Sample records for solar radiation model

  1. Estimating solar radiation for plant simulation models

    NASA Technical Reports Server (NTRS)

    Hodges, T.; French, V.; Leduc, S.

    1985-01-01

    Five algorithms producing daily solar radiation surrogates using daily temperatures and rainfall were evaluated using measured solar radiation data for seven U.S. locations. The algorithms were compared both in terms of accuracy of daily solar radiation estimates and terms of response when used in a plant growth simulation model (CERES-wheat). Requirements for accuracy of solar radiation for plant growth simulation models are discussed. One algorithm is recommended as being best suited for use in these models when neither measured nor satellite estimated solar radiation values are available.

  2. Developing a new solar radiation estimation model based on Buckingham theorem

    NASA Astrophysics Data System (ADS)

    Ekici, Can; Teke, Ismail

    2018-06-01

    While the value of solar radiation can be expressed physically in the days without clouds, this expression becomes difficult in cloudy and complicated weather conditions. In addition, solar radiation measurements are often not taken in developing countries. In such cases, solar radiation estimation models are used. Solar radiation prediction models estimate solar radiation using other measured meteorological parameters those are available in the stations. In this study, a solar radiation estimation model was obtained using Buckingham theorem. This theory has been shown to be useful in predicting solar radiation. In this study, Buckingham theorem is used to express the solar radiation by derivation of dimensionless pi parameters. This derived model is compared with temperature based models in the literature. MPE, RMSE, MBE and NSE error analysis methods are used in this comparison. Allen, Hargreaves, Chen and Bristow-Campbell models in the literature are used for comparison. North Dakota's meteorological data were used to compare the models. Error analysis were applied through the comparisons between the models in the literature and the model that is derived in the study. These comparisons were made using data obtained from North Dakota's agricultural climate network. In these applications, the model obtained within the scope of the study gives better results. Especially, in terms of short-term performance, it has been found that the obtained model gives satisfactory results. It has been seen that this model gives better accuracy in comparison with other models. It is possible in RMSE analysis results. Buckingham theorem was found useful in estimating solar radiation. In terms of long term performances and percentage errors, the model has given good results.

  3. Solar Radiation Estimated Through Mesoscale Atmospheric Modeling over Northeast Brazil

    NASA Astrophysics Data System (ADS)

    de Menezes Neto, Otacilio Leandro; Costa, Alexandre Araújo; Ramalho, Fernando Pinto; de Maria, Paulo Henrique Santiago

    2009-03-01

    The use of renewable energy sources, like solar, wind and biomass is rapidly increasing in recent years, with solar radiation as a particularly abundant energy source over Northeast Brazil. A proper quantitative knowledge of the incoming solar radiation is of great importance for energy planning in Brazil, serving as basis for developing future projects of photovoltaic power plants and solar energy exploitation. This work presents a methodology for mapping the incoming solar radiation at ground level for Northeast Brazil, using a mesoscale atmospheric model (Regional Atmospheric Modeling System—RAMS), calibrated and validated using data from the network of automatic surface stations from the State Foundation for Meteorology and Water Resources from Ceará (Fundação Cearense de Meteorologia e Recursos Hídricos- FUNCEME). The results showed that the model exhibits systematic errors, overestimating surface radiation, but that, after the proper statistical corrections, using a relationship between the model-predicted cloud fraction, the ground-level observed solar radiation and the incoming solar radiation estimated at the top of the atmosphere, a correlation of 0.92 with a confidence interval of 13.5 W/m2 is found for monthly data. Using this methodology, we found an estimate for annual average incoming solar radiation over Ceará of 215 W/m2 (maximum in October: 260 W/m2).

  4. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  5. The virtual enhancements - solar proton event radiation (VESPER) model

    NASA Astrophysics Data System (ADS)

    Aminalragia-Giamini, Sigiava; Sandberg, Ingmar; Papadimitriou, Constantinos; Daglis, Ioannis A.; Jiggens, Piers

    2018-02-01

    A new probabilistic model introducing a novel paradigm for the modelling of the solar proton environment at 1 AU is presented. The virtual enhancements - solar proton event radiation model (VESPER) uses the European space agency's solar energetic particle environment modelling (SEPEM) Reference Dataset and produces virtual time-series of proton differential fluxes. In this regard it fundamentally diverges from the approach of existing SPE models that are based on probabilistic descriptions of SPE macroscopic characteristics such as peak flux and cumulative fluence. It is shown that VESPER reproduces well the dataset characteristics it uses, and further comparisons with existing models are made with respect to their results. The production of time-series as the main output of the model opens a straightforward way for the calculation of solar proton radiation effects in terms of time-series and the pairing with effects caused by trapped radiation and galactic cosmic rays.

  6. Curve fitting methods for solar radiation data modeling

    NASA Astrophysics Data System (ADS)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-10-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R2. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  7. Curve fitting methods for solar radiation data modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my

    2014-10-24

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both withmore » two terms) gives better results as compare with the other fitting methods.« less

  8. Measurements and Modeling of Radiation Exposure Due to Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Beck, P.; Conrad Wp6-Sgb Team

    Dose assessment procedures of cosmic radiation to aircraft crew are introduced in most of the European countries according the corresponding European directive and national regulations 96 29 Euratom However the radiation exposure due to solar particle events is still a matter of scientific research Several in-flight measurements were performed during solar storm conditions First models to estimate the exposure due to solar particle events were discussed previously Recently EURADOS European Radiation Dosimetry Group http www eurados org started to coordinate research activities in model improvements for dose assessment of solar particle events The coordinated research is a work package of the European research project CONRAD Coordinated Network for Radiation Dosimetry on complex mixed radiation fields at workplaces Major aim of sub group B of that work package is the validation of models for dose assessment of solar particle events using data from neutron ground level monitors in-flight measurement results obtained during a solar particle event and proton satellite data The paper describes the current status of obtainable solar storm measurements and gives an overview of the existing models for dose assessment of solar particle events in flight altitudes

  9. Evaluation of different models to estimate the global solar radiation on inclined surface

    NASA Astrophysics Data System (ADS)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  10. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; NeegaardParker, Linda

    2005-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for defining charged particle environments over an energy range from 0.01 keV to 1 MeV for hydrogen ions, helium ions, and electrons. The SSRE model provides the free field charged particle environment required for characterizing energy deposition per unit mass, charge deposition, and dose rate dependent conductivity processes required to evaluate radiation dose and internal (bulk) charging processes in the solar sail membrane in interplanetary space. Solar wind and energetic particle measurements from instruments aboard the Ulysses spacecraft in a solar, near-polar orbit provide the particle data over a range of heliospheric latitudes used to derive the environment that can be used for radiation and charging environments for both high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar missions. This paper describes the techniques used to model comprehensive electron, proton, and helium spectra over the range of particle energies of significance to energy and charge deposition in thin (less than 25 micrometers) solar sail materials.

  11. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; Neergaard, Linda F.

    2004-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for characterizing the radiation dose and internal charging environments in the solar wind. The SSRE model defines the 0.01 keV to 1 MeV charged particle environment for use in testing the radiation dose vulnerability of candidate solar sail materials and for use in evaluating the internal charging effects in the interplanetary environment. Solar wind and energetic particle instruments aboard the Ulysses spacecraft provide the particle data used to derive the environments for the high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar sail missions. Ulysses is the only spacecraft to sample high latitude solar wind environments far from the ecliptic plane and is therefore uniquely capable of providing the information necessary for defining radiation environments for the Solar Polar Imager spacecraft. Cold plasma moments are used to derive differential flux spectra based on Kappa distribution functions. Energetic particle flux measurements are used to constrain the high energy, non-thermal tails of the distribution functions providing a comprehensive electron, proton, and helium spectra from less than 0.01 keV to a few MeV.

  12. [Comparison of three daily global solar radiation models].

    PubMed

    Yang, Jin-Ming; Fan, Wen-Yi; Zhao, Ying-Hui

    2014-08-01

    Three daily global solar radiation estimation models ( Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al.) were analyzed and compared using data of 13 weather stations from 1982 to 2012 from three northeastern provinces and eastern Inner Mongolia. After cross-validation analysis, the result showed that mean absolute error (MAE) for each model was 1.71, 2.83 and 1.68 MJ x m(-2) x d(-1) respectively, showing that Å-P model and model provided by Liu Ke-qun et al. which used percentage of sunshine had an advantage over Thornton-Running model which didn't use percentage of sunshine. Model provided by Liu Ke-qun et al. played a good effect on the situation of non-sunshine, and its MAE and bias percentage were 18.5% and 33.8% smaller than those of Å-P model, respectively. High precision results could be obtained by using the simple linear model of Å-P. Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al. overvalued daily global solar radiation by 12.2%, 19.2% and 9.9% respectively. MAE for each station varied little with the spatial change of location, and annual MAE decreased with the advance of years. The reason for this might be that the change of observation accuracy caused by the replacement of radiation instrument in 1993. MAEs for rainy days, non-sunshine days and warm seasons of the three models were greater than those for days without rain, sunshine days and cold seasons respectively, showing that different methods should be used for different weather conditions on estimating solar radiation with meteorological elements.

  13. Modelling of aircrew radiation exposure during solar particle events

    NASA Astrophysics Data System (ADS)

    Al Anid, Hani Khaled

    show a very different response during anisotropic events, leading to variations in aircrew radiation doses that may be significant for dose assessment. To estimate the additional exposure due to solar flares, a model was developed using a Monte-Carlo radiation transport code, MCNPX. The model transports an extrapolated particle spectrum based on satellite measurements through the atmosphere using the MCNPX analysis. This code produces the estimated flux at a specific altitude where radiation dose conversion coefficients are applied to convert the particle flux into effective and ambient dose-equivalent rates. A cut-off rigidity model accounts for the shielding effects of the Earth's magnetic field. Comparisons were made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during Ground Level Enhancements 60 and 65. An anisotropy analysis that uses neutron monitor responses and the pitch angle distribution of energetic solar particles was used to identify particle anisotropy for a solar event in December 2006. In anticipation of future commercial use, a computer code has been developed to implement the radiation dose assessment model for routine analysis. Keywords: Radiation Dosimetry, Radiation Protection, Space Physics.

  14. Improved Statistical Model Of 10.7-cm Solar Radiation

    NASA Technical Reports Server (NTRS)

    Vedder, John D.; Tabor, Jill L.

    1993-01-01

    Improved mathematical model simulates short-term fluctuations of flux of 10.7-cm-wavelength solar radiation during 91-day averaging period. Called "F10.7 flux", important as measure of solar activity and because it is highly correlated with ultraviolet radiation causing fluctuations in heating and density of upper atmosphere. F10.7 flux easily measureable at surface of Earth.

  15. An All Sky Instantaneous Shortwave Solar Radiation Model for Mountainous Terrain

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Li, X.; She, J.

    2017-12-01

    In mountainous terrain, solar radiation shows high heterogeneity in space and time because of strong terrain shading effects and significant variability of cloud cover. While existing GIS-based solar radiation models simulate terrain shading effects with relatively high accuracy and models based on satellite datasets consider fine scale cloud attenuation processes, none of these models have considered the geometrical relationships between sun, cloud, and terrain, which are important over mountainous terrain. In this research we propose sky cloud maps to represent cloud distribution in a hemispherical sky using MODIS cloud products. By overlaying skyshed (visible area in the hemispherical sky derived from DEM), sky map, and sky cloud maps, we are able to consider both terrain shading effects and anisotropic cloud attenuation in modeling instantaneous direct and diffuse solar radiation in mountainous terrain. The model is evaluated with field observations from three automatic weather stations in the Tizinafu watershed in the Kunlun Mountains of northwestern China. Overall, under all sky conditions, the model overestimates instantaneous global solar radiation with a mean absolute relative difference (MARD) of 22%. The model is also evaluated under clear sky (clearness index of more than 0.75) and partly cloudy sky (clearness index between 0.35 and 0.75) conditions with MARDs of 5.98% and 23.65% respectively. The MARD for very cloudy sky (clearness index less than 0.35) is relatively high. But these days occur less than 1% of the time. The model is sensitive to DEM data error, algorithms used in delineating skyshed, and errors in MODIS atmosphere and cloud products. Our model provides a novel approach for solar radiation modeling in mountainous areas.

  16. A three-dimensional model of solar radiation transfer in a non-uniform plant canopy

    NASA Astrophysics Data System (ADS)

    Levashova, N. T.; Mukhartova, Yu V.

    2018-01-01

    A three-dimensional (3D) model of solar radiation transfer in a non-uniform plant canopy was developed. It is based on radiative transfer equations and a so-called turbid medium assumption. The model takes into account the multiple scattering contributions of plant elements in radiation fluxes. These enable more accurate descriptions of plant canopy reflectance and transmission in different spectral bands. The model was applied to assess the effects of plant canopy heterogeneity on solar radiation transmission and to quantify the difference in a radiation transfer between photosynthetically active radiation PAR (=0.39-0.72 μm) and near infrared solar radiation NIR (Δλ = 0.72-3.00 μm). Comparisons of the radiative transfer fluxes simulated by the 3D model within a plant canopy consisted of sparsely planted fruit trees (plant area index, PAI - 0.96 m2 m-2) with radiation fluxes simulated by a one-dimensional (1D) approach, assumed horizontal homogeneity of plant and leaf area distributions, showed that, for sunny weather conditions with a high solar elevation angle, an application of a simplified 1D approach can result in an underestimation of transmitted solar radiation by about 22% for PAR, and by about 26% for NIR.

  17. Absorption of Solar Radiation by Clouds: Observations Versus Models

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M. H.; Minnis, P.; Corsetti, L.; Dutton, E. G.; Forgan, B. W.; Garber, D. P.; Gates, W. L.; Hack, J. J.; Harrison, E. F.; hide

    1995-01-01

    There has been a long history of unexplained anomalous absorption of solar radiation by clouds. Collocated satellite and surface measurements of solar radiation at five geographically diverse locations showed significant solar absorption by clouds, resulting in about 25 watts per square meter more global-mean absorption by the cloudy atmosphere than predicted by theoretical models. It has often been suggested that tropospheric aerosols could increase cloud absorption. But these aerosols are temporally and spatially heterogeneous, whereas the observed cloud absorption is remarkably invariant with respect to season and location. Although its physical cause is unknown, enhanced cloud absorption substantially alters our understanding of the atmosphere's energy budget.

  18. Improved Solar-Radiation-Pressure Models for GPS Satellites

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  19. DNDO Report: Predicting Solar Modulation Potentials for Modeling Cosmic Background Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behne, Patrick Alan

    The modeling of the detectability of special nuclear material (SNM) at ports and border crossings requires accurate knowledge of the background radiation at those locations. Background radiation originates from two main sources, cosmic and terrestrial. Cosmic background is produced by high-energy galactic cosmic rays (GCR) entering the atmosphere and inducing a cascade of particles that eventually impact the earth’s surface. The solar modulation potential represents one of the primary inputs to modeling cosmic background radiation. Usosokin et al. formally define solar modulation potential as “the mean energy loss [per unit charge] of a cosmic ray particle inside the heliosphere…” Modulationmore » potential, a function of elevation, location, and time, shares an inverse relationship with cosmic background radiation. As a result, radiation detector thresholds require adjustment to account for differing background levels, caused partly by differing solar modulations. Failure to do so can result in higher rates of false positives and failed detection of SNM for low and high levels of solar modulation potential, respectively. This study focuses on solar modulation’s time dependence, and seeks the best method to predict modulation for future dates using Python. To address the task of predicting future solar modulation, we utilize both non-linear least squares sinusoidal curve fitting and cubic spline interpolation. This material will be published in transactions of the ANS winter meeting of November, 2016.« less

  20. Highly Physical Solar Radiation Pressure Modeling During Penumbra Transitions

    NASA Astrophysics Data System (ADS)

    Robertson, Robert V.

    Solar radiation pressure (SRP) is one of the major non-gravitational forces acting on spacecraft. Acceleration by radiation pressure depends on the radiation flux; on spacecraft shape, attitude, and mass; and on the optical properties of the spacecraft surfaces. Precise modeling of SRP is needed for dynamic satellite orbit determination, space mission design and control, and processing of data from space-based science instruments. During Earth penumbra transitions, sunlight is passing through Earth's lower atmosphere and, in the process, its path, intensity, spectral composition, and shape are significantly affected. This dissertation presents a new method for highly physical SRP modeling in Earth's penumbra called Solar radiation pressure with Oblateness and Lower Atmospheric Absorption, Refraction, and Scattering (SOLAARS). The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. This dissertation aims to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects due to solar radiation passing through the troposphere and stratosphere are modeled, and the results are tabulated to significantly reduce computational cost. SOLAARS includes new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the spatial and temporal variability in lower atmospheric conditions. A new approach to modeling the influence of Earth's polar flattening draws on past work to provide a relatively simple but accurate method for this important effect. Previous penumbra SRP models tend to lie at two extremes of complexity and computational cost, and so the significant improvement in accuracy provided by the complex

  1. A semi-empirical model for estimating surface solar radiation from satellite data

    NASA Astrophysics Data System (ADS)

    Janjai, Serm; Pattarapanitchai, Somjet; Wattan, Rungrat; Masiri, Itsara; Buntoung, Sumaman; Promsen, Worrapass; Tohsing, Korntip

    2013-05-01

    This paper presents a semi-empirical model for estimating surface solar radiation from satellite data for a tropical environment. The model expresses solar irradiance as a semi-empirical function of cloud index, aerosol optical depth, precipitable water, total column ozone and air mass. The cloud index data were derived from MTSAT-1R satellite, whereas the aerosol optical depth data were obtained from MODIS/Terra satellite. The total column ozone data were derived from OMI/AURA satellite and the precipitable water data were obtained from NCEP/NCAR. A five year period (2006-2010) of these data and global solar irradiance measured at four sites in Thailand namely, Chiang Mai (18.78 °N, 98.98 °E), Nakhon Pathom (13.82 °N, 100.04 °E), Ubon Ratchathani (15.25 °N, 104.87 °E) and Songkhla (7.20 °N, 100.60 °E), were used to derive the coefficients of the model. To evaluate its performance, the model was used to calculate solar radiation at four sites in Thailand namely, Phisanulok (16.93 °N, 100.24 °E), Kanchanaburi (14.02 °N, 99.54 °E), Nongkhai (17.87 °N, 102.72 °E) and Surat Thani (9.13 °N, 99.15 °E) and the results were compared with solar radiation measured at these sites. It was found that the root mean square difference (RMSD) between measured and calculated values of hourly solar radiation was in the range of 25.5-29.4%. The RMSD is reduced to 10.9-17.0% for the case of monthly average hourly radiation. The proposed model has the advantage in terms of the simplicity for applications and reasonable accuracy of the results.

  2. Mathematical model of solar radiation based on climatological data from NASA SSE

    NASA Astrophysics Data System (ADS)

    Obukhov, S. G.; Plotnikov, I. A.; Masolov, V. G.

    2018-05-01

    An original model of solar radiation arriving at the arbitrarily oriented surface has been developed. The peculiarity of the model is that it uses numerical values of the atmospheric transparency index and the surface albedo from the NASA SSE database as initial data. The model is developed in the MatLab/Simulink environment to predict the main characteristics of solar radiation for any geographical point in Russia, including those for territories with no regular actinometric observations.

  3. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  4. A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China

    PubMed Central

    Li, Huashan; Cao, Fei; Wang, Xianlong; Ma, Weibin

    2014-01-01

    Since air temperature records are readily available around the world, the models based on air temperature for estimating solar radiation have been widely accepted. In this paper, a new model based on Hargreaves and Samani (HS) method for estimating monthly average daily global solar radiation is proposed. With statistical error tests, the performance of the new model is validated by comparing with the HS model and its two modifications (Samani model and Chen model) against the measured data at 65 meteorological stations in China. Results show that the new model is more accurate and robust than the HS, Samani, and Chen models in all climatic regions, especially in the humid regions. Hence, the new model can be recommended for estimating solar radiation in areas where only air temperature data are available in China. PMID:24605046

  5. Potential solar radiation and land cover contributions to digital climate surface modeling

    NASA Astrophysics Data System (ADS)

    Puig, Pol; Batalla, Meritxell; Pesquer, Lluís; Ninyerola, Miquel

    2016-04-01

    Overview: We have designed a series of ad-hoc experiments to study the role of factors that a priori have a strong weight in developing digital models of temperature and precipitation, such as solar radiation and land cover. Empirical test beds have been designed to improve climate (mean air temperature and total precipitation) digital models using statistical general techniques (multiple regression) with residual correction (interpolated with inverse weighting distance). Aim: Understand what roles these two factors (solar radiation and land cover) play to incorporate them into the process of generating mapping of temperature and rainfall. Study area: The Iberian Peninsula and supported in this, Catalonia and the Catalan Pyrenees. Data: The dependent variables used in all experiments relate to data from meteorological stations precipitation (PL), mean temperature (MT), average temperature minimum (MN) and maximum average temperature (MX). These data were obtained monthly from the AEMET (Agencia Estatal de Meteorología). Data series of stations covers the period between 1950 to 2010. Methodology: The idea is to design ad hoc, based on a sample of more equitable space statistician, to detect the role of radiation. Based on the influence of solar radiation on the temperature of the air from a quantitative point of view, the difficulty in answering this lies in the fact that there are lots of weather stations located in areas where solar radiation is similar. This suggests that the role of the radiation variable remains "off" when, instead, we intuitively think that would strongly influence the temperature. We have developed a multiple regression analysis between these meteorological variables as the dependent ones (Temperature and rainfall), and some geographical variables: altitude (ALT), latitude (LAT), continentality (CON) and solar radiation (RAD) as the independent ones. In case of the experiment with land covers, we have used the NDVI index as a proxy of land

  6. A rapid radiative transfer model for reflection of solar radiation

    NASA Technical Reports Server (NTRS)

    Xiang, X.; Smith, E. A.; Justus, C. G.

    1994-01-01

    A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.

  7. Convenient models of the atmosphere: optics and solar radiation

    NASA Astrophysics Data System (ADS)

    Alexander, Ginsburg; Victor, Frolkis; Irina, Melnikova; Sergey, Novikov; Dmitriy, Samulenkov; Maxim, Sapunov

    2017-11-01

    Simple optical models of clear and cloudy atmosphere are proposed. Four versions of atmospheric aerosols content are considered: a complete lack of aerosols in the atmosphere, low background concentration (500 cm-3), high concentrations (2000 cm-3) and very high content of particles (5000 cm-3). In a cloud scenario, the model of external mixture is assumed. The values of optical thickness and single scattering albedo for 13 wavelengths are calculated in the short wavelength range of 0.28-0.90 µm, with regard to the molecular absorption bands, that is simulated with triangle function. A comparison of the proposed optical parameters with results of various measurements and retrieval (lidar measurement, sampling, processing radiation measurements) is presented. For a cloudy atmosphere models of single-layer and two-layer atmosphere are proposed. It is found that cloud optical parameters with assuming the "external mixture" agrees with retrieved values from airborne observations. The results of calculating hemispherical fluxes of the reflected and transmitted solar radiation and the radiative divergence are obtained with the Delta-Eddington approach. The calculation is done for surface albedo values of 0, 0.5, 0.9 and for spectral values of the sandy surface. Four values of solar zenith angle: 0°, 30°, 40° and 60° are taken. The obtained values are compared with data of radiative airborne observations. Estimating the local instantaneous radiative forcing of atmospheric aerosols and clouds for considered models is presented together with the heating rate.

  8. Diagnosing Model Errors in Simulation of Solar Radiation on Inclined Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit

    2016-11-21

    Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results show significant differences between two highly used isotropic transposition models with one substantially underestimating the diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study canmore » be used as a guide for future development of physics-based transposition models.« less

  9. Solar radiation on Mars: Update 1990

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.

    1990-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. The authors present a procedure and solar radiation related data from which the diurnally and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras and computation based on multiple wavelength and multiple scattering of the solar radiation. This work is an update to NASA-TM-102299 and includes a refinement of the solar radiation model.

  10. Variation of solar cell sensitivity and solar radiation on tilted surfaces

    NASA Technical Reports Server (NTRS)

    Klucher, T. M.

    1978-01-01

    An empirical study was performed (1) to evaluate the validity of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces and (2) to determine the variation of solar cell sensitivity to solar radiation over a wide range of atmospheric condition. Evaluation of the insolation data indicates that the isotropic sky model of Liu and Jordan underestimates the amount of solar radiation falling on tilted surfaces by as much as 10%. An anisotropic-clear-sky model proposed by Temps and Coulson was also evaluated and found to be deficient under cloudy conditions. A new model, formulated herein, reduced the deviations between measured and predicted insolation to less than 3%. Evaluation of solar cell sensitivity data indicates small change (2-3%) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells as done by Treble is discussed.

  11. Performance Analysis of Transposition Models Simulating Solar Radiation on Inclined Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit

    2016-06-02

    Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined photovoltaic panels. Following numerous studies comparing the performance of transposition models, this work aims to understand the quantitative uncertainty in state-of-the-art transposition models and the sources leading to the uncertainty. Our results show significant differences between two highly used isotropic transposition models, with one substantially underestimating the diffuse plane-of-array irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of the empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can bemore » used as a guide for the future development of physics-based transposition models and evaluations of system performance.« less

  12. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    NASA Astrophysics Data System (ADS)

    Hsu, Juno; Prather, Michael J.; Cameron-Smith, Philip; Veidenbaum, Alex; Nicolau, Alex

    2017-07-01

    Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18-0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. The spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere.The Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM) applications (RRTMG-SW). Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20-40 % depending on the solar zenith angles and occur throughout the atmosphere.Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components - wavelength integration, scattering, and

  13. An empirical model for estimating solar radiation in the Algerian Sahara

    NASA Astrophysics Data System (ADS)

    Benatiallah, Djelloul; Benatiallah, Ali; Bouchouicha, Kada; Hamouda, Messaoud; Nasri, Bahous

    2018-05-01

    The present work aims to determine the empirical model R.sun that will allow us to evaluate the solar radiation flues on a horizontal plane and in clear-sky on the located Adrar city (27°18 N and 0°11 W) of Algeria and compare with the results measured at the localized site. The expected results of this comparison are of importance for the investment study of solar systems (solar power plants for electricity production, CSP) and also for the design and performance analysis of any system using the solar energy. Statistical indicators used to evaluate the accuracy of the model where the mean bias error (MBE), root mean square error (RMSE) and coefficient of determination. The results show that for global radiation, the daily correlation coefficient is 0.9984. The mean absolute percentage error is 9.44 %. The daily mean bias error is -7.94 %. The daily root mean square error is 12.31 %.

