would be possible on a regular basis and would provide highly resolved spatial–temporal samplings over a complete solar cycle. PMID:24946791

  6. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    SciTech Connect

    Brooks, David H.; Ugarte-Urra, Ignacio; Warren, Harry P.; Winebarger, Amy R.

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  7. A theory of heating of quiet solar corona

    SciTech Connect

    Wu, C. S.; Yoon, P. H.; Wang, C. B.

    2015-03-15

    A theory is proposed to discuss the creation of hot solar corona. We pay special attention to the transition region and the low corona, and consider that the sun is quiet. The proposed scenario suggests that the protons are heated by intrinsic Alfvénic turbulence, while the ambient electrons are heated by the hot protons via collisions. The theory contains two prime components: the generation of the Alfvénic fluctuations by the heavy minor ions in the transition region and second, the explanation of the temperature profile in the low solar atmosphere. The proposed heating process operates continuously in time and globally in space.

  8. The solar extreme ultra-violet corona: Resolved loops and the unresolved active region corona

    NASA Astrophysics Data System (ADS)

    Cirtain, Jonathan Wesley

    In this work, physical characteristics of the solar corona as observed in the Extreme Ultra-Violet (EUV) regime are investigated. The focus will be the regions of intense EUV radiation generally found near the locations of sunspots. These regions are commonly called active regions. Multiple space- based observing platforms have been deployed in the last decade; it is possible to use several of these observatories in combination to develop a more complete picture of the solar corona. Joint Observing Program 146 was created to collect spectroscopic intensities using the Coronal Diagnostic Spectrometer on Solar and Heliospheric Observatory and EUV images using NASA's Transition Region and Coronal Explorer. The emission line intensities are analyzed to develop an understanding of the temperature and density of the active region coronal plasma. However, the performance of the CDS instrument in the spatial and temporal domains is limited and to compensate for these limitations, data collected by the TRACE instrument provide a high spatial and temporal resolution set of observations. One of the most exciting unsolved problems in solar astrophysics is to understand why the corona maintains a temperature roughly two orders of magnitude higher than the underlying material. A detailed investigation of the coronal emission has provided constraints on models of the heating mechanism, since the temperature, density and evolution of emission rates for multiple ionic species are indicative of the mechanism(s) working to heat the corona. The corona appears to consist of multiple unresolved structures as well as resolved active region structures, called coronal loops. The purpose of the present work is to determine the characteristics of the unresolved background corona. Using the characterizations of the coronal unresolved background, results for loops after background subtraction are also presented. This work demonstrates the magnitude of the unresolved coronal emission with respect to the total emission along the line of sight, and the relationship of the coronal background emission to the resolved loop emission. It is apparent from this analysis that the unresolved corona is the dominant source of radiation in active regions. Additionally, the unresolved active region coronal emission can be characterized by hydrostatic scaling laws.

  9. Structure of the solar corona during the solar eclipse of 1980 February 16

    NASA Astrophysics Data System (ADS)

    Rusin, V.; Rybansky, M.

    1983-09-01

    The structure of the solar corona in white light during a solar eclipse is observed. The observations were made in Fawal Gara, India and coincided with the maximum of solar cycle number 21. Broad corona streamers mostly in the radial direction were observed around the entire solar disk up to heights of about 6 solar radius, with the exception of the south polar region (P.A. 165-180 deg) where no streamers were observed during the maximum. This phenomenon appears to be due to the nonuniform development of polar prominence zones in the individual hemispheres. In the inner corona, a large number of thin coronal loops was observed which upset the compactness of e coronal rays at greater heights. In the outer corona, areas of lower intensity about 10,000 km in width were found between 1.5 and 1.75 solar radius. At 9.4 solar radius the head of the coronal transient was observed.

  10. Observation of Alfven Waves in the Solar Corona (Invited)

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.

    2013-12-01

    I will review the extensive progress made in recent years on the observation of Alfven waves in the solar corona, with an emphasis on the measurements made with the Coronal Multi-channel Polarimeter. Application of the wave measurements to coronal seismology will be presented. Future prospects in the field will be discussed.

  11. New Views of the Solar Corona from STEREO and SDO

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.

    2012-01-01

    In the last few years, we have been treated to an unusual visual feast of solar observations of the corona in EUV wavelengths. The observations from the two vantage points of STEREO/SECCHI are now capturing the entire solar atmosphere simultaneously in four wavelengths. The SDO/AIA images provide us with arcsecond resolution images of the full visible disk in ten wavelengths. All these data are captured with cadences of a few seconds to a few minutes. In this talk, I review some intriguing results from our first attempts to deal with these observations which touch upon the problems of coronal mass ejection initiation and solar wind generation. I will also discuss data processing techniques that may help us recover even more information from the images. The talk will contain a generous portion of beautiful EUV images and movies of the solar corona.

  12. Remote Sensing Measurements of the Corona with the Solar Probe

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia Rifai; Woo, Richard

    1996-01-01

    Remote sensing measurements of the solar corona are indespensible for the exploration of the source and acceleration regions of the solar wind which are inaccessible to in situ plasma, paritcles and field experiments.Furthermore, imaging the solar disk and coronal from the unique vantage point of the trajectory and the proximity of the Solar Probe spacecraft, will provide the first ever opportunity to explore the small scale structures within coronal holes and streamers from viewing angles and with spatial resolutions never attained before.

  13. Measuring the IR solar corona during the 2017 eclipse

    NASA Astrophysics Data System (ADS)

    Bryans, Paul; Hannigan, James; Philip, Judge; Larson, Brandon; Sewell, Scott; McIntire, Lauren

    2016-05-01

    On 21 August 2017 a total solar eclipse will pass across the continental United States, offering a unique opportunity to conduct scientific research of the solar atmosphere. With the light from the Sun eclipsed, the solar corona becomes visible in a way not possible when swamped by the light from the photosphere. The infrared (IR) spectrum of the corona, in particular, is predicted to contain some of the most magnetically sensitive spectral lines. However, no comprehensive survey of this spectral range has been carried out to date. Here, we describe a Fourier Transform Spectrometer, currently under construction at NCAR, to measure the IR spectrum from 2 to 12 microns. We will discuss the operation of the experiment, which will be deployed along the path of totality in Wyoming, and the scientific results we hope to obtain.

  14. Seeing the corona with the solar probe plus mission: the wide-field imager for solar probe+ (WISPR)

    NASA Astrophysics Data System (ADS)

    Vourlidas, Angelos; Howard, Russell A.; Plunkett, Simon P.; Korendyke, Clarence M.; Carter, Michael T.; Thernisien, Arnaud F. R.; Chua, Damien H.; Van Duyne, Peter; Socker, Dennis G.; Linton, Mark G.; Liewer, Paulett C.; Hall, Jeffrey R.; Morrill, Jeff S.; DeJong, Eric M.; Mikic, Zoran; Rochus, Pierre L. P. M.; Bothmer, Volker; Rodman, Jens; Lamy, Philippe

    2013-09-01

    The Solar Probe Plus (SPP) mission scheduled for launch in 2018, will orbit between the Sun and Venus with diminishing perihelia reaching as close as 7 million km (9.86 solar radii) from Sun center. In addition to a suite of in-situ probes for the magnetic field, plasma, and energetic particles, SPP will be equipped with an imager. The Wide-field Imager for the Solar PRobe+ (WISPR), with a 95° radial by 58° transverse field of view, will image the fine-scale coronal structure of the corona, derive the 3D structure of the large-scale corona, and determine whether a dust-free zone exists near the Sun. Given the tight mass constrains of the mission, WISPR incorporates an efficient design of two widefield telescopes and their associated focal plane arrays based on novel large-format (2kx2k) APS CMOS detectors into the smallest heliospheric imaging package to date. The flexible control electronics allow WISPR to collect individual images at cadences up to 1 second at perihelion or sum several of them to increase the signal-to-noise during the outbound part of the orbit. The use of two telescopes minimizes the risk of dust damage which may be considerable close to the Sun. The dependency of the Thomson scattering emission of the corona on the imaging geometry dictates that WISPR will be very sensitive to the emission from plasma close to the spacecraft in contrast to the situation for imaging from Earth orbit. WISPR will be the first `local' imager providing a crucial link between the large scale corona and the in-situ measurements.

  15. OBSERVATION OF ULTRAFINE CHANNELS OF SOLAR CORONA HEATING

    SciTech Connect

    Ji, Haisheng; Cao, Wenda; Goode, Philip R.

    2012-05-01

    We report the first direct observations of dynamical events originating in the Sun's photosphere and subsequently lighting up the corona. Continuous small-scale, impulsive events have been tracked from their origin in the photosphere on through to their brightening of the local corona. We achieve this by combining high-resolution ground-based data from the 1.6 m aperture New Solar Telescope (NST) at Big Bear Solar Observatory (BBSO), and satellite data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The NST imaging observations in helium I 10830 A reveal unexpected complexes of ultrafine, hot magnetic loops seen to be reaching from the photosphere to the base of the corona. Most of these ultrafine loops are characterized by an apparently constant, but surprisingly narrow diameter of about 100 km all along each loop, and the loops originate on the solar surface from intense, compact magnetic field elements. The NST observations detect the signature of upward injections of hot plasma that excite the ultrafine loops from the photosphere to the base of the corona. The ejecta have their individual footpoints in the intergranular lanes between the Sun's ubiquitous, convectively driven granules. In many cases, AIA/SDO detects cospatial and cotemporal brightenings in the overlying, million degree coronal loops in conjunction with the upward injections along the ultrafine loops. Segments of some of the more intense upward injections are seen as rapid blueshifted events in simultaneous H{alpha} blue wing images observed at BBSO. In sum, the observations unambiguously show impulsive coronal heating events from upward energy flows originating from intergranular lanes on the solar surface accompanied by cospatial mass flows.

  16. The Structure and Dynamics of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Mikic, Zoran

    2000-03-01

    This report covers technical progress during the third year of the NASA Space Physics Theory contract "The Structure and Dynamics of the Solar Corona," between NASA and Science Applications International Corporation, and covers the period June 16, 1998 to August 15, 1999. This is also the final report for this contract. Under this contract SAIC, the University of California, Irvine (UCI), and the Jet Propulsion Laboratory (JPL), have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model. During the three-year duration of this contract we have published 49 articles in the scientific literature. These publications are listed in Section 3 of this report. In the Appendix we have attached reprints of selected articles. We summarize our progress during the third year of the contract. Full descriptions of our work can be found in the cited publications, a few of which are attached to this report.

  17. The Structure and Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    2000-01-01

    This report covers technical progress during the third year of the NASA Space Physics Theory contract "The Structure and Dynamics of the Solar Corona," between NASA and Science Applications International Corporation, and covers the period June 16, 1998 to August 15, 1999. This is also the final report for this contract. Under this contract SAIC, the University of California, Irvine (UCI), and the Jet Propulsion Laboratory (JPL), have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model. During the three-year duration of this contract we have published 49 articles in the scientific literature. These publications are listed in Section 3 of this report. In the Appendix we have attached reprints of selected articles. We summarize our progress during the third year of the contract. Full descriptions of our work can be found in the cited publications, a few of which are attached to this report.

  18. Observational capabilities of solar satellite "Coronas-Photon"

    NASA Astrophysics Data System (ADS)

    Kotov, Yu.

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT

  19. The Structure and Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, J. (Technical Monitor)

    2000-01-01

    This report details progress during the third year of our Space Physics Theory Contract. This is the Final Report for this contract. Under this contract SAIC, the University of California, Irvine (UCI), and the Jet Propulsion Laboratory (JPL), have conducted research into theoretical modeling of active regions, the solar corona. and the inner heliosphere, using the MHD model. During the three-year duration of this contract we have published 49 articles in the scientific literature.

  20. ESTIMATING THE ''DARK'' ENERGY CONTENT OF THE SOLAR CORONA

    SciTech Connect

    McIntosh, Scott W.; De Pontieu, Bart

    2012-12-20

    The discovery of ubiquitous low-frequency (3-5 mHz) Alfvenic waves in the solar chromosphere (with Hinode/Solar Optical Telescope) and corona (with CoMP and SDO) has provided some insight into the non-thermal energy content of the outer solar atmosphere. However, many questions remain about the true magnitude of the energy flux carried by these waves. Here we explore the apparent discrepancy in the resolved coronal Alfvenic wave amplitude ({approx}0.5 km s{sup -1}) measured by the Coronal Multi-channel Polarimeter (CoMP) compared to those of the Hinode and the Solar Dynamics Observatory (SDO) near the limb ({approx}20 km s{sup -1}). We use a blend of observational data and a simple forward model of Alfvenic wave propagation to resolve this discrepancy and determine the Alfvenic wave energy content of the corona. Our results indicate that enormous line-of-sight superposition within the coarse spatio-temporal sampling of CoMP hides the strong wave flux observed by Hinode and SDO and leads to the large non-thermal line broadening observed. While this scenario has been assumed in the past, our observations with CoMP of a strong correlation between the non-thermal line broadening with the low-amplitude, low-frequency Alfvenic waves observed in the corona provide the first direct evidence of a wave-related non-thermal line broadening. By reconciling the diverse measurements of Alfvenic waves, we establish large coronal non-thermal line widths as direct signatures of the hidden, or ''dark'', energy content in the corona and provide preliminary constraints on the energy content of the wave motions observed.

  1. The Structure and Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1998-01-01

    Under this contract SAIC, the University of California, Irvine (UCI), and the Jet Propulsion Laboratory (JPL), have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model. During the period covered by this report we have published 17 articles in the scientific literature. These publications are listed in Section 4 of this report. In the Appendix we have attached reprints of selected articles.

  2. Magnetic tornadoes as energy channels into the solar corona.

    PubMed

    Wedemeyer-Böhm, Sven; Scullion, Eamon; Steiner, Oskar; van der Voort, Luc Rouppe; de la Cruz Rodriguez, Jaime; Fedun, Viktor; Erdélyi, Robert

    2012-06-28

    Heating the outer layers of the magnetically quiet solar atmosphere to more than one million kelvin and accelerating the solar wind requires an energy flux of approximately 100 to 300 watts per square metre, but how this energy is transferred and dissipated there is a puzzle and several alternative solutions have been proposed. Braiding and twisting of magnetic field structures, which is caused by the convective flows at the solar surface, was suggested as an efficient mechanism for atmospheric heating. Convectively driven vortex flows that harbour magnetic fields are observed to be abundant in the photosphere (the visible surface of the Sun). Recently, corresponding swirling motions have been discovered in the chromosphere, the atmospheric layer sandwiched between the photosphere and the corona. Here we report the imprints of these chromospheric swirls in the transition region and low corona, and identify them as observational signatures of rapidly rotating magnetic structures. These ubiquitous structures, which resemble super-tornadoes under solar conditions, reach from the convection zone into the upper solar atmosphere and provide an alternative mechanism for channelling energy from the lower into the upper solar atmosphere. PMID:22739314

  3. Energy distribution of nanoflares in the quiet solar corona

    NASA Astrophysics Data System (ADS)

    Ulyanov, Artyom

    2012-07-01

    We present a detailed statistical analysis of flare-like events in low layer of solar corona detected with TESIS instrument onboard CORONAS-PHOTON satellite in 171 {Å} during high-cadence (5 sec) time-series. The estimated thermal energies of these small events amount to 10^{23} - 10^{26} erg. According to modern classification flare-like events with such energies are usually referred to as nanoflares. The big number of registered events (above 2000) allowed us to obtain precise distributions of geometric and physical parameters of nanoflares, the most intriguing being energy distribution. Following Aschwanden et al. (2000) and other authors we approximated the calculated energy distribution with a single power law slope: N(E)dE ˜ N^{-α}dE. The power law index was derived to be α = 2.4 ± 0.2, which is very close to the value reported by Krucker & Benz (1998): α ≈ 2.3 - 2.4. The total energy input from registered events constitute about 10^4 erg \\cdot cm^{-2} \\cdot s^{-1}, which is well beyond net losses in quiet corona (3 \\cdot 10^5 erg \\cdot cm^{-2} \\cdot s^{-1}). However, the value of α > 2 indicates that nanoflares with lower energies dominate over nanoflares with bigger energies and could contribute considerably to quiet corona heating.

  4. COMPOSITION OF THE SOLAR CORONA, SOLAR WIND, AND SOLAR ENERGETIC PARTICLES

    SciTech Connect

    Schmelz, J. T.; Reames, D. V.; Von Steiger, R.; Basu, S.

    2012-08-10

    Along with temperature and density, the elemental abundance is a basic parameter required by astronomers to understand and model any physical system. The abundances of the solar corona are known to differ from those of the solar photosphere via a mechanism related to the first ionization potential of the element, but the normalization of these values with respect to hydrogen is challenging. Here, we show that the values used by solar physicists for over a decade and currently referred to as the 'coronal abundances' do not agree with the data themselves. As a result, recent analysis and interpretation of solar data involving coronal abundances may need to be revised. We use observations from coronal spectroscopy, the solar wind, and solar energetic particles as well as the latest abundances of the solar photosphere to establish a new set of abundances that reflect our current understanding of the coronal plasma.

  5. A view of solar magnetic fields, the solar corona, and the solar wind in three dimensions

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.; Wilcox, J. M.

    1978-01-01

    In the last few years it has been recognized that the solar corona and the solar wind are three-dimensional. The deviations from spherical or even cylindrical symmetry are first-order effects, which are important for a basic description and physical understanding of the coronal expansion. Models of coronal magnetic fields are considered along with the characteristics of large-scale solar structure, the interplanetary magnetic field, coronal holes, geomagnetic activity, cosmic rays, and polar fields of the sun. It is pointed out that the present understanding of coronal and interplanetary morphology is based on data acquired during the descending part and the minimum of the considered sunspot cycle.

  6. Imaging the Transition from Corona to Solar Wind

    NASA Astrophysics Data System (ADS)

    DeForest, Craig; Howard, Tim A.; Howard, Russell A.; Tenerani, Anna

    2016-05-01

    The region around the Alfvén surface -- the last frontier of the solar system -- is largely unexplored, mostly because of the difficulty of detecting the surface itself. Many important transitions happen between the mid-to-outer corona and the innermost heliosphere, including: the transition to superAlfvénic flow; the transition from structured, highly anisotropic structure to nearly isotropic turbulent structures; and the formation of identifiable, separable fast and slow wind streams. We will report new results from two recent imaging campaigns -- one with STEREO and one with SOHO/LASCO (coincidentally performed on the 20th anniversary of the first SOHO campaign) -- to explore and image the transition to turbulent flow and the outer boundary of the corona.

  7. DIRECT MEASUREMENTS OF MAGNETIC TWIST IN THE SOLAR CORONA

    SciTech Connect

    Malanushenko, A.; Longcope, D. W.; Yusuf, M. H.

    2011-08-01

    In the present work, we study the evolution of magnetic helicity in the solar corona. We compare the rate of change of a quantity related to the magnetic helicity in the corona to the flux of magnetic helicity through the photosphere and find that the two rates are similar. This gives observational evidence that helicity flux across the photosphere is indeed what drives helicity changes in the solar corona during emergence. For the purposes of estimating coronal helicity, we neither assume a strictly linear force-free field nor attempt to construct a nonlinear force-free field. For each coronal loop evident in extreme ultraviolet, we find a best-matching line of a linear force-free field and allow the twist parameter {alpha} to be different for each line. This method was introduced and its applicability discussed in Malanushenko et al. The object of this study is emerging and rapidly rotating AR 9004 over about 80 hr. As a proxy for coronal helicity, we use the quantity ({alpha}{sub i} L{sub i} /2) averaged over many reconstructed lines of magnetic field. We argue that it is approximately proportional to the 'flux-normalized' helicity H/{Phi}{sup 2}, where H is the helicity and {Phi} is the total enclosed magnetic flux of the active region. The time rate of change of such a quantity in the corona is found to be about 0.021 rad hr{sup -1}, which is comparable with the estimates for the same region obtained using other methods, which estimated the flux of normalized helicity to be about 0.016 rad hr{sup -1}.

  8. The EUV Emission in Comet-Solar Corona Interactions

    NASA Technical Reports Server (NTRS)

    Bryans, Paul; Pesnell, William Dean; Schrijver, Carolus J.; Brown, John C.; Battams, Karl; Saint-Hilaire, Pasal; Liu, Wei; Hudson, Hugh S.

    2011-01-01

    The Atmospheric Imaging Assembly (AlA) on the Solar Dynamics Observatory (SDO) viewed a comet as it passed through the solar corona on 2011 July 5. This was the first sighting of a comet by a EUV telescope. For 20 minutes, enhanced emission in several of the AlA wavelength bands marked the path of the comet. We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Water ice in the comet rapidly sublimates as it approaches the Sun. This water vapor is then photodissociated, primarily by Ly-alpha, by the solar radiation field to create atomic Hand O. Other molecules present in the comet also evaporate and dissociate to give atomic Fe and other metals. Subsequent ionization of these atoms can be achieved by a number of means, including photoionization, electron impact, and charge exchange with coronal protons and other highly-charged species. Finally, particles from the cometary atmosphere are thermalized to the background temperature of the corona. Each step could cause emission in the AlA bandpasses. We will report here on their relative contribution to the emission seen in the AlA telescopes.

  9. Diagnosing the Prominence-Cavity Connection in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Schmit, D. J.

    The energetic equilibrium of the corona is described by a balance of heating, thermal conduction, and radiative cooling. Prominences can be described by the thermal instability of coronal energy balance which leads to the formation of cool condensations. Observationally, the prominence is surrounded by a density depleted elliptical structure known as a cavity. In this dissertation, we use extreme ultraviolet remote sensing observations of the prominence-cavity system to diagnose the static and dynamic properties of these structures. The observations are compared with numerical models for the time-dependent coronal condensation process and the time-independent corona-prominence magnetic field. To diagnose the density of the cavity, we construct a three-dimensional structural model of the corona. This structural model allows us to synthesize extreme ultraviolet emission in the corona in a way that incorporates the projection effects which arise from the optically thin plasma. This forward model technique is used to constrain a radial density profile simultaneously in the cavity and the streamer. We use a χ2 minimization to find the density model which best matches a density sensitive line ratio (observed with Hinode/Extreme ultraviolet Imaging Spectrometer) and the white light scattered intensity (observed with Mauna Loa Solar Observatory MK4 coronagraph). We use extreme ultraviolet spectra and spectral images to diagnose the dynamics of the prominence and the surrounding corona. Based on the doppler shift of extreme ultraviolet coronal emission lines, we find that there are large regions of flowing plasma which appear to occur within cavities. These line of sight flows have speeds of 10 km/s-1 and projected spatial scales of 100 Mm. Using the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA) dataset, we observe dynamic emission from the prominence-cavity system. The SDO/AIA dataset observes multiple spectral bandpasses with different temperature sensitivities. Time-dependent changes in the observed emission in these bandpass images represent changes in the thermodynamic properties of the emitting plasma. We find that the coronal region surrounding the prominence exhibits larger intensity variations (over tens of hours of observations) as compared to the streamer region. This variability is particularly strong in the cool coronal emission of the 171Å bandpass. We identify the source of this variability as strong brightening events that resemble concave-up loop segments and extend from the cool prominence plasma. Magnetic field lines are the basic structural building block of the corona. Energy and pressure balance in the corona occur along magnetic field lines. The large-scale extreme ultraviolet emission we observe in the corona is a conglomerate of many coronal loops projected along a line of sight. In order to calculate the plasma properties at a particular point in the corona, we use one-dimensional models for energy and pressure balance along field lines. In order to predict the extreme ultraviolet emission along a particular line of sight, we project these one-dimensional models onto the three-dimensional magnetic configuration provided by a MHD model for the coronal magnetic field. These results have allowed us to the establish the first comprehensive picture on the magnetic and energetic interaction of the prominence and the cavity. While the originally hypothesis that the cavity supplies mass to the prominence proved inaccurate, we cannot simply say that these structures are not related. Rather our findings suggest that the prominence and the cavity are distinct magnetic substructures that are complementary regions of a larger whole, specifically a magnetic flux rope. (Abstract shortened by UMI.).

  10. RGB color photometry of the solar corona from total solar eclipses

    NASA Astrophysics Data System (ADS)

    Shopov, Y. Y.; Varonov, A.; Stoykova, D. A.

    2016-02-01

    In the following article we present some of our results from observations of two total solar eclipses (TSE). By combining appropriate photographic equipment and post-processing techniques we show that numerous solar phenomena can be captured in details during TSE. We use color slide RGB photometry technique to visualize invisible regions of the solar corona and to highlight some of the solar phenomena that are very difficult for observation by Earth-based observatories. In fact it reveals more details of the far solar corona than any original image taken from ground-based observations. RGB photometry visualizes different components of the solar corona in one image, which is impossible using conventional observations. This makes it valuable tool for studies of the solar corona. Here we first observe peculiar near infrared emission regions around the upper part of the solar limb during the 1999 TSE. So far its origin is unknown and they need further studies including observations during other solar eclipses. Our observational experiment was designed for other purposes and their registration was completely unexpected.

  11. MHD modeling of the solar corona: Progress and challenges

    NASA Astrophysics Data System (ADS)

    Linker, Jon; Mikic, Zoran; Lionello, Roberto; Riley, Pete; Titov, Viacheslav; Torok, Tibor

    2012-07-01

    The Sun and its activity is the ultimate driver of space weather at Earth. This influence occurs not only via eruptive phenomena such as coronal mass ejections, but also through the structure of the corona itself, which forms the genesis of fast solar wind streams that trigger recurrent geomagnetic activity. Coronal structure also determines the connection of the ambient interplanetary magnetic field to CME-related shocks and impulsive solar flares, and thus controls where solar energetic particles propagate. In this talk we describe both the present state of the art and new directions in coronal modeling for both dynamic and slowly varying phenomena. We discuss the challenges to incorporating these capabilities into future space weather forecasting and specification models. Supported by NASA through the HTP, LWS, and SR&T programs, by NSF through the FESD and CISM programs, and by the AFOSR Space Science program.

  12. 3- and 5- Minute Oscillatory Behavior in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Calabro, Brandon; McAteer, James; Pevtsov, Alexander

    2011-10-01

    We study the spatially- and temporally-localized oscillatory behavior of the solar corona using a 6-hour sequence of narrowband 171A (extreme ultraviolet) image from the SWAP instrument onboard Proba2. We use a Morlet wavelet transform to extract oscillation parameters from the temporal evolution of emission in each pixel and study the variation in space and time of oscillatory power in the 3- and 5-minute band. We extract and compare these parameters between active Sun, quiet Sun and coronal hole regions. In each region of the corona studied the 5-minute periodicity is more prevalent than the 3-minute periodicity by a factor of 2--3. All areas of the corona exhibit a similar temporal behavior in the 5-minute band, suggesting a global driving mechanism. However, the dominance of the 5-minute periodicity is stronger in active regions than in other areas of the Sun. The 3-minute periodicity in active regions tends to be localized in the sunspot umbra, whereas the 5-minute is more prevalent in the penumbra.

  13. Exploring the prominence-corona connection and its expansion into the outer corona using total solar eclipse observations

    SciTech Connect

    Habbal, Shadia Rifai; Morgan, Huw; Druckmüller, Miloslav

    2014-10-01

    Prominences constitute the most complex magnetic structures in the solar corona. The ubiquitous presence of their seemingly confined dense and cool plasma in an otherwise million-degree environment remains a puzzle. Using a decade of white light total solar eclipse observations, we show how these images reveal an intricate relationship between prominences and coronal structures both in their immediate vicinity, known as coronal cavities, and in the extended corona out to several solar radii. Observations of suspended prominences and twisted helical structures spanning several solar radii are central to these findings. The different manifestations of the prominence-corona interface that emerge from this study underscore the fundamental role played by prominences in defining and controlling the complex expansion and dynamic behavior of the solar magnetic field in the neighborhood of magnetic polarity reversal regions. This study suggests that the unraveling of prominences and the outward expansion of the helical twisted field lines linked to them could be the solar origin of twisted magnetic flux ropes detected in interplanetary space, and of the mechanism by which the Sun sheds its magnetic helicity. This work also underscores the likely role of the prominence-corona interface as a source of the slow solar wind.

  14. The Structure and Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1998-01-01

    This report covers technical progress during the first year of the NASA Space Physics Theory contract between NASA and Science Applications International Corporation. Under this contract SAIC, the University of California, Irvine (UCI), and the Jet Propulsion Laboratory (JPL), have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model. During the period covered by this report we have published 26 articles in the scientific literature. These publications are listed in Section 4 of this report. In the Appendix we have attached reprints of selected articles.

  15. Heating of the solar corona by the resonant absorption of Alfven waves

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.

    1986-01-01

    An improved method for calculating the resonance absorption heating rate is discussed and the results are compared with observations in the solar corona. The primary conclusion to be drawn from these calculations is that to the level of the approximation adopted, the observations of the heating rate and nonthermal line broadening in the solar corona are consistent with heating by the resonance absorption mechanism.

  16. Observational tests for nonequilibrium ionization in the solar corona

    NASA Technical Reports Server (NTRS)

    Spadaro, D.; Leto, P.; Antiochos, S. K.

    1994-01-01

    Nonequilibrium ionization may be produced by a variety of processes in the solar corona, for example, by mass flows through the large temperature gradients of the transition region or by impulsive heating and cooling. Any deviation from equilibrium ionization would have a strong effect on the radiation from the corona and on the interpretation of solar observations; hence, it is important to determine observational signatures of nonequilibrium. The temperature-sensitive line ratios can be used as such signatures. We examine the line ratios: C IV I(1548.2 A)/I(312.4 A), O IV I(789.4 A)/I(554.4 A), O V I(629.7 A)/I(172.2 A), O VI I(1031.9 A)/I(173.0 A) and O VI I(1031.9 A)/I(150.1 A). These line ratios are calculated for four coronal loop models that have a steady flow and that are known to have significant departures from equilibrium ionization. Our results indicate that, in general, nonequilibrium causes a considerable reduction in the line ratios, more than an order of magnitude in the downflowing leg of the loop model with the largest mass flows. We find that the C IV line ratio is the most sensitive to nonequilibrium. We discuss the implications of our results for observations, specifically, the observations expected from the upcoming SOHO mission.

  17. Corongraphic Observations and Analyses of The Ultraviolet Solar Corona

    NASA Technical Reports Server (NTRS)

    Kohl, John L.

    2000-01-01

    The activities supported under NASA Grant NAG5-613 included the following: 1) reduction and scientific analysis of data from three sounding rocket flights of the Rocket Ultraviolet Coronagraph Spectrometer, 2) development of ultraviolet spectroscopic diagnostic techniques to provide a detailed empirical description of the extended solar corona, 3) extensive upgrade of the rocket instrument to become the Ultraviolet Coronal Spectrometer (UVCS) for Spartan 201,4) instrument scientific calibration and characterization, 5) observation planning and mission support for a series of five Spartan 201 missions (fully successful except for STS 87 where the Spartan spacecraft was not successfully deployed and the instruments were not activated), and 6) reduction and scientific analysis of the UVCS/Spartan 201 observational data. The Ultraviolet Coronal Spectrometer for Spartan 201 was one unit of a joint payload and the other unit was a White Light Coronagraph (WLC) provided by the High Altitude Observatory and the Goddard Space Flight Center. The two instruments were used in concert to determine plasma parameters describing structures in the extended solar corona. They provided data that could be used individually or jointly in scientific analyses. The WLC provided electron column densities in high spatial resolution and high time resolution. UVCS/Spartan provided hydrogen velocity distributions, and line of sight hydrogen velocities. The hydrogen intensities from UVCS together with the electron densities from WLC were used to determine hydrogen outflow velocities. The UVCS also provided O VI intensities which were used to develop diagnostics for velocity distributions and outflow velocities of minor ions.

  18. Multimodal Differential Emission Measure in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Nuevo, Federico A.; Vásquez, Alberto M.; Landi, Enrico; Frazin, Richard

    2015-10-01

    The Atmospheric Imaging Assembly (AIA) telescope on board the Solar Dynamics Observatory provides coronal extreme ultraviolet imaging over a broader temperature sensitivity range than the previous generations of instruments (Extreme Ultraviolet Imager; EUVI, EIT, and TRACE). Differential emission measure tomography (DEMT) of the solar corona based on AIA data is presented here for the first time. The main product of DEMT is the three-dimensional distribution of the local differential emission measure (LDEM). While in previous studies, based on EIT or EUVI data, there were three available EUV bands, the present study is based on the four cooler AIA bands (aimed at studying the quiet sun). The AIA filters allow exploration of new parametric LDEM models. Since DEMT is better suited for lower activity periods, we use data from Carrington Rotation 2099, when the Sun was in its most quiescent state during the AIA mission. Also, we validate the parametric LDEM models by using them to perform a bi-dimensional differential emission measure (DEM) analysis on sets of simultaneous AIA images, and comparing results with those obtained using other methods. Our study reveals a ubiquitous bimodal LDEM distribution in the quiet diffuse corona, characterized by two well-defined average centroid temperatures < {T}{0,1}> =(1.47+/- 0.05) {MK} and < {T}{0,2}> =(2.57+/- 0.05) {MK}. We argue that the nanoflare heating scenario is less likely to explain these results, and that alternative mechanisms, such as wave dissipation, appear better supported by our results.

  19. Radiative transfer of X-rays in the solar corona

    NASA Technical Reports Server (NTRS)

    Acton, L. W.

    1978-01-01

    The problem of resonance scattering of X-ray emission lines in the solar corona is investigated. For the resonance lines of some helium-like ions, significant optical depths are reached over distances small compared with the size of typical coronal features. A general integral equation for the transfer of resonance-line radiation under solar coronal conditions is derived. This expression is in a form useful for modeling the complex three-dimensional temperature and density structure of coronal active regions. The transfer equation is then cast in a form illustrating the terms which give rise to the attenuation or enhancement of the resonance-line intensity. The source function for helium-like oxygen (O VII) under coronal conditions is computed and discussed in terms of the relative importance of scattering.

  20. Dust in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Kramer, Emily; Bauer, James; Mainzer, Amy; Grav, Tommy; Nugent, Carolyn; Sonnett, Sarah; Stevenson, Rachel

    2015-08-01

    As some of the most pristine objects in the Solar System, comets present an excellent opportunity to understand the mechanics and chemistry of the planetary formation era. By studying a large number of comets in different dynamical classes, we can better understand their ensemble properties.NEOWISE is the planetary-funded mission that uses data from the Wide-field Infrared Survey Explorer (WISE) spacecraft to detect and characterize moving objects. The WISE mission surveyed the sky in four infrared wavelength bands (3.4, 4.6, 12 and 22-microns) between January 2010 and February 2011, during which time over 160 comets were detected. Since the restart of the mission as NEOWISE in December 2013, over 60 additional comets have been observed in the shorter two wavelength channels. In both phases of the mission, a mix of both long-period comets and short-period comets were detected. Over half of the comets in the prime mission displayed a significant dust tail in the 12 and 22-micron (thermal emission) bands, showing a wide range of activity levels and dust morphology. In both the prime and restarted phases of the mission, extended dust structures were also detected for many of the comets in the 3.4 and 4.6-micron bands. For the comets that displayed a significant dust tail, we have estimated the sizes and ages of the particles using dynamical models based on the Finson-Probstein method. We will present updated modeling results, comparing the different comet populations.

  1. Solar wind Acceleration from the Upper Chromosphere to the Corona in Coronal Hole Regions

    NASA Technical Reports Server (NTRS)

    Esser, Ruth

    1998-01-01

    The dynamic behavior of the plasma in the chromosphere/transition region /inner corona is vital for the acceleration of the solar wind. With new theoretical descriptions of the solar atmosphere and corona, and the increased observational possibilities provided by the SOHO spacecraft, it is possible to conduct an integrated study of the solar atmosphere and corona using observational and theoretical approaches. Over the past few years a series of observational techniques have been used to estimate the solar wind densities, temperatures and flow speed in the inner corona. These estimates suggest that the solar wind has higher outflow speeds in the inner corona and lower densities than previously assumed. A comparison with densities derived from atmospheric models support these lower densities.

  2. Milli-Arcsecond (MAS) Imaging of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Davila, Joseph M.; Oktem, Figen S.; Kamalabadi, Farzad; O'Neill, John; Novo-Gradac, Anne-Marie; Daw, Adrian N.; Rabin, Douglas M.

    2016-05-01

    Dissipation in the solar corona is believed to occur in extremely thin current sheets of order 1-100 km. Emission from these hot but thin current sheets should be visible in coronal EUV emission lines. However, this spatial scale is far below the resolution of existing imaging instruments, so these dissipation sites have never been observed individually. Conventional optics cannot be manufactured with sufficient surface figure accuracy to obtain the required spatial resolution in the extreme-ultraviolet where these hot plasmas radiate. A photon sieve, a diffractive imaging element similar to a Fresnel zone plate, can be manufactured to provide a few milli-arcsec (MAS) resolution, with much more readily achievable tolerances than with conventional imaging technology. Prototype photon sieve elements have been fabricated and tested in the laboratory. A full-scale ultra-high resolution instrument will require formation flying and computational image deconvolution. Significant progress has been made in overcoming these challenges, and some recent results in these areas are discussed. A simple design for a sounding rocket concept demonstration payload is presented that obtains 80 MAS (0.080 arcsec) imaging with a 100 mm diameter photon sieve to image Fe XIV 334 and Fe XVI 335. These images will show the structure of the corona at a resolution never before obtained, and they will also allow a study of the temperature structure in the dissipation region.

  3. Response of the Electron Density in the Solar Corona to Extreme Solar Events

    NASA Astrophysics Data System (ADS)

    Butala, M. D.; Frazin, R. A.; Kamalabadi, F.

    2004-12-01

    We present the results of a study aimed at investigating the response of the three-dimensional solar corona to the extreme solar events of October and November 2003. Three-dimensional images of the electron density (Ne) in the solar corona between 1.1 and 2.7 R⊙ are formed from polarized brightness (pB) coronagraph measurements by the process of solar rotational tomography. Since each pixel of a coronagraph image represents a line of sight (LOS) integration of Ne, an inversion of the LOS measurements is required to reconstruct Ne. Solar rotational tomography exploits the Sun's rotation to combine a set of coronagraph images each measured at a different view angle to perform the required inversion and form the three-dimensional image of Ne. In this work, we focus on ground-based measurements obtained from the Mark-IV K-Coronameter at the Mauna Loa Solar Observatory (MLSO). The response of the corona to the extreme solar events is studied by comparing the Ne reconstructions determined at periods before, during, and after the onset of the superstorms.

  4. Simultaneous Observation of High Temperature Plasma of Solar Corona By TESIS CORONAS-PHOTON and XRT Hinode.

    NASA Astrophysics Data System (ADS)

    Reva, A.; Kuzin, S.; Bogachev, S.; Shestov, S.

    2012-05-01

    The Mg XII spectroheliograph is a part of instrumentation complex TESIS (satellite CORONAS-PHOTON). This instrument builds monochromatic images of hot plasma of the solar corona (λ = 8.42 Å, T>5 MK). The Mg XII spectroheliograph observed hot plasma in the non-flaring active-region NOAA 11019 during nine days. We reconstructed DEM of this active region with the help of genetic algorithm (we used data of the Mg XII spectroheliograph, XRT and EIT). Emission measure of the hot component amounts 1 % of the emission measure of the cool component.

  5. Creation of current filaments in the solar corona

    NASA Technical Reports Server (NTRS)

    Mikic, Z.; Schnack, D. D.; Van Hoven, G.

    1989-01-01

    It has been suggested that the solar corona is heated by the dissipation of electric currents. The low value of the resistivity requires the magnetic field to have structure at very small length scales if this mechanism is to work. In this paper it is demonstrated that the coronal magnetic field acquires small-scale structure through the braiding produced by smooth, randomly phased, photospheric flows. The current density develops a filamentary structure and grows exponentially in time. Nonlinear processes in the ideal magnetohydrodynamic equations produce a cascade effect, in which the structure introduced by the flow at large length scales is transferred to smaller scales. If this process continues down to the resistive dissipation length scale, it would provide an effective mechanism for coronal heating.

  6. Clementine Observes the Moon, Solar Corona, and Venus

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1994, during its flight, the Clementine spacecraft returned images of the Moon. In addition to the geologic mapping cameras, the Clementine spacecraft also carried two Star Tracker cameras for navigation. These lightweight (0.3 kg) cameras kept the spacecraft on track by constantly observing the positions of stars, reminiscent of the age-old seafaring tradition of sextant/star navigation. These navigation cameras were also to take some spectacular wide angle images of the Moon.

    In this picture the Moon is seen illuminated solely by light reflected from the Earth--Earthshine! The bright glow on the lunar horizon is caused by light from the solar corona; the sun is just behind the lunar limb. Caught in this image is the planet Venus at the top of the frame.

  7. Magnetic loops, downflows, and convection in the solar corona

    NASA Technical Reports Server (NTRS)

    Foukal, P.

    1978-01-01

    Optical and extreme-ultraviolet observations of solar loop structures show that flows of cool plasma from condensations near the loop apex are a common property of loops associated with radiations whose maximum temperature is greater than approximately 7000 K and less than approximately 3,000,000 K. It is suggested that the mass balance of these structures indicates reconnection by means of plasma motion across field lines under rather general circumstances (not only after flares). It is shown that the cool material has lower gas pressure than the surrounding coronal medium. The density structure of the bright extreme ultraviolet loops suggests that downflows of cool gas result from isobaric condensation of plasma that is either out of thermal equilibrium with the local energy deposition rate into the corona, or is thermally unstable. The evidence is thought to indicate that magnetic fields act to induce a pattern of forced convection.

  8. R Coronae Borealis Stars Are Viable Factories of Pre-solar Grains

    NASA Astrophysics Data System (ADS)

    Karakas, Amanda I.; Ruiter, Ashley J.; Hampel, Melanie

    2015-08-01

    We present a new theoretical estimate for the birthrate of R Coronae Borealis (RCB) stars that is in agreement with recent observational data. We find the current Galactic birthrate of RCB stars to be ≈25% of the Galactic rate of Type Ia supernovae, assuming that RCB stars are formed through the merger of carbon-oxygen and helium-rich white dwarfs. Our new RCB birthrate (1.8 × 10-3 yr-1) is a factor of 10 lower than previous theoretical estimates. This results in roughly 180-540 RCB stars in the Galaxy, depending on the RCB lifetime. From the theoretical and observational estimates, we calculate the total dust production from RCB stars and compare this rate to dust production from novae and born-again asymptotic giant branch (AGB) stars. We find that the amount of dust produced by RCB stars is comparable to the amounts produced by novae or born-again post-AGB stars, indicating that these merger objects are a viable source of carbonaceous pre-solar grains in the Galaxy. There are graphite grains with carbon and oxygen isotopic ratios consistent with the observed composition of RCB stars, adding weight to the suggestion that these rare objects are a source of stardust grains.

  9. On the Origin of Magnetic Helicity in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Tian, Lirong; Alexander, David

    2008-01-01

    Twenty-three active regions associated with pronounced sigmoidal structure in Yohkoh soft X-ray observations are selected to investigate the origin of magnetic helicity in the solar corona. We calculate the radial magnetic flux of each polarity, the rate of magnetic helicity injection, and total flux of the helicity injection (Δ HLCT) over 4-5 days using MDI 96 minute line-of-sight magnetograms and a local correlation tracking technique. We also estimate the contribution from differential rotation to the overall helicity budget (Δ Hrot). It is found that of the seven active regions for which the flux emergence exceeds 1.0 × 1022 Mx, six exhibited a helicity flux injection exceeding 1.0 × 1043 Mx2 (i.e., Δ H = Δ HLCT - Δ Hrot). Moreover, the rate of helicity injection and the total helicity flux are larger (smaller) during periods of more (less) increase of magnetic flux. Of the remaining 16 active regions, with flux emergence less than 1022 Mx, only 4 had significant injection of helicity, exceeding 1043 Mx2. Typical contributions from differential rotation over the same period were 2-3 times smaller than that of the strong magnetic field emergence. These statistical results signify that the strong emergence of magnetic field is the most important origin of the coronal helicity, while horizontal motions and differential rotation are insufficient to explain the measured helicity injection flux. Furthermore, the study of the helicity injection in nineteen newly emerging active regions confirms the result on the important role played by strong magnetic flux emergence in controlling the injection of magnetic helicity into the solar corona.

  10. The MiniMax24 corona at the November 14, 2012 total solar eclipse in Australia

    NASA Astrophysics Data System (ADS)

    Stoeva, Penka; Kuzin, Sergey; Benev, Boyan; Stoev, Alexey

    We discuss the results from observations of the white-light corona conducted half a year before the MiniMax24, during the November 14, 2012 total solar eclipse in Australia, in the region of Mount Molloy, 150km from Palm Cove, Cairns, Queensland. WL images show the continuum K-corona that result from scattering of photospheric light by electrons in the corona. Solar corona was observed with 300 mm objective and 2000 mm Macsutov-Cassegrain telescope. Photos were made with different exposures in order to obtain high-resolution composite image of the white light corona, which allows us to reveal its small- and large-scale structures. The eclipse observations were compared with near-simultaneous SOHO EUV and SOHO LASCO visible-light coronagraphic images. Analysis of the Ludendorf flattening index (0.024) and phase of the solar cycle (+0.87) shows that white light corona is solar maximum type - the shape is spherical with many streamers located at all azimuths around the occulted disk. Observations of the November 14, 2012 total solar eclipse give us the possibility to investigate solar corona structure during this unique minimal maximum of the solar activity cycle and compare it with previous eclipse observations during maximum.

  11. Solar-Panel Dust Accumulation and Cleanings

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Air-fall dust accumulates on the solar panels of NASA's Mars Exploration Rovers, reducing the amount of sunlight reaching the solar arrays. Pre-launch models predicted steady dust accumulation. However, the rovers have been blessed with occasional wind events that clear significant amounts of dust from the solar panels.

    This graph shows the effects of those panel-cleaning events on the amount of electricity generated by Spirit's solar panels. The horizontal scale is the number of Martian days (sols) after Spirit's Jan. 4, 2005, (Universal Time) landing on Mars. The vertical scale indicates output from the rover's solar panels as a fraction of the amount produced when the clean panels first opened. Note that the gradual declines are interrupted by occasional sharp increases, such as a dust-cleaning event on sol 420.

  12. Dust and sungrazing comets and their interaction with the solar wind

    NASA Astrophysics Data System (ADS)

    Brigitte Mann, Ingrid; Meyer-Vernet, Nicole; Czechowski, Andrzej; Jones, Geraint; Bzowski, Maciej

    2015-08-01

    Cosmic dust particles are one of the major constituents of the interplanetary medium. In heliospheric physics the recent development in this field was the discovery of nanodust. Comets are a major source of dust in the heliosphere and among them the sun-grazing comets, now observed in great number, provide a special case of interactions in the solar corona and solar wind. The sungrazing comets display ion and dust tails in direct interaction with the solar corona.The presence of nanodust in the circumsolar dust cloud was recently discovered in situ. This discovery was unexpected. The dust particles in the solar system dust cloud form by fragmentation of larger dust during collisions, but it was thought unlikely that they produce fragments as small as nanometer size. Moreover nanodust can quickly be destroyed by sublimation and sputtering.The detection of the nanodust with in situ measurements is possible because of the very high velocities of the nanodust. The nanodust is accelerated in the magnetized solar wind and reaches speeds of the order of the solar wind speed. Nanodust particles have been detected with radio wave instruments aboard several spacecraft at 1 AU and further out. Electromagnetic forces together with gravity cause also the presence of a trapping zone in the vicinity of the Sun. The trapping even can occur for nanodust that originates from sungrazing comets with highly elliptical orbits.Recent in-situ measurements also provide more data on the interstellar dust flux through the heliosphere and provided a basis for detailed models of its filtration by the heliospheric boundary layer. The filtering process is especially important in the context of the surprising discovery of the size distribution of interstellar dust, that is different than derived from astronomical observations.

  13. The Temperature of the Corona as Derived from Total Solar Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Habbal, Shadia R.; Morgan, Huw; Druckmuller, Miloslav; Ding, Adalbert

    2016-05-01

    Multiwavelength imaging observations in a suite of coronal forbidden lines of the corona during total solar eclipses enables the empirical inference of the spatial distribution of temperature in the solar corona up to a few solar radii above the limb. The temperature sensitivity of coronal emission lines is such that temperature differences of 105 K can be detected in the images. Using high resolution multiwavelength and white light eclipse images acquired since 2006, covering almost a solar cycle, we show evidence for (1) how the distribution of the temperature in the corona is bimodal, with closed coronal structures dominated by 2 106 K plasma, while structures streaming away from the Sun are dominated by 106 K emission, (2) prominences are invariably enshrouded by the hottest material in the corona, and (3) that the dominance of one temperature versus the other is solar-cycle dependent.

  14. THE EXPANSION OF ACTIVE REGIONS INTO THE EXTENDED SOLAR CORONA

    SciTech Connect

    Morgan, Huw; Jeska, Lauren; Leonard, Drew

    2013-06-01

    Advanced image processing of Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2 observations reveals the expansion of the active region closed field into the extended corona. The nested closed-loop systems are large, with an apparent latitudinal extent of 50 Degree-Sign , and expanding to heights of at least 12 R{sub Sun }. The expansion speeds are {approx}10 km s{sup -1} in the AIA/SDO field of view, below {approx}20 km s{sup -1} at 2.3 R{sub Sun }, and accelerate linearly to {approx}60 km s{sup -1} at 5 R{sub Sun }. They appear with a frequency of one every {approx}3 hr over a time period of around three days. They are not coronal mass ejections (CMEs) since their gradual expansion is continuous and steady. They are also faint, with an upper limit of 3% of the brightness of background streamers. Extreme ultraviolet images reveal continuous birth and expansion of hot, bright loops from a new active region at the base of the system. The LASCO images show that the loops span a radial fan-like system of streamers, suggesting that they are not propagating within the main coronal streamer structure. The expanding loops brighten at low heights a few hours prior to a CME eruption, and the expansion process is temporarily halted as the closed field system is swept away. Closed magnetic structures from some active regions are not isolated from the extended corona and solar wind, but can expand to large heights in the form of quiescent expanding loops.

  15. Current Sheet Formation and Reconnection Dynamics in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Edmondson, Justin K.; Antiochos, S. K.; DeVore, C.; Zurbuchen, T. H.

    2009-05-01

    Current sheet formation is a necessary consequence of the evolution of the multi-polar magnetic field topologies that are ubiquitous throughout the solar corona. We present a very high-resolution study of 3D MHD current sheet formation and the resulting reconnection dynamics in an environment appropriate for the corona. The initial field consists of a translationally invariant, potential field with a null-point topology (i.e., 4-flux systems) and a low-beta plasma. A finite-extent, 3D Syrovatskii-type current sheet forms as a result of stressing of this system by a uniform, incompressible flow applied at the line-tied photospheric boundary. The system is assumed to be ideal, except for the presence of numerical resistivity. The fully 3-D evolution is calculated with very high resolution (9x and 10x refinement across the full extent of the current sheet) using the Adaptively Refined MHD Solver (ARMS). The initial evolution of this computationally-intensive simulation results in a current sheet with a nearly 30-to-1 aspect ratio, a significant fraction of the system characteristic length, that unexpectedly appears to be stable. In addition, up to this point in the evolution any magnetic reconnection that we observe is of the slow Sweet-Parker type. We expect, however, that as we continue stressing the field, the current sheet will become unstable and develop explosive dynamics. We discuss the implications of our results on coronal structure and activity, such as heating and eruptions. This work has been supported, in part, by the NASA HTP and SR&T programs.

  16. Signature of open magnetic field lines in the extended solar corona and of solar wind acceleration

    NASA Technical Reports Server (NTRS)

    Antonucci, E.; Giordano, S.; Benna, C.; Kohl, J. L.; Noci, G.; Michels, J.; Fineschi, S.

    1997-01-01

    The observations carried out with the ultraviolet coronagraph spectrometer onboard the Solar and Heliospheric Observatory (SOHO) are discussed. The purpose of the observations was to determine the line of sight and radial velocity fields in coronal regions with different magnetic topology. The results showed that the regions where the high speed solar wind flows along open field lines are characterized by O VI 1032 and HI Lyman alpha 1216 lines. The global coronal maps of the line of sight velocity were reconstructed. The corona height, where the solar wind reaches 100 km/s, was determined.

  17. Diagnostics of the solar corona from comparison between Faraday rotation measurements and magnetohydrodynamic simulations

    SciTech Connect

    Le Chat, G.; Cohen, O.; Kasper, J. C.; Spangler, S. R.

    2014-07-10

    Polarized natural radio sources passing behind the Sun experience Faraday rotation as a consequence of the electron density and magnetic field strength in coronal plasma. Since Faraday rotation is proportional to the product of the density and the component of the magnetic field along the line of sight of the observer, a model is required to interpret the observations and infer coronal structures. Faraday rotation observations have been compared with relatively ad hoc models of the corona. Here for the first time we compare these observations with magnetohydrodynamic (MHD) models of the solar corona driven by measurements of the photospheric magnetic field. We use observations made with the NRAO Very Large Array of 34 polarized radio sources occulted by the solar corona between 5 and 14 solar radii. The measurements were made during 1997 May, and 2005 March and April. We compare the observed Faraday rotation values with values extracted from MHD steady-state simulations of the solar corona. We find that (1) using a synoptic map of the solar magnetic field just one Carrington rotation off produces poorer agreements, meaning that the outer corona changes in the course of one month, even in solar minimum; (2) global MHD models of the solar corona driven by photospheric magnetic field measurements are generally able to reproduce Faraday rotation observations; and (3) some sources show significant disagreement between the model and the observations, which appears to be a function of the proximity of the line of sight to the large-scale heliospheric current sheet.

  18. Dust Accumulation on MER Solar Panels

    NASA Astrophysics Data System (ADS)

    Guinness, E. A.; Arvidson, R. E.; McEwen, A. S.; Cull, S.

    2011-12-01

    HiRISE acquired in March 2011 a color image of the Spirit Mars Exploration Rover from orbit that shows an exceptionally bright reflection from the rover solar panels. HiRISE data combined with laboratory measurements of MER solar cell reflectance provide a method for constraining the thickness of dust on the solar panels. Spirit is the brightest object in the HiRISE scene with a reflectance that is about 3 times higher at 500 nm and about 1.5 times higher at 700 and 850 nm than bright outcrop and soil near the rover. The rover is also less red than these nearby materials and less red than a typical Mars dust spectrum modeled with the same geometry and seen through similar atmospheric conditions as the HiRISE image. Lighting and viewing angles for the HiRISE image of Spirit are close to a specular reflection geometry when factoring in the rover orientation, the sun position, and the location of HiRISE during image acquisition. Laboratory photometric measurements of clean and dust-coated MER solar cells show a strong specular reflection for dust coating thicknesses up to at least 45 micrometers. The specular reflection was not present in the laboratory data when the solar cell was covered with about a 135 micrometer thick layer. The dust used in the experiments consisted of less than 10 micrometer sized particles derived from a palagonitic tephra from Mauna Kea that is spectrally similar to Mars dust. A survey of MER Pancam color images acquired by Spirit and Opportunity also shows several examples of specular reflections from the solar panels. These examples correspond to times when the solar cells were moderately clean to dusty as inferred from the amount of power generated by the cells. Specular reflections in Pancam images have been observed when the solar cell output was only 45% that of a dust-free cell. Spirit HiRISE data indicate that the rover was not covered by an optical thick layer of dust because some of the reflected light must have come from the underlying solar panels. The laboratory and HiRISE data suggest that the Spirit solar panels may have had a dust layer on the order of only 10s of micrometers thick. Further investigation of rover image data sets for the presence or absence of specular reflections as correlated with solar cell power output will yield more quantitative information on the amounts of atmospheric dust accumulation throughout the Spirit and Opportunity missions.

  19. Destruction of Sun-Grazing Comet C-2011 N3 (SOHO) Within the Low Solar Corona

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Brown, J. C.; Battams, K.; Saint-Hilaire, P.; Liu, W.; Hudson, H.; Pesnell, W. D.

    2012-01-01

    Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Suns inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solarradius (100,000 kilometers) of the solar surface before its EUV signal disappeared.

  20. Laboratory identification of MHD eruption criteria in the solar corona

    NASA Astrophysics Data System (ADS)

    Myers, Clayton E.

    2015-11-01

    Ideal magnetohydrodynamic (MHD) instabilities such as the kink and torus instabilities are believed to play an important role in driving ``storage-and-release'' eruptions in the solar corona. These instabilities act on long-lived, arched magnetic flux ropes that are ``line-tied'' to the solar surface. In spite of numerous observational and computational studies, the conditions under which these instabilities produce an eruption remain a subject of intense debate. In this paper, we use a line-tied, arched flux rope experiment to study storage-and-release eruptions in the laboratory. An in situ array of miniature magnetic probes is used to assess the equilibrium and stability of the laboratory flux ropes. Two major results are reported here: First, a new stability regime is identified where torus-unstable flux ropes fail to erupt. In this ``failed torus'' regime, the flux rope is torus-unstable but kink-stable. Under these conditions, a dynamic ``toroidal field tension force'' surges in magnitude, causing the flux rope to contract. This tension force, which is missing from existing eruption models, is the J × B force between self-generated poloidal currents in the flux rope and the toroidal (guide) component of the vacuum field. Secondly, a clear torus instability threshold is observed in the kink-unstable regime. This latter result, which is consistent with existing theoretical and numerical results, verifies the key role of the torus instability in driving solar eruptions. In collaboration with M. Yamada, H. Ji, J. Yoo, W. Fox, J. Jara-Almonte, A. Savcheva, and E. E. DeLuca. This research is supported by DoE Contract No. DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).

  1. The Corona of the Young Solar Analog EK Draconis

    NASA Technical Reports Server (NTRS)

    Gudel, M.; Schmitt, J. H. M. M.; Benz, A. O.; Elias, N. M., II

    1995-01-01

    First coronal microwave and new soft X-ray observations of the very active, near-Zero-Age Main-Sequence (ZAMS) dGOe star EK Dra = HD 129333 show that this analog of the young Sun is more luminous in both emissions than most single M-dwarf flare stars. Variations in the 8.4 GHz flux include modulation with the optically determined rotation period of 2.7 days. This result points to a non-uniform filling of the corona with energetic electrons due to an incomplete coverage of the surface with active regions and a source volume that is not concentric with the star. The radio luminosity varying between log L(sub R) = 13.6 and 14.6 (L(sub R) in erg/s/Hz) shows evidence for unpolarized gyrosynchrotron flares, while strongly polarized flares were absent during the observations. This star is the first young, truly solar-like main sequence G star discovered in microwaves. Having just arrived on the main sequence, it conclusively proves that young, solar-like G stars can maintain very high levels of radio emission after their T Tau phase. The X-ray observations were obtained from the ROSAT All-Sky Survey (RASS). The average X-ray luminosity amounts to log L(sub x) = 29.9 (L(sub x) in erg/s). A Raymond-Smith type plasma model fit yields two plasma components at temperatures of 1.9 and 10 MK, with volume emission measures of 1.2 and 2.5 x 10 (exp 52)/cu cm, respectively. The X-ray light curve is significantly variable, with the photon count rate from the cooler plasma being strongly modulated by the rotation period; the emission from the hotter plasma is only weakly variable. Modeling of the source distribution in the stellar corona yields electron densities of the order of 4 x 10(exp 10)/cu cm or higher for the cool plasma component. It indicates that a considerable portion of EK Dra's high X-ray luminosity is due to high-density plasma rather than large emission volume. Parameters for an X-ray flare indicate an electron density of 1.75 x 10(exp 11)/cu cm and a source height of (1-2) x 10(exp 10) cm, compatible with a few times the scale height of the cooler plasma component.

  2. The State of the Corona During the Weak Solar Cycle 24: the View from LASCO Images

    NASA Astrophysics Data System (ADS)

    Barlyaeva, T.; Lamy, P.; Llebaria, A.; Boclet, B.

    2016-04-01

    The LASCO-C2 coronagraph onboard SOHO continues its white-light imaging of the corona from 1.5 to 6.0 solar radii, thus allowing investigating the consequences of the weak Solar Cycle 24 on the corona and comparing it to the previous cycle (23). Temporal variations of the global radiance of the corona are presented. We pay particular attention to the mid-term variations which are distinctly different between the two cycles and highlight the similarities and differences. Finally, we rely on our ARTEMIS II catalog of coronal mass ejections (CMEs) to compare their global rates during these two cycles.

  3. Force-Free Magnetic Flux Ropes in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Wolfson, R.

    2003-05-01

    In the course of an ongoing investigation of force-free magnetic fields in the spherical geometry appropriate to the solar corona, we have found solutions that represent magnetic flux ropes. The magnetic energy stored in these ropes and the surrounding field is larger than that which can be stored in simple magnetic arcades with the same boundary conditions, and in some cases exceeds slightly the Aly-Sturrock limit on the energy of a closed force-free magnetic field with all its magnetic flux connected to the coronal base. Flux-rope solutions with the highest energies tend to arise when a strong potential field overlies a region of sheared field containing field-aligned currents. These flux-rope solutions have an unusual topology; instead of a single twisted, disconnected flux system, there are two distinct rope structures. A two-dimensional slice through each rope contains an O-type magnetic neutral point, and the overall solution therefore correspondingly contains two X-type neutral points. We speculate on the relation of this unusual topology to observations of magnetic clouds as interplanetary signatures of coronal mass ejections. This work was supported by NASA grant NAG5-9733 to Middlebury College.

  4. Eruption of Magnetic Structures in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Mok, Y.; Mikic, Z.; Linker, J.

    1999-05-01

    Magnetic structures of various geometries, including loops and arcades, are present in the solar corona. Observations indicate that the magnetic field in some of these structures can be highly sheared, implying that a substantial amount of non-potential field energy is stored in the structure. If there is a physical mechanism that can induce a transition to a lower-energy state, the magnetic energy can be released into kinetic energy of plasma motions or thermal energy. We have studied the interactions between highly sheared structures (loops and arcades) and an emerging potential field structure by 3-D numerical simulations. It was found that the emerging structure can induce an MHD instability that leads to the release of magnetic energy into plasma kinetic energy at a rate near the ideal MHD time scale. A specific example is the eruption along the neutral line of a long, narrow, sheared arcade, which can be used to model a prominence eruption or a coronal mass ejection. This work was supported by NASA SPTP. Computational resource was provided by the San Diego Supercomputer Center through NSF.

  5. Inbound waves in the solar corona: A direct indicator of Alfvén surface location

    SciTech Connect

    DeForest, C. E.; Howard, T. A.; McComas, D. J.

    2014-06-01

    The tenuous supersonic solar wind that streams from the top of the corona passes through a natural boundary—the Alfvén surface—that marks the causal disconnection of individual packets of plasma and magnetic flux from the Sun itself. The Alfvén surface is the locus where the radial motion of the accelerating solar wind passes the radial Alfvén speed, and therefore any displacement of material cannot carry information back down into the corona. It is thus the natural outer boundary of the solar corona and the inner boundary of interplanetary space. Using a new and unique motion analysis to separate inbound and outbound motions in synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft, we have identified inbound wave motion in the outer corona beyond 6 solar radii for the first time and used it to determine that the Alfvén surface is at least 12 solar radii from the Sun over the polar coronal holes and 15 solar radii in the streamer belt, well beyond the distance planned for NASA's upcoming Solar Probe Plus mission. To our knowledge, this is the first measurement of inbound waves in the outer solar corona and the first direct measurement of lower bounds for the Alfvén surface.