  14. Fast All-Sky Radiation Model for Solar Applications (FARMS): A Brief Overview of Mechanisms, Performance, and Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit

    Solar radiation can be computed using radiative transfer models, such as the Rapid Radiation Transfer Model (RRTM) and its general circulation model applications, and used for various energy applications. Due to the complexity of computing radiation fields in aerosol and cloudy atmospheres, simulating solar radiation can be extremely time-consuming, but many approximations--e.g., the two-stream approach and the delta-M truncation scheme--can be utilized. To provide a new fast option for computing solar radiation, we developed the Fast All-sky Radiation Model for Solar applications (FARMS) by parameterizing the simulated diffuse horizontal irradiance and direct normal irradiance for cloudy conditions from the RRTMmore » runs using a 16-stream discrete ordinates radiative transfer method. The solar irradiance at the surface was simulated by combining the cloud irradiance parameterizations with a fast clear-sky model, REST2. To understand the accuracy and efficiency of the newly developed fast model, we analyzed FARMS runs using cloud optical and microphysical properties retrieved using GOES data from 2009-2012. The global horizontal irradiance for cloudy conditions was simulated using FARMS and RRTM for global circulation modeling with a two-stream approximation and compared to measurements taken from the U.S. Department of Energy's Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Our results indicate that the accuracy of FARMS is comparable to or better than the two-stream approach; however, FARMS is approximately 400 times more efficient because it does not explicitly solve the radiative transfer equation for each individual cloud condition. Radiative transfer model runs are computationally expensive, but this model is promising for broad applications in solar resource assessment and forecasting. It is currently being used in the National Solar Radiation Database, which is publicly available from the National Renewable

  15. Diagnosing Model Errors in Simulations of Solar Radiation on Inclined Surfaces: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit

    2016-06-01

    Transposition models have been widely used in the solar energy industry to simulate solar radiation on inclined PV panels. Following numerous studies comparing the performance of transposition models, this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty. Our results suggest that an isotropic transposition model developed by Badescu substantially underestimates diffuse plane-of-array (POA) irradiances when diffuse radiation is perfectly isotropic. In the empirical transposition models, the selection of empirical coefficients and land surface albedo can both result in uncertainty in the output. This study can be used as amore » guide for future development of physics-based transposition models.« less

  16. Observed and modelled solar radiation components in sugarcane crop grown under tropical conditions

    NASA Astrophysics Data System (ADS)

    Santos, Marcos A. dos; Souza, José L. de; Lyra, Gustavo B.; Teodoro, Iêdo; Ferreira, Ricardo A.; Santos Almeida, Alexsandro C. dos; Lyra, Guilherme B.; Souza, Renan C. de; Lemes, Marco A. Maringolo

    2017-04-01

    The net radiation over vegetated surfaces is one of the major input variables in many models of soil evaporation, evapotranspiration as well as leaf wetness duration. In the literature there are relatively few studies on net radiation over sugarcane crop in tropical climates. The main objective of the present study was to assess the solar radiation components measured and modelled for two crop stages of a sugarcane crop in the region of Rio Largo, Alagoas, North-eastern Brazil. The measurements of the radiation components were made with a net radiometer during the dry and rainy seasons and two models were used to estimate net radiation: the Ortega-Farias model and the Monteith and Unsworth model. The highest values of net radiation were observed at the crop development stage, due mainly to the high indices of incoming solar radiation. The daily average albedos of sugarcane at the crop development and mid-season stages were 0.16 and 0.20, respectively. Both models showed a better fit for the crop development stage than for the mid-season stage. When they were inter-compared, Monteith and Unsworth model was more efficient than Ortega-Farias model, despite the dispersion of their simulated radiation components which was similar.

  17. Variation of solar cell sensitivity and solar radiation on tilted surfaces

    NASA Technical Reports Server (NTRS)

    Klucher, T. M.

    1978-01-01

    The validity is studied that one of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces. The variation of solar cell sensitivity to solar radiation is determined over a wide range of atmospheric condition. A new model was formulated that reduced the deviations between measured and predicted insolation to less than 3 percent. Evaluation of solar cell sensitivity data indicates small change (2-3 percent) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells is discussed.

  18. Orbit Stability of OSIRIS-REx in the Vicinity of Bennu Using a High-Fidelity Solar Radiation Model

    NASA Technical Reports Server (NTRS)

    Williams, Trevor W.; Hughes, Kyle M.; Mashiku, Alinda K.; Longuski, James M.

    2015-01-01

    Solar radiation pressure is one of the largest perturbing forces on the OSIRISRex trajectory as it orbits the asteroid Bennu. In this work, we investigate how forces due to solar radiation perturb the OSIRIS-REx trajectory in a high-fidelity model. The model accounts for Bennu's non-spherical gravity field, third-body gravity forces from the Sun and Jupiter, as well as solar radiation forces acting on a simplified spacecraft model. Such high-fidelity simulations indicate significant solar radiation pressure perturbations from the nominal orbit. Modifications to the initial design of the nominal orbit are found using a variation of parameters approach that reduce the perturbation in eccentricity by a factor of one-half.

  19. Decadal Variations in Surface Solar Radiation

    NASA Astrophysics Data System (ADS)

    Wild, M.

    2007-05-01

    Satellite estimates provide some information on the amount of solar radiation absorbed by the planet back to the 1980s. The amount of solar radiation reaching the Earth surface can be traced further back in time, untill the 1960s at widespread locations and into the first half of the 20th Century at selected sites. These surface sites suggest significant decadal variations in solar radiation incident at the surface, with indication for a widespread dimming from the 1960s up to the mid 1980s, and a recovery thereafter. Indications for changes in surface solar radiation may also be seen in observatinal records of diurnal temperature range, which provide a better global coverage than the radiation measurrements. Trends in diurnal temperature ranges over global land surfaces show, after decades of decline, a distinct tendency to level off since the mid 1980s. This provides further support for a significant shift in surface solar radiation during the 1980s. There is evidence that the changes in surface solar radiation are linked to associated changes in atmospheric aerosol. Variations in scattering sulfur and absorbing black carbon aerosols are in line with the variations in surface solar radiation. This suggests that at least a part of the variations in surface solar radiation should also be seen in the clear sky planetary albedo. Model simulations with a GCM which includes a sophisticated interactive treatment of aerosols and their emission histories (ECHAM5 HAM), can be used to address this issue. The model is shown to be capable of reproducing the reversal from dimming to brightening under cloud-free conditions in many parts of the world, in line with observational evidence. Associated changes can also be seen in the clear sky planetary albedo, albeit of smaller magnitude.

  20. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Juno; Prather, Michael J.; Cameron-Smith, Philip

    Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18–0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. Themore » spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere. Furthermore, the Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM) applications (RRTMG-SW). Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. Here, we compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20–40 % depending on the solar zenith angles and occur throughout the atmosphere. Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components – wavelength

  1. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    DOE PAGES

    Hsu, Juno; Prather, Michael J.; Cameron-Smith, Philip; ...

    2017-01-01

    Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18–0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. Themore » spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere. Furthermore, the Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM) applications (RRTMG-SW). Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. Here, we compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20–40 % depending on the solar zenith angles and occur throughout the atmosphere. Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components – wavelength

  2. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Tada, H. Y.; Carter, J. R., Jr.

    1977-01-01

    Solar cell theory cells are manufactured, and how they are modeled mathematically is reviewed. The interaction of energetic charged particle radiation with solar cells is discussed in detail and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Finally, an extensive body of data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence is presented.

  3. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  4. New empirically-derived solar radiation pressure model for GPS satellites

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Y.; Kuang, D.

    2003-01-01

    Solar radiation pressure force is the second largest perturbation acting on GPS satellites, after the gravitational attraction from the Earth, Sun, and Moon. It is the largest error source in the modeling of GPS orbital dynamics.

  5. Performance assessment of different day-of-the-year-based models for estimating global solar radiation - Case study: Egypt

    NASA Astrophysics Data System (ADS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Ali, Mohamed A.; Mohamed, Zahraa E.; Shehata, Ali I.

    2016-11-01

    Different models are introduced to predict the daily global solar radiation in different locations but there is no specific model based on the day of the year is proposed for many locations around the world. In this study, more than 20 years of measured data for daily global solar radiation on a horizontal surface are used to develop and validate seven models to estimate the daily global solar radiation by day of the year for ten cities around Egypt as a case study. Moreover, the generalization capability for the best models is examined all over the country. The regression analysis is employed to calculate the coefficients of different suggested models. The statistical indicators namely, RMSE, MABE, MAPE, r and R2 are calculated to evaluate the performance of the developed models. Based on the validation with the available data, the results show that the hybrid sine and cosine wave model and 4th order polynomial model have the best performance among other suggested models. Consequently, these two models coupled with suitable coefficients can be used for estimating the daily global solar radiation on a horizontal surface for each city, and also for all the locations around the studied region. It is believed that the established models in this work are applicable and significant for quick estimation for the average daily global solar radiation on a horizontal surface with higher accuracy. The values of global solar radiation generated by this approach can be utilized in the design and estimation of the performance of different solar applications.

  6. The Projection of Space Radiation Environments with a Solar Cycle Statistical Model

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.; Wilson, John W.

    2006-01-01

    A solar cycle statistical model has been developed to project sunspot numbers which represent the variations in the space radiation environment. The resultant projection of sunspot numbers in near future were coupled to space-related quantities of interest in radiation protection, such as the galactic cosmic radiation (GCR) deceleration potential (f) and the mean occurrence frequency of solar particle event (SPE). Future GCR fluxes have been derived from a predictive model, in which GCR temporal dependence represented by f was derived from GCR flux and ground-based Climax neutron monitor rate measurements over the last four decades. Results showed that the point dose equivalent inside a typical spacecraft in interplanetary radiation fields was influenced by solar modulation up to a factor of three. One important characteristic of sporadic SPEs is their mean frequency of occurrence, which is dependent on solar activity. Projections of future mean frequency of SPE occurrence were estimated from a power law function of sunspot number. Furthermore, the cumulative probabilities of SPE during short-period missions were defined with the continuous database of proton fluences of SPE. The analytic representation of energy spectra of SPE was constructed by the Weibull distribution for different event sizes. The representative exposure level at each event size was estimated for the guideline of protection systems for astronauts during future space exploration missions.

  7. Solar radiation - to - power generation models for one-axis tracking PV system with on-site measurements from Eskisehir, Turkey

    NASA Astrophysics Data System (ADS)

    Filik, Tansu; Başaran Filik, Ümmühan; Nezih Gerek, Ömer

    2017-11-01

    In this study, new analytic models are proposed for mapping on-site global solar radiation values to electrical power output values in solar photovoltaic (PV) panels. The model extraction is achieved by simultaneously recording solar radiation and generated power from fixed and tracking panels, each with capacity of 3 kW, in Eskisehir (Turkey) region. It is shown that the relation between the solar radiation and the corresponding electric power is not only nonlinear, but it also exhibits an interesting time-varying characteristic in the form of a hysteresis function. This observed radiation-to-power relation is, then, analytically modelled with three piece-wise function parts (corresponding to morning, noon and evening times), which is another novel contribution of this work. The model is determined for both fixed panels and panels with a tracking system. Especially the panel system with a dynamic tracker produces a harmonically richer (with higher values in general) characteristic, so higher order polynomial models are necessary for the construction of analytical solar radiation models. The presented models, characteristics of the hysteresis functions, and differences in the fixed versus solar-tracking panels are expected to provide valuable insight for further model based researches.

  8. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    NASA Astrophysics Data System (ADS)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the

  9. Cavity radiation model for solar central receivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipps, F.W.

    1981-01-01

    The Energy Laboratory of the University of Houston has developed a computer simulation program called CREAM (i.e., Cavity Radiations Exchange Analysis Model) for application to the solar central receiver system. The zone generating capability of CREAM has been used in several solar re-powering studies. CREAM contains a geometric configuration factor generator based on Nusselt's method. A formulation of Nusselt's method provides support for the FORTRAN subroutine NUSSELT. Numerical results from NUSSELT are compared to analytic values and values from Sparrow's method. Sparrow's method is based on a double contour integral and its reduction to a single integral which is approximatedmore » by Guassian methods. Nusselt's method is adequate for the intended engineering applications, but Sparrow's method is found to be an order of magnitude more efficient in many situations.« less

  10. Applicability of ASHRAE clear-sky model based on solar-radiation measurements in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abouhashish, Mohamed

    2017-06-01

    The constants of the ASHRAE clear sky model predict high values of the hourly beam radiation and very low values of the hourly diffuse radiation when used for locations in Saudi Arabia. Eight measurement stations in different locations are used to obtain new clearness factors for the model. The procedure depends on the comparison of monthly direct normal radiation (DNI) and diffuse horizontal radiation (DHI) between the measurement and the calculated values. Two factors are obtained CNb, CNd for every month to adjust the calculated clear sky radiation in order to consider the effects of local weather conditions. A simple and practical simulation model for solar geometry is designed using Microsoft Visual Basic platform, the model simulates the solar angles and radiation components according to ASHRAE model. The comparison of the calculated data with the first year of measurements indicate that the attenuation of site clearness is variable across the locations and from month to month, showing the clearest skies in the north and northwestern parts of the Kingdom especially during summer months.

  11. The National Solar Radiation Database (NSRDB): A Brief Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron M; Sengupta, Manajit; Lopez, Anthony

    This poster presents a high-level overview of the National Solar Radiation Database (NSRDB). The NSRDB uses the physics-based model (PSM), which was developed using: adapted PATMOS-X model for cloud identification and properties, REST-2 model for clear-sky conditions, and NREL's Fast All-sky Radiation Model for Solar Applications (FARMS) for cloudy-sky Global Horizontal Irradiance (GHI) solar irradiance calculations.

  12. Modeling Suomi-NPP VIIRS Solar Diffuser Degradation due to Space Radiation

    NASA Astrophysics Data System (ADS)

    Shao, X.; Cao, C.

    2014-12-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP uses a solar diffuser (SD) as on-board radiometric calibrator for the reflective solar band (RSB) calibration. Solar diffuser is made of Spectralon (one type of fluoropolymer) and was chosen because of its controlled reflectance in the VIS-NIR-SWIR region and its near-Lambertian reflectance profile. Spectralon is known to degrade in reflectance at the blue end of the spectrum due to exposure to space radiations such as solar UV radiation and energetic protons. These space radiations can modify the Spectralon surface through breaking C-C and C-F bonds and scissioning or cross linking the polymer, which causes the surface roughness and degrades its reflectance. VIIRS uses a SDSM (Solar Diffuser Stability Monitor) to monitor the change in the Solar Diffuser reflectance in the 0.4 - 0.94 um wavelength range and provide a correction to the calibration constants. The H factor derived from SDSM reveals that reflectance of 0.4 to 0.6um channels of VIIRS degrades faster than the reflectance of longer wavelength RSB channels. A model is developed to derive characteristic parameters such as mean SD surface roughness height and autocovariance length of SD surface roughness from the long term spectral degradation of SD reflectance as monitored by SDSM. These two parameters are trended to assess development of surface roughness of the SD over the operation period of VIIRS.

  13. Performance Analysis of Transposition Models Simulating Solar Radiation on Inclined Surfaces: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit

    2016-06-01

    Transposition models are widely used in the solar energy industry to simulate solar radiation on inclined photovoltaic (PV) panels. These transposition models have been developed using various assumptions about the distribution of the diffuse radiation, and most of the parameterizations in these models have been developed using hourly ground data sets. Numerous studies have compared the performance of transposition models, but this paper aims to understand the quantitative uncertainty in the state-of-the-art transposition models and the sources leading to the uncertainty using high-resolution ground measurements in the plane of array. Our results suggest that the amount of aerosol optical depthmore » can affect the accuracy of isotropic models. The choice of empirical coefficients and the use of decomposition models can both result in uncertainty in the output from the transposition models. It is expected that the results of this study will ultimately lead to improvements of the parameterizations as well as the development of improved physical models.« less

  14. Modeling the ratio of photosynthetically active radiation to broadband global solar radiation using ground and satellite-based data in the tropics

    NASA Astrophysics Data System (ADS)

    Janjai, S.; Wattan, R.; Sripradit, A.

    2015-12-01

    Data from four stations in Thailand are used to model the ratio of photosynthetically active radiation (PAR) to broadband global solar radiation. The model expresses the ratio of PAR-to-broadband global solar radiation as a function of cloud index, aerosol optical depth, precipitable water, total ozone column and solar zenith angle. Data from the MTSAT-1R and OMI/AURA satellites are used to estimate the cloud index and total ozone column, respectively at each of the four stations, while aerosol optical depth and precipitable water are retrieved from Aerosol Robotic Network (AERONET) sunphotometer measurements, also available at each station. When tested against hourly measurements, the model exhibits a coefficient of variance (R2) equal to or better than 0.96, and root mean square difference (RMSD) in the range of 7.3-7.9% and mean bias difference (MBD) of -4.5% to 3.5%. The model compares favorably with other existing models.

  15. Solar radiation and precipitable water modeling for Turkey using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Şenkal, Ozan

    2015-08-01

    Artificial neural network (ANN) method was applied for modeling and prediction of mean precipitable water and solar radiation in a given location and given date (month), given altitude, temperature, pressure and humidity in Turkey (26-45ºE and 36-42ºN) during the period of 2000-2002. Resilient Propagation (RP) learning algorithms and logistic sigmoid transfer function were used in the network. To train the network, meteorological measurements taken by the Turkish State Meteorological Service (TSMS) and Wyoming University for the period from 2000 to 2002 from five stations distributed in Turkey were used as training data. Data from years (2000 and 2001) were used for training, while the year 2002 was used for testing and validating the model. The RP algorithm were first used for determination of the precipitable water and subsequently, computation of the solar radiation, in these stations Root Mean Square Error (RMSE) between the estimated and measured values for monthly mean daily sum for precipitable water and solar radiation values have been found as 0.0062 gr/cm2 and 0.0603 MJ/m2 (training cities), 0.5652 gr/cm2 and 3.2810 MJ/m2 (testing cities), respectively.

  16. Computing diffuse fraction of global horizontal solar radiation: A model comparison.

    PubMed

    Dervishi, Sokol; Mahdavi, Ardeshir

    2012-06-01

    For simulation-based prediction of buildings' energy use or expected gains from building-integrated solar energy systems, information on both direct and diffuse component of solar radiation is necessary. Available measured data are, however, typically restricted to global horizontal irradiance. There have been thus many efforts in the past to develop algorithms for the derivation of the diffuse fraction of solar irradiance. In this context, the present paper compares eight models for estimating diffuse fraction of irradiance based on a database of measured irradiance from Vienna, Austria. These models generally involve mathematical formulations with multiple coefficients whose values are typically valid for a specific location. Subsequent to a first comparison of these eight models, three better performing models were selected for a more detailed analysis. Thereby, the coefficients of the models were modified to account for Vienna data. The results suggest that some models can provide relatively reliable estimations of the diffuse fractions of the global irradiance. The calibration procedure could only slightly improve the models' performance.

  17. Orbiter radiator panel solar focusing test

    NASA Technical Reports Server (NTRS)

    Howell, H. R.

    1982-01-01

    A test was conducted to determine the solar reflections from the Orbiter radiator panels. A one-tenth scale model of the forward and mid-forward radiator panels in the deployed position was utilized in the test. Test data was obtained to define the reflected one-sun envelope for the embossed silver/Teflon radiator coating. The effects of the double contour on the forward radiator panels were included in the test. Solar concentrations of 2 suns were measured and the one-sun envelope was found to extend approximately 86 inches above the radiator panel. A limited amount of test data was also obtained for the radiator panels with the smooth silver/Teflon coating to support the planned EVA on the Orbiter STS-5 flight. Reflected solar flux concentrations as high as 8 suns were observed with the smooth coating and the one-sun envelope was determined to extend 195 inches above the panel. It is recommended that additional testing be conducted to define the reflected solar environment beyond the one-sun boundary.

  18. Orbiter radiator panel solar focusing test

    NASA Technical Reports Server (NTRS)

    Howell, H. R.; Rankin, J. G.

    1983-01-01

    Test data are presented which define the area around the Orbiter radiator panels for which the solar reflections are concentrated to one-sun or more. The concave shape of the panels and their specular silver/Teflon coating causes focusing of the reflected solar energy which could have adverse heating effects on equipment or astronaut extravehicular activity (EVA) in the vicinity of the radiator panels. A room ambient test method was utilized with a one-tenth scale model of the radiator panels.

  19. Forecasting of global solar radiation using anfis and armax techniques

    NASA Astrophysics Data System (ADS)

    Muhammad, Auwal; Gaya, M. S.; Aliyu, Rakiya; Aliyu Abdulkadir, Rabi'u.; Dauda Umar, Ibrahim; Aminu Yusuf, Lukuman; Umar Ali, Mudassir; Khairi, M. T. M.

    2018-01-01

    Procurement of measuring device, maintenance cost coupled with calibration of the instrument contributed to the difficulty in forecasting of global solar radiation in underdeveloped countries. Most of the available regressional and mathematical models do not capture well the behavior of the global solar radiation. This paper presents the comparison of Adaptive Neuro Fuzzy Inference System (ANFIS) and Autoregressive Moving Average with eXogenous term (ARMAX) in forecasting global solar radiation. Full-Scale (experimental) data of Nigerian metrological agency, Sultan Abubakar III international airport Sokoto was used to validate the models. The simulation results demonstrated that the ANFIS model having achieved MAPE of 5.34% outperformed the ARMAX model. The ANFIS could be a valuable tool for forecasting the global solar radiation.

  20. Predicting solar radiation based on available weather indicators

    NASA Astrophysics Data System (ADS)

    Sauer, Frank Joseph

    Solar radiation prediction models are complex and require software that is not available for the household investor. The processing power within a normal desktop or laptop computer is sufficient to calculate similar models. This barrier to entry for the average consumer can be fixed by a model simple enough to be calculated by hand if necessary. Solar radiation modeling has been historically difficult to predict and accurate models have significant assumptions and restrictions on their use. Previous methods have been limited to linear relationships, location restrictions, or input data limits to one atmospheric condition. This research takes a novel approach by combining two techniques within the computational limits of a household computer; Clustering and Hidden Markov Models (HMMs). Clustering helps limit the large observation space which restricts the use of HMMs. Instead of using continuous data, and requiring significantly increased computations, the cluster can be used as a qualitative descriptor of each observation. HMMs incorporate a level of uncertainty and take into account the indirect relationship between meteorological indicators and solar radiation. This reduces the complexity of the model enough to be simply understood and accessible to the average household investor. The solar radiation is considered to be an unobservable state that each household will be unable to measure. The high temperature and the sky coverage are already available through the local or preferred source of weather information. By using the next day's prediction for high temperature and sky coverage, the model groups the data and then predicts the most likely range of radiation. This model uses simple techniques and calculations to give a broad estimate for the solar radiation when no other universal model exists for the average household.

  1. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. The SD module rejects waste heat from the power conversion cycle to space through a pumped-loop, multi-panel, deployable radiator. The baseline radiator configuration was defined during the Space Station conceptual design phase and is a function of the state point and heat rejection requirements of the power conversion unit. Requirements determined by the overall station design such as mass, system redundancy, micrometeoroid and space debris impact survivability, launch packaging, costs, and thermal and structural interaction with other station components have also been design drivers for the radiator configuration. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations. A brief description and discussion of the numerical model, it's capabilities and limitations, and results of the parametric studies performed is presented.

  2. Radiation dose predictions for SPE events during solar cycle 23 from NASA's Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher; Blattnig, Steve; Slaba, Tony; Kress, Brian; Wiltberger, Michael; Solomon, Stan

    NASA's High Charge and Energy Transport (HZETRN) code is a deterministic model for rapid and accurate calculations of the particle radiation fields in the space environment. HZETRN is used to calculate dosimetric quantities on the International Space Station (ISS) and assess astronaut risk to space radiations, including realistic spacecraft and human geometry for final exposure evaluation. HZETRN is used as an engineering design tool for materials research for radiation shielding protection. Moreover, it is used to calculate HZE propagation through the Earth and Martian atmospheres, and to evaluate radiation exposures for epidemiological studies. A new research project has begun that will use HZETRN as the transport engine for the development of a nowcast prediction of air-crew radiation exposure for both background galactic cosmic ray (GCR) exposure and radiation exposure during solar particle events (SPE) that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model, which utilizes real-time observations from ground-based, atmospheric, and satellite measurements. In this paper, we compute the global distribution of atmospheric radiation dose for several SPE events during solar cycle 23, with particular emphasis on the high-latitude and polar region. We also characterize the suppression of the geomagnetic cutoff rigidity during these storm periods and their subsequent influence on atmospheric radiation exposure.

  3. Estimation of available global solar radiation using sunshine duration over South Korea

    NASA Astrophysics Data System (ADS)

    Das, Amrita; Park, Jin-ki; Park, Jong-hwa

    2015-11-01

    Besides designing a solar energy system, accurate insolation data is also a key component for many biological and atmospheric studies. But solar radiation stations are not widely available due to financial and technical limitations; this insufficient number affects the spatial resolution whenever an attempt is made to construct a solar radiation map. There are several models in literature for estimating incoming solar radiation using sunshine fraction. Seventeen of such models among which 6 are linear and 11 non-linear, have been chosen for studying and estimating solar radiation on a horizontal surface over South Korea. The better performance of a non-linear model signifies the fact that the relationship between sunshine duration and clearness index does not follow a straight line. With such a model solar radiation over 79 stations measuring sunshine duration is computed and used as input for spatial interpolation. Finally monthly solar radiation maps are constructed using the Ordinary Kriging method. The cross validation results show good agreement between observed and predicted data.

  4. Galactic and solar radiation exposure to aircrew during a solar cycle.

    PubMed

    Lewis, B J; Bennett, L G I; Green, A R; McCall, M J; Ellaschuk, B; Butler, A; Pierre, M

    2002-01-01

    An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure (PCAIRE) has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H x (10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events.

  5. Modelling the pressurization induced by solar radiation on above ground installations of LPG pipeline systems

    NASA Astrophysics Data System (ADS)

    Leporini, M.; Terenzi, A.; Marchetti, B.; Giacchetta, G.; Polonara, F.; Corvaro, F.; Cocci Grifoni, R.

    2017-11-01

    Pipelining Liquefied Petroleum Gas (LPG) is a mode of LPG transportation more environmentally-friendly than others due to the lower energy consumption and exhaust emissions. Worldwide, there are over 20000 kilometers of LPG pipelines. There are a number of codes that industry follows for the design, fabrication, construction and operation of liquid LPG pipelines. However, no standards exist to modelling particular critical phenomena which can occur on these lines due to external environmental conditions like the solar radiation pressurization. In fact, the solar radiation can expose above ground pipeline sections at pressure values above the maximum Design Pressure with resulting risks and problems. The present work presents an innovative practice suitable for the Oil & Gas industry to modelling the pressurization induced by the solar radiation on above ground LPG pipeline sections with the application to a real case.

  6. Solar radiation as a global driver of hillslope asymmetry: Insights from an ecogeomorphic landscape evolution model

    NASA Astrophysics Data System (ADS)

    Yetemen, Omer; Istanbulluoglu, Erkan; Duvall, Alison R.

    2015-12-01

    Observations at the field, catchment, and continental scales across a range of arid and semiarid climates and latitudes reveal aspect-controlled patterns in soil properties, vegetation types, ecohydrologic fluxes, and hillslope morphology. Although the global distribution of solar radiation on earth's surface and its implications on vegetation dynamics are well documented, we know little about how variation of solar radiation across latitudes influence landscape evolution and resulting geomorphic difference. Here, we used a landscape evolution model that couples the continuity equations for water, sediment, and aboveground vegetation biomass at each model element in order to explore the controls of latitude and mean annual precipitation (MAP) on the development of hillslope asymmetry (HA). In our model, asymmetric hillslopes emerged from the competition between soil creep and vegetation-modulated fluvial transport, driven by spatial distribution of solar radiation. Latitude was a primary driver of HA because of its effects on the global distribution of solar radiation. In the Northern Hemisphere, north-facing slopes (NFS), which support more vegetation cover and have lower transport efficiency, get steeper toward the North Pole while south-facing slopes (SFS) get gentler. In the Southern Hemisphere, the patterns are reversed and SFS get steeper toward the South Pole. For any given latitude, MAP is found to have minor control on HA. Our results underscore the potential influence of solar radiation as a global control on the development of asymmetric hillslopes in fluvial landscapes.

  7. The effects of solar radiation on thermal comfort.

    PubMed

    Hodder, Simon G; Parsons, Ken

    2007-01-01

    The aim of this study was to investigate the relationship between simulated solar radiation and thermal comfort. Three studies investigated the effects of (1) the intensity of direct simulated solar radiation, (2) spectral content of simulated solar radiation and (3) glazing type on human thermal sensation responses. Eight male subjects were exposed in each of the three studies. In Study 1, subjects were exposed to four levels of simulated solar radiation: 0, 200, 400 and 600 Wm(-2). In Study 2, subjects were exposed to simulated solar radiation with four different spectral contents, each with a total intensity of 400 Wm(-2) on the subject. In Study 3, subjects were exposed through glass to radiation caused by 1,000 Wm(-2) of simulated solar radiation on the exterior surface of four different glazing types. The environment was otherwise thermally neutral where there was no direct radiation, predicted mean vote (PMV)=0+/-0.5, [International Standards Organisation (ISO) standard 7730]. Ratings of thermal sensation, comfort, stickiness and preference and measures of mean skin temperature (t(sk)) were taken. Increase in the total intensity of simulated solar radiation rather than the specific wavelength of the radiation is the critical factor affecting thermal comfort. Thermal sensation votes showed that there was a sensation scale increase of 1 scale unit for each increase of direct radiation of around 200 Wm(-2). The specific spectral content of the radiation has no direct effect on thermal sensation. The results contribute to models for determining the effects of solar radiation on thermal comfort in vehicles, buildings and outdoors.

  8. Modelling of aircrew radiation exposure from galactic cosmic rays and solar particle events.

    PubMed

    Takada, M; Lewis, B J; Boudreau, M; Al Anid, H; Bennett, L G I

    2007-01-01

    Correlations have been developed for implementation into the semi-empirical Predictive Code for Aircrew Radiation Exposure (PCAIRE) to account for effects of extremum conditions of solar modulation and low altitude based on transport code calculations. An improved solar modulation model, as proposed by NASA, has been further adopted to interpolate between the bounding correlations for solar modulation. The conversion ratio of effective dose to ambient dose equivalent, as applied to the PCAIRE calculation (based on measurements) for the legal regulation of aircrew exposure, was re-evaluated in this work to take into consideration new ICRP-92 radiation-weighting factors and different possible irradiation geometries of the source cosmic-radiation field. A computational analysis with Monte Carlo N-Particle eXtended Code was further used to estimate additional aircrew exposure that may result from sporadic solar energetic particle events considering real-time monitoring by the Geosynchronous Operational Environmental Satellite. These predictions were compared with the ambient dose equivalent rates measured on-board an aircraft and to count rate data observed at various ground-level neutron monitors.

  9. MODELING ACUTE EXPOSURE TO SOLAR RADIATION

    EPA Science Inventory

    One of the major technical challenges in calculating solar flux on the human form has been the complexity of the surface geometry (i.e., the surface normal vis a vis the incident radiation). The American Cancer Society reports that over 80% of skin cancers occur on the face, he...

  10. Solar radiation on Mars

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.

    1989-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. Presented here is a procedure and solar radiation related data from which the diurnally, hourly and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  11. Solar radiation on Mars

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.

    1990-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. Presented here is a procedure and solar radiation related data from which the diurnally, hourly and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  12. ESTIMATING SOLAR RADIATION EXPOSURE IN WETLANDS USING RADIATION MODELS, FIELD DATA, AND GEOGRAPHIC INFORMATION SYSTEMS

    EPA Science Inventory

    This seminar will describe development of methods for the estimation of solar radiation doses in wetlands. The methodology presents a novel approach to incorporating aspects of solar radiation dosimetry that have historically received limited attention. These include effects of a...

  13. Determination of incoming solar radiation in major tree species in Turkey.

    PubMed

    Yilmaz, Osman Yalcin; Sevgi, Orhan; Koc, Ayhan

    2012-07-01

    Light requirements and spatial distribution of major forest tree species in Turkey hasn't been analyzed yet. Continuous surface solar radiation data, especially at mountainous-forested areas, are needed to put forward this relationship between forest tree species and solar radiation. To achieve this, GIS-based modeling of solar radiation is one of the methods used in rangelands to estimate continuous surface solar radiation. Therefore, mean monthly and annual total global solar radiation maps of whole Turkey were computed spatially using GRASS GIS software "r.sun" model under clear-sky (cloudless) conditions. 147498 pure forest stand point-based data were used in the study for calculating mean global solar radiation values of all the major forest tree species of Turkey. Beech had the lowest annual mean total global solar radiation value of 1654.87 kWh m(-2), whereas juniper had the highest value of 1928.89 kWh m(-2). The rank order of tree species according to the mean monthly and annual total global solar radiation values, using a confidence level of p < 0.05, was as follows: Beech < Spruce < Fir species < Oak species < Scotch pine < Red pine < Cedar < Juniper. The monthly and annual solar radiation values of sites and light requirements of forest trees ranked similarly.

  14. An optimisation methodology of artificial neural network models for predicting solar radiation: a case study

    NASA Astrophysics Data System (ADS)

    Rezrazi, Ahmed; Hanini, Salah; Laidi, Maamar

    2016-02-01

    The right design and the high efficiency of solar energy systems require accurate information on the availability of solar radiation. Due to the cost of purchase and maintenance of the radiometers, these data are not readily available. Therefore, there is a need to develop alternative ways of generating such data. Artificial neural networks (ANNs) are excellent and effective tools for learning, pinpointing or generalising data regularities, as they have the ability to model nonlinear functions; they can also cope with complex `noisy' data. The main objective of this paper is to show how to reach an optimal model of ANNs for applying in prediction of solar radiation. The measured data of the year 2007 in Ghardaïa city (Algeria) are used to demonstrate the optimisation methodology. The performance evaluation and the comparison of results of ANN models with measured data are made on the basis of mean absolute percentage error (MAPE). It is found that MAPE in the ANN optimal model reaches 1.17 %. Also, this model yields a root mean square error (RMSE) of 14.06 % and an MBE of 0.12. The accuracy of the outputs exceeded 97 % and reached up 99.29 %. Results obtained indicate that the optimisation strategy satisfies practical requirements. It can successfully be generalised for any location in the world and be used in other fields than solar radiation estimation.

  15. Estimation of Solar Radiation on Building Roofs in Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Agugiaro, G.; Remondino, F.; Stevanato, G.; De Filippi, R.; Furlanello, C.

    2011-04-01

    The aim of this study is estimating solar radiation on building roofs in complex mountain landscape areas. A multi-scale solar radiation estimation methodology is proposed that combines 3D data ranging from regional scale to the architectural one. Both the terrain and the nearby building shadowing effects are considered. The approach is modular and several alternative roof models, obtained by surveying and modelling techniques at varying level of detail, can be embedded in a DTM, e.g. that of an Alpine valley surrounded by mountains. The solar radiation maps obtained from raster models at different resolutions are compared and evaluated in order to obtain information regarding the benefits and disadvantages tied to each roof modelling approach. The solar radiation estimation is performed within the open-source GRASS GIS environment using r.sun and its ancillary modules.

  16. Regression model for estimating inactivation of microbial aerosols by solar radiation.

    PubMed

    Ben-David, Avishai; Sagripanti, Jose-Luis

    2013-01-01

    The inactivation of pathogenic aerosols by solar radiation is relevant to public health and biodefense. We investigated whether a relatively simple method to calculate solar diffuse and total irradiances could be developed and used in environmental photobiology estimations instead of complex atmospheric radiative transfer computer programs. The second-order regression model that we developed reproduced 13 radiation quantities calculated for equinoxes and solstices at 35(°) latitude with a computer-intensive and rather complex atmospheric radiative transfer program (MODTRAN) with a mean error <6% (2% for most radiation quantities). Extending the application of the regression model from a reference latitude and date (chosen as 35° latitude for 21 March) to different latitudes and days of the year was accomplished with variable success: usually with a mean error <15% (but as high as 150% for some combination of latitudes and days of year). This accuracy of the methodology proposed here compares favorably to photobiological experiments where the microbial survival is usually measured with an accuracy no better than ±0.5 log10 units. The approach and equations presented in this study should assist in estimating the maximum time during which microbial pathogens remain infectious after accidental or intentional aerosolization in open environments. © Published 2013. This article is a U.S. Government work and is in the public domain in the USA. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  17. Development of a Greek solar map based on solar model estimations

    NASA Astrophysics Data System (ADS)

    Kambezidis, H. D.; Psiloglou, B. E.; Kavadias, K. A.; Paliatsos, A. G.; Bartzokas, A.

    2016-05-01

    The realization of Renewable Energy Sources (RES) for power generation as the only environmentally friendly solution, moved solar systems to the forefront of the energy market in the last decade. The capacity of the solar power doubles almost every two years in many European countries, including Greece. This rise has brought the need for reliable predictions of meteorological data that can easily be utilized for proper RES-site allocation. The absence of solar measurements has, therefore, raised the demand for deploying a suitable model in order to create a solar map. The generation of a solar map for Greece, could provide solid foundations on the prediction of the energy production of a solar power plant that is installed in the area, by providing an estimation of the solar energy acquired at each longitude and latitude of the map. In the present work, the well-known Meteorological Radiation Model (MRM), a broadband solar radiation model, is engaged. This model utilizes common meteorological data, such as air temperature, relative humidity, barometric pressure and sunshine duration, in order to calculate solar radiation through MRM for areas where such data are not available. Hourly values of the above meteorological parameters are acquired from 39 meteorological stations, evenly dispersed around Greece; hourly values of solar radiation are calculated from MRM. Then, by using an integrated spatial interpolation method, a Greek solar energy map is generated, providing annual solar energy values all over Greece.

  18. Relationships between surface solar radiation and wheat yield in Spain

    NASA Astrophysics Data System (ADS)

    Hernandez-Barrera, Sara; Rodriguez-Puebla, Concepción

    2017-04-01

    Here we examine the role of solar radiation to describe wheat-yield variability in Spain. We used Partial Least Square regression to capture the modes of surface solar radiation that drive wheat-yield variability. We will show that surface solar radiation introduces the effects of teleconnection patterns on wheat yield and also it is associated with drought and diurnal temperature range. We highlight the importance of surface solar radiation to obtain models for wheat-yield projections because it could reduce uncertainty with respect to the projections based on temperatures and precipitation variables. In addition, the significance of the model based on surface solar radiation is greater than the previous one based on drought and diurnal temperature range (Hernandez-Barrera et al., 2016). According to our results, the increase of solar radiation over Spain for 21st century could force a wheat-yield decrease (Hernandez-Barrera et al., 2017). Hernandez-Barrera S., Rodríguez-Puebla C. and Challinor A.J. 2016 Effects of diurnal temperature range and drought on wheat yield in Spain. Theoretical and Applied Climatology. DOI: 10.1007/s00704-016-1779-9 Hernandez-Barrera S., Rodríguez-Puebla C. 2017 Wheat yield in Spain and associated solar radiation patterns. International Journal of Climatology. DOI: 10.1002/joc.4975

  19. Modified empirical Solar Radiation Pressure model for IRNSS constellation

    NASA Astrophysics Data System (ADS)

    Rajaiah, K.; Manamohan, K.; Nirmala, S.; Ratnakara, S. C.

    2017-11-01

    Navigation with Indian Constellation (NAVIC) also known as Indian Regional Navigation Satellite System (IRNSS) is India's regional navigation system designed to provide position accuracy better than 20 m over India and the region extending to 1500 km around India. The reduced dynamic precise orbit estimation is utilized to determine the orbit broadcast parameters for IRNSS constellation. The estimation is mainly affected by the parameterization of dynamic models especially Solar Radiation Pressure (SRP) model which is a non-gravitational force depending on shape and attitude dynamics of the spacecraft. An empirical nine parameter solar radiation pressure model is developed for IRNSS constellation, using two-way range measurements from IRNSS C-band ranging system. The paper addresses the development of modified SRP empirical model for IRNSS (IRNSS SRP Empirical Model, ISEM). The performance of the ISEM was assessed based on overlap consistency, long term prediction, Satellite Laser Ranging (SLR) residuals and compared with ECOM9, ECOM5 and new-ECOM9 models developed by Center for Orbit Determination in Europe (CODE). For IRNSS Geostationary Earth Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO) satellites, ISEM has shown promising results with overlap RMS error better than 5.3 m and 3.5 m respectively. Long term orbit prediction using numerical integration has improved with error better than 80%, 26% and 7.8% in comparison to ECOM9, ECOM5 and new-ECOM9 respectively. Further, SLR based orbit determination with ISEM shows 70%, 47% and 39% improvement over 10 days orbit prediction in comparison to ECOM9, ECOM5 and new-ECOM9 respectively and also highlights the importance of wide baseline tracking network.

  20. Obliquity Modulation of the Incoming Solar Radiation

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.

  1. Solar radiation and out-of-hospital cardiac arrest in Japan.

    PubMed

    Onozuka, Daisuke; Hagihara, Akihito

    2017-11-01

    Although several studies have estimated the effects of temperature on mortality and morbidity, little is known regarding the burden of out-of-hospital cardiac arrest (OHCA) attributable to solar radiation. We obtained data for all cases of OHCA and meteorological data reported between 2011 and 2014 in 3 Japanese prefectures: Hokkaido, Ibaraki, and Fukuoka. We first examined the relationship between daily solar radiation and OHCA risk for each prefecture using time-varying distributed lag non-linear models and then pooled the results in a multivariate random-effects meta-analysis. The attributable fractions of OHCA were calculated for low and high solar radiation, defined as solar radiation below and above the minimum morbidity solar radiation, respectively. The minimum morbidity solar radiation was defined as the specific solar radiation associated with the lowest morbidity risk. A total of 49,892 cases of OHCA occurred during the study period. The minimum morbidity solar radiation for each prefecture was the 100th percentile (72.5 MJ/m 2 ) in Hokkaido, the 83rd percentile (59.7 MJ/m 2 ) in Ibaraki, and the 70th percentile (53.8 MJ/m 2 ) in Fukuoka. Overall, 20.00% (95% empirical confidence interval [eCI]: 10.97-27.04) of the OHCA cases were attributable to daily solar radiation. The attributable fraction for low solar radiation was 19.50% (95% eCI: 10.00-26.92), whereas that for high solar radiation was 0.50% (95% eCI: -0.07-1.01). Low solar radiation was associated with a substantial attributable risk for OHCA. Our findings suggest that public health efforts to reduce OHCA burden should consider the solar radiation level. Large prospective studies with longitudinal collection of individual data is required to more conclusively assess the impact of solar radiation on OHCA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Solar F10.7 radiation - A short term model for Space Station applications

    NASA Technical Reports Server (NTRS)

    Vedder, John D.; Tabor, Jill L.

    1991-01-01

    A new method is described for statistically modeling the F10.7 component of solar radiation for 91-day intervals. The resulting model represents this component of the solar flux as a quasi-exponentially correlated, Weibull distributed random variable, and thereby demonstrates excellent agreement with observed F10.7 data. Values of the F10.7 flux are widely used in models of the earth's upper atmosphere because of its high correlation with density fluctuations due to solar heating effects. Because of the direct relation between atmospheric density and drag, a realistic model of the short term fluctuation of the F10.7 flux is important for the design and operation of Space Station Freedom. The method of modeling this flux described in this report should therefore be useful for a variety of Space Station applications.

  3. A model of heat flow in the sheep exposed to high levels of solar radiation.

    PubMed

    Vera, R R; Koong, L J; Morris, J G

    1975-08-01

    The fleece is an important component in thermoregulation of sheep exposed to high levels of solar radiation. A model written in CSMP has been developed which represents the flow of energy between the sheep and its environment. This model is based on a set of differential equations which describe the flux of heat between the components of the system--fleece, tip, skin, body and environment. It requires as input parameters location, date, time of day, temperature, relative humidity, cloud cover, wind movement, animal weight and linear measurements and fleece length. At each integration interval incoming solar radiation and its components, the heat arising from the animal's metabolism and the heat exchange by long-wave radiation, convection, conduction and evaporative cooling are computed. Temperatures at the fleece tip, skin and body core are monitored.

  4. Solar Extreme UV radiation and quark nugget dark matter model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhitnitsky, Ariel, E-mail: arz@phas.ubc.ca

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ω{sub dark} ∼ Ω{sub visible} when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of mattermore » which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter Λ{sub QCD}. We also present arguments suggesting that the transient brightening-like 'nanoflares' in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.« less

  5. Solar Extreme UV radiation and quark nugget dark matter model

    NASA Astrophysics Data System (ADS)

    Zhitnitsky, Ariel

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ωdark ~ Ωvisible when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of matter which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter ΛQCD. We also present arguments suggesting that the transient brightening-like "nanoflares" in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.

  6. The Potential of Heat Collection from Solar Radiation in Asphalt Solar Collectors in Malaysia

    NASA Astrophysics Data System (ADS)

    Beddu, Salmia; Talib, Siti Hidayah Abdul; Itam, Zarina

    2016-03-01

    The implementation of asphalt solar collectors as a means of an energy source is being widely studied in recent years. Asphalt pavements are exposed to daily solar radiation, and are capable of reaching up to 70°C in temperature. The potential of harvesting energy from solar pavements as an alternative energy source in replace of non-renewable energy sources prone to depletion such as fuel is promising. In Malaysia, the sun intensity is quite high and for this reason, absorbing the heat from sun radiation, and then utilizing it in many other applications such as generating electricity could definitely be impressive. Previous researches on the different methods of studying the effect of heat absorption caused by solar radiation prove to be quite old and inaffective. More recent findings, on the otherhand, prove to be more informative. This paper focuses on determining the potential of heat collection from solar radiation in asphalt solar collectors using steel piping. The asphalt solar collector model constructed for this research was prepared in the civil engineering laboratory. The hot mixed asphalt (HMA) contains 10% bitumen mixed with 90% aggregates of the total size of asphalt. Three stainless steel pipes were embedded into the interior region of the model according to the design criteria, and then put to test. Results show that harvesting energy from asphalt solar collectors proves highly potential in Malaysia due its the hot climate.

  7. Modeling and optimal designs for dislocation and radiation tolerant single and multijunction solar cells

    NASA Astrophysics Data System (ADS)

    Mehrotra, A.; Alemu, A.; Freundlich, A.

    2011-02-01

    Crystalline defects (e.g. dislocations or grain boundaries) as well as electron and proton induced defects cause reduction of minority carrier diffusion length which in turn results in degradation of efficiency of solar cells. Hetro-epitaxial or metamorphic III-V devices with low dislocation density have high BOL efficiencies but electron-proton radiation causes degradation in EOL efficiencies. By optimizing the device design (emitter-base thickness, doping) we can obtain highly dislocated metamorphic devices that are radiation resistant. Here we have modeled III-V single and multi junction solar cells using drift and diffusion equations considering experimental III-V material parameters, dislocation density, 1 Mev equivalent electron radiation doses, thicknesses and doping concentration. Thinner device thickness leads to increment in EOL efficiency of high dislocation density solar cells. By optimizing device design we can obtain nearly same EOL efficiencies from high dislocation solar cells than from defect free III-V multijunction solar cells. As example defect free GaAs solar cell after optimization gives 11.2% EOL efficiency (under typical 5x1015cm-2 1 MeV electron fluence) while a GaAs solar cell with high dislocation density (108 cm-2) after optimization gives 10.6% EOL efficiency. The approach provides an additional degree of freedom in the design of high efficiency space cells and could in turn be used to relax the need for thick defect filtering buffer in metamorphic devices.

  8. Studies of the Solar Radiations' Influence About Geomembranes Used in Ecological Landfill

    NASA Astrophysics Data System (ADS)

    Vasiluta, Petre; Cofaru, Ileana Ioana; Cofaru, Nicolae Florin; Popa, Dragos Laurentiu

    2017-12-01

    The study shown in this paper presents the behavior of geomembranes used at the ecological landfills. The influences of the solar radiations has a great importance regarding the correct mounting of the geomembranes. The mathematical model developed for the determination anytime and anywhere in the world for the next values and parameters: apparent solar time, solar declination, solar altitude, solar azimuth and incidence angle, zone angle, angle of sun elevation, solar declination, solar constant, solar flux density, diffuse solar radiation, global radiation, soil albedo, total radiant flux density and relational links of these values. The results of this model was used for creations an AutoCAD subroutines useful for choosing the correct time for correct mounting anywhere of the geomembranes

  9. Solar ultraviolet radiation cataract.

    PubMed

    Löfgren, Stefan

    2017-03-01

    Despite being a treatable disease, cataract is still the leading cause for blindness in the world. Solar ultraviolet radiation is epidemiologically linked to cataract development, while animal and in vitro studies prove a causal relationship. However, the pathogenetic pathways for the disease are not fully understood and there is still no perfect model for human age related cataract. This non-comprehensive overview focus on recent developments regarding effects of solar UV radiation wavebands on the lens. A smaller number of fundamental papers are also included to provide a backdrop for the overview. Future studies are expected to further clarify the cellular and subcellular mechanisms for UV radiation-induced cataract and especially the isolated or combined temporal and spatial effects of UVA and UVB in the pathogenesis of human cataract. Regardless of the cause for cataract, there is a need for advances in pharmaceutical or other treatment modalities that do not require surgical replacement of the lens. Copyright © 2016. Published by Elsevier Ltd.

  10. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    The handbook discusses the history of GaAs solar cell development, presents equations useful for working with GaAs solar cells, describes commonly used instrumentation techniques for assessing radiation effects in solar cells and fundamental processes occurring in solar cells exposed to ionizing radiation, and explains why radiation decreases the electrical performance of solar cells. Three basic elements required to perform solar array degradation calculations: degradation data for GaAs solar cells after irradiation with 1 MeV electrons at normal incidence; relative damage coefficients for omnidirectional electron and proton exposure; and the definition of the space radiation environment for the orbit of interest, are developed and used to perform a solar array degradation calculation.

  11. Measurements and Modeling of Total Solar Irradiance in X-class Solar Flares

    NASA Technical Reports Server (NTRS)

    Moore, Christopher S.; Chamberlin, Phillip Clyde; Hock, Rachel

    2014-01-01

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.

  12. Box-wing model approach for solar radiation pressure modelling in a multi-GNSS scenario

    NASA Astrophysics Data System (ADS)

    Tobias, Guillermo; Jesús García, Adrián

    2016-04-01

    The solar radiation pressure force is the largest orbital perturbation after the gravitational effects and the major error source affecting GNSS satellites. A wide range of approaches have been developed over the years for the modelling of this non gravitational effect as part of the orbit determination process. These approaches are commonly divided into empirical, semi-analytical and analytical, where their main difference relies on the amount of knowledge of a-priori physical information about the properties of the satellites (materials and geometry) and their attitude. It has been shown in the past that the pre-launch analytical models fail to achieve the desired accuracy mainly due to difficulties in the extrapolation of the in-orbit optical and thermic properties, the perturbations in the nominal attitude law and the aging of the satellite's surfaces, whereas empirical models' accuracies strongly depend on the amount of tracking data used for deriving the models, and whose performances are reduced as the area to mass ratio of the GNSS satellites increases, as it happens for the upcoming constellations such as BeiDou and Galileo. This paper proposes to use basic box-wing model for Galileo complemented with empirical parameters, based on the limited available information about the Galileo satellite's geometry. The satellite is modelled as a box, representing the satellite bus, and a wing representing the solar panel. The performance of the model will be assessed for GPS, GLONASS and Galileo constellations. The results of the proposed approach have been analyzed over a one year period. In order to assess the results two different SRP models have been used. Firstly, the proposed box-wing model and secondly, the new CODE empirical model, ECOM2. The orbit performances of both models are assessed using Satellite Laser Ranging (SLR) measurements, together with the evaluation of the orbit prediction accuracy. This comparison shows the advantages and disadvantages of

  13. Implementation of a subcanopy solar radiation model on a forested headwater basin in the Southern Appalachians to estimate riparian canopy density and stream insolation for stream temperature models

    NASA Astrophysics Data System (ADS)

    Belica, L.; Petras, V.; Iiames, J. S., Jr.; Caldwell, P.; Mitasova, H.; Nelson, S. A. C.

    2016-12-01

    Water temperature is a key aspect of water quality and understanding how the thermal regimes of forested headwater streams may change in response to climatic and land cover changes is increasingly important to scientists and resource managers. In recent years, the forested mountain watersheds of the Southeastern U.S. have experienced changing climatic patterns as well as the loss of a keystone riparian tree species and anticipated hydrologic responses include lower summer stream flows and decreased stream shading. Solar radiation is the main source of thermal energy to streams and a key parameter in heat-budget models of stream temperature; a decrease in flow volume combined with a reduction in stream shading during summer have the potential to increase stream temperatures. The high spatial variability of forest canopies and the high spatio-temporal variability in sky conditions make estimating the solar radiation reaching small forested headwater streams difficult. The Subcanopy Solar Radiation Model (SSR) (Bode et al. 2014) is a GIS model that generates high resolution, spatially explicit estimates of solar radiation by incorporating topographic and vegetative shading with a light penetration index derived from leaf-on airborne LIDAR data. To evaluate the potential of the SSR model to provide estimates of stream insolation to parameterize heat-budget models, it was applied to the Coweeta Basin in the Southern Appalachians using airborne LIDAR (NCALM 2009, 1m resolution). The LIDAR derived canopy characteristics were compared to current hyperspectral images of the canopy for changes and the SSR estimates of solar radiation were compared with pyranometer measurements of solar radiation at several subcanopy sites during the summer of 2016. Preliminary results indicate the SSR model was effective in identifying variations in canopy density and light penetration, especially in areas associated with road and stream corridors and tree mortality. Current LIDAR data and

  14. Solar radiation pressure effects on the Helios spacecraft

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1976-01-01

    A mathematical model of the solar radiation force and torques, developed for the Mariner 10 Venus/Mercury spacecraft mission, was used for a detailed analysis of the effects of solar light pressure on the Helios spacecraft. Due to the fact that the main body of the Helios spacecraft is a surface of enclosure, inside of which most of the reradiated thermal energy is lost, expressions for the portion of the solar radiation force, produced by the thermal reradiation, had to be given a different form. Hence the need for the derivation of a somewhat different theoretical model for the force acting on the main body of the spacecraft.

  15. Coordinated weather balloon solar radiation measurements during a solar eclipse

    PubMed Central

    2016-01-01

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550757

  16. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    PubMed

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  17. A solar radiation database for Chile.

    PubMed

    Molina, Alejandra; Falvey, Mark; Rondanelli, Roberto

    2017-11-01

    Chile hosts some of the sunniest places on earth, which has led to a growing solar energy industry in recent years. However, the lack of high resolution measurements of solar irradiance becomes a critical obstacle for both financing and design of solar installations. Besides the Atacama Desert, Chile displays a large array of "solar climates" due to large latitude and altitude variations, and so provides a useful testbed for the development of solar irradiance maps. Here a new public database for surface solar irradiance over Chile is presented. This database includes hourly irradiance from 2004 to 2016 at 90 m horizontal resolution over continental Chile. Our results are based on global reanalysis data to force a radiative transfer model for clear sky solar irradiance and an empirical model based on geostationary satellite data for cloudy conditions. The results have been validated using 140 surface solar irradiance stations throughout the country. Model mean percentage error in hourly time series of global horizontal irradiance is only 0.73%, considering both clear and cloudy days. The simplicity and accuracy of the model over a wide range of solar conditions provides confidence that the model can be easily generalized to other regions of the world.

  18. Solar radiation measurement project

    NASA Technical Reports Server (NTRS)

    Ioup, J. W.

    1981-01-01

    The Xavier solar radiation measurement project and station are described. Measurements of the total solar radiation on a horizontal surface from an Eppley pyranometer were collected into computer data files. Total radiation in watt hours was converted from ten minute intervals to hourly intervals. Graphs of this total radiation data are included. A computer program in Fortran was written to calculate the total extraterrestrial radiation on a horizontal surface for each day of the month. Educational and social benefits of the project are cited.

  19. Flight attendant radiation dose from solar particle events.

    PubMed

    Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T

    2014-08-01

    Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.

  20. A simple solar radiation index for wildlife habitat studies

    USGS Publications Warehouse

    Keating, Kim A.; Gogan, Peter J.; Vore, John N.; Irby, Lynn R.

    2007-01-01

    Solar radiation is a potentially important covariate in many wildlife habitat studies, but it is typically addressed only indirectly, using problematic surrogates like aspect or hillshade. We devised a simple solar radiation index (SRI) that combines readily available information about aspect, slope, and latitude. Our SRI is proportional to the amount of extraterrestrial solar radiation theoretically striking an arbitrarily oriented surface during the hour surrounding solar noon on the equinox. Because it derives from first geometric principles and is linearly distributed, SRI offers clear advantages over aspect-based surrogates. The SRI also is superior to hillshade, which we found to be sometimes imprecise and ill-behaved. To illustrate application of our SRI, we assessed niche separation among 3 ungulate species along a single environmental axis, solar radiation, on the northern Yellowstone winter range. We detected no difference between the niches occupied by bighorn sheep (Ovis canadensis) and elk (Cervus elaphus; P = 0.104), but found that mule deer (Odocoileus hemionus) tended to use areas receiving more solar radiation than either of the other species (P < 0.001). Overall, our SRI provides a useful metric that can reduce noise, improve interpretability, and increase parsimony in wildlife habitat models containing a solar radiation component.

  1. Spatial interpolation of solar global radiation

    NASA Astrophysics Data System (ADS)

    Lussana, C.; Uboldi, F.; Antoniazzi, C.