  6. DUST AROUND R CORONAE BOREALIS STARS. I. SPITZER/INFRARED SPECTROGRAPH OBSERVATIONS

    SciTech Connect

    Anibal Garcia-Hernandez, D.; Lambert, David L. E-mail: nkrao@iiap.res.in

    2011-09-20

    Spitzer/infrared spectrograph (IRS) spectra from 5 to 37 {mu}m for a complete sample of 31 R Coronae Borealis stars (RCBs) are presented. These spectra are combined with optical and near-infrared photometry of each RCB at maximum light to compile a spectral energy distribution (SED). The SEDs are fitted with blackbody flux distributions and estimates are made of the ratio of the infrared flux from circumstellar dust to the flux emitted by the star. Comparisons for 29 of the 31 stars are made with the Infrared Astronomical Satellite (IRAS) fluxes from three decades earlier: Spitzer and IRAS fluxes at 12 {mu}m and 25 {mu}m are essentially equal for all but a minority of the sample. For this minority, the IRAS to Spitzer flux ratio exceeds a factor of three. The outliers are suggested to be stars where formation of a dust cloud or dust puff is a rare event. A single puff ejected prior to the IRAS observations may have been reobserved by Spitzer as a cooler puff at a greater distance from the RCB. RCBs which experience more frequent optical declines have, in general, a circumstellar environment containing puffs subtending a larger solid angle at the star and a quasi-constant infrared flux. Yet, the estimated subtended solid angles and the blackbody temperatures of the dust show a systematic evolution to lower solid angles and cooler temperatures in the interval between IRAS and Spitzer. Dust emission by these RCBs and those in the LMC is similar in terms of total 24 {mu}m luminosity and [8.0]-[24.0] color index.

  7. DUST AROUND R CORONAE BOREALIS STARS. II. INFRARED EMISSION FEATURES IN AN H-POOR ENVIRONMENT

    SciTech Connect

    Garcia-Hernandez, D. A.; Lambert, D. L. E-mail: nkrao@iiap.res.in

    2013-08-20

    Residual Spitzer/Infrared Spectrograph spectra for a sample of 31 R Coronae Borealis (RCB) stars are presented and discussed in terms of narrow emission features superimposed on the quasi-blackbody continuous infrared emission. A broad {approx}6-10 {mu}m dust emission complex is seen in the RCBs showing an extreme H-deficiency. A secondary and much weaker {approx}11.5-15 {mu}m broad emission feature is detected in a few RCBs with the strongest {approx}6-10 {mu}m dust complex. The Spitzer infrared spectra reveal for the first time the structure within the {approx}6-10 {mu}m dust complex, showing the presence of strong C-C stretching modes at {approx}6.3 and 8.1 {mu}m as well as of other dust features at {approx}5.9, 6.9, and 7.3 {mu}m, which are attributable to amorphous carbonaceous solids with little or no hydrogen. The few RCBs with only moderate H-deficiencies display the classical ''unidentified infrared bands (UIRs)'' and mid-infrared features from fullerene-related molecules. In general, the characteristics of the RCB infrared emission features are not correlated with the stellar and circumstellar properties, suggesting that the RCB dust features may not be dependent on the present physical conditions around RCB stars. The only exception seems to be the central wavelength of the 6.3 {mu}m feature, which is blueshifted in those RCBs showing also the UIRs, i.e., the RCBs with the smallest H deficiency.

  8. Dust around R Coronae Borealis Stars. I. Spitzer/Infrared Spectrograph Observations

    NASA Astrophysics Data System (ADS)

    Garca-Hernndez, D. A.; Rao, N. Kameswara; Lambert, David L.

    2011-09-01

    Spitzer/infrared spectrograph (IRS) spectra from 5 to 37 ?m for a complete sample of 31 R Coronae Borealis stars (RCBs) are presented. These spectra are combined with optical and near-infrared photometry of each RCB at maximum light to compile a spectral energy distribution (SED). The SEDs are fitted with blackbody flux distributions and estimates are made of the ratio of the infrared flux from circumstellar dust to the flux emitted by the star. Comparisons for 29 of the 31 stars are made with the Infrared Astronomical Satellite (IRAS) fluxes from three decades earlier: Spitzer and IRAS fluxes at 12 ?m and 25 ?m are essentially equal for all but a minority of the sample. For this minority, the IRAS to Spitzer flux ratio exceeds a factor of three. The outliers are suggested to be stars where formation of a dust cloud or dust puff is a rare event. A single puff ejected prior to the IRAS observations may have been reobserved by Spitzer as a cooler puff at a greater distance from the RCB. RCBs which experience more frequent optical declines have, in general, a circumstellar environment containing puffs subtending a larger solid angle at the star and a quasi-constant infrared flux. Yet, the estimated subtended solid angles and the blackbody temperatures of the dust show a systematic evolution to lower solid angles and cooler temperatures in the interval between IRAS and Spitzer. Dust emission by these RCBs and those in the LMC is similar in terms of total 24 ?m luminosity and [8.0]-[24.0] color index.

  9. Time-dependent chemisty of outgassed cometary detritus in the solar corona

    NASA Astrophysics Data System (ADS)

    Bryans, Paul; Pesnell, W. D.

    2013-07-01

    Recent observations of sungrazing comets have opened an exciting novel methof of probing the solar atmosphere. As well as providing valuable insight on the magnetic field of the lower corona, sungrazing comets also promise the potential of measuring the solar wind as their detritus follows the open field lines of the corona. In this work, we model the chemisty of the material sublimated from comets as they skim across the Sun. This material, largely water ice, is rapidly dissociated and ionized by the solar radiation field and coronal electrons. We track the evolution of the ionizing material as it expands into the corona using a generalized Haser-like model. Based on these results, we have predicted the emission resulting from these ions in different regions of the corona and compared the results with SDO/AIA observations.

  10. Predicting the Structure of the Solar Corona During the December 4, 2002 Total Solar Eclipse

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Linker, Jon A.; Riley, Pete; Lionello, Roberto

    2003-01-01

    The solar magnetic field plays a key role in determining coronal. The principal input to MHD models is the observed solar magnetic field. 3D MHD models can be used to compare with eclipse and coronograph images, SOHO images (LOSCO, EIT), Ulysses and WIND spacecraft data, and interplanetary scintillation (IPS) measurements. MHD computations can tell us about the structure of the corona. Eclipses can help us to verify the accuracy of the models. 4 December, 2002 total eclipce: visible in the southern hemisphere (South Atlantic, southern Africa, Indian Ocean, and Australia). Total in center Angola is at 06:00 UT.

  11. The Soft X-Ray/Microwave Ratio of Solar and Stellar Flares and Coronae

    NASA Technical Reports Server (NTRS)

    Benz, A. O.; Guedel, M.

    1994-01-01

    We have carried out plasma diagnostics of solar flares using soft X-ray (SXR) and simultaneous microwave observations and have compared the ratio of X-ray to microwave luminosities of solar flares with various active late-type stars available in the published literature. Both the SXR low-level ('quiescent') emission from stellar coronae and the flaring emission from the Sun and stars are generally interpreted as thermal radiations of coronal plasmas. On the other hand, the microwave emission of stars and solar flares is generally attributed to an extremely hot or nonthermal population of electrons. Solar flare SXR are conventionally measured in a narrower and harder passband than the stellar sources. Observations of the GOES-2 satellite in two energy channels have been used to estimate the luminosity of solar flares as it would appear in the ROSAT satellite passband. The solar and stellar flare luminosities fit well at the lower end of the active stellar coronae. The flare SXR/microwave ratio is similar to the ratio for stellar coronae. The average ratio follows a power-law relation L(sub X) varies as L(sub R)(sup 0.73 +/- 0.03) over 10 orders of magnitude from solar microflares to RS CVn and FK Com-type coronae. Dwarf Me and Ke stars, and RS CVn stars are also compatible with a linear SXR/microwave relation, but the ratio is slightly different for each type of star. Considering the differences between solar flares, stellar flares and the various active stellar coronae, the similarity of the SXR/microwave ratios is surprising. It suggests that the energetic electrons in low-level stellar coronae observed in microwaves are related in a similar way to the coronal thermal plasma as flare electrons to the flare thermal plasma, and, consequently, that the heating mechanism of active stellar coronae is a flare-like process.

  12. No evidence of a circumsolar dust ring from infrared observations of the 1991 solar eclipse.

    PubMed

    Lamy, P; Kuhn, J R; Lin, H; Koutchmy, S; Smartt, R N

    1992-09-01

    During the past 25 years there have been many attempts to detect a possible dust ring around the sun, with contradictory results. Before the 1991 eclipse, infrared eclipse experiments used single-element detectors to scan the corona along the ecliptic for excess surface brightness peaks. The availability of relatively large-format infrared array detectors now provides a considerable observational advantage: two-dimensional mapping of the brightness and polarization of the corona with high photometric precision. The 1991 eclipse path included the high-altitude Mauna Kea Observatory, a further advantage to measure the corona out to large angular distances from the sun. Results are reported from an experiment conducted on Mauna Kea with a HgCdTe-array detector sensitive to wavelengths between 1 and 2.5 micrometers, using broad-band J, H, and K filters. Although the sky conditions were not ideal, the H- and K-band surface brightnesses clearly show the inhomogeneous structure in the K-corona and the elliptical flattening of the F-corona, but no evidence of a circumsolar, local dust component out to 15 solar radii. PMID:17738279

  13. Circumstellar Dust Shells: Clues to the Evolution of R Coronae Borealis Stars

    NASA Astrophysics Data System (ADS)

    Montiel, Edward J.; Clayton, Geoffrey C.

    2016-06-01

    R Coronae Borealis (RCB) stars are an exotic group of extremely hydrogen- deficient, carbon-rich supergiants that are known for their spectacular declines in brightness (up to 8 mags) at irregular intervals. Two scenarios are currently competing to explain the origins of these stars. One suggests that RCB stars are the products after a binary white dwarf (WD) system merges. The other takes a single, evolved star and has it undergo a final, helium-shell flash (FF) and becoming a cool giant. Recently, observations of elemental abundances in RCB stars have strongly swung the argument in favor of the WD merger model. The FF scenario has maintained its relevancy by seemingly being the only model able to offer a suitable explanation for one RCB feature that merger model has historically struggled with explaining: the presence of cold, circumstellar dust envelopes which might be fossil planetary nebulae (PNe). In reality, the shells could actually be fossil PNe, material left over from the WD merger, or mass lost during the RCB phase, itself. I will present the results of my dissertation, which is to try and discern the nature and history of the far-IR dust shells around RCB stars to help understand the origin of these enigmatic stars. I will discuss our efforts to determine the mass, size, temperature, and morphology of these diffuse structures surrounding a sample of RCB stars using multi-wavelength observations ranging from the ultraviolet to the submillimeter. These observations have provided unprecedented wavelength coverage for both the central stars and their CSM. They have been examined by eye for morphology and have been used in the construction of maximum-light spectral energy distributions (SEDs). I will present the results of our Monte Carlo radiative transfer of the maximum-light SEDs. Finally, I will highlight our work investigating the HI abundance of the envelope of R Coronae Borealis, itself, using archival 21—cm observations from the Arecibo Observatory.

  14. Study of the solar corona using radio and space observations

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.

    1984-01-01

    The physics of coronal transients, the characteristics of radiation and accelerated particles at the time of flares, and the density/temperature structure of the transition region and corona and the coronal magnetic field are investigated.

  15. The Writhe of Helical Structures in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Toeroek, T.; Berger, M. A.; Kliem, B.

    2010-01-01

    Context. Helicity is a fundamental property of magnetic fields, conserved in ideal MHD. In flux rope topology, it consists of twist and writhe helicity. Despite the common occurrence of helical structures in the solar atmosphere, little is known about how their shape relates to the writhe, which fraction of helicity is contained in writhe, and how much helicity is exchanged between twist and writhe when they erupt. Aims. Here we perform a quantitative investigation of these questions relevant for coronal flux ropes. Methods. The decomposition of the writhe of a curve into local and nonlocal components greatly facilitates its computation. We use it to study the relation between writhe and projected S shape of helical curves and to measure writhe and twist in numerical simulations of flux rope instabilities. The results are discussed with regard to filament eruptions and coronal mass ejections (CMEs). Results. (1) We demonstrate that the relation between writhe and projected S shape is not unique in principle, but that the ambiguity does not affect low-lying structures, thus supporting the established empirical rule which associates stable forward (reverse) S shaped structures low in the corona with positive (negative) helicity. (2) Kink-unstable erupting flux ropes are found to transform a far smaller fraction of their twist helicity into writhe helicity than often assumed. (3) Confined flux rope eruptions tend to show stronger writhe at low heights than ejective eruptions (CMEs). This argues against suggestions that the writhing facilitates the rise of the rope through the overlying field. (4) Erupting filaments which are S shaped already before the eruption and keep the sign of their axis writhe (which is expected if field of one chirality dominates the source volume of the eruption), must reverse their S shape in the course of the rise. Implications for the occurrence of the helical kink instability in such events are discussed.

  16. Millimeter wave radiation sources visible in solar corona

    NASA Astrophysics Data System (ADS)

    Urpo, S.; Pohjolainen, S.; Krüger, A.

    1994-10-01

    Coronal millimeter wave sources (CMMS) have been observed at radio frequencies 22 90 GHz (at wavelengths 3 13 mm). The observed CMMS have been classified into three different categories according to their time scale and relation to other wave-length events. The CMMS indicate enhancement of electron density in the corona, as well as magnetic loop structures. The CMMS are evidence of dynamical processes taking place at the lower levels of the corona, propagating into the higher levels.

  17. Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind.

    PubMed

    McIntosh, Scott W; De Pontieu, Bart; Carlsson, Mats; Hansteen, Viggo; Boerner, Paul; Goossens, Marcel

    2011-07-28

    Energy is required to heat the outer solar atmosphere to millions of degrees (refs 1, 2) and to accelerate the solar wind to hundreds of kilometres per second (refs 2-6). Alfvén waves (travelling oscillations of ions and magnetic field) have been invoked as a possible mechanism to transport magneto-convective energy upwards along the Sun's magnetic field lines into the corona. Previous observations of Alfvénic waves in the corona revealed amplitudes far too small (0.5 km s(-1)) to supply the energy flux (100-200 W m(-2)) required to drive the fast solar wind or balance the radiative losses of the quiet corona. Here we report observations of the transition region (between the chromosphere and the corona) and of the corona that reveal how Alfvénic motions permeate the dynamic and finely structured outer solar atmosphere. The ubiquitous outward-propagating Alfvénic motions observed have amplitudes of the order of 20 km s(-1) and periods of the order of 100-500 s throughout the quiescent atmosphere (compatible with recent investigations), and are energetic enough to accelerate the fast solar wind and heat the quiet corona. PMID:21796206

  18. Shock Formation Height in the Solar Corona Estimated from SDO and Radio Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Nitta, N.

    2011-01-01

    Wave transients at EUV wavelengths and type II radio bursts are good indicators of shock formation in the solar corona. We use recent EUV wave observations from SDO and combine them with metric type II radio data to estimate the height in the corona where the shocks form. We compare the results with those obtained from other methods. We also estimate the shock formation heights independently using white-light observations of coronal mass ejections that ultimately drive the shocks.

  19. Solar Wind Acceleration from the Upper Chromosphere to the Corona in Coronal Hole Regions

    NASA Technical Reports Server (NTRS)

    Esser, Ruth

    1999-01-01

    Flow speeds derived in recent years from chromospheric/transition region and coronal observations suggest that the solar wind acceleration process might start at heights in the solar atmosphere much lower than previously imagined. The goal of the proposed investigation was to study atmospheric outflows in coronal hole regions from the chromosphere into the corona using observational and theoretical approaches. In addition to outflows, other plasma properties such as electron densities, and electron and ion temperatures were also included in the study. To investigate these plasma properties in the inner corona is important as they play a crucial role in placing limits on possible coronal heating and solar wind acceleration mechanisms.

  20. Dust Removal from Solar Cells

    NASA Technical Reports Server (NTRS)

    Ashpis, David E. (Inventor)

    2015-01-01

    A solar panel cleaning device includes a solar panel having a plurality of photovoltaic cells arranged in rows and embedded in the solar panel with space between the rows. A transparent dielectric overlay is affixed to the solar panel. A plurality of electrode pairs each of which includes an upper and a lower electrode are arranged on opposite sides of the transparent dielectric and are affixed thereto. The electrodes may be transparent electrodes which may be arranged without concern for blocking sunlight to the solar panel. The solar panel may be a dielectric and its dielectric properties may be continuously and spatially variable. Alternatively the dielectric used may have dielectric segments which produce different electrical field and which affects the wind "generated."

  1. Dust removal from solar cells

    NASA Technical Reports Server (NTRS)

    Ashpis, David E. (Inventor)

    2011-01-01

    A solar panel cleaning device includes a solar panel having a plurality of photovoltaic cells arranged in rows and embedded in the solar panel with space between the rows. A transparent dielectric overlay is affixed to the solar panel. A plurality of electrode pairs each of which includes an upper and a lower electrode are arranged on opposite sides of the transparent dielectric and are affixed thereto. The electrodes may be transparent electrodes which may be arranged without concern for blocking sunlight to the solar panel. The solar panel may be a dielectric and its dielectric properties may be continuously and spatially variable. Alternatively the dielectric used may have dielectric segments which produce different electrical field and which affects the wind "generated."

  2. Alfvenically driven slow shocks in the solar chromosphere and corona

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1992-01-01

    The nonlinear evolution of an Alfvenic impulse launched from the photosphere and its dynamical effects on the chromosphere, transition region (TR), and corona are investigated using a simple 1D model. It is found that the leading edge of the torsional pulse can steepen into a fast shock in the chromosphere if the pulse is of sufficiently large amplitude and short duration. A slow shock which develops behind the Alfvenic pulse can reflect downgoing Alfven waves back up to the corona. The upgoing reflected wave can induce a significant upward ejection of the TR. Nonlinear dynamics are found to lead to very impulsive behavior at later times. It is suggested that impulsive events occurring in the TR or corona need not be interpreted in terms of reconnection-driven microflares. It is also found that B(0) in the chromosphere can be amplified when the TR and chromosphere fall.

  3. Photometric studies of light scattering above the lunar terminator from Apollo solar corona photography

    NASA Technical Reports Server (NTRS)

    Mccoy, J. E.

    1976-01-01

    Excess brightness is found in 70-mm photographs of the solar corona above the lunar terminator during Apollo 15 and 17. Maximum brightness of this scattered light is determined from calibration of image density. The observed excess brightness displays circular symmetry above the lunar-horizon subsolar point, characteristic of forward diffraction scattering from micron or submicron size (solid) grains, and decays rapidly in intensity with altitude and distance from the lunar terminator. The observed brightness cannot be accounted for by a co-orbiting cloud of spacecraft contaminants, but requires a variable lunar dust 'atmosphere' over the terminator regions extending to altitudes in excess of 100 km. To maintain such large masses of lunar fines above the terminator requires either local mass-churning rates in excess of 2 by 10 to the -11th power g/sq cm sec or the assumption of some degree of high-altitude electrostatic suspension to increase the dwell time of individual grains at the altitudes observed. Such a model would reduce mass-churning rates while causing selective erosion/deposition and potential for escape of significant mass from the moon

  4. Nonuniform magnetohydrodynamic nature of the solar corona. I. Basic solutions

    SciTech Connect

    Priest, E.R.

    1988-06-01

    The highly structured nature of the corona is explained in terms of standing MHD disturbances of several types which are spread over extended regions rather than being concentrated in narrow regions like shock waves. The results suggest that plumes of enhanced plasma pressure and flow may be associated with fast-mode compressions having streamlines and magnetic field lines than converge relative to a uniform background corona. The deflection and compression of a coronal ray and the legs of a mass ejection may also be the result of a fast-mode compression. Holes or voids of reduced plasma and flow may be created by slow-mode compressions. 22 references.

  5. Dynamics of Solar System Dust

    NASA Technical Reports Server (NTRS)

    Dermott, Stanley F.

    2002-01-01

    The ongoing aim of the research is to investigate the dynamical and physical evolution of interplanetary dust particles in order to produce a detailed global model of the zodiacal cloud and its constituent components that is capable of predicting thermal fluxes in mid-infrared wave bands to an accuracy of 1% or better; with the additional aim of exploiting this research as a basis for predicting structure in exozodiacal clouds that may be signatures of unseen planets.

  6. 3D Electron Density Distributions in the Solar Corona during Solar Minima: Assessment for More Realistic Solar Wind Modeling

    NASA Astrophysics Data System (ADS)

    de Patoul, Judith; Foullon, Claire; Riley, Pete

    2015-11-01

    Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996-1997 and 2008-2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the results between the two solar minima and with two magnetohydrodynamic models. First, we confirm that the values of the density distribution in thermodynamic models are more realistic than in polytropic ones. The tomography provides more accurate distributions in the polar regions, and we find that the density in tomographic and thermodynamic solutions varies with the solar cycle in both polar and equatorial regions. Second, we find that the highest-density structures do not always correspond to the predicted large-scale heliospheric current sheet or its helmet streamer but can follow the locations of pseudo-streamers. We deduce that tomography offers reliable density distributions in the corona, reproducing the slow time evolution of coronal structures, without prior knowledge of the coronal magnetic field over a full rotation. Finally, we suggest that the highest-density structures show a differential rotation well above the surface depending on how they are magnetically connected to the surface. Such valuable information on the rotation of large-scale structures could help to connect the sources of the solar wind to their in situ counterparts in future missions such as Solar Orbiter and Solar Probe Plus.

  7. Gyroscopic waves in the base of the solar corona: A model and possible observational manifestations

    NASA Technical Reports Server (NTRS)

    Pisanko, Y. V.; Tritakis, V. P.; Paliatsos, A. G.

    1997-01-01

    A linear model for gyroscopic waves in the base of the solar corona is proposed. The purpose was to point out possible observational manifestations of the phenomenon. According to the model, these waves move slowly around the sun along heliolatitude circles. The fact that the red line corona is fainter on the solar side facing the apex and north-south and east-west asymmetries of the red coronal emission line could be interpreted as a possible observational manifestation of the gyroscopic wave phenomenon in the coronal base.

  8. The Structure and Dynamics of the Solar Corona and Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, J. (Technical Monitor)

    2002-01-01

    This report covers technical progress during the fourth quarter of the second year of NASA Sun-Earth Connections Theory Program (SECTP) contract "The Structure and Dynamics of the Solar Corona and Inner Heliosphere," NAS5-99188, between NASA and Science Applications International Corporation (SAIC), and covers the period May 16, 2001 to August 15, 2001. Under this contract SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD (magnetohydrodynamic) model.

  9. Joint Soviet--French investigations of the solar corona. 2. Photometry of solar corona of June 30, 1973

    SciTech Connect

    Vsekhsvyatskii, S.; Dzyubenko, N.; Ivanchuk, V.; Popov, O.; Rubo, G.; Koutchmy, S.; Koutchmy, O.; Stellmacher, G.

    1981-03-01

    The results are presented on a study of eclipse negative obtained on June 30, 1973, in Africa in the program of the Soviet--French experiment ''Dynamics of the White Corona'' by expeditions of Kiev University (Atar, Mauritania) and the Paris Astropysical Institute (Moussoro, Chad). The distributions of the total brightness of the corona out to rapprox. =4.5 R/sub sun/ and of its K and F components for the E and N directions are found with high accuracy on the basis of a new method of photometry and colorimetry using the images of stars down to 8.5/sup m/ as photometric standards. Neither reddening nor flattening of the dusty F component were detected at r<2.5 R/sub sun/. The integral brightness of the corona in the standard zone (1.03--6.0 R/sub sun/) is 0.64 x 10/sup -6/ E/sub sun/.

  10. A new model of amplitude fluctuations for radio propagation in solar corona during superior solar conjunction

    NASA Astrophysics Data System (ADS)

    Xu, Guanjun; Song, Zhaohui

    2016-02-01

    Radio communication links through the solar corona are disturbed by electron density fluctuations caused by coronal turbulence. This has become a problem for deep space exploration when the spacecraft is near superior conjunction with the Sun. With a forecast of the signal fluctuations the link could be adapted to compensate for these impairments in real time. Motivated by this need, we present a theoretical study of the signal fluctuations including an analytical expression for the amplitude fluctuations. The proposed model includes an anisotropic spectrum of density fluctuations, the solar wind "outer scale," and the spectral exponent. The performance of this analytical solution is demonstrated by comparison with published data from spacecraft and with other existing analytical methods.

  11. HERSCHEL/SCORE, imaging the solar corona in visible and EUV light: CCD camera characterization.

    PubMed

    Pancrazzi, M; Focardi, M; Landini, F; Romoli, M; Fineschi, S; Gherardi, A; Pace, E; Massone, G; Antonucci, E; Moses, D; Newmark, J; Wang, D; Rossi, G

    2010-07-01

    The HERSCHEL (helium resonant scattering in the corona and heliosphere) experiment is a rocket mission that was successfully launched last September from White Sands Missile Range, New Mexico, USA. HERSCHEL was conceived to investigate the solar corona in the extreme UV (EUV) and in the visible broadband polarized brightness and provided, for the first time, a global map of helium in the solar environment. The HERSCHEL payload consisted of a telescope, HERSCHEL EUV Imaging Telescope (HEIT), and two coronagraphs, HECOR (helium coronagraph) and SCORE (sounding coronagraph experiment). The SCORE instrument was designed and developed mainly by Italian research institutes and it is an imaging coronagraph to observe the solar corona from 1.4 to 4 solar radii. SCORE has two detectors for the EUV lines at 121.6 nm (HI) and 30.4 nm (HeII) and the visible broadband polarized brightness. The SCORE UV detector is an intensified CCD with a microchannel plate coupled to a CCD through a fiber-optic bundle. The SCORE visible light detector is a frame-transfer CCD coupled to a polarimeter based on a liquid crystal variable retarder plate. The SCORE coronagraph is described together with the performances of the cameras for imaging the solar corona. PMID:20428852

  12. Observaciones de la corona solar interior con un coronógrafo de espejo

    NASA Astrophysics Data System (ADS)

    Stenborg, G.; Schwenn, R.; Francile, C.; Rovira, M.

    El plasma de la corona solar es un buen indicador de las líneas de fuerza del campo magnético. Por lo tanto, el análisis de estructuras coronales cuasiestacionarias en la corona da importante información sobre el campo magnético y la actividad asociada. Se trata de poner límites a los modelos teóricos existentes mediante el estudio de distintas estructuras en la corona interior. En agosto de 1997 comenzó a operar el coronógrafo solar (MICA) en El Leoncito como parte del Observatorio Solar Alemán-Argentino. Desde su instalación obtiene imágenes de la corona solar (1.05 a 2.0 radios solares) en 2 líneas espectrales correspondientes a la emisión de Fe XIV y Fe X. El instrumento puede obtener imágenes cada minuto por lo que es ideal para estudiar procesos rápidos. Presentamos observaciones recientes que muestran la capacidad del coronógrafo así como la evolución de algunos eventos dinámicos observados por MICA.

  13. Research on dual spectrum solar-blind ultraviolet corona detection system

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Gu, Yan; Sun, Jianning; Pan, Jingsheng; Zhu, Bo; Wang, Qi; Lu, Xiaoqing

    2015-04-01

    A dual spectrum solar-blind ultraviolet (UV) corona detection system is designed in this paper. A common optical axis using a dichroic mirror is applied to this system in order to make visible light and ultraviolet light spectroscopy to ultraviolet detector and visible detectors. A high speed circuit of image processing based on TMS320DM642 DSP and a circuit that is used into system control and power management based on microcontroller are designed for the presented system. On the basis of the multi-threaded programming ideas, real-time image acquisition of ultraviolet and visible detectors, ultraviolet image noise reduction, image registration, dual spectral integration, Characteristic superimposing, serial communication and image display are achieved by using the DSP image processing circuit. Experimental results show that the dual spectrum solar-blind ultraviolet corona detection system has a good performance of corona detection based on ultraviolet and visible image fusion.

  14. Energy-Dependent Ionization States of Shock-Accelerated Particles in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Ng, C. K.; Tylka, A. J.

    2000-01-01

    We examine the range of possible energy dependence of the ionization states of ions that are shock-accelerated from the ambient plasma of the solar corona. If acceleration begins in a region of moderate density, sufficiently low in the corona, ions above about 0.1 MeV/amu approach an equilibrium charge state that depends primarily upon their speed and only weakly on the plasma temperature. We suggest that the large variations of the charge states with energy for ions such as Si and Fe observed in the 1997 November 6 event are consistent with stripping in moderately dense coronal. plasma during shock acceleration. In the large solar-particle events studied previously, acceleration occurs sufficiently high in the corona that even Fe ions up to 600 MeV/amu are not stripped of electrons.

  15. The structure of the white-light corona and the large-scale solar magnetic field

    NASA Technical Reports Server (NTRS)

    Sime, D. G.; Mccabe, M. K.

    1990-01-01

    The large-scale density structure of the white-light solar corona is compared to the organization of the solar magnetic field as identified by the appearance of neutral lines in the photosphere to examine whether any consistent relationship exists between the two. During the period covering Carrington rotations 1717 to 1736 brightness enhancements in the low corona tend to lie over the global neutral sheet identified in the photospheric magnetic field. The brightest of these enhancements are associated with neutral lines throguh active regions. These associations are not 1-1, but do hold both in stable and evolving conditions of the corona. A significant number of long-lived neutral lines is found, including filaments seen in H-alpha, for which there are not coronal enhancements.

  16. Nanoflares and the solar X-ray corona

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1988-01-01

    Observations of the sun with high time and spatial resolution in UV and X-rays show that the emission from small isolated magnetic bipoles is intermittent and impulsive, while the steadier emission from larger bipoles appears as the sum of many individual impulses. We refer to the basic unit of impulsive energy release as a nanoflare. The observations suggest, then, that the active X-ray corona of the sun is to be understood as a swarm of nanoflares. This interpretation suggests that the X-ray corona is created by the dissipation at the many tangential discontinuities arising spontaneously in the bipolar fields of the active regions of the sun as a consequence of random continuous motion of the footpoints of the field in the photospheric convection. The quantitative characteristics of the process are inferred from the observed coronal heat input.

  17. Generalized similarity in magnetohydrodynamic turbulence as seen in the solar corona and solar wind

    NASA Astrophysics Data System (ADS)

    Chapman, S. C.; Leonardis, E.; Nicol, R. M.; Foullon, C.

    2010-12-01

    A key property of turbulence is that it can be characterized and quantified in a robust and reproducible way in terms of the ensemble averaged statistical properties of fluctuations. Importantly, fluctuations associated with a turbulent field show similarity or scaling in their statistics and we test for this in observations of magnetohydrodynamic turbulence in the solar corona and solar wind with both power spectra and Generalized Structure Functions. Realizations of turbulence that are finite sized are known to exhibit a generalized or extended self-similarity (ESS). ESS was recently demonstrated in magnetic field timeseries of Ulysses single point in-situ observations of fluctuations of quiet solar wind for which a single robust scaling function was found [1-2]. Flows in solar coronal prominences can be highly variable, with dynamics suggestive of turbulence. The Hinode SOT instrument provides observations (images) at simultaneous high spatial and temporal resolution which span several decades in both spatial and temporal scales. We focus on specific Calcium II H-line observations of solar quiescent prominences with dynamic, highly variable small-scale flows. We analyze these images from the perspective of a finite sized turbulent flow. We discuss this evidence of ESS in the SOT images and in Ulysses solar wind observations- is there a single universal scaling of the largest eddies in the finite range magnetohydrodynamic turbulent flow? [1] S. C. Chapman, R. M. Nicol, Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence, Phys. Rev. Lett., 103, 241101 (2009) [2] S. C. Chapman, R. M. Nicol, E. Leonardis, K. Kiyani, V. Carbone, Observation of universality in the generalized similarity of evolving solar wind turbulence as seen by ULYSSES, Ap. J. Letters, 695, L185, (2009)

  18. Predicting the Structure of the Solar Corona for the Total Solar Eclipse of March 29,2006

    NASA Technical Reports Server (NTRS)

    Mikic, Z.; Linker, J. a.; Lionello, R.; Riley, P.; TItov, V.

    2007-01-01

    We describe the use of a three-dimensional MHD model to predict the s tructure of the corona prior to the total solar eclipse of March 29, 2006. The calculation uses the observed photospheric radial magnetic f ield as a boundary condition. We use a new version of our model that has an improved description of energy transport in the corona. The mo del allows us to predict the emission of X-ray and EUV radiation in t he corona. We compare the predicted polarization brightness in the co rona with four observations of the eclipse from Greece, Egypt, and Li bya, and we demonstrate that the model accurately predicts the largescale structure of the corona. We also compare X-ray emission from the model with GOES/SXI images.

  19. THE CYCLING OF MATERIAL BETWEEN THE SOLAR CORONA AND CHROMOSPHERE

    SciTech Connect

    Guerreiro, N.; Hansteen, Viggo; De Pontieu, B.

    2013-05-20

    Observations of transition region emission lines reveal the presence of redshifts in lines formed from the top of the chromosphere up to temperatures of about 2.5 Multiplication-Sign 10{sup 5} K and blueshifts for temperatures above that. However, it is doubtful that the apparent large downward flows in the lower transition region represents an emptying of the corona, so some mechanism must be responsible for maintaining the mass balance between the corona and the lower atmospheric layers. We use a three-dimensional magnetohydrodynamics code to study the cycling of mass between the corona, transition region, and chromosphere by adding a tracer fluid to the simulation in various temperature intervals in the transition region. We find that most of the material seen in transition region emission lines formed at temperatures below 3 Multiplication-Sign 10{sup 5} K is material that has been rapidly heated from chromospheric temperatures and thereafter is pushed down as it cools. This implies that the bulk of transition region material resides in small loops. In these loops, the density is high and radiative cooling is efficient.

  20. A Fascinating Phase In Solar Science: The Rise And Fall Of Schaeberle's Mechanical Theory Of The Solar Corona

    NASA Astrophysics Data System (ADS)

    Pearson, John C.; Orchiston, W.

    2011-01-01

    Nearing the end of the late nineteenth century, John Martin Schaeberle, a staff astronomer at the Lick Observatory, wondered about the forces necessary to create the visual apparition of the solar corona. Homebound from the December 1889 eclipse, he laid the ground work for a new theory to explain the intricate coronal details and broad forms that he observed from numerous composite drawings and photographs from the January 1889 eclipse. In 1891, he published his A Mechanical Theory of the Solar Corona which attracted a diverse group of followers. This paper will highlight Schaeberle's theory as it evolved, which was then subjected to tests and intense scrutiny, and finally proven wrong.

  1. Solar Magnetic Fields as a Clue for the Mystery of the Permanent Solar Wind and the Solar Corona

    NASA Astrophysics Data System (ADS)

    Mogilevsky, M. A.; Nikolskaya, K. I.

    We analyze, generalize, and interpret the data for the permanent solar wind (PSW) velocities measured on board of Ulysses (SWOOPS). A finding of a principal importance extracted from Ulysses' observations is a discovery of the clear-cut inverse coupling between the SW velocities and the solar magnetic fields (SMF) (the stronger close MF, the slower SW, and vice versa), which points to the solar wind plasma deceleration by the SMFs below the source surface. Taking SMF into consideration leads to the alternative paradigm of the SW: flow deceleration instead of the acceleration. In such a case, both the SW and solar corona are converted into products of the interaction of an initial high-velocity plasma outflow ejected from the photosphere by solar magnetic fields. The latter not only divide initial fluxes into fast and slow parts, but also create and heat the corona through capture and stoppage of plasma in magnetic traps and the subsequent plasma heating. Observational arguments are presented in favor of the suggested idea.

  2. Threaded-Field-Line Model for the Transition Region and Solar Corona

    NASA Astrophysics Data System (ADS)

    Sokolov, I.; van der Holst, B.; Gombosi, T. I.

    2014-12-01

    In numerical simulations of the solar corona, both for the ambient state and especially for dynamical processes the most computational resources are spent for maintaining the numerical solution in the Low Solar Corona and in the transition region, where the temperature gradients are very sharp and the magnetic field has a complicated topology. The degraded computational efficiency is caused by the need in a highest resolution as well as the use of the fully three-dimensional implicit solver for electron heat conduction. On the other hand, the physical nature of the processes involved is rather simple (which still does not facilitate the numerical methods) as long as the heat fluxes as well as slow plasma motional velocities are aligned with the magnetic field. The Alfven wave turbulence, which is often believed to be the main driver of the solar wind and the main source of the coronal heating, is characterized by the Poynting flux of the waves, which is also aligned with the magnetic field. Therefore, the plasma state in any point of the three-dimensional grid in the Low Solar Corona can be found by solving a set of one-dimensional equations for the magnetic field line ("thread"), which passes through this point and connects it to the chromosphere and to the global Solar Corona. In the present paper we describe an innovative computational technology based upon the use of the magnetic-field-line-threads to forlmulate the boundary condition for the global solar corona model which traces the connection of each boundary point to the cromosphere along the threads.

  3. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    NASA Astrophysics Data System (ADS)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  4. Erratum: SDO-AIA Observation of Kelvin-helmholtz Instability in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Ofman, Leon; Thompson, Barbara J.

    2012-01-01

    The first SDOAIA observation of the KelvinHelmholtz instability in the solar corona in the 2010 April 8 event was reported by Ofman Thompson (2010, 2011). Foullon et al. (2011), which was published prior to Ofman Thompson (2011), claimed the detection of the KelvinHelmholtz instability in a later event (2010 November 3), and should have been cited in Ofman Thompson (2011).

  5. The Structure and Dynamics of the Solar Corona and Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    2002-01-01

    This report covers technical progress during the second quarter of the first year of NASA Sun-Earth Connections Theory Program (SECTP) contract 'The Structure and Dynamics of the Solar Corona and Inner Heliosphere,' NAS5-99188, between NASA and Science Applications International Corporation. and covers the period November 16, 1999 to February 15, 2000. Under this contract SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD (magnetohydrodynamic) model. The topics studied include: the effect of emerging flux on the stability of helmet streamers, coronal loops and streamers, the solar magnetic field, the solar wind, and open magnetic field lines.

  6. Electron acceleration to high energies at quasi-parallel shock waves in the solar corona

    NASA Technical Reports Server (NTRS)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves are generated by flares and/or coronal mass ejections. They manifest themselves in solar type 2 radio bursts appearing as emission stripes with a slow drift from high to low frequencies in dynamic radio spectra. Their nonthermal radio emission indicates that electrons are accelerated to suprathermal and/or relativistic velocities at these shocks. As well known by extraterrestrial in-situ measurements supercritical, quasi-parallel, collisionless shocks are accompanied by so-called SLAMS (short large amplitude magnetic field structures). These SLAMS can act as strong magnetic mirrors, at which charged particles can be reflected and accelerated. Thus, thermal electrons gain energy due to multiple reflections between two SLAMS and reach suprathermal and relativistic velocities. This mechanism of accelerating electrons is discussed for circumstances in the solar corona and may be responsible for the so-called 'herringbones' observed in solar type 2 radio bursts.

  7. Quasi-stereoscopic imaging of the solar X-ray corona

    NASA Technical Reports Server (NTRS)

    Batchelor, David

    1994-01-01

    The first published three-dimensional images of the solar X-ray corona obtained by means of solar rotational parallax, are presented in stereographic form. Image pairs approximately 12 hours apart during times of stable coronal conditions were selected from the digitized images obtained with the Skylab X-ray Spectrographic Telescope. The image resolution limit is approximately 10 arc sec. Many coronal structures not visible in the separate images are clearly observed when the image pairs are viewed stereoscopically. This method gives a preview of the potential resources for solar research and forecasting of solar-geomagnetic interactions that could be provided by stereoscopic observations of the Sun using a small group of spacecraft. The method is also applicable to other X-ray, ultraviolet, or other wavebands in which the corona has extended, transparent structure.

  8. Is it Possible that the Solar Corona Temperature Profile Does Not Require Mechanical Deposition of Energy?

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Roytershteyn, V.; Karimabadi, H.; Daughton, W. S.

    2012-12-01

    The solar corona, like other main sequence stars, has a non-monotonic temperature inversion. Prevailing ideas have suggested that the inversion is the result of deposition of mechanical energy near the temperature maximum, possibly afforded by the damping of wave trains. The adequacy of ones quantitative description of heat flow in the corona plays a central role in the association of non-monotonic profile and a heating requirement. Using first principles calculations we demonstrate that neither the size nor the direction of the heat flow in the corona is implied by knowing the temperature profile. The usually used Spitzer-Braginskii transport is not appropriate for the solar corona, but has until now been used to infer the sign of the heat flow divergence at the temperature maximum. By vacating the certainty of heat flow diverging from the coronal temperature maximum there is no immediate connection between the non-monotonic temperature profile and the need for energy or momentum addition to the corona at the temperature maximum. Thus the coronal problem is to explain the temperature profile, not necessarily produce an energy deposition, predicted by a broken transport description. The same argument that shows that Spitzer-Braginskii transport is inadequate also implies that the underlying kinetic state of the plasma is non-local and will be permeated by non-thermal distributions. Such non-thermal distributions are a necessary prerequisite for the alternate velocity filtration model that explains the non-monotonic temperature profile of the solar corona as well as all stars on the zero age main sequence.

  9. Dust Accumulation and Cleaning of the MER Spirit Solar Array

    NASA Astrophysics Data System (ADS)

    Herman, J. A.; Lemmon, M. T.; Johnson, J. R.; Cantor, B. A.; Stella, P. M.; Chin, K. B.; Wood, E. G.

    2012-12-01

    The solar array of the NASA Mars Exploration Rover (MER) Spirit was expected to accumulate so much dust after ninety Martian days (sols) that it could no longer provide enough energy to guarantee continued surface operations. Instead, due in part to low dust accumulation rates and numerous dust cleaning events, Spirit carried out surface operations for over 2200 sols (over three Mars years). During this time period, the rover experienced four Martian winters and several dust storms. Because the sources of solar energy loss are known, the solar array energy output offers a tool to quantitatively estimate the loading and aeolian removal of dust from the solar array each sol. We will discuss the accumulation of dust on the solar panels as a proxy for dust movement at Gusev Crater over the course of the entire mission.

  10. Zero-beta MHD simulations of a solar eruption driven by a solar wind in the corona

    NASA Astrophysics Data System (ADS)

    Lee, Hwanhee; Magara, Tetsuya; Kang, Jihye

    2016-05-01

    Solar winds always exist in the corona, continuously carrying out magnetized plasmas from the solar surface toward the interplanetary space. We assume that a solar wind also plays an important role in producing a solar eruption. To confirm this hypothesis, we construct a solar eruption model in which a solar wind upflow is imposed at the top boundary of three-dimensional zero-beta magnetogydrodynamic (MHD) simulations. The initial magnetic field is given by nonlinear force-free field (NLFFF) reconstruction that is applied to the surface field provided by a flux emergence simulation. The simulation demonstrates that a solar eruption occurs due to the imbalance between magnetic pressure gradient force and magnetic tension force caused by a solar wind that gradually transports the envelope flux outward. This result provides important insights into the role of solar winds in producing solar eruptions.

  11. The nonuniform magnetohydrodynamic nature of the solar corona. IV. Effect of magnetogravity interactions

    SciTech Connect

    De Ville, A.; Priest, E.R. )

    1990-08-01

    Magnetogravity interactions in the solar corona are considered by extending the method proposed by Priest for modeling standing magnetohydrodynamic disturbances. The effects of gravity on the basic solutions are to increase the maxima of the plasma and magnetic pressures and to decrease the curvature of the field lines. Also, the classification of the solutions is altered. When the transverse component of the magnetic field has a zero, more complex magnetic field structures are produced, reminiscent of coronal streamers, in which the type of interaction occurring in the plasma alters with height in the corona.

  12. STATISTICS OF DENSITY FLUCTUATIONS DURING THE TRANSITION FROM THE OUTER SOLAR CORONA TO THE INTERPLANETARY SPACE

    SciTech Connect

    Telloni, D.; Antonucci, E.; Bruno, R.; D'Amicis, R.; Carbone, V.

    2009-11-20

    This paper investigates the evolution of the plasma density fluctuations of the fast and slow solar wind from the solar corona into the interplanetary space. The study is performed by comparing the low-frequency spectra and the phase correlation of the proton density oscillations, measured in the inner heliosphere with the Helios 2 in situ instrumentation, with those due to the large-scale density perturbations observed with UVCS/SOHO in the outer corona. We find that the characteristics of density fluctuations of the fast solar wind are maintained in the transition from the outer corona to the inner heliosphere, thus suggesting a coronal imprint for the heliospheric large-scale 1/f {sup 2} noise spectrum. In contrast, a quick dynamical evolution is observed in the slow wind, which, starting from large-scale fluctuations with strong phase correlations in the outer corona, gives rise to a Kolmogorov-like spectrum and an accumulation of density structures at small scales at 0.3 AU. This can be explained in the framework of nearly incompressible turbulence.

  13. Heavy ion reflection and heating by collisionless shocks in polar solar corona

    NASA Astrophysics Data System (ADS)

    Zimbardo, Gaetano

    2011-05-01

    We propose a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona. We consider that a large number of small scale shock waves can be present in the solar corona, as suggested by recent observations of polar coronal jets by the Hinode and STEREO spacecraft. The heavy ion energization mechanism is, essentially, the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E=-(1/ c) V B. The acceleration due to E is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T??T?, which can excite ion cyclotron waves. Also, heating is more than mass proportional with respect to protons, because the heavy ion orbit is mostly upstream of the quasi-perpendicular shock foot. The observed temperature ratios between O 5+ ions and protons in the polar corona, and between ? particles and protons in the solar wind are easily recovered. We also discuss the mechanism of heavy ion reflection, which is based on ion gyration in the magnetic overshoot of the shock.

  14. Ultraviolet Spectroscopy of the Extended Solar Corona with UVCS/SOHO

    NASA Astrophysics Data System (ADS)

    Kohl, John

    1998-05-01

    The Ultraviolet Coronagraph Spectrometer (UVCS) on the Solar and Heliospheric Observatory (SOHO) is designed to obtain an empirical description of the extended solar corona and its expansion into the solar wind. During its first two years of operation, UVCS has been used to determine velocity distributions and bulk motions of protons, electrons and minor ions; particle densities, and elemental abundances from near the base of the solar corona to heliocentric heights up to 10 solar radii. Measurements of spectral line profiles and comparisons of observed intensities with self consistent coronal models are used to derive values for the coronal plasma parameters. The measurements are challenging the current theories on the composition and acceleration of the solar wind. The velocity distributions for coronal ions are found to be anisotropic by as much as a factor of 15 and the most probable speeds in the direction perpendicular to the coronal magnetic field are extremely large reaching values corresponding to temperatures of over 2 10^8 K in a thermalized plasma. Elemental abundances in specific coronal structures can be an order of magnitude smaller than in the solar photosphere. Similarities between abundances in the corona and abundances in fast and slow wind streams provide clues about the coronal source regions of the wind. The physical processes and atomic parameters required to derive the coronal parameters from the observations will be discussed. Current ideas about the theoretical explanation for the derived empirical description of the corona will also be described briefly. This work is supported by the National Aeronautics and Space Administration under grant NAG5-3192 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana and by Swiss funding agencies.

  15. Numerical simulations of self-consistently generated κ distributions in the solar wind and solar corona

    NASA Astrophysics Data System (ADS)

    Randol, B. M.; Christian, E. R.

    2014-12-01

    In a previous study (Randol and Christian, submitted to JGR, April 2014), numerical simulations of protons and anti-protons obeying Coulomb's law provided key insight into the self-consistent generation of κ distributions in space plasmas. In that study, the velocity distribution function (VDF) first formed a tail with the common spectral index of -5 and then gradually became a κ-r distribution, with κ = 1.5, corresponding to the common spectrum. The form of this distribution was found to relate to the electric field distribution function (EDF). These results were robust to a range of initialized densities and thermal speeds; however, this range of parameters did not include values close to those of the solar wind at 1 AU. Here we report on simulations of the same type but for a broader range of parameters, including those of the solar wind and corona. Our earliest findings indicate a lack of consistency in the VDF with the common spectrum, the cause of which again lies in the EDF. The results are instructive for understanding the solar wind ion VDF core and tail, as well as for κ distributed plasmas in general.

  16. The temperature structure, mass, and energy flow in the corona and inner solar wind

    NASA Technical Reports Server (NTRS)

    Withbroe, George L.

    1988-01-01

    Remote-sensing and in situ data are used to constrain a radiative energy balance model in order to study the radial variations of coronal temperatures, densities, and outflow speeds in several types of coronal holes and in an unstructured quiet region of the corona. A one-fluid solar wind model is used which takes into account the effects of radiative and inward conductive losses in the low corona and the chromospheric-coronal transition region. The results show that the total nonradiative energy input in magnetically open coronal regions is 5 + or - 10 to the 5th ergs/sq cm, and that most of the energy heating the coronal plasma is dissipated within 2 solar radii of the solar surface.

  17. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  18. Global Magnetic Topology and Large-Scale Dynamics of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Titov, Viacheslav; Linker, Jon; Mikic, Zoran; Riley, Pete; Lionello, Roberto; Downs, Cooper; Torok, Tibor

    We consider the global topology of the coronal magnetic field in relation to the large-scale dynamics of the solar corona. Our consideration includes recent results on the structural analysis of this field determined in two different approximations, namely, potential field source surface model and solar magnetohydrodynamic model. We identify similarities and differences between structural features of the magnetic field obtained in these two models and discuss their implications for understanding various large-scale phenomena in the solar corona. The underlying magnetic topology manifests itself in a variety of observed morphological features such as streamers, pseudo-streamers or unipolar streamers, EUV dimmings, flare ribbons, coronal holes, and jets. For each of them, the related magnetic configuration has specific structural features, whose presence has to be not only identified but also verified on its independence from the used field model in order to reliably predict the impact of such features on physical processes in the corona. Among them are magnetic null points and minima, bald patches, separatrix surfaces and quasi-separatrix layers, and open and closed separator field lines. These features form a structural skeleton of the coronal magnetic field and are directly involved through the ubiquitous process of magnetic reconnection in many solar dynamic phenomena such as coronal mass ejections, solar wind, acceleration and transport of energetic particles. We will pinpoint and elucidate in our overview some of such involvements that have recently received a considerable attention in our ongoing projects at Predictive Science.

  19. Study of the solar corona using radio and space observations

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.

    1979-01-01

    Optical, radio and X-ray evidence of violent mass motions in the corona has existed for some years but only recently have the form, nature, frequency and implication of the transients become obvious. The observed properties of coronal transients concentrating on the white-light and radio manifestations. The possible mechanisims involved in the radio bursts are discussed. The estimates of various forms of energy are reviewed. It appears that the magnetic energy transported from the Sun by the transient exceeds that of any other form, and that magnetic forces dominate in the dynamics of the motions. The conversion of magnetic energy into mechanical energy, by expansion of the fields, provides a possible driving force for the coronal and interplanetary shock waves.

  20. Global Multi-Fluid Solar Corona and Inner Heliosphere Model for Solar Probe Plus and Solar Orbite

    NASA Astrophysics Data System (ADS)

    van der Holst, B.; Sokolov, I.; Toth, G.; Gombosi, T. I.

    2014-12-01

    The mechanisms that heat and accelerate the fast and slow wind have not yet been conclusively identified, and their understanding is one of the major science goals of the Solar Orbiter (SO) and Solar Probe Plus (SPP) missions. Helium abundance and properties in the solar wind are critical tracers for both processes so that understanding them is key towards gaining insight in the solar wind phenomenon, and being able to model it and predict its properties. SO and SPP will carry critical instrumentation to measure the properties of Helium in the solar wind at distances between within 10 solar radii up to 1 AU. We present a generalization of the recently developed global solar corona and inner heliosphere model with low-frequency Alfvenic turbulence [van der Holst et al. (2014)] to include alpha-particle dynamics. This new multi-fluid model uses the stochastic heating mechanism to partition the turbulence dissipation into coronal heating of the electrons and ions. The momentum and energy exchange rates due to Coulomb collisions are accounted for. We discuss the feasibility for Alfvenic turbulence to simultaneously address the coronal heating and proton-alpha particle differential streaming.

  1. Analysis of IRAS solar system dust data

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.; Nicholson, P. D.

    1991-01-01

    Data in the Infrared Astronomical Satellite (IRAS) Zodiacal History File were analyzed to extract dust band locations and peak brightness measurements from approximately 1,000 individual IRAS scans. The study had three goals. One was to show that the prominent solar system dust bands are associated with Hirayama asteroid families and thus that collisions between asteroids account for a significant fraction of the particles in the zodiacal cloud. Recent work suggests that while the Hirayama families are a major source of the dust in the bands, there may also be contributions from two or three smaller, more recently recognized asteroid families. A second goal was to show that there is evidence in the IRAS dust data for the transport of particles from asteroid belt to the Earth by Poynting-Robertson light drag and thus account for the fact that asteroid particles are collected in the Earth's stratosphere. Results of the study will confirm the location of the dust bands within the inner asteroid belt, and show conclusively that the material seen by IRAS is now spread over a wide range of distances from the sun. The third goal was to construct a model of the background zodiacal cloud that satisfies the proper dynamical constraints. Figures are provided to show the scans processed to remove zodiacal background and Galactic signals, and the resulting polynomial fits to the 25 micron scan. The latter provided objective estimates of band widths, peak locations, and peak fluxes. Modelling and analysis of the resulting band data has been presented at several conferences and is the subject of a number of forthcoming papers.

  2. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    SciTech Connect

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina; Alexander, Caroline; Golub, Leon; DeLuca, Edward; Schuler, Timothy

    2014-05-20

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  3. Radial distribution of compressive waves in the solar corona revealed by Akatsuki radio occultation observations

    SciTech Connect

    Miyamoto, Mayu; Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki; Nakamura, Masato; Tokumaru, Munetoshi; Shiota, Daikou; Isobe, Hiroaki; Asai, Ayumi; Häusler, Bernd; Pätzold, Martin; Nabatov, Alexander

    2014-12-10

    Radial variations of the amplitude and the energy flux of compressive waves in the solar corona were explored for the first time using a spacecraft radio occultation technique. By applying wavelet analysis to the frequency time series taken at heliocentric distances of 1.5-20.5 R{sub S} (solar radii), quasi-periodic density disturbances were detected at almost all distances. The period ranges from 100 to 2000 s. The amplitude of the fractional density fluctuation increases with distance and reaches ∼30% around 5 R{sub S} , implying that nonlinearity of the wave field is potentially important. We further estimate the wave energy flux on the assumption that the observed periodical fluctuations are manifestations of acoustic waves. The energy flux increases with distance below ∼6 R{sub S} and seems to saturate above this height, suggesting that the acoustic waves do not propagate from the low corona but are generated in the extended corona, probably through nonlinear dissipation of Alfvén waves. The compressive waves should eventually dissipate through shock generation to heat the corona.

  4. The Substructure of the Solar Corona Observed in the Hi-C Telescope

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore calculate how the intensity scales from a low-resolution (AIA) pixels to high-resolution (Hi-C) pixels for both the dynamic events and "background" emission (meaning, the steady emission over the 5 minutes of data acquisition time). We find there is no evidence of substructure in the background corona; the intensity scales smoothly from low-resolution to high-resolution Hi-C pixels. In transient events, however, the intensity observed with Hi-C is, on average, 2.6 times larger than observed with AIA. This increase in intensity suggests that AIA is not resolving these events. This result suggests a finely structured dynamic corona embedded in a smoothly varying background.

  5. Discovery of Finely Structured Dynamic Solar Corona Observed in the Hi-C Telescope

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e. have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70 percent of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  6. Magnetic Untwisting in Solar Jets that Go into the Outer Corona in Polar Coronal Holes

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.

    2015-06-01

    We study 14 large solar jets observed in polar coronal holes. In EUV movies from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), each jet appears similar to most X-ray jets and EUV jets that erupt in coronal holes; but each is exceptional in that it goes higher than most, so high that it is observed in the outer corona beyond 2.2 RSun in images from the Solar and Heliospheric Observatory/Large Angle Spectroscopic Coronagraph (LASCO)/C2 coronagraph. From AIA He ii 304 Å movies and LASCO/C2 running-difference images of these high-reaching jets, we find: (1) the front of the jet transits the corona below 2.2 RSun at a speed typically several times the sound speed; (2) each jet displays an exceptionally large amount of spin as it erupts; (3) in the outer corona, most of the jets display measureable swaying and bending of a few degrees in amplitude; in three jets the swaying is discernibly oscillatory with a period of order 1 hr. These characteristics suggest that the driver in these jets is a magnetic-untwisting wave that is basically a large-amplitude (i.e., nonlinear) torsional Alfvén wave that is put into the reconnected open field in the jet by interchange reconnection as the jet erupts. From the measured spinning and swaying, we estimate that the magnetic-untwisting wave loses most of its energy in the inner corona below 2.2 RSun. We point out that the torsional waves observed in Type-II spicules might dissipate in the corona in the same way as the magnetic-untwisting waves in our big jets, and thereby power much of the coronal heating in coronal holes.

  7. Spatiotemporal organization of energy release events in the quiet solar corona

    SciTech Connect

    Uritsky, Vadim M.; Davila, Joseph M.

    2014-11-01

    Using data from the STEREO and SOHO spacecraft, we show that temporal organization of energy release events in the quiet solar corona is close to random, in contrast to the clustered behavior of flaring times in solar active regions. The locations of the quiet-Sun events follow the meso- and supergranulation pattern of the underling photosphere. Together with earlier reports of the scale-free event size statistics, our findings suggest that quiet solar regions responsible for bulk coronal heating operate in a driven self-organized critical state, possibly involving long-range Alfvénic interactions.

  8. Ultraviolet and extreme ultraviolet spectroscopy of the solar corona at the Naval Research Laboratory.

    PubMed

    Moses, J D; Ko, Y-K; Laming, J M; Provornikova, E A; Strachan, L; Beltran, S Tun

    2015-11-01

    We review the history of ultraviolet and extreme ultraviolet spectroscopy with a specific focus on such activities at the Naval Research Laboratory and on studies of the extended solar corona and solar-wind source regions. We describe the problem of forecasting solar energetic particle events and discuss an observational technique designed to solve this problem by detecting supra-thermal seed particles as extended wings on spectral lines. Such seed particles are believed to be a necessary prerequisite for particle acceleration by heliospheric shock waves driven by a coronal mass ejection. PMID:26560611

  9. Spatiotemporal Organization of Energy Release Events in the Quiet Solar Corona

    NASA Technical Reports Server (NTRS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2014-01-01

    Using data from the STEREO and SOHO spacecraft, we show that temporal organization of energy release events in the quiet solar corona is close to random, in contrast to the clustered behavior of flaring times in solar active regions. The locations of the quiet-Sun events follow the meso- and supergranulation pattern of the underling photosphere. Together with earlier reports of the scale-free event size statistics, our findings suggest that quiet solar regions responsible for bulk coronal heating operate in a driven self-organized critical state, possibly involving long-range Alfvenic interactions.

  10. Observations from space of the solar corona/inner zodiacal light

    NASA Technical Reports Server (NTRS)

    Macqueen, R. M.; Ross, C. L.; Mattingly, T.

    1973-01-01

    Observations, from the Apollo 16 Spacecraft, in lunar orbit, of the total radiance of the K + F corona, from 3 to 55 solar radii are presented and discussed. The logarithmic slope of the K + F coronal radiance, at distances greater than 20 solar radii, is found to be n equals 1.93, slightly less steep than previous determinations. The photometric axis of the radiance is found to be displaced 3 plus or minus 1 deg north of the ecliptic, at distances greater than 20 solar radii, and this displacement is interpreted as an annual variation due to non-coincidence of the ecliptic and the symmetry axis of the zodiacal cloud.

  11. Unified Models of Turbulence and Nonlinear Wave Evolution in the Extended Solar Corona and Solar Wind

    NASA Technical Reports Server (NTRS)

    Cranmer, Steven R.; Wagner, William (Technical Monitor)

    2003-01-01

    The PI (Cranmer) and Co-I (A. van Ballegooijen) made significant progress toward the goal of building a "unified model" of the dominant physical processes responsible for the acceleration of the solar wind. The approach outlined in the original proposal comprised two complementary pieces: (1) to further investigate individual physical processes under realistic coronal and solar wind conditions, and (2) to extract the dominant physical effects from simulations and apply them to a one-dimensional and time-independent model of plasma heating and acceleration. The accomplishments in the report period are thus divided into these two categories: 1a. Focused Study of Kinetic MHD Turbulence. We have developed a model of magnetohydrodynamic (MHD) turbulence in the extended solar corona that contains the effects of collisionless dissipation and anisotropic particle heating. A turbulent cascade is one possible way of generating small-scale fluctuations (easy to dissipate/heat) from a pre-existing population of low-frequency Alfven waves (difficult to dissipate/heat). We modeled the cascade as a combination of advection and diffusion in wavenumber space. The dominant spectral transfer occurs in the direction perpendicular to the background magnetic field. As expected from earlier models, this leads to a highly anisotropic fluctuation spectrum with a rapidly decaying tail in the parallel wavenumber direction. The wave power that decays to high enough frequencies to become ion cyclotron resonant depends on the relative strengths of advection and diffusion in the cascade. For the most realistic values of these parameters, though, there is insufficient power to heat protons and heavy ions. The dominant oblique waves undergo Landau damping, which implies strong parallel electron heating. We thus investigated the nonlinear evolution of the electron velocity distributions (VDFs) into parallel beams and discrete phase-space holes (similar to those seen in the terrestrial magnetosphere) which are an alternate means of heating protons via stochastic interactions similar to particle-particle collisions. 1b. Focused Study of the Multi-Mode Detailed Balance Formalism. The PI began to explore the feasibility of using the "weak turbulence," or detailed-balance theory of Tsytovich, Melrose, and others to encompass the relevant physics of the solar wind. This study did not go far, however, because if the "strong" MHD turbulence discussed above is a dominant player in the wind's acceleration region, this formalism is inherently not applicable to the corona. We will continue to study the various published approaches to the weak turbulence formalism, especially with an eye on ways to parameterize nonlinear wave reflection rates. 2. Building the Unified Model Code Architecture. We have begun developing the computational model of a time-steady open flux tube in the extended corona. The model will be "unified" in the sense that it will include (simultaneously for the first time) as many of the various proposed physical processes as possible, all on equal footing. To retain this generality, we have formulated the problem in two interconnected parts: a completely kinetic model for the particles, using the Monte Carlo approach, and a finite-difference approach for the self-consistent fluctuation spectra. The two codes are run sequentially and iteratively until complete consistency is achieved. The current version of the Monte Carlo code incorporates gravity, the zero-current electric field, magnetic mirroring, and collisions. The fluctuation code incorporates WKJ3 wave action conservation and the cascade/dissipation processes discussed above. The codes are being run for various test problems with known solutions. Planned additions to the codes include prescriptions for nonlinear wave steepening, kinetic velocity-space diffusion, and multi-mode coupling (including reflection and refraction).