    2010-09-01

    Solar global radiation is defined as the radiant flux incident onto an area element of the terrestrial surface. Its direct knowledge plays a crucial role in many applications, from agrometeorology to environmental meteorology. The ARPA Lombardia's meteorological network includes about one hundred of pyranometers, mostly distributed in the southern part of the Alps and in the centre of the Po Plain. A statistical interpolation method based on an implementation of the Optimal Interpolation is applied to the hourly average of the solar global radiation observations measured by the ARPA Lombardia's network. The background field is obtained using SMARTS (The Simple Model of the Atmospheric Radiative Transfer of Sunshine, Gueymard, 2001). The model is initialised by assuming clear sky conditions and it takes into account the solar position and orography related effects (shade and reflection). The interpolation of pyranometric observations introduces in the analysis fields information about cloud presence and influence. A particular effort is devoted to prevent observations affected by large errors of different kinds (representativity errors, systematic errors, gross errors) from entering the analysis procedure. The inclusion of direct cloud information from satellite observations is also planned.

  2. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Carter, J. R., Jr.; Tada, H. Y.

    1973-01-01

    A method is presented for predicting the degradation of a solar array in a space radiation environment. Solar cell technology which emphasizes the cell parameters that degrade in a radiation environment, is discussed along with the experimental techniques used in the evaluation of radiation effects. Other topics discussed include: theoretical aspects of radiation damage, methods for developing relative damage coefficients, nature of the space radiation environment, method of calculating equivalent fluence from electron and proton energy spectrums and relative damage coefficients, and comparison of flight data with estimated degradation.

  3. A Comparison of Satellite Based, Modeled Derived Daily Solar Radiation Data with Observed Data for the Continental US

    NASA Technical Reports Server (NTRS)

    White, Jeffrey W.; Hoogenboom, Gerrit; Wilkens, Paul W.; Stackhouse, Paul W., Jr.; Hoell, James M.

    2010-01-01

    Many applications of simulation models and related decision support tools for agriculture and natural resource management require daily meteorological data as inputs. Availability and quality of such data, however, often constrain research and decision support activities that require use of these tools. Daily solar radiation (SRAD) data are especially problematic because the instruments require electronic integrators, accurate sensors are expensive, and calibration standards are seldom available. The Prediction Of Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov) project at the NASA Langley Research Center estimates daily solar radiation based on data that are derived from satellite observations of outgoing visible radiances and atmospheric parameters based upon satellite observations and assimilation models. The solar data are available for a global 1 degree x 1 degree coordinate grid. SRAD can also be estimated based on attenuation of extraterrestrial radiation (Q0) using daily temperature and rainfall data to estimate the optical thickness of the atmosphere. This study compares daily solar radiation data from NASA/POWER (SRADNP) with instrument readings from 295 stations (SRADOB), as well as with values that were estimated with the WGENR solar generator. WGENR was used both with daily temperature and precipitation records from the stations reporting solar data and records from the NOAA Cooperative Observer Program (COOP), thus providing two additional sources of solar data, SRADWG and SRADCO. Values of SRADNP for different grid cells consistently showed higher correlations (typically 0.85 to 0.95) with SRADOB data than did SRADWG or SRADCO for sites within the corresponding cells. Mean values of SRADOB, SRADWG and SRADNP for sites within a grid cell usually were within 1 MJm-2d-1 of each other, but NASA/POWER values averaged 1.1 MJm-2d-1 lower than SRADOB. The magnitude of this bias was greater at lower latitudes and during summer months and may be at

  4. Toward Improved Modeling of Spectral Solar Irradiance for Solar Energy Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit

    This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to extend the capability of the Fast All-sky Radiation Model for Solar applications (FARMS) by computing spectral solar irradiances over both horizontal and inclined surfaces. A new model is developed by computing the optical thickness of the atmosphere using a spectral irradiance model for clear-sky conditions, SMARTS2. A comprehensive lookup table (LUT) of cloud bidirectional transmittance distribution functions (BTDFs) is precomputed for 2002 wavelength bands using an atmospheric radiative transfer model, libRadtran. The solar radiation transmitted through the atmosphere is given by considering all possible paths of photon transmissionmore » and the relevent scattering and absorption attenuation. Our results indicate that this new model has an accuracy that is similar to that of state-of-the-art radiative transfer models, but it is significantly more efficient.« less

  5. Integrated Solar Concentrator and Shielded Radiator

    NASA Technical Reports Server (NTRS)

    Clark, David Larry

    2010-01-01

    A shielded radiator is integrated within a solar concentrator for applications that require protection from high ambient temperatures with little convective heat transfer. This innovation uses a reflective surface to deflect ambient thermal radiation, shielding the radiator. The interior of the shield is also reflective to provide a view factor to deep space. A key feature of the shield is the parabolic shape that focuses incoming solar radiation to a line above the radiator along the length of the trough. This keeps the solar energy from adding to the radiator load. By placing solar cells along this focal line, the concentration of solar energy reduces the number and mass of required cells. By shielding the radiator, the effective reject temperature is much lower, allowing lower radiator temperatures. This is particularly important for lower-temperature processes, like habitat heat rejection and fuel cell operations where a high radiator temperature is not feasible. Adding the solar cells in the focal line uses the concentrating effect of the shield to advantage to accomplish two processes with a single device. This shield can be a deployable, lightweight Mylar structure for compact transport.

  6. Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data

    NASA Technical Reports Server (NTRS)

    Dubayah, R.

    1992-01-01

    A radiative transfer algorithm is combined with digital elevation and satellite reflectance data to model spatial variability in net solar radiation at fine spatial resolution. The method is applied to the tall-grass prairie of the 16 x 16 sq km FIFE site (First ISLSCP Field Experiment) of the International Satellite Land Surface Climatology Project. Spectral reflectances as measured by the Landsat Thematic Mapper (TM) are corrected for atmospheric and topographic effects using field measurements and accurate 30-m digital elevation data in a detailed model of atmosphere-surface interaction. The spectral reflectances are then integrated to produce estimates of surface albedo in the range 0.3-3.0 microns. This map of albedo is used in an atmospheric and topographic radiative transfer model to produce a map of net solar radiation. A map of apparent net solar radiation is also derived using only the TM reflectance data, uncorrected for topography, and the average field-measured downwelling solar irradiance. Comparison with field measurements at 10 sites on the prairie shows that the topographically derived radiation map accurately captures the spatial variability in net solar radiation, but the apparent map does not.

  7. Understanding Coupling of Global and Diffuse Solar Radiation with Climatic Variability

    NASA Astrophysics Data System (ADS)

    Hamdan, Lubna

    Global solar radiation data is very important for wide variety of applications and scientific studies. However, this data is not readily available because of the cost of measuring equipment and the tedious maintenance and calibration requirements. Wide variety of models have been introduced by researchers to estimate and/or predict the global solar radiations and its components (direct and diffuse radiation) using other readily obtainable atmospheric parameters. The goal of this research is to understand the coupling of global and diffuse solar radiation with climatic variability, by investigating the relationships between these radiations and atmospheric parameters. For this purpose, we applied multilinear regression analysis on the data of National Solar Radiation Database 1991--2010 Update. The analysis showed that the main atmospheric parameters that affect the amount of global radiation received on earth's surface are cloud cover and relative humidity. Global radiation correlates negatively with both variables. Linear models are excellent approximations for the relationship between atmospheric parameters and global radiation. A linear model with the predictors total cloud cover, relative humidity, and extraterrestrial radiation is able to explain around 98% of the variability in global radiation. For diffuse radiation, the analysis showed that the main atmospheric parameters that affect the amount received on earth's surface are cloud cover and aerosol optical depth. Diffuse radiation correlates positively with both variables. Linear models are very good approximations for the relationship between atmospheric parameters and diffuse radiation. A linear model with the predictors total cloud cover, aerosol optical depth, and extraterrestrial radiation is able to explain around 91% of the variability in diffuse radiation. Prediction analysis showed that the linear models we fitted were able to predict diffuse radiation with efficiency of test adjusted R2 values

  8. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    History of GaAs solar cell development is provided. Photovoltaic equations are described along with instrumentation techniques for measuring solar cells. Radiation effects in solar cells, electrical performance, and spacecraft flight data for solar cells are discussed. The space radiation environment and solar array degradation calculations are addressed.

  9. Validation of the National Solar Radiation Database (NSRDB) (2005-2012): Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Weekley, Andrew; Habte, Aron

    Publicly accessible, high-quality, long-term, satellite-based solar resource data is foundational and critical to solar technologies to quantify system output predictions and deploy solar energy technologies in grid-tied systems. Solar radiation models have been in development for more than three decades. For many years, the National Renewable Energy Laboratory (NREL) developed and/or updated such models through the National Solar Radiation Data Base (NSRDB). There are two widely used approaches to derive solar resource data from models: (a) an empirical approach that relates ground-based observations to satellite measurements and (b) a physics-based approach that considers the radiation received at the satellite andmore » creates retrievals to estimate clouds and surface radiation. Although empirical methods have been traditionally used for computing surface radiation, the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from the National Oceanic and Atmospheric Administration (NOAA) that computes global horizontal irradiance (GHI) using the visible and infrared channel measurements from the Geostationary Operational Environmental Satellites (GOES) system. GSIP uses a two-stage scheme that first retrieves cloud properties and then uses those properties in the Satellite Algorithm for Surface Radiation Budget (SASRAB) model to calculate surface radiation. NREL, the University of Wisconsin, and NOAA have recently collaborated to adapt GSIP to create a high temporal and spatial resolution data set. The product initially generates the cloud properties using the AVHRR Pathfinder Atmospheres-Extended (PATMOS-x) algorithms [3], whereas the GHI is calculated using SASRAB. Then NREL implements accurate and high-resolution input parameters such as aerosol optical depth (AOD) and precipitable water vapor (PWV) to compute direct normal irradiance (DNI) using the DISC model. The

  10. Ecohydrologic role of solar radiation on landscape evolution

    NASA Astrophysics Data System (ADS)

    Yetemen, Omer; Istanbulluoglu, Erkan; Flores-Cervantes, J. Homero; Vivoni, Enrique R.; Bras, Rafael L.

    2015-02-01

    Solar radiation has a clear signature on the spatial organization of ecohydrologic fluxes, vegetation patterns and dynamics, and landscape morphology in semiarid ecosystems. Existing landscape evolution models (LEMs) do not explicitly consider spatially explicit solar radiation as model forcing. Here, we improve an existing LEM to represent coupled processes of energy, water, and sediment balance for semiarid fluvial catchments. To ground model predictions, a study site is selected in central New Mexico where hillslope aspect has a marked influence on vegetation patterns and landscape morphology. Model predictions are corroborated using limited field observations in central NM and other locations with similar conditions. We design a set of comparative LEM simulations to investigate the role of spatially explicit solar radiation on landscape ecohydro-geomorphic development under different uplift scenarios. Aspect-control and network-control are identified as the two main drivers of soil moisture and vegetation organization on the landscape. Landscape-scale and long-term implications of these short-term ecohdrologic patterns emerged in modeled landscapes. As north facing slopes (NFS) get steeper by continuing uplift they support erosion-resistant denser vegetation cover which leads to further slope steepening until erosion and uplift attains a dynamic equilibrium. Conversely, on south facing slopes (SFS), as slopes grow with uplift, increased solar radiation exposure with slope supports sparser biomass and shallower slopes. At the landscape scale, these differential erosion processes lead to asymmetric development of catchment forms, consistent with regional observations. Understanding of ecohydrogeomorphic evolution will improve to assess the impacts of past and future climates on landscape response and morphology.

  11. Towards Relaxing the Spherical Solar Radiation Pressure Model for Accurate Orbit Predictions

    NASA Astrophysics Data System (ADS)

    Lachut, M.; Bennett, J.

    2016-09-01

    The well-known cannonball model has been used ubiquitously to capture the effects of atmospheric drag and solar radiation pressure on satellites and/or space debris for decades. While it lends itself naturally to spherical objects, its validity in the case of non-spherical objects has been debated heavily for years throughout the space situational awareness community. One of the leading motivations to improve orbit predictions by relaxing the spherical assumption, is the ongoing demand for more robust and reliable conjunction assessments. In this study, we explore the orbit propagation of a flat plate in a near-GEO orbit under the influence of solar radiation pressure, using a Lambertian BRDF model. Consequently, this approach will account for the spin rate and orientation of the object, which is typically determined in practice using a light curve analysis. Here, simulations will be performed which systematically reduces the spin rate to demonstrate the point at which the spherical model no longer describes the orbital elements of the spinning plate. Further understanding of this threshold would provide insight into when a higher fidelity model should be used, thus resulting in improved orbit propagations. Therefore, the work presented here is of particular interest to organizations and researchers that maintain their own catalog, and/or perform conjunction analyses.

  12. Modeling of the Radiation Belt Dynamics During the Two Largest Geomagnetic Storms of Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Rastaetter, L.; Kuznetsova, M. M.

    2016-12-01

    In this paper, radiation belt response to the two largest geomagnetic storms of Solar Cycle 24 (17 March 2015 and the 22 June 2015) is investigated in detail. Even though both storms are primarily CME driven, each has its own complexities [Liu et al., 2015, Kataoka et al., 2015]. Using the CCMC's run-on-request system, modeling results using the RBE (Radiation Belt Environment) model within the SWMF (Space Weather Modeling Framework) and the RBE model coupled with the SWMF and RCM (Rice Convection Model, which takes the ring current's contribution into consideration) will be examined. Comparative and comprehensive analyses of the same event from two different models and of two events from the same model/model suite will be provided. Focus will be specially given to impacts of different solar wind drivers on radiation belt dynamics and to the coupling and interactions of different plasma populations/physical processes within the region. Liu, Ying D., H. Hu, R. Wang, Z. Yang, B., Zhu, Y. A., Liu, J. G. Luhmann, J. D. Richardson (2015), Plasma and Magnetic Field Characteristics of Solar Coronal Mass Ejections in Relation to Geomagnetic Storm Intensity and Variability, The Astrophysical Journal Letters, Volume 809, Issue 2, article id. L34, 6 pp. doi:10.1088/2041-8205/809/2/L34. Kataoka, R., D. Shiota, E. Kilpua, and K. Keika (2015), Pileup accident hypothesis of magnetic storm on 17 March 2015, Geophys. Res. Lett., 42, 5155-5161, doi:10.1002/2015GL064816.

  13. Radiation transfer in plant canopies - Scattering of solar radiation and canopy reflectance

    NASA Technical Reports Server (NTRS)

    Verstraete, Michel M.

    1988-01-01

    The one-dimensional vertical model of radiation transfer in a plant canopy described by Verstraete (1987) is extended to account for the transfer of diffuse radiation. This improved model computes the absorption and scattering of both visible and near-infrared radiation in a multilayer canopy as a function of solar position and leaf orientation distribution. Multiple scattering is allowed, and the spectral reflectance of the vegetation stand is predicted. The results of the model are compared to those of other models and actual observations.

  14. Spatio-temporal distribution of global solar radiation for Mexico using GOES data

    NASA Astrophysics Data System (ADS)

    Bonifaz, R.; Cuahutle, M.; Valdes, M.; Riveros, D.

    2013-05-01

    Increased need of sustainable and renewable energies around the world requires studies about the amount and distribution of such types of energies. Global solar radiation distribution in space and time is a key component on order to know the availability of the energy for different applications. Using GOES hourly data, the heliosat model was implemented for Mexico. Details about the model and its components are discussed step by stem an once obtained the global solar radiation images, different time datasets (hourly, daily, monthly and seasonal) were built in order to know the spatio-temporal behavior of this type of energy. Preliminary maps of the available solar global radiation energy for Mexico are presented, the amount and variation of the solar radiation by regions are analyzed and discussed. Future work includes a better parametrization of the model using calibrated ground stations data and more use of more complex models for better results.

  15. Distributed modeling of surface solar radiation based on aerosol optical depth and sunshine duration in China

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaofan; Zhao, Na; Ma, Yue

    2018-02-01

    Surface solar radiation, as a major component of energy balance, is an important driving condition for nutrient and energy cycle in the Earth system. The spatial distribution of total solar radiation at 10 km×10 km resolution in China was simulated with Aerosol Optical Depth (AOD) data from remote sensing and observing sunshine hours data from ground meteorological stations based on Geographic Information System (GIS). The results showed that the solar radiation was significantly different in the country, and affected by both sunshine hours and AOD. Sunshine hours are higher in the Northwest than that in the Northeast, but solar radiation is lower because of the higher AOD, especially in autumn and winter. It was suggested that the calculation accuracy of solar radiation was limited if just based on sunshine hours, and AOD can be considered as the influencing factor which would help to improve the simulation accuracy of the total solar radiation and realize the solar radiation distributed simulation.

  16. On modeling the organization of landscapes and vegetation patterns controlled by solar radiation

    NASA Astrophysics Data System (ADS)

    Istanbulluoglu, E.; Yetemen, O.

    2014-12-01

    Solar radiation is a critical driver of ecohydrologic processes and vegetation dynamics. Patterns of runoff generation and vegetation dictate landscape geomorphic response. Distinct patterns in the organization of soil moisture, vegetation type, and landscape morphology have been documented in close relation to aspect in a range of climates. Within catchments, from north to south facing slopes, studies have shown ecotone shifts from forest to shrub species, and steep diffusion-dominated landforms to fluvial landforms. Over the long term differential evolution of ecohydrology and geomorphology leads to observed asymmetric structure in the planform of channel network and valley morphology. In this talk we present examples of coupled modeling of ecohydrology and geomorphology driven by solar radiation. In a cellular automata model of vegetation dynamics we will first show how plants organize in north and south facing slopes and how biodiversity changes with elevation. When vegetation-erosion feedbacks are coupled emergent properties of the coupled system are observed in the modeled elevation and vegetation fields. Integrating processes at a range of temporal and spatial scales, coupled models of ecohydrologic and geomorphic dynamics enable examination of global change impacts on landscapes and ecosystems.

  17. Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect

    PubMed Central

    Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817

  18. Mathematical modeling and numerical analysis of thermal distribution in arch dams considering solar radiation effect.

    PubMed

    Mirzabozorg, H; Hariri-Ardebili, M A; Shirkhan, M; Seyed-Kolbadi, S M

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams.

  19. A simple model of space radiation damage in GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Stith, J. J.; Stock, L. V.

    1983-01-01

    A simple model is derived for the radiation damage of shallow junction gallium arsenide (GaAs) solar cells. Reasonable agreement is found between the model and specific experimental studies of radiation effects with electron and proton beams. In particular, the extreme sensitivity of the cell to protons stopping near the cell junction is predicted by the model. The equivalent fluence concept is of questionable validity for monoenergetic proton beams. Angular factors are quite important in establishing the cell sensitivity to incident particle types and energies. A fluence of isotropic incidence 1 MeV electrons (assuming infinite backing) is equivalent to four times the fluence of normal incidence 1 MeV electrons. Spectral factors common to the space radiations are considered, and cover glass thickness required to minimize the initial damage for a typical cell configuration is calculated. Rough equivalence between the geosynchronous environment and an equivalent 1 MeV electron fluence (normal incidence) is established.

  20. Improving the S-Shape Solar Radiation Estimation Method for Supporting Crop Models

    PubMed Central

    Fodor, Nándor

    2012-01-01

    In line with the critical comments formulated in relation to the S-shape global solar radiation estimation method, the original formula was improved via a 5-step procedure. The improved method was compared to four-reference methods on a large North-American database. According to the investigated error indicators, the final 7-parameter S-shape method has the same or even better estimation efficiency than the original formula. The improved formula is able to provide radiation estimates with a particularly low error pattern index (PIdoy) which is especially important concerning the usability of the estimated radiation values in crop models. Using site-specific calibration, the radiation estimates of the improved S-shape method caused an average of 2.72 ± 1.02 (α = 0.05) relative error in the calculated biomass. Using only readily available site specific metadata the radiation estimates caused less than 5% relative error in the crop model calculations when they were used for locations in the middle, plain territories of the USA. PMID:22645451

  1. Solar radiation for Mars power systems

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  2. A new method to estimate average hourly global solar radiation on the horizontal surface

    NASA Astrophysics Data System (ADS)

    Pandey, Pramod K.; Soupir, Michelle L.

    2012-10-01

    A new model, Global Solar Radiation on Horizontal Surface (GSRHS), was developed to estimate the average hourly global solar radiation on the horizontal surfaces (Gh). The GSRHS model uses the transmission function (Tf,ij), which was developed to control hourly global solar radiation, for predicting solar radiation. The inputs of the model were: hour of day, day (Julian) of year, optimized parameter values, solar constant (H0), latitude, and longitude of the location of interest. The parameter values used in the model were optimized at a location (Albuquerque, NM), and these values were applied into the model for predicting average hourly global solar radiations at four different locations (Austin, TX; El Paso, TX; Desert Rock, NV; Seattle, WA) of the United States. The model performance was assessed using correlation coefficient (r), Mean Absolute Bias Error (MABE), Root Mean Square Error (RMSE), and coefficient of determinations (R2). The sensitivities of parameter to prediction were estimated. Results show that the model performed very well. The correlation coefficients (r) range from 0.96 to 0.99, while coefficients of determination (R2) range from 0.92 to 0.98. For daily and monthly prediction, error percentages (i.e. MABE and RMSE) were less than 20%. The approach we proposed here can be potentially useful for predicting average hourly global solar radiation on the horizontal surface for different locations, with the use of readily available data (i.e. latitude and longitude of the location) as inputs.

  3. Measurement of solar radiation at the Earth's surface

    NASA Technical Reports Server (NTRS)

    Bartman, F. L.

    1982-01-01

    The characteristics of solar energy arriving at the surface of the Earth are defined and the history of solar measurements in the United States presented. Radiation and meteorological measurements being made at solar energy meteorological research and training sites and calibration procedures used there are outlined. Data illustrating the annual variation in daily solar radiation at Ann Arbor, Michigan and the diurnal variation in radiation at Albuquerque, New Mexico are presented. Direct normal solar radiation received at Albuquerque is contrasted with that received at Maynard, Massachusetts. Average measured global radiation for a period of one year for four locations under clear skies, 50% cloud cover, and 100% cloud cover is given and compared with the solar radiation at the top of the atmosphere. The May distribution of mean daily direct solar radiation and mean daily global solar radiation over the United States is presented. The effects of turbidity on the direct and circumsolar radiation are shown.

  4. Comparison of modeled and typical meteorological year. Diffuse, direct, and tilted solar radiation values with measured data in a cloudy climate: Seattle-Tacoma data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straub, D.; Baylon, D.; Smith, O.

    1980-01-01

    Four commonly used solar radiation models that determine the diffuse and direct components of the solar radiation on a horizontal surface are compared against measured data to determine their predictive and modeling applicability. The John Hay model is determined to underpredict the diffuse and the Pereira/Rabl model to overpredict the diffuse radiation. The daily Liu and Jordan correlation and the hourly Boes correlation are shown to be better predictors.

  5. Long-term solar UV radiation reconstructed by ANN modelling with emphasis on spatial characteristics of input data

    NASA Astrophysics Data System (ADS)

    Feister, U.; Junk, J.; Woldt, M.; Bais, A.; Helbig, A.; Janouch, M.; Josefsson, W.; Kazantzidis, A.; Lindfors, A.; den Outer, P. N.; Slaper, H.

    2008-06-01

    Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Special emphasis will be given to the discussion of small-scale characteristics of input data to the ANN model. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980/1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  6. Multidecadal variations of solar radiation reaching the surface and the role of aerosol direct radiative effects

    NASA Astrophysics Data System (ADS)

    Chin, M.; Diehl, T. L.; Bian, H.; Yu, H.; Kucsera, T. L.; Wild, M., Sr.; Hakuba, M. Z.; Qian, Y.; Stackhouse, P. W., Jr.; Pinker, R. T.; Zhang, Y.; Kato, S.; Loeb, N. G.; Kinne, S.; Streets, D. G.

    2017-12-01

    Incoming solar radiation drives the Earth's climate system. Long-term surface observations of the solar radiation reaching the surface (RSFC) have shown decreasing or increasing trends, often referred to as solar "dimming" or "brightening", in many regions of the world in the past several decades. Such long-term variation of RSFC mostly reflects the change of the solar-attenuation components within the atmosphere. Anthropogenic emissions of aerosols and precursor gases have changed significantly in the past decades with 50-80% reduction in North America and Europe but an increase of similar magnitude in East and South Asia since 1980, mirroring the change in RSFC over those regions. This has led to suggestions that aerosols play a critical role in determining RSFC trends. This work is to assess the role of direct radiative effects of aerosols on the solar "dimming" and "brightening" trends with modeling studies. First, we will show the trends of aerosol optical depth (AOD) and aerosol surface concentrations in different regions from 1980 to 2009 with remote sensing and in-situ data as well as model simulations, and attribute those changes to anthropogenic or natural sources. We will then show the trends of RSFC from the model and compare the results with observations from the surface networks and satellite-based products. Furthermore, we will use the GOCART model to attribute the "dimming/ brightening" trends to the changes of aerosols through the direct radiative effects. Finally, we will discuss the way forward to understand the aerosol effects on RSFC (as well as on other climate variables) through aerosol-cloud-radiation interactions.

  7. The effects of solar radiation and black body re-radiation on thermal comfort.

    PubMed

    Hodder, Simon; Parsons, Ken

    2008-04-01

    When the sun shines on people in enclosed spaces, such as in buildings or vehicles, it directly affects thermal comfort. There is also an indirect effect as surrounding surfaces are heated exposing a person to re-radiation. This laboratory study investigated the effects of long wave re-radiation on thermal comfort, individually and when combined with direct solar radiation. Nine male participants (26.0 +/- 4.7 years) took part in three experimental sessions where they were exposed to radiation from a hot black panel heated to 100 degrees C; direct simulated solar radiation of 600 Wm(-2) and the combined simulated solar radiation and black panel radiation. Exposures were for 30 min, during which subjective responses and mean skin temperatures were recorded. The results showed that, at a surface temperature of 100 degrees C (close to maximum in practice), radiation from the flat black panel provided thermal discomfort but that this was relatively small when compared with the effects of direct solar radiation. It was concluded that re-radiation, from a dashboard in a vehicle, for example, will not have a major direct influence on thermal comfort and that existing models of thermal comfort do not require a specific modification. These results showed that, for the conditions investigated, the addition of re-radiation from internal components has an effect on thermal sensation when combined with direct solar radiation. However, it is not considered that it will be a major factor in a real world situation. This is because, in practice, dashboards are unlikely to maintain very high surface temperatures in vehicles without an unacceptably high air temperature. This study quantifies the contribution of short- and long-wave radiation to thermal comfort. The results will aid vehicle designers to have a better understanding of the complex radiation environment. These include direct radiation from the sun as well as re-radiation from the dashboard and other internal surfaces.

  8. Cloud Induced Enhancement of Ground Level Solar Radiation

    NASA Astrophysics Data System (ADS)

    Inman, R.; Chu, Y.; Coimbra, C.

    2013-12-01

    ) is used in conjunction with optimized clear sky models, statistical analysis, and wavelet transform methods to investigate the solar radiation Ramp Rates (RRs) associated with both of the fundamental CEE mechanisms. Results indicate that CEEs account for nearly 5% of the total daytime hours in this dataset and produce nearly 4% of the total energy over the year. In addition, wavelet transform techniques suggest that CEEs at UCM location operate on timescales ranging from 2 to 4 minutes. Our results allow estimation of the probability and magnitude of these RRs as well the percentage of annual excess energy production resulting from CEEs which could be used to offset ancillary services required to operate PV power systems.

  9. Evaluation of the National Solar Radiation Database (NSRDB): 1998-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron; Sengupta, Manajit; Lopez, Anthony

    This paper validates the performance of the physics-based Physical Solar Model (PSM) data set in the National Solar Radiation Data Base (NSRDB) to quantify the accuracy of the magnitude and the spatial and temporal variability of the solar radiation data. Achieving higher penetrations of solar energy on the electric grid and reducing integration costs requires accurate knowledge of the available solar resource. Understanding the impacts of clouds and other meteorological constituents on the solar resource and quantifying intra-/inter-hour, seasonal, and interannual variability are essential for accurately designing utility-scale solar energy projects. Solar resource information can be obtained from ground-based measurementmore » stations and/or from modeled data sets. The availability of measurements is scarce, both temporally and spatially, because it is expensive to maintain a high-density solar radiation measurement network that collects good quality data for long periods of time. On the other hand, high temporal and spatial resolution gridded satellite data can be used to estimate surface radiation for long periods of time and is extremely useful for solar energy development. Because of the advantages of satellite-based solar resource assessment, the National Renewable Energy Laboratory developed the PSM. The PSM produced gridded solar irradiance -- global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance -- for the NSRDB at a 4-km by 4-km spatial resolution and half-hourly temporal resolution covering the 18 years from 1998-2015. The NSRDB also contains additional ancillary meteorological data sets, such as temperature, relative humidity, surface pressure, dew point, and wind speed. Details of the model and data are available at https://nsrdb.nrel.gov. The results described in this paper show that the hourly-averaged satellite-derived data have a systematic (bias) error of approximately +5% for GHI and less than

  10. Solar ultraviolet radiation from cancer induction to cancer prevention: solar ultraviolet radiation and cell biology.

    PubMed

    Tuorkey, Muobarak J

    2015-09-01

    Although decades have elapsed, researchers still debate the benefits and hazards of solar ultraviolet radiation (UVR) exposure. On the one hand, humans derive most of their serum 25-hydroxycholecalciferol [25(OH)D3], which has potent anticancer activity, from solar UVB radiation. On the other hand, people are more aware of the risk of cancer incidence associated with harmful levels of solar UVR from daily sunlight exposure. Epidemiological data strongly implicate UV radiation exposure as a major cause of melanoma and other cancers, as UVR promotes mutations in oncogenes and tumor-suppressor genes. This review highlights the impact of the different mutagenic effects of solar UVR, along with the cellular and carcinogenic challenges with respect to sun exposure.

  11. SORCE: Solar Radiation and Climate Experiment

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

  12. Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris; Henschel, Florian; Müller, Björn

    2015-04-01

    Traditionally, for the planning and assessment of solar energy systems, the amount of solar radiation (sunlight) incident on the Earth's surface is assumed to be constant over the years. However, with changing climate and air pollution levels, solar resources may no longer be stable over time and undergo substantial decadal changes. Observational records covering the past decades confirm long-term changes in this quantity. Here we examine, how the latest generation of climate models used for the 5th IPCC report projects potential changes in surface solar radiation over the coming decades, and how this may affect, in combination with the expected greenhouse warming, solar power output from photovoltaic (PV) systems. For this purpose, projections up to the mid 21th century from 39 state of the art climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are analysed globally and for selected key regions with major solar power production capacity. The large model ensemble allows to assess the degree of consistency of their projections. Models are largely consistent in the sign of the projected changes in solar radiation under cloud-free conditions as well as in surface temperatures over most of the globe, while still reasonably consistent over a considerable part of the globe in the sign of changes in cloudiness and associated changes in solar radiation. A first order estimate of the impact of solar radiation and temperature changes on energy yields of PV systems under the RPC8.5 scenario indicates statistically significant decreases in PV outputs in large parts of the world, but notable exceptions with positive trends in parts of Europe and the South-East of China. Projected changes between 2006 and 2049 under the RCP8.5 scenario overall are on the order of 1 % per decade for horizontal planes, but may be larger for tilted or tracked planes as well as on shorter (decadal) timescales. Related References: Wild, M., Folini, D., Henschel, F., and M

  13. Geometrical Model of Solar Radiation Pressure Based on High-Performing Galileo Clocks - First Geometrical Mapping of the Yarkowsky effect

    NASA Astrophysics Data System (ADS)

    Svehla, Drazen; Rothacher, Markus; Hugentobler, Urs; Steigenberger, Peter; Ziebart, Marek

    2014-05-01

    Solar radiation pressure is the main source of errors in the precise orbit determination of GNSS satellites. All deficiencies in the modeling of Solar radiation pressure map into estimated terrestrial reference frame parameters as well as into derived gravity field coefficients and altimetry results when LEO orbits are determined using GPS. Here we introduce a new approach to geometrically map radial orbit perturbations of GNSS satellites using highly-performing clocks on board the first Galileo satellites. Only a linear model (time bias and time drift) needs to be removed from the estimated clock parameters and the remaining clock residuals map all radial orbit perturbations along the orbit. With the independent SLR measurements, we show that a Galileo clock is stable enough to map radial orbit perturbations continuously along the orbit with a negative sign in comparison to SLR residuals. Agreement between the SLR residuals and the clock residuals is at the 1 cm RMS for an orbit arc of 24 h. Looking at the clock parameters determined along one orbit revolution over a period of one year, we show that the so-called SLR bias in Galileo and GPS orbits can be explained by the translation of the determined orbit in the orbital plane towards the Sun. This orbit translation is due to thermal re-radiation and not accounting for the Sun elevation in the parameterization of the estimated Solar radiation pressure parameters. SLR ranging to GNSS satellites takes place typically at night, e.g. between 6 pm and 6 am local time when the Sun is in opposition to the satellite. Therefore, SLR observes only one part of the GNSS orbit with a negative radial orbit error that is mapped as an artificial bias in SLR observables. The Galileo clocks clearly show orbit translation for all Sun elevations: the radial orbit error is positive when the Sun is in conjuction (orbit noon) and negative when the Sun is in opposition (orbit midnight). The magnitude of this artificial negative SLR bias

  14. Use of MERRA-2 in the National Solar Radiation Database and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Lopez, Anthony; Habte, Aron

    The National Solar Radiation Database (NSRDB) is a flagship product of NREL that provides solar radiation and ancillary meteorological information through a GIS based portal. This data is provided at a 4kmx4km spatial and 30 minute temporal resolution covering the period between 1998-2015. The gridded data that is distributed by the NSRDB is derived from satellite measurements using the Physical Solar Model (PSM) that contains a 2-stage approach. This 2-stage approach consists of first retrieving cloud properties using measurement from the GOES series of satellites and using that information in a radiative transfer model to estimate solar radiation at themore » surface. In addition to the satellite data the model requires ancillary meteorological information that is provided mainly by NASA's Modern Era Retrospecitve Analysis for Research and Applications (MERRA-2) 2 model output. This presentation provides an insight into how the NSRDB is developed using the PSM and how the various sources of data including the MERRA-2 data is used during the process.« less

  15. A Generalized Approach to Model the Spectra and Radiation Dose Rate of Solar Particle Events on the Surface of Mars

    NASA Astrophysics Data System (ADS)

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; McDole, Thoren; Kühl, Patrick; Appel, Jan C.; Matthiä, Daniel; Krauss, Johannes; Köhler, Jan

    2018-01-01

    For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions. In the long term, it is mainly galactic cosmic rays (GCRs) modulated by solar activity that contribute to the radiation on the surface of Mars, but intense solar energetic particle (SEP) events may induce acute health effects. Such events may enhance the radiation level significantly and should be detected as immediately as possible to prevent severe damage to humans and equipment. However, the energetic particle environment on the Martian surface is significantly different from that in deep space due to the influence of the Martian atmosphere. Depending on the intensity and shape of the original solar particle spectra, as well as particle types, the surface spectra may induce entirely different radiation effects. In order to give immediate and accurate alerts while avoiding unnecessary ones, it is important to model and well understand the atmospheric effect on the incoming SEPs, including both protons and helium ions. In this paper, we have developed a generalized approach to quickly model the surface response of any given incoming proton/helium ion spectra and have applied it to a set of historical large solar events, thus providing insights into the possible variety of surface radiation environments that may be induced during SEP events. Based on the statistical study of more than 30 significant solar events, we have obtained an empirical model for estimating the surface dose rate directly from the intensities of a power-law SEP spectra.

  16. From Anti-greenhouse Effect of Solar Absorbers to Cooling Effect of Greenhouse Gases: A 1-D Radiative Convective Model Study

    NASA Astrophysics Data System (ADS)

    Shia, R.

    2012-12-01

    The haze layer in Titan's upper atmosphere absorbs 90% of the solar radiation, but is inefficient for trapping infrared radiation generated by the surface. Its existence partially compensates for the greenhouse warming and keeps the surface approximately 9°C cooler than would otherwise be expected from the greenhouse effect alone. This is the so called anti-greenhouse effect (McKay et al., 1991). This effect can be used to alleviate the warming caused by the increasing level of greenhouse gases in the Earth's atmosphere. A one-dimensional radiative convective model (Kasting et al., 2009 and references listed there) is used to investigate the anti-greenhouse effect in the Earth atmosphere. Increasing of solar absorbers, e.g. aerosols and ozone, in the stratosphere reduces the surface solar flux and cool the surface. However, the absorption of the solar flux also increases the temperature in the upper atmosphere, while reduces the temperature at the surface. Thus, the temperature profile of the atmosphere changes and the regions with positive vertical temperature gradient are expanded. According to Shia (2010) the radiative forcing of greenhouse gases is directly related to the vertical temperature gradient. Under the new temperature profile increases of greenhouse gases should have less warming effect. When the solar absorbers keep increasing, eventually most of the atmosphere has positive temperature gradient and increasing greenhouse gases would cool the surface (Shia, 2011). The doubling CO2 scenario in the Earth atmosphere is simulated for different levels of solar absorbers using the 1-D RC model. The model results show that if the solar absorber increases to a certain level that less than 50% solar flux reaching the surface, doubling CO2 cools the surface by about 2 C. This means if the snowball Earth is generated by solar absorbers in the stratosphere, increasing greenhouse gases would make it freeze even more (Shia, 2011). References: Kasting, J. et al

  17. Solar and Net Radiation for Estimating Potential Evaporation from Three Vegetation Canopies

    Treesearch

    D.M. Amatya; R.W. Skaggs; G.W. Cheschier; G.P. Fernandez

    2000-01-01

    Solar and net radiation data are frequent/y used in estimating potential evaporation (PE) from various vegetative surfaces needed for water balance and hydrologic modeling studies. Weather parameters such as air temperature, relative humidity, wind speed, solar radiation, and net radiation have been continuously monitored using automated sensors to estimate PE for...

  18. A hybrid numerical prediction scheme for solar radiation estimation in un-gauged catchments.

    NASA Astrophysics Data System (ADS)

    Shamim, M. A.; Bray, M.; Ishak, A. M.; Remesan, R.; Han, D.

    2009-09-01

    The importance of solar radiation on earth's surface is depicted in its wide range of applications in the fields of meteorology, agricultural sciences, engineering, hydrology, crop water requirements, climatic changes and energy assessment. It is quite random in nature as it has to go through different processes of assimilation and dispersion while on its way to earth. Compared to other meteorological parameters, solar radiation is quite infrequently measured, for example, the worldwide ratio of stations collecting solar radiation to those collecting temperature is 1:500 (Badescu, 2008). Researchers, therefore, have to rely on indirect techniques of estimation that include nonlinear models, artificial intelligence (e.g. neural networks), remote sensing and numerical weather predictions (NWP). This study proposes a hybrid numerical prediction scheme for solar radiation estimation in un-gauged catchments. It uses the PSU/NCAR's Mesoscale Modelling system (MM5) (Grell et al., 1995) to parameterise the cloud effect on extraterrestrial radiation by dividing the atmosphere into four layers of very high (6-12 km), high (3-6 km), medium (1.5-3) and low (0-1.5) altitudes from earth. It is believed that various cloud forms exist within each of these layers. An hourly time series of upper air pressure and relative humidity data sets corresponding to all of these layers is determined for the Brue catchment, southwest UK, using MM5. Cloud Index (CI) was then determined using (Yang and Koike, 2002): 1 p?bi [ (Rh - Rh )] ci =------- max 0.0,---------cri dp pbi - ptipti (1- Rhcri) where, pbi and pti represent the air pressure at the top and bottom of each layer and Rhcri is the critical value of relative humidity at which a certain cloud type is formed. Output from a global clear sky solar radiation model (MRM v-5) (Kambezidis and Psiloglu, 2008) is used along with meteorological datasets of temperature and precipitation and astronomical information. The analysis is aided by the

  19. An improved Ångström-type model for estimating solar radiation over the Tibetan Plateau

    USDA-ARS?s Scientific Manuscript database

    Sunshine- and temperature-based empirical models are widely used for solar radiation estimation over the world, but the coefficients of the models are mostly site-dependent. The coefficients are expected to vary more under complex terrain conditions than under flat terrains. To test this hypothesis,...

  20. Solar radiation on Mars: Update 1991

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data are presented from which the daily variation of the global, direct beam and diffuse insolation on Mars are calculated. Given the optical depth of the Mars atmosphere, the global radiation is calculated from the normalized net flux function based on multiple wavelength and multiple scattering of the solar radiation. The direct beam was derived from the optical depth using Beer's law, and the diffuse component was obtained from the difference of the global and the direct beam radiation. The optical depths of the Mars atmosphere were derived from images taken of the Sun with a special diode on the cameras used on the two Viking Landers.

  1. Solar radiation data sources, applications, and network design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A prerequisite to considering solar energy projects is to determine the requirements for information about solar radiation to apply to possible projects. This report offers techniques to help the reader specify requirements in terms of solar radiation data and information currently available, describes the past and present programs to record and present information to be used for most requirements, presents courses of action to help the user meet his needs for information, lists sources of solar radiation data and presents the problems, costs, benefits and responsibilities of programs to acquire additional solar radiation data. Extensive background information is provided aboutmore » solar radiation data and its use. Specialized information about recording, collecting, processing, storing and disseminating solar radiation data is given. Several Appendices are included which provide reference material for special situations.« less

  2. Spectral estimates of solar radiation intercepted by corn canopies

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Daughtry, C. S. T.; Gallo, K. P.

    1982-01-01

    Reflectance factor data were acquired with a Landsat band radiometer throughout two growing seasons for corn (Zea mays L.) canopies differing in planting dates, populations, and soil types. Agronomic data collected included leaf area index (LAI), biomass, development stage, and final grain yields. The spectral variable, greenness, was associated with 78 percent of the variation in LAI over all treatments. Single observations of LAI or greenness have limited value in predicting corn yields. The proportions of solar radiation intercepted (SRI) by these canopies were estimated using either measured LAI or greenness. Both SRI estimates, when accumulated over the growing season, accounted for approximately 65 percent of the variation in yields. Models which simulated the daily effects of weather and intercepted solar radiation on growth had the highest correlations to grain yields. This concept of estimating intercepted solar radiation using spectral data represents a viable approach for merging spectral and meteorological data for crop yield models.

  3. Workshop Report on Managing Solar Radiation

    NASA Technical Reports Server (NTRS)

    Lane, Lee (Compiler); Caldeira, Ken (Compiler); Chatfield, Robert (Compiler); Langhoff, Stephanie (Compiler)

    2007-01-01

    The basic concept of managing Earth's radiation budget is to reduce the amount of incoming solar radiation absorbed by the Earth so as to counterbalance the heating of the Earth that would otherwise result from the accumulation of greenhouse gases. The workshop did not seek to decide whether or under what circumstances solar radiation management should be deployed or which strategies or technologies might be best, if it were deployed. Rather, the workshop focused on defining what kinds of information might be most valuable in allowing policy makers more knowledgeably to address the various options for solar radiation management.

  4. Measuring Solar Radiation Incident on Earth: Solar Constant-3 (SOLCON-3)

    NASA Technical Reports Server (NTRS)

    Crommelynck, Dominique; Joukoff, Alexandre; Dewitte, Steven

    2002-01-01

    Life on Earth is possible because the climate conditions on Earth are relatively mild. One element of the climate on Earth, the temperature, is determined by the heat exchanges between the Earth and its surroundings, outer space. The heat exchanges take place in the form of electromagnetic radiation. The Earth gains energy because it absorbs solar radiation, and it loses energy because it emits thermal infrared radiation to cold space. The heat exchanges are in balance: the heat gained by the Earth through solar radiation equals the heat lost through thermal radiation. When the balance is perturbed, a temperature change and hence a climate change of the Earth will occur. One possible perturbation of the balance is the CO2 greenhouse effect: when the amount of CO2 in the atmosphere increases, this will reduce the loss of thermal infrared radiation to cold space. Earth will gain more heat and hence the temperature will rise. Another perturbation of the balance can occur through variation of the amount of energy emitted by the sun. When the sun emits more energy, this will directly cause a rise of temperature on Earth. For a long time scientists believed that the energy emitted by the sun was constant. The 'solar constant' is defined as the amount of solar energy received per unit surface at a distance of one astronomical unit (the average distance of Earth's orbit) from the sun. Accurate measurements of the variations of the solar constant have been made since 1978. From these we know that the solar constant varies approximately with the 11-year solar cycle observed in other solar phenomena, such as the occurrence of sunspots, dark spots that are sometimes visible on the solar surface. When a sunspot occurs on the sun, since the spot is dark, the radiation (light) emitted by the sun drops instantaneously. Oddly, periods of high solar activity, when a lot of sunspot numbers increase, correspond to periods when the average solar constant is high. This indicates that

  5. Temporal variability patterns in solar radiation estimations

    NASA Astrophysics Data System (ADS)

    Vindel, José M.; Navarro, Ana A.; Valenzuela, Rita X.; Zarzalejo, Luis F.

    2016-06-01

    In this work, solar radiation estimations obtained from a satellite and a numerical weather prediction model in mainland Spain have been compared. Similar comparisons have been formerly carried out, but in this case, the methodology used is different: the temporal variability of both sources of estimation has been compared with the annual evolution of the radiation associated to the different study climate zones. The methodology is based on obtaining behavior patterns, using a Principal Component Analysis, following the annual evolution of solar radiation estimations. Indeed, the adjustment degree to these patterns in each point (assessed from maps of correlation) may be associated with the annual radiation variation (assessed from the interquartile range), which is associated, in turn, to different climate zones. In addition, the goodness of each estimation source has been assessed comparing it with data obtained from the radiation measurements in ground by pyranometers. For the study, radiation data from Satellite Application Facilities and data corresponding to the reanalysis carried out by the European Centre for Medium-Range Weather Forecasts have been used.

  6. Ultrarelativistic electrons and solar flare gamma-radiation

    NASA Technical Reports Server (NTRS)

    Semukhin, P. E.; Kovaltsov, G. A.

    1985-01-01

    Ten solar flares with gamma radiation in excess of 10 MeV were observed. Almost all took place within a heliolatitude greater than 60 deg, close to the solar limb, an indication of the essential anisotropy of high-energy gamma radiation. This high-energy solar flare gamma radiation can be explained by the specific features of the bremsstrahlung of ultrarelativistic electrons trapped within the magnetic arc of the solar atmosphere, even if the acceleration of the electrons is anisotropic.

  7. Assessment of global solar radiation to examine the best locations to install a PV system in Tunisia

    NASA Astrophysics Data System (ADS)

    Belkilani, Kaouther; Ben Othman, Afef; Besbes, Mongi

    2018-02-01

    The study of the solar radiation is the starting point of any investigation for a new energy, to study and search the best location to install a PV system. A very important factor in the assessment of solar potential is the availability of data for global solar radiation that must be coherent and of high quality. In this paper, we analyze the estimation result of the monthly global solar radiation for three different locations, Bizerte in Northern Tunisia, Kairouan in Middle Eastern Tunisia, and Tozeur in Southern Tunisia, measured on the surface by the National Institute of Meteorology and the meteorological year irradiation based on satellite imagery result PVGIS radiation databases. To get the right measurements with minimum error, we propose a numerical model used to calculate the global solar radiation in the indicated three sites. The results show that the model can estimate the global solar radiation (kWh/m²) at a specific station and over most area of Tunisia. The model gives a good estimation for solar radiation where error between the measured values and those calculated are negligible.

  8. New method for estimating daily global solar radiation over sloped topography in China

    NASA Astrophysics Data System (ADS)

    Shi, Guoping; Qiu, Xinfa; Zeng, Yan

    2018-03-01

    A new scheme for the estimation of daily global solar radiation over sloped topography in China is developed based on the Iqbal model C and MODIS cloud fraction. The effects of topography are determined using a digital elevation model. The scheme is tested using observations of solar radiation at 98 stations in China, and the results show that the mean absolute bias error is 1.51 MJ m-2 d-1 and the mean relative absolute bias error is 10.57%. Based on calculations using this scheme, the distribution of daily global solar radiation over slopes in China on four days in the middle of each season (15 January, 15 April, 15 July and 15 October 2003) at a spatial resolution of 1 km × 1 km are analyzed. To investigate the effects of topography on global solar radiation, the results determined in four mountains areas (Tianshan, Kunlun Mountains, Qinling, and Nanling) are discussed, and the typical characteristics of solar radiation over sloped surfaces revealed. In general, the new scheme can produce reasonable characteristics of solar radiation distribution at a high spatial resolution in mountain areas, which will be useful in analyses of mountain climate and planning for agricultural production.

  9. A thermochemical model of radiation damage and annealing applied to GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Conway, E. J.; Walker, G. H.; Heinbockel, J. H.

    1981-01-01

    Calculations of the equilibrium conditions for continuous radiation damage and thermal annealing are reported. The calculations are based on a thermochemical model developed to analyze the incorporation of point imperfections in GaAs, and modified by introducing the radiation to produce native lattice defects rather than high-temperature and arsenic atmospheric pressure. The concentration of a set of defects, including vacancies, divacancies, and impurity vacancy complexes, are calculated as a function of temperature. Minority carrier lifetimes, short circuit current, and efficiency are deduced for a range of equilibrium temperatures. The results indicate that GaAs solar cells could have a mission life which is not greatly limited by radiation damage.

  10. Influence of Diffused Solar Radiation on the Solar Concentrating System of a Plant Shoot Configuration

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya

    Investigation of a plant shoot configuration is used to obtain valuable information concerning the received light system. Additionally, analysis results concerning a plant shoot configuration interaction with direct solar radiation were taken from a past study. However, in order to consider a plant shoot as a received sunlight system, it is necessary to understand the received light characteristics of both direct solar radiation and diffused solar radiation. Under a clear sky, the ratio of direct solar radiation to diffused solar radiation is large. However, under a clouded sky, the amount of diffused solar radiation becomes larger. Therefore, in this paper, we investigate the received light characteristics of a plant shoot configuration under the influence of diffused solar radiation. As a result, we clarify the relationship between the amount of diffused solar radiation and the amount of received light as a function of the characteristics of the plant shoot configuration. In order to obtain diffused solar radiation, it is necessary to correspond to the radiation of the multi-directions. In the analysis, the characteristic of the difference in arrangement of the top leaf and the other leaf was obtained. Therefore, in analysis, leaves other than the top were distributed in the wide range.

  11. Prediction of the solar modulation of galactic cosmic rays and radiation dose of aircrews up to the solar cycle 26

    NASA Astrophysics Data System (ADS)

    Miyake, S.; Kataoka, R.; Sato, T.

    2016-12-01

    The solar modulation of galactic cosmic rays (GCRs), which is the variation of the terrestrial GCR flux caused by the heliospheric environmental change, is basically anti-correlated with the solar activity with so-called 11-year periodicity. In the current weak solar cycle 24, we expect that the flux of GCRs is getting higher than that in the previous solar cycles, leading to the increase in the radiation exposure in the space and atmosphere. In order to quantitatively evaluate the possible solar modulation of GCRs and resultant radiation exposure at flight altitude during the solar cycles 24, 25, and 26, we have developed the time-dependent and three-dimensional model of the solar modulation of GCRs. Our model can give the flux of GCRs anywhere in the heliosphere by assuming the variation of the solar wind velocity, the strength of the interplanetary magnetic field, and its tilt angle. We solve the curvature and gradient drift motion of GCRs in the heliospheric magnetic field, and therefore reproduce the 22-year variation of the solar modulation of GCRs. It is quantitatively confirmed that our model reproduces the energy spectra observed by BESS and PAMELA. We then calculate the variation of the GCR energy spectra during the solar cycles 24, 25, and 26, by extrapolating the solar wind parameters and tilt angle. We also calculate the neutron monitor counting rate and the radiation dose of aircrews at flight altitude, by the air-shower simulation performed by PHITS (Particle and Heavy Ion Transport code System). In this presentation, we report the quantitative forecast values of the solar modulation of GCRs, neutron monitor counting rate, and the radiation dose at flight altitude up to the cycle 26, including the discussion of the charge sign dependence on those results.

  12. Study of interaction among silicon, lithium, oxygen and radiation-induced defects for radiation-hardened solar cells

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1973-01-01

    In order to improve reliability and the useful lifetime of solar cell arrays for space use, a program was undertaken to develop radiation-hardened lithium-doped silicon solar cells. These cells were shown to be significantly more resistant to degradation by ionized particles than the presently used n-p nonlithium-doped silicon solar cells. The results of various analyses performed to develop a more complete understanding of the physics of the interaction among lithium, silicon, oxygen, and radiation-induced defects are presented. A discussion is given of those portions of the previous model of radiation damage annealing which were found to be in error and those portions which were upheld by these extensive investigations.

  13. Understanding/Modelling of Thermal and Radiation Benefits of Quantum Dot Solar Cells

    DTIC Science & Technology

    2008-07-11

    GaAs solar cells have been investigated. Strain compensation is a key step in realizing high- efficiency quantum dots solar cells (QDSC). InAs...factor. A strong correlation between the temperature dependent quantum dot electroluminescence peak emission wavelength and the sub-GaAs bandgap...increased efficiency and radiation resistance devices. The incorporation of quantum dots (QDs) into traditional single or multi-junction crystalline solar

  14. Clear-Sky Surface Solar Radiation During South China Sea Monsoon Experiment

    NASA Technical Reports Server (NTRS)

    Lin, Po-Hsiung; Chou, Ming-Dah; Ji, Qiang; Tsay, Si-Chee; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Downward solar fluxes measured at Dungsha coral island (20 deg. 42 min. N, 116 deg. 43 min. E) during the South China Sea Monsoon Experiment (May-June 1998) have been calibrated and compared with radiative transfer calculations for three clear-sky days. Model calculations use water vapor and temperature profiles from radiosound measurements and the aerosol optical thickness derived from sunphotometric radiance measurements at the surface. Results show that the difference between observed and model-calculated downward fluxes is less than 3% of the daily mean. Averaged over the three clear days, the difference reduces to 1%. The downward surface solar flux averaged over the three days is 314 W per square meters from observations and 317 W per square meters from model calculations, This result is consistent with a previous study using TOGA CAORE measurements, which found good agreements between observations and model calculations. This study provides an extra piece of useful information on the modeling of radiative transfer, which fills in the puzzle of the absorption of solar radiation in the atmosphere.

  15. Probalistic Models for Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Xapsos, Michael

    2009-01-01

    Probabilistic Models of Solar Particle Events (SPEs) are used in space mission design studies to describe the radiation environment that can be expected at a specified confidence level. The task of the designer is then to choose a design that will operate in the model radiation environment. Probabilistic models have already been developed for solar proton events that describe the peak flux, event-integrated fluence and missionintegrated fluence. In addition a probabilistic model has been developed that describes the mission-integrated fluence for the Z>2 elemental spectra. This talk will focus on completing this suite of models by developing models for peak flux and event-integrated fluence elemental spectra for the Z>2 element

  16. Correlation of total, diffuse, and direct solar radiation

    NASA Technical Reports Server (NTRS)

    Buyco, E. H.; Namkoong, D.

    1977-01-01

    Present requirements for realistic solar energy system evaluations necessitate a comprehensive body of solar-radition data. The data should include both diffuse and direct solar radiation as well as their total on an hourly (or shorter) basis. In general, however, only the total solar radiation values were recorded. This report presents a correlation that relates the diffuse component of an hourly total solar radiation value to the total radiation ratio of the maximum value attainable. The data used were taken at the Blue Hill Observatory in Milton, Massachusetts, for the period 1952. The relation - in the form of the data plots - can be used in situations in which only the hourly total radiation data are available but the diffuse component is desired.

  17. Modeling the Interaction of Mineral Dust with Solar Radiation: Spherical versus Non-spherical Particles

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, A.; Vogel, B.; Vogel, H.

    2017-12-01

    Mineral dust, emitted from arid and semi-arid regions, is the most dominant atmospheric aerosol by mass. Beside detrimental effect on air quality, airborne dust also influences the atmospheric radiation by absorbing and scattering solar and terrestrial radiation. As a result, while the long-term radiative impacts of dust are important for climate, the short-term effects are significant for the photovoltaic energy production. Therefore, it is a vital requirement to accurately forecast the effects of dust on energy budget of the atmosphere and surface. To this end, a major issue is the fact that dust particles are non-spherical. Thus, the optical properties of such particles cannot be calculated precisely using the conventional methods like Mie theory that are often used in climate and numerical weather forecast models. In this study, T-Matrix method is employed, which is able to treat the non-sphericity of particles. Dust particles are assumed to be prolate spheroids with aspect ratio of 1.5 distributed in three lognormal modes. The wavelength-dependent refractive indices of dust are used in T-Matrix algorithm to calculate the extinction coefficient, single scattering albedo, asymmetry parameter and backscattering ratio at different wavelengths. These parameters are then implemented in ICON-ART model (ICOsahedral Nonhydrostatic model with Aerosols and Reactive Trace gases) to conduct a global simulation with 80 km horizontal resolution and 90 vertical levels. April 2014 is selected as the simulation period during which North African dust plumes reached central Europe and Germany. Results show that treatment of non-sphericity reduces the dust AOD in the range of 10 to 30%/. The impacts on diffuse and direct radiation at global, regional and local scales show strong dependency on the size distribution of the airborne dust. The implications for modeling and remote sensing the dust impacts on solar energy are also discussed.