  12. On the Generation and Dissipation of Ion Cyclotron Waves in the Extended Solar Corona

    NASA Astrophysics Data System (ADS)

    Cranmer, S. R.

    1999-12-01

    The dissipation of high frequency (10 to 10,000 Hz) ion cyclotron resonant Alfven waves has been proposed as a leading candidate for the heating of the extended solar corona and the acceleration of the high speed solar wind. The competition between various wave generation mechanisms and resonant wave damping is examined in detail, and a database of more than 2000 low-abundance ion species is taken into account for completeness. Also, the Sobolev approximation from the theory of hot star winds is applied to the gyroresonant wave-particle interaction in the solar wind, and the surprisingly effective damping ability of ``minor'' ions is explained in simple terms. High frequency waves (propagating parallel to open magnetic field lines) that originate at the base of the corona are damped significantly when they resonate with ions having charge-to-mass ratios of about 0.1. Thus, if the waves came solely from the coronal base, there would be negligible wave power available to resonate with higher charge-to-mass ratio ions at larger heights. This result confirms preliminary suggestions from earlier work that the waves that heat and accelerate the high speed solar wind must be generated throughout the extended corona. This work is supported by the National Aeronautics and Space Administration under grant NAG5-7822 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by the ESA PRODEX program (Swiss contribution).

  13. Observations of mode coupling in the solar corona and bipolar noise storms

    NASA Technical Reports Server (NTRS)

    White, S. M.; Thejappa, G.; Kundu, M. R.

    1992-01-01

    High-spatial-resolution observations of the sun which reflect on the role of mode coupling in the solar corona, and a number of new observations are presented. It is shown that typically, polarization inversion is seen at 5 GHz in active region sources near the solar limb, but not at 1.5 GHz. Although this is apparently in contradiction to the simplest form of mode coupling theory, it remains consistent with current models for the active region emission. Microwave bursts show no strong evidence for polarization inversion. Bipolar noise storm continuum emission is discussed in some detail, utilizing recent VLA observations at 327 MHz. It is shown that bipolar sources are common at 327 MHz. Further, the trailing component of the bipole is frequently stronger than the leading component, in apparent conflict with the 'leading-spot' hypothesis. The observations indicate that, at 327 MHz, mode coupling is apparently strong at all mode-coupling layers in the solar corona. The 327 MHz observations require a much weaker magnetic field strength in the solar corona to explain this result than did earlier lower-frequency observations: maximum fields are 0.2 G. This is a much weaker field than is consistent with current coronal models.

  14. Unified Models of Turbulence and Nonlinear Wave Evolution in the Extended Solar Corona and Solar Wind

    NASA Technical Reports Server (NTRS)

    Cranmer, Steven R.; Wagner, William (Technical Monitor)

    2004-01-01

    The PI (Cranmer) and Co-I (A. van Ballegooijen) made substantial progress toward the goal of producing a unified model of the basic physical processes responsible for solar wind acceleration. The approach outlined in the original proposal comprised two complementary pieces: (1) to further investigate individual physical processes under realistic coronal and solar wind conditions, and (2) to extract the dominant physical effects from simulations and apply them to a 1D model of plasma heating and acceleration. The accomplishments in Year 2 are divided into these two categories: 1a. Focused Study of Kinetic Magnetohydrodynamic (MHD) Turbulence. lb. Focused Study of Non - WKB Alfven Wave Rejection. and 2. The Unified Model Code. We have continued the development of the computational model of a time-study open flux tube in the extended corona. The proton-electron Monte Carlo model is being tested, and collisionless wave-particle interactions are being included. In order to better understand how to easily incorporate various kinds of wave-particle processes into the code, the PI performed a detailed study of the so-called "Ito Calculus", i.e., the mathematical theory of how to update the positions of particles in a probabilistic manner when their motions are governed by diffusion in velocity space.

  15. The Source of Alfven Waves That Heat the Solar Corona

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, A.; Berger, M. A.

    1998-01-01

    We suggest a source for high-frequency Alfven waves invoked in coronal heating and acceleration of the solar wind. The source is associated with small-scale magnetic loops in the chromospheric network.

  16. Mapping the Solar Wind from its Source Region into the Outer Corona

    NASA Technical Reports Server (NTRS)

    Esser, Ruth; Wagner, William J. (Technical Monitor)

    2000-01-01

    The solar wind not only forms the space environment of Earth and other planets, but is also the cause of many phenomena observed in the Earth's atmosphere, such as aurorae. The expansion of the coronal plasma of the Sun is characteristic to many main sequence stars, and thus provides an example for understanding stellar winds as well. In spite of its importance for both space science and stellar physics, basic solar wind properties remain essentially unresolved. Since its discovery about 50 years ago, the complexity of the Sun corona - solar wind system has complicated the interpretation of observations. Recent progress in remote sensing observations as provided for example by YOHKOH, SOHO, SPARTAN and ULYSSES as well as some ground based techniques such as Interplanetary Scintillation observations, offer a compelling opportunity to unravel the 50 year old puzzle regarding the heat source or sources that cause the expansion of the solar corona. The new era of solar wind observations initiated by SOHO and ULYSSES, have also led to a wealth of new theoretical approaches. The goal of the proposed research was to carry out an integrated study of the coronal and solar wind plasma making use of the opportunities provided by the above spacecraft, as well as plasma emission calculations and new ideas on solar wind expansion theory.

  17. A Dust Characterization Experiment for Solar Cells Operating on Mars

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Landis, Geoffrey A.; Krasowski, Michael; Greer, Lawrence; Wilt, David; Baraona, Cosmo; Scheiman, David; Lekki, John

    2001-01-01

    During the Viking and Pathfinder missions to Mars, significant amounts of dust accumulated on the spacecrafts. In Pathfinder's case, the dust obscured the solar panels on the lander and the rover degrading their output current. The material adherence experiment aboard the Pathfinder rover quantified the rate of decrease in short circuit current at 0.28% per day. This rate is unacceptably high for long duration missions. In response, NASA has developed the Dust Accumulation and Removal Technology (DART) experiment. DART has three instruments for characterizing dust settling out of the atmosphere and tests two methods to keep dust from settling on solar cells.

  18. Skylab and solar exploration. [chromosphere-corona structure, energy production and heat transport processes

    NASA Technical Reports Server (NTRS)

    Von Puttkamer, J.

    1973-01-01

    Review of some of the findings concerning solar structure, energy production, and heat transport obtained with the aid of the manned Skylab space station observatory launched on May 14, 1973. Among the topics discussed are the observation of thermonuclear fusion processes which cannot be simulated on earth, the observation of short-wave solar radiation not visible to observers on earth, and the investigation of energy-transport processes occurring in the photosphere, chromosphere, and corona. An apparent paradox is noted in that the cooler chromosphere is heating the hotter corona, seemingly in defiance of the second law of thermodynamics, thus suggesting that a nonthermal mechanism underlies the energy transport. Understanding of this nonthermal mechanism is regarded as an indispensable prerequisite for future development of plasma systems for terrestrial applications.

  19. The Structure and Dynamics of the Solar Corona and Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, J. (Technical Monitor)

    2001-01-01

    This report covers technical progress during the third quarter of the second year of NASA Sun-Earth Connections Theory Program (SECTP) contract 'The Structure and Dynamics of the Solar Corona and Inner Heliosphere,' NAS5-99188, between NASA and Science Applications International Corporation, and covers the period February 16, 2001 to May 15, 2001. Under this contract SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model.In this report we summarize the accomplishments made by our group during the first seven quarters of our Sun-Earth Connection Theory Program contract. The descriptions are intended to illustrate our principal results. A full account can be found in the referenced publications.

  20. Diffusion in the chromosphere and the composition of the solar corona and energetic particles

    NASA Technical Reports Server (NTRS)

    Vauclair, S.; Meyer, J. P.

    1985-01-01

    Composition observations, in the solar photosphere, and in the upper transition region (TR) and corona imply a change of composition of the solar atmosphere somewhere between the photosphere and the upper TR. Heavy elements with first ionization potential (FIP) 9 eV (high-FIP element) are approx. 4 times less abundant in the TR and corona than in the photosphere, as compared to both hydrogen and heavy elements with lower low-FIP elements. A separation is suggested between neutral and ionized elements in a region where the high-FIP elements are mostly neutral, and the low-FIP elements ionized. This occurs in the chromosphere at altitudes above 600 km and below 2000 km above Photosphere. Whether the diffusion processes can explain the observed change in composition is investigated.

  1. Numerical simulations of microflare evolution in the solar transition region and corona

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Mariska, John T.; Shibata, Kazunari; Suematsu, Yoshinori

    1991-01-01

    Several observers report transient ultraviolet brightenings, often referred to as microflares, in the solar atmosphere. In this paper, the results are presented of a series of one-dimensional numerical simulations examining possible relationships between microflares and the generation of dynamical chromospheric and transition region features. Low-energy and medium-energy microflares eject long-lived cool, dense gas plugs into the corona, with the gas plug traversing the loop apex in the medium energy case. In the case of high-energy microflares, the gas plug is rapidly heated to the temperature of the surrounding corona, and the results resemble the dynamics occurring in standard solar flare thick-target electron beam models.

  2. The nonuniform magnetohydrodynamic nature of the solar corona. III. Cylindrical geometry

    SciTech Connect

    De ville, A.; Priest, E.R. )

    1989-12-01

    The method developed by Priest in 1988 for modeling steady MHD disturbances in the solar corona is extended to a cylindrical geometry, which is more realistic for three-dimensional structures, such as plumes and coronal holes, which are observed in the corona. Both axial symmetric and nonaxial magnetic fields are treated. The basic characteristics of the axisymmetric solutions are found to be similar to the previous Cartesian case. Quantitatively, the interactions are stronger in the central region and weaker at the outer boundary. Pressure gradients are also found to be smaller. Solutions dependent on all three spatial variables exhibit an asymmetry because of the angular dependence. They depend upon the azimuthal magnetic field imposed at the coronal base. The solutions found in this paper may be useful in interpreting the physics of MHD interactions observed in numerical experiments and also in the solar atmosphere.

  3. SUPRATHERMAL ELECTRONS IN THE SOLAR CORONA: CAN NONLOCAL TRANSPORT EXPLAIN HELIOSPHERIC CHARGE STATES?

    SciTech Connect

    Cranmer, Steven R.

    2014-08-20

    There have been several ideas proposed to explain how the Sun's corona is heated and how the solar wind is accelerated. Some models assume that open magnetic field lines are heated by Alfvén waves driven by photospheric motions and dissipated after undergoing a turbulent cascade. Other models posit that much of the solar wind's mass and energy is injected via magnetic reconnection from closed coronal loops. The latter idea is motivated by observations of reconnecting jets and also by similarities of ion composition between closed loops and the slow wind. Wave/turbulence models have also succeeded in reproducing observed trends in ion composition signatures versus wind speed. However, the absolute values of the charge-state ratios predicted by those models tended to be too low in comparison with observations. This Letter refines these predictions by taking better account of weak Coulomb collisions for coronal electrons, whose thermodynamic properties determine the ion charge states in the low corona. A perturbative description of nonlocal electron transport is applied to an existing set of wave/turbulence models. The resulting electron velocity distributions in the low corona exhibit mild suprathermal tails characterized by ''kappa'' exponents between 10 and 25. These suprathermal electrons are found to be sufficiently energetic to enhance the charge states of oxygen ions, while maintaining the same relative trend with wind speed that was found when the distribution was assumed to be Maxwellian. The updated wave/turbulence models are in excellent agreement with solar wind ion composition measurements.

  4. Plasma diagnostics for the outer solar corona - UV and XUV Fe XII lines

    NASA Technical Reports Server (NTRS)

    Withbroe, G. L.; Raymond, J. C.

    1984-01-01

    The formation of the UV and XUV spectral lines of Fe XII in the outer corona was investigated. The results indicate that these lines can be an important tool for probing the physical conditions in the coronal regions where the solar wind is generated. The Fe XII lines can be particularly useful for determining outflow velocities of heavy ions in the solar wind and for providing critical empirical constraints on energy transport and dissipation mechanisms in the solar wind acceleration region. Application of the theoretical calculations to existing UV, EUV, and XUV observations of the low corona provide evidence that: (1) the inclusion of the effects of resonances in the collision strengths for the low-lying levels of Fe XII is important, (2) that the contributions of resonances for these levels are even larger than the estimates given in the present paper, and (3) that the collision strengths used here yield populations for these levels which are accurate to a factor of 2. These results have implications concerning the accuracy of abundances and densities derived from observations of the Fe XII lines in the low corona.

  5. Spectroscopic measurements of element abundances in the solar corona: Variations on the FIP theme

    NASA Technical Reports Server (NTRS)

    Saba, J. L. R.

    1995-01-01

    Solar wind and solar energetic particle (SEP) data yield systematic differences between elemental abundances in the corona and in the photosphere related to the first ionization potential (FIP) of the elements: low-FIP elements are preferentially enhanced relative to high-FIP elements by about a factor of four. Spectroscopic studies of the inner corona show that such a pattern may apply on average but not in detail for coronal loops: substantial abundance differences occur between different types of coronal structures, and variations have been found from flare to flare, from one active region to another, and over time in the same region; further, in some flares, anomalies such as enhanced Ne:O ratios, distinctly at odds with the FIP pattern, show that a competing element selection mechanism sometimes operates. Details of the observed abundance variability -- such as the magnitude of the variations, the relevant temporal and spatial scales, and correlations with other properties of the given coronal structure -- may give important clues to the processes which supply and heat the corona, or they may reflect the changing physical conditions or locations where those processes take place. However, many such details remain to be established definitively. At present, abundance variability is primarily a major complication to data analysis and interpretation. However, once it is better understood, it may provide a new diagnostic tool for probing the lower layers of the solar atmosphere.

  6. Radio sounding of the solar corona with Mars Express, Venus Express and Rosetta

    NASA Astrophysics Data System (ADS)

    Hahn, Matthias; Paetzold, Martin; Haeusler, Bernd; Tyler, G. L.; Bird, Michael; Tellmann, Silvia

    The radio sounding technique is a powerful tool to investigate the large-scale structure of the solar corona when a radio transmitter is located near superior solar conjunction. Mars Express, in orbit about Mars, underwent solar conjunctions in August/September 2004, Octo-ber/November 2006 and December/January 2008/09. Venus Express and Rosetta went through solar conjunction in 2006. As part of the Radio Science Experiments MaRS (Mars Express), Vera (Venus Express) and RSI (Rosetta), radio-sounding measurements were recorded using the dual-frequency downlinks of the three spacecraft during their respective solar conjunctions. The transmitted radio signals at X-band (8.4 GHz) and S-band (2.3 GHz) propagated through the dense plasma of the solar corona. Changes in carrier frequency and propagation delay reveal the large-scale coronal structure, the electron content and plasma turbulence as a function of distance from the Sun. MaRS observed several Coronal Mass Ejection (CME) events crossing the radio ray path. A detailed interpretation of these events is presented. A CME-model was developed and adapted to the measured electron content in order to derive information on the electron density, plasma velocity and spatial structure of component CME features. Results of various simulations are presented and compared with SOHO/LASCO data.

  7. Energy release in the solar corona from spatially resolved magnetic braids.

    PubMed

    Cirtain, J W; Golub, L; Winebarger, A R; De Pontieu, B; Kobayashi, K; Moore, R L; Walsh, R W; Korreck, K E; Weber, M; McCauley, P; Title, A; Kuzin, S; DeForest, C E

    2013-01-24

    It is now apparent that there are at least two heating mechanisms in the Sun's outer atmosphere, or corona. Wave heating may be the prevalent mechanism in quiet solar periods and may contribute to heating the corona to 1,500,000 K (refs 1-3). The active corona needs additional heating to reach 2,000,000-4,000,000 K; this heat has been theoretically proposed to come from the reconnection and unravelling of magnetic 'braids'. Evidence favouring that process has been inferred, but has not been generally accepted because observations are sparse and, in general, the braided magnetic strands that are thought to have an angular width of about 0.2 arc seconds have not been resolved. Fine-scale braiding has been seen in the chromosphere but not, until now, in the corona. Here we report observations, at a resolution of 0.2 arc seconds, of magnetic braids in a coronal active region that are reconnecting, relaxing and dissipating sufficient energy to heat the structures to about 4,000,000 K. Although our 5-minute observations cannot unambiguously identify the field reconnection and subsequent relaxation as the dominant heating mechanism throughout active regions, the energy available from the observed field relaxation in our example is ample for the observed heating. PMID:23344359

  8. Reduction in the intensity of solar X-ray emission in the 2- to 15-keV photon energy range and heating of the solar corona

    SciTech Connect

    Mirzoeva, I. K.

    2013-04-15

    The time profiles of the energy spectra of low-intensity flares and the structure of the thermal background of the soft X-ray component of solar corona emission over the period of January-February, 2003, are investigated using the data of the RHESSI project. A reduction in the intensity of X-ray emission of the solar flares and the corona thermal background in the 2- to 15-keV photon energy range is revealed. The RHESSI data are compared with the data from the Interball-Geotail project. A new mechanism of solar corona heating is proposed on the basis of the results obtained.

  9. The flow of interstellar dust through the solar system: the role of dust charging

    SciTech Connect

    Sterken, V. J.; Altobelli, N.; Schwehm, G.; Kempf, S.; Srama, R.; Strub, P.; Gruen, E.

    2011-11-29

    Interstellar dust can enter the solar system through the relative motion of the Sun with respect to the Local Interstellar Cloud. The trajectories of the dust through the solar system are not only influenced by gravitation and solar radiation pressure forces, but also by the Lorentz forces due to the interaction of the interplanetary magnetic field with the charged dust particles. The interplanetary magnetic field changes on two major time scales: 25 days (solar rotation frequency) and 22 years (solar cycle). The short-term variability averages out for regions that are not too close (>{approx}2 AU) to the Sun. This interplanetary magnetic field variability causes a time-variability in the interstellar dust densities, that is correlated to the solar cycle.In this work we characterize the flow of interstellar dust through the solar system using simulations of the dust trajectories. We start from the simple case without Lorentz forces, and expand to the full simulation. We pay attention to the different ways of modeling the interplanetary magnetic field, and discuss the influence of the dust parameters on the resulting flow patterns. We also discuss the possibilities of using this modeling for prediction of dust fluxes for different space missions or planets, and we pay attention to where simplified models are justified, and where or when a full simulation, including all forces is necessary. One of the aims of this work is to understand measurements of spacecraft like Ulysses, Cassini and Stardust.

  10. A new approach to the maser emission in the solar corona

    NASA Astrophysics Data System (ADS)

    Régnier, S.

    2015-09-01

    Aims: The electron plasma frequency ωpe and electron gyrofrequency Ωe are two parameters that allow us to describe the properties of a plasma and to constrain the physical phenomena at play, for instance, whether a maser instability develops. In this paper, we aim to show that the maser instability can exist in the solar corona. Methods: We perform an in-depth analysis of the ωpe/Ωe ratio for simple theoretical and complex solar magnetic field configurations. Using the combination of force-free models for the magnetic field and hydrostatic models for the plasma properties, we determine the ratio of the plasma frequency to the gyrofrequency for electrons. For the sake of comparison, we compute the ratio for bipolar magnetic fields containing a twisted flux bundle, and for four different observed active regions. We also study how ωpe/Ωe is affected by the potential and non-linear force-free field models. Results: We demonstrate that the ratio of the plasma frequency to the gyrofrequency for electrons can be estimated by this novel method combining magnetic field extrapolation techniques and hydrodynamic models. Even if statistically not significant, values of ωpe/Ωe≤ 1 are present in all examples, and are located in the low corona near to photosphere below one pressure scale-height and/or in the vicinity of twisted flux bundles. The values of ωpe/Ωe are lower for non-linear force-free fields than potential fields, thus increasing the possibility of maser instability in the corona. Conclusions: From this new approach for estimating ωpe/Ωe, we conclude that the electron maser instability can exist in the solar corona above active regions. The importance of the maser instability in coronal active regions depends on the complexity and topology of the magnetic field configurations.

  11. Conditions for electron-cyclotron maser emission in the solar corona

    NASA Astrophysics Data System (ADS)

    Morosan, D. E.; Zucca, P.; Bloomfield, D. S.; Gallagher, P. T.

    2016-04-01

    Context. The Sun is an active source of radio emission ranging from long duration radio bursts associated with solar flares and coronal mass ejections to more complex, short duration radio bursts such as solar S bursts, radio spikes and fibre bursts. While plasma emission is thought to be the dominant emission mechanism for most radio bursts, the electron-cyclotron maser (ECM) mechanism may be responsible for more complex, short-duration bursts as well as fine structures associated with long-duration bursts. Aims: We investigate the conditions for ECM in the solar corona by considering the ratio of the electron plasma frequency ωp to the electron-cyclotron frequency Ωe. The ECM is theoretically possible when ωp/ Ωe< 1. Methods: Two-dimensional electron density, magnetic field, plasma frequency, and electron cyclotron frequency maps of the off-limb corona were created using observations from SDO/AIA and SOHO/LASCO, together with potential field extrapolations of the magnetic field. These maps were then used to calculate ωp/Ωe and Alfvén velocity maps of the off-limb corona. Results: We found that the condition for ECM emission (ωp/ Ωe< 1) is possible at heights <1.07 R⊙ in an active region near the limb; that is, where magnetic field strengths are >40 G and electron densities are >3 × 108 cm-3. In addition, we found comparatively high Alfvén velocities (>0.02c or >6000 km s-1) at heights <1.07 R⊙ within the active region. Conclusions: This demonstrates that the condition for ECM emission is satisfied within areas of the corona containing large magnetic fields, such as the core of a large active region. Therefore, ECM could be a possible emission mechanism for high-frequency radio and microwave bursts.

  12. Windblown dust emission, transport and deposition in solar farms

    NASA Astrophysics Data System (ADS)

    Lan, Chuanjin; Li, Zhen; Ma, Yanbao

    2012-11-01

    Dust accumulation on solar collectors can significantly reduce the electrical output of solar farms. The presence of solar panel array can significantly accelerate or decelerate wind speed and distort the wind velocity profiles near the ground, which leads to considerable changes in dust emissions, transportation as well as deposition. To examine the effects of solar panels on dust emission, transportation and deposition, the incompressible viscous flow past flat solar panels with ground effect was numerically investigated based on finite volume method. A hybrid approach known as detached-eddy simulation (DES), combining the main features of both large-eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS), is utilized to the compute the turbulence flow. Results show how aerolian dust emissions, transport and deposition are affected by wind speeds, solar panel orientation angles and panel geometries.

  13. Occultation systems in space-borne telescopes dedicated to the observation of the solar corona

    NASA Astrophysics Data System (ADS)

    Landini, Federico; Fineschi, Silvano; Moses, Daniel; Romoli, Marco

    The observation of the solar corona in white light is a challenging task because of the poor contrast of the signal (i.e., the solar corona) to the stray light noise. The main task a coronagraph or heliospheric imager designer shall face is the reduction of the stray light. This is particularly important in space-borne instruments with an external occultation. A large part of the field literature is dedicated to the optimization of the occulting system in order to reduce the total amount of stray light on the instrument focal plane. From the pioneering work of Newkirk and Bohlin in 1965, several solutions have been elaborated in optimizing the occulters shape. Despite a series of classical optimizing shapes has been employed in many solar missions, each optimization shall fit the constraint of the instrument design and of the mission characteristics. Forthcoming solar space missions such as ASPIICS on PROBA3 (formation flight) and Solar Orbiter (approaching the Sun with a perihelion of 0.28 AU) will introduce considerable technological innovations and their characteristics impose demanding efforts on the scientific payloads in order to be compliant with the constraints. This work reviews the most effective occultation systems that have been employed by past coronagraphs, spectrographs and heliospheric imagers. Moreover, it illustrates the innovative solutions that are going to be adopted by the missions to come.

  14. The FIP and Inverse FIP Effects in Solar and Stellar Coronae

    NASA Astrophysics Data System (ADS)

    Laming, J. Martin

    2015-09-01

    We review our state of knowledge of coronal element abundance anomalies in the Sun and stars. We concentrate on the first ionization potential (FIP) effect observed in the solar corona and slow-speed wind, and in the coronae of solar-like dwarf stars, and the "inverse FIP" effect seen in the corona of stars of later spectral type; specifically M dwarfs. These effects relate to the enhancement or depletion, respectively, in coronal abundance with respect to photospheric values of elements with FIP below about 10 eV. They are interpreted in terms of the ponderomotive force due to the propagation and/or reflection of magnetohydrodynamic waves in the chromosphere. This acts on chromospheric ions, but not neutrals, and so can lead to ion-neutral fractionation. A detailed description of the model applied to closed magnetic loops, and to open field regions is given, accounting for the observed difference in solar FIP fractionation between the slow and fast wind. It is shown that such a model can also account for the observed depletion of helium in the solar wind. The helium depletion is sensitive to the chromospheric altitude where ion-neutral separation occurs, and the behavior of the helium abundance in the closed magnetic loop strongly suggests that the waves have a coronal origin. This, and other similar inferences may be expected to have a strong bearing on theories of solar coronal heating. Chromospheric waves originating from below as acoustic waves mode convert, mainly to fast-mode waves, can also give rise to ion-neutral separation. Depending on the geometry of the magnetic field, this can result in FIP or Inverse FIP effects. We argue that such configurations are more likely to occur in later-type stars (known to have stronger field in any case), and that this explains the occurrence of the Inverse FIP effect in M dwarfs. We conclude with a discussion of possible directions for future work.

  15. Magnetic Untwisting in Solar Jets that Go into the Outer Corona in Polar Coronal Holes

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.

    2014-01-01

    We present results from 14 exceptionally high-reaching large solar jets observed in the polar coronal holes. EUV movies from SDO/AIA show that each jet is similar to many other similar-size and smaller jets that erupt in coronal holes, but each is exceptional in that it goes higher than most other jets, so high that it is observed in the outer corona beyond 2.2 R(sub Sun) in images from the SOHO/LASCO/C2 coronagraph. For these high-reaching jets, we find: (1) the front of the jet transits the corona below 2.2 R(sub Sun) at a speed typically several times the sound speed; (2) each jet displays an exceptionally large amount of spin as it erupts; (3) in the outer corona, most jets display oscillatory swaying having an amplitude of a few degrees and a period of order 1 hour. We conclude that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is grossly a large-amplitude (i.e., nonlinear) torsional Alfven wave that is put into the reconnected open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate from the measured spinning and swaying that the magnetic-untwisting wave loses most of its energy in the inner corona below 2.2 R(sub Sun). From these results for these big jets, we reason that the torsional magnetic waves observed in Type-II spicules should dissipate in the corona in the same way and could thereby power much of the coronal heating in coronal holes.

  16. On the ionization equilibrium balance. [in stellar and solar coronas

    NASA Technical Reports Server (NTRS)

    Vernazza, J. E.; Raymond, J. C.

    1979-01-01

    Ionization equilibrium for the most astrophysically abundant elements are calculated using multilevel atomic models for several stages of ionization. It is found that the relative abundance of the lithium-, beryllium-, and boron-like ions at electron densities as low as 1 million per cu cm is density-dependent. Because of this dependence, the intensity of lines arising from ions of the Li, Be, and B isoelectronic sequences are density-sensitive. The general implications of these results as applied to solar and stellar atmospheric models, coronal abundances, and spectroscopic diagnostic techniques are discussed.

  17. Semiempirical Two-dimensional Magnetohydrodynamic Model of the Solar Corona and Interplanetary Medium

    SciTech Connect

    Sittler, E.C. Jr.; Guhathakurta, M.

    1999-10-01

    We have developed a two-dimensional semiempirical MHD model of the solar corona and solar wind. The model uses empirically derived electron density profiles from white-light coronagraph data measured during the {ital Skylab} period and an empirically derived model of the magnetic field which is fitted to observed streamer topologies, which also come from the white-light coronagraph data. The electron density model comes from that developed by Guhathakurta and coworkers. The electron density model is extended into interplanetary space by using electron densities derived from the {ital Ulysses} plasma instrument. The model also requires an estimate of the solar wind velocity as a function of heliographic latitude and radial component of the magnetic field at 1 AU, both of which can be provided by the {ital Ulysses} spacecraft. The model makes estimates as a function of radial distance and latitude of various fluid parameters of the plasma such as flow velocity {bold {ital V}}, effective temperature T{sub eff}, and effective heat flux q{sub eff}, which are derived from the equations of conservation of mass, momentum, and energy, respectively. The term {open_quotes}effective{close_quotes} indicates that wave contributions could be present. The model naturally provides the spiral pattern of the magnetic field far from the Sun and an estimate of the large-scale surface magnetic field at the Sun, which we estimate to be {approximately}12{endash}15 G. The magnetic field model shows that the large-scale surface magnetic field is dominated by an octupole term. The model is a steady state calculation which makes the assumption of azimuthal symmetry and solves the various conservation equations in the rotating frame of the Sun. The conservation equations are integrated along the magnetic field direction in the rotating frame of the Sun, thus providing a nearly self-consistent calculation of the fluid parameters. The model makes a minimum number of assumptions about the physics of the solar corona and solar wind and should provide a very accurate empirical description of the solar corona and solar wind. Once estimates of mass density {rho}, flow velocity {bold {ital V}}, effective temperature T{sub eff}, effective heat flux q{sub eff}, and magnetic field {bold {ital B}} are computed from the model and waves are assumed unimportant, all other plasma parameters such as Mach number, Alfv{acute e}n speed, gyrofrequency, etc. can be derived as a function of radial distance and latitude from the Sun. The model can be used as a planning tool for such missions as {ital Solar Probe} and provide an empirical framework for theoretical models of the solar corona and solar wind. The model will be used to construct a semiempirical MHD description of the steady state solar corona and solar wind using the {ital SOHO} Large Angle Spectrometric Coronagraph (LASCO) polarized brightness white-light coronagraph data, {ital SOHO} Extreme Ultraviolet Imaging Telescope data, and {ital Ulysses} plasma data. {copyright} {ital {copyright} 1999.} {ital The American Astronomical Society}

  18. Propagating Disturbances in the Solar Corona and Spicular Connection

    NASA Astrophysics Data System (ADS)

    Samanta, Tanmoy; Pant, Vaibhav; Banerjee, Dipankar

    2015-12-01

    Spicules are small, hairy-like structures seen at the solar limb, mainly at chromospheric and transition region lines. They generally live for 3-10 minutes. We study these spicules in a south polar region of the Sun with coordinated observations using the Interface Region Imaging Spectrograph (IRIS) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory. Propagating disturbances (PDs) are observed everywhere in the polar off-limb regions of the Sun at coronal heights. From these simultaneous observations, we show that the spicules and the PDs may have originated through a common process. From spacetime maps, we find that the start of the trajectory of PDs is almost cotemporal with the time of the rise of the spicular envelope as seen by IRIS slit-jaw images at 2796 and 1400 Å. During the return of spicular material, brightenings are seen in AIA 171 and 193 Å images. The quasi-periodic nature of the spicular activity, as revealed by the IRIS spectral image sequences, and its relation to coronal PDs, as recorded by the coronal AIA channels, suggest that they share a common origin. We propose that reconnection-like processes generate the spicules and waves simultaneously. The waves escape while the cool spicular material falls back.

  19. Common observations of solar X-rays from SPHINX/CORONAS-PHOTON and XRS/MESSENGER

    NASA Astrophysics Data System (ADS)

    Kepa, Anna; Sylwester, Janusz; Sylwester, Barbara; Siarkowski, Marek; Mrozek, Tomasz; Gryciuk, Magdalena; Phillips, Kenneth

    SphinX was a soft X-ray spectrophotometer constructed in the Space Research Centre of Polish Academy of Sciences. The instrument was launched on 30 January 2009 aboard CORONAS-PHOTON satellite as a part of TESIS instrument package. SphinX measured total solar X-ray flux in the energy range from 1 to 15 keV during the period of very low solar activity from 20 February to 29 November 2009. For these times the solar detector (X-ray Spectrometer - XRS) onboard MESSENGER also observed the solar X-rays from a different vantage point. XRS measured the radiation in similar energy range. We present results of the comparison of observations from both instruments and show the preliminary results of physical analysis of spectra for selected flares.

  20. A Simple Dynamical Model for Filament Formation in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Litvinenko, Y.

    2005-12-01

    Filament formation in the solar corona is considered in the case of a slowly evolving force-free magnetic field. The strong-field approximation is used, which takes into account the magnetohydrodynamic equations of motion, induction, and compressibility. Methods for solving the relevant equations are presented and applied to filament modeling. A three-dimensional calculation is presented, which uses linear force-free magnetic fields. The boundary conditions are chosen to resemble the qualitative linkage model for the formation of filaments, suggested by Martens and Zwaan (2001). Consistent with this model, dense formations, reminiscent of filament pillars, are shown to appear in the corona above the region of converging and canceling magnetic bipoles. The results demonstrate the principal role of magnetic field in the dynamical processes of dense plasma accumulation and support in filaments. The model can be useful for clarifying the role of flux emergence in coronal mass ejection initiation.

  1. The effects of restricted “EIT wave” propagation on the low solar corona

    NASA Astrophysics Data System (ADS)

    Long, David; Perez-Suarez, David

    2015-08-01

    We present observations of an “EIT wave” associated with an X-class flare from 2012-July-6, the propagation of which was severely restricted by the magnetic structure of the solar corona surrounding the erupting active region. The “EIT wave” was observed by both SDO and STEREO-A, allowing a three-dimensional examination of how the propagation of the disturbance was affected both by a neighbouring coronal hole and a trans-equatorial loop system. In addition, the eruption was observed at the limb by the ground-based CoMP instrument, allowing the Doppler motion associated with the eruption and resulting coronal loop oscillation to be investigated in detail. This combination of data-sets provides a unique insight into the three-dimensional evolution of the “EIT wave” and its effects on the surrounding corona.

  2. Formation and Evolution of Large-Scale Magnetic Funnels in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Panasenco, Olga; Velli, Marco

    2016-05-01

    The existence of open coronal magnetic fields with peculiar geometry - large-scale magnetic funnels - can be attributed to three factors: (i) the presence of two or more corona holes of the same polarity (or pseudostreamers - PSs), (ii) specific configurations of closed magnetic field in the low corona up to 1.3 Rs (filament channels) and (iii) the presence of strong active regions in the vicinity of the pseudostreamer. The important property of magnetic funnels is their strongly non-monotonic expansion factor below 2 Rs. The case study presented here is a pseudostreamer near the equator, formed between two isolated coronal holes of the same polarity, and harboring a pair of twin filaments in its base. Following the evolution of these coronal holes we find that the PS topology changes when two coronal holes merged together. Using a potential field source-surface (PFSS) extrapolation to compute the coronal field from photospheric maps (SDO/HMI), we show that the funnel-like geometry of the open magnetic field changes to a regular one with monotonic expansion factor after the merging of coronal holes. The presence of coronal magnetic funnels becomes directly visible when sufficient plasma accumulates inside them: when the plasma density grows to become observable coronal cloud prominences appear in the corona. The plasma suspension at heights of 0.3 Rs coincides with the largest gradients in the field which naturally leads to a diamagnetic hypothesis for the force counteracting gravity. We study the evolution of the funnel-like open fields during several solar rotations and find a direct relation between funnels and the presence of coronal clouds at great heights in the solar corona.

  3. A Space Weather mission concept: Observatories of the Solar Corona and Active Regions (OSCAR)

    NASA Astrophysics Data System (ADS)

    Strugarek, Antoine; Janitzek, Nils; Lee, Arrow; Löschl, Philipp; Seifert, Bernhard; Hoilijoki, Sanni; Kraaikamp, Emil; Isha Mrigakshi, Alankrita; Philippe, Thomas; Spina, Sheila; Bröse, Malte; Massahi, Sonny; O'Halloran, Liam; Pereira Blanco, Victor; Stausland, Christoffer; Escoubet, Philippe; Kargl, Günter

    2015-02-01

    Coronal Mass Ejections (CMEs) and Corotating Interaction Regions (CIRs) are major sources of magnetic storms on Earth and are therefore considered to be the most dangerous space weather events. The Observatories of Solar Corona and Active Regions (OSCAR) mission is designed to identify the 3D structure of coronal loops and to study the trigger mechanisms of CMEs in solar Active Regions (ARs) as well as their evolution and propagation processes in the inner heliosphere. It also aims to provide monitoring and forecasting of geo-effective CMEs and CIRs. OSCAR would contribute to significant advancements in the field of solar physics, improvements of the current CME prediction models, and provide data for reliable space weather forecasting. These objectives are achieved by utilising two spacecraft with identical instrumentation, located at a heliocentric orbital distance of 1 AU from the Sun. The spacecraft will be separated by an angle of 68° to provide optimum stereoscopic view of the solar corona. We study the feasibility of such a mission and propose a preliminary design for OSCAR.

  4. Polarization observations and results of the 1998 February 26th solar corona

    NASA Astrophysics Data System (ADS)

    Gabryl, J.-R.; Cugnon, P.; Clette, F.

    1999-03-01

    In the frame of the long-term study program of the solar corona, we have organized an expedition in Curacao (Dutch Antillas) to observe the total solar eclipse of February 26th, 1998. As the totality duration was quite short, we had to improve again the CCD experiment layout in order to record a sample of images as wide as possible in both polarization and brightness ranges. This was made possible by the acquisition of a new PC with fast hard disc and data transfer port. We managed then to record 7 series of different exposures, each containing polarization measurements of 24 images (thus 8 times oversampled). The data processing led to accurate brightness and polarization maps as well as electron density models. The shape of the corona is highly flattened with large polar holes filled by numerous wide plumes. Large streamers are also observed and are essentially aligned along the solar equatorial plane. Moreover, the polarization indicates that these structures are located in the vicinity of the plane of the sky. Unfortunately, the unusually high sky brightness hid the faintest coronal structures and limited the visibility up to 3 solar radii implying a similar limitation in our modelling. We present here these results and give a brief comparison with our previous eclipse observation.

  5. PROPAGATION OF ALFVENIC WAVES FROM CORONA TO CHROMOSPHERE AND CONSEQUENCES FOR SOLAR FLARES

    SciTech Connect

    Russell, A. J. B.; Fletcher, L.

    2013-03-10

    How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a two-fluid model (of plasma and neutrals) and used it to perform one-dimensional simulations of Alfven waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra, and umbra) show that energy transmission from corona to chromosphere can exceed 20% of incident energy for wave periods of 1 s or less. Damping of waves in the chromosphere depends strongly on wave frequency: waves with periods 10 s or longer pass through the chromosphere with relatively little damping, however, for periods of 1 s or less, a substantial fraction (37%-100%) of wave energy entering the chromosphere is damped by ion-neutral friction in the mid- and upper chromosphere, with electron resistivity playing some role in the lower chromosphere and in umbras. We therefore conclude that Alfvenic waves with periods of a few seconds or less are capable of heating the chromosphere during solar flares, and speculate that they could also contribute to electron acceleration or exciting sunquakes.

  6. Solar wind magnetic field bending of Jovian dust trajectories.

    PubMed

    Zook, H A; Grün, E; Baguhl, M; Hamilton, D P; Linkert, G; Liou, J; Forsyth, R; Phillips, J L

    1996-11-29

    From September 1991 to October 1992, the cosmic dust detector on the Ulysses spacecraft recorded 11 short bursts, or streams, of dust. These dust grains emanated from the jovian system, and their trajectories were strongly affected by solar wind magnetic field forces. Analyses of the on-board measurements of these fields, and of stream approach directions, show that stream-associated dust grain masses are of the order of 10(-18) gram and dust grain velocities exceed 200 kilometers per second. These masses and velocities are, respectively, about 10(3) times less massive and 5 to 10 times faster than earlier reported. PMID:8929405

  7. Solar wind driven dust acoustic instability with Lorentzian kappa distribution

    SciTech Connect

    Arshad, Kashif; Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad and University of Wah, Wah Cantt 47040 ; Ehsan, Zahida; Universita degli Studi del Molise, 86090 Pesche - IS; INFN Sezione di Napoli, 80126 Napoli; Department of Physics, COMSATS Institute of Information Technology , Defence Road, Off Raiwind Road, Lahore 86090 ; Khan, S. A.; Mahmood, S.

    2014-02-15

    In a three species electron-ion-dust plasma following a generalized non-Maxwellian distribution function (Lorentzian or kappa), it is shown that a kinetic instability of dust-acoustic mode exists. The instability threshold is affected when such (quasineutral) plasma permeates through another static plasma. Such case is of interest when the solar wind is streaming through the cometary plasma in the presence of interstellar dust. In the limits of phase velocity of the waves larger and smaller than the thermal velocity of dust particles, the dispersion properties and growth rate of dust-acoustic mode are investigated analytically with validation via numerical analysis.

  8. Faraday Rotation Fluctuations of MESSENGER radio signals through the Corona during the 2009 Solar Minimum.

    NASA Astrophysics Data System (ADS)

    Wexler, David; Vierinen, Juha; Coster, Anthea; Jensen, Elizabeth A.

    2015-04-01

    Faraday rotation (FR) techniques have been used to probe variations of coronal plasma velocity, density and magnetic field. The plane of polarization for an electromagnetic wave rotates in proportion to the integrated product of parallel magnetic field components and electron density along the radio signal line-of-sight as directed towards the receiving antenna. Fluctuations in FR through the corona thus represent the evolution of these line-integrated plasma parameters, providing a unique measurement of regional corona physics. The MESSENGER spacecraft radio 8 GHz radio beacon, transmitting through the corona at offsets 1.6 to 1.9 solar radii and near-equatorial heliolatitude, was recorded on the Green Bank radio telescope during the solar minimum of 2009. Here we reanalyze at higher temporal resolution the data previously published (Jensen et al 2013, Solar Physics 285:83-95). Combinations of coherent and incoherent integration were used to estimate Stokes parameters, from which the FR phase differences were obtained for serial one-second frames. Results were concatenated and corrected for phase wrap-around to produce a continuous FR phase curve. The general FR phase curve was broad and sweeping, with greatest spectral power observed in periods of hours. Also, finer wave-like fluctuations were noted with periods on the order of 100's of seconds. With the lowest-frequency components removed by detrending techniques, spectral analysis revealed a power spectrum of form P=kνα with spectral index α = -2.25 over frequencies ν = 2-20 milliHertz (mHz), and a flat noise spectrum at higher frequencies. Imposed upon the general power spectrum were trends of enhanced spectral power around 3.5 and 6 mHz, corresponding to approximately 5- and 3-minute period waves. Temporal evolution plots demonstrated that the increased power in these spectral bands appeared intermittently and irregularly. Our results reinforce the findings of prior coronal FR studies, and now extend the description of FR fluctuations to deeper levels of the corona than previously reported. Further analysis should utilize models incorporating magnetohydrodynamic wave coherence scales estimated from independent lower corona observational data.

  9. Nonequilibrium ionization effects in asymmetrically heated loops. [in solar corona

    NASA Technical Reports Server (NTRS)

    Spadaro, D.; Antiochos, Spiro K.; Mariska, J. T.

    1991-01-01

    The effects of nonequilibrium ionization on magnetic loop models with a steady siphon flow that is driven by a nonuniform heating rate are investigated. The model developed by Mariska (1988) to explain the observed redshifts of transition region emission lines is examined, and the number densities of the ions of carbon and oxygen along the loop are computed, with and without the approximation of ionization equilibrium. Considerable deviations from equilibrium were found. In order to determine the consequences of these nonequilibrium effects on the characteristics of the EUV emission from the loop plasma, the profiles and wavelength positions of all the important emission lines due to carbon and oxygen were calculated. The calculations are in broad agreement with Mariska's conclusions, although they show a significant diminution of the Doppler shifts, as well as modifications to the line widths. It is concluded that the inclusion of nonequilibrium effects make it more difficult to reproduce the observed characteristics of the solar transition region by means of the asymmetric-heating models.

  10. Reconnection in the Solar Corona: Observations and MHD Simulations

    NASA Astrophysics Data System (ADS)

    Yokoyama, T.

    This paper covers following topics. First, I discuss the present status of our understanding on solar flares based on the magnetic reconnection model from both the observational and theoretical point of views. We have now many pieces of evidence that support the model, such as cusped flare loops, loop-top hard X-ray sources, and plasmoid ejections above a flaring loops. Recently, new classes of evidence have been added to these. The downward moving feature observed above the evolving flare arcades is consistent with the downward reconnection jet from the reconnection X-point. More directly the reconnection inflow pattern was found by an EIT observation above a cusp-shaped flare loops. At the same time, the MHD simulations are also evolving by including various thermal processes, such as non-linear non-isotropic heat conduction, and radiative coolings. Nevertheless, our understanding for magnetic reconnection is not enough. There are several open questions which we must answer. One is the 'what is the diffusion mechanism at the X-point of the reconnection ?' The scale gap between the microscopic processes and the global flare loops is enormous. The other important question is 'what triggers the reconnection ?' Global instability or loss-of-equilibrium will be achieved by some unknown process.

  11. The dispersion of radio waves in the solar corona.

    NASA Astrophysics Data System (ADS)

    Benz, A. O.; Pianezzi, P.

    1997-07-01

    Different arrival times of the two magnetoionic modes in solar radio bursts have been detected. The bursts are from four decimetric radio events showing narrowband millisecond spikes. They have been observed with 2ms and 0.5ms time resolution, respectively, by the Ikarus and Phoenix spectrometers of ETH Zurich. The four events have been selected because of their low polarization. The arrival times of the left and right circularly polarized modes have been compared by cross-correlation. In all cases the weaker mode is delayed by a fraction of a millisecond. Several tests have been carried out to ensure the significance of the delay. The delay is interpreted by the difference in group velocity of the two modes due to dispersion in the coronal plasma. Simple models show that the observed difference in travel time is consistent with this interpretation. It suggests that the radiation is polarized in the ordinary mode at the location where the polarization originates. If the polarization originates in the original source region, the possible emission processes are limited to the ones radiating in ordinary mode. More likely, the polarization seems to originate at higher altitude e.g. in a quasi-transverse region. In both cases the delay is proportional to the longitudinal component of the magnetic field in the medium of propagation.

  12. Heating of the solar and stellar coronae: a review

    NASA Astrophysics Data System (ADS)

    Erdélyi, R.; Ballai, I.

    2007-10-01

    Despite great advances in observations and modelling, the problem of solar and stellar heating still remains one of the most challenging problems of space physics. To find a definite answer to what sort of mechanisms act to heat the plasma to a few million degrees requires a collaborative effort of small scales observations, large capacity numerical modelling and complicated theoretical approaches. A unique theory should incorporate aspects such as the generation of energy, its transport and dissipation. Up to now, the first two problems are rather clarified. However, the modality of transfer of magnetic or kinetic energy into heat is a question still awaiting for an answer. In the present paper we review the various popular heating mechanisms put forward in the existing extensive literature. The heating processes are, somewhat arbitrarily, classified as hydrodynamic, magnetohydrodynamic or kinetic based on the characteristics of the model medium. These mechanisms are further divided based on the time scales of the ultimate dissipation involved (i.e. AC and DC heating, turbulent heating). In particular, special attention is paid to discuss shock dissipation, mode coupling, resonant absorption, phase mixing, and, reconnection. Finally, we briefly review the various heating mechanisms proposed to heat other stars.

  13. The Funnel Geometry of Open Flux Tubes in the Low Solar Corona Constrained by O VI and Ne VIII Outflow

    NASA Technical Reports Server (NTRS)

    Byhring, Hanne S.; Esser, Ruth; Lie-Svendsen, Oystein

    2008-01-01

    Model calculations show that observed outflow velocities of order 7-10 km/s of C IV and O VI ions, and 15-20 km/s of Ne VIII ions, are not only consistent with models of the solar wind from coronas holes, but also place unique constraints on the degree of flow tube expansion as well as the location of the expansion in the transition region/lower corona.

  14. Modelling Magnetic Reconnection and Nano-flare Heating in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Biggs, George; Asgari-Targhi, Mahboubeh

    2015-01-01

    Current models describing magnetic reconnection in the solar corona assume single reconnection events occurring at random crossings between magnetic flux tubes. However, in the avalanche model of magnetic reconnection, multiple reconnections are expected to occur. The purpose of this research is to first, calculate the point of the greatest stress between magnetic flux tubes and then to allow for dynamic evolution utilising the avalanche model. This represents a significant increase in sophistication over previous models. This undertaking is not purely theoretical since we compare the results of our modelling with HI-C data. Using key inputs from the HIC and AIA observations such as loop length and magnetic field strength, we predict the number of reconnection events likely to take place. As a single reconnection event cannot currently be directly observed, the distribution of flare events are recorded instead. The power law fit yielded as a result of our simulations is within the expected range given the observational evidence of flare distributions and temperature values in the corona. This provides further evidence to support the role of Nano-flares in the heating of the corona.

  15. Proton Heating in the Extended Solar Corona Resulting From Kinetic Alfven Turbulence

    NASA Astrophysics Data System (ADS)

    Cranmer, S. R.; van Ballegooijen, A. A.

    2002-12-01

    Spectroscopic observations of the solar corona have made it clear that the ``coronal heating problem'' comprises not only the local deposition of heat immediately above the transition region, but also extended heat deposition throughout the (collisionless) acceleration region of the solar wind. The dissipation of magnetohydrodynamic (MHD) waves and/or turbulence has been considered as a likely heating mechanism in the solar wind for several decades. However, it is still not well understood how MHD fluctuations are generated, how they evolve in frequency and wavenumber, or how their damping leads to the observed proton, electron, and ion properties of the fast wind. We present a model of MHD turbulence that specifically addresses the issue of kinetic dissipation and particle heating in the collisionless extended corona. The nonlinear cascade is modeled as a combination of advection and diffusion in wavenumber space, with the dominant cascade occurring in the direction perpendicular to the background magnetic field. This leads to a highly anisotropic fluctuation spectrum (as expected, based on many earlier simulations and scaling models) with a rapidly decreasing power-law tail in the parallel wavenumber direction. In the low-plasma-beta corona, the dominant oblique fluctuations (with dispersion properties of kinetic Alfven waves) are dissipated by electron Landau damping, with only a tiny fraction of the energy going to high-frequency ion cyclotron waves. This implies strong parallel electron heating and weak proton and ion heating, which is not what is observed. We discuss the probable nonlinear evolution of the electron velocity distributions into parallel beams and discrete phase-space holes (similar to those seen in the terrestrial magnetosphere) which can possibly heat protons via stochastic interactions.

  16. Generalized Squashing Factors for Covariant Description of Magnetic Connectivity in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Titov, V. S.

    2007-01-01

    The study of magnetic connectivity in the solar corona reveals a need to generalize the field line mapping technique to arbitrary geometry of the boundaries and systems of coordinates. Indeed, the global description of the connectivity in the corona requires the use of the photospheric and solar wind boundaries. Both are closed surfaces and therefore do not admit a global regular system of coordinates. At least two overlapping regular systems of coordinates for each of the boundaries are necessary in this case to avoid spherical-pole-like singularities in the coordinates of the footpoints. This implies that the basic characteristic of magnetic connectivity-the squashing degree or factor Q of elemental flux tubes, according to Titov and coworkers-must be rewritten in covariant form. Such a covariant expression of Q is derived in this work. The derived expression is very flexible and highly efficient for describing the global magnetic connectivity in the solar corona. In addition, a general expression for a new characteristic Q1, which defines a squashing of the flux tubes in the directions perpendicular to the field lines, is determined. This new quantity makes it possible to filter out the quasi-separatrix layers whose large values of Q are caused by a projection effect at the field lines nearly touching the photosphere. Thus, the value Q1 provides a much more precise description of the volumetric properties of the magnetic field structure. The difference between Q and Q1 is illustrated by comparing their distributions for two configurations, one of which is the Titov-Demoulin model of a twisted magnetic field.

  17. Low frequency radio observations of bi-directional electron beams in the solar corona

    NASA Astrophysics Data System (ADS)

    Carley, Eoin P.; Reid, Hamish; Vilmer, Nicole; Gallagher, Peter T.

    2015-09-01

    The radio signature of a shock travelling through the solar corona is known as a type II solar radio burst. In rare cases these bursts can exhibit a fine structure known as "herringbones", which are a direct indicator of particle acceleration occurring at the shock front. However, few studies have been performed on herringbones and the details of the underlying particle acceleration processes are unknown. Here, we use an image processing technique known as the Hough transform to statistically analyse the herringbone fine structure in a radio burst at ~20-90 MHz observed from the Rosse Solar-Terrestrial Observatory on 2011 September 22. We identify 188 individual bursts which are signatures of bi-directional electron beams continuously accelerated to speeds of 0.16-0.10+0.11 c. This occurs at a shock acceleration site initially at a constant altitude of ~0.6 R⊙ in the corona, followed by a shift to ~0.5 R⊙. The anti-sunward beams travel a distance of 170-97+174 Mm (and possibly further) away from the acceleration site, while those travelling toward the Sun come to a stop sooner, reaching a smaller distance of 112-76+84 Mm. We show that the stopping distance for the sunward beams may depend on the total number density and the velocity of the beam. Our study concludes that a detailed statistical analysis of herringbone fine structure can provide information on the physical properties of the corona which lead to these relatively rare radio bursts.

  18. "Kicking Up Some Dust": An Experimental Investigation Relating Lunar Dust Erosive Wear to Solar Power Loss

    NASA Technical Reports Server (NTRS)

    Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III

    2013-01-01

    The exhaust from retrograde rockets fired by spacecraft landing on the Moon can accelerate lunar dust particles to high velocities. Information obtained from NASA's Apollo 12 mission confirmed that these high-speed dust particles can erode nearby structures. This erosive wear damage can affect the performance of optical components such as solar concentrators. Solar concentrators are objects which collect sunlight over large areas and focus the light into smaller areas for purposes such as heating and energy production. In this work, laboratory-scale solar concentrators were constructed and subjected to erosive wear by the JSC-1AF lunar dust simulant. The concentrators were focused on a photovoltaic cell and the degradation in electrical power due to the erosive wear was measured. It was observed that even moderate exposure to erosive wear from lunar dust simulant resulted in a 40 percent reduction in power production from the solar concentrators.

  19. Radio Tracking of a White-Light Coronal Mass Ejection from Solar Corona to Interplanetary Medium.

    PubMed

    Reiner; Kaiser; Plunkett; Prestage; Manning

    2000-01-20

    For a solar flare/coronal mass ejection (CME) event on 1999 May 3, type II radio emissions were observed from the metric through the hectometric wavelength regimes. By comparing the dynamics of the CME with that implied by the frequency range and frequency drift rates of the type II radio emissions, it is concluded that the decametric-hectometric type II radio emissions were associated with the CME. The dynamics implied by the metric type II radio burst suggest a distinct coronal shock, associated with the flare, which only produced radio emissions in the low corona. PMID:10615035

  20. Heating of the solar chromosphere and corona. I - Generalized inhomogeneous wave equation for magnetoacoustic motions

    NASA Technical Reports Server (NTRS)

    Anand, S. P. S.

    1976-01-01

    The generalized inhomogeneous wave equation that governs magnetoacoustic, vortical, and thermal motions in compressible fluids and that is applicable to the problem of heating of the solar chromosphere and corona is obtained. The effects of kinematic and bulk viscosity, heat conduction, Joule dissipation, and magnetic diffusivity are included. Under the usual assumptions, the generalized wave equation reduces to the well-known equations of Lighthill, Kulsrud, Phillips, and others. The major problems encountered in applying Lighthill's (1952) mechanism to sound generation in turbulent media are reviewed for both the subsonic and supersonic cases.

  1. Numerical Modeling of the Solar Chromosphere and Corona: What Has Been Done? What Should Be Done?

    NASA Astrophysics Data System (ADS)

    Hansteen, V.; Carlsson, M.; Gudiksen, B.

    2015-10-01

    A number of increasingly sophisticated numerical simulations spanning the solar atmosphere from below the photosphere in the convection zone to far above in the corona have shed considerable insight into the role of the magnetic field in the structure and energetics of the Sun's outer layers. This development is strengthened by the wealth of observational data now coming on-line from both ground and space based observatories. In this talk we will concentrate on the successes and failures of the modeling effort thus far and discuss the inclusion of various effects not traditionally considered in the MHD description such as time dependent ionization, non-LTE radiative transfer, and generalized Ohm's law.

  2. White light solar corona: an atlas of 1983 K-coronameter synoptic charts

    NASA Astrophysics Data System (ADS)

    Rock, K.; Fisher, R.; Garcia, C.; Seagraves, P. H.; Yasukawa, E.

    1984-02-01

    The data obtained by the Mark-111 K-coronameter located at the Mauna Loa Solar Observatory, Hawaii, are presented. This volume includes a complete data set of Carrington rotations covering 1983 and two additional sections, the activity report summary for 1983 and polar synoptic charts. This set of synoptic data is a preliminary presentation in which no corrections were made for the day-to-day variations in sky transmission and scattering of polarized light by the Earth's atmosphere. Some inaccuracy is incurred in neglecting these effects, but it is still possible to use the data set as a characterizaion of the white light corona.

  3. Coexistence of self-organized criticality and intermittent turbulence in the solar corona.

    PubMed

    Uritsky, Vadim M; Paczuski, Maya; Davila, Joseph M; Jones, Shaela I

    2007-07-13

    An extended data set of extreme ultraviolet images of the solar corona provided by the SOHO spacecraft is analyzed using statistical methods common to studies of self-organized criticality (SOC) and intermittent turbulence (IT). The data exhibit simultaneous hallmarks of both regimes: namely, power-law avalanche statistics as well as multiscaling of structure functions for spatial activity. This implies that both SOC and IT may be manifestations of a single complex dynamical process entangling avalanches of magnetic energy dissipation with turbulent particle flows. PMID:17678227

  4. Coexistence of Self-Organized Criticality and Intermittent Turbulence in the Solar Corona

    SciTech Connect

    Uritsky, Vadim M.; Paczuski, Maya; Davila, Joseph M.; Jones, Shaela I.

    2007-07-13

    An extended data set of extreme ultraviolet images of the solar corona provided by the SOHO spacecraft is analyzed using statistical methods common to studies of self-organized criticality (SOC) and intermittent turbulence (IT). The data exhibit simultaneous hallmarks of both regimes: namely, power-law avalanche statistics as well as multiscaling of structure functions for spatial activity. This implies that both SOC and IT may be manifestations of a single complex dynamical process entangling avalanches of magnetic energy dissipation with turbulent particle flows.

  5. Formation and Reconnection of Three-Dimensional Current Sheets in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.

    2010-01-01

    Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun s corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional magnetohydrodynamic (3D MHD) simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to apply directly the vast body of knowledge gained from the many studies of 2D reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet- Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona. Subject Headings: Sun: corona Sun: magnetic fields Sun: reconnection

  6. SWAP OBSERVATIONS OF THE LONG-TERM, LARGE-SCALE EVOLUTION OF THE EXTREME-ULTRAVIOLET SOLAR CORONA

    SciTech Connect

    Seaton, Daniel B.; De Groof, Anik; Berghmans, David; Nicula, Bogdan; Shearer, Paul

    2013-11-01

    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since 2010 February. With a field of view of 54 × 54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images, it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was to remove instrumental stray light from the images by determining and deconvolving SWAP's point-spread function from the observations. In this paper, we use the resulting images to conduct the first-ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic fields that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.

  7. SWAP Observations of the Long-term, Large-scale Evolution of the Extreme-ultraviolet Solar Corona

    NASA Astrophysics Data System (ADS)

    Seaton, Daniel B.; De Groof, Anik; Shearer, Paul; Berghmans, David; Nicula, Bogdan

    2013-11-01

    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since 2010 February. With a field of view of 54 54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images, it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was to remove instrumental stray light from the images by determining and deconvolving SWAP's point-spread function from the observations. In this paper, we use the resulting images to conduct the first-ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic fields that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.

  8. Hot carbon corona in Mars' upper thermosphere and exosphere: 2. Solar cycle and seasonal variability

    NASA Astrophysics Data System (ADS)

    Lee, Yuni; Combi, Michael R.; Tenishev, Valeriy; Bougher, Stephen W.

    2014-12-01

    This work presents the variability over seasons (i.e., orbital position) and solar cycle of the Martian upper atmosphere and hot carbon corona. We investigate the production and distribution of energetic carbon atoms and the impacts on the total global hot carbon loss from dominant photochemical processes at five different cases: AL (aphelion and low solar activity), EL (equinox and low solar activity), EH (equinox and high solar activity), PL (perihelion and low solar activity), and PH (perihelion and high solar activity). We compare our results with previously published results but only on the limited cases due to the dearth of studies on solar EUV flux and seasonal variabilities. Photodissociation of CO and dissociative recombination of CO+ are generally regarded as the two most important source reactions for the production of hot atomic carbon. Of these two, photodissociation of CO is found to be the dominant source in all cases considered. To describe self-consistently the exosphere and the upper thermosphere, a 3-D kinetic particle simulator, the Adaptive Mesh Particle Simulator, and the 3-D Mars Thermosphere General Circulation Model are one-way coupled. The basic description of this hot carbon calculation can be found in the companion paper to this one. The spatial distributions and profiles of density and temperature and atmospheric loss rates are discussed for the cases considered. Finally, our computed global escape rate of hot carbon ranges from 5.28 × 1023 s-1 (AL) to 55.1 × 1023 s-1 (PL).

  9. STEREO OBSERVATIONS OF FAST MAGNETOSONIC WAVES IN THE EXTENDED SOLAR CORONA ASSOCIATED WITH EIT/EUV WAVES

    SciTech Connect

    Kwon, Ryun-Young; Ofman, Leon; Kramar, Maxim; Olmedo, Oscar; Davila, Joseph M.; Thompson, Barbara J.; Cho, Kyung-Suk

    2013-03-20

    We report white-light observations of a fast magnetosonic wave associated with a coronal mass ejection observed by STEREO/SECCHI/COR1 inner coronagraphs on 2011 August 4. The wave front is observed in the form of density compression passing through various coronal regions such as quiet/active corona, coronal holes, and streamers. Together with measured electron densities determined with STEREO COR1 and Extreme UltraViolet Imager (EUVI) data, we use our kinematic measurements of the wave front to calculate coronal magnetic fields and find that the measured speeds are consistent with characteristic fast magnetosonic speeds in the corona. In addition, the wave front turns out to be the upper coronal counterpart of the EIT wave observed by STEREO EUVI traveling against the solar coronal disk; moreover, stationary fronts of the EIT wave are found to be located at the footpoints of deflected streamers and boundaries of coronal holes, after the wave front in the upper solar corona passes through open magnetic field lines in the streamers. Our findings suggest that the observed EIT wave should be in fact a fast magnetosonic shock/wave traveling in the inhomogeneous solar corona, as part of the fast magnetosonic wave propagating in the extended solar corona.