  18. The National Solar Radiation Data Base (NSRDB)

    DOE PAGES

    Sengupta, Manajit; Xie, Yu; Lopez, Anthony; ...

    2018-03-19

    The National Solar Radiation Data Base (NSRDB), consisting of solar radiation and meteorological data over the United States and regions of the surrounding countries, is a publicly open dataset that has been created and disseminated during the last 23 years. This paper briefly reviews the complete package of surface observations, models, and satellite data used for the latest version of the NSRDB as well as improvements in the measurement and modeling technologies deployed in the NSRDB over the years. The current NSRDB provides solar irradiance at a 4-km horizontal resolution for each 30-min interval from 1998 to 2016 computed bymore » the National Renewable Energy Laboratory's (NREL's) Physical Solar Model (PSM) and products from the National Oceanic and Atmospheric Administration's (NOAA's) Geostationary Operational Environmental Satellite (GOES), the National Ice Center's (NIC's) Interactive Multisensor Snow and Ice Mapping System (IMS), and the National Aeronautics and Space Administration's (NASA's) Moderate Resolution Imaging Spectroradiometer (MODIS) and Modern Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). The NSRDB irradiance data have been validated and shown to agree with surface observations with mean percentage biases within 5% and 10% for global horizontal irradiance (GHI) and direct normal irradiance (DNI), respectively. The data can be freely accessed via https://nsrdb.nrel.gov or through an application programming interface (API). During the last 23 years, the NSRDB has been widely used by an ever-growing group of researchers and industry both directly and through tools such as NREL's System Advisor Model.« less

  19. The National Solar Radiation Data Base (NSRDB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Xie, Yu; Lopez, Anthony

    The National Solar Radiation Data Base (NSRDB), consisting of solar radiation and meteorological data over the United States and regions of the surrounding countries, is a publicly open dataset that has been created and disseminated during the last 23 years. This paper briefly reviews the complete package of surface observations, models, and satellite data used for the latest version of the NSRDB as well as improvements in the measurement and modeling technologies deployed in the NSRDB over the years. The current NSRDB provides solar irradiance at a 4-km horizontal resolution for each 30-min interval from 1998 to 2016 computed bymore » the National Renewable Energy Laboratory's (NREL's) Physical Solar Model (PSM) and products from the National Oceanic and Atmospheric Administration's (NOAA's) Geostationary Operational Environmental Satellite (GOES), the National Ice Center's (NIC's) Interactive Multisensor Snow and Ice Mapping System (IMS), and the National Aeronautics and Space Administration's (NASA's) Moderate Resolution Imaging Spectroradiometer (MODIS) and Modern Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). The NSRDB irradiance data have been validated and shown to agree with surface observations with mean percentage biases within 5% and 10% for global horizontal irradiance (GHI) and direct normal irradiance (DNI), respectively. The data can be freely accessed via https://nsrdb.nrel.gov or through an application programming interface (API). During the last 23 years, the NSRDB has been widely used by an ever-growing group of researchers and industry both directly and through tools such as NREL's System Advisor Model.« less

  20. Investigation of the effect of weather conditions on solar radiation in Brunei Darussalam

    NASA Astrophysics Data System (ADS)

    Yazdani, M. G.; Salam, M. A.; Rahman, Q. M.

    2016-11-01

    The amount of solar radiation received on the earth's surface is known to be highly influenced by the weather conditions and the geography of a particular area. This paper presents some results of an investigation that was carried out to find the effects of weather patterns on the solar radiation in Brunei Darussalam, a small country that experiences equatorial climate due to its geographical location. Weather data were collected at a suitable location in the University Brunei Darussalam (UBD) and were compared with the available data provided by the Brunei Darussalam Meteorological Services (BDMS). It has been found that the solar radiation is directly proportional to the atmospheric temperature while it is inversely proportional to the relative humidity. It has also been found that wind speed has little influence on solar radiation. Functional relationships between the solar radiation and the atmospheric temperature, and between the solar radiation and the relative humidity have also been developed from the BDMS weather data. Finally, an artificial neural network (ANN) model has been developed for training and testing the solar radiation data with the inputs of temperature and relative humidity, and a coefficient of determination of around 99% was achieved. This set of data containing all the aforementioned results may serve as a guideline on the solar radiation pattern in the geographical areas around the equator.

  1. High Radiation Resistance IMM Solar Cell

    NASA Technical Reports Server (NTRS)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  2. Effective UV radiation from model calculations and measurements

    NASA Technical Reports Server (NTRS)

    Feister, Uwe; Grewe, Rolf

    1994-01-01

    Model calculations have been made to simulate the effect of atmospheric ozone and geographical as well as meteorological parameters on solar UV radiation reaching the ground. Total ozone values as measured by Dobson spectrophotometer and Brewer spectrometer as well as turbidity were used as input to the model calculation. The performance of the model was tested by spectroradiometric measurements of solar global UV radiation at Potsdam. There are small differences that can be explained by the uncertainty of the measurements, by the uncertainty of input data to the model and by the uncertainty of the radiative transfer algorithms of the model itself. Some effects of solar radiation to the biosphere and to air chemistry are discussed. Model calculations and spectroradiometric measurements can be used to study variations of the effective radiation in space in space time. The comparability of action spectra and their uncertainties are also addressed.

  3. Fast and Accurate Hybrid Stream PCRTMSOLAR Radiative Transfer Model for Reflected Solar Spectrum Simulation in the Cloudy Atmosphere

    NASA Technical Reports Server (NTRS)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Kizer, Susan; Baize, Rosemary R.

    2016-01-01

    A hybrid stream PCRTM-SOLAR model has been proposed for fast and accurate radiative transfer simulation. It calculates the reflected solar (RS) radiances with a fast coarse way and then, with the help of a pre-saved matrix, transforms the results to obtain the desired high accurate RS spectrum. The methodology has been demonstrated with the hybrid stream discrete ordinate (HSDO) radiative transfer (RT) model. The HSDO method calculates the monochromatic radiances using a 4-stream discrete ordinate method, where only a small number of monochromatic radiances are simulated with both 4-stream and a larger N-stream (N = 16) discrete ordinate RT algorithm. The accuracy of the obtained channel radiance is comparable to the result from N-stream moderate resolution atmospheric transmission version 5 (MODTRAN5). The root-mean-square errors are usually less than 5x10(exp -4) mW/sq cm/sr/cm. The computational speed is three to four-orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This method is very efficient to simulate thousands of RS spectra under multi-layer clouds/aerosols and solar radiation conditions for climate change study and numerical weather prediction applications.

  4. Absorption of solar radiation by alkali vapors. [for efficient high temperature energy converters

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.

    1978-01-01

    A theoretical study of the direct absorption of solar radiation by the working fluid of high temperature, high efficiency energy converters has been carried out. Alkali vapors and potassium vapor in particular were found to be very effective solar absorbers and suitable thermodynamically for practical high temperature cycles. Energy loss via reradiation from a solar boiler was shown to reduce the overall efficiency of radiation-heated energy converters, although a simple model of radiation transfer in a potassium vapor solar boiler revealed that self-trapping of the reradiation may reduce this loss considerably. A study was also made of the requirements for a radiation boiler window. It was found that for sapphire, one of the best solar transmitting materials, the severe environment in conjunction with high radiation densities will require some form of window protection. An aerodynamic shield is particularly advantageous in this capacity, separating the window from the absorbing vapor to prevent condensation and window corrosion and to reduce the radiation density at the window.

  5. FIRST NEW SOLAR MODELS WITH OPAS OPACITY TABLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Pennec, M.; Turck-Chièze, S.; Salmon, S.

    Stellar seismology appears more and more as a powerful tool for a better determination of the fundamental properties of solar-type stars. However, the particular case of the Sun is still challenging. For about a decade now, the helioseismic sound-speed determination has continued to disagree with the standard solar model (SSM) prediction, questioning the reliability of this model. One of the sources of uncertainty could be in the treatment of the transport of radiation from the solar core to the surface. In this Letter, we use the new OPAS opacity tables, recently available for solar modeling, to address this issue. Wemore » discuss first the peculiarities of these tables, then we quantify their impact on the solar sound-speed and density profiles using the reduced OPAS tables taken on the grids of the OPAL ones. We use the two evolution codes, Modules for Experiments in Stellar Astrophysics and Code Liégeois d’Evolution Stellaire, that led to similar conclusions in the solar radiative zone. In comparison to commonly used OPAL opacity tables, the new solar models are computed for the most recent photospheric composition with OPAS tables and present improvements to the location of the base of the convective zone and to the description of the solar radiative zone in comparison to the helioseismic observations, even if the differences in the Rosseland mean opacity do not exceed 6%. We finally carry out a comparison to a solar model computed with the OP opacity tables.« less

  6. The solar ultraviolet B radiation protection provided by shading devices with regard to its diffuse component.

    PubMed

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-10-01

    The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB

  7. Photocatalytic mineralization of commercial herbicides in a pilot-scale solar CPC reactor: photoreactor modeling and reaction kinetics constants independent of radiation field.

    PubMed

    Colina-Márquez, Jose; Machuca-Martínez, Fiderman; Li Puma, Gianluca

    2009-12-01

    The six-flux absorption-scattering model (SFM) of the radiation field in the photoreactor, combined with reaction kinetics and fluid-dynamic models, has proved to be suitable to describe the degradation of water pollutants in heterogeneous photocatalytic reactors, combining simplicity and accuracy. In this study, the above approach was extended to model the photocatalytic mineralization of a commercial herbicides mixture (2,4-D, diuron, and ametryne used in Colombian sugar cane crops) in a solar, pilot-scale, compound parabolic collector (CPC) photoreactor using a slurry suspension of TiO(2). The ray-tracing technique was used jointly with the SFM to determine the direction of both the direct and diffuse solar photon fluxes and the spatial profile of the local volumetric rate of photon absorption (LVRPA) in the CPC reactor. Herbicides mineralization kinetics with explicit photon absorption effects were utilized to remove the dependence of the observed rate constants from the reactor geometry and radiation field in the photoreactor. The results showed that the overall model fitted the experimental data of herbicides mineralization in the solar CPC reactor satisfactorily for both cloudy and sunny days. Using the above approach kinetic parameters independent of the radiation field in the reactor can be estimated directly from the results of experiments carried out in a solar CPC reactor. The SFM combined with reaction kinetics and fluid-dynamic models proved to be a simple, but reliable model, for solar photocatalytic applications.

  8. Evaluation of the National Solar Radiation Database (NSRDB) Using Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Sengupta, M.; Habte, A.; Lopez, A.

    2017-12-01

    Solar resource is essential for a wide spectrum of applications including renewable energy, climate studies, and solar forecasting. Solar resource information can be obtained from ground-based measurement stations and/or from modeled data sets. While measurements provide data for the development and validation of solar resource models and other applications modeled data expands the ability to address the needs for increased accuracy and spatial and temporal resolution. The National Renewable Energy Laboratory (NREL) has developed and regular updates modeled solar resource through the National Solar Radiation Database (NSRDB). The recent NSRDB dataset was developed using the physics-based Physical Solar Model (PSM) and provides gridded solar irradiance (global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance) at a 4-km by 4-km spatial and half-hourly temporal resolution covering 18 years from 1998-2015. A comprehensive validation of the performance of the NSRDB (1998-2015) was conducted to quantify the accuracy of the spatial and temporal variability of the solar radiation data. Further, the study assessed the ability of NSRDB (1998-2015) to accurately capture inter-annual variability, which is essential information for solar energy conversion projects and grid integration studies. Comparisons of the NSRDB (1998-2015) with nine selected ground-measured data were conducted under both clear- and cloudy-sky conditions. These locations provide a high quality data covering a variety of geographical locations and climates. The comparison of the NSRDB to the ground-based data demonstrated that biases were within +/- 5% for GHI and +/-10% for DNI. A comprehensive uncertainty estimation methodology was established to analyze the performance of the gridded NSRDB and includes all sources of uncertainty at various time-averaged periods, a method that is not often used in model evaluation. Further, the study analyzed the inter

  9. Stability of the Martian climate system under the seasonal change condition of solar radiation

    NASA Astrophysics Data System (ADS)

    Nakamura, Takasumi; Tajika, Eiichi

    2002-11-01

    Previous studies on stability of the Martian climate system used essentially zero-dimensional energy balance climate models (EBMs) under the condition of annual mean solar radiation income. However, areal extent of polar ice caps should affect the Martian climate through the energy balance and the CO2 budget, and results under the seasonal change condition of solar radiation will be different from those under the annual mean condition. We therefore construct a one-dimensional energy balance climate model with CO2-dependent outgoing radiation, seasonal changes of solar radiation income, changes of areal extent of CO2 ice caps, and adsorption of CO2 by regolith. We have investigated behaviors of the Martian climate system and, in particular, examined the effect of the seasonal changes of solar radiation by comparing the results of previous studies under the condition of annual mean solar radiation. One of the major discrepancies between them is the condition for multiple solutions of the Martian climate system. Although the Martian climate system always has multiple solutions under the annual mean condition, under the seasonal change condition, existence of multiple solutions depends on the present amounts of CO2 in the ice caps and the regolith.

  10. Methodology to estimate variations in solar radiation reaching densely forested slopes in mountainous terrain.

    PubMed

    Sypka, Przemysław; Starzak, Rafał; Owsiak, Krzysztof

    2016-12-01

    Solar radiation reaching densely forested slopes is one of the main factors influencing the water balance between the atmosphere, tree stands and the soil. It also has a major impact on site productivity, spatial arrangement of vegetation structure as well as forest succession. This paper presents a methodology to estimate variations in solar radiation reaching tree stands in a small mountain valley. Measurements taken in three inter-forest meadows unambiguously showed the relationship between the amount of solar insolation and the shading effect caused mainly by the contour of surrounding tree stands. Therefore, appropriate knowledge of elevation, aspect and tilt angles of the analysed planes had to be taken into consideration during modelling. At critical times, especially in winter, the diffuse and reflected components of solar radiation only reached some of the sites studied as the beam component of solar radiation was totally blocked by the densely forested mountain slopes in the neighbourhood. The cross-section contours and elevation angles of all obstructions are estimated from a digital surface model including both digital elevation model and the height of tree stands. All the parameters in a simplified, empirical model of the solar insolation reaching a given horizontal surface within the research valley are dependent on the sky view factor (SVF). The presented simplified, empirical model and its parameterisation scheme should be easily adaptable to different complex terrains or mountain valleys characterised by diverse geometry or spatial orientation. The model was developed and validated (R 2  = 0.92 , σ = 0.54) based on measurements taken at research sites located in the Silesian Beskid Mountain Range. A thorough understanding of the factors determining the amount of solar radiation reaching woodlands ought to considerably expand the knowledge of the water exchange balance within forest complexes as well as the estimation of site

  11. An Improved Radiative Transfer Model for Climate Calculations

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Mlawer, Eli J.; Sokolik, Irina N.; Clough, Shepard A.; Toon, Owen B.

    1998-01-01

    This paper presents a radiative transfer model that has been developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. The model is designed to be included in numerical climate models To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. As the thermal spectrum has been treated in other publications, we focus here on the solar part of the spectrum. We perform several example calculations focussing on the question of absorption of solar radiation by gases and aerosols.

  12. Worldwide multi-model intercomparison of clear-sky solar irradiance predictions

    NASA Astrophysics Data System (ADS)

    Ruiz-Arias, Jose A.; Gueymard, Christian A.; Cebecauer, Tomas

    2017-06-01

    Accurate modeling of solar radiation in the absence of clouds is highly important because solar power production peaks during cloud-free situations. The conventional validation approach of clear-sky solar radiation models relies on the comparison between model predictions and ground observations. Therefore, this approach is limited to locations with availability of high-quality ground observations, which are scarce worldwide. As a consequence, many areas of in-terest for, e.g., solar energy development, still remain sub-validated. Here, a worldwide inter-comparison of the global horizontal irradiance (GHI) and direct normal irradiance (DNI) calculated by a number of appropriate clear-sky solar ra-diation models is proposed, without direct intervention of any weather or solar radiation ground-based observations. The model inputs are all gathered from atmospheric reanalyses covering the globe. The model predictions are compared to each other and only their relative disagreements are quantified. The largest differences between model predictions are found over central and northern Africa, the Middle East, and all over Asia. This coincides with areas of high aerosol optical depth and highly varying aerosol distribution size. Overall, the differences in modeled DNI are found about twice larger than for GHI. It is argued that the prevailing weather regimes (most importantly, aerosol conditions) over regions exhibiting substantial divergences are not adequately parameterized by all models. Further validation and scrutiny using conventional methods based on ground observations should be pursued in priority over those specific regions to correctly evaluate the performance of clear-sky models, and select those that can be recommended for solar concentrating applications in particular.

  13. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data

    NASA Astrophysics Data System (ADS)

    Benghanem, M.; Daffallah, K. O.; Almohammedi, A.

    2018-03-01

    This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV) water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m) and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia). The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan) in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed.

  14. A solar radiation model for use in climate studies

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1992-01-01

    A solar radiation routine is developed for use in climate studies that includes absorption and scattering due to ozone, water vapor, oxygen, carbon dioxide, clouds, and aerosols. Rayleigh scattering is also included. Broadband parameterization is used to compute the absorption by water vapor in a clear atmosphere, and the k-distribution method is applied to compute fluxes in a scattering atmosphere. The reflectivity and transmissivity of a scattering layer are computed analytically using the delta-four-stream discrete-ordinate approximation. The two-stream adding method is then applied to compute fluxes for a composite of clear and scattering layers. Compared to the results of high spectral resolution and detailed multiple-scattering calculations, fluxes and heating rate are accurately computed to within a few percent. The high accuracy of the flux and heating-rate calculations is achieved with a reasonable amount of computing time. With the UV and visible region grouped into four bands, this solar radiation routine is useful not only for climate studies but also for studies on photolysis in the upper atmosphere and photosynthesis in the biosphere.

  15. Solar Measurement and Modeling | Grid Modernization | NREL

    Science.gov Websites

    Energy SunShot Initiative by improving the tools and methods that measure solar radiation to reduce and disseminate accurate solar measurement and modeling methods, best practices and standards, and Normal Irradiance Measurements, Solar Energy (2016) Radiometer Calibration Methods and Resulting

  16. Modeling the Atmosphere of Solar and Other Stars: Radiative Transfer with PHOENIX/3D

    NASA Astrophysics Data System (ADS)

    Baron, Edward

    The chemical composition of stars is an important ingredient in our understanding of the formation, structure, and evolution of both the Galaxy and the Solar System. The composition of the sun itself is an essential reference standard against which the elemental contents of other astronomical objects are compared. Recently, redetermination of the elemental abundances using three-dimensional, time-dependent hydrodynamical models of the solar atmosphere has led to a reduction in the inferred metal abundances, particularly C, N, O, and Ne. However, this reduction in metals reduces the opacity such that models of the Sun no longer agree with the observed results obtained using helioseismology. Three dimensional (3-D) radiative transfer is an important problem in physics, astrophysics, and meteorology. Radiative transfer is extremely computationally complex and it is a natural problem that requires computation on the exascale. We intend to calculate the detailed compositional structure of the Sun and other stars at high resolution with full NLTE, treating the turbulent velocity flows in full detail in order to compare results from hydrodynamics and helioseismology, and understand the nature of the discrepancies found between the two approaches. We propose to perform 3-D high-resolution radiative transfer calculations with the PHOENIX/3D suite of solar and other stars using 3-D hydrodynamic models from different groups. While NLTE radiative transfer has been treated by the groups doing hydrodynamics, they are necessarily limited in their resolution to the consideration of only a few (4-20) frequency bins, whereas we can calculate full NLTE including thousands of wavelength points, resolving the line profiles, and solving the scattering problem with extremely high angular resolution. The code has been used for the analysis of supernova spectra, stellar and planetary spectra, and for time-dependent modeling of transient objects. PHOENIX/3D runs and scales very well on Cray

  17. High mortality of Red Sea zooplankton under ambient solar radiation.

    PubMed

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  18. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    EPA Science Inventory

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  19. Progress Report for Annex II--Assessment of Solar Radiation Resources in Saudi Arabia 1993-1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Amoudi, Anmed; Alawaji, Saleh H.; Cornwall, Chris

    1999-08-20

    In 1987, the United States Department of Energy (DOE) and the King Abdulaziz City for Science and Technology (KACST) signed a five-year Agreement for Cooperation in the Field of Renewable Energy Research and Development (R and D), which has been extended to 2000. Tasks include: (1) upgrade solar radiation measurements in Saudi Arabia; (2) assemble a database of concurrent solar radiation, satellite (METEOSAT), and meteorological data; (3) adapt NREL models and other software for Saudi Arabia; (4) develop procedures, algorithms, and software to estimate solar irradiance; and (5) prepare a grid of solar radiation data for preparing maps and atlasesmore » and estimating solar radiation resources and solar energy system performances at locations in Saudi Arabia.« less

  20. Radiative efficiency of lead iodide based perovskite solar cells

    PubMed Central

    Tvingstedt, Kristofer; Malinkiewicz, Olga; Baumann, Andreas; Deibel, Carsten; Snaith, Henry J.; Dyakonov, Vladimir; Bolink, Henk J.

    2014-01-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate. PMID:25317958

  1. A model for solar constant secular changes

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    In this paper, contrast models for solar active region and global photospheric features are used to reproduce the observed Active Cavity Radiometer and Earth Radiation Budget secular trends in reasonably good fashion. A prediction for the next decade of solar constant variations is made using the model. Secular trends in the solar constant obtained from the present model support the view that the Maunder Minimum may be related to the Little Ice Age of the 17th century.

  2. Millimeter radiation from a 3D model of the solar atmosphere. II. Chromospheric magnetic field

    NASA Astrophysics Data System (ADS)

    Loukitcheva, M.; White, S. M.; Solanki, S. K.; Fleishman, G. D.; Carlsson, M.

    2017-05-01

    Aims: We use state-of-the-art, three-dimensional non-local thermodynamic equilibrium (non-LTE) radiative magnetohydrodynamic simulations of the quiet solar atmosphere to carry out detailed tests of chromospheric magnetic field diagnostics from free-free radiation at millimeter and submillimeter wavelengths (mm/submm). Methods: The vertical component of the magnetic field was deduced from the mm/submm brightness spectra and the degree of circular polarization synthesized at millimeter frequencies. We used the frequency bands observed by the Atacama Large Millimeter/Submillimeter Array (ALMA) as a convenient reference. The magnetic field maps obtained describe the longitudinal magnetic field at the effective formation heights of the relevant wavelengths in the solar chromosphere. Results: The comparison of the deduced and model chromospheric magnetic fields at the spatial resolution of both the model and current observations demonstrates a good correlation, but has a tendency to underestimate the model field. The systematic discrepancy of about 10% is probably due to averaging of the restored field over the heights contributing to the radiation, weighted by the strength of the contribution. On the whole, the method of probing the longitudinal component of the magnetic field with free-free emission at mm/submm wavelengths is found to be applicable to measurements of the weak quiet-Sun magnetic fields. However, successful exploitation of this technique requires very accurate measurements of the polarization properties (primary beam and receiver polarization response) of the antennas, which will be the principal factor that determines the level to which chromospheric magnetic fields can be measured. Conclusions: Consequently, high-resolution and high-precision observations of circularly polarized radiation at millimeter wavelengths can be a powerful tool for producing chromospheric longitudinal magnetograms.

  3. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    PubMed Central

    Ferreira, Pedro M.; Gomes, João M.; Martins, Igor A. C.; Ruano, António E.

    2012-01-01

    Accurate measurements of global solar radiation and atmospheric temperature, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature. PMID:23202230

  4. Solar UV Radiation and the Origin of Life on Earth

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Hubeny, Ivan; Lanz, Thierry; Gaidos, Eric; Kasting, James; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    We have started a comprehensive, interdisciplinary study of the influence of solar ultraviolet radiation on the atmosphere of of the early Earth. We plan to model the chemistry of the Earth atmosphere during its evolution, using observed UV flux distributions of early solar analogs as boundary conditions in photochemical models of the Earth's atmosphere. The study has four distinct but interlinked parts: (1) Establishing the radiation of the early Sun; (2) Determining the photochemistry of the early Earth's atmosphere; (3) Estimating the rates of H2 loss from the atmosphere; and (4) Ascertaining how sensitive is the photochemistry to the metallicity of the Sun. We are currently using STIS and EUVE to obtain high-quality far-UV and extreme-UV observations of three early-solar analogs. We will perform a detailed non-LTE study of each stars, and construct theoretical model photosphere, and an empirical model chromospheres, which can be used to extrapolate the continuum to the Lyman continuum region. Given a realistic flux distribution of the early Sun, we will perform photochemical modeling of weakly reducing primitive atmospheres to determine the lifetime and photochemistry of CH4. In particular, we will make estimates of the amount of CH4 present in the prebiotic atmosphere, and estimate the atmospheric CH4 concentration during the Late Archean (2.5-3.0 b.y. ago) and determine whether it would have been sufficiently abundant to help offset reduced solar luminosity at that time. Having obtained a photochemical model, we will solve for the concentrations of greenhouse gasses and important pre-biotic molecules, and perform a detailed radiative transfer calculations to compute the UV flux reaching the surface.

  5. Satellite-based climate data records of surface solar radiation from the CM SAF

    NASA Astrophysics Data System (ADS)

    Trentmann, Jörg; Cremer, Roswitha; Kothe, Steffen; Müller, Richard; Pfeifroth, Uwe

    2017-04-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth's energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF is freely available via www.cmsaf.eu. Here we present the regional and the global climate data records of surface solar radiation from the CM SAF. The regional climate data record SARAH (Surface Solar Radiation Dataset - Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002) is based on observations from the series of Meteosat satellites. SARAH provides 30-min, daily- and monthly-averaged data of the effective cloud albedo, the solar irradiance (incl. spectral information), the direct solar radiation (horizontal and normal), and the sunshine duration from 1983 to 2015 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05° allowing for detailed regional studies. The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002) is based on observations from the series of AVHRR satellite instruments. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from 1982 to 2015 with a spatial resolution of 0.25°. In addition to the solar surface

  6. Radiation From Solar Activity | Radiation Protection | US EPA

    EPA Pesticide Factsheets

    2017-08-07

    Solar flares, coronal mass ejections (CMEs) and geomagnetic storms from the sun can send extreme bursts of ionizing radiation and magnetic energy toward Earth. Some of this energy is in the form ionizing radiation and some of the energy is magnetic energy.

  7. Magnetic reconnection in the low solar chromosphere with a more realistic radiative cooling model

    NASA Astrophysics Data System (ADS)

    Ni, Lei; Lukin, Vyacheslav S.; Murphy, Nicholas A.; Lin, Jun

    2018-04-01

    Magnetic reconnection is the most likely mechanism responsible for the high temperature events that are observed in strongly magnetized locations around the temperature minimum in the low solar chromosphere. This work improves upon our previous work [Ni et al., Astrophys. J. 852, 95 (2018)] by using a more realistic radiative cooling model computed from the OPACITY project and the CHIANTI database. We find that the rate of ionization of the neutral component of the plasma is still faster than recombination within the current sheet region. For low β plasmas, the ionized and neutral fluid flows are well-coupled throughout the reconnection region resembling the single-fluid Sweet-Parker model dynamics. Decoupling of the ion and neutral inflows appears in the higher β case with β0=1.46 , which leads to a reconnection rate about three times faster than the rate predicted by the Sweet-Parker model. In all cases, the plasma temperature increases with time inside the current sheet, and the maximum value is above 2 ×104 K when the reconnection magnetic field strength is greater than 500 G. While the more realistic radiative cooling model does not result in qualitative changes of the characteristics of magnetic reconnection, it is necessary for studying the variations of the plasma temperature and ionization fraction inside current sheets in strongly magnetized regions of the low solar atmosphere. It is also important for studying energy conversion during the magnetic reconnection process when the hydrogen-dominated plasma approaches full ionization.