  10. ON THE CONSTANCY OF THE ELECTRON TEMPERATURE IN THE EXPANDING CORONA THROUGHOUT SOLAR CYCLE 23

    SciTech Connect

    Habbal, Shadia Rifai; Morgan, Huw; Druckmueller, Miloslav; Ding, Adalbert

    2010-03-10

    A recent analysis of Fe emission lines observed during the total solar eclipses of 2006 March 29 and 2008 August 1 established the first empirical link between the electron temperature in the expanding corona and Fe charge states measured in interplanetary space. In this Letter, we use this link to infer this temperature throughout solar cycle 23 from in situ charge state measurements from the Solar Wind Ion Composition Spectrometer (SWICS) on the Advanced Composition Explorer (ACE) and on Ulysses. The distribution of the SWICS/ACE Fe charge states, which span cycle 23 from 1998 to 2009, is skewed with a peak centered on Fe{sup 8+}, Fe{sup 9+}, and Fe{sup 10+} and a tail spanning Fe{sup 12+} to Fe{sup 20+}. An iterative process based on this distribution and on the Fe ion fraction as a function of electron temperature yields a narrow peak at 1.1 x 10{sup 6} K. The tail in the measured charge state distribution is attributed to the sporadic release of material hotter than 2 x 10{sup 6} K from closed magnetic structures within the bulges of streamers. The Fe Ulysses charge state measurements between 1992 and 1997 from cycle 22 peaked at Fe{sup 11+}, indicative of a slightly higher temperature of 1.5 x 10{sup 6} K. The relative constancy of the electron temperature in the expanding corona throughout solar cycle 23 points to the presence of an unknown mechanism regulating the energy input to electrons in the acceleration region of the solar wind at all latitudes during this cycle.

  11. Observations of high-energy jets in the corona above the quiet sun, the heating of the corona, and the acceleration of the solar wind

    NASA Technical Reports Server (NTRS)

    Brueckner, G. E.; Bartoe, J.-D. F.

    1983-01-01

    High spatial resolution observations of the ultraviolet solar spectrum which reveal high-energy events in the quiet sun are presented. The tandem Wadsworth spectrograph used to make the observations is described along with the observing techniques, and a brief description of the characteristics of high-resolution transition zone spectra is given. The sizes, velocities, line profiles, time behavior, temperature range, differential emission measures, densities, masses, energies, and birthrates of turbulent events and jets in the quiet sun are derived from the observations and discussed. Possible accelerating mechanisms for these events are discussed, and the consequences of these events for the heating of the solar corona are discussed. A cloud model of the solar wind is proposed and possible correlations between the high-energy events and other solar fine-structure features are discussed.

  12. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    SciTech Connect

    Zhao, L.; Landi, E.

    2014-02-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  13. NASA Sun-Earth Connections Theory Program: The Structure and Dynamics of the Solar Corona and Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, Joseph M. (Technical Monitor)

    2001-01-01

    This report covers technical progress during the fourth quarter of the second year of NASA Sun-Earth Connections Theory Program (SECTP) contract 'The Structure and Dynamics of the Solar Corona and Inner Heliosphere,' NAS5-99188, between NASA and Science Applications International Corporation, and covers the period May 16,2001 to August 15, 2001. Under this contract SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model.

  14. Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona

    NASA Astrophysics Data System (ADS)

    Ruan, Wenzhi; He, Jiansen; Zhang, Lei; Vocks, Christian; Marsch, Eckart; Tu, Chuanyi; Peter, Hardi; Wang, Linghua

    2016-03-01

    We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data of the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the "wave + beam flow" kinetic model may be a viable interpretation for the PIDs observed in the solar corona.

  15. A Simple Dynamical Model for Filament Formation in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Litvinenko, Yuri E.; Wheatland, M. S.

    2005-09-01

    Filament formation in the solar atmosphere is considered. In the limit of sub-Alfvénic but supersonic motion, plasma flow in the solar corona is driven via the induction equation by a slow evolution of force-free magnetic fields. Methods for solving the relevant magnetohydrodynamic equations are presented and applied to filament modeling in two and three dimensions. An illustrative two-dimensional example is given, which is based on a potential magnetic field with a dip. The example describes the formation of a normal filament between two bipolar regions on the Sun. Next a detailed three-dimensional calculation is presented, which uses linear force-free magnetic fields. The boundary conditions are chosen to resemble the qualitative ``head-to-tail'' linkage model for the formation of filaments, suggested by Martens & Zwaan. Consistent with this model, dense formations, reminiscent of filament pillars, are shown to appear in the corona above the region of converging and canceling magnetic bipoles. The numerical results are consistent with the principal role of magnetic field in the dynamical processes of dense plasma accumulation and support in filaments, advocated by Martens & Zwaan.

  16. CFHT eclipse observation of the very fine-scale solar corona

    NASA Astrophysics Data System (ADS)

    Koutchmy, S.; Belmahdi, M.; Coulter, R. L.; Demoulin, P.; Gaizauskas, V.; MacQueen, R. M.; Monnet, G.; Mouette, J.; Noens, J. C.; November, L. J.

    1994-01-01

    At the July 11, 1991 solar total eclipse, a modern large optical telescope, Canada-France-Hawaii telescope (CFHT), was used to probe the solar corona. The best possible pictures were obtained with the CFHT, using fast imaging techniques and post-facto image selection and processing. Several cameras were run during totality to acquire sub-arcsec spatial resolution white-light images, with both narrow-band and broad-band filters. The setup and the observing procedure are described. Preliminary results, together with an evaluation of the merits of the experiment, are given, as well as a sample of images. Fine-scale coronal features were observed for the first time in a time series, confirming the importance of plasmoid-like activity in the inner corona. The observation of the smallest coronal feature ever reported is analyzed, giving a typical cross-section of 0.4 +/- 0.1 arcsec. On a larger scale, dark loops around a foreground prominence are resolved for the first time, suggesting that sheet-like voids exist above a filament channel.

  17. Rank-Ordered Multifractal Analysis (ROMA) of Intermittent Dissipative Structures in Solar Corona

    NASA Astrophysics Data System (ADS)

    Wu, C.; Chang, T.; Uritsky, V. M.

    2011-12-01

    Rank-Ordered Multifractal Analysis (ROMA) was introduced by Chang and Wu (2008) to describe the multifractal characteristic of intermittent events. The procedure provides a natural connection between the rank-ordered spectrum and the idea of one-parameter scaling for monofractals. This technique has successfully been applied to fluid turbulence, MHD turbulence simulations and turbulence data obtained in various space plasmas. In this paper, the technique is applied to an extended data set of extreme ultraviolet images of the solar corona provided by the extreme ultraviolet imaging telescope (EIT) on board the SOHO spacecraft. The data set was shown by Uritsky et al. (2007) to exhibit coexistence of self-organized criticality and intermittent turbulence. In this study, the SOHO EIT data set is shown to include two multifractal rank-ordered regimes, dependent on spatial scales, which may indicate different physical mechanisms of energy dissipation in the solar corona corresponding to meso- and supergranulation scales of the underlying photospheric network. This crossover behavior of the ranked-order regimes is similar to the characteristics observed by Tam et al. (2010) of the auroral zone electric-field fluctuations.

  18. Optimization of a motion tracking and mapping method based on images of the solar corona

    NASA Astrophysics Data System (ADS)

    Pavlova, Petya; Garnevski, Dimitar; Koleva, Kostadinka

    2016-01-01

    The study presents the current stage of development and application of a motion tracking and mapping method, based on solar corona images. The object of discussion is the problem of image processing during the extraction of features of interest in the sequence of solar prominences images. At first the method requires calculating techniques that ensure processing time-period commensurable with the time-period of the fastest developing part of the prominence body. That defines the necessity of optimization of the basic algorithms. The paper describes results of test procedures on accepted approaches for reducing the operation time by parallel processing of the images. The method also requires presentation of the lightness information independently of the sensor of particular coronagraph and image file format. This investigation proposes two techniques for achievement the identity of images from different instruments/sensors.

  19. Energetic particle observations and the abundances of elements in the solar corona

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    1992-01-01

    During the last few years it has become clear that energetic particles in the largest solar events, where abundances are commonly measured, are not accelerated in flares. Rather they are accelerated from the ambient plasma above active regions by shock waves driven by coronal mass ejections. The lowest energy particles from these events have abundances that almost directly reflect those of the source plasma. Residual effects of acceleration, that depend smoothly on the ion's corona Q/A, vanish when abundances are averaged over many events, yielding the characteristic dependence of the average coronal abundances of the First Ionization Potential (FIP) of the elements from H through Fe. In contrast, energetic ions accelerated out of the high speed solar wind from large coronal holes show a reduced FIP effect with a different pattern.

  20. Electron density and temperature in the solar corona from multifrequency radio imaging

    NASA Astrophysics Data System (ADS)

    Mercier, C.; Chambe, G.

    2015-11-01

    Context. The 2D images obtained through rotational aperture synthesis with the Nançay Radioheliograph are suitable for quantitative exploitation. First results are presented. Aims: We study the variations of the quiet corona in brightness and size during an 8-year period and derive electron density and temperature in the corona. Methods: Images at 6 frequencies between 150 and 450 MHz for 183 quiet days between 2004 and 2011 were used. Measurements of the brightness temperature Tb beyond the limb allowed coronal density models to be derived in both EW and NS radial directions, with a weak dependence on the electron temperature. The total ranges in the heliocentric distance r are 1.15-1.60 R⊙ (EW) and 1.0-1.4 R⊙ (NS). The agreement between results from different frequencies, in the ranges of r where there is overlapping shows the robustness of the method. The electron temperature, in turn, can be derived from the comparison of the observed mean spectra on the disk with those predicted through transfer calculations from the density models derived from limb observations. Results: The widths of the brightness profiles that were averaged yearly have minima at cycle minimum (2008-2009). These minima are more pronounced for EW profiles than for NS ones. The derived yearly-averaged density models along equatorial and polar diameters are consistent with isothermal and hydrostatic models. They are characterized by their density value n0 extrapolated down to the base of the corona and their scale-height temperature TH. Changes in n0 and TH with solar cycle are given for equatorial and polar regions. The kinetic temperature Te of electrons in the corona (~0.62 MK) is found to be significantly less than TH (~1.5 MK). This implies an ion temperature Ti ~ 2.2 MK. Conclusions: The yearly-averaged variations of these models are less than the dispersion between models derived from other techniques, such as white light and EUV observations, partly because these two techniques are not time-averaged, and they refer to particular days. The radio models are generally less dense, which is compatible with isothermal hydrostatic equilibrium in their range of heliocentric distances, and they show different behaviors with the solar cycle in the equatorial or polar radial directions. The electron kinetic temperature Te is substantially less than TH.

  1. The Time-Dependent Chemistry of Cometary Debris in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Bryans, P.

    2015-01-01

    Recent improvements in solar observations have greatly progressed the study of sungrazing comets. They can now be imaged along the entirety of their perihelion passage through the solar atmosphere, revealing details of their composition and structure not measurable through previous observations in the less volatile region of the orbit further from the solar surface. Such comets are also unique probes of the solar atmosphere. The debris deposited by sungrazers is rapidly ionized and subsequently influenced by the ambient magnetic field. Measuring the spectral signature of the deposited material highlights the topology of the magnetic field and can reveal plasma parameters such as the electron temperature and density. Recovering these variables from the observable data requires a model of the interaction of the cometary species with the atmosphere through which they pass. The present paper offers such a model by considering the time-dependent chemistry of sublimated cometary species as they interact with the solar radiation field and coronal plasma. We expand on a previous simplified model by considering the fully time-dependent solutions of the emitting species' densities. To compare with observations, we consider a spherically symmetric expansion of the sublimated material into the corona and convert the time-dependent ion densities to radial profiles. Using emissivities from the CHIANTI database and plasma parameters derived from a magnetohydrodynamic simulation leads to a spatially dependent emission spectrum that can be directly compared with observations. We find our simulated spectra to be consistent with observation.

  2. Reconstructing the open-field magnetic geometry of solar corona using coronagraph images

    NASA Astrophysics Data System (ADS)

    Uritsky, Vadim M.; Davila, Joseph M.; Jones, Shaela; Burkepile, Joan

    2015-04-01

    The upcoming Solar Probe Plus and Solar Orbiter missions will provide an new insight into the inner heliosphere magnetically connected with the topologically complex and eruptive solar corona. Physical interpretation of these observations will be dependent on the accurate reconstruction of the large-scale coronal magnetic field. We argue that such reconstruction can be performed using photospheric extrapolation codes constrained by white-light coronagraph images. The field extrapolation component of this project is featured in a related presentation by S. Jones et al. Here, we focus on our image-processing algorithms conducting an automated segmentation of coronal loop structures. In contrast to the previously proposed segmentation codes designed for detecting small-scale closed loops in the vicinity of active regions, our technique focuses on the large-scale geometry of the open-field coronal features observed at significant radial distances from the solar surface. Coronagraph images are transformed into a polar coordinate system and undergo radial detrending and initial noise reduction followed by an adaptive angular differentiation. An adjustable threshold is applied to identify candidate coronagraph features associated with the large-scale coronal field. A blob detection algorithm is used to identify valid features against a noisy background. The extracted coronal features are used to derive empirical directional constraints for magnetic field extrapolation procedures based on photospheric magnetograms. Two versions of the method optimized for processing ground-based (Mauna Loa Solar Observatory) and satellite-based (STEREO Cor1 and Cor2) coronagraph images are being developed.

  3. The time-dependent chemistry of cometary debris in the solar corona

    SciTech Connect

    Pesnell, W. D.; Bryans, P.

    2014-04-10

    Recent improvements in solar observations have greatly progressed the study of sungrazing comets. They can now be imaged along the entirety of their perihelion passage through the solar atmosphere, revealing details of their composition and structure not measurable through previous observations in the less volatile region of the orbit further from the solar surface. Such comets are also unique probes of the solar atmosphere. The debris deposited by sungrazers is rapidly ionized and subsequently influenced by the ambient magnetic field. Measuring the spectral signature of the deposited material highlights the topology of the magnetic field and can reveal plasma parameters such as the electron temperature and density. Recovering these variables from the observable data requires a model of the interaction of the cometary species with the atmosphere through which they pass. The present paper offers such a model by considering the time-dependent chemistry of sublimated cometary species as they interact with the solar radiation field and coronal plasma. We expand on a previous simplified model by considering the fully time-dependent solutions of the emitting species' densities. To compare with observations, we consider a spherically symmetric expansion of the sublimated material into the corona and convert the time-dependent ion densities to radial profiles. Using emissivities from the CHIANTI database and plasma parameters derived from a magnetohydrodynamic simulation leads to a spatially dependent emission spectrum that can be directly compared with observations. We find our simulated spectra to be consistent with observation.

  4. New View of Gas and Dust in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2010-08-01

    The recognizable components in meteorites differ in their relative abundances of the three oxygen isotopes (16O, 17O, and 18O). In particular, the amount of 16O varies from being like that of the Earth to substantially enriched compared to the other two isotopes. The current explanation for this interesting range in isotopic composition is that dust and gas in the solar nebula (the cloud of gas and dust surrounding the primitive Sun) began with the same 16O-rich composition, but the solids evolved towards the terrestrial value. A new analysis of the problem by Alexander Krot (University of Hawaii) and colleagues at the University of Hawaii, the University of Chicago, Clemson University, and Lawrence Livermore National Laboratory leads to the bold assertion that primordial dust and gas differed in isotopic composition. The gas was rich in 16O as previously thought (possibly slightly richer in 16O than the measurements of the solar wind returned by the Genesis Mission), but that the dust had a composition close to the 16O-depleted terrestrial average. In this new view, the dust had a different history than did the gas before being incorporated into the Solar System. Solids with compositions near the terrestrial line may have formed in regions of the solar nebula where dust had concentrated compared to the mean solar dust/gas ratio (1 : ~100). The idea has great implications for understanding the oxygen-isotope composition of the inner Solar System and the origin of materials in the molecular cloud from which the Solar System formed.

  5. THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA

    SciTech Connect

    Che, H.; Goldstein, M. L.

    2014-11-10

    The formation of the observed core-halo feature in the solar wind electron velocity distribution function is a long-time puzzle. In this Letter, based on the current knowledge of nanoflares, we show that the nanoflare-accelerated electron beams are likely to trigger a strong electron two-stream instability that generates kinetic Alfvén wave and whistler wave turbulence, as we demonstrated in a previous paper. We further show that the core-halo feature produced during the origin of kinetic turbulence is likely to originate in the inner corona and can be preserved as the solar wind escapes to space along open field lines. We formulate a set of equations to describe the heating processes observed in the simulation and show that the core-halo temperature ratio of the solar wind is insensitive to the initial conditions in the corona and is related to the core-halo density ratio of the solar wind and to the quasi-saturation property of the two-stream instability at the time when the exponential decay ends. This relation can be extended to the more general core-halo-strahl feature in the solar wind. The temperature ratio between the core and hot components is nearly independent of the heliospheric distance to the Sun. We show that the core-halo relative drift previously reported is a relic of the fully saturated two-stream instability. Our theoretical results are consistent with the observations while new tests for this model are provided.

  6. Storage, Structure and Reduction of the Solar Data Obtained by the Coronas-I Space Experiment

    NASA Astrophysics Data System (ADS)

    Charikov, Yu. E.; Dmitriyev, P. B.; Kocharov, G. E.; Lasutkov, V. P.; Matveev, G. A.; Nitsora, Yu. N.; Savchenko, M. I.; Skorodumov, D. V.

    1997-03-01

    An experiment for the investigation of solar X-ray radiation (IRIS) was carried out in the Nuclear Space Physics Laboratory of the A. F. Ioffe Institute of Physics and Technology. The scientific stages of the experiment are: (1) elaboration and creation of a spectrometer device for solar soft and hard X-ray flux measurements; (2) registration of solar X-ray bursts on board the CORONAS-I orbital space station; (3) creation of the Solar Flare Data Base and the development of software for data reduction and physical modeling. These stages are interdependent. Therefore the form of storage, structure and reduction methods of the experimental data are determined by the characteristics of the IRIS spectrometer, by the parameters of the CORONAS-I telemetry system and by the scientific research. The main physical characteristics of the IRIS spectrometer are as follows: energy ranges 2--15 keV and 15--200 keV; dynamic range 10 000; patrol mode time resolution 2.5 s for six energy channels in both X-ray ranges; burst mode time resolution 1.0 s for 32 energy channels in both X-ray ranges and 0.01 s for four energy channels in hard X-ray range only. The reduction of experimental data is performed in two stages. The first stage includes the search for, and selection of, solar X-ray events using a special graphic dialogue computer system. This procedure results in the creation of the Solar Flare Data Base. This database contains the times of solar events, the peak fluxes of soft and hard X-ray radiation, the optical importance, etc. for comparison with the same events in other energy ranges. In the second stage, we study the phenomena of X-ray precursors, the time and energy spectra and the periodicity of flares according to different models. The results obtained are used to produce a database that allows a quick search for any event.

  7. Three-dimensional theory of magnetostatic structures in the solar corona

    NASA Astrophysics Data System (ADS)

    Heinemann, M. A.

    2001-12-01

    Concepts borrowed from magnetospheric physics can be used to develop a three-dimensional theory of magnetostatic structures in the solar corona that simultaneously accounts for the effects of pressure, gravity, and force-free currents. Static here means that time scales are long compared to Alfven and particle transit times along magnetic field lines. As a general matter, it is always possible in principle in quasineutral quasistatic plasma to write a Poisson equation for a magnetic scalar potential, with source term given by the divergence of an effective magnetization; the trick is to determine the magnetization. In the physics of the inner magnetosphere, where slow-flow quasistatic isotropic plasma that neglects gravity and the ion flow velocity provides an adequate description, the magnetization is determined by solving the momentum and charge-conservation equations for the electric current density, which is given explicitly in terms of the curl of a magnetization equal to the product of the magnetic flux-tube volume and the pressure gradient. The salient feature of the analysis that leads to the solution is the constancy of the isotropic pressure along magnetic field lines, a property not present in the corona. However, a suitable mathematical generalization, in which the set of field-line constants that describes quasistatic pressure balance along each magnetic field line replaces the pressure, leads to a simple general expression for the magnetization in the presence of gravity. The resulting Poisson equation, applicable to the lower corona, contains a quite general description of the temperature variation along each field line so that, for example, different heating mechanisms can be included in a simple way. The theory can be extended to include the effects of flow velocity and anisotropic pressure.

  8. Formation and Reconnection of Three-dimensional Current Sheets in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.

    2010-07-01

    Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun's corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional (3D) magnetohydrodynamic simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to directly apply the vast body of knowledge gained from the many studies of two-dimensional (2D) reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet-Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona.

  9. Formation and Reconnection of Three-Dimensional Current Sheets in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Edmondson, Justin K.; Antiochos, S. K.; DeVore, C.; Velli, M.; Zurbuchen, T. H.

    2010-05-01

    Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as interchange reconnection at the boundaries between coronal holes and helmet streamers in the Sun's corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional magnetohydrodynamic (3D MHD) simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to apply directly the vast body of knowledge gained from the many studies of 2D reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet-Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona.

  10. EVOLUTION OF THE GLOBAL TEMPERATURE STRUCTURE OF THE SOLAR CORONA DURING THE MINIMUM BETWEEN SOLAR CYCLES 23 AND 24

    SciTech Connect

    Nuevo, Federico A.; Vasquez, Alberto M.; Huang Zhenguang; Frazin, Richard; Manchester, Ward B. IV; Jin Meng

    2013-08-10

    The combination of differential emission measure tomography with extrapolation of the photospheric magnetic field allows determination of the electron density and electron temperature along individual magnetic field lines. This is especially useful in quiet-Sun (QS) plasmas where individual loops cannot otherwise be identified. In Paper I, this approach was applied to study QS plasmas during Carrington rotation (CR) 2077 at the minimum between solar cycles (SCs) 23 and 24. In that work, two types of QS coronal loops were identified: ''up'' loops in which the temperature increases with height, and ''down'' loops in which the temperature decreases with height. While the first ones were expected, the latter ones were a surprise and, furthermore, were found to be ubiquitous in the low-latitude corona. In the present work, we extend the analysis to 11 CRs around the last solar minimum. We found that the ''down'' population, always located at low latitudes, was maximum at the time when the sunspot number was minimum, and the number of down loops systematically increased during the declining phase of SC-23 and diminished during the rising phase of SC-24. ''Down'' loops are found to have systematically larger values of {beta} than do ''up'' loops. These discoveries are interpreted in terms of excitation of Alfven waves in the photosphere, and mode conversion and damping in the low corona.

  11. NASA Sun-Earth Connections Theory Program: The Structure and Dynamics of the Solar Corona and Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, Joseph (Technical Monitor)

    2001-01-01

    This report covers technical progress during the first quarter of the second year of NASA Sun-Earth Connections Theory Program (SECTP). SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model.

  12. The Structure and Dynamics of the Solar Corona and Inner Heliosphere-First Quarter First Year Progress Report

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, J. (Technical Monitor)

    2000-01-01

    This report details progress during the first quarter of the first year of our Sun-Earth Connections Theory Program (SECTP) contract. Science Applications International Corporation (SAIC) and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model.

  13. CAN A NANOFLARE MODEL OF EXTREME-ULTRAVIOLET IRRADIANCES DESCRIBE THE HEATING OF THE SOLAR CORONA?

    SciTech Connect

    Tajfirouze, E.; Safari, H.

    2012-01-10

    Nanoflares, the basic units of impulsive energy release, may produce much of the solar background emission. Extrapolation of the energy frequency distribution of observed microflares, which follows a power law to lower energies, can give an estimation of the importance of nanoflares for heating the solar corona. If the power-law index is greater than 2, then the nanoflare contribution is dominant. We model a time series of extreme-ultraviolet emission radiance as random flares with a power-law exponent of the flare event distribution. The model is based on three key parameters: the flare rate, the flare duration, and the power-law exponent of the flare intensity frequency distribution. We use this model to simulate emission line radiance detected in 171 A, observed by Solar Terrestrial Relation Observatory/Extreme-Ultraviolet Imager and Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed light curves are matched with simulated light curves using an Artificial Neural Network, and the parameter values are determined across the active region, quiet Sun, and coronal hole. The damping rate of nanoflares is compared with the radiative losses cooling time. The effect of background emission, data cadence, and network sensitivity on the key parameters of the model is studied. Most of the observed light curves have a power-law exponent, {alpha}, greater than the critical value 2. At these sites, nanoflare heating could be significant.

  14. THE ENERGETICS OF A GLOBAL SHOCK WAVE IN THE LOW SOLAR CORONA

    SciTech Connect

    Long, David M.; Baker, Deborah; Williams, David R.; Carley, Eoin P.; Gallagher, Peter T.; Zucca, Pietro

    2015-02-01

    As the most energetic eruptions in the solar system, coronal mass ejections (CMEs) can produce shock waves at both their front and flanks as they erupt from the Sun into the heliosphere. However, the amount of energy produced in these eruptions, and the proportion of their energy required to produce the waves, is not well characterized. Here we use observations of a solar eruption from 2014 February 25 to estimate the energy budget of an erupting CME and the globally propagating ''EIT wave'' produced by the rapid expansion of the CME flanks in the low solar corona. The ''EIT wave'' is shown using a combination of radio spectra and extreme ultraviolet images to be a shock front with a Mach number greater than one. Its initial energy is then calculated using the Sedov-Taylor blast-wave approximation, which provides an approximation for a shock front propagating through a region of variable density. This approach provides an initial energy estimate of ≈2.8 × 10{sup 31} erg to produce the ''EIT wave'', which is approximately 10% the kinetic energy of the associated CME (shown to be ≈2.5 × 10{sup 32} erg). These results indicate that the energy of the ''EIT wave'' may be significant and must be considered when estimating the total energy budget of solar eruptions.

  15. SDO/AIA OBSERVATION OF KELVIN-HELMHOLTZ INSTABILITY IN THE SOLAR CORONA

    SciTech Connect

    Ofman, L.; Thompson, B. J.

    2011-06-10

    We present observations of the formation, propagation, and decay of vortex-shaped features in coronal images from the Solar Dynamics Observatory associated with an eruption starting at about 2:30 UT on 2010 April 8. The series of vortices were formed along the interface between an erupting (dimming) region and the surrounding corona. They ranged in size from several to 10 arcsec and traveled along the interface at 6-14 km s{sup -1}. The features were clearly visible in six out of the seven different EUV wave bands of the Atmospheric Imaging Assembly. Based on the structure, formation, propagation, and decay of these features, we identified the event as the first observation of the Kelvin-Helmholtz instability (KHI) in the corona in EUV. The interpretation is supported by linear analysis and by a nonlinear 2.5-dimensional magnetohydrodynamic model of KHI. We conclude that the instability is driven by the velocity shear between the erupting and closed magnetic field of the coronal mass ejection. The shear-flow-driven instability can play an important role in energy transfer processes in coronal plasma.

  16. SDO/AIA Observation of Kelvin-Helmholtz Instability in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Thompson, B. J.

    2011-01-01

    We present observations of the formation, propagation and decay of vortex-shaped features in coronal images from the Solar Dynamics Observatory (SDO) associated with an eruption starting at about 2:30UT on Apr 8, 2010. The series of vortices formed along the interface between an erupting (dimming) region and the surrounding corona. They ranged in size from several to ten arcseconds, and traveled along the interface at 6-14 km s-1. The features were clearly visible in six out of the seven different EUV wavebands of the Atmospheric Imaging Assembly (AIA). Based on the structure, formation, propagation and decay of these features, we identified these features as the first observations of the Kelvin- Helmholtz (KH) instability in the corona in EUV. The interpretation is supported by linear analysis and by MHD model of KH instability. We conclude that the instability is driven by the velocity shear between the erupting and closed magnetic field of the Coronal Mass Ejection (CME).

  17. Electrodynamic Dust Shield for Solar Panels on Mars

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; Mantovani, J. G.; Clements S.; Chen, A.; Mazumder, M. K.; Biris, A. S.; Nowicki, A. W.

    2004-01-01

    The Materials Adherence Experiment on the Mars Pathfinder mission measured an obscuration of the solar arrays due to dust deposition at a rate of about 0.2 8% per day. It was estimated that settling dust may cause degradation in performance of a solar panel of between 22% and 89% over the course of two years [1, 2]. These results were obtained without the presence of a global dust storm. Several types of adherence forces keep dust particles attached to surfaces. The most widely discussed adherence force is the electrostatic force. Laboratory experiments [3] as well as indirect evidence from the Wheel Abrasion Experiment on Pathfinder [4] indicate that it is very likely that the particles suspended in the Martian atmosphere are electrostatically charged.

  18. Dust to planetesimals - Settling and coagulation in the solar nebula

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1980-01-01

    The behavior of solid particles in a low-mass solar nebula during settling to the central plane and the formation of planetesimals is discussed. The gravitational instability in a dust layer and collisional accretion are examined as possible mechanisms of planetesimal formation. The shear between the gas and a dust layer is considered along with the differences in the planetesimal formation mechanisms between the inner and outer nebula. A numerical model for computing simultaneous coagulation and settling is described.

  19. Enhanced damping of Alfven waves in the solar corona by a turbulent wave spectrum

    NASA Technical Reports Server (NTRS)

    Kleva, Robert G.; Drake, J. F.

    1992-01-01

    The effect of a background spectrum of Alfven waves on the rate of dissipation of a test shear Alfven wave is numerically calculated. The results demonstrate that as the classical resistivity eta and classical viscosity mu become small, the damping rate of the Alfven wave remains large and depends only on the amplitude for the scalar potential of the wave spectrum and the wavenumber of the Alfven wave. The damping rate is virtually independent of eta and mu. The wave spectrum need not be turbulent or stochastic to affect the damping rate. The dissipation rate is nonlinear enhanced by nonstochastic spectra as well as by stochastic spectra if two conditions are met. First, the perpendicular magnetic field associated with Alfven wave spectrum must exceed a certain collision-frequency threshold and second, for nonstochastic spectra only, the magnetic field must exceed a threshold proportional to the parallel wavenumber of the shear Alfven wave. These conditions can be easily satisfied in the solar corona.

  20. The nonuniform magnetohydrodynamic nature of the solar corona. II. Generalization of basic solutions

    SciTech Connect

    De Ville, A.; Priest, E.R.

    1989-05-01

    The method developed recently by Priest (1988) for modeling standing MHD disturbances in the solar corona is extended in several ways. Including inertial effects of the uniform plasma flow distorts the isobars and makes the flow and magnetic field vary with altitude in a manner that depends on the value of the flow speed relative to the cusp speed, the sound speed, and the Alfven speed. More general classes of solutions to the governing equation may be determined by seeking nonseparable solutions with a Green's function technique. Allowing magnetic flux to escape across the side boundaries leads to models which are relevant for coronal holes. The relation of this governing equation to the nonlinear MHD equations is indicated. 14 refs.

  1. The relative abundance of neon and magnesium in the solar corona

    NASA Technical Reports Server (NTRS)

    Rugge, H. R.; Walker, A. B. C., Jr.

    1976-01-01

    A technique is proposed for specifically determining the relative solar coronal abundance of neon and magnesium. The relative abundance is calculated directly from the relative intensity of the resonance lines of Ne X (12.134A) and Mg XI (9.169A) without the need for the development of a detailed model of the thermal structure of the corona. Moderate resolution Bragg crystal spectrometer results from the OVI-10 satellite were used to determine a coronal neon to magnesium relative abundance of 1.47 + or - 0.38. The application of this technique to a recent higher resolution rocket observation gave an abundance ratio of approximately 0.93 + or - 0.15.

  2. Radio Tracking of a White-Light CME from Solar Corona to Interplanetary Medium

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Kaiser, Michael L.; Plunkett, S. P.; Prestage, N. P.

    1999-01-01

    We analyze the radio emissions associated with a flare/CME event on the sun. For this solar event there were type II radio emissions observed in both the metric and decametric to kilometric wavelength regimes. By comparing the dynamics of the CME with that implied by the frequencies and frequency-drift rates of the type II radio emissions, it is concluded that only the decametric/kilometric type II radio emissions are associated with the CME. We provide the first direct one-to-one comparison between a CME and the associated type II radio emissions. The dynamics implied by the metric type II radio emissions suggest a distinct coronal shock, associated with the flare, which only produces radio emissions in the low corona.

  3. Spectrally-resolved Soft X-ray Observations and the Temperature Structure of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; Warren, Harry; McTiernan, James; Woods, Thomas N.

    2015-04-01

    Solar X-ray observations provide important diagnostics of plasma heating and particle acceleration, during solar flares and quiescent periods. How the corona is heated to its ~1-3 MK nominal temperature remains one of the fundamental unanswered questions of solar physics; heating of plasma to tens of MK during solar flares -- particularly to the hottest observed temperatures of up to ~50 MK -- is also still poorly understood. Soft X-ray emission (~0.1-10 keV; or ~0.1-10 nm) is particularly sensitive to hot coronal plasma and serves as a probe of the thermal processes driving coronal plasma heating. Spectrally- and temporally-resolved measurements are crucial for understanding these energetic processes, but there have historically been very few such observations. We present new solar soft X-ray spectra from the Amptek X123-SDD, measuring quiescent solar X-ray emission from ~0.5 to ~30 keV with ~0.15 keV FWHM resolution from two SDO/EVE calibration sounding rocket underflights in 2012 and 2013. Combined with observations from RHESSI, GOES/XRS, SDO/EVE, and SDO/AIA, the temperature distribution derived from these data suggest significant hot (5-10 MK) emission from active regions, and the 2013 spectra suggest a low-FIP enhancement of only ~1.6 relative to the photosphere, 40% of the usually-observed value from quiescent coronal plasma. We explore the implications of these findings on coronal heating. We discuss future missions for spectrally-resolved soft X-ray observations using the X123-SDD, including the upcoming MinXSS 3U CubeSat using the X123-SDD and scheduled for deployment in mid-2015, and the CubIXSS 6U CubeSat mission concept.

  4. High-spectral-resolution Observations of the Solar Chromosphere and Corona

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Bruck, M. A.

    2007-05-01

    We continue to reduce high-spectral-resolution observations of the solar chromosphere from the Swedish 1-m Solar Telescope (SST) and TRACE; and, at the 29 March 2006 total solar eclipse, of the solar corona in the [Fe XIV] green line and the [Fe X] red line. (a) The SST observations in 2006 used the SOUP Lyot filter to observe H-alpha limb spicules in five positions with 128 milliangstrom resolution for velocity imaging with several cameras to allow restoration of even noisy images. One camera is near H-alpha, providing high S/N images for extracting wavefront information. The other is deliberately defocused for Phase Diversity information. We use Multi-Object Multi-Frame Blind Deconvolution (MOMFBD; momfbd.org), assisted by Michiel Van Noort and Mats Löfdahl (Royal Swedish Academy of Sciences) and the CfA Hinode center. Simultaneous TRACE observations show spicules in emission and, silhouetted against the EUV corona, in absorption. (b) Our Fabry-Perot 2006-eclipse coronal spectra were taken with David Rust's (JHUAPL) 0.16 angstrom Y-cut lithium-niobate filter. With Rust and Matthew Noble, the etalon was stepped across the red coronal line every 0.22 angstrom. We present the profile and Doppler shifts of the [Fe X] line. (c) We collected simultaneous 10 Hz observations in the red and green coronal lines at the 2006 eclipse, with the goal of detecting high-frequency intensity oscillations ( 1 Hz), which can be relevant to coronal heating, and to confirm previous results. We present FFT and wavelet analysis of the aligned data. We thank Bryce Babcock and Steven Souza (Williams) for their eclipse collaboration. We acknowledge grants NNG04GK44G, NNG04GE48G, and NN05GG75G from NASA Planetary Astronomy. The eclipse observations were supported by NSF grant ATM-0552116 from the Solar Terrrestrial Program of the Atmospheres Sciences Division. Additional eclipse support was received from National Geographic's Committee on Research and Exploration and Williams's Rob Spring Fund.

  5. Non-equilibrium Ionization Modeling of Simulated Pseudostreamers in a Solar Corona Model

    NASA Astrophysics Data System (ADS)

    Shen, Chengcai; Raymond, John C.; Mikić, Zoran; Linker, Jon; Reeves, Katharine K.; Murphy, Nicholas A.

    2015-04-01

    Time-dependent ionization is important for diagnostics of coronal streamers, where the thermodynamic time scale could be shorter than the ionization or recombination time scales, and ions are therefor in non-equilibrium ionization states. In this work, we perform post-processing time-dependent ionization calculations for a three dimensional solar corona and inner heliosphere model from Predictive Sciences Inc. (Mikić & Linker 1999) to analyze the influence of non-equilibrium ionization on emission from coronal streamers. Using the plasma temperature, density, velocity and magnetic field distributions provided by the 3D MHD simulation covering the Whole Sun Month (Carrington rotation CR1913, 1996 August 22 to September 18), we calculate non-equilibrium ionization states in the region around a pseudostreamer. We then obtain the synthetic emissivities with the non-equilibrium ion populations. Under the assumption that the corona is optically thin, we also obtain intensity profiles of several emission lines. We compare our calculations with intensities of Lyman-alpha lines and OVI lines from SOHO/Ultraviolet Coronagraph Spectrometer (UVCS) observations at 14 different heights. The results show that intensity profiles of both Lyman-alpha and OVI lines match well UVCS observations at low heights. At large heights, OVI intensites are higher for non-equilibrium ionization than equilibrium ionization inside this pseudostreamer. The assumption of ionization equilibrium would lead to a underestimate of the OVI intensity by about ten percent at a height of 2 solar radii, and the difference between these two ionization cases increases with height. The intensity ratio of OVI 1032 line to OVI 1037 lines is also obtained for non-equilibrium ionization modeling.

  6. Tracing Dust Grains from Supernovae to The Solar Nebulae

    NASA Astrophysics Data System (ADS)

    Luebbers, Ian; Goodson, Matthew; Heitsch, Fabian

    2016-01-01

    Short-lived radioisotopes (SLRs) were present in the early solar system, providing evidence that the solar system was impacted by a supernova prior to or during its formation. However, hydrodynamical models of the injection of SLRs fail to achieve sufficient mixing, presenting a challenge to this hypothesis. We propose the injection of SLRs via dust grains in an attempt to overcome the mixing barrier. To test this hypothesis we simulate injection into a presolar gas cloud under various assumptions. Our results suggest that SLR transport in dust grains is a viable mechanism for generating observed SLR abundances.

  7. White light solar corona: an atlas of 1985 K- coronameter synoptic charts, December 1984-December 1985. Technical note

    SciTech Connect

    Sime, D.G.; Garcia, C.; Yasukawa, E.; Lundin, E.; Rock, K.

    1986-10-01

    The synoptic observing program of the Mauna Loa Solar Observatory (MLSO) has as its goal the specification of the time-dependent structure of the solar corona. The growth of the low intensity polar regions and ordering of the brighter corona into a band near the equator seen in the second, third, and fourth years of observations (1981-1983) continued through 1984. In 1985, the corona remains in the same general form, with the brightest regions concentrated in a band around the equator, similar to the situation noted near the last solar minimum. The apparent excursions of the darkest regions (polar holes) towards the equator seen at the start of the year become less pronounced with time. However, the area embraced by the highest brightness contours tends to increase throughout the year, perhaps indicating that the corona has gone through its minimum configuration. The material presented here is in a format providing a convenient access to investigators intending to make correlation studies or an intercomparison of standard synoptic data sets.

  8. Magnetohydrodynamic Oscillations in the Solar Corona and Earth's Magnetosphere: Towards Consolidated Understanding

    NASA Astrophysics Data System (ADS)

    Nakariakov, V. M.; Pilipenko, V.; Heilig, B.; Jelínek, P.; Karlický, M.; Klimushkin, D. Y.; Kolotkov, D. Y.; Lee, D.-H.; Nisticò, G.; Van Doorsselaere, T.; Verth, G.; Zimovets, I. V.

    2016-04-01

    Magnetohydrodynamic (MHD) oscillatory processes in different plasma systems, such as the corona of the Sun and the Earth's magnetosphere, show interesting similarities and differences, which so far received little attention and remain under-exploited. The successful commissioning within the past ten years of THEMIS, Hinode, STEREO and SDO spacecraft, in combination with matured analysis of data from earlier spacecraft (Wind, SOHO, ACE, Cluster, TRACE and RHESSI) makes it very timely to survey the breadth of observations giving evidence for MHD oscillatory processes in solar and space plasmas, and state-of-the-art theoretical modelling. The paper reviews several important topics, such as Alfvénic resonances and mode conversion; MHD waveguides, such as the magnetotail, coronal loops, coronal streamers; mechanisms for periodicities produced in energy releases during substorms and solar flares, possibility of Alfvénic resonators along open field lines; possible drivers of MHD waves; diagnostics of plasmas with MHD waves; interaction of MHD waves with partly-ionised boundaries (ionosphere and chromosphere). The review is mainly oriented to specialists in magnetospheric physics and solar physics, but not familiar with specifics of the adjacent research fields.

  9. Shock Acceleration and Transport of Solar Energetic Particles in the Corona

    NASA Astrophysics Data System (ADS)

    Ng, C. K.; Ko, Y.; Tylka, A. J.; von Rosenvinge, T. T.

    2013-12-01

    In gradual solar energetic particle (SEP) events, the phase-space density of suprathermal seed particles plays an important role in the bootstrap acceleration of SEPs at a coronal-mass-ejection driven shock in the corona. Higher seed proton density causes more rapid resonant amplification of ambient Alfvn waves and hence faster shock acceleration of SEPs. On the other hand, SEP-driven Alfvn wave growth is slowed by higher plasma density and by the thermal damping of left-hand polarized waves at frequencies exceeding a fraction of the proton cyclotron frequency. Damping also influences the background wave distribution. Coronal magnetic field strongly influences the wave-particle interaction since its magnitude scales the resonant wavenumber and its negative parallel gradient focuses the charged particles. The solar-wind velocity and Alfvn speed, relevant to the height of shock formation, are related to the plasma density and magnetic field. Consequently, the spatial dependences of all these environmental parameters influence the coupled evolution of SEP and Alfvn wave distributions. We will present results from our models of SEP acceleration and transport combining the effects of the above physical considerations. The model results will be compared to directly observed and inferred features of SEP events (e.g. streaming-limited intensity, maximum energy, height of first solar particle release) to address the roles and relative importance of the above physical factors.

  10. Periodicities in the X-ray emission from the solar corona

    SciTech Connect

    Chowdhury, Partha; Jain, Rajmal; Awasthi, Arun K. E-mail: parthares@gmail.com E-mail: awasthi@prl.res.in

    2013-11-20

    We have studied the time series of full disk integrated soft and hard X-ray emission from the solar corona during 2004 January to 2008 December, covering the entire descending phase of solar cycle 23 from a global point of view. We employ the daily X-ray index derived from 1 s cadence X-ray observations from the Si and CZT detectors of the 'Solar X-ray Spectrometer' mission in seven different energy bands ranging between 6 and 56 keV. X-ray data in the energy bands 6-7, 7-10, 10-20, and 4-25 keV from the Si detector are considered, while 10-20, 20-30, and 30-56 keV high energy observations are taken from the CZT detector. The daily time series is subjected to power spectrum analysis after appropriate correction for noise. The Lomb-Scargle periodogram technique has shown prominent periods of ∼13.5 days, ∼27 days, and a near-Rieger period of ∼181 days and ∼1.24 yr in all energy bands. In addition to this, other periods like ∼31, ∼48, ∼57, ∼76, ∼96, ∼130, ∼227, and ∼303 days are also detected in different energy bands. We discuss our results in light of previous observations and existing numerical models.

  11. Thermal structure of current sheets and supra-arcade downflows in the solar corona

    SciTech Connect

    Hanneman, Will J.; Reeves, Katharine K. E-mail: kreeves@cfa.harvard.edu

    2014-05-10

    After the peak intensity of many large solar flares, magnetic and thermodynamic processes give rise to a phenomenon known as supra-arcade downflows (SADs). SADs are sunward flowing density depletions, often observed in post-flare plasma sheets. Some models have suggested that the plasma in the dark lanes is heated to temperatures of 20-80 MK, which is much hotter than temperatures of the surrounding plasma. In this work, we use data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and the X-Ray Telescope on the Hinode satellite to determine the thermal structure of SADs in the solar corona. We examine four flares that took place on 2011 October 22, 2012 January 14, 2012 January 16, and 2012 January 27. Differential emission measures are calculated for each flare and we compare the temperatures in the SADs to those of the surrounding plasma. We find that the SADs are hotter than the background, but cooler than the surrounding plasma in most cases, with only 1 out of the 11 SADs examined here having a slightly higher temperature than its surroundings.

  12. Magnetohydrodynamic Oscillations in the Solar Corona and Earth's Magnetosphere: Towards Consolidated Understanding

    NASA Astrophysics Data System (ADS)

    Nakariakov, V. M.; Pilipenko, V.; Heilig, B.; Jelínek, P.; Karlický, M.; Klimushkin, D. Y.; Kolotkov, D. Y.; Lee, D.-H.; Nisticò, G.; Van Doorsselaere, T.; Verth, G.; Zimovets, I. V.

    2016-02-01

    Magnetohydrodynamic (MHD) oscillatory processes in different plasma systems, such as the corona of the Sun and the Earth's magnetosphere, show interesting similarities and differences, which so far received little attention and remain under-exploited. The successful commissioning within the past ten years of THEMIS, Hinode, STEREO and SDO spacecraft, in combination with matured analysis of data from earlier spacecraft (Wind, SOHO, ACE, Cluster, TRACE and RHESSI) makes it very timely to survey the breadth of observations giving evidence for MHD oscillatory processes in solar and space plasmas, and state-of-the-art theoretical modelling. The paper reviews several important topics, such as Alfvénic resonances and mode conversion; MHD waveguides, such as the magnetotail, coronal loops, coronal streamers; mechanisms for periodicities produced in energy releases during substorms and solar flares, possibility of Alfvénic resonators along open field lines; possible drivers of MHD waves; diagnostics of plasmas with MHD waves; interaction of MHD waves with partly-ionised boundaries (ionosphere and chromosphere). The review is mainly oriented to specialists in magnetospheric physics and solar physics, but not familiar with specifics of the adjacent research fields.

  13. Morphology of the Solar Corona from Radio Occultation Measurements: Implications for Solar Probe

    NASA Technical Reports Server (NTRS)

    Woo, R.

    1996-01-01

    This paper summarizes the latest results on the morphology of the near-Sun solar wind obtained from radio occultation measurements, and their impact on the planning and conduct of a mission to the Sun such as Solar Probe.

  14. Three-Dimensional MHD Modeling of The Solar Corona and Solar Wind: Comparison with The Wang-Sheeley Model

    NASA Technical Reports Server (NTRS)

    Usmanov, A. V.; Goldstein, M. L.

    2003-01-01

    We present simulation results from a tilted-dipole steady-state MHD model of the solar corona and solar wind and compare the output from our model with the Wang-Sheeley model which relates the divergence rate of magnetic flux tubes near the Sun (inferred from solar magnetograms) to the solar wind speed observed near Earth and at Ulysses. The boundary conditions in our model specified at the coronal base and our simulation region extends out to 10 AU. We assumed that a flux of Alfven waves with amplitude of 35 km per second emanates from the Sun and provides additional heating and acceleration for the coronal outflow in the open field regions. The waves are treated in the WKB approximation. The incorporation of wave acceleration allows us to reproduce the fast wind measurements obtained by Ulysses, while preserving reasonable agreement with plasma densities typically found at the coronal base. We find that our simulation results agree well with Wang and Sheeley's empirical model.

  15. Validation of the Earth atmosphere models using the EUV solar occultation data from the CORONAS and PROBA 2 instruments

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Kuzin, Sergey; Berghmans, David; Pertsov, Andrey; Dominique, Marie; Ulyanov, Artyom; Gaikovich, Konstantin

    Absorption in the atmosphere below 500 km results in attenuation of the solar EUV flux, variation of its spectra and distortion of solar images acquired by solar EUV instruments operating on LEO satellites even on solar synchronous orbits. Occultation measurements are important for planning of solar observations from these satellites, and can be used for monitoring the upper atmosphere as well as for studying its response to the solar activity. We present the results of the occultation measurements of the solar EUV radiation obtained by the CORONAS-F/SPIRIT telescope at high solar activity (2002), by the CORONAS-Photon/TESIS telescope at low activity (2009), and by the SWAP telescope and LYRA radiometer onboard the PROBA 2 satellite at moderate activity (2010). The measured attenuation profiles and the retrieved linear extinction coefficients at the heights 200-500 km are compared with simulations by the NRLMSIS-00 and DTM2013 atmospheric models. It was shown that the results of simulations by the DTM2013 model are well agreed with the data of measurements at all stages of solar activity and in presence of the geomagnetic storm, whereas the results of the NRLMSISE-00 model significantly diverge from the measurements, in particular, at high and low activity. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement “eHeroes” (project № 284461, www.eheroes.eu).

  16. MACS, An Instrument, and a Methodology for Simulations and Global Measurements of the Coronal Electron Temperature and the Solar Wind Velocity on the Solar Corona

    NASA Technical Reports Server (NTRS)

    Reginald, Nelson L.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The determination of the radial and latitudinal temperature and wind profiles of the solar corona is of great importance in understanding the coronal heating mechanism and the dynamics of coronal expansion. Cram presented the theory for the formation of the K-coronal spectrum and identified two important observations. He observed the existence of temperature sensitive anti-nodes at certain wavelengths in the theoretical K-coronal spectra. The anti-nodes are separated by temperature-insensitive nodes. Remarkably, Cram showed that the wavelengths of the nodes and anti-nodes are almost independent of altitude above the solar limb. Because of these features, Cram suggested that the intensity ratios at two anti-nodes could be used as a diagnostic of the electron temperature in the K-corona. Based on this temperature diagnostic technique prescribed by Cram a slit-based spectroscopic study was performed by Ichimoto et al. on the solar corona in conjunction with the total solar eclipse of 3 Nov 1994 in Putre, Chile to determine the temperature profile of the solar corona. In this thesis Cram's theory has been extended to incorporate the role of the solar wind in the formation of the K-corona, and we have identified both temperature and wind sensitive intensity ratios. The instrument, MACS, for Multi Aperture Coronal Spectrometer, a fiber optic based spectrograph, was designed for global and simultaneous measurement of the thermal electron temperature and the solar wind velocity in the solar corona. The first ever experiment of this nature was conducted in conjunction with the total solar eclipse of 11 Aug 1999 in Elazig, Turkey. In this instrument one end of each of twenty fiber optic tips were positioned in the focal plane of the telescope in such a way that we could observe conditions simultaneously at many different latitudes and two different radial distances in the solar corona. The other ends of the fibers were vertically aligned and placed at the primary focus of the collimating lens of the spectrograph to obtain simultaneous and global spectra on the solar corona. By isolating the K-coronal spectrum from the spectrum recorded by each fiber the temperature and the wind sensitive intensity ratios were calculated to obtain simultaneous and global measurements of the thermal electron temperature and the solar wind velocity. We were successful in obtaining reliable estimates of the coronal temperature at many positions in the corona. This is the first time that simultaneous measurements of coronal temperatures have been obtained at so many points. However due to instrumental scattering encountered during observations, reliable estimates of the wind velocity turned out to be impossible to obtain. Although remedial measures were taken prior to observation, this task proved to be difficult owing to the inability to replicate the conditions expected during an eclipse in the laboratory. The full extent of the instrumental scattering was apparent only when we analyzed the observational sequence. Nevertheless the experience obtained from this very first attempt to simultaneously and globally measure both the wind velocity and the temperature on the solar corona have provided valuable information to conduct any future observations successfully.

  17. The Solar Helium Abundance in the Outer Corona Determined from Observations with SUMER/SOHO

    NASA Astrophysics Data System (ADS)

    Laming, J. M.; Feldman, U.

    2000-05-01

    At altitudes of about 1.05 solar radii or more, the corona above quiet solar regions becomes essentially isothermal. This obviates many of the difficulties associated with the inverse problem of determining emission measure distributions, and allows for fairly straightforward relative element abundance measurements. We present new values for the He abundance. The first is based on a reanalysis of the He/O ratio studied by previously by Feldman (1998) using data acquired by SUMER. We use a revised value of the O abundance, and a more thorough evaluation of the atomic physics for He II to derive an He/H abundance ratio of 0.092, (mass fraction, Y=0.27), with an error of ~ 17% coming mainly from the O abundance uncertainty. We demonstrate that this result may be affected by gravitational settling of O relative to He. We also derive an abundance for He by direct comparison to emission lines of the H I Lyman series, with the result He/H =0.083 +/- 10% (Y=0.25). Gravitational settling, if present, has the opposite effect on this result to that above. Combining the two measurements leads to a final result of He/H =0.084+/- 0.008. This work was supported by the NRL/ONR Solar Magnetism and the Earth's Environment 6.1 Research Option and by NASA Contract W19473. The SUMER project is financially supported by DARA, CNES, NASA and the ESA PRODEX program (Swiss contribution). SUMER is a part of SOHO, the Solar and Heliospheric Observatory, of ESA and NASA.

  18. Solar wind mass-loading due to dust

    NASA Astrophysics Data System (ADS)

    Rasca, A. P.; Hornyi, M.

    2013-06-01

    Collisionless mass-loading by interplanetary dust particles is expected to cause a significant disruption in the flow of the solar wind. Dust particles near the Sun can become a source of ions and neutrals due to evaporation and sputtering. This mass-loading effect can lead to the formation of collisionless shocks, as it was first discussed in the case of solar wind interaction with comets. This effect can also be compared with a de Laval nozzle, which behaves differently between subsonic and supersonic flows. We investigate the effects of mass-loading resulting from sun-grazing comets or collisions by larger bodies in the vicinity of the Sun, where the solar wind transitions from subsonic to supersonic speeds. We look at results obtained using a simple 1D hydrodynamic model to mass-load ionized dust into the the wind near the sonic point, which are relevant for understanding the acceleration of the solar wind and possible changes in its composition due to dust.

  19. Solar Wind Mass-Loading Due to Dust

    NASA Astrophysics Data System (ADS)

    Rasca, A.; Horanyi, M.

    2011-12-01

    Collisionless mass-loading by interplanetary dust particles is expected to cause a significant disruption in the flow of the solar wind. Dust particles near the Sun can become a source of ions and neutrals due to evaporation and sputtering. This mass-loading effect can lead to the formation of collisionless shocks, as it was first discussed in the case of solar wind interaction with comets. This effect can also be compared with a de Laval nozzle, which behaves differently between subsonic and supersonic flows. We investigate the effects of mass-loading resulting from sun-grazing comets or collisions in the vicinity of the Sun, where the solar wind transitions from subsonic to supersonic speeds. We implement a hydrodynamic numerical model to generate a steady wind extending out to the inner heliosphere. Dust is introduced through a set of mass-loading source terms, and the model is evolved using a shock-capturing scheme. These results are relevant for understanding the acceleration of the solar wind and possible changes in its composition due to dust.

  20. Solar Corona/Wind Composition and Origins of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Lepri, S. T.; Gilbert, J. A.; Landi, E.; Shearer, P.; von Steiger, R.; Zurbuchen, T.

    2014-12-01

    Measurements from ACE and Ulysses have revealed a multifaceted solar wind, with distinctly different kinetic and compositional properties dependent on the source region of the wind. One of the major outstanding issues in heliophysics concerns the origin and also predictability of quasi-stationary slow solar wind. While the fast solar wind is now proven to originate within large polar coronal holes, the source of the slow solar wind remains particularly elusive and has been the subject of long debate, leading to models that are stationary and also reconnection based - such as interchange or so-called S-web based models. Our talk will focus on observational constraints of solar wind sources and their evolution during the solar cycle. In particular, we will point out long-term variations of wind composition and dynamic properties, particularly focused on the abundance of elements with low First Ionization Potential (FIP), which have been routinely measured on both ACE and Ulysses spacecraft. We will use these in situ observations, and remote sensing data where available, to provide constraints for solar wind origin during the solar cycle, and on their correspondence to predictions for models of the solar wind.

  1. Tracing the magnetic connectivity between the solar surface, corona and inner heliosphere using combined X-ray and radio observations

    NASA Astrophysics Data System (ADS)

    Vilmer, Nicole; Maksimovic, Milan; Rackovic, Kristina

    On a few examples of flares observed with RHESSI at X-ray wavelengths and with the Nançay Radioheliograph (NRH) and WIND/WAVES at radio wavelengths, we shall illustrate how these combined observations allow to understand the link between energetic electrons interacting in the flare site and the escaping electrons which produce radio emissions at low frequencies in the high corona and in the interplanetary medium. While in some events, a close correspondence is observed between the timing and the fast variations of the HXR emissions and the radio emissions from electron beams in the high corona observed by Wind/Waves in the 1 to 14 MHz range suggesting a common acceleration/injection site for HXR and radio emitting electrons, in other cases there is a delay of the radio emissions in the high corona with respect to the onset of the HXR emission. We shall discuss in this contribution the input for a few events of the spatially resolved radio observations of the metric/decimetric emissions provided by the Nançay Radioheliograph to better understand the link between the X-ray emissions at the solar c surface and the radio bursts in the high corona. We shall also discuss the percentage of cases for which a close correspondance is observed. We shall also illustrate how these results may help the preparation of the observing modes of X-ray and radio bursts with STIX and RPW on Solar Orbiter.

  2. Astrophysical dust grains in stars, the interstellar medium, and the solar system

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1991-01-01

    Studies of astrophysical dust grains in circumstellar shells, the interstellar medium, and the solar system may provide information about stellar evolution and about physical conditions in the primitive solar nebula. The following subject areas are covered: (1) the cycling of dust in stellar evolution and the formation of planetary systems; (2) astrophysical dust grains in circumstellar environments; (3) circumstellar grain formation and mass loss; (4) interstellar dust grains; (5) comet dust and the zodiacal cloud; (6) the survival of dust grains during stellar evolution; and (7) establishing connections between stardust and dust in the solar system.

  3. Early Evaluation of the Corona at the 2016 March 9 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Seaton, Daniel B.; Sterling, Alphonse C.

    2016-05-01

    We observed the corona on 2016 March 9 with a variety of assets on the ground and in space. The umbra of the total eclipse swept across Indonesia and into the Pacific, with totality at our Indonesian observation sites lasting 2 min 45 s at Ternate in the Spice Islands (Malukus) and 2 min 10 at Belitung. We compare our ground-based results with the coronal configurations observed with PROBA2/SWAP and Hinode XRT. One of our scientific goals is to follow the coronal configuration over the solar-activity cycle, with the sunspot number now half its maximum of either its 2012 or 2014 peak. We are evaluating temporal changes by comparing eclipse observations made at several ground-based sites along the path, with the longest span being 75 min from Belitung to the Woleia atoll in mid-Pacific, 1:25 UTC to 2:40 UTC; we are evaluating whether the airborne observations made at 3:35 UTC on March 8 (across the International Dateline) are of suitable quality to provide further comparison at high spatial resolution. We also compare our images with the near-simultaneous coronal observations made with SOHO/LASCO, SDO/AIA, STEREO-A/SECCHI, and the Mauna Loa Solar Observatory's K-cor coronagraph. ACS received support for image analysis from the Hinode project.

  4. The Solar Corona and a CME at the 2010 Total Eclipse

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Rusin, V.; Druckmüllerová, H.; Saniga, M.; Lu, M.; Malamut, C.; Seaton, D. B.; Golub, L.; Engell, A. J.; Hill, S. W.; Lucas, R.

    2011-05-01

    The 11 July 2010 total solar eclipse was observed on the ground from French Polynesia and, 83 minutes later, from Easter Island, and near-simultaneous images were made with spacecraft instruments including AIA/SDO, HMI/SDO, EUVI/STEREO, SWAP/PROBA2, EIT/SOHO, and LASCO/SOHO. We report on changes in the corona detectable with high-resolution image processing of the ground-based eclipse coronal imaging, including two CME's that were seen to evolve. We compare with the spacecraft images to give a complete depiction of coronal structure at the time of the eclipse, which corresponded to a low but rising phase of the solar-activity cycle. We acknowledge the support of NASA's MSFC NNX10AK47A, NSF REU AST-1005024 with DoD ASSURE, VEGA 2/0098/10 of the Slovak Acad. Sci, 205/09/1469 of the Czech Science Foundation, PRODEX C90345 of ESA/BELSPO, FP7/2007-2013/218816 SOTERIA, Lockheed Martin; for equipment: Nikon Professional Services, ASTELCO Systems GmbH (Germany), and National Geographic Society's Photographic Division; and colleagues Y.-M. Wang (NRL), S. Habbal (U. Hawaii), H. Lanteires (Tatakoto), and J. Kern (Carnegie Obs.).

  5. Neon and Oxygen Abundances and Abundance Ratio in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Landi, E.; Testa, P.

    2015-02-01

    In this work we determine the Ne/O abundance ratio from Solar and Heliospheric Observatory (SOHO)/Solar Ultraviolet Measurement of Emitted Radiation (SUMER) off-disk observations of quiescent streamers over the 1996-2008 period. We find that the Ne/O ratio is approximately constant over solar cycle 23 from 1996 to 2005, at a value of 0.099 ± 0.017 this value is lower than the transition region determinations from the quiet Sun used to infer the neon photospheric abundance from the oxygen photospheric abundance. Also, the Ne/O ratio we determined from SUMER is in excellent agreement with in situ determinations from ACE/SWICS. In 2005-2008, the Ne/O abundance ratio increased with time and reached 0.25 ± 0.05, following the same trend found in the slowest wind analyzed by ACE/SWICS. Further, we measure the absolute abundance in the corona for both oxygen and neon from the data set of 1996 November 22, obtaining A o = 8.99 ± 0.04 and A Ne = 7.92 ± 0.03, and we find that both elements are affected by the first ionization potential (FIP) effect, with oxygen being enhanced by a factor of 1.4-2.1 over its photospheric abundance, and neon being changed by a factor of 0.75-1.20. We conclude that the Ne/O ratio is not constant in the solar atmosphere, both in time and at different heights, and that it cannot be reliably used to infer the neon abundance in the photosphere. Also, we argue that the FIP effect was less effective during the minimum of solar cycle 24, and that the Ne/O = 0.25 ± 0.05 value measured at that time is closer to the true photospheric value, leading to a neon photospheric abundance larger than assumed by ≈40%. We discuss the implications of these results for the solar abundance problem, for the FIP effect, and for the identification of the source regions of the solar wind.

  6. Solar Energetic Particle Acceleration in the Solar Corona with Simulated Field Line Random Walk and Wave Generation

    NASA Astrophysics Data System (ADS)

    Arthur, A. D.; le Roux, J. A.

    2014-12-01

    Observations of extreme solar energetic particle (SEP) events associated with coronal mass ejection driven shocks have detected particle energies up to a few GeV at 1 AU within the first ~10 minutes to 1 hour of shock acceleration. It is currently not well understood whether or not shock acceleration can act alone in these events or if some combination of successive shocks or solar flares is required. To investigate this, we updated our current model which has been successfully applied to the termination shock and traveling interplanetary shocks. The model solves the time-dependent Focused Transport Equation including particle preheating due to the cross shock electric field and the divergence, adiabatic compression, and acceleration of the solar wind. Particle interaction with MHD wave turbulence is modeled in terms of gyro-resonant interactions with parallel propagating Alfvn waves and diffusive shock acceleration is included via the first-order Fermi mechanism for parallel shocks. The observed onset times of the extreme SEP events place the shock in the corona when the particles escape upstream, therefore, we extended our model to include coronal conditions for the solar wind and magnetic field. Additional features were introduced to investigate two aspects of MHD wave turbulence in contributing to efficient particle acceleration at a single fast parallel shock; (1) We simulate field-line random walk on time scales much larger than a particle gyro-period to investigate how the stochastic element added to particle injection and the first-order Fermi mechanism affects the efficiency of particle acceleration. (2) Previous modeling efforts show that the ambient solar wind turbulence is too weak to quickly accelerate SEPs to GeV energies. To improve the efficiency of acceleration for a single shock, we included upstream Alfvn wave amplification due to gyro-resonant interactions with SEPs and we constrained the wave growth to not violate the Bohm limit.