  8. Forecast and Specification of Radiation Belt Electrons Based on Solar Wind Measurements

    NASA Astrophysics Data System (ADS)

    Li, X.; Barker, A.; Burin Des Roziers, E.

    2003-12-01

    Relativistic electrons in the Earth's magnetosphere are of considerable practical importance because of their effect on spacecraft and because of their radiation hazard to astronauts who perform extravehicular activity. The good correlation between solar wind velocity and MeV electron fluxes at geosynchronous orbit has long been established. We have developed a radial diffusion model, using solar wind parameters as the only input, to reproduce the variation of the MeV electrons at geosynchronous orbit. Based on this model, we have constructed a real-time model that forecasts one to two days in advance the daily averaged >2 MeV electron flux at geosynchronous orbit using real-time solar wind data from ACE. The forecasts from this model are available on the web in real time. A natural extension of our current model is to create a system for making quantitative forecasts and specifications of radiation belt electrons at different radial distances and different local times based on the solar wind conditions. The successes and obstacles associated with this extension will be discussed in this presentation.

  9. Resistance of Marine Bacterioneuston to Solar Radiation

    PubMed Central

    Agogué, Hélène; Joux, Fabien; Obernosterer, Ingrid; Lebaron, Philippe

    2005-01-01

    A total of 90 bacterial strains were isolated from the sea surface microlayer (i.e., bacterioneuston) and underlying waters (i.e., bacterioplankton) from two sites of the northwestern Mediterranean Sea. The strains were identified by sequence analysis, and growth recovery was investigated after exposure to simulated solar radiation. Bacterioneuston and bacterioplankton isolates were subjected to six different exposure times, ranging from 0.5 to 7 h of simulated noontime solar radiation. Following exposure, the growth of each isolate was monitored, and different classes of resistance were determined according to the growth pattern. Large interspecific differences among the 90 marine isolates were observed. Medium and highly resistant strains accounted for 41% and 22% of the isolates, respectively, and only 16% were sensitive strains. Resistance to solar radiation was equally distributed within the bacterioneuston and bacterioplankton. Relative contributions to the highly resistant class were 43% for γ-proteobacteria and 14% and 8% for α-proteobacteria and the Cytophaga/Flavobacterium/Bacteroides (CFB) group, respectively. Within the γ-proteobacteria, the Pseudoalteromonas and Alteromonas genera appeared to be highly resistant to solar radiation. The majority of the CFB group (76%) had medium resistance. Our study further provides evidence that pigmented bacteria are not more resistant to solar radiation than nonpigmented bacteria. PMID:16151115

  10. Effect of atmospheric scattering and surface reflection on upwelling solar radiation

    NASA Technical Reports Server (NTRS)

    Suttles, J. T.; Barkstrom, B. R.; Tiwari, S. N.

    1981-01-01

    A study is presented of the solar radiation transfer in the complete earth-atmosphere system, and numerical results are compared with satellite data obtained during the Earth Radiation Budget Experiment on Nimbus 6, in August, 1975. Emphasis is placed on the upwelling radiance distribution at the top of the atmosphere, assumed to be at 50 km. The numerical technique is based on the finite difference method, which includes azimuth and spectral variations for the entire solar wavelength range. Detailed solar properties, atmospheric physical properties, and optical properties are used. However, since the property descriptions are based on a trade-off between accuracy and computational realities, aerosol and cloud optical properties are treated with simple approximations. The radiative transfer model is in good agreement with the satellite radiance observations. The method provides a valuable tool in analyzing satellite- and ground-based radiation budget measurements and in designing instrumentation.

  11. Mathematical model of the solar radiation force and torques acting on the components of a spacecraft

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1971-01-01

    General expressions for the solar radiation force and torques are derived in the vectorial form for any given reflecting surface, provided that the reflecting characteristics of the surface, as well as the value of the solar constant, are known. An appropriate choice of a spacecraft-fixed frame of reference leads to relatively simple expressions for the solar radiation forces and torques in terms of the functions of the sun-spacecraft-earth angle.

  12. Solar radiative heating of fiber-optic cables used to monitor temperatures in water

    NASA Astrophysics Data System (ADS)

    Neilson, Bethany T.; Hatch, Christine E.; Ban, Heng; Tyler, Scott W.

    2010-08-01

    In recent years, applications of distributed temperature sensing (DTS) have increased in number and diversity. Because fiber-optic cables used for DTS are typically sheathed in dark UV-resistant materials, the question arises as to how shortwave solar radiation penetrating a water column influences the accuracy of absolute DTS-derived temperatures in aquatic applications. To quantify these effects, we completed a modeling effort that accounts for the effects of radiation and convection on a submersed cable to predict when solar heating may be important. Results indicate that for cables installed at shallow depths in clear, low-velocity water bodies, measurable heating of the cable is likely during peak solar radiation. However, at higher velocities, increased turbidity and/or greater depths, the effects of solar heating are immeasurable. A field study illustrated the effects of solar radiation by installing two types of fiber-optic cable at multiple water depths (from 0.05 to 0.8 m) in the center and along the sidewall of a trapezoidal canal. Thermistors were installed at similar depths and shielded from solar radiation to record absolute water temperatures. During peak radiation, thermistor data showed small temperature differences (˜0.003°C-0.04°C) between depths suggesting minor thermal stratification in the canal center. DTS data from cables at these same depths show differences of 0.01°C-0.17°C. The DTS differences cannot be explained by stratification alone and are likely evidence of additional heating from solar radiation. Sidewall thermistor strings also recorded stratification. However, corresponding DTS data suggested that bed conduction overwhelmed the effects of solar radiation.

  13. Radiation transfer in plant canopies - Transmission of direct solar radiation and the role of leaf orientation

    NASA Technical Reports Server (NTRS)

    Verstraete, Michel M.

    1987-01-01

    Understanding the details of the interaction between the radiation field and plant structures is important climatically because of the influence of vegetation on the surface water and energy balance, but also biologically, since solar radiation provides the energy necessary for photosynthesis. The problem is complex because of the extreme variety of vegetation forms in space and time, as well as within and across plant species. This one-dimensional vertical multilayer model describes the transfer of direct solar radiation through a leaf canopy, accounting explicitly for the vertical inhomogeneities of a plant stand and leaf orientation, as well as heliotropic plant behavior. This model reproduces observational results on homogeneous canopies, but it is also well adapted to describe vertically inhomogeneous canopies. Some of the implications of leaf orientation and plant structure as far as light collection is concerned are briefly reviewed.

  14. Solar radiation on Mars: Stationary photovoltaic array

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.; Sherman, I.; Landis, G. A.

    1993-01-01

    Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.

  15. Simple device measures solar radiation

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.

    1977-01-01

    Simple inexpensive thermometer, insolated from surroundings by transparent glass or plastic encasement, measures intensities of solar radiation, or radiation from other sources such as furnaces or ovens. Unit can be further modified to accomplish readings from remote locations.

  16. Physics-Based GOES Product for Use in NREL's National Solar Radiation Database: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Habte, Aron; Gotseff, Peter

    The Global Solar Insolation Project (GSIP) is an operational physical model from the National Oceanic and Atmospheric Administration (NOAA) that computes global horizontal radiation (GHI) using the visible and infrared channel measurements from geostationary operational environmental satellites (GOES). GSIP uses a two-stage scheme that retrieves cloud properties and uses those properties in the Satellite Algorithm for Surface Radiation Budget (SASRAB) model to calculate surface radiation. The National Renewable Energy Laboratory, University of Wisconsin, and NOAA have recently collaborated to adapt GSIP to create a high-temporal and spatial resolution data set. The data sets are currently being incorporated into the widelymore » used National Solar Radiation Data Base.« less

  17. Calibration of solar radiation measuring instruments. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahm, R J; Nakos, J C

    A review of solar radiation measurement of instruments and some types of errors is given; and procedures for calibrating solar radiation measuring instruments are detailed. An appendix contains a description of various agencies who perform calibration of solar instruments and a description of the methods they used at the time this report was prepared. (WHK)

  18. Simulating the Outer Radiation Belt During the Rising Phase of Solar Cycle 24

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Glocer, Alex; Zheng, Qiuhua; Chen, Sheng-Hsien; Kanekal, Shri; Nagai, Tsungunobu; Albert, Jay

    2011-01-01

    After prolonged period of solar minimum, there has been an increase in solar activity and its terrestrial consequences. We are in the midst of the rising phase of solar cycle 24, which began in January 2008. During the initial portion of the cycle, moderate geomagnetic storms occurred follow the 27 day solar rotation. Most of the storms were accompanied by increases in electron fluxes in the outer radiation belt. These enhancements were often preceded with rapid dropout at high L shells. We seek to understand the similarities and differences in radiation belt behavior during the active times observed during the of this solar cycle. This study includes extensive data and simulations our Radiation Belt Environment Model. We identify the processes, transport and wave-particle interactions, that are responsible for the flux dropout and the enhancement and recovery.

  19. The distribution of solar global radiation over Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badescu, V.

    1990-01-01

    This article shows the monthly distributions of solar global radiation over Romania. The results have been tested by the author under the climatic features of Romania. Meteorological data from 29 localities have been used in computations. The results show Romania has a solar potential higher than that of the world maps of solar radiation. It was pointed out that local radiation peculiarities, expressed as strong deviations from the law of latitudinal variation, are mainly determined by the atmospheric circulation features.

  20. Temperature-based estimation of global solar radiation using soft computing methodologies

    NASA Astrophysics Data System (ADS)

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Danesh, Amir Seyed; Abdullah, Mohd Shahidan; Zamani, Mazdak

    2016-07-01

    Precise knowledge of solar radiation is indeed essential in different technological and scientific applications of solar energy. Temperature-based estimation of global solar radiation would be appealing owing to broad availability of measured air temperatures. In this study, the potentials of soft computing techniques are evaluated to estimate daily horizontal global solar radiation (DHGSR) from measured maximum, minimum, and average air temperatures ( T max, T min, and T avg) in an Iranian city. For this purpose, a comparative evaluation between three methodologies of adaptive neuro-fuzzy inference system (ANFIS), radial basis function support vector regression (SVR-rbf), and polynomial basis function support vector regression (SVR-poly) is performed. Five combinations of T max, T min, and T avg are served as inputs to develop ANFIS, SVR-rbf, and SVR-poly models. The attained results show that all ANFIS, SVR-rbf, and SVR-poly models provide favorable accuracy. Based upon all techniques, the higher accuracies are achieved by models (5) using T max- T min and T max as inputs. According to the statistical results, SVR-rbf outperforms SVR-poly and ANFIS. For SVR-rbf (5), the mean absolute bias error, root mean square error, and correlation coefficient are 1.1931 MJ/m2, 2.0716 MJ/m2, and 0.9380, respectively. The survey results approve that SVR-rbf can be used efficiently to estimate DHGSR from air temperatures.

  1. An analysis of interplanetary space radiation exposure for various solar cycles

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Cucinotta, F. A.; O'Neill, P. M.; Wilson, J. W. (Principal Investigator)

    1994-01-01

    The radiation dose received by crew members in interplanetary space is influenced by the stage of the solar cycle. Using the recently developed models of the galactic cosmic radiation (GCR) environment and the energy-dependent radiation transport code, we have calculated the dose at 0 and 5 cm water depth; using a computerized anatomical man (CAM) model, we have calculated the skin, eye and blood-forming organ (BFO) doses as a function of aluminum shielding for various solar minima and maxima between 1954 and 1989. These results show that the equivalent dose is within about 15% of the mean for the various solar minima (maxima). The maximum variation between solar minimum and maximum equivalent dose is about a factor of three. We have extended these calculations for the 1976-1977 solar minimum to five practical shielding geometries: Apollo Command Module, the least and most heavily shielded locations in the U.S. space shuttle mid-deck, center of the proposed Space Station Freedom cluster and sleeping compartment of the Skylab. These calculations, using the quality factor of ICRP 60, show that the average CAM BFO equivalent dose is 0.46 Sv/year. Based on an approach that takes fragmentation into account, we estimate a calculation uncertainty of 15% if the uncertainty in the quality factor is neglected.

  2. Assessment of diffuse radiation models in Azores

    NASA Astrophysics Data System (ADS)

    Magarreiro, Clarisse; Brito, Miguel; Soares, Pedro; Azevedo, Eduardo

    2014-05-01

    Measured irradiance databases usually consist of global solar radiation data with limited spatial coverage. Hence, solar radiation models have been developed to estimate the diffuse fraction from the measured global irradiation. This information is critical for the assessment of the potential of solar energy technologies; for example, the decision to use photovoltaic systems with tracking system. The different solar radiation models for this purpose differ on the parameters used as input. The simplest, and most common, are models which use global radiation information only. More sophisticated models require meteorological parameters such as information from clouds, atmospheric turbidity, temperature or precipitable water content. Most of these models comprise correlations with the clearness index, kt (portion of horizontal extra-terrestrial radiation reaching the Earth's surface) to obtain the diffuse fraction kd (portion of diffuse component from global radiation). The applicability of these different models is related to the local atmospheric conditions and its climatic characteristics. The models are not of general validity and can only be applicable to locations where the albedo of the surrounding terrain and the atmospheric contamination by dust are not significantly different from those where the corresponding methods were developed. Thus, models of diffuse fraction exhibit a relevant degree of location dependence: e.g. models developed considering data acquired in Europe are mainly linked to Northern, Central or, more recently, Mediterranean areas. The Azores Archipelago, with its particular climate and cloud cover characteristics, different from mainland Europe, has not yet been considered for the development of testing of such models. The Azorean climate reveals large amounts of cloud cover in its annual cycle, with spatial and temporal variabilities more complex than the common Summer/Winter pattern. This study explores the applicability of different

  3. Synchronous flowering of the rubber tree (Hevea brasiliensis) induced by high solar radiation intensity.

    PubMed

    Yeang, Hoong-Yeet

    2007-01-01

    How tropical trees flower synchronously near the equator in the absence of significant day length variation or other meteorological cues has long been a puzzle. The rubber tree (Hevea brasiliensis) is used as a model to investigate this phenomenon. The annual cycle of solar radiation intensity is shown to correspond closely with the flowering of the rubber tree planted near the equator and in the subtropics. Unlike in temperate regions, where incoming solar radiation (insolation) is dependent on both day length and radiation intensity, insolation at the equator is due entirely to the latter. Insolation at the upper atmosphere peaks twice a year during the spring and autumn equinoxes, but the actual solar radiation that reaches the ground is attenuated to varying extents in different localities. The rubber tree shows one or two flowering seasons a year (with major and minor seasons in the latter) in accordance with the solar radiation intensity received. High solar radiation intensity, and in particular bright sunshine (as distinct from prolonged diffuse radiation), induces synchronous anthesis and blooming in Hevea around the time of the equinoxes. The same mechanism may be operational in other tropical tree species.

  4. Decadal Variability of Surface Incident Solar Radiation over China

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun

    2015-04-01

    Observations have reported a widespread dimming of surface incident solar radiation (Rs) from the 1950s to the 1980s and a brightening afterwards. However, none of the state-of-the-art earth system models, including those from the Coupled Model Intercomparison Project phase 5 (CMIP5), could successfully reproduce the dimming/brightening rates over China. This study provides metadata and reference data to investigate the observed variability of Rs in China. From 1958 to 1990, diffuse solar radiation (Rsdif) and direct solar radiation (Rsdir) was measured separately in China, from which Rs was calculated a sum. However, pyranometers used to measure Rsdif had a strong sensitivity drift problem, which introduced a spurious decreasing trend to Rsdif and Rs measurements. The observed Rsdir did not suffer from such sensitivity drift problem. From 1990 to 1993, the old instruments were replaced and measuring stations were relocated in China, which introduced an abrupt increase in the observed Rs. After 1993, Rs was measured by solid black thermopile pyranometers. Comprehensive comparisons between observation-based and model-based Rs performed in this research have shown that sunshine duration (SunDu)-derived Rs is of high quality and provide accurate estimate of decadal variability of Rs over China. SunDu-derived Rs averaged over 105 stations in China decreased at -2.9 W m-2 per decade from 1961 to 1990 and remained stable afterward. This decadal variability has been confirmed by the observed Rsdir, independent studies on aerosols and diurnal temperature range, and can be reproduced by certain high-quality earth system models. However, neither satellite retrievals (the Global Energy and Water Exchanges Project Surface Radiation Budget (GEWEX SRB)) nor reanalyses (ERA-Interim and Modern-Era Retrospective analysis for Research and Applications (MERRA)) can accurately reproduce such decadal variability of Rs over China for their exclusion of annual variability of tropospheric

  5. Working group written presentation: Solar radiation

    NASA Technical Reports Server (NTRS)

    Slemp, Wayne S.

    1989-01-01

    The members of the Solar Radiation Working Group arrived at two major solar radiation technology needs: (1) generation of a long term flight data base; and (2) development of a standardized UV testing methodology. The flight data base should include 1 to 5 year exposure of optical filters, windows, thermal control coatings, hardened coatings, polymeric films, and structural composites. The UV flux and wavelength distribution, as well as particulate radiation flux and energy, should be measured during this flight exposure. A standard testing methodology is needed to establish techniques for highly accelerated UV exposure which will correlate well with flight test data. Currently, UV can only be accelerated to about 3 solar constants and can correlate well with flight exposure data. With space missions to 30 years, acceleration rates of 30 to 100X are needed for efficient laboratory testing.

  6. Short-range solar radiation forecasts over Sweden

    NASA Astrophysics Data System (ADS)

    Landelius, Tomas; Lindskog, Magnus; Körnich, Heiner; Andersson, Sandra

    2018-04-01

    In this article the performance for short-range solar radiation forecasts by the global deterministic and ensemble models from the European Centre for Medium-Range Weather Forecasts (ECMWF) is compared with an ensemble of the regional mesoscale model HARMONIE-AROME used by the national meteorological services in Sweden, Norway and Finland. Note however that only the control members and the ensemble means are included in the comparison. The models resolution differs considerably with 18 km for the ECMWF ensemble, 9 km for the ECMWF deterministic model, and 2.5 km for the HARMONIE-AROME ensemble. The models share the same radiation code. It turns out that they all underestimate systematically the Direct Normal Irradiance (DNI) for clear-sky conditions. Except for this shortcoming, the HARMONIE-AROME ensemble model shows the best agreement with the distribution of observed Global Horizontal Irradiance (GHI) and DNI values. During mid-day the HARMONIE-AROME ensemble mean performs best. The control member of the HARMONIE-AROME ensemble also scores better than the global deterministic ECMWF model. This is an interesting result since mesoscale models have so far not shown good results when compared to the ECMWF models. Three days with clear, mixed and cloudy skies are used to illustrate the possible added value of a probabilistic forecast. It is shown that in these cases the mesoscale ensemble could provide decision support to a grid operator in terms of forecasts of both the amount of solar power and its probabilities.

  7. Remote sensing of solar radiation absorbed and reflected by vegetated land surfaces

    NASA Technical Reports Server (NTRS)

    Myneni, Ranga B.; Asrar, Ghassem; Tanre, Didier; Choudhury, Bhaskar J.

    1992-01-01

    1D and 3D radiative-transfer models have been used to investigate the problem of remotely sensed determination of vegetated land surface-absorbed and reflected solar radiation. Calculations were conducted for various illumination conditions to determine surface albedo, soil- and canopy-absorbed photosynthetically active and nonactive radiation, and normalized difference vegetation index. Simple predictive models are developed on the basis of the relationships among these parameters.

  8. Radiation Environment Modeling for Spacecraft Design: New Model Developments

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Xapsos, Mike; Lauenstein, Jean-Marie; Ladbury, Ray

    2006-01-01

    A viewgraph presentation on various new space radiation environment models for spacecraft design is described. The topics include: 1) The Space Radiatio Environment; 2) Effects of Space Environments on Systems; 3) Space Radiatio Environment Model Use During Space Mission Development and Operations; 4) Space Radiation Hazards for Humans; 5) "Standard" Space Radiation Environment Models; 6) Concerns about Standard Models; 7) Inadequacies of Current Models; 8) Development of New Models; 9) New Model Developments: Proton Belt Models; 10) Coverage of New Proton Models; 11) Comparison of TPM-1, PSB97, AP-8; 12) New Model Developments: Electron Belt Models; 13) Coverage of New Electron Models; 14) Comparison of "Worst Case" POLE, CRESELE, and FLUMIC Models with the AE-8 Model; 15) New Model Developments: Galactic Cosmic Ray Model; 16) Comparison of NASA, MSU, CIT Models with ACE Instrument Data; 17) New Model Developmemts: Solar Proton Model; 18) Comparison of ESP, JPL91, KIng/Stassinopoulos, and PSYCHIC Models; 19) New Model Developments: Solar Heavy Ion Model; 20) Comparison of CREME96 to CREDO Measurements During 2000 and 2002; 21) PSYCHIC Heavy ion Model; 22) Model Standardization; 23) Working Group Meeting on New Standard Radiation Belt and Space Plasma Models; and 24) Summary.

  9. Best Practices of Uncertainty Estimation for the National Solar Radiation Database (NSRDB 1998-2015): Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron M; Sengupta, Manajit

    It is essential to apply a traceable and standard approach to determine the uncertainty of solar resource data. Solar resource data are used for all phases of solar energy conversion projects, from the conceptual phase to routine solar power plant operation, and to determine performance guarantees of solar energy conversion systems. These guarantees are based on the available solar resource derived from a measurement station or modeled data set such as the National Solar Radiation Database (NSRDB). Therefore, quantifying the uncertainty of these data sets provides confidence to financiers, developers, and site operators of solar energy conversion systems and ultimatelymore » reduces deployment costs. In this study, we implemented the Guide to the Expression of Uncertainty in Measurement (GUM) 1 to quantify the overall uncertainty of the NSRDB data. First, we start with quantifying measurement uncertainty, then we determine each uncertainty statistic of the NSRDB data, and we combine them using the root-sum-of-the-squares method. The statistics were derived by comparing the NSRDB data to the seven measurement stations from the National Oceanic and Atmospheric Administration's Surface Radiation Budget Network, National Renewable Energy Laboratory's Solar Radiation Research Laboratory, and the Atmospheric Radiation Measurement program's Southern Great Plains Central Facility, in Billings, Oklahoma. The evaluation was conducted for hourly values, daily totals, monthly mean daily totals, and annual mean monthly mean daily totals. Varying time averages assist to capture the temporal uncertainty of the specific modeled solar resource data required for each phase of a solar energy project; some phases require higher temporal resolution than others. Overall, by including the uncertainty of measurements of solar radiation made at ground stations, bias, and root mean square error, the NSRDB data demonstrated expanded uncertainty of 17 percent - 29 percent on hourly and an

  10. Assessing 1D Atmospheric Solar Radiative Transfer Models: Interpretation and Handling of Unresolved Clouds.

    NASA Astrophysics Data System (ADS)

    Barker, H. W.; Stephens, G. L.; Partain, P. T.; Bergman, J. W.; Bonnel, B.; Campana, K.; Clothiaux, E. E.; Clough, S.; Cusack, S.; Delamere, J.; Edwards, J.; Evans, K. F.; Fouquart, Y.; Freidenreich, S.; Galin, V.; Hou, Y.; Kato, S.; Li, J.;  Mlawer, E.;  Morcrette, J.-J.;  O'Hirok, W.;  Räisänen, P.;  Ramaswamy, V.;  Ritter, B.;  Rozanov, E.;  Schlesinger, M.;  Shibata, K.;  Sporyshev, P.;  Sun, Z.;  Wendisch, M.;  Wood, N.;  Yang, F.

    2003-08-01

    The primary purpose of this study is to assess the performance of 1D solar radiative transfer codes that are used currently both for research and in weather and climate models. Emphasis is on interpretation and handling of unresolved clouds. Answers are sought to the following questions: (i) How well do 1D solar codes interpret and handle columns of information pertaining to partly cloudy atmospheres? (ii) Regardless of the adequacy of their assumptions about unresolved clouds, do 1D solar codes perform as intended?One clear-sky and two plane-parallel, homogeneous (PPH) overcast cloud cases serve to elucidate 1D model differences due to varying treatments of gaseous transmittances, cloud optical properties, and basic radiative transfer. The remaining four cases involve 3D distributions of cloud water and water vapor as simulated by cloud-resolving models. Results for 25 1D codes, which included two line-by-line (LBL) models (clear and overcast only) and four 3D Monte Carlo (MC) photon transport algorithms, were submitted by 22 groups. Benchmark, domain-averaged irradiance profiles were computed by the MC codes. For the clear and overcast cases, all MC estimates of top-of-atmosphere albedo, atmospheric absorptance, and surface absorptance agree with one of the LBL codes to within ±2%. Most 1D codes underestimate atmospheric absorptance by typically 15-25 W m-2 at overhead sun for the standard tropical atmosphere regardless of clouds.Depending on assumptions about unresolved clouds, the 1D codes were partitioned into four genres: (i) horizontal variability, (ii) exact overlap of PPH clouds, (iii) maximum/random overlap of PPH clouds, and (iv) random overlap of PPH clouds. A single MC code was used to establish conditional benchmarks applicable to each genre, and all MC codes were used to establish the full 3D benchmarks. There is a tendency for 1D codes to cluster near their respective conditional benchmarks, though intragenre variances typically exceed those for

  11. Supervised artificial neural network-based method for conversion of solar radiation data (case study: Algeria)

    NASA Astrophysics Data System (ADS)

    Laidi, Maamar; Hanini, Salah; Rezrazi, Ahmed; Yaiche, Mohamed Redha; El Hadj, Abdallah Abdallah; Chellali, Farouk

    2017-04-01

    In this study, a backpropagation artificial neural network (BP-ANN) model is used as an alternative approach to predict solar radiation on tilted surfaces (SRT) using a number of variables involved in physical process. These variables are namely the latitude of the site, mean temperature and relative humidity, Linke turbidity factor and Angstrom coefficient, extraterrestrial solar radiation, solar radiation data measured on horizontal surfaces (SRH), and solar zenith angle. Experimental solar radiation data from 13 stations spread all over Algeria around the year (2004) were used for training/validation and testing the artificial neural networks (ANNs), and one station was used to make the interpolation of the designed ANN. The ANN model was trained, validated, and tested using 60, 20, and 20 % of all data, respectively. The configuration 8-35-1 (8 inputs, 35 hidden, and 1 output neurons) presented an excellent agreement between the prediction and the experimental data during the test stage with determination coefficient of 0.99 and root meat squared error of 5.75 Wh/m2, considering a three-layer feedforward backpropagation neural network with Levenberg-Marquardt training algorithm, a hyperbolic tangent sigmoid and linear transfer function at the hidden and the output layer, respectively. This novel model could be used by researchers or scientists to design high-efficiency solar devices that are usually tilted at an optimum angle to increase the solar incident on the surface.

  12. Solar UV radiation exposure of seamen - Measurements, calibration and model calculations of erythemal irradiance along ship routes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feister, Uwe; Meyer, Gabriele; Kirst, Ulrich

    2013-05-10

    Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels.more » The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.« less

  13. Near-Earth Space Radiation Models

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.; O'Neill, Patrick M.; O'Brien, T. Paul

    2012-01-01

    Review of models of the near-Earth space radiation environment is presented, including recent developments in trapped proton and electron, galactic cosmic ray and solar particle event models geared toward spacecraft electronics applications.

  14. Impact of climate change on occupational exposure to solar radiation.

    PubMed

    Grandi, Carlo; Borra, Massimo; Militello, Andrea; Polichetti, Alessandro

    2016-01-01

    Occupational exposure to solar radiation may induce both acute and long-term effects on skin and eyes. Personal exposure is very difficult to assess accurately, as it depends on environmental, organisational and individual factors. The ongoing climate change interacting with stratospheric ozone dynamics may affect occupational exposure to solar radiation. In addition, tropospheric levels of environmental pollutants interacting with solar radiation may be altered by climate dynamics, so introducing another variable affecting the overall exposure to solar radiation. Given the uncertainties regarding the direction of changes in exposure to solar radiation due to climate change, compliance of outdoor workers with protective measures and a proper health surveillance are crucial. At the same time, education and training, along with the promotion of healthier lifestyles, are of paramount importance.