  7. Microphysics of Waves and Instabilities in the Solar Wind and their Macro Manifestations in the Corona and Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia R.; Gurman, Joseph (Technical Monitor)

    2003-01-01

    Investigations of the physical processes responsible for the acceleration of the solar wind were pursued with the development of two new solar wind codes: a hybrid code and a 2-D MHD code. Hybrid simulations were performed to investigate the interaction between ions and parallel propagating low frequency ion cyclotron waves in a homogeneous plasma. In a low-beta plasma such as the solar wind plasma in the inner corona, the proton thermal speed is much smaller than the Alfven speed. Vlasov linear theory predicts that protons are not in resonance with low frequency ion cyclotron waves. However, non-linear effect makes it possible that these waves can strongly heat and accelerate protons. This study has important implications for study of the corona and the solar wind. Low frequency ion cyclotron waves or Alfven waves are commonly observed in the solar wind. Until now, it is believed that these waves are not able to heat the solar wind plasma unless some cascading processes transfer the energy of these waves to high frequency part. However, this study shows that these waves may directly heat and accelerate protons non-linearly. This process may play an important role in the coronal heating and the solar wind acceleration, at least in some parameter space.

  8. Rocket borne solar eclipse experiment to measure the temperature structure of the solar corona via lyman-. cap alpha. line profile observations

    SciTech Connect

    Argo, H.V.

    1981-01-01

    A rocket borne experiment to measure the temperature structure of the inner solar corona via the doppler broadening of the resonance hydrogen Lyman-..cap alpha.. (lambda1216A) radiation scattered by ambient neutral hydrogen atoms was attempted during the 16 Feb 1980 solar eclipse. Two Nike-Black Brant V sounding rockets carrying instrumented payloads were launched into the path of the advancing eclipse umbra from the San Marco satellite launch platform 3 miles off the east coast of Kenya.

  9. Solar Array Panels With Dust-Removal Capability

    NASA Technical Reports Server (NTRS)

    Dawson, Stephen; Mardesich, Nick; Spence, Brian; White, Steve

    2004-01-01

    It has been proposed to incorporate piezoelectric vibrational actuators into the structural supports of solar photovoltaic panels, for the purpose of occasionally inducing vibrations in the panels in order to loosen accumulated dust. Provided that the panels were tilted, the loosened dust would slide off under its own weight. Originally aimed at preventing obscuration of photovoltaic cells by dust accumulating in the Martian environment, the proposal may also offer an option for the design of solar photovoltaic panels for unattended operation at remote locations on Earth. The figure depicts a typical lightweight solar photovoltaic panel comprising a backside grid of structural spars that support a thin face sheet that, in turn, supports an array of photovoltaic cells on the front side. The backside structure includes node points where several spars intersect. According to the proposal, piezoelectric buzzers would be attached to the node points. The process of designing the panel would be an iterative one that would include computational simulation of the vibrations by use of finite- element analysis to guide the selection of the vibrational frequency of the actuators and the cross sections of the spars to maximize the agitation of dust.

  10. MACS, An Instrument and a Methodology for Simultaneous and Global Measurements of the Coronal Electron Temperature and the Solar Wind Velocity on the Solar Corona

    NASA Technical Reports Server (NTRS)

    Reginald, Nelson L.

    2000-01-01

    In Cram's theory for the formation of the K-coronal spectrum he observed the existence of temperature sensitive anti-nodes, which were separated by temperature insensitive nodes, at certain wave-lengths in the K-coronal spectrum. Cram also showed these properties were remarkably independent of altitude above the solar limb. In this thesis Cram's theory has been extended to incorporate the role of the solar wind in the formation of the K-corona, and we have identified both temperature and wind sensitive intensity ratios. The instrument, MACS, for Multi Aperture Coronal Spectrometer, a fiber optic based spectrograph, was designed for global and simultaneous measurements of the thermal electron temperature and the solar wind velocity in the solar corona. The first ever experiment of this nature was conducted in conjunction with the total solar eclipse of 11 August 1999 in Elazig, Turkey. Here twenty fiber optic tips were positioned in the focal plane of the telescope to observe simultaneously at many different latitudes and two different radial distances in the solar corona. The other ends were vertically stacked and placed at the primary focus of the spectrograph. By isolating the K-coronal spectrum from each fiber the temperature and the wind sensitive intensity ratios were calculated.

  11. Interchange Reconnection and Slow Solar Wind Formation at the boundaries of open field regions in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Rappazzo, A. F.; Matthaeus, W. H.; Ruffolo, D. J.; Servidio, S.; Velli, M.

    2014-12-01

    Interchange reconnection, i.e., magnetic reconnection at the interface between open and closed corona, is thought to contribute to the formation of the slowsolar wind, since it can inject the hotter and denserplasma from closed regions into the heliosphere,and account for the different slow wind composition (thatis similar to the plasma of closed regions) respectto the fast wind. The interchange process has mostly been investigatedfor magnetic field lines with opposite polarity and null points, either for the case of counterdirected loops (e.g., Fisk et al. 1999, Fisk and Schwadron 2001), or in correspondence of null points at the apex of streamers or pseudo-streamers (e.g., Wang et al. 1998,Edmondson et al. 2010, Del Zanna et al. 2011).Magnetic reconnection can certainly occur in these configurations,but they occupy a very small volume of the corona. On the other hand component magnetic reconnection at the boundarybetween coronal holes and streamers or pseudo-streamers hasreceived less attention, even though it can occur aroundthe entire extension of such boundaries. Magnetic reconnection is at the basis of Parker'snanoflare scenario for the heating of coronal loops.Modeling such regions in cartesian geometry with a strongguide field, it has been shown numerically that photosphericmotions induce a magnetic fieldcomponent orthogonal to the strong axial field characterizedby the presence of many current sheets, where the field lines are locally oppositely directed, and can reconnect (Einaudi et al. 1996; Dmitruk and Gomez 1997).The reconnection of the orthogonal component of the magneticfield leads to a change of connectivity of the field linesof the total magnetic field that connect one photospheric boundaryto the other. We have shown that a similar interchange mechanismcan operate in and around the boundaries between open and closedregions inducing a continual stochastic rearrangement of connectivityeverywhere along the open-closed boundary (Rappazzo et al. 2012). We examine a reduced MHD model of a simplified interfaceregion between open and closed corona. We extend previous results to quantify the flux of mass density,heat and momentum from the closed to the adjacent open regionthrough their shared boundary, and model the impact of this fluxon the acceleration of the slow component of the solar wind.

  12. Imaging observation of quasi-periodic disturbances' amplitudes increasing with height in the polar region of the solar corona

    SciTech Connect

    Su, J. T.; Priya, T. G.; Liu, Y.; Shen, Y. D.

    2014-08-01

    At present, there have been few extreme ultraviolet (EUV) imaging observations of spatial variations of the density perturbations due to the slow magnetoacoustic waves (SMWs) propagating along the solar coronal magnetic fields. In this paper, we present such observations taken from the polar region of the corona with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory and investigate the amplitude of quasi-periodic propagating disturbances that increase with height in the lower corona (0-9 Mm over the solar limb). We statistically determined the following parameters associated with the disturbances: pressure scale height, period, and wavelength in AIA 171 Å, 193 Å, and 211 Å channels. The scale height and wavelength are dependent of temperature, while the period is independent of temperature. The acoustic velocities inferred from the scale height highly correlate with the ratios of wavelength to period, i.e., phase speeds. They provide evidence that the propagating disturbances in the lower corona are likely SMWs and the spatial variations in EUV intensity in the polar region likely reflects the density compressional effect by the propagating SMWs.

  13. Radio interferometer observations of solar wind turbulence from the orbit of Helios to the solar corona

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.; Sakurai, Takayuki

    1995-01-01

    We report observations of Very Long Baseline Interferometer (VLBI) phase scintillations due to turbulence in the solar wind. The observations were made at 5.00 and 8.42 GHz with the Very Long Baseline Array (VLBA) on three dates in 1991 July and August. We observed the sources 0851 + 202 and 0735 + 178 at solar elongations ranging from 2.66 deg to 13.29 deg; the closest approach of the line of sight to the Sun ranged from 10 to 49.8 solar radii. We have also included previously unpublished 5 GHz VLBI phase scintillation measurements from 1989. These measurements probe solar wind density fluctuations on spatial scales from about 200 km to 2000 km. Our measurements are in quite good agreement with the Coles & Harmon model for the radio phase structure function, which was largely determined from observations on both shorter and larger spatial scales. Departures from the Coles & Harmon functions are attributable to day-to-day variations in the solar wind conditions. Phase scintillations at the greatest solar elongations are in very good agreement with extrapolated estimates from direct measurements made with the Helios spacecraft at slightly larger heliocentric distances. Thus there is a consistency between the in-situ spacecraft and radio sensing measurements of density turbulence. All of the VLBI data are consistent with a Kolmogorov spectrum for the density fluctuations, although at the closest elongations there may be excess power at small spatial scales. An advantage of interferometric techniques over other radio propagation measurements is that they provide a measure of the anisotropy of the irregularities. Our observations at closest approach (10 solar radii) show weak evidence for anisotropic, field-aligned density irregularities with an axial ratio of order 2. This degree of anisotropy would appear to be less than that measured at similar solar elongations but on smaller spatial scales by Armstrong and colleagues. Finally, a combination of the radio propagation data and in situ Helios measurements is used to determine the heliocentric distance dependence of the normalization coefficient of the density power spectrum, C(sup 2)(sub N). Modeling C(sup2)(sub N) varies as (R/solar radii)(sup -Kappa), we find Kappa = 3.72 +/- 0.30. Subject to a number of assumptions, this result is consistent with the conclusion of D. A. Roberts that turbulence within 0.28 astronomical units adheres to a WKB formula for turbulence amplitude as a function of heliocentric distance.

  14. Estimating Solar Active Region Free Energy from the Minimum Current Corona Model

    NASA Astrophysics Data System (ADS)

    Barnes, Graham; Leka, KD; Wagner, Eric

    2015-08-01

    We employ the Minimum Current Corona (MCC) model to estimate the amount of magnetic free energy injected into the coronal magnetic field of active regions. In the MCC model, each concentration of photospheric magnetic flux is represented by a point source, greatly simplifying the magnetic topology. Advecting an initial partitioning of the flux through a long time series of magnetograms results in a persistent set of sources. Flux domains, bundles of field lines interconnecting pairs of sources, are surrounded by separatrix surfaces. The intersection of two separatrices is a separator field line, which is the site of reconnection in this model. The evolution of the photospheric field causes the sources to also evolve, which would lead to changes in the domain fluxes to maintain a potential field configuration if reconnection could proceed rapidly. However, in the absence of reconnection, currents begin to flow to maintain the initial distribution of domain fluxes. The minimum energy state occurs when currents flow along the separators. The magnitude of the separator currents can be estimated and combined with geometrical properties of the separators to give a lower bound to the magnetic free energy of the system. Starting from an initial potential field configuration, changes in the free energy are presented for time series of data from the Helioseismic and Magnetic Imager (HMI) on NASA's Solar Dynamics Observatory for selected active regions, and the topology of the model field in the vicinity of flare emission is determined.This work was supported by NASA under contract NNH12CC03C.

  15. Temperature and ionization balance dependence of O VII line ratios. [in solar corona

    NASA Technical Reports Server (NTRS)

    Acton, L. W.; Brown, W. A.

    1978-01-01

    The forbidden-plus-intersystem to resonance line ratio (G) for the heliumlike ion O VII is calculated, taking into account cascades, blended satellite lines, and radiative plus dielectric recombination. It is noted that G is of particular use for investigating radiative-transfer effects and nonequilibrium ionization in the solar corona and that the calculations are applicable to a low-density optically thin Maxwellian plasma. The temperature dependence of G is considered for the case of a steady-state equilibrium plasma, and the effect of departures from ionization equilibrium on G is examined. It is found that G is quite insensitive to temperature over the range from 600,000 to 6 million K for a steady-state plasma, but that recombinations may be suppressed or dominant, depending on the relative abundance of O VIII, for a plasma in which the state of ionization is not in equilibrium with the electron temperature. This latter effect is shown to be capable of causing large variations in G that are dependent on electron temperature.

  16. Solar Micro-Type III Burst Storms and Long Dipolar Magnetic Field in the Outer Corona

    NASA Astrophysics Data System (ADS)

    Morioka, A.; Miyoshi, Y.; Iwai, K.; Kasaba, Y.; Masuda, S.; Misawa, H.; Obara, T.

    2015-08-01

    Solar micro-type III radio bursts are elements of the so-called type III storms and are characterized by short-lived, continuous, and weak emissions. Their frequency of occurrence with respect to radiation power is quite different from that of ordinary type III bursts, suggesting that the generation process is not flare-related, but due to some recurrent acceleration processes around the active region. We examine the relationship of micro-type III radio bursts with coronal streamers. We also explore the propagation channel of bursts in the outer corona, the acceleration process, and the escape route of electron beams. It is observationally confirmed that micro-type III bursts occur near the edge of coronal streamers. The magnetic field line of the escaping electron beams is tracked on the basis of the frequency drift rate of micro-type III bursts and the electron density distribution model. The results demonstrate that electron beams are trapped along closed dipolar field lines in the outer coronal region, which arise from the interface region between the active region and the coronal hole. A 22 year statistical study reveals that the apex altitude of the magnetic loop ranges from 15 to 50 RS. The distribution of the apex altitude has a sharp upper limit around 50 RS suggesting that an unknown but universal condition regulates the upper boundary of the streamer dipolar field.

  17. Diffusion effects on the helium abundance of the solar transition region and corona

    NASA Technical Reports Server (NTRS)

    Hansteen, Viggo H.; Holzer, Thomas E.; Leer, Egil

    1993-01-01

    The diffusion of helium in the solar transition region is studied by solving the mass and momentum conservation equations for a hydrogen-helium plasma given a representative temperature profile. Steady state solutions show that two distinct atmospheres may result. In cases where the thermal force on alpha-particles is balanced by the partial pressure gradient force, helium is the dominant coronal species. On the other hand, if it is the frictional force between protons and alpha-particles which balances the thermal force on alpha-particles then hydrogen is the major coronal component. In order to explore which of these solutions are attainable within reasonable time scales, the time-dependent equations are solved, starting from an initial state with a uniform helium abundance of 10 percent. The atmosphere as a whole is close to hydrostatic equilibrium, but due the thermal forces the individual elements are not. This force inbalance leads to a differential flow between species. It is found that this differential flow leads to a significant enhancement of the coronal helium abundance. Even for the relatively shallow temperature gradient used the helium abundance in the lower corona increases to 30 percent over a 24 hr period.

  18. ON THE ANISOTROPY IN EXPANSION OF MAGNETIC FLUX TUBES IN THE SOLAR CORONA

    SciTech Connect

    Malanushenko, A.; Schrijver, C. J.

    2013-10-01

    Most one-dimensional hydrodynamic models of plasma confined to magnetic flux tubes assume circular tube cross sections. We use potential field models to show that flux tubes in circumstances relevant to the solar corona do not, in general, maintain the same cross-sectional shape through their length and therefore the assumption of a circular cross section is rarely true. We support our hypothesis with mathematical reasoning and numerical experiments. We demonstrate that lifting this assumption in favor of realistic, non-circular loops makes the apparent expansion of magnetic flux tubes consistent with that of observed coronal loops. We propose that in a bundle of ribbon-like loops, those that are viewed along the wide direction would stand out against those that are viewed across the wide direction due to the difference in their column depths. That result would impose a bias toward selecting loops that appear not to be expanding, seen projected in the plane of sky. An implication of this selection bias is that the preferentially selected non-circular loops would appear to have increased pressure scale heights even if they are resolved by current instruments.

  19. Activation of a SPOT group and associated phenomena in the solar photosphere, chromosphere, and corona

    NASA Astrophysics Data System (ADS)

    Peterova, N. G.; Golovko, A. A.; Stoyanova, M. N.

    1997-06-01

    An active region characterized by the development of a new bipolar spot group near a single spot remaining from a large group is studied. Observations at 2-4 cm on the RATAN-600 radio telescope, H-alpha spectroheliograms obtained on the tower solar telescope of the Kodaikanal Observatory in India, and observations on the panoramic magnetograph of the Sayan Observatory are used in the analysis. The activation of the active region was accompanied by significant brightening (by a factor of three) of the radio source associated with the old spot. In addition, a new filament formed, above which a halo-type radio source was produced. The activation process lasted 3-4 days. These features of the evolution of the active region are interpreted as the result of partial reconnection of magnetic force lines and the formation of a bipolar structure linking the old and new parts of the active region. Energy released during this reconnection provided additional plasma heating in the active region magnetosphere. Estimates of the effective brightness temperature Tb of the active region's radio emission show that it does not exceed the usual coronal values (1-3 MK). However, the spectrum of the emission suggests that there is a hot component in the corona above the active region, together with the thermal plasma.

  20. Particle acceleration at a three-dimensional reconnection site in the solar corona

    NASA Astrophysics Data System (ADS)

    dalla, S.; Browning, P. K.

    2005-06-01

    We study test particle trajectories in the vicinity of a three-dimensional (3D) magnetic null point during spine reconnection. Particles are injected into the steady-state non-uniform magnetic and electric fields derived by Priest & Titov (1996), and the equations of motion numerically integrated. We use input parameters typical of the solar corona, for which reconnection has been suggested as the fundamental mechanism responsible for particle acceleration in flare events. We show that substantial acceleration is possible in the 3Dspine reconnection configuration, in the strong electric field regime. The energy gain is strongly dependent on the location of injection into the simulation box, as was the case in 2DX-point configurations. In our 3Dgeometry, we first vary the location of injection within a plane through the spine, and derive an analytical value for the injection angle for which maximum energy gain is achieved. Secondly we vary the azimuthal location of particle injection and show that as one moves away from the plane with maximum electric field magnitude, higher final energies can be achieved, though this requires substantially longer times.

  1. MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS

    SciTech Connect

    Schrijver, Carolus J.; DeRosa, Marc L.; Title, Alan M.

    2010-08-20

    Solar extreme ultraviolet (EUV) images of quiescent active-region coronae are characterized by ensembles of bright 1-2 MK loops that fan out from select locations. We investigate the conditions associated with the formation of these persistent, relatively cool, loop fans within and surrounding the otherwise 3-5 MK coronal environment by combining EUV observations of active regions made with TRACE with global source-surface potential-field models based on the full-sphere photospheric field from the assimilation of magnetograms that are obtained by the Michelson Doppler Imager (MDI) on SOHO. We find that in the selected active regions with largely potential-field configurations these fans are associated with (quasi-)separatrix layers (QSLs) within the strong-field regions of magnetic plage. Based on the empirical evidence, we argue that persistent active-region cool-loop fans are primarily related to the pronounced change in connectivity across a QSL to widely separated clusters of magnetic flux, and confirm earlier work that suggested that neither a change in loop length nor in base field strengths across such topological features are of prime importance to the formation of the cool-loop fans. We discuss the hypothesis that a change in the distribution of coronal heating with height may be involved in the phenomenon of relatively cool coronal loop fans in quiescent active regions.

  2. 3D Solar Corona from Soho/eit to Stereo/secchi

    NASA Astrophysics Data System (ADS)

    Portier-Fozzani, Fabrice; Stereo Team

    While taking into account the difficulties encountered by 3D imaging specialists with usual objects over the last 20 years we derived apropriate stereoscopic methods that we could use for the very specific case of the solar corona. Tomographic methods which should be better for such optically thin EUV lines need lots of different quasi-simultaneous viewpoints which is not possible. Usual objects reconstructed by stereovision are mainly optical thick objects such as buildings with variable external luminosity. Direclty applied classical algorithms give at least big uncertainties due to the light emission integration along the line of sight. Also structures extractions and maching between images are very difficult to derived. Epipolar geometry has to be determined before all other steps and decomposing each image in wavelet spatial frequencies with Multiscale Vision Model for example improves a lot the extract/match step. Results of such automatization of the method are presented in the paper. Shorter methods for 3D loops descriptions with applications for helicity measurement of coronal structures evolutions and links to space weather are also presented.

  3. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    NASA Astrophysics Data System (ADS)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  4. Dust Hazard Management in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Seal, David A.

    2012-01-01

    Most robotic missions to the outer solar system must grapple with the hazards posed by the dusty rings of the gas giants. Early assessments of these hazards led simply to ring avoidance due to insufficient data and high uncertainties on the dust population present in such rings. Recent approaches, principal among them the Cassini dust hazard management strategy, provide useful results from detailed modeling of spacecraft vulnerabilities and dust hazard regions, which along with the range of mission trajectories are used to to assess the risks posed by each passage through a zone of potential hazard. This paper shows the general approach used to implement the analysis for Cassini, with recommendations for future outer planet missions.

  5. Dust in the Solar System - Properties and Origins

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay; Nakamura-Messenger, Keiko

    2013-01-01

    Interplanetary dust pervades the inner Solar System, giving rise to a prominent glow above the horizon at sunrise and sunset known as the zodiacal light. This dust derives from the disintegration of comets as they approach the Sun and from collisions among main-belt asteroids. The Earth accretes roughly 4x10(exp 6) kg/year of 1 - 1,000 micron dust particles as they spiral into the Sun under the influence of Poynting-Robertson drag and solar wind drag. Samples of these grains have been collected from deep sea sediments, Antarctic ice and by high-altitude aircraft and balloon flights. Interplanetary dust particles (IDPs) collected in the stratosphere have been classified by their IR spectra into olivine, pyroxene, and hydrated silicate-dominated classes. Most IDPs have bulk major and minor element abundances that are similar to carbonaceous chondrite meteorites. Hydrated silicate-rich IDPs are thought to derive from asteroids based on their mineralogy and low atmospheric entry velocities estimated from peak temperatures reached during atmospheric entry. Anhydrous IDPs are typically aggregates of 0.1 - approx. 1 micron Mg-rich olivine and pyroxene, amorphous silicates (GEMS), Fe, Nisulfides and rare spinel and oxides bound together by carbonaceous material. These IDPs are often argued to derive from comets based on compositional similarities and high atmospheric entry velocities that imply high eccentricity orbits. Infrared spectra obtained from anhydrous IDPs closely match remote IR spectra obtained from comets. The most primitive (anhydrous) IDPs appear to have escaped the parent-body thermal and aqueous alteration that has affected meteorites. These samples thus consist entirely of grains that formed in the ancient solar nebula and pre-solar interstellar and circumstellar environments. Isotopic studies of IDPs have identified silicate stardust grains that formed in the outflows of red giant and asymptotic giant branch stars and supernovae]. These stardust grains include both amorphous and crystalline silicates. The organic matter in these samples also exhibits highly anomalous H, C, and N isotopic compositions that are consistent with formation in low temperature environments at the outermost regions of the solar nebula or presolar cold molecular cloud. The scientific frontiers for these samples include working toward a better understanding of the origins of the solar system amorphous and crystalline grains in IDPs and the very challenging task of determining the chemical composition of sub-micron organic grains. Laboratory studies of ancient and present-day dust in the Solar System thus reveal in exquisite detail the chemistry, mineralogy and isotopic properties of materials that derive from a range of astrophysical environments. These studies are an important complement to astronomical observations that help to place the laboratory observations into broader context.

  6. Inferring the Structure of the Solar Corona and Inner Heliosphere During the Maunder Minimum Using Global Thermodynamic Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Riley, Pete; Lionello, Roberto; Linker, Jon A.; Cliver, Ed; Balogh, Andre; Beer, Jürg; Charbonneau, Paul; Crooker, Nancy; DeRosa, Marc; Lockwood, Mike; Owens, Matt; McCracken, Ken; Usoskin, Ilya; Koutchmy, S.

    2015-04-01

    Observations of the Sun’s corona during the space era have led to a picture of relatively constant, but cyclically varying solar output and structure. Longer-term, more indirect measurements, such as from 10Be, coupled by other albeit less reliable contemporaneous reports, however, suggest periods of significant departure from this standard. The Maunder Minimum was one such epoch where: (1) sunspots effectively disappeared for long intervals during a 70 yr period; (2) eclipse observations suggested the distinct lack of a visible K-corona but possible appearance of the F-corona; (3) reports of aurora were notably reduced; and (4) cosmic ray intensities at Earth were inferred to be substantially higher. Using a global thermodynamic MHD model, we have constructed a range of possible coronal configurations for the Maunder Minimum period and compared their predictions with these limited observational constraints. We conclude that the most likely state of the corona during—at least—the later portion of the Maunder Minimum was not merely that of the 2008/2009 solar minimum, as has been suggested recently, but rather a state devoid of any large-scale structure, driven by a photospheric field composed of only ephemeral regions, and likely substantially reduced in strength. Moreover, we suggest that the Sun evolved from a 2008/2009-like configuration at the start of the Maunder Minimum toward an ephemeral-only configuration by the end of it, supporting a prediction that we may be on the cusp of a new grand solar minimum.

  7. Using the EUV to Weigh a Sun-Grazing Comet as it Disappears in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean; Schrijiver, Carolus J.; Brown, John C.; Battams, Karl; Saint-Hilaire, Pascal; Hudson Hugh S.; Lui, Wei

    2012-01-01

    On July 6,2011, the Atmospheric Imaging Assembly (AlA) on the Solar Dynamics Observatory (SDO) observed a comet in most of its EUY passbands. The comet disappeared while moving through the solar corona. The comet penetrated to 0.146 solar radii ($\\simapprox.100,000 km) above the photosphere before its EUY faded. Before then, the comet's coma and a tail were observed in absorption and emission, respectively. The material in the variable tail quickly fell behind the nucleus. An estimate of the comet's mass based on this effect, one derived from insolation, and one using the tail's EUY brightness, all yield $\\sim 50$ giga-grams some 10 minutes prior to the end of its visibility. These unique first observations herald a new era in the study of Sun-grazing comets close to their perihelia and of the conditions in the solar corona and solar wind. We will discuss the observations and interpretation of the comet by SDO as well as the coronagraph observations from SOHO and STEREO. A search of the SOHO comet archive for other comets that could be observed in the SDO; AlA EUY channels will be described

  8. On the Nature of the Corona: The Electron Affinity of Metallic Hydrogen, not Extreme Temperatures, Generates Highly Ionized Gaseous Ions in the Outer Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Robitaille, Pierre-Marie

    2014-03-01

    The gas-based Standard Solar Model (SSM) must assume that the corona is excessively hot (millions of K) in order to account for solar winds and the existence of highly ionized atoms in this region of the Sun. Conversely, within the context of the liquid metallic hydrogen solar model (LMHSM), solar winds are driven by exfoliative processes occurring within layered metallic hydrogen in the solar body. The LMHSM also advances that condensed matter is interspersed throughout the corona. This is supported by the relatively cool continuous spectrum of the K-corona which reveals that photospheric material has been ejected into, and now exists, in the outer atmosphere of the Sun. It is proposed that since condensed matter can be characterized by powerful electron affinities, that coronal material can strip adjacent gaseous atoms of their electrons. In this fashion, coronal metallic hydrogen generates highly ionized ions while at the same time helping to preserve the neutrality of the solar body, as it works to channel electrons back towards the solar surface. As such, the apparent temperature of the corona is no greater than that of the photosphere and, in fact, slightly cools with elevation in accordance with the known reddening of the K-coronal spectrum. This removes the need to heat the corona in the SSM and prevents all violations of the second law of thermodynamics.

  9. Electron beam evolution and radio emission in the inhomogeneous solar corona

    NASA Astrophysics Data System (ADS)

    Ratcliffe, Heather

    2013-12-01

    This thesis considers the propagation of accelerated electron beams in plasma. We consider the wave particle interactions these undergo which cause their evolution, the effects of plasma density inhomogeneities on these interactions, and the effects this may have on the production of hard X-ray and radio emission by the beam. Chapter 1 introduces the important background material on the Sun and solar flares, and some basic plasma physics. We discuss the acceleration and propagation of electrons beams and their production of hard X-ray emission, and the various observed types of radio emission from the Sun. We end by discussing details of the mechanism by which radio emission can be produced by beam generated Langmuir waves at GHz frequencies. Chapter 2 contains the mathematical derivation of the effects of plasma density fluctuations on Langmuir waves. This is found to be described by a diffusion of the waves in wavenumber space. We consider the situation in both one and three dimensions, for elastic and inelastic scattering of the Langmuir waves, discussing how our model expands on that previously considered in the literature, and develop a model for the fluctuations applicable to the electron beams we consider in this thesis. We derive the relevant diffusion coefficients for a few commonly observed density fluctuation spectra, then end with a brief discussion of the expected effects of the Langmuir wavenumber diffusion on the waves and electrons for a few representative cases. Chapter 3 uses the model derived in Chapter 2 in quasi-linear simulations of electron beam evolution. We consider two initial electron beam distributions, either a Maxwellian or a power law, and simulate the Langmuir wave generation and evolution, and the back-reaction of this on the electron beam. We find an electron acceleration effect to occur, and explore the parameters for which this is strongest. In addition we consider the production of hard X-ray emission from an initially power law beam, and the effects of the electron acceleration on this. Chapter 4 considers the radio emission from an electron beam via the generation of Langmuir waves. We first derive an angle-averaged model for emission at the second harmonic of the plasma frequency, and combine this with the simulations from the previous chapters. We include the effects of density fluctuations on the Langmuir waves, and discuss how this affects the radio emission produced. Chapter 5 concludes the thesis with a summary of the effects of density inhomogeneity on Langmuir waves, and consequently on fast electron beams and their hard X-ray and radio emissions in the solar corona. Appendix 1 contains the derivation of a mathematical model for radio emission from an electron beam at the fundamental of the local plasma frequency, which is unimportant in the parameter ranges considered in Chapter 4, but essential for radio bursts in the higher corona and solar wind.

  10. Catalysis by dust grains in the solar nebula.

    NASA Astrophysics Data System (ADS)

    Kress, M. E.; Tielens, A. G. G. M.

    1996-10-01

    In order to determine whether grain-catalyzed reactions played an important role in the chemistry of the solar nebula, the authors applied their time-dependent model of methane formation via Fischer-Tropsch catalysis to pressures from 10-5 to 1 bar and temperatures from 450 to 650K. Results indicate that under certain nebular conditions, conversion of CO to methane could be extremely efficient in the presence of iron-nickel dust grains over timescales very short compared to the lifetime of the solar nebula.

  11. On the effects of magnetic field line topology on the energy propagation in the solar corona

    NASA Astrophysics Data System (ADS)

    Candelaresi, Simon

    2016-05-01

    Using the MHD approximation, we study the propagation of energy from photospheric footpoint motions into the corona. Our model consists of a magnetic carpet with closed and open magnetic field lines. Magnetic null points are present close at the surface. The applied photospheric driver twists the field into a topologically non-trivial configuration which leads to reconnection and a change in field line topology. Prior to this event, the energy propagation into the corona is largely inhibited due to closed field lines. After such events the energy is free to propagate into the corona.

  12. The distant future of solar activity: A case study of Beta Hydri. III - Transition region, corona, and stellar wind

    NASA Technical Reports Server (NTRS)

    Dravins, D.; Linde, P.; Ayres, T. R.; Linsky, J. L.; Monsignori-Fossi, B.; Simon, T.; Wallinder, F.

    1993-01-01

    The paper investigates the secular decay of solar-type activity through a detailed comparison of the present sun with the very old solar-type star, Beta Hyi, taken as a proxy of the future sun. Analyses of successive atmospheric layers are presented, with emphasis of the outermost parts. The FUV emission lines for the transition zone are among the faintest so far seen in any solar-type star. The coronal soft X-ray spectrum was measured through different filters on EXOSAT and compared to simulated X-ray observations of the sun seen as a star. The flux from Beta Hyi is weaker than that from the solar corona and has a different spectrum. It is inferred that a thermally driven stellar wind can no longer be supported, which removes the mechanism from further rotational braking of the star through a magnetic stellar wind.

  13. COMPARISON OF HINODE/XRT AND RHESSI DETECTION OF HOT PLASMA IN THE NON-FLARING SOLAR CORONA

    SciTech Connect

    Reale, Fabio; McTiernan, James M.; Testa, Paola

    2009-10-10

    We compare observations of the non-flaring solar corona made simultaneously with Hinode/XRT and RHESSI. The analyzed corona is dominated by a single active region on 2006 November 12. The comparison is made on emission measures. We derive emission measure distributions versus temperature of the entire active region from multifilter XRT data. We check the compatibility with the total emission measure values estimated from the flux measured with RHESSI if the emission comes from isothermal plasma. We find that RHESSI and XRT data analyses consistently point to the presence of a minor emission measure component peaking at log T approx 6.8-6.9. The discrepancy between XRT and RHESSI results is within a factor of a few and indicates an acceptable level of cross-consistency.

  14. Intermittent Energy Dissipation in Magnetohydrodynamic Turbulence: Applications to the Solar Corona and Solar Wind

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir

    2015-11-01

    Energy dissipation is highly intermittent in large-scale turbulent plasmas, being localized in space and in time. This intermittency is manifest by the presence of coherent structures such as current (and vorticity) sheets, which account for a large fraction of the overall energy dissipation and may serve as sites for magnetic reconnection and particle acceleration. The statistical analysis of these dissipative structures is a robust and informative methodology for probing the underlying dynamics, both in numerical simulations and in observations. In this talk, the statistical properties of current sheets in numerical simulations of driven magnetohydrodynamic (MHD) turbulence are described, including recent results obtained from applying new methods for characterizing their morphology. Instantaneously, the overall energy dissipation is found to be evenly spread among current sheets spanning a continuum of energy dissipation rates and inertial-range sizes, while their thicknesses are localized deep inside the dissipation range. The temporal dynamics are then investigated by tracking the current sheets in time and considering the statistics of the resulting four-dimensional spatiotemporal structures, which correspond to dissipative events or flares in astrophysical systems. These dissipative events are found to exhibit robust power-law distributions and scaling relations, and are often highly complex, long-lived, and weakly asymmetric in time. Based on the distribution for their dissipated energies, the strongest dissipative events are found to dominate the overall energy dissipation in the system. These results are compared to the observed statistics of solar flares, and some possible implications for the solar wind are also described.

  15. Generalized similarity observed in finite range magnetohydrodynamic turbulence in the corona and solar wind

    NASA Astrophysics Data System (ADS)

    Nicol, R.; Leonardis, E.; Chapman, S. C.; Foullon, C.

    2011-12-01

    Fluctuations associated with fully developed magnetohydrodynamic (MHD) turbulent flows in an infinite medium are characterized by non-Gaussian statistics which are scale invariant; this implies power law power spectra and multiscaling for the Generalized Structure Functions (GSFs). Given an observable f(r,t) and assuming statistical stationary, the p'th order moment of the GSF of the fluctuating differences <|f(r+L)-f(r)|p> scales as Lzeta(p), where L is the observation scale and ζ (p) are the scaling exponents. For turbulence in a system that is of finite size, or that is not fully developed, the statistical property of scale invariance is replaced by a generalized scale invariance, or extended self- similarity (ESS), for which the various moments of the GSF have a power-law dependence on an initially unknown functions, G, such that <|f(r+L)-f(r)|p ˜ G(L)ζ (p). We have demonstrated [1] ESS in Ulysses in-situ observations of magnetic field fluctuations of the fast, quiet solar polar wind, and shoe that there is a single robust scaling function, G, which is anticipated to be a universal property of finite range MHD turbulent flows. However these are purely temporal observations at a single point in space. We therefore for the first time test ESS on direct measurements of the intensity field, I(r,t), associated with an imaged solar Quiescent Prominence (QP). The Solar Optical Telescope (SOT) on board Hinode provides suitable long time intervals of observation of the solar corona via images at a very high spatial and temporal resolution simultaneously. We focus on specific Ca II H-line observations of a QP which exhibits small scale up-flows with a high degree of variability suggestive of turbulence. We test self-similar properties and power-law scaling behaviour of spatio-temporal intensity fluctuations in the prominence plasma by applying GSF and ESS. We first verify that the statistics of the spatial variations of the intensity measurements are non-Gaussian. We then find power-law power spectra and evidence of ESS. By using ESS we calculate ratios of the scaling exponents ζ (p), which we find are consistent with a multifractal field. Finally, we recover the dependence of the 3rd moment of the GSF for the spatial fluctuations on a function G(L) as anticipated for finite range turbulence. [1] S. C. Chapman, R. M. Nicol, Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence, Phys. Rev. Lett. 103, 241101 (2009); S. C. Chapman, R. M. Nicol, E. Leonardis, K. Kiyani, V. Carbone, Observation of universality in the generalized similarity of evolving solar wind turbulence as seen by ULYSSES, Ap. J. Letters, 695, L185, (2009)

  16. A Study of Nonsymmetric Thin Current Sheet Equilibria with Sheared Flows from the Heliosphere to the Solar Corona

    NASA Astrophysics Data System (ADS)

    Chen, James; Santoro, Robert

    2001-10-01

    The equilibrium structure of ion-Larmor-radius-scale current sheets in the heliosphere and solar corona is studied using a self-consistent ``test-particle'' simulation model. We develop a new model which incorporates ion flows that are asymmetric and sheared across the current sheet in order to apply our results to current sheets in the solar corona and those moving along with the solar wind. It is found that the structure of the current sheet depends on the distribution function of the particles entering the current sheet, the density, flow velocity, and temperature associated with the incoming distribution, and the imposed electric field. Force balance is maintained across the current sheet and the ion momentum flows are found to play an integral part in this balance. The pressure tensor is found to be nondiagonal. Good agreement is obtained between numerical equilibrium model results and both high-time-resolution (3 sec) WIND MFI magnetic field observations of structures which are moving along with the solar wind, and high-time-resolution (3 sec) WIND 3DP particle measurements of ion temperature, density, and flow velocity. Research supported by the Office of Naval Research

  17. MAGNETIC FIELD STRENGTH IN THE UPPER SOLAR CORONA USING WHITE-LIGHT SHOCK STRUCTURES SURROUNDING CORONAL MASS EJECTIONS

    SciTech Connect

    Kim, R.-S.; Gopalswamy, N.; Cho, K.-S.; Yashiro, S.; Moon, Y.-J.

    2012-02-20

    To measure the magnetic field strength in the solar corona, we examined 10 fast ({>=}1000 km s{sup -1}) limb coronal mass ejections(CMEs) that show clear shock structures in Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph images. By applying the piston-shock relationship to the observed CME's standoff distance and electron density compression ratio, we estimated the Mach number, Alfven speed, and magnetic field strength in the height range 3-15 solar radii (R{sub s} ). The main results from this study are as follows: (1) the standoff distance observed in the solar corona is consistent with those from a magnetohydrodynamic model and near-Earth observations; (2) the Mach number as a shock strength is in the range 1.49-3.43 from the standoff distance ratio, but when we use the density compression ratio, the Mach number is in the range 1.47-1.90, implying that the measured density compression ratio is likely to be underestimated owing to observational limits; (3) the Alfven speed ranges from 259 to 982 km s{sup -1} and the magnetic field strength is in the range 6-105 mG when the standoff distance is used; (4) if we multiply the density compression ratio by a factor of two, the Alfven speeds and the magnetic field strengths are consistent in both methods; and (5) the magnetic field strengths derived from the shock parameters are similar to those of empirical models and previous estimates.

  18. Inward Motions in the Outer Solar Corona Between 6 And 12 R : Evidence For Waves or Magnetic Reconnection Jets?

    NASA Astrophysics Data System (ADS)

    Velli, Marco; Tenerani, Anna; DeForest, Craig

    2016-05-01

    DeForest et al. (2014) used synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft to identify inbound wave motions in the outer corona beyond 6 solar radii and inferred, from the observation, that the Alfven surface separating the magnetically dominated corona from the ow dominated wind must be located at least 12 solar radii from the Sun over polar coronal holes and 15 solar radii in the streamer belt. Here we will discuss both this and previous observations of inflows further down and attempt identification of the observed inward signals. We will theoretically reconstruct height-speed diagrams and compare them to the observed profiles. Interpretation in terms of Alfven / magnetoacouatic modes or Alfvenic turbulence appears to be ruled out by the fact that the observed signal shows a deceleration of inward motion when approaching the Sun. Fast magnetoacoustic waves are not directly ruled out in this way, as it is possible for inward waves observed in quadrature, but not propagating exactly radially, to suffer total reflection as the Alfven speed rises close to the Sun. However, the reconstructed signal in the height speed diagram has the wrong concavity. A final possibility is decelerating reconnection jets, most probably from component reconnection, in the accelerating wind: the profile in this case appears to match the observations very well. This interpretation does not alter the conclusion that the Alfven surface must be at least 12 solar radii from the photosphere.

  19. Decayless low-amplitude kink oscillations: a common phenomenon in the solar corona?

    NASA Astrophysics Data System (ADS)

    Anfinogentov, S. A.; Nakariakov, V. M.; Nisticò, G.

    2015-11-01

    Context. We investigate the decayless regime of coronal kink oscillations recently discovered in the Solar Dynamics Observatory (SDO)/AIA data. In contrast to decaying kink oscillations that are excited by impulsive dynamical processes, this type of transverse oscillations is not connected to any external impulsive impact, such as a flare or coronal mass ejection, and does not show any significant decay. Moreover the amplitude of these decayless oscillations is typically lower than that of decaying oscillations. Aims: The aim of this research is to estimate the prevalence of this phenomenon and its characteristic signatures. Methods: We analysed 21 active regions (NOAA 11637-11657) observed in January 2013 in the 171 Å channel of SDO/AIA. For each active region we inspected six hours of observations, constructing time-distance plots for the slits positioned across pronounced bright loops. The oscillatory patterns in time-distance plots were visually identified and the oscillation periods and amplitudes were measured. We also estimated the length of each oscillating loop. Results: Low-amplitude decayless kink oscillations are found to be present in the majority of the analysed active regions. The oscillation periods lie in the range from 1.5 to 10 min. In two active regions with insufficient observation conditions we did not identify any oscillation patterns. The oscillation periods are found to increase with the length of the oscillating loop. Conclusions: The considered type of coronal oscillations is a common phenomenon in the corona. The established dependence of the oscillation period on the loop length is consistent with their interpretation in terms of standing kink waves. Appendix A is available in electronic form at http://www.aanda.org

  20. Generation of ion cyclotron waves in the corona and solar wind

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Isenberg, P.; Russell, C. T.; Jian, L. K.; Wei, H. Y.

    2014-03-01

    To examine the generation and nonlinear evolution of ion cyclotron waves in the corona and solar wind, we perform electromagnetic simulations using a wide range of plasma conditions and ion velocity distribution functions. The source of the instability is temperature anisotropy of ions with temperature perpendicular to the magnetic field larger than parallel. For velocity distribution we use Maxwellian, bi-Maxwellian, and Fermi-accelerated functions with perpendicular temperature larger than parallel with the aim to understand the extent to which the details of the distribution function impact the general properties and the nonlinear evolution of the instability. The results show that in a proton-electron plasma, ion cyclotron waves are generated over a wide range of temperature anisotropies and plasma beta. Also, the general properties of the instability and the nonlinear evolution of the waves are not sensitive to the details of the velocity distribution functions. Allowing for the presence of minor ion species we show that these ions by themselves can drive the instability and generate waves with frequencies below the gyrofrequency of the minor ions. In the event that protons also have temperature anisotropy, waves on the proton branch are also generated. Results using bi-Maxwellian or Fermi-accelerated velocity distribution functions show similar properties for the instability and the nonlinear evolution of the waves. However, differences are found when allowing for relative drifts between the protons and minor ions in that when using Fermi-accelerated distribution functions oblique ion cyclotron waves are generated that are not observed in simulations using bi-Maxwellian distribution function.

  1. From Solar to Stellar Corona: The Role of Wind, Rotation, and Magnetism

    NASA Astrophysics Data System (ADS)

    Réville, Victor; Brun, Allan Sacha; Strugarek, Antoine; Matt, Sean P.; Bouvier, Jérôme; Folsom, Colin P.; Petit, Pascal

    2015-12-01

    Observations of surface magnetic fields are now within reach for many stellar types thanks to the development of Zeeman-Doppler Imaging. These observations are extremely useful for constraining rotational evolution models of stars, as well as for characterizing the generation of the magnetic field. We recently demonstrated that the impact of coronal magnetic field topology on the rotational braking of a star can be parameterized with a scalar parameter: the open magnetic flux. However, without running costly numerical simulations of the stellar wind, reconstructing the coronal structure of the large-scale magnetic field is not trivial. An alternative—broadly used in solar physics—is to extrapolate the surface magnetic field assuming a potential field in the corona, to describe the opening of the field lines by the magnetized wind. This technique relies on the definition of a so-called source surface radius, which is often fixed to the canonical value of 2.5{R}⊙ . However this value likely varies from star to star. To resolve this issue, we use our extended set of 2.5D wind simulations published in 2015 to provide a criterion for the opening of field lines as well as a simple tool to assess the source surface radius and the open magnetic flux. This allows us to derive the magnetic torque applied to the star by the wind from any spectropolarimetric observation. We conclude by discussing some estimations of spin-down timescales made using our technique and compare them to observational requirements.

  2. Simulation Study of Three-Dimensional Flux Tube Dynamics in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Kusano, K.

    The eruption of magnetic flux tube in the solar corona is a key process for the formation of Coronal Mass Ejections CMEs The trigger mechanism of that however is not yet clearly understood and the different models based on the loss-of-stability theory and the loss-of-equilibrium theory have been proposed so far For instance Priest Forbes 1990 proposed the model that the flux tube embedded in magnetic arcade may erupt as a consequence of that the equilibrium condition of coronal magnetic field is broken due to the change in the photospheric boundary condition Furthermore they pointed out magnetic reconnection should occur in the lower part of flux tube while it ascends This model however was limited to the two-dimensional geometry in which the translational symmetry along magnetic neutral line was adopted and the three-dimensional 3D instability was not taken into account In this paper in order to reveal the 3D effect in the flux rope eruption we carried out the 3D linear stability analysis of the flux tube equilibrium proposed by Priest Forbes and also performed the nonlinear 3D simulations As a result of that we found that the flux tube in the Priest Forbes model is certainly unstable to the kink modes as the system approaches to the loss-of-equilibrium state The 3D simulation shows that when the flux tube is long enough the kink instability sufficiently grows and the flux tube can ascend continuously even if the equilibrium condition is still satisfied in the initial state On the other hand the ascending of

  3. Dynamical behaviour of interstellar dust particles in the solar system

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Klačka, Jozef

    2004-11-01

    Motion and possible capture of interstellar dust particles (ISDPs) in the Solar System are investigated. Gravitational force of the Sun, solar electromagnetic and corpuscular radiation and interplanetary magnetic field are considered. The effect of solar electromagnetic radiation plays an important role in the sense that nonspherical ISDPs can be captured (and survive) much more effectively than spherical particles. It turns out that particles of effective radii ≈ 0.4 μm, moving initially near the solar equatorial plane and with impact parameter 400 RS ≲ b ≲ 500 RS (solar radii) exhibit a high probability of capture and survival in the Solar System. Only a very small number of spherical particles can be captured. Survived nonspherical ISDPs orbiting around the Sun are characterized by a quantity analogous to the Kepler's third law: /T2, where T is orbital period and is time average of cubed solar distance over the period T. The value of the quantity /T2 is 0.673 ± 0.002 [AU3 /year2 ].

  4. Thermodynamics of the Solar Corona and Evolution of the Solar Magnetic Field as Inferred from the Total Solar Eclipse Observations of 11 July 2010

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia Rifai; Druckmueller, Miloslav; Morgan, Huw; Ding, Adalbert; Johnson, Judd; Druckmuellerova, Hana; Daw, Adrian; Arndt, Martina B.; Dietzel, Martin; Saken, Jon

    2011-01-01

    We report on multi-wavelength observations of the corona taken simultaneously in broadband white light, and in seven spectral lines, H-alpha 656.3 nm, Fe IX 435.9 nm, Fe X 637.4 nm, Fe XI 789.2 nm, Fe XIII 1074.7 nm, Fe XIV 530.3 nm and Ni XV 670.2 nm. The observations were made during the total solar eclipse of 11 July 2010 from the atoll of Tatakoto in French Polynesia. Simultaneous imaging with narrow bandpass filters in each of these spectral lines and in their corresponding underlying continua maximized the observing time during less than ideal observing conditions and yielded outstanding quality data. The application of two complementary image processing techniques revealed the finest details of coronal structures at 1" resolution in white light, and 6.5" in each of the spectral lines. This comprehensive wavelength coverage confirmed earlier eclipse findings that the solar corona has a clear two-temperature structure: The open field lines, expanding outwards from the solar surface, are characterized by electron temperatures near 1 X 10(exp 6) K, while the hottest plasma around 2X 10(exp 6) K resides in loop-like structures forming the bulges of streamers. The first images of the corona in the forbidden lines of Fe IX and Ni XV, showed that there was very little coronal plasma at temperatures below 5 X 10(exp 5) K and above 2.5X 10(exp 6) K. The data also enabled temperature differentiations as low as 0:2 X 10(exp 6) K in different density structures. These observations showed how the passage of CMEs through the corona, prior to totality, produced large scale ripples and very sharp streaks, which could be identified with distinct temperatures for the first time. The ripples were most prominent in emission from spectral lines associated with temperatures around 10(exp 6) K. The most prominent streak was associated with a conical-shaped void in the emission from the coolest line of Fe IX and from the hottest line of Ni XV. A prominence, which erupted prior to totality, appeared in the shape of a hook in the cooler lines of Fe X and Fe XI, spanning 0.5 R(solar) in extent starting at a heliocentric distance of 1.3 R(solar), with a complex trail of hot and cool twisted structures connecting it to the solar surface. Simultaneous Fe X 17.4 nm observations from space by Proba2/SWAP provided an ideal opportunity for comparing emission from a coronal forbidden line, namely Fe X 637.4 nm, with a space-based EUV allowed line. Comparison of the Fe X 17.4 nm and 637.4 nm emission provided the first textbook example of the role of radiative excitation in extending the detectability of coronal emission to much larger heliocentric distances than its collisionally excited component. These eclipse observations demonstrate the unique capabilities of coronal forbidden lines for exploring the evolution of the coronal magnetic field in the heliocentric distance range of 1 - 3 R(solar), which is currently inaccessible to any space-borne or ground-based observatory.

  5. Spectral solar irradiance before and during a Harmattan dust spell

    SciTech Connect

    Adeyefa, Z.D.; Holmgren, B.

    1996-09-01

    Measurements of the ground-level spectral distributions of the direct, diffuse and global solar irradiance between 300 and 1100 nm were made at Akure (7.15{degree}N, 5.5{degree}E), Nigeria, in December 1991 before and during a Harmattan dust spell employing a spectroradiometer (LICOR LI-1800) with 6 nm resolution. The direct spectral solar irradiance which was initially reduced before the dust storm was further attenuated by about 50% after the spell. Estimated values of the Angstrom turbidity coefficient {beta} indicated an increase of about 146% of this parameter while the Angstrom wavelength-exponent {alpha} decreased by about 65% within the 2-day study period. The spectral diffuse-to-direct and diffuse-to-global ratios suggest that the main cause of the significant reduction in solar irradiance at the surface was the scattering by the aerosol which led to an increase in the diffuse component. The global irradiance though reduced, was less sensitive to changing Harmattan conditions. It is recommended that solar energy devices that use radiation from Sun and sky be used under fluctuating Harmattan conditions. There are some deviations from the Angstrom formula under very turbid Harmattan conditions which could be explained by the relative increase of the particle sizes. 31 refs., 12 figs., 3 tabs.

  6. Toward a Realistic Thermodynamic Magnetohydrodynamic Model of the Global Solar Corona

    NASA Astrophysics Data System (ADS)

    Downs, Cooper; Roussev, Ilia I.; van der Holst, Bart; Lugaz, Noé; Sokolov, Igor V.; Gombosi, Tamas I.

    2010-04-01

    In this work, we describe our implementation of a thermodynamic energy equation into the global corona model of the Space Weather Modeling Framework and its development into the new lower corona (LC) model. This work includes the integration of the additional energy transport terms of coronal heating, electron heat conduction, and optically thin radiative cooling into the governing magnetohydrodynamic (MHD) energy equation. We examine two different boundary conditions using this model; one set in the upper transition region (the radiative energy balance model), as well as a uniform chromospheric condition where the transition region can be modeled in its entirety. Via observation synthesis from model results and the subsequent comparison to full Sun extreme ultraviolet and soft X-ray observations of Carrington rotation 1913 centered on 1996 August 27, we demonstrate the need for these additional considerations when using global MHD models to describe the unique conditions in the low corona. Through multiple simulations, we examine the ability of the LC model to assess and discriminate between coronal heating models, and find that a relative simple empirical heating model is adequate in reproducing structures observed in the low corona. We show that the interplay between coronal heating and electron heat conduction provides significant feedback onto the three-dimensional magnetic topology in the low corona as compared to a potential field extrapolation, and that this feedback is largely dependent on the amount of mechanical energy introduced into the corona.

  7. TOWARD A REALISTIC THERMODYNAMIC MAGNETOHYDRODYNAMIC MODEL OF THE GLOBAL SOLAR CORONA

    SciTech Connect

    Downs, Cooper; Roussev, Ilia I.; Lugaz, Noe; Van der Holst, Bart; Sokolov, Igor V.; Gombosi, Tamas I.

    2010-04-01

    In this work, we describe our implementation of a thermodynamic energy equation into the global corona model of the Space Weather Modeling Framework and its development into the new lower corona (LC) model. This work includes the integration of the additional energy transport terms of coronal heating, electron heat conduction, and optically thin radiative cooling into the governing magnetohydrodynamic (MHD) energy equation. We examine two different boundary conditions using this model; one set in the upper transition region (the radiative energy balance model), as well as a uniform chromospheric condition where the transition region can be modeled in its entirety. Via observation synthesis from model results and the subsequent comparison to full Sun extreme ultraviolet and soft X-ray observations of Carrington rotation 1913 centered on 1996 August 27, we demonstrate the need for these additional considerations when using global MHD models to describe the unique conditions in the low corona. Through multiple simulations, we examine the ability of the LC model to assess and discriminate between coronal heating models, and find that a relative simple empirical heating model is adequate in reproducing structures observed in the low corona. We show that the interplay between coronal heating and electron heat conduction provides significant feedback onto the three-dimensional magnetic topology in the low corona as compared to a potential field extrapolation, and that this feedback is largely dependent on the amount of mechanical energy introduced into the corona.

  8. FIELD LINES TWISTING IN A NOISY CORONA: IMPLICATIONS FOR ENERGY STORAGE AND RELEASE, AND INITIATION OF SOLAR ERUPTIONS

    SciTech Connect

    Rappazzo, A. F.; Velli, M.; Einaudi, G.

    2013-07-10

    We present simulations modeling closed regions of the solar corona threaded by a strong magnetic field where localized photospheric vortical motions twist the coronal field lines. The linear and nonlinear dynamics are investigated in the reduced magnetohydrodynamic regime in Cartesian geometry. Initially the magnetic field lines get twisted and the system becomes unstable to the internal kink mode, confirming and extending previous results. As typical in this kind of investigations, where initial conditions implement smooth fields and flux-tubes, we have neglected fluctuations and the fields are laminar until the instability sets in. However, previous investigations indicate that fluctuations, excited by photospheric motions and coronal dynamics, are naturally present at all scales in the coronal fields. Thus, in order to understand the effect of a photospheric vortex on a more realistic corona, we continue the simulations after kink instability sets in, when turbulent fluctuations have already developed in the corona. In the nonlinear stage the system never returns to the simple initial state with ordered twisted field lines, and kink instability does not occur again. Nevertheless, field lines get twisted, although in a disordered way, and energy accumulates at large scales through an inverse cascade. This energy can subsequently be released in micro-flares or larger flares, when interaction with neighboring structures occurs or via other mechanisms. The impact on coronal dynamics and coronal mass ejections initiation is discussed.

  9. Induced emission of Alfvén waves in inhomogeneous streaming plasma: implications for solar corona heating and solar wind acceleration.

    PubMed

    Galinsky, V L; Shevchenko, V I

    2013-07-01

    The results of a self-consistent kinetic model of heating the solar corona and accelerating the fast solar wind are presented for plasma flowing in a nonuniform magnetic field configuration of near-Sun conditions. The model is based on a scale separation between the large transit or inhomogeneity scales and the small dissipation scales. The macroscale instability of the marginally stable particle distribution function compliments the resonant frequency sweeping dissipation of transient Alfvén waves by their induced emission in inhomogeneous streaming plasma that provides enough energy for keeping the plasma temperature decaying not faster than r(-1) in close agreement with in situ heliospheric observations. PMID:23863008

  10. A solar system dust ring with earth as its shepherd

    NASA Technical Reports Server (NTRS)

    Jackson, A. A.; Zook, H. A.

    1989-01-01

    Numerical integrations are used here to show that small dust grains can be temporarily captured into exterior orbit-orbit resonances with the earth, lasting from less than 10,000 years to more than 100,000 years. Grains with radii of 30-100 microns, orbiting in planes less than 10 deg from the plane of the solar system and with orbital eccentricities of less than 0.3, are captured most easily. It is argued that there should be an approximately toroidal cloud of particles, derived mostly from the asteroid belt, trapped into a variety of these exterior resonances. The cloud is mostly beyond the earth's orbit, but includes it.

  11. Catalysis by Dust Grains in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Kress, Monika E.; Tielens, Alexander G. G. M.

    1996-01-01

    In order to determine whether grain-catalyzed reactions played an important role in the chemistry of the solar nebula, we have applied our time-dependent model of methane formation via Fischer-Tropsch catalysis to pressures from 10(exp -5) to 1 bar and temperatures from 450 to 650 K. Under these physical conditions, the reaction 3H2 + CO yields CH4 + H2O is readily catalyzed by an iron or nickel surface, whereas the same reaction is kinetically inhibited in the gas phase. Our model results indicate that under certain nebular conditions, conversion of CO to methane could be extremely efficient in the presence of iron-nickel dust grains over timescales very short compared to the lifetime of the solar nebula.

  12. Solar corona during the total solar eclipse of 2009. (Czech Title: Slune?n korna b?hem zatm?n Slunce v roce 2009)

    NASA Astrophysics Data System (ADS)

    Markov, E.; B?lk, M.; K?ivsk, L.; Druckmller, M.

    2010-12-01

    This work is focused on primary processing of the solar eclipse observations of July 22, 2009. As part of the "Shadow-tracking expedition" project several expeditions were organized to observe the phenomenon. Unfortunately, bad weather conditions prevented a successful observation in the China region. Pre-processing was carried out from images taken at Envetak Atoll in Marshall Islands. From the isophot evolution a corona flattening was found, and from the processed fine structure images a parameter called "source area radius", used mainly for calculations in models of the coronal magnetic fields, was determined. Both of these parameters supplement the data obtained during the previous eclipses, and the first conclusions on the state of the corona during an eclipse are deduced.

  13. GRAIN SORTING IN COMETARY DUST FROM THE OUTER SOLAR NEBULA

    SciTech Connect

    Wozniakiewicz, P. J.; Bradley, J. P.; Ishii, H. A.; Brownlee, D. E.; Kearsley, A. T.; Burchell, M. J.; Price, M. C.

    2012-12-01

    Most young stars are surrounded by a disk of gas and dust. Close to the hot stars, amorphous dust grains from the parent molecular cloud are reprocessed into crystals that are then distributed throughout the accretion disk. In some disks, there is a reduction in crystalline grain size with heliocentric distance from the star. We investigated crystalline grain size distributions in chondritic porous (CP) interplanetary dust particles (IDPs) believed to be from small, icy bodies that accreted in outer regions of the solar nebula. The grains are Mg-rich silicates and Fe-rich sulfides, the two most abundant minerals in CP IDPs. We find that they are predominantly <0.25 {mu}m in radius with a mean grain size that varies from one CP IDP to another. We report a size-density relationship between the silicates and sulfides. A similar size-density relationship between much larger silicate and sulfide grains in meteorites from the asteroid belt is ascribed to aerodynamic sorting. Since the silicate and sulfide grains in CP IDPs are theoretically too small for aerodynamic sorting, their size-density relationship may be due to another process capable of sorting small grains.

  14. Wide-field investigation of the velocity field of the circumsolar dust during the total solar eclipse on July 22, 2009

    NASA Astrophysics Data System (ADS)

    Shestakova, L. I.; Rspaev, F. K.; Chalabaev, A.; Bram, D.; Dubovitskiy, A. I.; Bonev, T.; Golev, V.; Le Coarer, E.

    We describe preliminary results of the wide-field (up to 30 div 40 R_⊙ heliocentric distance) spectro-imaging of the dust grains in the solar F-corona carried out during the total solar eclipse (TSE) of July 22, 2009 at Yuexi, China. The aim of the observations was to measure the radial velocities of the circumsolar dust grains. The field of radial velocities of dust was obtained by Doppler shifts of the Ca II K λ383.4 nm absorption line. The instrument used was a spectro-imaging camera with a Fabry-Perot (FP) etalon. Thin clouds during the eclipse modulated the intensity of the dust scattered light but the experiment was successful giving the valuable data on the dust radial velocity of the Ca II K line in absorption (no emission in this line was seen in the FP data). The resulting mean radial velocity in the selected strips of the interferogram images is ≈ -100 km/s. The definite conclusions on the radial velocity field will be drawn only when the on-going thorough data reduction and final analysis of the data will be completed.

  15. Two-fluid and magnetohydrodynamic modelling of magnetic reconnection in the MAST spherical tokamak and the solar corona

    NASA Astrophysics Data System (ADS)

    Browning, P. K.; Cardnell, S.; Evans, M.; Arese Lucini, F.; Lukin, V. S.; McClements, K. G.; Stanier, A.

    2016-01-01

    Twisted magnetic flux ropes are ubiquitous in laboratory and astrophysical plasmas, and the merging of such flux ropes through magnetic reconnection is an important mechanism for restructuring magnetic fields and releasing free magnetic energy. The merging-compression scenario is one possible start-up scheme for spherical tokamaks, which has been used on the Mega Amp Spherical Tokamak (MAST). Two current-carrying plasma rings or flux ropes approach each due to mutual attraction, forming a current sheet and subsequently merge through magnetic reconnection into a single plasma torus, with substantial plasma heating. Two-dimensional resistive and Hall-magnetohydrodynamic simulations of this process are reported, including a strong guide field. A model of the merging based on helicity-conserving relaxation to a minimum energy state is also presented, extending previous work to tight-aspect-ratio toroidal geometry. This model leads to a prediction of the final state of the merging, in good agreement with simulations and experiment, as well as the average temperature rise. A relaxation model of reconnection between two or more flux ropes in the solar corona is also described, allowing for different senses of twist, and the implications for heating of the solar corona are discussed.

  16. GLOBAL CORONAL SEISMOLOGY IN THE EXTENDED SOLAR CORONA THROUGH FAST MAGNETOSONIC WAVES OBSERVED BY STEREO SECCHI COR1

    SciTech Connect

    Kwon, Ryun-Young; Kramar, Maxim; Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.; Chae, Jongchul; Zhang, Jie

    2013-10-10

    We present global coronal seismology for the first time, which allows us to determine inhomogeneous magnetic field strength in the extended corona. From the measurements of the propagation speed of a fast magnetosonic wave associated with a coronal mass ejection (CME) and the coronal background density distribution derived from the polarized radiances observed by the STEREO SECCHI COR1, we determined the magnetic field strengths along the trajectories of the wave at different heliocentric distances. We found that the results have an uncertainty less than 40%, and are consistent with values determined with a potential field model and reported in previous works. The characteristics of the coronal medium we found are that (1) the density, magnetic field strength, and plasma β are lower in the coronal hole region than in streamers; (2) the magnetic field strength decreases slowly with height but the electron density decreases rapidly so that the local fast magnetosonic speed increases while plasma β falls off with height; and (3) the variations of the local fast magnetosonic speed and plasma β are dominated by variations in the electron density rather than the magnetic field strength. These results imply that Moreton and EIT waves are downward-reflected fast magnetosonic waves from the upper solar corona, rather than freely propagating fast magnetosonic waves in a certain atmospheric layer. In addition, the azimuthal components of CMEs and the driven waves may play an important role in various manifestations of shocks, such as type II radio bursts and solar energetic particle events.

  17. The white light solar corona--an atlas of k-coronameter synoptic charts August 1980 - September 1981. Technical note

    SciTech Connect

    Fisher, R.; Garcia, C.; Rock, K.; Seagraves, P.; Yasukawa, E.

    1982-01-01

    A synoptic observing program was undertaken at the Mauna Loa Solar Observatory, a site operated by the High Altitude Observatory to study the solar corona using the Mark III K-Coronameter. Daily pB images were used to extract three pB ( ) azimuthal scans located at heights of 1.3, 1.7, and 2.1 Rq. Four final data products are given in this atlas: (1) interpolated pB contour plots for h = 1.3 and 1.7 Rq for each Carrington rotation; (2) shaded pB charts for each Carrington rotation; (3) standard zonal pB average values for each day; and (4) autocorrelation estimates of pB variation for equatorial and high latitude structure and an autocorrelation coefficient for an amplitude-independent, first moment of the pB distribution.

  18. Coronal mass ejection speeds measured in the solar corona using LASCO C2 and C3 images

    NASA Astrophysics Data System (ADS)

    Dal Lago, A.; Schwerin, R.; Stenborg, G.; Gonzalez, W. D.

    In this work we present height-time diagrams of 2 halo coronal mass ejections, observed on September 28th, 1997 and June 29th, 1999. The CMEs were observed by the Large Angle and Spectroscopic Coronagraph (LASCO), which observes the solar corona from 2 to 32 solar radii. To obtain these diagrams we divide the LASCO images of a given sequence in angular slices, transform them into rectangular slices (their width chosen proportional to the time distance to the next image) and place them side by side. Thus, the speed profile of any pattern moving in the particular latitudinal slice can be derived. With this method we were able to identify even minor speed changes in several angular positions for the chosen events. This technique is particularly appropriate to identify acceleration or deceleration of structures in halo CMEs.

  19. White light solar corona: an atlas of 1984 K-coronameter synoptic charts, December 1983 - January 1985

    NASA Astrophysics Data System (ADS)

    Fisher, R.; Garcia, C.; Lundin, E.; Seagraves, P.; Sime, D.

    1985-03-01

    The synoptic observing project of the High Altitude Observatory's Coronal Dynamics Project began on 5 August 1980. The data obtained by the Mark-3 K-coronameter located at the Mauna Loa Solar Observatory, Hawaii, are published yearly in volumes of the White Light Solar Corona: An Atlas of K-coronameter Synoptic Charts. The reader will notice a segment of overlapped data at both the beginning and the end of each volume. This is necessary to provide a complete data set of Carrington rotations covering a specific time period because west limb passage occurs 14 days after east limb passage. This set of synoptic data should be regarded as a preliminary presentation in which no corrections have been made for the day-to-day variations in sky transmission and scattering of polarized light by the Earth's atmosphere.

  20. Electron Temperatures and Flow Speeds of the Low Solar Corona: MACS Results from the Total Solar Eclipse of 29 March 2006 in Libya

    NASA Technical Reports Server (NTRS)

    Reginald, Nelson L.; Davila, Joseph M.; SaintCyr, O.; Rabin, Douglas M.; Guhathakurta, Madhulika; Hassler, Donald M.; Gashut, Hadi

    2011-01-01

    An experiment was conducted in conjunction with the total solar eclipse on 29 March 2006 in Libya to measure both the electron temperature and its flow speed simultaneously at multiple locations in the low solar corona by measuring the visible K-coronal spectrum. Coronal model spectra incorporating the effects of electron temperature and its flow speed were matched with the measured K-coronal spectra to interpret the observations. Results show electron temperatures of (1.10 +/- 0.05) MK, (0.70 +/- 0.08) MK, and (0.98 +/- 0.12) MK, at 1.1 Solar Radius from Sun center in the solar north, east and west, respectively, and (0.93 +/- 0.12) MK, at 1.2 Solar Radius from Sun center in the solar west. The corresponding outflow speeds obtained from the spectral fit are (103 +/- 92) km/s, (0 + 10) km/s, (0+10) km/s, and (0+10) km/s. Since the observations were taken only at 1.1 Solar Radius and 1.2 Solar Radius from Sun center, these speeds, consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working. The electron temperature at 1.1 Solar Radius from Sun center is larger at the north (polar region) than the east and west (equatorial region).

  1. The Corona at Solar Maximum as Imaged during the Total Solar Eclipses of 2012 November 13-14 and 2013 November 3-4

    NASA Astrophysics Data System (ADS)

    Habbal, Shadia R.; Druckmuller, Miloslav; Emmanouilides, Constantinos; Morgan, Huw

    2015-01-01

    The total solar eclipses of 2012 November 13-14 and 2013 November 3-4 coincided with peaks of activity in solar cycle 24. Despite challenging observing conditions due to weather patterns in both Australia and central Africa, respectively for these two eclipses, white light images were successfully obtained from groups stationed at different sites along the path of totality on both occasions. We show here how the corona during these two eclipses was remarkable in many ways. In 2012, a prominence eruption reflecting a classic example of a current sheet, with a linear extension of almost 0.25 Rs, ending in a bubble-shaped cavity, was captured in white light. In 2013, two plasmoids were observed at more than a solar radius above the solar limb, both associated with filament eruptions, and one ending in a classic CME bubble. In addition, the intricate complexity of the corona at these two eclipses, revealed by state-of-the art image processing, reflected the ubiquitous presence of large expanding loops, and the fingerprints of plasma instabilities in the form of twisted helical structures and vortex rings.

  2. Mate and Dart: An Instrument Package for Characterizing Solar Energy and Atmospheric Dust on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Baraona, Cosmo

    2000-01-01

    The MATE (Mars Array Technology Experiment) and DART (Dust Accumulation and Removal Test) instruments were developed to fly as part of the Mars ISPP Precursor (MIP) experiment on the (now postponed) Mars-2001 Surveyor Lander. MATE characterizes the solar energy reaching the surface of Mars, and measures the performance and degradation of solar cells under Martian conditions. DART characterizes the dust environment of Mars, measures the effect of settled dust on solar arrays, and investigates methods to mitigate power loss due to dust accumulation.

  3. Dust Detection Using Radio and Plasma Wave Instruments in the Solar System

    NASA Astrophysics Data System (ADS)

    Ye, S.; Gurnett, D. A.; Kurth, W. S.; Averkamp, T. F.; Kempf, S.; Hsu, S.; Srama, R.; Grün, E.; Morooka, M. W.; Sakai, S.; Wahlund, J. E.

    2014-12-01

    Nanometer to micrometer sized dust particles pervade our solar system. The origins of these dust particles include asteroid collisions, cometary activity, and geothermal activity of the planetary moons, for example, the water dust cloud ejected from Saturn's moon Enceladus. Radio and plasma wave instruments have been used to detect such dust particles via voltage pulses induced by impacts on the spacecraft body and antennas. The first detection of such dust impacts occurred when Voyager 1 passed through Saturn's ring plane. Since then, dust impacts have been detected by radio and plasma wave instruments on many spacecraft, including ISEE-3, Cassini, and STEREO. In this presentation, we review the detection of dust particles in the solar system using radio and plasma wave instruments aboard various spacecraft since the Voyager era. We also show characteristics of the dust particles derived from recent observations by Cassini RPWS in Saturn's magnetosphere. The dust size distribution and density are consistent with those measured by the conventional dust detectors. A new method of measuring the electron density inside the Enceladus plume based on plasma oscillations observed after dust impacts will also be discussed. The dust measurement by radio and plasma wave instruments complements that by conventional dust detectors and provide important information about the spatial distribution of dust particles due to less pointing constraints and the larger detection area.

  4. Photometric analysis of the corona during the 20 March 2015 total solar eclipse: density structures, hydrostatic temperatures and magnetic field inference.

    NASA Astrophysics Data System (ADS)

    Bazin, C.; Vilinga, J.; Wittich, R.; Koutchmy, S.; Mouette, J.; Nitschelm, C.

    2015-12-01

    We present some new accurate CCD photometry analysis of the white light solar corona at the time of the last 20 March 2015 total eclipse (airborne observations on a Falcon 7X and at ground-based- Svalbard). We measured coronal brightness profiles taken along radial directions from 1.001 to 3 solar radii in the northern, southern and equatorial regions, after removing the F-corona and the sky background. These studies allow to evaluate the density gradients, structures and temperature heterogeneity, by considering the Thomson scattering in white light of the K- corona and also emissions of the EUV Fe XII 193A (1 to 2 MK) and Fe XI 171/174 (lower temperature) simultaneously observed by SDO/AIA and SWAP/Proba2 space missions. Some dispersion between the regions is noticed. The limitation of the hydrostatic equilibrium assumption in the solar atmosphere is discussed as well as the contribution of the magnetic field pressure gradients as illustrated by a comparison with the model stationary magnetic corona from Predictive Sc. Inc. These results are compared with the results of the quieter 2010 total solar eclipse corona analyzed with the same method. This photometric analysis of the inner and intermediate white light corona will contribute to the preparation of the Aspiics/Proba 3 flying formation future coronagraphic mission of ESA for new investigation at time of artificial eclipses produced in Space. Note that Aspiics will also observe in the He I D3 line at 5876 A, and will record intensities of the Fe XIV line 5303A simultaneously with the analysis of the orange white- light continuum, including precise polarimetry analysis. .

  5. Whie light solar corona: An atlas of 1988 K-coronameter synoptic charts, December 1987 to January 1989

    SciTech Connect

    Sime, D.G.; Garcia, C.; Yasukawa, E.; Lundin, E.

    1990-03-01

    The synoptic observing project of the High Altitude Observatory's Coronal Dynamics Program began on 30 July 1980. The data obtained for it are gathered by the Mark-III K-coronameter located at the Mauna Loa Solar Observatory, Hawaii, and are published yearly in volumes of The White Light Solar Corona: An Atlas of K-Coronameter Synoptic Charts (Table 1). The data, in the form of synoptic charts, are extended at both the beginning and the end of each year to provide some overlap with the preceding and succeeding volumes. This is also necessary to provide a complete set of the data organized into Carrington rotations covering a specific time period since the rotations do not coincide with the yearly calendar. Further observations are made at the limb, and west limb passage occurs 14 days after east limb passage. Thus, an entire rotation's data requires more than 28 days to collect. Together with the synoptic maps and polar synoptic maps, two additional sections designed to aid the user are included in the volume. As in previous Atlases, the Activity Report Summary for the year is given and the Mauna Loa Solar Observatory Calendar for 1988 (Table III) is also included. This is a list of days on which no coronal observations were achieved. These synoptic data should be regarded as a preliminary presentation in which corrections have not fully been made for the day-to-day variations and scattering of polarized light by the earth's atmosphere. Data from the east and west limbs are presented separately in the synoptic charts, as transient and evolutionary changes in the white light corona can substantially modify the distribution of coronal material over the 14 days between sequential limb passages.

  6. White Light Solar Corona: An Atlas of 1988 K-Coronameter Synoptic Charts, December 1987-January 1989. Technical note

    SciTech Connect

    Sime, D.G.; Garcia, C.; Yasukawa, E.; Lundin, E.

    1990-03-01

    The synoptic observing project of the High Altitude Observatory's Coronal Dynamics Program began on 30 July 1980. The data obtained for it are gathered by the Mark-III K-coronameter located at the Mauna Loa Solar Observatory, Hawaii, and are published yearly in volumes of The White Light Solar Corona: An Atlas of K-Coronameter Synoptic Charts (Table 1). The data, in the form of synoptic charts, are extended at both the beginning and the end of each year to provide some overlap with the preceding and succeeding volumes. This is also necessary to provide a complete set of the data organized into Carrington rotations covering a specific time period, since the rotations do not coincide with the yearly calendar. Further observations are made at the limb, and west limb passage occurs 14 days after east limb passage. Thus, an entire rotation's data requires more than 28 days to collect. Together with the synoptic maps and polar synoptic maps, two additional sections designed to aid the user are included in the volume. As in previous Atlases, the Activity Report Summary for the year is given and the Mauna Loa Solar Observatory Calendar for 1988 (Table III) is also included. This is a list of days on which no coronal observations were achieved. These synoptic data should be regarded as a preliminary presentation in which corrections have not fully been made for the day-to-day variations and scattering of polarized light by the earth's atmosphere. Data from the east and west limbs are presented separately in the synoptic charts, as transient and evolutionary changes in the white light corona can substantially modify the distribution of coronal material over the 14 days between sequential limb passages.

  7. IMPACT OF TEMPERATURE-DEPENDENT RESISTIVITY AND THERMAL CONDUCTION ON PLASMOID INSTABILITIES IN CURRENT SHEETS IN THE SOLAR CORONA

    SciTech Connect

    Ni Lei; Roussev, Ilia I.; Lin Jun; Ziegler, Udo E-mail: iroussev@ifa.hawaii.edu

    2012-10-10

    In this paper, we investigate, by means of two-dimensional magnetohydrodynamic simulations, the impact of temperature-dependent resistivity and thermal conduction on the development of plasmoid instabilities in reconnecting current sheets in the solar corona. We find that the plasma temperature in the current-sheet region increases with time and it becomes greater than that in the inflow region. As secondary magnetic islands appear, the highest temperature is not always found at the reconnection X-points, but also inside the secondary islands. One of the effects of anisotropic thermal conduction is to decrease the temperature of the reconnecting X-points and transfer the heat into the O-points, the plasmoids, where it gets trapped. In the cases with temperature-dependent magnetic diffusivity, {eta} {approx} T {sup -3/2}, the decrease in plasma temperature at the X-points leads to (1) an increase in the magnetic diffusivity until the characteristic time for magnetic diffusion becomes comparable to that of thermal conduction, (2) an increase in the reconnection rate, and (3) more efficient conversion of magnetic energy into thermal energy and kinetic energy of bulk motions. These results provide further explanation of the rapid release of magnetic energy into heat and kinetic energy seen during flares and coronal mass ejections. In this work, we demonstrate that the consideration of anisotropic thermal conduction and Spitzer-type, temperature-dependent magnetic diffusivity, as in the real solar corona, are crucially important for explaining the occurrence of fast reconnection during solar eruptions.

  8. Whie light solar corona: an atlas of 1988 K-coronameter synoptic charts, December 1987 to January 1989

    NASA Astrophysics Data System (ADS)

    Sime, D. G.; Garcia, C.; Yasukawa, E.; Lundin, E.

    1990-03-01

    The synoptic observing project of the High Altitude Observatory's Coronal Dynamics Program began on 30 July 1980. The data obtained for it are gathered by the Mark-III K-coronameter located at the Mauna Loa Solar Observatory, Hawaii, and are published yearly in volumes of The White Light Solar Corona: An Atlas of K-Coronameter Synoptic Charts (Table 1). The data, in the form of synoptic charts, are extended at both the beginning and the end of each year to provide some overlap with the preceding and succeeding volumes. This is also necessary to provide a complete set of the data organized into Carrington rotations covering a specific time period since the rotations do not coincide with the yearly calendar. Further observations are made at the limb, and west limb passage occurs 14 days after east limb passage. Thus, an entire rotation's data requires more than 28 days to collect. Together with the synoptic maps and polar synoptic maps, two additional sections designed to aid the user are included in the volume. As in previous Atlases, the Activity Report Summary for the year is given and the Mauna Loa Solar Observatory Calendar for 1988 (Table III) is also included. This is a list of days on which no coronal observations were achieved. These synoptic data should be regarded as a preliminary presentation in which corrections have not fully been made for the day-to-day variations and scattering of polarized light by the earth's atmosphere. Data from the east and west limbs are presented separately in the synoptic charts, as transient and evolutionary changes in the white light corona can substantially modify the distribution of coronal material over the 14 days between sequential limb passages.

  9. MAPPING THE DISTRIBUTION OF ELECTRON TEMPERATURE AND Fe CHARGE STATES IN THE CORONA WITH TOTAL SOLAR ECLIPSE OBSERVATIONS

    SciTech Connect

    Habbal, S. Rifai; Morgan, H.; Scholl, I.; Druckmueller, M.; Daw, A.; Johnson, J.; Ding, A.; Arndt, M.; Esser, R.; Rusin, V.

    2010-01-10

    The inference of electron temperature from the ratio of the intensities of emission lines in the solar corona is valid only when the plasma is collisional. Once collisionless, thermodynamic ionization equilibrium no longer holds, and the inference of an electron temperature and its gradient from such measurements is no longer valid. At the heliocentric distance where the transition from a collision-dominated to a collisionless plasma occurs, the charge states of different elements are established, or frozen-in. These are the charge states which are subsequently measured in interplanetary space. We show in this study how the 2006 March 29 and 2008 August 1 eclipse observations of a number of Fe emission lines yield an empirical value for a distance, which we call R{sub t} , where the emission changes from being collisionally to radiatively dominated. R{sub t} ranges from 1.1 to 2.0 R{sub sun}, depending on the charge state and the underlying coronal density structures. Beyond that distance, the intensity of the emission reflects the distribution of the corresponding Fe ion charge states. These observations thus yield the two-dimensional distribution of electron temperature and charge state measurements in the corona for the first time. The presence of the Fe X 637.4 nm and Fe XI 789.2 nm emission in open magnetic field regions below R{sub t} , such as in coronal holes and the boundaries of streamers, and the absence of Fe XIII 1074.7 nm and Fe XIV 530.3 nm emission there indicate that the sources of the solar wind lie in regions where the electron temperature is less than 1.2 x 10{sup 6} K. Beyond R{sub t} , the extent of the Fe X [Fe{sup 9+}] and Fe XI emission [Fe{sup 10+}], in comparison with Fe XIII [Fe{sup 12+}] and Fe XIV [Fe{sup 13+}], matches the dominance of the Fe{sup 10+} charge states measured by the Solar Wind Ion Composition Spectrometer, SWICS, on Ulysses, at -43{sup 0} latitude at 4 AU, in March-April 2006, and Fe{sup 9+} and Fe{sup 10+} charge states measured by SWICS on the Advanced Composition Explorer, ACE, in the ecliptic plane at 1 AU, at the time of both eclipses. The remarkable correspondence between these two measurements establishes the first direct link between the distribution of charge states in the corona and in interplanetary space.

  10. Study of Active Phenomena in the Solar Corona in the 8-350 Å Range by Imaging Spectroscopy Methods (SPIRIT Experiment)

    NASA Astrophysics Data System (ADS)

    Zhitnik, I. A.; Kuzin, S. V.; Bogachev, S. A.; Bugaenko, O. I.; Ivanov, Yu. S.; Ignatyev, A. P.; Krutov, V. V.; Mitrofanov, A. V.; Oparin, S. N.; Pertsov, A. A.; Slemzin, V. A.; Sukhodrev, N. K.; Sobelman, I. I.; Urnov, A. M.; Shestov, S. V.; Goryaev, F. F.

    This review presents the basic characteristics of the SPIRIT instrument onboard the CORONAS-F satellite, description of observation programmes, summary of observation sessions and scientific data obtained, as well as the main results in the research of hot coronal plasma, solar flares and the eruptive phenomena.

  11. Height of Shock Formation in the Solar Corona Inferred from Observations of Type II Radio Bursts and Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Xie, H.; Makela, P.; Yashiro, S.; Akiyama, S.; Uddin, W.; Srivastava, A. K.; Joshi, N. C.; Chandra, R.; Manoharan, P. K.

    2013-01-01

    Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25-40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.

  12. Height of shock formation in the solar corona inferred from observations of type II radio bursts and coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Xie, H.; Mäkelä, P.; Yashiro, S.; Akiyama, S.; Uddin, W.; Srivastava, A. K.; Joshi, N. C.; Chandra, R.; Manoharan, P. K.; Mahalakshmi, K.; Dwivedi, V. C.; Jain, R.; Awasthi, A. K.; Nitta, N. V.; Aschwanden, M. J.; Choudhary, D. P.

    2013-06-01

    Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25-40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.

  13. A NUMERICAL METHOD FOR THE VISUALIZATION OF THE Fe XIV EMISSION IN THE SOLAR CORONA USING BROADBAND FILTERS

    SciTech Connect

    Martisek, K.; Druckmuellerova, H.

    2011-12-01

    The goal of this article is to demonstrate how the emission from the Fe XIV 530.3 nm coronal emission line, also known as the green line, can be extracted from images taken during total solar eclipses with commercially available color cameras. This concept is technically feasible because Fe XIV is the brightest optical emission line in the inner corona, and because the sensors of these cameras are retrofitted with a standard Bayer mask, namely, a square grid of spectrally broad (about 100 nm) green, blue, and red filters in the ratio of 2:1:1. The technique presented here, and developed for this purpose, yields qualitatively accurate Fe XIV images, as tested by comparing with Fe XIV eclipse images taken with a 0.15 nm narrow-bandpass filter. While this approach cannot replace narrow-bandpass Fe XIV images for quantitative studies of the corona, it provides a simple and affordable tool for studying the morphology of coronal structures emitting preferentially at the peak ionization temperature of Fe XIV, namely, 1.8 Multiplication-Sign 10{sup 6} K.

  14. THE TEMPERATURE AND DENSITY STRUCTURE OF THE SOLAR CORONA. I. OBSERVATIONS OF THE QUIET SUN WITH THE EUV IMAGING SPECTROMETER ON HINODE

    SciTech Connect

    Warren, Harry P.; Brooks, David H.

    2009-07-20

    Measurements of the temperature and density structure of the solar corona provide critical constraints on theories of coronal heating. Unfortunately, the complexity of the solar atmosphere, observational uncertainties, and the limitations of current atomic calculations, particularly those for Fe, all conspire to make this task very difficult. A critical assessment of plasma diagnostics in the corona is essential to making progress on the coronal heating problem. In this paper, we present an analysis of temperature and density measurements above the limb in the quiet corona using new observations from the EUV Imaging Spectrometer (EIS) on Hinode. By comparing the Si and Fe emission observed with EIS we are able to identify emission lines that yield consistent emission measure distributions. With these data we find that the distribution of temperatures in the quiet corona above the limb is strongly peaked near 1 MK, consistent with previous studies. We also find, however, that there is a tail in the emission measure distribution that extends to higher temperatures. EIS density measurements from several density sensitive line ratios are found to be generally consistent with each other and with previous measurements in the quiet corona. Our analysis, however, also indicates that a significant fraction of the weaker emission lines observed in the EIS wavelength ranges cannot be understood with current atomic data.

  15. Possible signature of Alfvén wave dissipation in the localized magnetic funnels of the equatorial solar corona

    NASA Astrophysics Data System (ADS)

    Dwivedi, Bhola N.; Srivastava, Abhishek Kumar; Mohan, Anita

    2014-12-01

    We analyse the Hinode/EIS 2″-spectroscopic scan data containing the spectral line formed at typical inner coronal temperature. The strong Fe XII 195.120 Å line shows the existence of funnel-like expanding flux-tubes which exhibit the signature of blue-/red-shifted plasma motions in the off-limb equatorial corona. These coronal funnels expand in the form of open magnetic field channels up to inner coronal heights. They are most likely the parts of large-scale and closed magnetic fields (loops) which exist at higher heights in the diffused equatorial corona. We also find the signature of decreasing line-widths with altitude in observed coronal funnels (e.g., funnel 1), which is the lower part of a curved loop system. This provides the most likely signature of Alfvén wave dissipation in lower part of this loop system. We also examine the blue-shifted and diffused coronal loop boundary and interfaced region (funnel 3) which shows increasing Fe XII 195.120 Å line-width along it. Therefore, it exhibits the most likely signature of Alfvén wave growth in this region which is slightly curved and rising higher in the corona. Density measurements in these funnels show that it falls off with height, but more rapidly in the second funnel. We conjecture the almost constant line-width trend as a most likely signature of Alfvén wave dissipation in this density-stratified second coronal funnel, which is also the lower part of a large-scale closed loop system. Both dissipative and growing Alfvén waves can change the non-thermal component and thus the full width at half-maximum of the Fe XII 195.120 Å line. We find the clues of Alfvén wave dissipation along the expanding field lines of the coronal funnel (lower parts of the loop system) imparting its energy to the outflowing plasma and thereby contributing to the formation of the nascent solar wind in the inner corona.

  16. The Dust Properties of Hot R Coronae Borealis Stars and a Wolf-Rayet Central Star of a Planetary Nebula: In Search of the Missing Link

    NASA Technical Reports Server (NTRS)

    Clayton, Geoffrey C.; De Marco, O.; Whitney, B. A.; Babler, B.; Gallagher, J. S.; Nordhaus, J.; Speck, A. K.; Wolff, M. J.; Freeman, W. R.; Camp, K. A.; Lawson, W. A.; Roman-Duval, J.; Misselt, K. A.; Meade, M.; Sonneborn, G.; Matsuura, M.; Meixner, M.

    2012-01-01

    We present new Spitzer IIRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy,V348 Sgr, and one lying in the Large Magellanic Cloud, HV 2671. These two objects constitute a link between the RCB stars and the [WCL] class of central stars of planetary nebula (CSPNe) that has little or no hydrogen in their atmospheres such as CPD -560 8032. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but sharing the traits of hydrogen deficiency and dust formation that define the cooler RCB stars. The [WC] CSPNe star, CPD -560 8032, displays evidence for dual-dust chemistry showing both PAHs and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but shows no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from those of CPD -56deg 8032 and HV 2671. The PAH emission seen strongly in the other two stars is only weakly present. Instead, the spectrum is dominated by a broad emission centered at about 8.5 microns. This feature is not identified with either PAHs or silicates. Several other novae and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56deg 8032 shows emission features associated with C60 . The other two stars do not show evidence for C60. The nature of the dust around these stars does not help us in establishing further links that may indicate a common origin.

  17. THE DYNAMICS OF DUST GRAINS IN THE OUTER SOLAR SYSTEM

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R. E-mail: rrr@astro.princeton.ed

    2010-11-10

    We study the dynamics of large dust grains {approx}>1 {mu}m with orbits outside of the heliosphere (beyond 250 AU). Motion of the solar system through the interstellar medium (ISM) at a velocity of 26 km s{sup -1} subjects these particles to gas and Coulomb drag (grains are expected to be photoelectrically charged) as well as the Lorentz force and the electric force caused by the induction electric field. We show that to zeroth order the combined effect of these forces can be well described in the framework of the classical Stark problem: particle motion in a Keplerian potential subject to an additional constant force. Based on this analogy, we elucidate the circumstances in which the motion becomes unbound, and show that under local ISM conditions dust grains smaller than {approx}100 {mu}m originating in the Oort Cloud (e.g., in collisions of comets) beyond 10{sup 4} AU are ejected from the solar system under the action of the electric force. Orbital motion of larger, bound grains is described analytically using the orbit-averaged Hamiltonian approach and consists of orbital plane precession at a fixed semimajor axis, accompanied by the periodic variations of the inclination and eccentricity (the latter may approach unity in some cases). A more detailed analysis of the combined effect of gas and Coulomb drag shows it is possible to reduce particle semimajor axes, but that the degree of orbital decay is limited (a factor of several at best) by passages through atomic and molecular clouds, which easily eject small particles.

  18. Electrostatic Charging of Lunar Dust by UV Photoelectric Emissions and Solar Wind Electrons

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James f.; LeClair, Andre C.; Dube, Michael J.

    2008-01-01

    The ubiquitous presence of dust in the lunar environment with its high adhesive characteristics has been recognized to be a major safety issue that must be addressed in view of its hazardous effects on robotic and human exploration of the Moon. The reported observations of a horizon glow and streamers at the lunar terminator during the Apollo missions are attributed to the sunlight scattered by the levitated lunar dust. The lunar surface and the dust grains are predominantly charged positively by the incident UV solar radiation on the dayside and negatively by the solar wind electrons on the night-side. The charged dust grains are levitated and transported over long distances by the established electric fields. A quantitative understanding of the lunar dust phenomena requires development of global dust distribution models, based on an accurate knowledge of lunar dust charging properties. Currently available data of lunar dust charging is based on bulk materials, although it is well recognized that measurements on individual dust grains are expected to be substantially different from the bulk measurements. In this paper we present laboratory measurements of charging properties of Apollo 11 & 17 dust grains by UV photoelectric emissions and by electron impact. These measurements indicate substantial differences of both qualitative and quantitative nature between dust charging properties of individual micron/submicron sized dust grains and of bulk materials. In addition, there are no viable theoretical models available as yet for calculation of dust charging properties of individual dust grains for both photoelectric emissions and electron impact. It is thus of paramount importance to conduct comprehensive measurements for charging properties of individual dust grains in order to develop realistic models of dust processes in the lunar atmosphere, and address the hazardous issues of dust on lunar robotic and human missions.

  19. Dust Accumulation and Solar Panel Array Performance on the Mars Exploration Rover (MER) Project

    NASA Technical Reports Server (NTRS)

    Turgay, Eren H.

    2004-01-01

    One of the most fundamental design considerations for any space vehicle is its power supply system. Many options exist, including batteries, fuel cells, nuclear reactors, radioisotopic thermal generators (RTGs), and solar panel arrays. Solar arrays have many advantages over other types of power generation. They are lightweight and relatively inexpensive, allowing more mass and funding to be allocated for other important devices, such as scientific instruments. For Mars applications, solar power is an excellent option, especially for long missions. One might think that dust storms would be a problem; however, while dust blocks some solar energy, it also scatters it, making it diffuse rather than beamed. Solar cells are still able to capture this diffuse energy and convert it into substantial electrical power. For these reasons, solar power was chosen to be used on the 1997 Mars Pathfinder mission. The success of this mission set a precedent, as NASA engineers have selected solar power as the energy system of choice for all future Mars missions, including the Mars Exploration Rover (MER) Project. Solar sells have their drawbacks, however. They are difficult to manufacture and are relatively fragile. In addition, solar cells are highly sensitive to different parts of the solar spectrum, and finding the correct balance is crucial to the success of space missions. Another drawback is that the power generated is not a constant with respect to time, but rather changes with the relative angle to the sun. On Mars, dust accumulation also becomes a factor. Over time, dust settles out of the atmosphere and onto solar panels. This dust blocks and shifts the frequency of the incoming light, degrading solar cell performance. My goal is to analyze solar panel telemetry data from the two MERs (Spirit and Opportunity) in an effort to accurately model the effect of dust accumulation on solar panels. This is no easy process due to the large number of factors involved. Changing solar flux (the amount of solar energy reaching the planet), solar spectrum, solar angle, rover tilt, and optical depth (the opacity of the atmosphere due to dust) were the most significant. Microsoft Excel and Visual Basic are used for data analysis. The results of this work will be used to improve the dust accumulation and atmosphere effects model that was first created after the Mars Pathfinder mission. This model will be utilized and applied when considering the design of solar panel array systems on future Mars projects. Based on this data, and depending upon the tenure and application of the mission, designers may also elect to employ special tools to abate dust accumulation, or decide that the expected level of accumulation is acceptable.

  20. The impact of UVCS/SOHO observations on models of ion-cyclotron resonance heating of the solar corona

    NASA Technical Reports Server (NTRS)

    Cranmer, S. R.; Field, G. B.; Noci, G.; Kohl, J. L.

    1997-01-01

    The compatibility between theoretical models and observations of the temperatures and anisotropic distributions of hydrogen and minor ions in the solar corona is examined. The ultraviolet coronagraph spectrometer (UVCS) instrument onboard SOHO measured hydrogen kinetic temperatures along lines of sight in coronal holes in excess of 3 x 10(exp 6) K and O(+5) ion kinetic temperatures of at least 2 x 10(exp 8) K. Various features of plasma heating by the dissipation of high-frequency ion-cyclotron resonance Alfven waves, which may be the most natural physical mechanism to produce certain plasma conditions, are examined. Preliminary quantitative models of the ion motion in polar coronal holes are presented, and it is shown that such models can be used to predict the spectrum of waves required to reproduce the observations. Indeed, the more ionic species that are observed spectroscopically, the greater the extent in frequency space the wave spectrum can be inferred.

  1. Constraints on Nonlinear and Stochastic Growth Theories for Type 3 Solar Radio Bursts from the Corona to 1 AU

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1998-01-01

    Existing, competing theories for coronal and interplanetary type III solar radio bursts appeal to one or more of modulational instability, electrostatic (ES) decay processes, or stochastic growth physics to preserve the electron beam, limit the levels of Langmuir-like waves driven by the beam, and produce wave spectra capable of coupling nonlinearly to generate the observed radio emission. Theoretical constraints exist on the wavenumbers and relative sizes of the wave bandwidth and nonlinear growth rate for which Langmuir waves are subject to modulational instability and the parametric and random phase versions of ES decay. A constraint also exists on whether stochastic growth theory (SGT) is appropriate. These constraints are evaluated here using the beam, plasma, and wave properties (1) observed in specific interplanetary type III sources, (2) predicted nominally for the corona, and (3) predicted at heliocentric distances greater than a few solar radii by power-law models based on interplanetary observations. It is found that the Langmuir waves driven directly by the beam have wavenumbers that are almost always too large for modulational instability but are appropriate to ES decay. Even for waves scattered to lower wavenumbers (by ES decay, for instance), the wave bandwidths are predicted to be too large and the nonlinear growth rates too small for modulational instability to occur for the specific interplanetary events studied or the great majority of Langmuir wave packets in type III sources at arbitrary heliocentric distances. Possible exceptions are for very rare, unusually intense, narrowband wave packets, predominantly close to the Sun, and for the front portion of very fast beams traveling through unusually dilute, cold solar wind plasmas. Similar arguments demonstrate that the ES decay should proceed almost always as a random phase process rather than a parametric process, with similar exceptions. These results imply that it is extremely rare for modulational instability or parametric decay to proceed in type III sources at any heliocentric distance: theories for type III bursts based on modulational instability or parametric decay are therefore not viable in general. In contrast, the constraint on SGT can be satisfied and random phase ES decay can proceed at all heliocentric distances under almost all circumstances. (The contrary circumstances involve unusually slow, broad beams moving through unusually hot regions of the Corona.) The analyses presented here strongly justify extending the existing SGT-based model for interplanetary type III bursts (which includes SGT physics, random phase ES decay, and specific electromagnetic emission mechanisms) into a general theory for type III bursts from the corona to beyond 1 AU. This extended theory enjoys strong theoretical support, explains the characteristics of specific interplanetary type III bursts very well, and can account for the detailed dynamic spectra of type III bursts from the lower corona and solar wind.

  2. FINE STRAND-LIKE STRUCTURE IN THE SOLAR CORONA FROM MAGNETOHYDRODYNAMIC TRANSVERSE OSCILLATIONS

    SciTech Connect

    Antolin, P.; Yokoyama, T.; Van Doorsselaere, T.

    2014-06-01

    Current analytical and numerical modeling suggest the existence of ubiquitous thin current sheets in the corona that could explain the observed heating requirements. On the other hand, new high resolution observations of the corona indicate that its magnetic field may tend to organize itself in fine strand-like structures of few hundred kilometers widths. The link between small structure in models and the observed widths of strand-like structure several orders of magnitude larger is still not clear. A popular theoretical scenario is the nanoflare model, in which each strand is the product of an ensemble of heating events. Here, we suggest an alternative mechanism for strand generation. Through forward modeling of three-dimensional MHD simulations we show that small amplitude transverse MHD waves can lead in a few periods time to strand-like structure in loops in EUV intensity images. Our model is based on previous numerical work showing that transverse MHD oscillations can lead to Kelvin-Helmholtz instabilities that deform the cross-sectional area of loops. While previous work has focused on large amplitude oscillations, here we show that the instability can occur even for low wave amplitudes for long and thin loops, matching those presently observed in the corona. We show that the vortices generated from the instability are velocity sheared regions with enhanced emissivity hosting current sheets. Strands result as a complex combination of the vortices and the line-of-sight angle, last for timescales of a period, and can be observed for spatial resolutions of a tenth of loop radius.

  3. Fine Strand-like Structure in the Solar Corona from Magnetohydrodynamic Transverse Oscillations

    NASA Astrophysics Data System (ADS)

    Antolin, P.; Yokoyama, T.; Van Doorsselaere, T.

    2014-06-01

    Current analytical and numerical modeling suggest the existence of ubiquitous thin current sheets in the corona that could explain the observed heating requirements. On the other hand, new high resolution observations of the corona indicate that its magnetic field may tend to organize itself in fine strand-like structures of few hundred kilometers widths. The link between small structure in models and the observed widths of strand-like structure several orders of magnitude larger is still not clear. A popular theoretical scenario is the nanoflare model, in which each strand is the product of an ensemble of heating events. Here, we suggest an alternative mechanism for strand generation. Through forward modeling of three-dimensional MHD simulations we show that small amplitude transverse MHD waves can lead in a few periods time to strand-like structure in loops in EUV intensity images. Our model is based on previous numerical work showing that transverse MHD oscillations can lead to Kelvin-Helmholtz instabilities that deform the cross-sectional area of loops. While previous work has focused on large amplitude oscillations, here we show that the instability can occur even for low wave amplitudes for long and thin loops, matching those presently observed in the corona. We show that the vortices generated from the instability are velocity sheared regions with enhanced emissivity hosting current sheets. Strands result as a complex combination of the vortices and the line-of-sight angle, last for timescales of a period, and can be observed for spatial resolutions of a tenth of loop radius.

  4. CHARGE STATE EVOLUTION IN THE SOLAR WIND. II. PLASMA CHARGE STATE COMPOSITION IN THE INNER CORONA AND ACCELERATING FAST SOLAR WIND

    SciTech Connect

    Landi, E.; Gruesbeck, J. R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.

    2012-12-10

    In the present work, we calculate the evolution of the charge state distribution within the fast solar wind. We use the temperature, density, and velocity profiles predicted by Cranmer et al. to calculate the ionization history of the most important heavy elements in the solar corona and solar wind: C, N, O, Ne, Mg, Si, S, and Fe. The evolution of each charge state is calculated from the source region in the lower chromosphere to the final freeze-in point. We show that the solar wind velocity causes the plasma to experience significant departures from equilibrium at very low heights, well inside the field of view (within 0.6 R{sub sun} from the solar limb) of nearly all the available remote-sensing instrumentation, significantly affecting observed spectral line intensities. We also study the evolution of charge state ratios with distance from the source region, and the temperature they indicate if ionization equilibrium is assumed. We find that virtually every charge state from every element freezes in at a different height, so that the definition of freeze-in height is ambiguous. We also find that calculated freeze-in temperatures indicated by charge state ratios from in situ measurements have little relation to the local coronal temperature of the wind source region, and stop evolving much earlier than their correspondent charge state ratio. We discuss the implication of our results on plasma diagnostics of coronal holes from spectroscopic measurements as well as on theoretical solar wind models relying on coronal temperatures.

  5. Heating of the quiet solar corona from measurements of the FET/TESIS instrument on-board the KORONAS-FOTON satellite

    NASA Astrophysics Data System (ADS)

    Rybák, J.; Gömöry, P.; Benz, A.; Bogachev, P.; Brajša, R.

    2010-12-01

    The paper presents the first results of the observations of time evolution of the quiet solar corona brightenings obtained due to very rapid photography of the corona with full-disk EUV telescopes of the FET/TESIS instrument onboard the KORONA FOTON satellite. The measurements were performed simultaneously in the emission of the Fe IX / X 17.1 and Fe VIII 13.1 spectral lines with 10 second temporal cadence and spatial scale of 1.7 arc seconds within one hour. This test observation, carried out on 15 July 2009, was analyzed in order to determine whether this type of observation can be used to identify individual microevents in the solar corona heating that are above the tresholds of spatial and temporal resolutions of the observations of non-active regions in the solar atmosphere. For this purpose, a simple method was used involving cross-correlation of the plasma emission time evolution at different temperatures, each time from observations of identical elements. The results obtained are confronted with the expected observable manifestations of the corona heating via nanoflares. TESIS is a set of instruments for the Sun photography developed in the Lebedev Physics Institute of the Russian Academy of Sciences that was launched into orbit in January 2009.

  6. White light solar corona: an atlas of 1986 K-coronameter synoptic charts, December 1985-January 1987. Technical note

    SciTech Connect

    Sime, D.G.; Garcia, C.; Yasukawa, E.; Lundin, E.; Rock, K.

    1987-03-01

    The synoptic observing project of the High Altitude Observatory's Coronal Dynamics Program began on 5 August 1980. The data obtained for it are gathered by the Mark-III K-coronameter located at the Mauna Loa Solar Observatory, Hawaii, and are published yearly in volumes of The White Solar Corona: An Atlas Of K-Coronameter Synoptic Charts. The data are extended at both the beginning and the end of each volume to provide some overlap with the preceding and succeeding volumes. This is necessary to provide a complete set of the data organized into Carrington rotations covering a specific time period, since the rotations do not coincide with the yearly calendar. Further, observations are made at the limb, and west limb passage occurs 14 days after east limb passage. Thus, an entire rotation's data require more than 28 days to collect. As well as the synoptic maps, there are two additional sections designed to aid the user are included in this volume. As in previous Atlases, the Activity Report Summary for the year and Polar Synoptic Charts are included. Further, in this volume, the authors also include the Manuna Loa Solar Observatory Calendar for 1986. This is a list of days on which no coronal observations were achieved.

  7. White Light Solar Corona: An ATLAS of 1987 K-coronameter Synoptic Charts, December 1986-January 1988. Technical note

    SciTech Connect

    Sime, D.G.; Garcia, C.; Yasukawa, E.; Lundin, E.; Hoffman, F.

    1988-03-01

    The synoptic observing project of the High Altitude Observatory's Coronal Dynamics Program began on 5 August 1980. The data obtained for it are gathered by the Mark III K-coronameter located at the Mauna Loa Solar Observatory, Hawaii, and are published yearly in volumes of The White Light Solar Corona: An Atlas of K-Coronameter Synoptic Charts. The data, in the form of synoptic charts, are extended at both the beginning and the end of each year to provide some overlap with the preceding and succeeding volumes. This is also necessary to provide a complete set of the data organized into Carrington rotations covering a specific time period, since the rotations do not coincide with the yearly calendar. Further, observations are made at the limb, and west limb passage occurs 14 days after east limb passage. Thus, an entire rotation's data requires more than 28 days to collect. As well as the synoptic maps, two additional sections designed to aid the user are included in the volume. As in previous Atlases, the Activity Report Summary for the year and Polar Synoptic Charts are included. Also included the Mauna Loa Solar Observatory Calendar for 1987.

  8. White light solar corona: an atlas of 1986 K-coronameter synoptic charts, December 1985 - January 1987

    NASA Astrophysics Data System (ADS)

    Sime, D. G.; Garcia, C.; Yasukawa, E.; Lundin, E.; Rock, K.

    1987-03-01

    The synoptic observing project of the High ltitude Observatory's Coronal Dynamics Program began on 5 August 1980. The data obtained for it are gathered by the Mark-III K-coronameter located at the Mauna Loa Solar Observatory, Hawaii, and are published yearly in volumes of The White Solar Corona: An Atlas of K-Coronameter Synoptic Charts. The data are extended at both the beginning and the end of each volume to provide some overlap with the preceding and succeeding volumes. This is necessary to provide a complete set of the data organized into Carrington rotations covering a specific time period, since the rotations do not coincide with the yearly calendar. Further, observations are made at the limb, and west limb passage occur 14 days after the east limb passage. Thus, an entire rotation's data requires more than 28 days to collect. As well as the synoptic maps, there are two additional sections designed to aid the user included. As in previous atlases, the Activity Report Summary for the year and the Polar Synoptic Charts are included. Also included is the Mauna Loa Solar Observatory Calendar for 1986. This is a list of days on which no coronal observations were achieved.

  9. Magnetic neutral sheets in evolving fields. I - General theory. II - Formation of the solar corona

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1983-01-01

    The problem of the hydrostatic equilibrium of a large-scale magnetic field embedded in a fluid with infinite electrical conductivity is considered. It is pointed out that a necessary condition for static equilibrium is the invariance of the small-scale pattern in the field along the large-scale direction. A varying topological pattern implies that no fluid pressure distribution exists for which the field is everywhere static. Magnetic neutral sheets form, and dynamical reconnection of the field takes place. It is shown here that the invariance is also a sufficient condition for the existence of a fluid pressure distribution producing static equilibrium. Even in the simplest cases, however, the requirements on the fluid pressure are extreme and, a priori, are unlikely. It is concluded that almost all twisted flux tubes packed together produce dynamical nonequilibrium and dissipation of their twisting. This is the basic effect underlying the long-standing conjecture that the shuffling of the footpoints of the bipolar magnetic fields in the sun is responsible for heating the active corona. Attention is then given to the consequences of this general dynamical dissipation in the magnetic fields that produce the active corona of the sun. The footpoints of the field are continually manipulated by the subphotospheric convection in such a way that the lines of force are continually wrapped and rotated about one another.

  10. On the structure of solar and stellar coronae - Loops and loop heat transport

    NASA Technical Reports Server (NTRS)

    Litwin, Christof; Rosner, Robert

    1993-01-01

    We discuss the principal constraints on mechanisms for structuring and heating the outer atmospheres - the coronae - of stars. We argue that the essential cause of highly localized heating in the coronae of stars like the sun is the spatially intermittent nature of stellar surface magnetic fields, and that the spatial scale of the resulting coronal structures is related to the spatial structure of the photospheric fields. We show that significant constraints on coronal heating mechanisms derive from the observed variations in coronal emission, and, in addition, show that the observed structuring perpendicular to coronal magnetic fields imposes severe constraints on mechanisms for heat dispersal in the low-beta atmosphere. In particular, we find that most of commonly considered mechanisms for heat dispersal, such as anomalous diffusion due to plasma turbulence or magnetic field line stochasticity, are much too slow to account for the observed rapid heating of coronal loops. The most plausible mechanism appears to be reconnection at the interface between two adjacent coronal flux bundles. Based on a model invoking hyperresistivity, we show that such a mechanism naturally leads to dominance of isolated single bright coronal loops and to bright coronal plasma structures whose spatial scale transverse to the local magnetic field is comparable to observed dimensions of coronal X-ray loops.

  11. Heating of solar and stellar chromospheres and coronae by MHD waves

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1992-01-01

    The two general classes of models that deal with the required heating of stellar chromospheres and coronae assume that outer stellar atmospheres are heated by hydrodynamic or by magnetohydrodynamic (MHD) waves and that these waves are generated by turbulent motions in the stellar convection zones. This paper considers the types of MHD waves and the source of these waves in stars like sun, the efficiency of the generation of MHD waves, and the manner of propagation and energy dissipation of MHD waves. It is shown that the basic criteria for the validity of any theory of MHD wave heating must account for the mean level of heating observed in stellar chromospheres and coronae, and for the range of radiative losses observed for a given spectral type. It is also required that the MHD wave heating theory accounts for the existence of inhomogeneities in stellar atmospheres. The results obtained indicate that magnetic tube waves might supply enough energy for the chromospheric and coronal heating and might also account for the observed range of variations of stellar radiative losses for a given spectral type.

  12. HEATING OF THE SOLAR CHROMOSPHERE AND CORONA BY ALFVEN WAVE TURBULENCE

    SciTech Connect

    Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.; Asgari-Targhi, M.

    2011-07-20

    A three-dimensional magnetohydrodynamic (MHD) model for the propagation and dissipation of Alfven waves in a coronal loop is developed. The model includes the lower atmospheres at the two ends of the loop. The waves originate on small spatial scales (less than 100 km) inside the kilogauss flux elements in the photosphere. The model describes the nonlinear interactions between Alfven waves using the reduced MHD approximation. The increase of Alfven speed with height in the chromosphere and transition region (TR) causes strong wave reflection, which leads to counter-propagating waves and turbulence in the photospheric and chromospheric parts of the flux tube. Part of the wave energy is transmitted through the TR and produces turbulence in the corona. We find that the hot coronal loops typically found in active regions can be explained in terms of Alfven wave turbulence, provided that the small-scale footpoint motions have velocities of 1-2 km s{sup -1} and timescales of 60-200 s. The heating rate per unit volume in the chromosphere is two to three orders of magnitude larger than that in the corona. We construct a series of models with different values of the model parameters, and find that the coronal heating rate increases with coronal field strength and decreases with loop length. We conclude that coronal loops and the underlying chromosphere may both be heated by Alfvenic turbulence.

  13. The influence of absorbed solar radiation by Saharan dust on hurricane genesis

    NASA Astrophysics Data System (ADS)

    Bretl, Sebastian; Reutter, Philipp; Raible, Christoph C.; Ferrachat, Sylvaine; Poberaj, Christina Schnadt; Revell, Laura E.; Lohmann, Ulrike

    2015-03-01

    To date, the radiative impact of dust and the Saharan air layer (SAL) on North Atlantic hurricane activity is not yet known. According to previous studies, dust stabilizes the atmosphere due to absorption of solar radiation but thus shifts convection to regions more conducive for hurricane genesis. Here we analyze differences in hurricane genesis and frequency from ensemble sensitivity simulations with radiatively active and inactive dust in the aerosol-climate model ECHAM6-HAM. We investigate dust burden and other hurricane-related variables and determine their influence on disturbances which develop into hurricanes (developing disturbances, DDs) and those which do not (nondeveloping disturbances, NDDs). Dust and the SAL are found to potentially have both inhibiting and supporting influences on background conditions for hurricane genesis. A slight southward shift of DDs is determined when dust is active as well as a significant warming of the SAL, which leads to a strengthening of the vertical circulation associated with the SAL. The dust burden of DDs is smaller in active dust simulations compared to DDs in simulations with inactive dust, while NDDs contain more dust in active dust simulations. However, no significant influence of radiatively active dust on other variables in DDs and NDDs is found. Furthermore, no substantial change in the DD and NDD frequency due to the radiative effects of dust can be detected.

  14. Effect of Gas Velocity on the Dust Sediment Layer in the Coupled Field of Corona Plasma and Cyclone

    NASA Astrophysics Data System (ADS)

    Wei, Mingshan; Ma, Chaochen; Li, Minghua; S, N. Danish

    2006-09-01

    A dust sediment layer was found on the outer tube wall when the ESCP (electrostatic centrifugal precipitator) trapped diesel particulates or ganister sand. The Compton back scatter method was used to measure the sediment thickness during the experiment. The effect of the inlet gas velocity on the dust sediment layer was investigated. PIV (Particle Image Velocimetry) was used to measure the velocity field between the inner barb tube wall and the outer tube wall. Experiments showed that the thickness of the sediment increased with time, and the sediment layer at the lower end was much thicker than that at the upper end. The agglomeration on the outer tube wall could be removed when the inlet gas velocity was increased to a certain value.

  15. Validation of Spherically Symmetric Inversion by Use of a Tomographically Reconstructed Three-Dimensional Electron Density of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Wang, Tongjiang; Davila, Joseph M.

    2014-01-01

    Determining the coronal electron density by the inversion of white-light polarized brightness (pB) measurements by coronagraphs is a classic problem in solar physics. An inversion technique based on the spherically symmetric geometry (spherically symmetric inversion, SSI) was developed in the 1950s and has been widely applied to interpret various observations. However, to date there is no study of the uncertainty estimation of this method. We here present the detailed assessment of this method using a three-dimensional (3D) electron density in the corona from 1.5 to 4 solar radius as a model, which is reconstructed by a tomography method from STEREO/COR1 observations during the solar minimum in February 2008 (Carrington Rotation, CR 2066).We first show in theory and observation that the spherically symmetric polynomial approximation (SSPA) method and the Van de Hulst inversion technique are equivalent. Then we assess the SSPA method using synthesized pB images from the 3D density model, and find that the SSPA density values are close to the model inputs for the streamer core near the plane of the sky (POS) with differences generally smaller than about a factor of two; the former has the lower peak but extends more in both longitudinal and latitudinal directions than the latter. We estimate that the SSPA method may resolve the coronal density structure near the POS with angular resolution in longitude of about 50 deg. Our results confirm the suggestion that the SSI method is applicable to the solar minimum streamer (belt), as stated in some previous studies. In addition, we demonstrate that the SSPA method can be used to reconstruct the 3D coronal density, roughly in agreement with the reconstruction by tomography for a period of low solar activity (CR 2066). We suggest that the SSI method is complementary to the 3D tomographic technique in some cases, given that the development of the latter is still an ongoing research effort.

  16. An improved model for interplanetary dust fluxes in the outer Solar System

    NASA Astrophysics Data System (ADS)

    Poppe, Andrew R.

    2016-01-01

    We present an improved model for interplanetary dust grain fluxes in the outer Solar System constrained by in situ dust density observations. A dynamical dust grain tracing code is used to establish relative dust grain densities and three-dimensional velocity distributions in the outer Solar System for four main sources of dust grains: Jupiter-family comets, Halley-type comets, Oort-Cloud comets, and Edgeworth-Kuiper Belt objects. Model densities are constrained by in situ dust measurements by the New Horizons Student Dust Counter, the Pioneer 10 meteoroid detector, and the Galileo Dust Detection System (DDS). The model predicts that Jupiter-family comet grains dominate the interplanetary dust grain mass flux inside approximately 10 AU, Oort-Cloud cometary grains may dominate between 10 and 25 AU, and Edgeworth-Kuiper Belt grains are dominant outside 25 AU. The model also predicts that while the total interplanetary mass flux at Jupiter roughly matches that inferred by the analysis of the Galileo DDS measurements, mass fluxes to Saturn, Uranus, and Neptune are at least one order-of-magnitude lower than that predicted by extrapolations of dust grain flux models from 1 AU. Finally, we compare the model predictions of interplanetary dust oxygen influx to the giant planet atmospheres with various observational and photochemical constraints and generally find good agreement, with the exception of Jupiter, which suggests the possibility of additional chemical pathways for exogenous oxygen in Jupiter's atmosphere.

  17. Self-similar signature of the active solar corona within the inertial range of solar-wind turbulence.

    PubMed

    Kiyani, K; Chapman, S C; Hnat, B; Nicol, R M

    2007-05-25

    We quantify the scaling of magnetic energy density in the inertial range of solar-wind turbulence seen in situ at 1 AU with respect to solar activity. At solar maximum, when the coronal magnetic field is dynamic and topologically complex, we find self-similar scaling in the solar wind, whereas at solar minimum, when the coronal fields are more ordered, we find multifractality. This quantifies the solar-wind signature that is of direct coronal origin and distinguishes it from that of local MHD turbulence, with quantitative implications for coronal heating of the solar wind. PMID:17677760

  18. Electron acceleration at localized wave structures in the solar corona (German Title: Elektronenbeschleunigung an lokalen Wellenstrukturen in der Sonnenkorona)

    NASA Astrophysics Data System (ADS)

    Miteva, Rositsa Stoycheva

    2007-07-01

    Our dynamic Sun manifests its activity by different phenomena: from the 11-year cyclic sunspot pattern to the unpredictable and violent explosions in the case of solar flares. During flares, a huge amount of the stored magnetic energy is suddenly released and a substantial part of this energy is carried by the energetic electrons, considered to be the source of the nonthermal radio and X-ray radiation. One of the most important and still open question in solar physics is how the electrons are accelerated up to high energies within (the observed in the radio emission) short time scales. Because the acceleration site is extremely small in spatial extent as well (compared to the solar radius), the electron acceleration is regarded as a local process. The search for localized wave structures in the solar corona that are able to accelerate electrons together with the theoretical and numerical description of the conditions and requirements for this process, is the aim of the dissertation. Two models of electron acceleration in the solar corona are proposed in the dissertation: I. Electron acceleration due to the solar jet interaction with the background coronal plasma (the jet--plasma interaction) A jet is formed when the newly reconnected and highly curved magnetic field lines are relaxed by shooting plasma away from the reconnection site. Such jets, as observed in soft X-rays with the Yohkoh satellite, are spatially and temporally associated with beams of nonthermal electrons (in terms of the so-called type III metric radio bursts) propagating through the corona. A model that attempts to give an explanation for such observational facts is developed here. Initially, the interaction of such jets with the background plasma leads to an (ion-acoustic) instability associated with growing of electrostatic fluctuations in time for certain range of the jet initial velocity. During this process, any test electron that happen to feel this electrostatic wave field is drawn to co-move with the wave, gaining energy from it. When the jet speed has a value greater or lower than the one, required by the instability range, such wave excitation cannot be sustained and the process of electron energization (acceleration and/or heating) ceases. Hence, the electrons can propagate further in the corona and be detected as type III radio burst, for example. II. Electron acceleration due to attached whistler waves in the upstream region of coronal shocks (the electron--whistler--shock interaction) Coronal shocks are also able to accelerate electrons, as observed by the so-called type II metric radio bursts (the radio signature of a shock wave in the corona). From in-situ observations in space, e.g., at shocks related to co-rotating interaction regions, it is known that nonthermal electrons are produced preferably at shocks with attached whistler wave packets in their upstream regions. Motivated by these observations and assuming that the physical processes at shocks are the same in the corona as in the interplanetary medium, a new model of electron acceleration at coronal shocks is presented in the dissertation, where the electrons are accelerated by their interaction with such whistlers. The protons inflowing toward the shock are reflected there by nearly conserving their magnetic moment, so that they get a substantial velocity gain in the case of a quasi-perpendicular shock geometry, i.e, the angle between the shock normal and the upstream magnetic field is in the range 50--80 degrees. The so-accelerated protons are able to excite whistler waves in a certain frequency range in the upstream region. When these whistlers (comprising the localized wave structure in this case) are formed, only the incoming electrons are now able to interact resonantly with them. But only a part of these electrons fulfill the the electron--whistler wave resonance condition. Due to such resonant interaction (i.e., of these electrons with the whistlers), the electrons are accelerated in the electric and magnetic wave field within just several whistler periods. While gaining energy from the whistler wave field, the electrons reach the shock front and, subsequently, a major part of them are reflected back into the upstream region, since the shock accompanied with a jump of the magnetic field acts as a magnetic mirror. Co-moving with the whistlers now, the reflected electrons are out of resonance and hence can propagate undisturbed into the far upstream region, where they are detected in terms of type II metric radio bursts. In summary, the kinetic energy of protons is transfered into electrons by the action of localized wave structures in both cases, i.e., at jets outflowing from the magnetic reconnection site and at shock waves in the corona. Die Sonne ist ein aktiver Stern, was sich nicht nur in den allseits bekannten Sonnenflecken, sondern auch in Flares manifestiert. Während Flares wird eine große Menge gespeicherter, magnetischer Energie in einer kurzen Zeit von einigen Sekunden bis zu wenigen Stunden in der Sonnenkorona freigesetzt. Dabei werden u.a. energiereiche Elektronen erzeugt, die ihrerseits nichtthermische Radio- und Röntgenstrahlung, wie sie z.B. am Observatorium für solare Radioastronomie des Astrophysikalischen Instituts Potsdam (AIP) in Tremsdorf und durch den NASA-Satelliten RHESSI beobachtet werden, erzeugen. Da diese Elektronen einen beträchtlichen Anteil der beim Flare freigesetzten Energie tragen, ist die Frage, wie Elektronen in kurzer Zeit auf hohe Energien in der Sonnenkorona beschleunigt werden, von generellem astrophysikalischen Interesse, da solche Prozesse auch in anderen Sternatmosphären und kosmischen Objekten, wie z.B. Supernova-Überresten, stattfinden. In der vorliegenden Dissertation wird die Elektronenbeschleunigung an lokalen Wellenstrukturen im Plasma der Sonnenkorona untersucht. Solche Wellen treten in der Umgebung der magnetischen Rekonnektion, die als ein wichtiger Auslöser von Flares angesehen wird, und in der Nähe von Stoßwellen, die infolge von Flares erzeugt werden, auf. Generell werden die Elektronen als Testteilchen behandelt. Sie werden durch ihre Wechselwirkung mit den elektrischen und magnetischen Feldern, die mit den Plasmawellen verbunden sind, beschleunigt. Infolge der magnetischen Rekonnektion als Grundlage des Flares werden starke Plasmaströmungen (sogenannte Jets) erzeugt. Solche Jets werden im Licht der weichen Röntgenstrahlung, wie z.B. durch den japanischen Satelliten YOHKOH, beobachtet. Mit solchen Jets sind solare Typ III Radiobursts als Signaturen von energiereichen Elektronenstrahlen in der Sonnenkorona verbunden. Durch die Wechselwirkung eines Jets mit dem umgebenden Plasma werden lokal elektrische Felder erzeugt, die ihrerseits Elektronen beschleunigen können. Dieses hier vorgestellte Szenarium kann sehr gut die Röntgen- und Radiobeobachtungen von Jets und den damit verbundenen Elektronenstrahlen erklären. An koronalen Stoßwellen, die infolge Flares entstehen, werden Elektronen beschleunigt, deren Signatur man in der solaren Radiostrahlung in Form von sogenannten Typ II Bursts beobachten kann. Stoßwellen in kosmischen Plasmen können mit Whistlerwellen (ein spezieller Typ von Plasmawellen) verbunden sein. In der vorliegenden Arbeit wird ein Szenarium vorgestellt, das aufzeigt, wie solche Whistlerwellen an koronalen Stoßwellen erzeugt werden und durch ihre resonante Wechselwirkung mit den Elektronen dieselben beschleunigen. Dieser Prozess ist effizienter als bisher vorgeschlagene Mechanismen und kann deshalb auch auf andere Stoßwellen im Kosmos, wie z.B. an Supernova-Überresten, zur Erklärung der dort erzeugten Radio- und Röntgenstrahlung dienen.

  19. A solar escalator on Mars: Self-lifting of dust layers by radiative heating

    NASA Astrophysics Data System (ADS)

    Daerden, F.; Whiteway, J. A.; Neary, L.; Komguem, L.; Lemmon, M. T.; Heavens, N. G.; Cantor, B. A.; Hébrard, E.; Smith, M. D.

    2015-09-01

    Dust layers detected in the atmosphere of Mars by the light detection and ranging (LIDAR) instrument on the Phoenix Mars mission are explained using an atmospheric general circulation model. The layers were traced back to observed dust storm activity near the edge of the north polar ice cap where simulated surface winds exceeded the threshold for dust lifting by saltation. Heating of the atmospheric dust by solar radiation caused buoyant instability and mixing across the top of the planetary boundary layer (PBL). Differential advection by wind shear created detached dust layers above the PBL that ascended due to radiative heating and arrived at the Phoenix site at heights corresponding to the LIDAR observations. The self-lifting of the dust layers is similar to the "solar escalator" mechanism for aerosol layers in the Earth's stratosphere.

  20. Mapping the Solar Wind from its Source Region into the Outer Corona

    NASA Technical Reports Server (NTRS)

    Esser, Ruth

    1998-01-01

    Knowledge of the radial variation of the plasma conditions in the coronal source region of the solar wind is essential to exploring coronal heating and solar wind acceleration mechanisms. The goal of the present proposal is to determine as many plasma parameters in that region as possible by coordinating different observational techniques, such as Interplanetary Scintillation Observations, spectral line intensity observations, polarization brightness measurements and X-ray observations. The inferred plasma parameters are then used to constrain solar wind models.

  1. A theory for the radiation of magnetohydrodynamic surface waves and body waves into the solar corona

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.

    1988-01-01

    The Green's function for the slab coronal hole is obtained explicitly. The Fourier integral representation for the radiated field inside and outside the coronal hole waveguide is obtained. The radiated field outside the coronal hole is calculated using the method of steepest descents. It is shown that the radiated field can be written as the sum of two contributions: (1) a contribution from the integral along the steepest descent path and (2) a contribution from all the poles of the integrand between the path of the original integral and the steepest descent path. The free oscillations of the waveguide can be associated with the pole contributions in the steepest descent representation for the Green's function. These pole contributions are essentially generalized surface waves with a maximum amplitude near the interface which separates the plasma inside the coronal hole from the surrounding background corona. The path contribution to the integral is essentially the power radiated in body waves.

  2. Mapping the Solar Wind from its Source Region into the Outer Corona

    NASA Technical Reports Server (NTRS)

    Esser, Ruth

    1997-01-01

    Knowledge of the radial variation of the plasma conditions in the coronal source region of the solar wind is essential to exploring coronal heating and solar wind acceleration mechanisms. The goal of the proposal was to determine as many plasma parameters in the solar wind acceleration region and beyond as possible by coordinating different observational techniques, such as Interplanetary Scintillation Observations, spectral line intensity observations, polarization brightness measurements and X-ray observations. The inferred plasma parameters were then used to constrain solar wind models.

  3. Minor constituents in the solar wind originating from plasma-dust interactions

    NASA Technical Reports Server (NTRS)

    Ripken, H. W.

    1983-01-01

    Atoms, molecules, and atomic and molecular ions generated by solar wind interactions with dust grains of the zodiacal cloud are discussed. The main processes leading to the generation of these particles are described and relevant methods of observation are examined.

  4. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Magnetohydrodynamics Simulation Module for the Global Solar Corona

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Hoeksema, J. T.; Liu, Y.; Bobra, M. G.; Sun, X. D.; Norton, A. A.

    2015-05-01

    Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.

  5. Observational Study of the Tridimensional Trajectory of Small White-Light Transients in the Inner Solar Corona

    NASA Astrophysics Data System (ADS)

    Lopez-Portela, C.; Blanco-Cano, X.; Stenborg, G.; Vourlidas, A.

    2013-05-01

    The physical mechanisms responsible for the low corona origin and subsequent interplanetary development of the small scale white-light transients, known as blobs, is relevant to the formation and acceleration mechanisms of the slow solar wind (Sheeley et al., 1997). Since they are considered to be reliable tracers of the slow solar wind, a statistical kinematical characterization of these faint features should provide to the understanding of its origins and acceleration. The vantage observing points provided by the SECCHI and LASCO imagers aboard the STEREO and SOHO missions, respectively, allows us to get a good estimation of their trajectory in the 3D space and hence perform a detailed analysis of their unprojected kinematical parameters. To address this issue, we have surveyed the SOHO/LASCO C2 and C3, and the STEREO/SECCHI COR 1 and COR 2 databases for the year 2007 through 2010 (i.e., a period comprising the declining phase of the extended past solar minimum and the ascending phase of cycle 24) and selected about 100 blob-like features. The selection of events was facilitated by the scarce presence of coronal mass ejection events during this period, and it was limited to ±30° from the Sun's equator. The restricted latitudinal range is inspired by the work of Wang et al. (1998), who proposed that blobs are liberated from the cusp of helmet steamers. Two methods have been considered for the determination of the 3D kinematical parameters: (1) the tie-pointing and triangulation technique (Thompson W.T., 2008) and (2) the Height-Time analysis as developed by Mierla et al. (2008). In this work, we report on the set of transients studied by both techniques, discuss the limitations encountered on the determination of the 3D trajectories, and explore their significance on understanding the physical mechanisms behind the generation/propagation of the slow solar wind.

  6. Microphysics of Waves and Instabilities in the Solar Wind and Their Macro Manifestations in the Corona and Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia Rifai; Gurman, Joseph (Technical Monitor)

    2002-01-01

    A breakthrough resulted from the investigation of plasma heating by ion-cyclotron waves in rapidly expanding flow tubes, often referred to as coronal funnels and expected to originate in the low transition region where the temperature gradient in the solar atmosphere rises very sharply. The investigation was made using a three-fluid plasma consisting of protons, electrons and alpha particles. It was found that these waves heat the solar wind plasma by directly heating the heavier species, namely the alphas. Although only alpha particles dissipate the waves, the strong Coulomb coupling between alpha particles and protons, and between protons and electrons, makes it possible for protons and electrons to be heated also to more than one million degrees, i.e. to coronal temperatures. Interestingly, the extreme heating of the alpha particles, however, is such that they end up being hotter and faster, and are no longer in thermal equilibrium with the protons and electrons. once the rapid expansion of the flow tube is complete, the particles return to thermal equilibrium. The observational signatures of these results are such that if spectral lines formed below a million degrees are observed at different heights in the corona, the inferred outflow velocities may vary by a factor of 5 to 6. In addition, if minor ions are indeed much faster than protons and electrons at temperatures below a million degrees, then one cannot reliably determine the bulk outflow velocity of the solar wind in that region from inferences of minor ion outflow velocities. A detailed parameter study on the resonant interaction between ion cyclotron waves and alpha particles and other minor ions is also under way. It is found that the highest frequency of the waves, or the location of the heating determines whether a thermal equilibrium can be established between minor ions and protons. As the maximum frequency is increased, alpha particles and protons become farther away from thermal equilibrium. As the maximum frequency becomes smaller, alpha particles and protons are more likely to be in thermal equilibrium. However, if the maximum frequency is below a critical value, ion cyclotron resonance occurs at a greater height and a hot corona cannot be produced.

  7. The Day the Sun Stood Still: Using global Thermodynamic MHD Simulations to Infer the Structure of the Solar Corona and Inner Heliosphere during the Maunder Minimum

    NASA Astrophysics Data System (ADS)

    Riley, P.; Lionello, R.

    2012-12-01

    Observations of the Sun's corona during the space era have led to a picture of relatively constant, but modulating solar output and structure. Longer-term, more indirect measurements, such as from Beryllium-10, coupled by other albeit less reliable contemporaneous reports, however, suggest periods of significant departure from this standard, which, in turn, may have produced terrestrial weather effects. The Maunder Minimum, was one such epoch where: (1) Sunspots effectively disappeared for long intervals during a 70-year period; (2) Eclipse `observations' suggested the distinct lack of a visible K-corona but possible appearance of the F-corona; (3) Reports of aurora were notably reduced; and (4) Cosmic ray intensities at Earth were substantially higher. Using a global thermodynamic MHD model, we constructed a broad range of possible coronal configurations for the Maunder Minimum period and compared their predictions with these limited observational constraints. We conclude that the most likely state of the corona during the Maunder Minimum was not merely that of the 2008/2009 solar minimum, as has been suggested in several recent studies. Instead, we argue that the Sun's photospheric magnetic field was substantially reduced (by up to an order of magnitude) and this led to, and is consistent with the observations associated with this period. We discuss the implications of this work in terms of future long-term space weather forecasting.

  8. Generation and propagation of ion cyclotron waves in nonuniform magnetic field: Application to the corona and solar wind

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Russell, C. T.; Jian, L. K.; Isenberg, P.; Wei, H. Y.

    2014-11-01

    With the objective to understand the generation, propagation, and nonlinear evolution of ion cyclotron waves (ICWs) in the corona and solar wind, we use electromagnetic hybrid (kinetic ions and fluid electrons) simulations with a nonuniform magnetic field. ICWs are generated by the temperature anisotropy of O5+ ions as minority species in a proton-electron plasma with uniform density. A number of magnetic field models are used including radial and spiral with field strength decreasing linearly or with the square of the radial distance. O5+ ions with perpendicular temperature larger than parallel are initially placed in the high-magnetic field regions. These ions are found to expand outward along the magnetic field. Associated with this expansion, ion cyclotron waves propagating along the magnetic field are also seen to expand outward. These waves are generated at frequencies below the local gyrofrequency of O5+ ions propagating parallel and antiparallel to the magnetic field. Through analysis of the simulation results we demonstrate that wave generation and absorption take place at all radial distances. Comparing the simulation results to observations of ICWs in the solar wind shows some of the observed wave characteristics may be explained by the mechanism discussed in this paper.

  9. A New Implementation of the Magnetohydrodynamics-relaxation Method for Nonlinear Force-free Field Extrapolation in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Jiang, Chaowei; Feng, Xueshang

    2012-04-01

    The magnetic field in the solar corona is usually extrapolated from a photospheric vector magnetogram using a nonlinear force-free field (NLFFF) model. NLFFF extrapolation needs considerable effort to be devoted to its numerical realization. In this paper, we present a new implementation of the magnetohydrodynamics (MHD) relaxation method for NLFFF extrapolation. The magnetofrictional approach, which is introduced for speeding the relaxation of the MHD system, is realized for the first time by the spacetime conservation-element and solution-element scheme. A magnetic field splitting method is used to further improve the computational accuracy. The bottom boundary condition is prescribed by incrementally changing the transverse field to match the magnetogram, and all other artificial boundaries of the computational box are simply fixed. We examine the code using two types of NLFFF benchmark tests, the Low & Lou semi-analytic force-free solutions and a more realistic solar-like case constructed by van Ballegooijen et al. The results show that our implementation is successful and versatile for extrapolations of either the relatively simple cases or the rather complex cases that need significant rebuilding of the magnetic topology, e.g., a flux rope. We also compute a suite of metrics to quantitatively analyze the results and demonstrate that the performance of our code in extrapolation accuracy basically reaches the same level of the present best-performing code, i.e., that developed by Wiegelmann.

  10. The Impact of Ion-Cyclotron Wave Dissipation on Minor Ion Velocity Distributions in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Cranmer, S. R.; Field, G. B.; Noci, G.; Kohl, J. L.

    1997-12-01

    We present theoretical models of the acceleration and heating of minor ions in the solar wind, as well as detailed anisotropic velocity distribution functions computed numerically by solving the Boltzmann transport equation. We examine the compatibility between these models and spectroscopic measurements of the velocities and kinetic temperatures of various particle species in the solar corona. The SOHO Ultraviolet Coronagraph Spectrometer (UVCS/SOHO) has measured hydrogen kinetic temperatures in polar coronal holes in excess of 3 million K, and O VI ion kinetic temperatures of at least 200 million K. In addition, the velocity distributions parallel to the open magnetic field are smaller than those perpendicular to the field, possibly implying temperature anisotropy ratios of order 100 for minor ions. We examine various features of plasma heating by the dissipation of high-frequency ion-cyclotron resonance Alfven waves, which may be the most natural physical mechanism to produce the observed plasma conditions. The modeled ion velocity distributions depend sensitively on the assumed amplitudes and frequencies of the waves, and these computations can be used to accurately predict many quantitative features of the wave power spectrum. Indeed, the more ionic species that are observed spectroscopically, the greater the extent in frequency space the wave spectrum can be inferred. This work is supported by the National Aeronautics and Space Administration under grant NAG5-3192 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by Swiss funding agencies.

  11. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nakamura-Messenger, Keiko

    2015-01-01

    Interplanetary dust particles (IDPs) collected in the Earth's stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (less than um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission.

  12. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    NASA Astrophysics Data System (ADS)

    Messenger, Scott R.; Nakamura-Messenger, Keiko

    2015-08-01

    Interplanetary dust particles (IDPs) collected in the Earth’s stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (< um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission. We will present an overview of the current state of understanding of the properties and origins of organic matter in primitive IDPs.

  13. OBSERVATIONS OF FIVE-MINUTE SOLAR OSCILLATIONS IN THE CORONA USING THE EXTREME ULTRAVIOLET SPECTROPHOTOMETER (ESP) ON BOARD THE SOLAR DYNAMICS OBSERVATORY EXTREME ULTRAVIOLET VARIABILITY EXPERIMENT (SDO/EVE)

    SciTech Connect

    Didkovsky, L.; Judge, D.; Wieman, S.; Kosovichev, A. G.; Woods, T.

    2011-09-01

    We report on the detection of oscillations in the corona in the frequency range corresponding to five-minute acoustic modes of the Sun. The oscillations have been observed using soft X-ray measurements from the Extreme Ultraviolet Spectrophotometer (ESP) of the Extreme Ultraviolet Variability Experiment on board the Solar Dynamics Observatory. The ESP zeroth-order channel observes the Sun as a star without spatial resolution in the wavelength range of 0.1-7.0 nm (the energy range is 0.18-12.4 keV). The amplitude spectrum of the oscillations calculated from six-day time series shows a significant increase in the frequency range of 2-4 mHz. We interpret this increase as a response of the corona to solar acoustic (p) modes and attempt to identify p-mode frequencies among the strongest peaks. Due to strong variability of the amplitudes and frequencies of the five-minute oscillations in the corona, we study how the spectrum from two adjacent six-day time series combined together affects the number of peaks associated with the p-mode frequencies and their amplitudes. This study shows that five-minute oscillations of the Sun can be observed in the corona in variations of the soft X-ray emission. Further investigations of these oscillations may improve our understanding of the interaction of the oscillation modes with the solar atmosphere, and the interior-corona coupling, in general.

  14. Sixteen Years of Ulysses Interstellar Dust Measurements in the Solar System. II. Fluctuations in the Dust Flow from the Data

    NASA Astrophysics Data System (ADS)

    Strub, Peter; Krüger, Harald; Sterken, Veerle J.

    2015-10-01

    The Ulysses spacecraft provided the first opportunity to identify and study interstellar dust (ISD) in situ in the solar system between 1992 and 2007. Here we present the first comprehensive analysis of the ISD component in the entire Ulysses dust data set. We analyzed several parameters of the ISD flow in a time-resolved fashion: flux, flow direction, mass index, and flow width. The general picture is in agreement with a time-dependent focusing/defocusing of the charged dust particles due to long-term variations of the solar magnetic field throughout a solar magnetic cycle of 22 years. In addition, we confirm a shift in dust direction of 50° ± 7° in 2005, along with a steep, size-dependent increase in flux by a factor of 4 within 8 months. To date, this is difficult to interpret and has to be examined in more detail by new dynamical simulations. This work is part of a series of three papers. This paper concentrates on the time-dependent flux and direction of the ISD. In a companion paper we analyze the overall mass distribution of the ISD measured by Ulysses, and a third paper discusses the results of modeling the flow of the ISD as seen by Ulysses.

  15. Thermodynamics of the Solar Corona and Evolution of the Solar Magnetic Field as Inferred from the Total Solar Eclipse Observations of 2010 July 11

    NASA Astrophysics Data System (ADS)

    Habbal, Shadia Rifai; Druckmüller, Miloslav; Morgan, Huw; Ding, Adalbert; Johnson, Judd; Druckmüllerová, Hana; Daw, Adrian; Arndt, Martina B.; Dietzel, Martin; Saken, Jon

    2011-06-01

    We report on the first multi-wavelength coronal observations, taken simultaneously in white light, Hα 656.3 nm, Fe IX 435.9 nm, Fe X 637.4 nm, Fe XI 789.2 nm, Fe XIII 1074.7 nm, Fe XIV 530.3 nm, and Ni XV 670.2 nm, during the total solar eclipse of 2010 July 11 from the atoll of Tatakoto in French Polynesia. The data enabled temperature differentiations as low as 0.2 × 106 K. The first-ever images of the corona in Fe IX and Ni XV showed that there was very little plasma below 5 × 105 K and above 2.5 × 106 K. The suite of multi-wavelength observations also showed that open field lines have an electron temperature near 1× 106 K, while the hottest, 2× 106 K, plasma resides in intricate loops forming the bulges of streamers, also known as cavities, as discovered in our previous eclipse observations. The eclipse images also revealed unusual coronal structures, in the form of ripples and streaks, produced by the passage of coronal mass ejections and eruptive prominences prior to totality, which could be identified with distinct temperatures for the first time. These trails were most prominent at 106 K. Simultaneous Fe X 17.4 nm observations from Proba2/SWAP provided the first opportunity to compare Fe X emission at 637.4 nm with its extreme-ultraviolet (EUV) counterpart. This comparison demonstrated the unique diagnostic capabilities of the coronal forbidden lines for exploring the evolution of the coronal magnetic field and the thermodynamics of the coronal plasma, in comparison with their EUV counterparts in the distance range of 1-3 R sun. These diagnostics are currently missing from present space-borne and ground-based observatories.

  16. Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Reiss, Dennis

    2015-03-01

    Spirit rover solar array data, which if publicly-archived would provide a useful window on Mars meteorology, shows dust-clearing events coinciding with the onset of dust devil season in three Mars years. The recurrence interval of 100-700 days is consistent with the extrapolation of Pathfinder and Phoenix vortex encounters indicated by pressure drops of ∼6-40 Pa (similar to laboratory measurements of dust lifting threshold) and with observed areas and rates of generation of dust devil tracks on Mars.

  17. Solar Wind Speed Structure in the Inner Corona at 3-12R(sub)O

    NASA Technical Reports Server (NTRS)

    Woo, R.

    1995-01-01

    Estimates of solar wind speed obtained by Armstrong et al. [1986] based on 1983 VLA multiple-station intensity scintillation measurements inside 12 R(sub)O have been compared with white light coronagraph measurements.

  18. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Ulyanov, Artyom; Gaikovich, Konstantin; Kuzin, Sergey; Pertsov, Andrey; Berghmans, David; Dominique, Marie

    2016-02-01

    Aims: Knowledge of properties of the Earth's upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV) radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO) satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA) and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the extinction coefficients calculated by both models agreed with the measurements within the data errors. The NRLMSISE-00 model was not able to predict the enhancement of extinction above 300 km observed after 14 h from the beginning of a geomagnetic storm whereas the DTM-2013 model described this variation with good accuracy.

  19. Coronal mass ejection speeds measured in the solar corona using LASCO C2 and C3 images

    NASA Astrophysics Data System (ADS)

    dal Lago, A.; Schwenn, R.; Stenborg, G.; Gonzalez, W.

    In this work we present height-time diagrams of 3 halo coronal mass ejections, observed on July 25th,1999, September 28th,1997, and June 29th,1999. The CMEs were observed by the Large Angle and Spectroscopic Coronagraph (LASCO) which is an instrument on board of the Solar and Heliospheric Observatory (SOHO observing the solar corona from 2 to 32 solar radii. To obtain these diagrams we divide the LASCO images of a given sequence in angular slices, transform them into rectangular slices (their width chosen proportional to the time distance to the next image) and place them side by side. Thus, the speed profile of any pattern moving in the particular latitudinal slice can be derived. With this method we were able to identify even minor speed changes in several angular positions for the chosen events. This technique is particularly appropriate to identify acceleration or deceleration of structures in halo CMEs. This information may be used to improve predictions of CME travel times to earth. From the analysis of these 3 events we conclude that: (a) the CME observed on September 28th,1997, started very slowly, with initial speeds ranging from 107 to 178 km/s, and accelerated in the C2 field of view reaching final constant speeds of 352 to 400 km/s in the C3 field of view; (b) the CMEs observed on July 25th,1999, and June 29th,1999 started with initial speeds from 310 to 650 km/s and 435 to 650 km/s, respectively. They decelerated smoothly in the C3 field of view and reached a variety of speeds ranging from 150 to 330 km/s, depending on the direction around the sun.

  20. Laboratory study of the equilibrium and eruption of line-tied magnetic flux ropes in the solar corona

    NASA Astrophysics Data System (ADS)

    Myers, Clayton Edward

    2015-03-01

    Ideal magnetohydrodynamic (MHD) instabilities such as the kink instability and the torus instability are leading candidates to explain the sudden onset of eruptive events in the solar corona. These instabilities act on line-tied magnetic flux ropes--long-lived arched structures anchored to the solar surface. In spite of substantial observational and numerical research, however, the role of these instabilities in the corona remains a subject of intense debate. For this thesis, we have constructed and operated a new line-tied flux rope experiment that permits for the first time the study of both the kink and torus instabilities in the laboratory. This experiment has the following key features: (1) the arched flux rope is line-tied to two conducting footpoints; (2) the system is magnetically dominated (low-beta) with significant stored energy; (3) the system is driven quasi-statically, producing a long-lived equilibrium; and (4) the flux rope is generated within a potential (vacuum) magnetic field arcade whose decay index---the predicted torus instability control parameter---can be externally controlled. The flux ropes are diagnosed using a two-dimensional in situ magnetic probe array whose cross-section covers a substantial portion of the plasma. The central result of this thesis is that toroidal field forces, which are traditionally neglected in the analysis of coronal flux ropes, are identified for the first time as an essential contributor to both the equilibrium and the stability of line-tied flux ropes. Most importantly, experimental measurements show that a tension force derived from a self-generated paramagnetic toroidal field exerts a restoring force on the line-tied plasma and suppresses eruptive behavior in a significant portion of the parameter space. This suppression extends to regimes that are both kink and torus unstable. We find that, in order to explain the measured tension force, low aspect ratio and line-tying effects must be considered. Finally, flux rope eruptions are observed in these experiments, but only in regimes with sufficiently low external toroidal field where the tension force is reduced. These results constitute a new condition for the prediction of line-tied magnetic flux rope eruptions: that of low external toroidal field.

  1. Stereoscopic observations of a solar flare hard X-ray source in the high corona

    NASA Technical Reports Server (NTRS)

    Kane, S. R.; Mctiernan, J.; Loran, J.; Fenimore, E. E.; Klebesadel, R. W.; Laros, J. G.

    1992-01-01

    The vertical structure of the impulsive and gradual hard X-ray sources in high coronae and the characteristics of the impulsive soft X-ray emission are investigated on the basis of PVE, ICE, and GOES observations of the energetic flare on February 16, 1984. The average photon spectra observed by these instruments during the impulsive and gradual hard X-ray bursts are summarized. A comparison of these unocculted and partially occulted spectra shows that the sources of the impulsive hard X-ray (greater than about 25 keV) and impulsive soft X-ray (2-5 keV) emissions in this flare extended to coronal altitudes greater than about 200,000 km above the photosphere. At about 100 keV, the ratio of the coronal source brightness to the total source brightness was 0.001 during the impulsive phase and less than about 0.01 during the gradual hard X-ray burst. The sources of the gradual hard X-ray burst and gradual soft X-ray burst were almost completely occulted, indicating that these sources were located at heights less than 200,000 km above the photosphere.

  2. The Plasma and Field Perturbation Around a Charged Dust Cloud in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Jia, Y. D.; Russell, C. T.; Lai, H.; Wei, H.

    2014-12-01

    When asteroids and meteoroids collide at their typical speeds of 20km/s at 1AU, they can totally disrupt each other if their mass ratios are within a factor of 106. The resulting charged dust and gas can be picked up by the solar wind, resulting in a large magnetic structure containing over 106kg of mass, accelerated to almost the solar wind speed. This dust is invisible to our Earth-based detectors as are the impactors and targets but they can be detected by our interplanetary spacecraft and they do create ground-level magnetospheric disturbances when they impact the Earth. Moreover we can identify the parent bodies for these impacting bolides by determining which asteroids cross the ecliptic plane along the path of these disturbances carried by the solar wind. Hence, these structures can be used in a planetary defense strategy. Since they have a very practical application we need to understand their formation and evolution better. We apply our multi-fluid code to model this interaction, to show how the field is affected by charged dust. We assume a cloud of charged dust moving close to the solar wind speed, but a small velocity difference exists between the dust and ions. Gravity pulls horizontally opposite to the solar wind plasma, maintaining the concentration of dust cloud.

  3. Solar heating of the Uranian mesopause by dust of ring origin

    SciTech Connect

    Rizk, B.; Hunten, D.M. )

    1990-12-01

    Submicron dust absorption of visible-wavelength solar energy, in conjunction with inhibition of IR radiation, is assumed in the present estimate of the magnitude of an equatorial heat source due to such dust in the upper atmosphere of Uranus. The dust is noted to be capable of generating enough mesopause-level heat to account for heat sources observed only near the equator. Such dust is nevertheless excluded as a heat source for the 500-800 K thermospheric temperatures recorded by the Voyager UV spectrometer. The influx needed for a significant heat source corresponds to decomposition into submicron dust of about 100, 10-km diameter moons with 1.5 g/cu cm density; this is a plausible average dust flux for the rings of Uranus. 32 refs.

  4. Structure, Dynamics, and Spectra of the Solar Corona at the 2013 and 2015 Total Eclipses and Plans for 2017's American Totality

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Dantowitz, Ronald; Voulgaris, Aristeidis

    2016-01-01

    We observed the total solar eclipses of 3 November 2013 from Gabon and of 20 March 2015 from Svalbard in clear skies with cameras to image the solar corona at high resolution and with spectrographs for coronal emission lines. We report on the composite images showing coronal structure and (in comparison with other sites' images) dynamics, as well as the relation of our inner- and middle-corona composite images with surface EUV images from SDO and SWAP and with the outer-corona images from the coronagraphs on SOHO/LASCO. Our spectra show not only the common forbidden lines of Fe XIV (green line) and Fe X (red line) but also rarer species such as Ca XV. Finally, we describe our planned suite of observations for the 21 August 2017 solar eclipse, whose path of totality will cross the United States from Pacific to Atlantic, with more-favorable cloudiness statistics for western sites.Our Gabon and Svalbard expeditions were supported by grants from the Committee for Research and Exploration of the National Geographic Society.

  5. On the Remote Detection of Suprathermal Ions in the Solar Corona and their Role as Seeds for Solar Energetic Particle Production

    NASA Astrophysics Data System (ADS)

    Laming, J. Martin; Moses, Daniel; Ko, Yuan-Kuen; Ng, Chee; Tylka, Allan; Rakowski, Cara

    We calculate the growth rate for field aligned Alfven waves generated by streaming preshock ions. The ions are assumed to be in a "kappa" distribution, and we calculate growth rates as a function of shock obliquity and kappa, for shocks of different Alfven Mach number. As the shock Alfven Mach number increases, the constraints on kappa and the shock obliquity lessen. Less significant departures from a Maxwellian distribution in the upstream medium are required for wave growth, which may also extend out to quasi-perpendicular shocks of higher obliquity. Taking a positive wave growth in such conditions ahead of a shock as a necessary condition for particle acceleration, we use the derived values of kappa to predict the detectability of a seed particle distribution upstream of shocks of various parameters through spectroscopic observations of the Lyman alpha line profile. Within 3-4 solar radii, suprathermal protons can charge exchange with neutral H in the solar corona giving rise to a kappa distribution of neutral H, that scatters disk Lyman alpha radiation into a line profile with extended wings. We define the essential characteristics of a spectrometer designed to detect such a seed particle population, as a means of forecasting the likely solar energetic particle effectiveness of any following coronal mass ejection. Work supported by basic research funds of the Office of Naval Research and by NASA ADAP grant NNH10A009I.

  6. INFLUENCE OF SOLAR WIND HEATING FORMULATIONS ON THE PROPERTIES OF SHOCKS IN THE CORONA

    SciTech Connect

    Pomoell, J.; Vainio, R.

    2012-02-01

    One of the challenges in constructing global magnetohydrodynamic (MHD) models of the inner heliosphere for, e.g., space weather forecasting purposes, is to correctly capture the acceleration and expansion of the solar wind. In current models, various ad hoc heating prescriptions are introduced in order to obtain a realistic steady-state solar wind solution. In this work, we demonstrate, by performing MHD simulations of erupting coronal mass ejections (CMEs) on identical solar wind solutions employing different heating formulations, that the dynamics and properties of the CME-driven shocks are significantly altered depending on the applied heating prescription. Furthermore, we show how two popular heating formulations can be altered so as to yield shock properties consistent with theory and available coronal shock observations.

  7. ANALYTIC APPROXIMATE SEISMOLOGY OF PROPAGATING MAGNETOHYDRODYNAMIC WAVES IN THE SOLAR CORONA

    SciTech Connect

    Goossens, M.; Soler, R.; Arregui, I.

    2012-12-01

    Observations show that propagating magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. The technique of MHD seismology uses the wave observations combined with MHD wave theory to indirectly infer physical parameters of the solar atmospheric plasma and magnetic field. Here, we present an analytical seismological inversion scheme for propagating MHD waves. This scheme uses the observational information on wavelengths and damping lengths in a consistent manner, along with observed values of periods or phase velocities, and is based on approximate asymptotic expressions for the theoretical values of wavelengths and damping lengths. The applicability of the inversion scheme is discussed and an example is given.

  8. Understanding coronal mass ejections and associated shocks in the solar corona by merging multiwavelength observations

    SciTech Connect

    Zucca, P.; Gallagher, P. T.; Pick, M.; Démoulin, P.; Kerdraon, A.; Lecacheux, A.

    2014-11-01

    Using multiwavelength imaging observations, in EUV, white light and radio, and radio spectral data over a large frequency range, we analyzed the triggering and development of a complex eruptive event. This one includes two components, an eruptive jet and a coronal mass ejection (CME), which interact during more than 30 minutes, and can be considered as physically linked. This was an unusual event. The jet is generated above a typical complex magnetic configuration that has been investigated in many former studies related to the build-up of eruptive jets; this configuration includes fan-field lines originating from a corona null point above a parasitic polarity, which is embedded in one polarity region of a large active region. The initiation and development of the CME, observed first in EUV, does not show usual signatures. In this case, the eruptive jet is the main actor of this event. The CME appears first as a simple loop system that becomes destabilized by magnetic reconnection between the outer part of the jet and the ambient medium. The progression of the CME is closely associated with the occurrence of two successive type II bursts from a distinct origin. An important part of this study is the first radio type II burst for which the joint spectral and imaging observations were allowed: (1) to follow, step by step, the evolution of the spectrum and of the trajectory of the radio burst, in relationship with the CME evolution and (2) to obtain, without introducing an electronic density model, the B field and the Alfvén speed.

  9. On the correlation between interplanetary nano dust particles and solar wind properties from STEREO/SWAVES

    NASA Astrophysics Data System (ADS)

    Issautier, K.; LE CHAT, G.; Meyer-Vernet, N.; Belheouane, S.; Zaslavsky, A.; Zouganelis, I.; Mann, I.; Maksimovic, M.

    2012-12-01

    Dust particles provide an important fraction of the matter composing the interplanetary medium, their mass density at 1 AU being comparable to the one of the solar wind. Among them, dusts of nanometer size-scale can be detected using radio and plasma waves instruments because they move at roughly the solar wind speed. The high velocity impact of a dust particle generates a small crater on the spacecraft: the dust particle and the crater material are vaporized. This produces a plasma cloud whose associated electrical charge induces an electric pulse measured with radio and plasma instruments. Since their first detection in the interplanetary medium (Meyer-Vernet et al. 2009), nanodusts have been routinely measured using STEREO/WAVES instrument (Zaslavsky et al. 2012) We present the nanodust properties during the 2007-2012 period on STEREO. Since the maximum size of the plasma cloud is larger for smaller local solar wind density, we expect to observe an anticorrelation between the detected voltage amplitude and the ambient solar wind density, as suggested recently by Le Chat et al. (2012). Moreover, the variations in solar wind speed and magnetic field are expected to affect the nano dust dynamics. Using STEREO/WAVES/Low Frequency Receiver (LFR) data, we study correlations of in situ solar wind properties and detection of nanodust impacts as well as some possible effects of Coronal Mass Ejections (CME) on nanodusts acceleration.

  10. Extreme ultraviolet spectra of solar flares from the extreme ultraviolet spectroheliograph SPIRIT onboard the CORONAS-F satellite

    SciTech Connect

    Shestov, S.; Kuzin, S.; Reva, A.

    2014-01-01

    We present detailed extreme ultraviolet (EUV) spectra of four large solar flares: M5.6, X1.3, X3.4, and X17 classes in the spectral ranges 176-207 Å and 280-330 Å. These spectra were obtained by the slitless spectroheliograph SPIRIT onboard the CORONAS-F satellite. To our knowledge, these are the first detailed EUV spectra of large flares obtained with a spectral resolution of ∼0.1 Å. We performed a comprehensive analysis of the obtained spectra and provide identification of the observed spectral lines. The identification was performed based on the calculation of synthetic spectra (the CHIANTI database was used), with simultaneous calculations of the differential emission measure (DEM) and density of the emitting plasma. More than 50 intense lines are present in the spectra that correspond to a temperature range of T = 0.5-16 MK; most of the lines belong to Fe, Ni, Ca, Mg, and Si ions. In all the considered flares, intense hot lines from Ca XVII, Ca XVIII, Fe XX, Fe XXII, and Fe XXIV are observed. The calculated DEMs have a peak at T ∼ 10 MK. The densities were determined using Fe XI-Fe XIII lines and averaged 6.5 × 10{sup 9} cm{sup –3}. We also discuss the identification, accuracy, and major discrepancies of the spectral line intensity prediction.

  11. The Effects of Differential Rotation on the Magnetic Structure of the Solar Corona: MHD Simulations

    NASA Technical Reports Server (NTRS)

    Lionello, Roberto; Riley, Pete; Linker, Jon A.; Mikic, Zoran

    2004-01-01

    Coronal holes are magnetically open regions from which the solar wind streams. Magnetic reconnection has been invoked to reconcile the apparently rigid rotation of coronal holes with the differential rotation of magnetic flux in the photosphere. This mechanism might also be relevant to the formation of the slow solar wind, the properties of which seem to indicate an origin from the opening of closed magnetic field lines. We have developed a global MHD model to study the effect of differential rotation on the coronal magnetic field. Starting from a magnetic flux distribution similar to that of Wang et al., which consists of a bipolar magnetic region added to a background dipole field, we applied differential rotation over a period of 5 solar rotations. The evolution of the magnetic field and of the boundaries of coronal holes are in substantial agreement with the findings of Wang et al.. We identified examples of interchange reconnection and other changes of topology of the magnetic field. Possible consequences for the origin of the slow solar wind are also discussed.

  12. STELLAR CORONAE, SOLAR FLARES: A DETAILED COMPARISON OF {sigma} GEM, HR 1099, AND THE SUN IN HIGH-RESOLUTION X-RAYS

    SciTech Connect

    Huenemoerder, David P.; Phillips, Kenneth J. H.; Sylwester, Janusz; Sylwester, Barbara E-mail: kennethjhphillips@yahoo.com E-mail: bs@cbk.pan.wroc.pl

    2013-05-10

    The Chandra High Energy Transmission Grating Spectrometer (HETG) spectra of the coronally active binary stars {sigma} Gem and HR 1099 are among the highest fluence observations for such systems taken at high spectral resolution in X-rays with this instrument. This allows us to compare their properties in detail to solar flare spectra obtained with the Russian CORONAS-F spacecraft's RESIK instrument at similar resolution in an overlapping bandpass. Here we emphasize the detailed comparisons of the 3.3-6.1 A region (including emission from highly ionized S, Si, Ar, and K) from solar flare spectra to the corresponding {sigma} Gem and HR 1099 spectra. We also model the larger wavelength range of the HETG, from 1.7 to 25 A - having emission lines from Fe, Ca, Ar, Si, Al, Mg, Ne, O, and N-to determine coronal temperatures and abundances. {sigma} Gem is a single-lined coronally active long-period binary which has a very hot corona. HR 1099 is a similar, but shorter period, double-lined system. With very deep HETG exposures we can even study emission from some of the weaker species, such as K, Na, and Al, which are important since they have the lowest first ionization potentials, a parameter well known to be correlated with elemental fractionation in the solar corona. The solar flare temperatures reach Almost-Equal-To 20 MK, comparable to the {sigma} Gem and HR 1099 coronae. During the Chandra exposures, {sigma} Gem was slowly decaying from a flare and its spectrum is well characterized by a collisional ionization equilibrium plasma with a broad temperature distribution ranging from 2 to 60 MK, peaking near 25 MK, but with substantial emission from 50 MK plasma. We have detected K XVIII and Na XI emission which allow us to set limits on their abundances. HR 1099 was also quite variable in X-rays, also in a flare state, but had no detectable K XVIII. These measurements provide new comparisons of solar and stellar coronal abundances, especially at the lowest first ionization potential (FIP) values. The low FIP elements do not show enhancement in the stellar coronae as they do in the Sun, except perhaps for K in {sigma} Gem. While {sigma} Gem and HR 1099 differ in their emission measure distributions, they have very similar elemental abundances.

  13. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    SciTech Connect

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-06-09

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for Ω ∝ (ωL)1/3(ωc/ω) somewhat less than 1, contrary to previous ideas. Only o mode is produced for Ω and somewhat greater than 1.5. Here ωc is the (angular) electron cyclotron frequency, ω the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as Ω increases. (4) As Ω increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as Ω increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50 – 70%. (7) The interference effect and the disappearance of the x mode at Ω somewhat greater than 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for solar and interplanetary radio bursts. It is therefore possible that linear mode conversion under these conditions might explain the weak total circular polarizations of type II and III solar radio bursts.

  14. Polarization of Hard X-Rays in October-November, 2003 Solar Flares Observed Onboard CORONAS-F Satellite

    NASA Astrophysics Data System (ADS)

    Bogomolov, A. V.; Denisov, Yu. I.; Logachev, Yu. I.; Morozov, O. V.; Myagkova, I. N.; Svertilov, S. I.; Zhitnik, I. A.; Ignat'ev, A. P.; Oparin, S. N.; Pertsov, A. A.

    In the experiment with X-ray polarimeter SPR-N onboard satellite ``CORONAS-F'' (altitude 500 km, inclination 82.5°, period ˜ 94.5 min.) the hard (20-100 keV) X-ray emission from several Solar flares in October-November, 2003 was detected. This work presents the results of measuring of the X-ray polarization in the powerful Solar flares 28.10.2003, 29.10.2003 and 04.11.2003. Measuring of polarization in SPR-N is based on the Compton scattering of X-ray photons in a hexagonal prism of beryllium. The scattered photons are detecting by six CsI(Na) detectors, positioned in the prism sides. Non-polarized emission scatters omnidirectionally, therefore the count rates of all detectors in this case will be equal. Polarized photons are mainly scattering normally to a polarization plane. Proportions between count rates of detectors give information about à part of polarized photons and à position of polarization plane. Scattered photons are detecting in the energy bands 20-40, 40-60 and 60-100 keV. Experimental data of SPR-N show that X-ray emission in October, 29, 2003 Solar flare (20:40 -- 21:00 UT) was strongly polarized, mainly in the peaks of X-ray intensity (at ˜ 20:44 UT and ˜ 20:51 UT). In the energy band 40-60 keV >85% of photons were polarized in the first peak, and >75% in the second peak. The similar situation is in the band 60-100 keV. In the band 20-40 keV X-ray emission is less polarized. For the Solar flare 28.10.2003 (11:00 -- 11:20 UT) and for the first stage of the flare 4.11.2003 (˜ 19:34 UT) significant values of the polarization were not detected. Only upper limits <25% for the event 28.10.2003 and <40% for 4.11.2003 were obtained.

  15. The Structure of the Solar Corona above Sunspots as Inferred from Radio, X-Ray, and Magnetic Field Observations

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.; Bastian, T. S.; Aschwanden, M. J.

    1997-11-01

    We present observations of a solar active region, NOAA/USAF no. 7123, during 1992 April 3-10. The database includes high-angular-resolution radio, soft X-ray, magnetograph, and Hα observations. The radio observations include VLA maps in the Stokes I and V parameters at 4.7 and 8.4 GHz. The soft X-ray observations were obtained by the Soft X-Ray Telescope on board the Yohkoh satellite, the magnetograms were obtained at Kitt Peak, Mt. Wilson, and Big Bear, and the Hα data were obtained at Big Bear. The lead sunspot in the active region is studied here. In particular, the polarization properties and brightness temperature spectrum are used to constrain the thermal structure of the corona over the sunspot. It is found that the 4.7 GHz emission of the sunspot is polarized in the sense of the ordinary mode, in contradiction with simple gyroresonance models that predict that the spot should be polarized in the sense of the extraordinary mode. We model the spectral and temporal evolution of the polarization structure in two frequencies, 4.7 and 8.4 GHz, using gyroresonance models to fit one-dimensional brightness temperature profiles across the spot in each polarization and frequency. The constraints provided by the X-ray and magnetic field observations help us to derive a qualitatively self-consistent picture for the daily evolution of the spot. We attribute the excess of the o-mode emission to the magnetic field configuration and to the temperature inhomogeneities across the spot. Namely, we find that (1) the umbral and penumbral environments are distinct, with the X-rays and the o-mode radio emission coming from the hotter penumbral loops, while the observed x-mode emission originates from the cooler umbral loops; (2) there exist temperature inhomogeneities in both the radial and vertical direction over the spot; and (3) the umbral magnetic field remains more confined in the corona than that predicted by a dipole model. Instead, a field configuration based on the magnetohydrostatic equilibrium model of Low gives a better agreement with the observations.

  16. Solar Wind Speed Structure in the Inner Corona at 3-12 Ro

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1995-01-01

    Estimates of solar wind speed obtained by Armstrong et al. [1986] based on 1983 VLA multiple-station intensity scintillation measurements inside 12 R(sub o) have been correlated with the electron density structure observed in white-light coronagraph measurements. The observed large- scale and apparently systematic speed variations are found to depend primarily on changes in heliographic latitude and longitude, which leads to the first results on large-scale speed structure in the acceleration region of the solar wind. Over an equatorial hole, solar wind speed is relatively steady, with peak-to-peak variations of 50 km/s and an average of 230 km/s. In contrast, the near-Sun flow speed across the streamer belt shows regular large-scale variations in the range of 100-300 km/s. Based on four groups of data, the gradient is 36 km/s per degree in heliocentric coordinates (corresponding to a rise of 260 km/s over a spatial distance on the Sun of two arcmin) with a standard deviation of 2.4 km/s per degree. The lowest speeds most likely coincide with the stalks of coronal streamers observed in white-light measurements. The detection of significant wind shear over the streamer belt is consistent with in situ and scintillation measurements showing that the density spectrum has a power-law form characteristic of fully developed turbulence over a much broader range of scales than in neighboring regions.

  17. Relative elemental abundance and heating constraints determined for the solar corona from SERTS measurements

    NASA Technical Reports Server (NTRS)

    Falconer, David A.

    1994-01-01

    Intensities of EUV spectral lines were measured as a function of radius off the solar limb by two flights of Goddard's Solar EUV Rocket Telescope and Spectrograph (SERTS) for three quiet sun regions. The density scale height, line-ratio densities, line-ratio temperatures, and emission measures were determined. The line-ratio temperature determined from the ionization balances of Arnaud and Rothenflug (1985) were more self-consistent than the line-ratio temperatures obtained from the values of Arnaud and Raymond (1992). Limits on the filling factor were determined from the emission measure and the line-ratio densities for all three regions. The relative abundances of silicon, aluminum, and chromium to iron were determined. Results did agree with standard coronal relative elemental abundances for one observation, but did not agree for another. Aluminum was overabundant while silicon was underabundant. Heating was required above 1.15 solar radii for all three regions studied. For two regions, local nonconductive heating is needed for any filling factor, and in all three regions for filling factor of 0.1.

  18. On Determination of 3D Morphology and Plasma Properties of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Davis, John M.; Moore, Ronald; Six, N. Frank (Technical Monitor)

    2002-01-01

    An earlier analysis preformed and published will be revisited and applied to SECCHI's observations. Using coronal models and imaging-rendering techniques we will investigate several important facts regarding the solar stereographic mission. A synthesized image will be presented formed from integrating the emission from the volume elements along the line-of-sight path through a three-dimensional volume. We used analysis of pairs of these synthesized images with various angular perspectives to investigate the effect of angular separation on mission objectives. The resulting images and analysis provide guidelines for developing a stereographic mission analysis program.

  19. Ultra high resolution images of the solar chromosphere and corona using coordinated rocket and balloon observations

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C., Jr.; Timothy, J. G.; Hoover, Richard B.; Barbee, Troy W., Jr.

    1993-01-01

    A discussion is presented of the scientific objectives that can be pursued by simultaneous coronal/chromospheric observation with the Multi-Spectral Solar Telescope Array (MSSTA), and a new balloon-borne observatory called the Ultra-High Resolution Vacuum Ultraviolet Spectroheliograph (UHRVS). Attention is given to the proposed UHRVS observatory, which will incorporate two instruments, a 65-cm aperture telescope with narrowband filters for high resolution photographic and photoelectric spectroheliograms, and a very high resolution spectrograph which uses a 40-cm aperture telescope. The capabilities of the MSSTA, and the joint UHRVS/MSSTA observing program that is envisioned are reviewed.

  20. Solar Activity and Motions in the Solar Chromosphere and Corona at the 2012 and 2013 Total and Annular Eclipses in the U.S., Australia, and Africa

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Babcock, B. A.; Davis, A. B.; Demianski, M.; Lucas, R.; Lu, M.; Dantowitz, R.; Rusin, V.; Saniga, M.; Seaton, D. B.; Gaintatzis, P.; Voulgaris, A.; Seiradakis, J. H.; Gary, D. E.; Shaik, S. B.

    2014-01-01

    Our studies of the solar chromosphere and corona at the 2012 and 2013 eclipses shortly after cycle maximum 24 (2011/2012) of solar activity (see: http://www.swpc.noaa.gov/SolarCycle/) involved radio observations of the 2012 annular eclipse with the Jansky Very Large Array, optical observations of the 2012 total eclipse from Australia, optical observations of the 2013 annular eclipse from Tennant Creek, Australia, and the 3 November 2013 total solar eclipse from Gabon. Our observations are coordinated with those from solar spacecraft: Solar Dynamics Observatory AIA and HMI, Hinode XRT and SOT, SOHO LASCO and EIT, PROBA2 SWAP, and STEREO SECCHI. Our 2012 totality observations include a CME whose motion was observed with a 37-minute interval. We include first results from the expedition to Gabon for the 3 November 2013 eclipse, a summary of eclipse results from along the path of totality across Africa, and a summary of the concomitant spacecraft observations. The Williams College 2012 expeditions were supported in part by NSF grant AGS-1047726 from Solar Terrestrial Research/NSF AGS, and by the Rob Spring Fund and Science Center funds at Williams. The JVLA is supported by the NSF. The Williams College 2013 total-eclipse expedition was supported in part by grant 9327-13 from the Committee for Research and Exploration of the National Geographic Society. ML was also supported in part by a Grant-In-Aid of Research from the National Academy of Sciences, administered by Sigma Xi, The Scientific Research Society (Grant ID: G20120315159311). VR and MS acknowledge support for 2012 from projects VEGA 2/0003/13 and NGS-3139-12 of the National Geographic Society. We are grateful to K. Shiota (Japan) for kindly providing us with some of his 2012 eclipse coronal images. We thank Alec Engell (Montana State U) for assistance on site, and Terry Cuttle (Queensland Amateur Astronomers) for help with site arrangements. We thank Aram Friedman (Ansible Technologies), Michael Kentrianakis, and Nicholas Weber (Dexter Southfield School) for collaboration on imaging at the Australian total eclipse.

  1. A model for absorption of solar radiation by mineral dust within liquid cloud drops

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Thompson, Jonathan E.

    2015-10-01

    Models of light scattering and absorption that consider the effect of insoluble inclusions present within liquid cloud droplets may assume the inclusion occupies random locations within the droplet. In certain cases, external forces can lead to certain orientations or alignments that are strongly preferred. Within this modeling study, we consider one such case in which an insoluble mineral dust inclusion (ρ=2.6 g/cm3) is placed within a liquid water drop (ρ=1.0 g/cm3). Such an instance mimics mineral dust aerosols being incorporated within cloud drops in Earth's atmosphere. Model results suggest super-micron mineral dust settles to the bottom of cloud droplets. However, Brownian motion largely randomizes the position of sub-micron mineral dust within the droplet. The inherent organization of the particles that result has important consequences for light absorption by mineral dust when present within a cloud drop. Modeled results suggest light absorption efficiency may be enhanced by as much as 4-6 fold for an isolated droplet experiencing direct solar illumination at solar zenith angles of <20°. For such an isolated droplet, the absorption efficiency enhancement falls rapidly with increasing solar zenith angle indicating a strong angle of incidence dependence. We also consider the more common case of droplets that contain dust inclusions deep within optically dense clouds. Absorption efficiency enhancements for these locales follow a dramatically different pattern compared to the optically isolated droplet due to the presence of diffuse rather than direct solar irradiation. In such cases, light absorption efficiency is decreased through including super-micron dust within water droplets. The study has important implications for modeling the absorption of sunlight by mineral dust aerosol within liquid water clouds. The angle of incidence dependence also reveals that experimental measurement of light absorption for cases in which particle alignment occurs may not always accurately reflect atmospheric absorption of sunlight. Therefore, care must be taken to extrapolate measurement data to climate models.

  2. Merging and Growth of Cellular Flux Structures in the Solar Corona toward a Grand Scale Eruption

    NASA Astrophysics Data System (ADS)

    Choe, Gwang-Son; Lee, J.; Jang, M.

    2009-05-01

    The solar magnetic field in and below the photosphere is considered to be composed of filamentary flux tubes. These flux tubes tend to concentrate in the convective cell boundaries, sinks of horizontal flows, where vortices can be generated by any lateral force imbalance. Thus, flux tubes may easily be twisted to form filamentary flux ropes. While staying in or below the photosphere, these filamentary structures are separated by dense plasma. After emerging into the higher atmosphere with low plasma beta, those filamentary magnetic structures come into contact and spontaneously reconnect with each other. If the total magnetic helicity of the system is nonzero, such magnetic reconnection will eventually lead to formation of a large scale flux rope structure. However, the line-tying condition does not allow a direct merging process such as observed in laboratory plasma experiments. Rather, the system stepwise goes through complex intermediate states, which generally involve interwound flux ropes with mutual helicities. These intermediate states evolve into a simpler helical system of a larger scale as mutual helicities transform to self-helicity by magnetic reconnection. Thus, the resulting flux rope has a large winding number and tends to erupt. In this paper, the evolution of an idealized active region, which initially comprises small scale flux tubes, is followed until a large scale erupting flux rope is generated and expelled beyond several solar radii. An observational example supporting our theory will also be presented.

  3. Neutral Solar Wind Generated by Lunar Exospheric Dust at the Terminator

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.

    2007-01-01

    We calculate the flux of neutral solar wind observed on the lunar surface at the terminator due to solar wind protons penetrating exospheric dust with: (1) grains larger that 0.1 microns and (2) grains larger than 0.01 microns. For grains larger than 0.1 microns, the ratio of the neutral solar wind to solar wind flux is estimated to be approx.10(exp -4)-10(exp -3) at solar wind speeds in excess of 800 km/s, but much lower (less than 10(exp -5) at average to low solar wind speeds. However, when the smaller grain sizes are considered, the ratio of the neutral solar wind flux to solar wind flux is estimated to be greater than or equal to 10(exp -5) at all speeds and at speeds in excess of 700 km/s reaches 10(exp -3)-10(exp -2). These neutral solar wind fluxes are easily measurable with current low energy neutral atom instrumentation. Observations of neutral solar wind from the surface of the Moon could provide a very sensitive determination of the distribution of very small dust grains in the lunar exosphere and would provide data complementary to optical measurements at ultraviolet and visible wavelengths. Furthermore, neutral solar wind, unlike its ionized counterpart, is .not held-off by magnetic anomalies, and may contribute to greater space weathering than expected in certain lunar locations.

  4. Intermittent heating of the corona as an alternative to generate fast solar wind flows

    SciTech Connect

    Grappin, R.; Mangeney, A.; Schwartz, S.J.; Feldman, W.C.

    1999-06-01

    We discuss a new alternative to the generation of fast streams which does not require momentum addition beyond the critical point. We consider the consequences on the solar wind of temporally intermittent heat depositions at the base of the wind. With the help of 1d hydrodynamic simulations we show that the instantaneous wind velocity profile fluctuates around an average profile well above the one corresponding to the Parker solution with a coronal temperature equal to the average coronal temperature imposed at the bottom of the numerical domain. The origin of this result lies in a previously overlooked phenomenon, the overexpansion of hot plasma regions in the subsonic wind. {copyright} {ital 1999 American Institute of Physics.}

  5. The thermal structure of solar coronal loops and implications for physical models of coronae

    NASA Technical Reports Server (NTRS)

    Raymond, J. C.; Foukal, P.

    1982-01-01

    EUV spectra of three active region loops observed above the solar limb with the SO55 spectrometer on Skylab are analyzed. It is noted that the lengths, peak temperatures, and pressures of the loops are typical of the X-ray coronal loops to which static models have been applied. It is found that the physical parameters of the coronal loop plasma derived from EUV spectra and raster pictures are not well represented by the static models. Although the loops also contain a significant quantity of cool plasma, no physical reason is found to differentiate them from other active region loops of similar length, pressure, and temperature. Several line ratios in the loop spectrum suggest departures from ionization equilibrium caused by rapid cooling. The source of this cooling material is discussed with reference to several models of loop dynamics.

  6. Rocket studies of solar corona and transition region. [X-Ray spectrometer/spectrograph telescope

    NASA Technical Reports Server (NTRS)

    Acton, L. W.; Bruner, E. C., Jr.; Brown, W. A.; Nobles, R. A.

    1979-01-01

    The XSST (X-Ray Spectrometer/Spectrograph Telescope) rocket payload launched by a Nike Boosted Black Brant was designed to provide high spectral resolution coronal soft X-ray line information on a spectrographic plate, as well as time resolved photo-electric records of pre-selected lines and spectral regions. This spectral data is obtained from a 1 x 10 arc second solar region defined by the paraboloidal telescope of the XSST. The transition region camera provided full disc images in selected spectral intervals originating in lower temperature zones than the emitting regions accessible to the XSST. A H-alpha camera system allowed referencing the measurements to the chromospheric temperatures and altitudes. Payload flight and recovery information is provided along with X-ray photoelectric and UV flight data, transition camera results and a summary of the anomalies encountered. Instrument mechanical stability and spectrometer pointing direction are also examined.

  7. Observations of steady anomalous magnetic heating in thin current sheets. [of solar corona

    NASA Technical Reports Server (NTRS)

    Martens, P. C. H.; Van Den Oord, G. H. J.; Hoyng, P.

    1985-01-01

    The Hard X-ray Imaging Spectrometer of the Solar Maximum Mission has yielded observations of a faint, steadily emitting loop-like structure, which have allowed the thermal evolution of this loop over a period of about 15 hr to be followed. Only 0.1 percent of the volume of the loop appears to be steadily heated, at the large rate of 0.6 erg/cu cm sec; this suggests that the heating represents the dissipation of magnetic fields in thin current sheets. Ion-kinetic tearing, as proposed by Galeev et al. (1981), is noted to be especially consonant with these observations. The source of the present X-ray emission is identified with the H-alpha filament in the same region. The present findings are held to constitute the first direct evidence for the steady dissipation of coronal magnetic fields via enhanced thin current sheet resistivity.

  8. Fragmentation of electric currents in the solar corona by plasma flows

    NASA Astrophysics Data System (ADS)

    Nickeler, D. H.; Karlický, M.; Wiegelmann, T.; Kraus, M.

    2013-08-01

    Aims: We consider a magnetic configuration consisting of an arcade structure and a detached plasmoid, resulting from a magnetic reconnection process, as is typically found in connection with solar flares. We study spontaneous current fragmentation caused by shear and vortex plasma flows. Methods: An exact analytical transformation method was applied to calculate self-consistent solutions of the nonlinear stationary magnetohydrodynamic equations. The assumption of incompressible field-aligned flows implies that both the Alfvén Mach number and the mass density are constant on field lines. We first calculated nonlinear magnetohydrostatic equilibria with the help of the Liouville method, emulating the scenario of a solar eruptive flare configuration with plasmoids (magnetic ropes or current-carrying loops in 3D) and flare arcade. Then a Mach number profile was constructed that describes the upflow along the open magnetic field lines and implements a vortex flow inside the plasmoid. This Mach number profile was used to map the magnetohydrostatic equilibrium to the stationary one. Results: We find that current fragmentation takes place at different locations within our configuration. Steep gradients of the Alfvén Mach number are required, implying the strong influence of shear flows on current amplification and filamentation of the magnetohydrostatic current sheets. Crescent- or ring-like structures appear along the outer separatrix, butterfly structures between the upper and lower plasmoids, and strong current peaks close the lower boundary (photosphere). Furthermore, impressing an intrinsic small-scale structure on the upper plasmoid results in strong fragmentation of the plasmoid. Hence fragmentation of current sheets and plasmoids is an inherent property of magnetohydrodynamic theory. Conclusions: Transformations from magnetohydrostatic into magnetohydrodynamic steady-states deliver fine-structures needed for plasma heating and acceleration of particles and bulk plasma flows in dissipative events that are typically connected to magnetic reconnection processes in flares and coronal mass ejections.

  9. Core and Wing Densities of Asymmetric Coronal Spectral Profiles: Implications for the Mass Supply of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Patsourakos, S.; Klimchuk, J. A.; Young, P. R.

    2014-01-01

    Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding approximately equal to 50 km per sec. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe(sub XIV) lines at 264.78 and 274.20 Angstroms is used to determine wing and core densities.We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe(sub XIV) lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.

  10. Core and wing densities of asymmetric coronal spectral profiles: Implications for the mass supply of the solar corona

    SciTech Connect

    Patsourakos, S.; Klimchuk, J. A.; Young, P. R. E-mail: james.a.klimchuk@nasa.gov

    2014-02-01

    Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding ≈50 km s{sup –1}. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe XIV lines at 264.78 and 274.20 Å is used to determine wing and core densities. We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe XIV lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.

  11. Particle acceleration in 3D single current sheets formed in the solar corona and heliosphere: PIC approach

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Siversky, T.

    2015-09-01

    Acceleration of protons and electrons in a reconnecting current sheet (RCS) is investigated with the test particle and particle-in-cell (PIC) approaches in a 3D magnetic topology. PIC simulations confirm a spatial separation of electrons and protons with respect to the midplane depending on the guiding field. Simulation reveals that the separation occurs in magnetic topologies with strong guiding fields and lasts as long as the particles are kept dragged into a current sheet. This separation produces a polarisation electric field induced by the plasma feedback to a presence of accelerated particles, which shape can change from symmetric towards the midplane (for weak guiding field) to fully asymmetric (for strong guiding field). Particles are found accelerated at a midplane of any current sheets present in the heliosphere to the energies up to hundred keV for electrons and hundred MeV for protons. The maximum energy gained by particles during their motion inside the current sheet is defined by its magnetic field topology (the ratio of magnetic field components), the side and location from the X-nullpoint, where the particles enter a current sheet. In strong magnetic fields of the solar corona with weaker guiding fields, electrons are found circulating about the midplane to large distances where proton are getting accelerated, creating about the current sheet midplane clouds of high energy electrons, which can be the source of hard X-ray emission in the coronal sources of flares. These electrons are ejected into the same footpoint as protons after the latter reach the energy sufficicent to break from a current sheet. In a weaker magnetic field of the heliosphere the bounced electrons with lower energies cannot reach the midplane turning instead at some distance D before the current sheet midplane by 180 degrees from their initial motion. Also the beams of accelerated transit and bounced particles are found to generate turbulent electric fields in a form of Langmuir waves (electrons) or ion-acoustic waves (protons).

  12. Insensitivity of Line-Ratio Diagnostics to Steady-State Non-Maxwellian Electron Distributions in Solar Corona

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Davila, J. M.

    1999-01-01

    We examine the idea that the corona is heated by a population of nonthermal particles. An upper limit on the size of the nonthermal population is derived by assuming that all of the radiation and conduction losses in the corona are provided by the nonthermal tail of the particle distribution. Only a very small percentage of nonthermal particles are allowed. These particles have a negligable effect on temperature sensitive line ratios typically observed in the EUV (Extreme Ultraviolet Radiation).

  13. Spectroscopic Constraints on Models of Ion-Cyclotron Resonance Heating in the Polar Solar Corona and Fast Solar Wind

    NASA Astrophysics Data System (ADS)

    Cranmer, S. R.; Field, G. B.; Kohl, J. L.

    1998-12-01

    We present preliminary results from a theoretical model of the heating of minor ions in the fast solar wind. We examine the compatibility between these models and spectroscopic determinations of velocity distribution functions from the UVCS and SUMER instruments aboard SOHO. By examining the dependence of line shapes (which probe the perpendicular velocity distribution) on ion charge and mass, detailed information can be extracted about the preferential heating and the Coulomb collisional coupling. The primary momentum and energy deposition mechanism we investigate is the dissipation of high-frequency (ion-cyclotron resonant) Alfven waves, which can accelerate and heat ions differently depending on their charge and mass. Minor ions which do not appreciably damp the resonant wave amplitudes can be used to constrain the slope of the fluctuation spectrum. SUMER measurements of several ions at heliocentric heights between 1.02 and 1.07 solar radii allow the ``base'' spectrum to be analyzed, and UVCS O VI line widths measured between 1.5 and 3.5 solar radii provide information about the radial evolution of the spectrum. This work is supported by the National Aeronautics and Space Administration under grant NAG5-3192 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by the ESA PRODEX program (Swiss contribution).

  14. Signatures of Exo-Solar Planets in Dust Debris Disks

    NASA Technical Reports Server (NTRS)

    Ozernoy, Leonid M.; Gorkavyi, Nick N.; Mather, John C.; Taidakova, Tanya A.

    1999-01-01

    We have developed a new numerical approach to the dynamics of minor bodies and dust particles, which enables us to increase, without using a supercomputer, the number of employed particle positions in each model up to 10(exp 10) - 10(exp 11), a factor of 10(exp 6) - 10(exp 7) higher than existing numerical simulations. We apply this powerful approach to the high-resolution modeling of the structure and emission of circumstellar dust disks, incorporating all relevant physical processes. In this Letter, we examine the resonant structure of a dusty disk induced by the presence of one planet of mass in the range of (5 x 10(exp -5) - 5 x 10(exp -3))M. It is shown that the planet, via resonances and gravitational scattering, produces (i) a central cavity void of dust; (ii) a trailing (sometimes leading) off-center cavity; and (iii) an asymmetric resonant dust belt with one, two, or more clumps. These features can serve as indicators of planet(s) embedded in the circumstellar dust disk and, moreover, can be used to determine the mass of the planet and even some of its orbital parameters. The results of our study reveal a remarkable similarity with various types of highly asymmetric circumstellar disks observed with the JCMT around Epsilon Eridani and Vega.

  15. VERTICAL KINK OSCILLATION OF A MAGNETIC FLUX ROPE STRUCTURE IN THE SOLAR CORONA

    SciTech Connect

    Kim, S.; Cho, K.-S.; Nakariakov, V. M.

    2014-12-20

    Vertical transverse oscillations of a coronal magnetic rope, observed simultaneously in the 171 Å and 304 Å bandpasses of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO), are detected. The oscillation period is about 700 s and the displacement amplitude is about 1 Mm. The oscillation amplitude remains constant during the observation. Simultaneous observation of the rope in the bandpasses corresponding to the coronal and chromospheric temperatures suggests that it has a multi-thermal structure. Oscillatory patterns in 171 Å and 304 Å are coherent, which indicates that the observed kink oscillation is collective, in which the rope moves as a single entity. We interpret the oscillation as a fundamental standing vertically polarized kink mode of the rope, while the interpretation in terms of a perpendicular fast wave could not be entirely ruled out. In addition, the arcade situated above the rope and seen in the 171 Å bandpass shows an oscillatory motion with the period of about 1000 s.

  16. Explaining Inverted Temperature Loops in the Quiet Solar Corona with Magnetohydrodynamic Wave Mode Conversion

    NASA Astrophysics Data System (ADS)

    Schiff, Avery; Cranmer, Steven R.

    2016-05-01

    We simulate the temperature profiles along coronal loops measured with AIA DEM tomography and field-line extrapolation by Nuevo et al (2013). By varying the strength and nature of the heating mechanism, we modeled steady-state, gravitationally stable loops that have temperature profiles with local maxima below the loop apex. Because these loops have negative vertical temperature gradients over much of their length, they have been called "down loops" and were seen to exist primarily in equatorial quiet regions near solar minimum. In our models, the amount of heat deposited in the loop is attributed to two sources: (1) the dissipation of Alfven waves in a turbulent cascade, and (2) the dissipation of compressive waves over a variable length. The compressive waves are generated in a nonlinear process by which some fraction of the Alfven waves undergo mode conversion instead of contributing directly to the heating process. We found that when a large percentage (> 99%) of the Alfven waves underwent this conversion, the heating was greatly concentrated at the base of the loop and stable "down loops" were created. In some cases, we found loops with three extrema that are gravitationally stable. We map the full parameter space to explore which conditions lead to which loop types, and we demonstrate that the simulated characteristics of the loops -- including magnetic field strength, pressure, and temperature -- are consistent with values measured by Nuevo et al. (2013).

  17. The solar corona as probed by comet Lovejoy (C/2011 W3)

    SciTech Connect

    Raymond, J. C.; McCauley, P. I.; Cranmer, S. R.; Downs, C.

    2014-06-20

    Extreme-ultraviolet images of Comet Lovejoy (C/2011 W3) from the Atmospheric Imaging Assembly show striations related to the magnetic field structure in both open and closed magnetic regions. The brightness contrast implies coronal density contrasts of at least a factor of six between neighboring flux tubes over scales of a few thousand kilometers. These density structures imply variations in the Alfvén speed on a similar scale. They will drastically affect the propagation and dissipation of Alfvén waves, and that should be taken into account in models of coronal heating and solar wind acceleration. In each striation, the cometary emission moves along the magnetic field and broadens with time. The speed and the rate of broadening are related to the parallel and perpendicular components of the velocities of the cometary neutrals when they become ionized. We use a magnetohydrodynamic model of the coronal magnetic field and the theory of pickup ions to compare the measurements with theoretical predictions, in particular with the energy lost to Alfvén waves as the cometary ions isotropize.

  18. Magnetic Field Confinement in the Solar Corona. I. Force-free Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Flyer, N.; Fornberg, B.; Thomas, S.; Low, B. C.

    2004-05-01

    Axisymmetric force-free magnetic fields external to a unit sphere are studied as solutions to boundary value problems in an unbounded domain posed by the equilibrium equations. It is well known from virial considerations that stringent global constraints apply for a force-free field to be confined in equilibrium against expansion into the unbounded space. This property as a basic mechanism for solar coronal mass ejections is explored by examining several sequences of axisymmetric force-free fields of an increasing total azimuthal flux with a power-law distribution over the poloidal field. Particular attention is paid to the formation of an azimuthal rope of twisted magnetic field embedded within the global field, and to the energy storage properties associated with such a structure. These sequences of solutions demonstrate (1) the formation of self-similar regions in the far global field where details of the inner boundary conditions are mathematically irrelevant, and (2) the possibility that there is a maximum to the amount of azimuthal magnetic flux confined by a poloidal field of a fixed flux anchored rigidly to the inner boundary. The nonlinear elliptic boundary value problems we treat are mathematically interesting and challenging, requiring a specially designed solver, which is described in the Appendix.

  19. Laboratory identification of storage-and-release eruption regimes in the solar corona

    NASA Astrophysics Data System (ADS)

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao; Yoo, Jongsoo; Fox, Will; Jara-Almonte, Jon

    2015-04-01

    Ideal magnetohydrodynamic (MHD) instabilities such as the kink and torus instabilities are believed to play an important role in driving long-lived solar magnetic flux ropes to erupt. In this paper, we report the findings of a laboratory flux rope experiment that is specifically designed to explore the parameter space for these two eruptive instabilities. In particular, we scan the twist in the flux rope for the kink instability and the decay index of the potential field for the torus instability. Using in situ magnetic probes, we identify four distinct stability regimes in the experiment: (1) stable; (2) eruptive; (3) failed kink; and (4) failed torus. The identification of the failed kink regime validates the importance of the torus instability in driving flux rope eruptions. The identification of the failed torus regime, on the other hand, constitutes an entirely new finding. By directly measuring the forces acting on the flux rope plasma, we show that a strong magnetic tension force that is derived from the toroidal magnetic field in the flux rope suppresses eruptions in the failed torus regime.This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).

  20. LADEE UVS Observations of Solar Occulation by Exospheric Dust above the Lunar Limb

    NASA Technical Reports Server (NTRS)

    Wooden, Diane; Cook, Amanda Marie; Colaprete, A.; Shirley, M. H.; Vargo, K. E.; Elphic, R. C.; Stubbs, T. J.; Glenar, D. A.

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) is a lunar orbiter launched in September 2012 that investigates the composition and temporal variation of the tenuous lunar exosphere and dust environment. The primary goals of the mission are to characterize the pristine gas and dust exosphere prior to future lunar exploration activities, which may alter the lunar environment. To address this goal, the LADEE instrument suite includes an Ultraviolet/ Visible Spectrometer (UVS), which searches for dust, Na, K, and trace gases such as OH, H2O, Si, Al, Mg, Ca, Ti, Fe, as well as other previously undetected species. UVS has two sets of optics: a limb-viewing telescope, and a solar viewing telescope. The solar viewer is equipped with a diffuser (see Figure 1a) that allows UVS to stare directly at the solar disk as the Sun starts to set (or rise from) behind the lunar limb. Solar viewer measurements generally have very high signal to noise (SNR>500) for 20-30 ms integration times. The 1-degree solar viewer field of view subtends a diameter of 8 km at a distance of 400-450 km

  1. LADEE UVS Observations of Solar Occultation by Exospheric Dust Above the Lunar Limb

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.; Cook, A. M.; Colaprete, A.; Shirley, M. H.; Vargo, K. E.; Elphic, R. C.; Stubbs, T. J.; Glenar, D. A.

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) is a lunar orbiter launched in September 2012 that investigates the composition and temporal variation of the tenuous lunar exosphere and dust environment. The primary goals of the mission are to characterize the pristine gas and dust exosphere prior to future lunar exploration activities, which may alter the lunar environment. To address this goal, the LADEE instrument suite includes an Ultraviolet/ Visible Spectrometer (UVS), which searches for dust, Na, K, and trace gases such as OH, H2O, Si, Al, Mg, Ca, Ti, Fe, as well as other previously undetected species. UVS has two sets of optics: a limb-viewing telescope, and a solar viewing telescope. The solar viewer is equipped with a diffuser (see Figure 1a) that allows UVS to stare directly at the solar disk as the Sun starts to set (or rise from) behind the lunar limb. Solar viewer measurements generally have very high signal to noise (SNR greater than 500) for 20-30 ms integration times. The 1-degree solar viewer field of view subtends a diameter of approximately 8 km at a distance of 400-450 km.

  2. Fast Magnetoacoustic Wave Trains of Sausage Symmetry in Cylindrical Waveguides of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Shestov, S.; Nakariakov, V. M.; Kuzin, S.

    2015-12-01

    Fast magnetoacoustic waves guided along the magnetic field by plasma non-uniformities, in particular coronal loops, fibrils, and plumes, are known to be highly dispersive, which lead to the formation of quasi-periodic wave trains excited by a broadband impulsive driver, e.g., a solar flare. We investigated the effects of cylindrical geometry on the fast sausage wave train formation. We performed magnetohydrodynamic numerical simulations of fast magnetoacoustic perturbations of a sausage symmetry, propagating from a localized impulsive source along a field-aligned plasma cylinder with a smooth radial profile of the fast speed. The wave trains are found to have pronounced period modulation, with the longer instant period seen in the beginning of the wave train. The wave trains also have a pronounced amplitude modulation. Wavelet spectra of the wave trains have characteristic tadpole features, with the broadband large-amplitude heads preceding low-amplitude quasi-monochromatic tails. The mean period of the wave train is about the transverse fast magnetoacoustic transit time across the cylinder. The mean parallel wavelength is about the diameter of the wave-guiding plasma cylinder. Instant periods are longer than the sausage wave cutoff period. The wave train characteristics depend on the fast magnetoacoustic speed in both the internal and external media, the smoothness of the transverse profile of the equilibrium quantities, and also the spatial size of the initial perturbation. If the initial perturbation is localized at the axis of the cylinder, the wave trains contain higher radial harmonics that have shorter periods.

  3. OBSERVATIONAL EVIDENCE OF SAUSAGE-PINCH INSTABILITY IN SOLAR CORONA BY SDO/AIA

    SciTech Connect

    Srivastava, A. K.; Joshi, N. C.; Kayshap, P.; Erdelyi, R.; Fedun, V.; Tripathi, Durgesh

    2013-03-10

    We present the first observational evidence of the evolution of sausage-pinch instability in active region 11295 during a prominence eruption using data recorded on 2011 September 12 by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). We have identified a magnetic flux tube visible in AIA 304 A that shows curvatures on its surface with variable cross-sections as well as enhanced brightness. These curvatures evolved and thereafter smoothed out within a timescale of a minute. The curved locations on the flux tube exhibit a radial outward enhancement of the surface of about 1-2 Mm (a factor of two larger than the original thickness of the flux tube) from the equilibrium position. AIA 193 A snapshots also show the formation of bright knots and narrow regions in-between at the four locations as that of 304 A along the flux tube where plasma emission is larger compared to the background. The formation of bright knots over an entire flux tube as well as the narrow regions in <60 s may be the morphological signature of the sausage instability. We also find the flows of confined plasma (propagation of brightness) in these bright knots along the field lines, which indicates the dynamicity of the flux tube that probably causes the dominance of the longitudinal field component over short temporal scales. The observed longitudinal motion of the plasma frozen in the magnetic field lines further vanishes the formed curvatures and plasma confinements as well as growth of instability to stabilize the flux tube.

  4. SOLAR CORONA LOOP STUDIES WITH THE ATMOSPHERIC IMAGING ASSEMBLY. I. CROSS-SECTIONAL TEMPERATURE STRUCTURE

    SciTech Connect

    Aschwanden, Markus J.; Boerner, Paul

    2011-05-10

    We present a first systematic study on the cross-sectional temperature structure of coronal loops using the six coronal temperature filters of the Atmospheric Imaging Assembly (AIA) instrument on the Solar Dynamics Observatory (SDO). We analyze a sample of 100 loop snapshots measured at 10 different locations and 10 different times in active region NOAA 11089 on 2010 July 24, 21:00-22:00 UT. The cross-sectional flux profiles are measured and a cospatial background is subtracted in six filters in a temperature range of T {approx} 0.5-16 MK, and four different parameterizations of differential emission measure (DEM) distributions are fitted. We find that the reconstructed DEMs consist predominantly of narrowband peak temperature components with a thermal width of {sigma}{sub log(T)} {<=} 0.11 {+-} 0.02, close to the temperature resolution limit of the instrument, consistent with earlier triple-filter analysis from the Transition Region and Coronal Explorer by Aschwanden and Nightingale and from EIS/Hinode by Warren et al. or Tripathi et al. We find that 66% of the loops could be fitted with a narrowband single-Gaussian DEM model, and 19% with a DEM consisting of two narrowband Gaussians (which mostly result from pairs of intersecting loops along the same line of sight). The mostly isothermal loop DEMs allow us also to derive an improved empirical response function of the AIA 94 A filter, which needs to be boosted by a factor of q{sub 94} = 6.7 {+-} 1.7 for temperatures at log (T) {approx}< 6.3. The main result of near-isothermal loop cross-sections is not consistent with the predictions of standard nanoflare scenarios, but can be explained by flare-like heating mechanisms that drive chromospheric evaporation and upflows of heated plasma coherently over loop cross-sections of w {approx} 2-4 Mm.

  5. Deflection of the local interstellar dust flow by solar radiation pressure

    NASA Technical Reports Server (NTRS)

    Landgraf, M.; Augustsson, K.; Grun, E.; Gustafson, B. A.

    1999-01-01

    Interstellar dust grains intercepted by the dust detectors on the Ulysses and Galileo spacecrafts at heliocentric distances from 2 to 4 astronomical units show a deficit of grains with masses from 1 x 10(-17) to 3 x 10(-16) kilograms relative to grains intercepted outside 4 astronomical units. To divert grains out of the 2- to 4-astronomical unit region, the solar radiation pressure must be 1.4 to 1.8 times the force of solar gravity. These figures are consistent with the optical properties of spherical or elongated grains that consist of astronomical silicates or organic refractory material. Pure graphite grains with diameters of 0.2 to 0.4 micrometer experience a solar radiation pressure force as much as twice the force of solar gravity.

  6. Deflection of the local interstellar dust flow by solar radiation pressure.

    PubMed

    Landgraf, M; Augustsson, K; Grün, E; Gustafson, B A

    1999-12-17

    Interstellar dust grains intercepted by the dust detectors on the Ulysses and Galileo spacecrafts at heliocentric distances from 2 to 4 astronomical units show a deficit of grains with masses from 1 x 10(-17) to 3 x 10(-16) kilograms relative to grains intercepted outside 4 astronomical units. To divert grains out of the 2- to 4-astronomical unit region, the solar radiation pressure must be 1.4 to 1.8 times the force of solar gravity. These figures are consistent with the optical properties of spherical or elongated grains that consist of astronomical silicates or organic refractory material. Pure graphite grains with diameters of 0.2 to 0.4 micrometer experience a solar radiation pressure force as much as twice the force of solar gravity. PMID:10600737

  7. Formation of fast shocks by magnetic reconnection in the solar corona

    NASA Astrophysics Data System (ADS)

    Hsieh, M. H.; Tsai, C. L.; Ma, Z. W.; Lee, L. C.

    2009-09-01

    Reconnections of magnetic fields over the solar surface are expected to generate abundant magnetohydrodynamic (MHD) discontinuities and shocks, including slow shocks and rotational discontinuities. However, the generation of fast shocks by magnetic reconnection process is relatively not well studied. In this paper, magnetic reconnection in a current sheet is studied based on two-dimensional resistive MHD numerical simulations. Magnetic reconnections in the current sheet lead to the formation of plasma jets and plasma bulges. It is further found that the plasma bulges, the leading part of plasma jets, in turn lead to the generation of fast shocks on flanks of the bulges. The simulation results show that during the magnetic reconnection process, the plasma forms a series of structures: plasma jets, plasma bulges, and fast shocks. As time increases, the bulges spread out along the current sheet (+/-z direction) and the fast shocks move just ahead of the bulges. The effects of initial parameters ρs/ρm, β∞, and trec on the fast shock generation are also examined, where ρs/ρm is the ratio of plasma densities on two sides of the initial current sheet, β∞=P∞/(B∞2/2μ0), P∞ is the plasma pressure and B∞ is the magnetic field magnitude far from the current sheet, and trec is the reconnection duration. In the asymmetric case with ρs/ρm=2, β∞=0.01 and trec=1000, the maximum Alfvén Mach number of fast shocks (MA1 max) is MA1 max≅1.1, where MA1=Vn1/VA1, and Vn1 and VA1 are, respectively, the normal upstream fluid velocity and the upstream Alfvén speed in the fast shocks frame. As the density ratio ρs/ρm (=1-8) and plasma beta β∞ (=0.0001-1) increase, MA1 max varies slightly. For the case with a large plasma beta β∞ (=5), the fast shock is very weak. As the reconnection duration trec increases, the bulges lead to generation of fast shocks with a higher MA1 max. The present results can be applied to the mechanism of coronal heating by fast shocks.

  8. Performance Analysis of the Nano Dust Analyzer Under Solar UV Illumination

    NASA Astrophysics Data System (ADS)

    O'Brien, L. E.; Gruen, E.; Sternovsky, Z.

    2014-12-01

    The Nano Dust Analyzer (NDA) is a linear time-of-flight mass analyzer developed to measure the distribution and elemental composition of nanometer-sized dust particles originating in the inner Heliosphere. The temporal variability of the flux and angular distribution is governed by the complex interaction with the interplanetary magnetic field within 1 AU and provides the means also to learn about solar wind conditions. As part of a heliospheric mission, measurements made by the NDA will determine the size-dependent flux of nano-dust and its variations, it will characterize the composition of nano-dust, and may determine their source processes. The nano-dust particles arrive at 1 AU approximately from the direction of the Sun, thus, the NDA is designed specifically to operate while being exposed directly to solar UV radiation. Here, we report on the performance analysis of the NDA under UV illumination. Solar UV radiation is most likely the largest source of noise for the instrument. A fraction of incident photons will scatter into the ion detector and generate background noise, reducing the instrument's sensitivity. The detailed modeling is conducted using a commercial ray-tracing program. The instrument's performance while exposed to UV radiation is optimized in terms of instrument geometry and surface materials/optical properties, and the requirements on all optical surfaces that are necessary to reduce the effect of UV to the required level are defined and presented here.

  9. Mapping the interstellar dust flow into the solar system

    NASA Astrophysics Data System (ADS)

    Baggaley, W. J.; Galligan, D. P.

    2001-11-01

    The Advanced Meteor Orbit Radar facility (AMOR) monitors the dynamcial properties of meteoroids of sizes down to about 40 μm. The oprbital data set secured to date contains about 106 orbits. The population of inner Solar System meteoroids sampled contains a significant proportion of particles that are moving in unbound solar orbits. Maps the far-sun inflow directions of this extra-Solar System population show the presence of both a broad interstellar inflow and discrete sources.

  10. Fluxes of MeV particles at Earth's orbit and their relationship with the global structure of the solar corona: Observations from SOHO

    NASA Technical Reports Server (NTRS)

    Posner, A.; Bothmer, V.; Kunow, H.; Heber, B.; Mueller-Mellin, R.; Delaboudiniere, J.-P.; Thompson, B. J.; Brueckner, G. E.; Howard, R. A.; Michels, D. J.

    1997-01-01

    The SOHO satellite, launched on 2 December 1995, combines a unique set of instruments which allow comparative studies of the interior of the sun, the outer corona and solar to be carried out. In its halo orbit around the L1 Lagrangian point of the sun-earth system, SOHO's comprehensive suprathermal and energetic particle analyzer (COSTEP) measures in situ energetic particles in the energy range of 44 keV/particle to greater than 53 MeV/n. The MeV proton, electron and helium nuclei measurements from the COSTEP electron proton helium instrument (EPHIN) were used to investigate the relationships of intensity increases of these particle species with the large-scale structures of the solar corona and heliosphere, including temporal variations. Coronal observatons are provided by the large angle spectroscopic coronagraph (LASCO) and the extreme ultraviolet imaging telescope (EIT). It was found that during times of minimum solar activity, intensity increases of the particles have two well defined sources: corotating interaction regions (CIRs) in the heliosphere related to coronal holes at the sun and coronal mass ejections.

  11. Evolution and Activity in the Solar Corona: A Comparison of Coronal and Chromospheric Structures Seen in Soft X-Rays, White Light and H-Alpha Emission

    NASA Technical Reports Server (NTRS)

    Bagenal, Fran

    2001-01-01

    The work completed under this project, 'Evolution and Activity in the Solar Corona: A Comparison of Coronal and Chromospheric Structures Seen in Soft X-Rays, White Light and H-Alpha Emission', includes the following presentations: (1) Analysis of H-alpha Observations of High-altitude Coronal Condensations; (2) Multi-spectral Imaging of Coronal Activity; (3) Measurement and Modeling of Soft X-ray Loop Arcades; (4) A Study of the Origin and Dynamics of CMEs; and various poster presentations and thesis dissertations.

  12. Solar flare track densities in interplanetary dust particles The determination of an asteroidal versus cometary source of the zodiacal dust cloud

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    1986-01-01

    The possibility is explored whether an IDP (interplanetary dust particle) is cometary or asteroidal from measurements of the solar flare track density within its constituent mineral grains. Dust particles that are larger than 1 micron, when injected into the Solar System from comets and asteroids, will spiral into the sun due to the Poynting-Robertson effect. During the process of spiraling in, such dust particles accumulate solar flare tracks. The accumulated track density for a given dust grain is a function of the duration of its space exposure and its distance from the sun. Using a computer model, it was determined that the expected track density distributions from grains produced by comets are very different from those produced by asteroids. Individual asteroids produce populations of particles that arrive at 1 AU with scaled track density distributions containing 'spikes,' while comets supply particles with a flatter and wider distribution of track densities.

  13. Parametrically Unstable Alfven-cyclotron Waves and Wave--Particle Interactions in the Solar Corona and Solar Wind

    SciTech Connect

    Maneva, Y. G.; Marsch, E.; Araneda, J. A.

    2009-04-26

    We consider the parametric instabilities of large-amplitude Alfven/ion-cyclotron waves and the consequent wave-particle interactions, and discuss their importance for modelling the evolution of ion velocity distribution functions in the tenuous and collisionless plasma of a coronal hole and the fast solar wind. We perform 1D hybrid simulations to study the nonlinear evolution of the parametric instabilities by analyzing the simulation results in terms of microinstabilities and discussing the influence of both Landau and cyclotron resonances on the evolution of the ion distributions. We demonstrate the origin of a relative drift between the protons and alpha particles, show the related anisotropic ion heating and follow the simultaneous proton beam formation. Finally, we focus on the development and evolution of both electromagnetic and acoustic micro-turbulence and present indications for an inverse energy cascade from shorter to longer wavelengths.

  14. Polarimetric Studies of Solar Light Scattered by Interplanetary Dust Particles and the Eye-Sat Project

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A. C.; Lasue, J.

    2014-12-01

    Studying intensity and linear polarization of the solar light scattered by interplanetary dust is of interest for various reasons. This so-called zodiacal light constitutes a faint polarized glow that constitutes a changing foreground for observations of faint extended astronomical sources. Besides, analysis of its polarization provides information on properties of the dust particles, such as spatial density, morphology and complex refractive index. Previous observations, mostly from the Earth and with a resolution in the 10° range, have been used to infer that the local polarization at 90° phase angle increases with increasing solar distance. Numerical simulations suggest that, in the inner solar system, interplanetary dust particles consist of a mixture of absorbing and less absorbing materials, and that radial changes originate in a decrease of organic materials with decreasing solar distance under alteration or evaporation processes. To improve the quality of data on zodiacal light polarimetry, Eye-Sat nanosat is being developed in the context of the JANUS CNES cubesats program for students. The project is now in phase C-D, for a piggy-back launch in 2016. Eye-Sat triple cubesat is anticipated to demonstrate the feasibility of a series of new on-board technologies. Moreover, during its one-year mission, zodiacal light intensity and polarization are to be measured, for the first time with a spatial resolution of about 1° over a wide portion of the sky and in four different wavelengths (visible to near-IR), leading to a better assessment of interplanetary dust properties. Finally, a significant fraction of the interplanetary dust is estimated to come from comets, the most pristine objects to be found in the inner solar system. While similarities have indeed been noticed between polarimetric properties of interplanetary and cometary dust particles, the latter being currently extensively documented by the Rosetta mission to comet 67P/Churyumov-Gerasimenko, further studies of interplanetary dust should provide a better insight on possible delivery of carbonaceous particles on telluric planets through dust impacts at an epoch of heavy bombardment, and thus to the early solar system evolution. Support from CNES is warmly acknowledged.

  15. Mid-Term Quasi-Periodicities and Solar Cycle Variation of the White-Light Corona from 18.5 Years (1996.0 - 2014.5) of LASCO Observations

    NASA Astrophysics Data System (ADS)

    Barlyaeva, T.; Lamy, P.; Llebaria, A.

    2015-07-01

    We report on the analysis of the temporal evolution of the solar corona based on 18.5 years (1996.0 - 2014.5) of white-light observations with the SOHO/LASCO-C2 coronagraph. This evolution is quantified by generating spatially integrated values of the K-corona radiance, first globally, then in latitudinal sectors. The analysis considers time series of monthly values and 13-month running means of the radiance as well as several indices and proxies of solar activity. We study correlation, wavelet time-frequency spectra, and cross-coherence and phase spectra between these quantities. Our results give a detailed insight on how the corona responds to solar activity over timescales ranging from mid-term quasi-periodicities (also known as quasi-biennial oscillations or QBOs) to the long-term 11 year solar cycle. The amplitude of the variation between successive solar maxima and minima (modulation factor) very much depends upon the strength of the cycle and upon the heliographic latitude. An asymmetry is observed during the ascending phase of Solar Cycle 24, prominently in the royal and polar sectors, with north leading. Most prominent QBOs are a quasi-annual period during the maximum phase of Solar Cycle 23 and a shorter period, seven to eight months, in the ascending and maximum phases of Solar Cycle 24. They share the same properties as the solar QBOs: variable periodicity, intermittency, asymmetric development in the northern and southern solar hemispheres, and largest amplitudes during the maximum phase of solar cycles. The strongest correlation of the temporal variations of the coronal radiance - and consequently the coronal electron density - is found with the total magnetic flux. Considering that the morphology of the solar corona is also directly controlled by the topology of the magnetic field, this correlation reinforces the view that they are intimately connected, including their variability at all timescales.

  16. Absorption and scattering properties of the Martian dust in the solar wavelengths.

    PubMed

    Ockert-Bell, M E; Bell JF 3rd; Pollack, J B; McKay, C P; Forget, F

    1997-04-25

    A new wavelength-dependent model of the single-scattering properties of the Martian dust is presented. The model encompasses the solar wavelengths (0.3 to 4.3 micrometers at 0.02 micrometer resolution) and does not assume a particular mineralogical composition of the particles. We use the particle size distribution, shape, and single-scattering properties at Viking Lander wavelengths presented by Pollack et al. [1995]. We expand the wavelength range of the aerosol model by assuming that the atmospheric dust complex index of refraction is the same as that of dust particles in the bright surface geologic units. The new wavelength-dependent model is compared to observations taken by the Viking Orbiter Infrared Thermal Mapper solar channel instrument during two dust storms. The model accurately matches afternoon observations and some morning observations. Some of the early morning observations are much brighter than the model results. The increased reflectance can be ascribed to the formation of a water ice shell around the dust particles, thus creating the water ice clouds which Colburn et al. [1989], among others, have predicted. PMID:11541455

  17. Interaction of the lunar surface and dust grains with the solar wind and Earth magnetosphere

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Richterova, Ivana; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek

    2015-04-01

    Interaction of the lunar surface with the solar wind and Earth's magnetosphere leads to it charging by several processes as photoemission, a collection of primary particles, and secondary electron emission. The parameters of a plasma environment strongly influence the charging processes because the energy of electrons and ions is significantly higher in the magnetosphere than in the solar wind, while the particle density is lower in the magnetosphere. Dominant charging currents depend on a lunar position relative to the Earth as well as on the Solar Zenith Angle which influences mainly the current of photoelectrons. The lunar surface potential varies from slightly positive to large negative values with respect to the surrounding plasma. A presence of dust levitating above the surface has been observed by several spacecraft and by astronauts during Apollo missions in the terminator area. We present model calculations of a temporal evolution of the lunar surface potential as well as potentials of dust grains above the surface using by the ARTEMIS data through one crossing of the Earth magnetosphere tail. We show that the lunar surface and levitating dust can be charged to different potentials under the same plasma conditions and we discuss a possibility of the dust grain levitation above the charged surface.

  18. Is it justified to assume that 'Everywhere in the sun's photosphere-corona domain the electric conductivity is HIGH?'; or, what drives the solar upper atmosphere?

    NASA Astrophysics Data System (ADS)

    Feldman, Uri

    1993-07-01

    For many years, solar scientists have recognized the extreme complexity of the upper solar atmosphere. However, in order to construct a valid theoretical model they have formulated a set of simplified assumptions governing the makeup of the sun's upper atmosphere. In previous papers a number of assumptions used to construct the models were shown not to be valid. In this Paper I bring evidence to question the validity of the last and most important of the assumptions, the assertion that 'Everywhere in the photosphere-corona domain the electric conductivity is HIGH'. The consequences of the finding are briefly discussed. A laboratory measurement of the electrical conductivity versus temperature in a gas with photospheric composition would resolve this important issue and seem to be feasible.

  19. Probability of solar panel clearing events at the Insight landing sites (Mars) from a dust devil track survey

    NASA Astrophysics Data System (ADS)

    Reiss, D.; Lorenz, R. D.

    2015-10-01

    The InSight robotic lander is scheduled to land on Mars in September 2016. InSight was designed to perform the first comprehensive surface-based geophysical investigation of Mars [1]. Passage of vortices may have a number of influences on the geophysical measurements to be made by InSight. Seismic data could be influenced by dust devils and vortices via several mechanisms such as loading of the elastic ground by a surface pressure field which causes a local tilt [e.g. 2]. In addition, the power supply of the InSight instruments is provided by solar arrays. Solar-powered missions on Mars like the Sojourner rover in 1997 were affected by a decline in electrical power output by 0.2-0.3 %per day caused by steadily dust deposition on its horizontal solar panel [3]. The solar-powered Mars Exploration Rovers (MERs) Spirit and Opportunity experienced similar dust deposition rates [4] which led to steady power decrease over time endangering longer rover operation times. The much longer operation times of the rovers were made possible by unanticipated 'dust clearing events' of the solar arrays by wind gust or dust devils [5]. Recent studies imply that dust devils are primarily responsible for those recurrent 'dust clearing events' [6]. In this study we investigate the potential frequency of intense dust devil occurrences at the InSight landing site regions, which are able to remove dust from its solar panels. We analyzed newly formed dust devil tracks within a given time span using multi-temporal HiRISE image data covering the same surface area. Based on these measurements we will give encounter rate predictions of intense (high tangential speed and high pressure drop) dust devils with the InSight lander.

  20. Corona Borealis

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (the Northern Crown; abbrev. CrB, gen. Coronae Borealis; area 179 sq. deg.) A northern constellation which lies between Boötes and Hercules, and culminates at midnight in mid-May. It represents the crown that in Greek mythology was made by Hephaestus, god of fire, and worn by Princess Ariadne of Crete. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....

  1. Dynamics and distribution of nano-dust particles in the inner solar system

    NASA Astrophysics Data System (ADS)

    JuháSz, A.; HoráNyi, M.

    2013-06-01

    Dust particles in the approximate mass range of 10-22dust particles, have been shown to become entrained in the solar wind plasma flow. When these so-called nano-dust particles (NDPs) impact a spacecraft, they have been suggested to produce sufficiently large plasma clouds to cause a detectable signal in the onboard electric antennas. NDPs have been identified on the twin STEREO spacecraft, and the observed intermittent nature of their fluxes were suggested to represent the stochastic nature of their sources near the Sun. Here we show that even if the generation of NDPs remains a constant in time, their detectability near the ecliptic plane becomes intermittent due their interaction with the interplanetary magnetic fields.

  2. Clementine Observations of the Zodiacal Light and the Dust Content of the Inner Solar System

    NASA Technical Reports Server (NTRS)

    Hahn, Joseph M.; Zook, Herbert A.; Cooper, Bonnie; Sunkara, Bhaskar

    2002-01-01

    Using the Moon to occult the Sun, the Clementine spacecraft used its navigation cameras to map the inner zodiacal light at optical wavelengths over elongations of 3 approx. less than epsilon approx. less than 30 deg from the Sun. This surface brightness map is then used to infer the spatial distribution of interplanetary dust over heliocentric distances of about 10 solar radii to the orbit of Venus. The averaged ecliptic surface brightness of the zodiacal light falls off as Z(epsilon) is a member of epsilon(sup -2.45 +/- 0.05), which suggests that the dust cross-sectional density nominally falls off as sigma(r) is a member of r(sup - 1.45 +/- 0.05). The interplanetary dust also has an albedo of alpha approx. = 0.1 that is uncertain by a factor of approx. 2. Asymmetries of approx. 10% are seen in directions east-west and north-south of the Sun, and these may be due the giant planets' secular gravitational perturbations. We apply a simple model that attributes the zodiacal light as due to three dust populations having distinct inclination distributions, namely, dust from asteroids and Jupiter-family comets (JFCs) having characteristic inclinations of i approx. 7 deg, dust from Halley-type comets having i approx. 33 deg, and an isotropic cloud of dust from Oort Cloud comets. The best-fitting scenario indicates that asteroids + JFCs are the source of about 45% of the optical dust cross section seen in the ecliptic at 1 AU but that at least 89% of the dust cross section enclosed by a 1-AU-radius sphere is of a cometary origin. Each population's radial density variations can also deviate somewhat from the nominal sigma(r) is a member of r(sup -1.45). When these results are extrapolated out to the asteroid belt, we find an upper limit on the mass of the light-reflecting asteroidal dust that is equivalent to a 12-km asteroid, and a similar extrapolation of the isotropic dust cloud out to Oort Cloud distances yields a mass equivalent to a 30-km comet, although the latter mass is uncertain by orders of magnitude.

  3. Solar and Heliospheric Observatory Ultraviolet Coronagraph Spectrometer and Yohkoh Soft X-Ray Telescope Observations of the High-Temperature Corona above an Active Region Complex

    NASA Astrophysics Data System (ADS)

    Ko, Yuan-Kuen; Raymond, John C.; Li, Jing; Ciaravella, Angela; Michels, Joseph; Fineschi, Silvano; Wu, Rai

    2002-10-01

    We present the results of Solar and Heliospheric Observatory Ultraviolet Coronagraph Spectrometer (SOHO/UVCS) and Yohkoh Soft X-Ray Telescope (SXT) observations above an active region complex (AR 8194, 8195, and 8198) at the southeast limb on 1998 April 6-7. This active region complex appears to be the base of a small streamer seen by the Large Angle and Spectrometric Coronagraph Experiment (LASCO/C2) at the southeast limb. The UVCS was offset-pointed to observe low in the corona from 1.22 up to 1.6 Rsolar with normal pointing. High-temperature lines such as [Fe XVIII] λ974 and Ne IX λ1248 were present in this region, implying that the electron temperature is higher than that in the quiet-Sun corona. This region of the corona is also seen as particularly bright in the Yohkoh/SXT, SOHO EUV Imaging Telescope high-temperature filter (Fe XV λ284) and SOHO/LASCO C1. The electron temperature analysis indicates a two-temperature structure, one of ~1.5×106 K, which is similar to that observed in quiet-Sun streamers, and the other at a high temperature of ~3.0×106 K. This two-temperature region likely corresponds to two distinct coronal regions overlapping in the line of sight. We compare the electron temperature and emission measure results from the SOHO/UVCS data with those from the Yohkoh/SXT data. The absolute elemental abundances show a general first ionization potential effect and decrease with height for all the elements. This is consistent with the effect of gravitational settling, which, however, cannot totally account for the observed elemental abundances. Other mechanisms that are likely to affect the coronal elemental abundance are discussed.

  4. Solar System dynamics and global-scale dust storms on Mars

    NASA Astrophysics Data System (ADS)

    Shirley, James H.

    2015-05-01

    Global-scale dust storms occur during the southern summer season on Mars in some Mars years but not in others. We present an updated catalog of Mars years including such storms (n = 9) and Mars years without global-scale storms (n = 11) through the year 2013. A remarkable relationship links the occurrence and non-occurrence of global-scale dust storms on Mars with changes in the orbital angular momentum of Mars with respect to the Solar System barycenter (LMars). All of the global-scale dust storms became planet-encircling in both latitude and longitude during periods when LMars was increasing or near maxima. Statistical significance at the 1% level is obtained for the clustering tendency of LMars phases for the 5 mid-season storms with Ls ranging from 208° to 262° (1956, 1971, 1982, 1994, and 2007). The 11 Mars years without global-scale dust storms exhibit mainly decreasing and minimum values of LMars during the first half of the dust storm season; this tendency is statistically significant at the 5% level. A systematic progression is present in the phasing of the solar irradiance and LMars waveforms for the global-scale storm years. LMars phases for the early season global-scale storms of 1977 and 2001 are advanced in phase with respect to those of the mid-season storms, while the phase for the late season storm of 1973 is delayed with respect to those of the mid-season storms cluster. Factors internal to the Mars climate system, such as a spatial redistribution of surface dust from year to year, must be invoked to account for the non-occurrence of global-scale dust storms in five years (1986, 2003, 2005, 2009, and 2013) when the LMars phase was otherwise favorable. Our results suggest that the occurrence of increasing or peak values of LMars immediately prior to and during the Mars dust storm season may be a necessary-but-not-sufficient condition for the initiation of global-scale dust storms on Mars.

  5. Hydrocarbons on Saturns Satellites: Relationship to Interstellar Dust and the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.

    2012-01-01

    To understand the origin and evolution of our Solar System, and the basic components that led to life on Earth, we study interstellar and planetary spectroscopic signatures. The possible relationship of organic material detected in carbonaceous meteorites, interplanetary dust particles (IDPs), comets and the interstellar medium have been the source of speculation over the years as the composition and processes that governed the early solar nebula have been explored to understand the extent to which primitive material survived or became processed. The Cassini VIMS has provided new data relevant to this problem. Three of Saturn's satellites, Phoebe, Iapetus, and Hyperion, are found to have aromatic and aliphatic hydrocarbons on their surfaces. The aromatic hydrocarbon signature (C-H stretching mode at 3.28 micrometers) is proportionally significantly stronger (relative to the aliphatic bands) than that seen in other Solar System bodies (e.g., comets) and materials (Stardust samples, IDPs, meteorites) and the distinctive sub-features of the 3.4 micrometer aliphatic band (CH2 and CH3 groups) are reminiscent of those widely detected throughout the diffuse ISM. Phoebe may be a captured object that originated in the region beyond the present orbit of Neptune, where the solar nebula contained a large fraction of original interstellar ice and dust that was less processed than material closer to the Sun. Debris from Phoebe now resident on Iapetus and Hyperion, as well as o Phoebe itself, thus presents a unique blend of hydrocarbons, amenable to comparisons with interstellar hydrocarbons and other Solar System materials. The dust ring surrounding Saturn, in which Phoebe is embedded, probably originated from a collision with Phoebe. Dust ring particles are the likely source of the organic-bearing materials, and perhaps the recently identified small particles of Fe detected on Saturn's satellites. Lab measurements of the absolute band strengths of representative aliphatic and aromatic molecules, together with measurements from the VIMS data, allow us to calculate the number of C atoms to find the relative abundances of C atoms in the two kinds of organic molecules. The strength of the prominent aromatic C-H stretch band relative to the aliphatic band complex in Phoebe and Iapetus indicates that the relative abundance of aromatic to aliphatic carbon is very large (greater than 200). In contract, the aromatic band is nearly imperceptible in spectra of interplanetary dust particles (IDP), returned samples from comet 91P/Wild 2, insoluable carbonaceous material in most meteorites, and the diffuse interstellar dust (DISM) (although aromatics are known in all these materials-here we consider only the spectroscopic signature)

  6. PROBA2/SWAP EUV images of the large-scale EUV corona up to 3 solar radii: Can we close the gap in coronal magnetic field structure between 1.3 and 2.5 solar radii?

    NASA Astrophysics Data System (ADS)

    De Groof, Anik; Seaton, Daniel B.; Rachmeler, Laurel; Berghmans, David

    2015-04-01

    The EUV telescope PROBA2/SWAP has been observing the solar corona in a bandpass near 17.4 nm since February 2010. SWAP's wide field-of-view provides a unique and continuous view of the extended EUV corona up to 2-3 solar radii. By carefully processing and combining multiple SWAP images, low-noise composites were produced that reveal large-scale, EUV-emitting, coronal structures. These extended structures appear mainly above or at the edges of active regions and typically curve towards the poles. As they persist for multiple Carrington rotations and cannot easily be related to white-light features, they give an interesting view on how the coronal magnetic field is structured between 1.3 and 2-3 solar radii, in the gap between SDO/AIA’s FOV and typical lower boundaries of coronagraph FOVs. With the help of magnetic field models, we analyse the geometry of the extended EUV structures in more detail and compare with sporadic EUV coronagraph measurements up to as close as 1.5Rs. The opportunities that Solar Orbiter’s future observations will bring are explored.

  7. Comprehensive Analyses of Data Collected from TEREK (Solar EUV Telescope) RES-C (Solar X-Ray Spectrometer) and SORS (Solar Radio Spectrometer) on board CORONAS-1 Using Magnetohydrodynamic Models

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1997-01-01

    By using the observed magnetic field data obtained from the Wilcox Solar Observatory at Stanford University as the inputs to a two-dimensional plane-of-sky magnetohydrodynamic model, via numerical relaxation method, we have deduced the plasma and magnetic field parameters for the observed coronal hole by CORONAS-1. The method for this self-consistent MHD analysis will be discussed in detail. Numerical results for the magnetic field configuration, velocity distribution, density and temperature distributions will be presented. We have converted the computed density to polarization brightness in order to directly compare the MHD outputs with observations. Also included is a summary of achievements made during the grant period. This section is summarized into three categories: 1) Visit of Co-Investigators; 2) Presentations; and 3) Papers published, accepted and submitted for publication in journals.

  8. Sixteen Years of Ulysses Interstellar Dust Measurements in the Solar System. I. Mass Distribution and Gas-to-dust Mass Ratio

    NASA Astrophysics Data System (ADS)

    Krüger, Harald; Strub, Peter; Grün, Eberhard; Sterken, Veerle J.

    2015-10-01

    In the early 1990s, contemporary interstellar dust penetrating deep into the heliosphere was identified with the in situ dust detector on board the Ulysses spacecraft. Between 1992 and the end of 2007 Ulysses monitored the interstellar dust stream. The interstellar grains act as tracers of the physical conditions in the local interstellar medium (ISM) surrounding our solar system. Earlier analyses of the Ulysses interstellar dust data measured between 1992 and 1998 implied the existence of a population of “big” interstellar grains (up to 10-13 kg). The derived gas-to-dust-mass ratio was smaller than the one derived from astronomical observations, implying a concentration of interstellar dust in the very local ISM. In this paper we analyze the entire data set from 16 yr of Ulysses interstellar dust measurements in interplanetary space. This paper concentrates on the overall mass distribution of interstellar dust. An accompanying paper investigates time-variable phenomena in the Ulysses interstellar dust data, and in a third paper we present the results from dynamical modeling of the interstellar dust flow applied to Ulysses. We use the latest values for the interstellar hydrogen and helium densities, the interstellar helium flow speed of {v}{ISM∞ }=23.2 {km} {{{s}}}-1, and the ratio of radiation pressure to gravity, β, calculated for astronomical silicates. We find a gas-to-dust mass ratio in the local interstellar cloud of {R}{{g}/{{d}}}={193}-57+85, and a dust density of (2.1 ± 0.6) × 10-24 kg m-3. For a higher inflow speed of 26 {km} {{{s}}}-1, the gas-to-dust mass ratio is 20% higher, and, accordingly, the dust density is lower by the same amount. The gas-to-dust mass ratio derived from our new analysis is compatible with the value most recently determined from astronomical observations. We confirm earlier results that the very local ISM contains “big” (i.e., ≈1 μm sized) interstellar grains. We find a dust density in the local ISM that is a factor of three lower than values implied by earlier analyses.

  9. Intensity oscillations observed with Hinode near the south pole of the Sun: leakage of low frequency magneto-acoustic waves into the solar corona

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Kuridze, D.; Zaqarashvili, T. V.; Dwivedi, B. N.

    2008-04-01

    Aims: We study intensity oscillations in the solar chromosphere and corona, above a quiet-Sun magnetic network. Methods: We analyse the time series of He II 256.32 Å, Fe XI 188.23 Å and Fe XII 195.12 Å spectral lines, observed close to the south pole, by the EUV Imaging Spectrometer (EIS), onboard Hinode. We use a standard wavelet tool, to produce power spectra of intensity oscillations above the magnetic network. Results: For all spectral lines, we detect intensity oscillations of period of approximately seven minutes; and for the He II 256.32 Å line only, we detect an intensity oscillation of period of thirteen minutes, with a probability of approximately 96-98%, which provides the most likely signature of magneto-acoustic wave propagation above the network. Conclusions: We propose that field-free cavity areas under bipolar magnetic canopies, in the vicinity of a magnetic network, are likely to serve as resonators for the magneto-acoustic waves. The cavities with photospheric sound-speed, and granular dimensions, can produce waves with observed periods. These waves may propagate upwards in the transition region/corona and cause observed intensity oscillations.

  10. Attogram dust grains in the solar system. Forming mechanism, properties and dynamics

    NASA Astrophysics Data System (ADS)

    Vasylyev, V. P.; Kalinichenko, A. I.; Vasylyev, S. V.

    2004-02-01

    In this paper we conceptually develop the theory of attogram dust grain formation by the cosmic-ray ion-enhanced brittle microerosion of atmosphereless solar system bodies. According to our theory, the multicharged cosmic ray ions penetrating into the solid material of planetary satellites, asteroids, comets and smaller space bodies give rise to microscopic cylindrical overheated zones and generate mechanical impulses and thermoelastic stresses exceeding the material tensile strength. The impulses may cause micro-scale shattering of the surfaces and the ejection of ultrafine (attogram) dust particles off the parent body. The attogram grains formed by this mechanism (the so-called track-breaking mechanism) have an average mass of 10-19-10-17 g, a very flaky shape and ejection velocities of from tens to hundreds m s-1. Depending on the ejection velocity and a large array of non-gravitational forces, such grains can deposit and accumulate on the parent body surface, orbit around the body thus forming a bound dust cocoon, or finally, escape the body as ultrafine-dust wind. Quantitative data on dust contributions to these varieties of attogram population depending on the sizes and parameters of parent body material are obtained and discussed. The volumetric track-breaking resulting in attogram grain deposition in the ice-rock mixture of cometary nuclei during the whole period of their formation is analysed. Taking the example of Halley's comet we demonstrate that the mechanism under study makes it possible to quantitatively explain the in situ measured considerable excess of attogram grains within the cometary environment in its circum-solar path sections. The problem of track-breaking disintegration of small-sized bodies in the Kuiper Belt, which are permanently subjected to a cosmic-ray ion-enhanced brittle microerosion heavier than in the Main Belt, is investigated. The track-breaking survival timescale for submicron and over hundred micron-sized grains is found to be considerably smaller than the escape timescale of the Poynting-Robertson and plasma drags, as well as the collisional mechanism. Track-breaking can also be competitive to the collisional escape in the range of grain sizes of 1 to 100 microns. A quantitative analysis of the calculations shows that the present theory may adequately explain both the observable micron/submicron dust grain depletion of the Kuiper Belt and the loss of its bulk mass during evolution. Some possible observational tests for the future revealing the predicted populations of attogram dust in the solar system are also discussed.

  11. Interferometry of the e corona.

    PubMed

    Henderson, G

    1970-12-01

    Descriptions are given of Fabry-Perot spectrometer systems used in the total eclipses of 1965, 1966, and 1970 to observe the emission lines 5303 A, Fe XIV and 6374 A, Fe x at different points in the solar corona. Some results of coronal temperature measurements for the 12 November 1966 eclipse are presented. PMID:20094331

  12. Magnetohydrodynamics of atmospheric transients. IV - Nonplane two-dimensional analyses of energy conversion and magnetic field evolution. [during corona following solar flare

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Nakagawa, Y.; Han, S. M.; Dryer, M.

    1982-01-01

    The evolution of the magnetic field and the manner of conversion of thermal energy into different forms in the corona following a solar flare are investigated by means of a nonplane magnetohydrodynamic (MHD) analysis. All three components of magnetic field and velocity are treated in a physically self-consistent manner, with all physical variables as functions of time (t) and two spatial coordinates (r, theta). The difference arising from the initial magnetic field, either twisted (force-free) or non-twisted (potential), is demonstrated. Consideration is given to two initial field topologies (open vs. closed). The results demonstrate that the conversion of magnetic energy is faster for the case of the initially twisted (force-free) field than for the initially untwisted (potential) field. In addition, the twisted field is found to produce a complex structure of the density enhancements.

  13. Microphysics of Waves and Instabilities in the Solar Wind and Their Macro Manifestations in the Corona and Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia Rifai

    2005-01-01

    Investigations of the physical processes responsible for coronal heating and the acceleration of the solar wind were pursued with the use of our recently developed 2D MHD solar wind code and our 1D multifluid code. In particular, we explored: (1) the role of proton temperature anisotropy in the expansion of the solar (2) the role of plasma parameters at the coronal base in the formation of high (3) a three-fluid model of the slow solar wind (4) the heating of coronal loops (5) a newly developed hybrid code for the study of ion cyclotron resonance in wind, speed solar wind streams at mid-latitudes, the solar wind.

  14. 3D Structures & dynamic of the solar corona: inputs from stereovision technics and joigned Ground Based and Space Observatories for the development of Space Weather

    NASA Astrophysics Data System (ADS)

    Portier-Fozzani, F.; Stereo/Secchi Team At Mpae

    While taking into account the difficulties encountered by 3D imaging specialists with usual objects over the last 20 years, we derived appropriate stereoscopic methods that we could use for the very specific case of the solar corona. Tomographic methods which should be better for such optically thin EUV lines need lots of different quasi-simultaneous viewpoints which is not possible. Usual objects reconstructed by stereovision are mainly optical thick objects such as lands, buildings, planes, tanks with variable external luminosity. Directlty applied, classical algorithms give at least big uncertainties due to the light emission integration along the line of sight. Also structures extractions and maching between images are very difficult to derived. Epipolar geometry has to be determined before all other steps and decomposing each image in wavelet spatial frequencies with Multiscale Vision Model for example, improves a lot the extract/match step. Results of such automatization of the method are presented in the paper. Another shorter method is to derive some 3D parameters with an 'a priori geometry' shape of the object observed. It has been used for loops studies. For an emerging active region loops, twist variations together with the expansion have been measured with consequences on the helicity. With such method, sigmoids evolution can be also described. When we limit the 3D study for some structures (such as filaments forming CMEs) to the calculation of the plane of expansion or the degree of twist, some evolution can be partly described from SOHO in the space weather context, which would be even better described when STEREO would take simultaneous images at different angle to take into account more the dynamic of the solar corona with less evolution necessary assumption. The two methods will be mixed in the future with the philosophy of computer learning in 3D image processing for automatic space weather alerts.

  15. Solar wind dominance over the Poynting-Robertson effect in secular orbital evolution of dust particles

    NASA Astrophysics Data System (ADS)

    Kla?ka, J.

    2014-09-01

    Properties of the solar wind are discussed and applied to the effect of the wind on motion of bodies in the Solar system. The velocity density function for the solar wind constituents is given by the ?-distribution. The relevant contributions to the solar wind action contain also the sputtering and reflection components in addition to direct impact. The solar wind effect is more important than the action of the solar electromagnetic radiation, as for the secular orbital evolution. The acceleration of a body under the action of the solar radiation, electromagnetic and corpuscular, is proportional to [1 - (1 + ? 1 / overline{Q} ^' }_{pr})v \\cdot hat{r}/c] hat{r}- (1 + ? 2 / overline{Q} ^' }_{pr}) v /c, approximately. Here, overline{Q} ^' }_{pr} is the dimensionless efficiency factor of the radiation pressure, v is the body's velocity at the position vector r with respect to the Sun, c is the speed of light and ?1 ? 1.1, ?2 ? 1.4. The dimensionless cross-section the dust grain presents to wind pressure is about 4.7, while the conventional value is 1.0.

  16. Experiment with the SPR-N Instrument Onboard the CORONAS-F Satellite: Polarization, Temporal, and Spectral Characteristics of the Hard X-Ray of the Solar Flares

    NASA Astrophysics Data System (ADS)

    Zhitnik, I. A.; Logachev, Yu. I.; Bogomolov, A. V.; Bogomolov, V. V.; Denisov, Yu. I.; Kavanosyan, S. S.; Kuznetsov, S. N.; Morozov, O. V.; Myagkova, I. N.; Svertilov, S. I.; Ignatiev, A. P.; Oparin, S. N.; Pertsov, A. A.

    During the experiment with a polarimeter SPR-N onboard the CORONAS-F satellite, polarization of the X-ray of solar flares within the energy ranges of 20-40, 40-60, and 60-100 keV was measured according to Thomson scattering of X-ray photons in Beryllium plates with the following registration of the scattered photons by means of a system of six scintillation detectors based on Cs I(Na). As a result of observations for the period from August 2001 till December 2005, hard X-ray radiation was registered for 128 solar flares. During the event of 29 October 2003 degree of polarization of the radiation within the channels 40-60 and 60-100 keV exceeded 70 %, and within the channel 20-40 keV—50 %. Time profiles of the part of polarized radiation, orientation of the maximum polarization on the solar disc were obtained. The upper limit of the polarized radiation part for 25 events was estimated at the level of 8-40 %. For all registered flares time profiles (with resolution of up to 4 s) were registered, hard X-ray fluxes were determined, and spectrum factor was estimated. For the most powerful events which were observed during October-November 2003 and on January 20, 2005, the data on the dynamics of the characteristics of thermal and non-thermal components of X-radiation were obtained.

  17. Polarization, temporal, and spectral parameters of solar flare hard X-rays as measured by the SPR-N instrument onboard the CORONAS-F satellite

    NASA Astrophysics Data System (ADS)

    Zhitnik, I. A.; Logachev, Yu. I.; Bogomolov, A. V.; Denisov, Yu. I.; Kavanosyan, S. S.; Kuznetsov, S. N.; Morozov, O. V.; Myagkova, I. N.; Svertilov, S. I.; Ignat'ev, A. P.; Oparin, S. N.; Pertsov, A. A.; Tindo, I. P.

    2006-03-01

    The SPR-N polarimeter onboard the CORONAS-F satellite allows the X-ray polarization degree to be measured in energy ranges of 20 40, 40 60, and 60 100 keV. To measure the polarization, the method based on the Thompson scattering of solar X-ray photons in beryllium plates was used; the scattered photons were detected with a system of six CsI(Na) scintillation sensors. During the observation period from August 2001 to January 2005, the SPR-N instrument detected the hard X-rays of more than 90 solar flares. The October 29, 2003, event showed a significant polarization degree exceeding 70% in channels of E = 40 60 and 60 100 keV and about 50% in the 20-to 40-keV channel. The time profile of the polarization degree and the projection of the polarization plane onto the solar disk were determined. For 25 events, the upper limits of the part of polarized X-rays were estimated at 8 to 40%. For all the flares detected, time profiles (with a resolution of up to 4 s), hard X-ray radiation fluxes, and spectral index estimates were obtained.

  18. In-situ dust detection as a tool to study dust-plasma interactions in the Solar System

    NASA Astrophysics Data System (ADS)

    Srama, R.; Hsu, H. W.; Moragas-Klostermeyer, G.; Postberg, F.; Kempf, S.

    2014-12-01

    The unique results of the Cassini Cosmic Dust Analyzer onboard Cassini revealed the potential of in-situ dust detection for the study of dust-plasma interactions. In-situ techniques are charge induction, impact ionization, momentum transfer, foil depolarization, light scattering or mass spectrometry. Modern instruments like dust telescopes or the Cosmic Dust Analyzer (CDA) onboard Cassini combine different methods in one sensor. This paper gives an overview about in-situ dust measurements in space using direct detection methods. A focus is given to charge induction and impact ionization and their measurement thresholds are described. Major CDA discoveries are summarized and new results of nano-dust stream measurements in the outer Saturnian system are presented. These data show periodicities related to Saturn and its moons, leading to a deeper understanding of nano-dust origins and dynamics in Saturn's magnetosphere.

  19. Dust Populations in the Outer Solar System: 10 years of monitoring by CASSINI-CDA

    NASA Astrophysics Data System (ADS)

    Altobelli, N.; Kempf, S.; Postberg, F.; Horanyi, M.; Srama, R.

    2015-10-01

    The analysis of different CDA subsystems data, acquired since SOI, reveals that the Saturnian system is permanently crossed by dust grains originating from the Interplanetary medium, as well as from the neighboring interstellar medium surrounding the Solar System. We observe two main types of particles: on the one hand, those with low injection velocity with respect to Saturn, and whose flux is significantly enhanced by gravitation focusing. On the other hand, particles with fast injection velocities, essentially unperturbed by gravitation focusing. The fast grains are found to be interstellar dust (ISD) from the Local Interstellar Cloud (LIC), as well as particles on retrograde orbits around the Sun, most likely dust released by Halley-type comets. The dynamics of the slow grains is found to be compatible with collisional debris from the Kuiper-Belt, migrating inward the Solar System under influence of the Poynting-Robertson drag. Alternatively, we show that the origin of the slow grains entering the Saturnian System can be the recently discovered cometary activity of Centaurs.

  20. Structure of Cometary and Interplanetary Dust, a Clue to the Formation and Early Evolution of Dust Particles in the Solar System

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A. C.; Lasue, J.; Hadamcik, E.; Botet, R.

    2007-10-01

    Cometary dust particles have been suspected to be fragile since the Giotto and Vega missions to comet Halley. More recently, numerous observations of the solar light scattered by dust particles in comet Hale-Bopp coma, together with versatile numerical simulations, have allowed us to suggest that these particles are likely to be built of both very fluffy aggregates and of more compact grains, with (to the first order) equivalent proportions in mass of absorbing material and transparent silicates [1,2]. The same approach, used to fit zodiacal light observations, indicates that a significant proportion of fluffy absorbing particles is found in the interplanetary dust cloud [3]. Laboratory simulations also lead to similar results, with e.g. polarimetric phase curves obtained for agglomerates of magnesio-ferrosilica comparable to those observed for cometary dust [4]. These estimations are now confirmed by the analysis of Stardust samples, with, e.g. evidence for both dense grains and aggregates with low bulk density within the coma of comet Wild 2 [5]. The relevance of such a structure for the formation and early evolution of dust particles in the solar system will be discussed. [1] Lasue & Levasseur-Regourd, JQSRT 100, 220-236, 2006. [2] Levasseur-Regourd, Mukai, Lasue, Okada, PSS, 55, 1010-1020, 2007. [3] Lasue, Levasseur-Regourd, Fray, Cottin, A&A, in press, 2007 [4] Hadamcik, Renard, Rietmeijer, Levasseur-Regourd et al., Icarus, in press, 2007 [5] Hoerz, Bastien, Borg, Bradley et al., Science 314, 1716 - 1719, 2006

  1. Microphysics of Waves and Instabilities in the Solar Wind and their Macro Manifestations in the Corona and Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph (Technical Monitor); Habbal, Shadia Rifai

    2004-01-01

    Investigations of the physical processes responsible for coronal heating and the acceleration of the solar wind were pursued with the use of our recently developed 2D MHD solar wind code and our 1D multifluid code. In particular, we explored (1) the role of proton temperature anisotropy in the expansion of the solar wind, (2) the role of plasma parameters at the coronal base in the formation of high speed solar wind streams at mid-latitudes, and (3) the heating of coronal loops.

  2. Hybrid Simulations of Ion Cyclotron Waves in Non-uniform Magnetic Field: Application to the Corona and Solar Wind

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Russell, C. T.; Jian, L.; Isenberg, P. A.; Wei, H.

    2013-12-01

    The presence of ions with perpendicular temperature larger than parallel in the corona is expected to result in the generation of ion cyclotron waves. Spacecraft observations in the interplanetary medium provide evidence for the presence of ion cyclotron waves generated near the Sun. In this presentation we examine the possibility that the observed ion cyclotron waves are generated in the corona and propagate into the interplanetary medium. To this end, we perform 2.5-D electromagnetic hybrid (kinetic ions, fluid electrons) simulations with non-uniform magnetic field. By initializing ions with perpendicular temperature larger than parallel in a finite region of space, we investigate the generation of ion cyclotron waves in the high magnetic field region and their propagation to larger radial distances with weaker magnetic field strength. Specifically, we examine the propagation properties of the waves and the extent to which they are impacted by the presence of non-uninform magnetic field and nonlinear processes. Results show that at least in some cases, wave propagation is coupled to the outward motion (along the magnetic field) of the ions responsible for the generation of the waves. In such cases, wave generation may be ongoing for regions much larger than the initial source region where ions with temperature anisotropy are initialized. In this study we examine how the properties of ion cyclotron waves (e.g. spectral power, polarization) and their radial dependence vary with changes in the magnetic field model, level of temperature anisotropy, the nature of source ions (e.g. O5+; He++) and relative speed between the various ion species.

  3. ON A TRANSITION FROM SOLAR-LIKE CORONAE TO ROTATION-DOMINATED JOVIAN-LIKE MAGNETOSPHERES IN ULTRACOOL MAIN-SEQUENCE STARS

    SciTech Connect

    Schrijver, Carolus J.

    2009-07-10

    For main-sequence stars beyond spectral type M5, the characteristics of magnetic activity common to warmer solar-like stars change into the brown-dwarf domain: the surface magnetic field becomes more dipolar and the evolution of the field patterns slows, the photospheric plasma is increasingly neutral and decoupled from the magnetic field, chromospheric and coronal emissions weaken markedly, and the efficiency of rotational braking rapidly decreases. Yet, radio emission persists, and has been argued to be dominated by electron-cyclotron maser emission instead of the gyrosynchrotron emission from warmer stars. These properties may signal a transition in the stellar extended atmosphere. Stars warmer than about M5 have a solar-like corona and wind-sustained heliosphere in which the atmospheric activity is powered by convective motions that move the magnetic field. Stars cooler than early-L, in contrast, may have a Jovian-like rotation-dominated magnetosphere powered by the star's rotation in a scaled-up analog of the magnetospheres of Jupiter and Saturn. A dimensional scaling relationship for rotation-dominated magnetospheres by Fan et al. is consistent with this hypothesis.

  4. Plasma Properties and Magnetic Field Structure of the Solar Corona, Based on Coordinated Max 1991 Observations from SERTS, the VLA, and Magnetographs

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.

    1996-01-01

    The purposes of this investigation are to determine the plasma properties and magnetic field structure of the solar corona using coordinated observations obtained with NASA/GSFC's Solar EUV Rocket Telescope and Spectrograph (SERTS), the Very Large Array (VLA), and magnetographs. The observations were obtained under the auspices of NASA's Max '91 program. The methods of achieving the stated purposes are to use SERTS spectra and spectroheliograms to determine coronal plasma properties such as temperature, density, and emission measure. These properties are subsequently used to calculate the intensity of the thermal bremsstrahlung microwave emission from the coronal plasma (the minimum microwave intensity expected from the emitting plasma). This, in turn, can be used to establish which emission mechanism(s) contribute to the observed microwave emission. Because both mechanisms that may contribute to quiescent active regio