  15. Solar radiation increases suicide rate after adjusting for other climate factors in South Korea.

    PubMed

    Jee, Hee-Jung; Cho, Chul-Hyun; Lee, Yu Jin; Choi, Nari; An, Hyonggin; Lee, Heon-Jeong

    2017-03-01

    Previous studies have indicated that suicide rates have significant seasonal variations. There is seasonal discordance between temperature and solar radiation due to the monsoon season in South Korea. We investigated the seasonality of suicide and assessed its association with climate variables in South Korea. Suicide rates were obtained from the National Statistical Office of South Korea, and climatic data were obtained from the Korea Meteorological Administration for the period of 1992-2010. We conducted analyses using a generalized additive model (GAM). First, we explored the seasonality of suicide and climate variables such as mean temperature, daily temperature range, solar radiation, and relative humidity. Next, we identified confounding climate variables associated with suicide rate. To estimate the adjusted effect of solar radiation on the suicide rate, we investigated the confounding variables using a multivariable GAM. Suicide rate showed seasonality with a pattern similar to that of solar radiation. We found that the suicide rate increased 1.008 times when solar radiation increased by 1 MJ/m 2 after adjusting for other confounding climate factors (P < 0.001). Solar radiation has a significant linear relationship with suicide after adjusting for region, other climate variables, and time trends. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    NASA Technical Reports Server (NTRS)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  17. Solar Radiation and Climate Experiment (SORCE) Satellite

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).

  18. Validation of the Poisson Stochastic Radiative Transfer Model

    NASA Technical Reports Server (NTRS)

    Zhuravleva, Tatiana; Marshak, Alexander

    2004-01-01

    A new approach to validation of the Poisson stochastic radiative transfer method is proposed. In contrast to other validations of stochastic models, the main parameter of the Poisson model responsible for cloud geometrical structure - cloud aspect ratio - is determined entirely by matching measurements and calculations of the direct solar radiation. If the measurements of the direct solar radiation is unavailable, it was shown that there is a range of the aspect ratios that allows the stochastic model to accurately approximate the average measurements of surface downward and cloud top upward fluxes. Realizations of the fractionally integrated cascade model are taken as a prototype of real measurements.

  19. Modeling the effectiveness of shielding in the earth-moon-mars radiation environment using PREDICCS: five solar events in 2012

    NASA Astrophysics Data System (ADS)

    Quinn, Philip R.; Schwadron, Nathan A.; Townsend, Larry W.; Wimmer-Schweingruber, Robert F.; Case, Anthony W.; Spence, Harlan E.; Wilson, Jody K.; Joyce, Colin J.

    2017-08-01

    Radiation in the form of solar energetic particles (SEPs) presents a severe risk to the short-term health of astronauts and the success of human exploration missions beyond Earth's protective shielding. Modeling how shielding mitigates the dose accumulated by astronauts is an essential step toward reducing these risks. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other SEP measurements) is an online tool for the near real-time prediction of radiation exposure at Earth, the Moon, and Mars behind various levels of shielding. We compare shielded dose rates from PREDICCS with dose rates from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon and from the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) during its cruise phase to Mars for five solar events in 2012 when Earth, MSL, and Mars were magnetically well connected. Calculations of the accumulated dose demonstrate a reasonable agreement between PREDICCS and RAD ranging from as little as 2% difference to 54%. We determine mathematical relationships between shielding levels and accumulated dose. Lastly, the gradient of accumulated dose between Earth and Mars shows that for the largest of the five solar events, lunar missions require aluminum shielding between 1.0 g cm-2 and 5.0 g cm-2 to prevent radiation exposure from exceeding the 30-day limits for lens and skin. The limits were not exceeded near Mars.

  20. An Empirical Model of the Variation of the Solar Lyman-α Spectral Irradiance

    NASA Astrophysics Data System (ADS)

    Kretzschmar, Matthieu; Snow, Martin; Curdt, Werner

    2018-03-01

    We propose a simple model that computes the spectral profile of the solar irradiance in the hydrogen Lyman alpha line, H Ly-α (121.567 nm), from 1947 to present. Such a model is relevant for the study of many astronomical environments, from planetary atmospheres to interplanetary medium. This empirical model is based on the SOlar Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation observations of the Ly-α irradiance over solar cycle 23 and the Ly-α disk-integrated irradiance composite. The model reproduces the temporal variability of the spectral profile and matches the independent SOlar Radiation and Climate Experiment/SOLar-STellar Irradiance Comparison Experiment spectral observations from 2003 to 2007 with an accuracy better than 10%.

  1. Ground truth data for test sites (SL-3). [solar radiation and thermal radiation brightness temperature measurements

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Field measurements performed simultaneously with Skylab overpasses in order to provide comparative calibration and performance evaluation measurements for the EREP sensors are presented. The solar radiation region from 400 to 1300 nanometers and the thermal radiation region from 8 to 14 micrometer region were investigated. The measurements of direct solar radiation were analyzed for atmospheric optical depth; the total and reflected solar radiation were analyzed for target reflectivity. These analyses were used in conjunction with a radiative transfer computer program in order to calculate the amount and spectral distribution of solar radiation at the apertures of the EREP sensors. The instrumentation and techniques employed, calibrations and analyses performed, and results obtained are discussed.

  2. Trend of surface solar radiation over Asia simulated by aerosol transport-climate model

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Ohmura, A.

    2009-12-01

    Long-term records of surface radiation measurements indicate a decrease in the solar radiation between the 1950s and 1980s (“global dimming”), then its recovery afterward (“global brightening”) at many locations all over the globe [Wild, 2009]. On the other hand, the global brightening is delayed over the Asian region [Ohmura, 2009]. It is suggested that these trends of the global dimming and brightening are strongly related with a change in aerosol loading in the atmosphere which affect the climate change through the direct, semi-direct, and indirect effects. In this study, causes of the trend of the surface solar radiation over Asia during last several decades are analyzed with an aerosol transport-climate model, SPRINTARS. SPRINTARS is coupled with MIROC which is a general circulation model (GCM) developed by Center for Climate System Research (CCSR)/University of Tokyo, National Institute for Environmental Studies (NIES), and Frontier Research Center for Global Change (FRCGC) [Takemura et al., 2000, 2002, 2005, 2009]. The horizontal and vertical resolutions are T106 (approximately 1.1° by 1.1°) and 56 layers, respectively. SPRINTARS includes the transport, radiation, cloud, and precipitation processes of all main tropospheric aerosols (black and organic carbons, sulfate, soil dust, and sea salt). The model treats not only the aerosol mass mixing ratios but also the cloud droplet and ice crystal number concentrations as prognostic variables, and the nucleation processes of cloud droplets and ice crystals depend on the number concentrations of each aerosol species. Changes in the cloud droplet and ice crystal number concentrations affect the cloud radiation and precipitation processes in the model. Historical emissions, that is consumption of fossil fuel and biofuel, biomass burning, aircraft emissions, and volcanic eruptions are prescribed from database provided by the Aerosol Model Intercomparison Project (AeroCom) and the latest IPCC inventories

  3. Aircraft Crew Radiation Exposure in Aviation Altitudes During Quiet and Solar Storm Periods

    NASA Astrophysics Data System (ADS)

    Beck, Peter

    The European Commission Directorate General Transport and Energy published in 2004 a summary report of research on aircrew dosimetry carried out by the EURADOS working group WG5 (European Radiation Dosimetry Group, http://www.eurados.org/). The aim of the EURADOS working group WG5 was to bring together, in particular from European research groups, the available, preferably published, experimental data and results of calculations, together with detailed descriptions of the methods of measurement and calculation. The purpose is to provide a dataset for all European Union Member States for the assessment of individual doses and/or to assess the validity of different approaches, and to provide an input to technical recommendations by the experts and the European Commission. Furthermore EURADOS (European Radiation Dosimetry Group, http://www.eurados.org/) started to coordinate research activities in model improvements for dose assessment of solar particle events. Preliminary results related to the European research project CONRAD (Coordinated Network for Radiation Dosimetry) on complex mixed radiation fields at workplaces are presented. The major aim of this work is the validation of models for dose assessment of solar particle events, using data from neutron ground level monitors, in-flight measurement results obtained during a solar particle event and proton satellite data. The radiation protection quantity of interest is effective dose, E (ISO), but the comparison of measurement results obtained by different methods or groups, and comparison of measurement results and the results of calculations, is done in terms of the operational quantity ambient dose equivalent, H* (10). This paper gives an overview of aircrew radiation exposure measurements during quiet and solar storm conditions and focuses on dose results using the EURADOS In-Flight Radiation Data Base and published data on solar particle events

  4. How well do we know the incoming solar infrared radiation?

    NASA Astrophysics Data System (ADS)

    Elsey, Jonathan; Coleman, Marc; Gardiner, Tom; Shine, Keith

    2017-04-01

    The solar spectral irradiance (SSI) has been identified as a key climate variable by the Global Climate Observing System (Bojinski et al. 2014, Bull. Amer. Meteor. Soc.). It is of importance in the modelling of atmospheric radiative transfer, and the quantification of the global energy budget. However, in the near-infrared spectral region (between 2000-10000 cm-1) there exists a discrepancy of 7% between spectra measured from the space-based SOLSPEC instrument (Thuillier et al. 2015, Solar Physics) and those from a ground-based Langley technique (Bolseé et al. 2014, Solar Physics). This same difference is also present between different analyses of the SOLSPEC data. This work aims to reconcile some of these differences by presenting an estimate of the near-infrared SSI obtained from ground-based measurements taken using an absolutely calibrated Fourier transform spectrometer. Spectra are obtained both using the Langley technique and by direct comparison with a radiative transfer model, with appropriate handling of both aerosol scattering and molecular continuum absorption. Particular focus is dedicated to the quantification of uncertainty in these spectra, from both the inherent uncertainty in the measurement setup and that from the use of the radiative transfer code and its inputs.

  5. Solar wind radiation damage effects in lunar material

    NASA Technical Reports Server (NTRS)

    Hapke, B.; Cohen, A. J.; Cassidy, W. A.

    1971-01-01

    The research on solar wind radiation damage and other effects in lunar samples which was conducted to understand the optical properties of lunar materials is reported. Papers presented include: solar radiation effects in lunar samples, albedo of the moon, radiation effects in lunar crystalline rocks, valence states of 3rd transition elements in Apollo 11 and 12 rocks, and trace ferric iron in lunar and meteoritic titanaugites.

  6. Radiative heating of interstellar grains falling toward the solar nebula: 1-D diffusion calculations

    NASA Technical Reports Server (NTRS)

    Simonelli, D. P.; Pollack, J. B.; McKay, C. P.

    1997-01-01

    As the dense molecular cloud that was the precursor of our Solar System was collapsing to form a protosun and the surrounding solar-nebula accretion disk, infalling interstellar grains were heated much more effectively by radiation from the forming protosun than by radiation from the disk's accretion shock. Accordingly, we have estimated the temperatures experienced by these infalling grains using radiative diffusion calculations whose sole energy source is radiation from the protosun. Although the calculations are 1-dimensional, they make use of 2-D, cylindrically symmetric models of the density structure of a collapsing, rotating cloud. The temperature calculations also utilize recent models for the composition and radiative properties of interstellar grains (Pollack et al. 1994. Astrophys. J. 421, 615-639), thereby allowing us to estimate which grain species might have survived, intact, to the disk accretion shock and what accretion rates and molecular-cloud rotation rates aid that survival. Not surprisingly, we find that the large uncertainties in the free parameter values allow a wide range of grain-survival results: (1) For physically plausible high accretion rates or low rotation rates (which produce small accretion disks), all of the infalling grain species, even the refractory silicates and iron, will vaporize in the protosun's radiation field before reaching the disk accretion shock. (2) For equally plausible low accretion rates or high rotation rates (which produce large accretion disks), all non-ice species, even volatile organics, will survive intact to the disk accretion shock. These grain-survival conclusions are subject to several limitations which need to be addressed by future, more sophisticated radiative-transfer models. Nevertheless, our results can serve as useful inputs to models of the processing that interstellar grains undergo at the solar nebula's accretion shock, and thus help address the broader question of interstellar inheritance in

  7. Radiative heating of interstellar grains falling toward the solar nebula: 1-D diffusion calculations.

    PubMed

    Simonelli, D P; Pollack, J B; McKay, C P

    1997-02-01

    As the dense molecular cloud that was the precursor of our Solar System was collapsing to form a protosun and the surrounding solar-nebula accretion disk, infalling interstellar grains were heated much more effectively by radiation from the forming protosun than by radiation from the disk's accretion shock. Accordingly, we have estimated the temperatures experienced by these infalling grains using radiative diffusion calculations whose sole energy source is radiation from the protosun. Although the calculations are 1-dimensional, they make use of 2-D, cylindrically symmetric models of the density structure of a collapsing, rotating cloud. The temperature calculations also utilize recent models for the composition and radiative properties of interstellar grains (Pollack et al. 1994. Astrophys. J. 421, 615-639), thereby allowing us to estimate which grain species might have survived, intact, to the disk accretion shock and what accretion rates and molecular-cloud rotation rates aid that survival. Not surprisingly, we find that the large uncertainties in the free parameter values allow a wide range of grain-survival results: (1) For physically plausible high accretion rates or low rotation rates (which produce small accretion disks), all of the infalling grain species, even the refractory silicates and iron, will vaporize in the protosun's radiation field before reaching the disk accretion shock. (2) For equally plausible low accretion rates or high rotation rates (which produce large accretion disks), all non-ice species, even volatile organics, will survive intact to the disk accretion shock. These grain-survival conclusions are subject to several limitations which need to be addressed by future, more sophisticated radiative-transfer models. Nevertheless, our results can serve as useful inputs to models of the processing that interstellar grains undergo at the solar nebula's accretion shock, and thus help address the broader question of interstellar inheritance in

  8. Calibration of GOES-derived solar radiation data using a distributed network of surface measurements in Florida, USA

    USGS Publications Warehouse

    Sumner, David M.; Pathak, Chandra S.; Mecikalski, John R.; Paech, Simon J.; Wu, Qinglong; Sangoyomi, Taiye; Babcock, Roger W.; Walton, Raymond

    2008-01-01

    Solar radiation data are critically important for the estimation of evapotranspiration. Analysis of visible-channel data derived from Geostationary Operational Environmental Satellites (GOES) using radiative transfer modeling has been used to produce spatially- and temporally-distributed datasets of solar radiation. An extensive network of (pyranometer) surface measurements of solar radiation in the State of Florida has allowed refined calibration of a GOES-derived daily integrated radiation data product. This refinement of radiation data allowed for corrections of satellite sensor drift, satellite generational change, and consideration of the highly-variable cloudy conditions that are typical of Florida. To aid in calibration of a GOES-derived radiation product, solar radiation data for the period 1995–2004 from 58 field stations that are located throughout the State were compiled. The GOES radiation product was calibrated by way of a three-step process: 1) comparison with ground-based pyranometer measurements on clear reference days, 2) correcting for a bias related to cloud cover, and 3) deriving month-by-month bias correction factors. Pre-calibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m–2 day–1 (13 percent). Calibration reduced errors to 1.7 MJ m–2 day–1 (10 percent) and also removed time- and cloudiness-related biases. The final dataset has been used to produce Statewide evapotranspiration estimates.

  9. A simplified solar cell array modelling program

    NASA Technical Reports Server (NTRS)

    Hughes, R. D.

    1982-01-01

    As part of the energy conversion/self sufficiency efforts of DSN engineering, it was necessary to have a simplified computer model of a solar photovoltaic (PV) system. This article describes the analysis and simplifications employed in the development of a PV cell array computer model. The analysis of the incident solar radiation, steady state cell temperature and the current-voltage characteristics of a cell array are discussed. A sample cell array was modelled and the results are presented.

  10. Model of spacecraft atomic oxygen and solar exposure microenvironments

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Pippin, H. G.

    1993-01-01

    Computer models of environmental conditions in Earth orbit are needed for the following reasons: (1) derivation of material performance parameters from orbital test data, (2) evaluation of spacecraft hardware designs, (3) prediction of material service life, and (4) scheduling spacecraft maintenance. To meet these needs, Boeing has developed programs for modeling atomic oxygen (AO) and solar radiation exposures. The model allows determination of AO and solar ultraviolet (UV) radiation exposures for spacecraft surfaces (1) in arbitrary orientations with respect to the direction of spacecraft motion, (2) overall ranges of solar conditions, and (3) for any mission duration. The models have been successfully applied to prediction of experiment environments on the Long Duration Exposure Facility (LDEF) and for analysis of selected hardware designs for deployment on other spacecraft. The work on these models has been reported at previous LDEF conferences. Since publication of these reports, a revision has been made to the AO calculation for LDEF, and further work has been done on the microenvironments model for solar exposure.

  11. Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density

    NASA Technical Reports Server (NTRS)

    Lodhi, M. A. K.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.

  12. Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN)

    NASA Astrophysics Data System (ADS)

    Feister, U.; Junk, J.; Woldt, M.

    2008-01-01

    Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980-1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  13. Exposure to galactic cosmic radiation and solar energetic particles.

    PubMed

    O'Sullivan, D

    2007-01-01

    Several investigations of the radiation field at aircraft altitudes have been undertaken during solar cycle 23 which occurred in the period 1993-2003. The radiation field is produced by the passage of galactic cosmic rays and their nuclear reaction products as well as solar energetic particles through the Earth's atmosphere. Galactic cosmic rays reach a maximum intensity when the sun is least active and are at minimum intensity during solar maximum period. During solar maximum an increased number of coronal mass ejections and solar flares produce high energy solar particles which can also penetrate down to aircraft altitudes. It is found that the very complicated field resulting from these processes varies with altitude, latitude and stage of solar cycle. By employing several active and passive detectors, the whole range of radiation types and energies were encompassed. In-flight data was obtained with the co-operation of many airlines and NASA. The EURADOS Aircraft Crew in-flight data base was used for comparison with the predictions of various computer codes. A brief outline of some recent studies of exposure to radiation in Earth orbit will conclude this contribution.

  14. Listing of solar radiation measuring equipment and glossary

    NASA Technical Reports Server (NTRS)

    Carter, E. A.; Greenbaum, S. A.; Patel, A. M.

    1976-01-01

    An attempt is made to list and provide all available information about solar radiation measuring equipment which are being manufactured and are available on the market. The list is in tabular form and includes sensor type, response time, cost data and comments for each model. A cost code is included which shows ranges only.

  15. A Proposal for a Thesaurus for Web Services in Solar Radiation

    NASA Technical Reports Server (NTRS)

    Gschwind, Benoit; Menard, Lionel; Ranchin, Thierry; Wald, Lucien; Stackhouse, Paul W., Jr.

    2007-01-01

    Metadata are necessary to discover, describe and exchange any type of information, resource and service at a large scale. A significant amount of effort has been made in the field of geography and environment to establish standards. Efforts still remain to address more specific domains such as renewable energies. This communication focuses on solar energy and more specifically on aspects in solar radiation that relate to geography and meteorology. A thesaurus in solar radiation is proposed for the keys elements in solar radiation namely time, space and radiation types. The importance of time-series in solar radiation is outlined and attributes of the key elements are discussed. An XML schema for encoding metadata is proposed. The exploitation of such a schema in web services is discussed. This proposal is a first attempt at establishing a thesaurus for describing data and applications in solar radiation.

  16. [Medium-term forecast of solar cosmic rays radiation risk during a manned Mars mission].

    PubMed

    Petrov, V M; Vlasov, A G

    2006-01-01

    Medium-term forecasting radiation hazard from solar cosmic rays will be vital in a manned Mars mission. Modern methods of space physics lack acceptable reliability in medium-term forecasting the SCR onset and parameters. The proposed estimation of average radiation risk from SCR during the manned Mars mission is made with the use of existing SCR fluence and spectrum models and correlation of solar particle event frequency with predicted Wolf number. Radiation risk is considered an additional death probability from acute radiation reactions (ergonomic component) or acute radial disease in flight. The algorithm for radiation risk calculation is described and resulted risk levels for various periods of the 23-th solar cycle are presented. Applicability of this method to advance forecasting and possible improvements are being investigated. Recommendations to the crew based on risk estimation are exemplified.

  17. Effect of solar radiation on severity of soybean rust.

    PubMed

    Young, Heather M; George, Sheeja; Narváez, Dario F; Srivastava, Pratibha; Schuerger, Andrew C; Wright, David L; Marois, James J

    2012-08-01

    Soybean rust (SBR), caused by Phakopsora pachyrhizi, is a damaging fungal disease of soybean (Glycine max). Although solar radiation can reduce SBR urediniospore survival, limited information is available on how solar radiation affects SBR progress within soybean canopies. Such information can aid in developing accurate SBR prediction models. To manipulate light penetration into soybean canopies, structures of shade cloth attenuating 30, 40, and 60% sunlight were constructed over soybean plots. In each plot, weekly evaluations of severity in lower, middle, and upper canopies, and daily temperature and relative humidity were recorded. Final plant height and leaf area index were also recorded for each plot. The correlation between amount of epicuticular wax and susceptibility of leaves in the lower, middle, and upper canopies was assessed with a detached leaf assay. Final disease severity was 46 to 150% greater in the lower canopy of all plots and in the middle canopy of 40 and 60% shaded plots. While daytime temperature within the canopy of nonshaded soybean was greater than shaded soybean by 2 to 3°C, temperatures recorded throughout typical evenings and mornings of the growing season in all treatments were within the range (10 to 28.5°C) for SBR development as was relative humidity. This indicates temperature and relative humidity were not limiting factors in this experiment. Epicuticular wax and disease severity in detached leaf assays from the upper canopy had significant negative correlation (P = 0.009, R = -0.84) regardless of shade treatment. In laboratory experiments, increasing simulated total solar radiation (UVA, UVB, and PAR) from 0.15 to 11.66 MJ m(-2) increased mortality of urediniospores from 2 to 91%. Variability in disease development across canopy heights in early planted soybean may be attributed to the effects of solar radiation not only on urediniospore viability, but also on plant height, leaf area index, and epicuticular wax, which influence

  18. Space radiation effects in InP solar cells

    NASA Astrophysics Data System (ADS)

    Walters, R. J.; Messenger, S. R.; Summers, G. P.; Burke, E. A.; Keavney, C. J.

    1991-12-01

    InP solar cells and mesa diodes grown by metalorganic chemical vapor deposition (MOCVD) were irradiated with electrons and protons at room temperature. The radiation-induced defects (RIDs) were characterized by deep level transient spectroscopy (DLTS), and the degradation of the solar cell performance was determined through I-V measurements. The nonionizing energy loss (NIEL) of electrons and protons in InP was calculated as a function of energy from 1 to 200 MeV and compared to the measured defect introduction rates. A linear dependence was evident. InP solar cells showed significantly more radiation resistance than c-Si or GaAs/Ge cells under 1 MeV electron irradiation. Using the calculated InP damage rates and measured damage factors, the performance of InP solar cells as a function of orbital altitude and time in orbit was predicted and compared with the performance of c-Si solar cells in the same environment. In all cases, the InP cells showed highly superior radiation resistance.

  19. Atmospheric Sensitivity to Spectral Top-of-Atmosphere Solar Irradiance Perturbations, Using MODTRAN-5 Radiative Transfer Algorithm

    NASA Astrophysics Data System (ADS)

    Anderson, G.; Berk, A.; Harder, G.; Fontenla, J.; Shettle, E.; Pilewski, P.; Kindel, B.; Chetwynd, J.; Gardner, J.; Hoke, M.; Jordan, A.; Lockwood, R.; Felde, G.; Archarya, P.

    2006-12-01

    The opportunity to insert state-of-the-art solar irradiance measurements and calculations, with subtle perturbations, into a narrow spectral resolution radiative transfer model has recently been facilitated through release of MODTRAN-5 (MOD5). The new solar data are from: (1) SORCE satellite measurements of solar variability over solar rotation cycle, & (2) ultra-narrow calculation of a new solar source irradiance, extending over the full MOD5 spectral range, from 0.2 um to far-IR. MODTRAN-5, MODerate resolution radiance and TRANsmittance code, has been developed collaboratively by Air Force Research Laboratory and Spectral Sciences, Inc., with history dating back to LOWTRAN. It includes approximations for all local thermodynamic equilibrium terms associated with molecular, cloud, aerosol and surface components for emission, scattering, and reflectance, including multiple scattering, refraction and a statistical implementation of Correlated-k averaging. The band model is based on 0.1 cm-1 (also 1.0, 5.0 and 15.0 cm-1 statistical binning for line centers within the interval, captured through an exact formulation of the full Voigt line shape. Spectroscopic parameters are from HITRAN 2004 with user-defined options for additional gases. Recent validation studies show MOD5 replicates line-by-line brightness temperatures to within ~0.02ºK average and <1.0ºK RMS. MOD5 can then serve as a surrogate for a variety of perturbation studies, including the two modes for the solar source function, Io. (1) Data from the Solar Radiation and Climate Experiment (SORCE) satellite mission provide state-of-the-art measurements of UV, visible, near-IR, plus total solar radiation, on near real-time basis. These internally consistent estimates of Sun's output over solar rotation and longer time scales are valuable inputs for studying effects of Sun's radiation on Earth's atmosphere and climate. When solar rotation encounters bright plage and dark sunspots, relative variations are

  20. Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model.

    PubMed

    Sanzari, Jenine K; Diffenderfer, Eric S; Hagan, Sarah; Billings, Paul C; Gridley, Daila S; Seykora, John T; Kennedy, Ann R; Cengel, Keith A

    2015-07-01

    The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the derm is upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  1. Comparison of human radiation exchange models in outdoor areas

    NASA Astrophysics Data System (ADS)

    Park, Sookuk; Tuller, Stanton E.

    2011-10-01

    Results from the radiation components of seven different human thermal exchange models/methods are compared. These include the Burt, COMFA, MENEX, OUT_SET* and RayMan models, the six-directional method and the new Park and Tuller model employing projected area factors ( f p) and effective radiation area factors ( f eff) determined from a sample of normal- and over-weight Canadian Caucasian adults. Input data include solar and longwave radiation measured during a clear summer day in southern Ontario. Variations between models came from differences in f p and f eff and different estimates of longwave radiation from the open sky. The ranges between models for absorbed solar, net longwave and net all-wave radiation were 164, 31 and 187 W m-2, respectively. These differentials between models can be significant in total human thermal exchange. Therefore, proper f p and f eff values should be used to make accurate estimation of radiation on the human body surface.

  2. A new analytical solar radiation pressure model for current BeiDou satellites: IGGBSPM

    PubMed Central

    Tan, Bingfeng; Yuan, Yunbin; Zhang, Baocheng; Hsu, Hou Ze; Ou, Jikun

    2016-01-01

    An analytical solar radiation pressure (SRP) model, IGGBSPM (an abbreviation for Institute of Geodesy and Geophysics BeiDou Solar Pressure Model), has been developed for three BeiDou satellite types, namely, geostationary orbit (GEO), inclined geosynchronous orbit (IGSO) and medium earth orbit (MEO), based on a ray-tracing method. The performance of IGGBSPM was assessed based on numerical integration, SLR residuals and analyses of empirical SRP parameters (except overlap computations). The numerical results show that the integrated orbit resulting from IGGBSPM differs from the precise ephemerides by approximately 5 m and 2 m for GEO and non-GEO satellites, respectively. Moreover, when IGGBSPM is used as an a priori model to enhance the ECOM (5-parameter) model with stochastic pulses, named ECOM + APR, for precise orbit determination, the SLR RMS residual improves by approximately 20–25 percent over the ECOM-only solution during the yaw-steering period and by approximately 40 percent during the yaw-fixed period. For the BeiDou GEO01 satellite, improvements of 18 and 32 percent can be achieved during the out-of-eclipse season and during the eclipse season, respectively. An investigation of the estimated ECOM D0 parameters indicated that the β-angle dependence that is evident in the ECOM-only solution is no longer present in the ECOM + APR solution. PMID:27595795

  3. A new analytical solar radiation pressure model for current BeiDou satellites: IGGBSPM.

    PubMed

    Tan, Bingfeng; Yuan, Yunbin; Zhang, Baocheng; Hsu, Hou Ze; Ou, Jikun

    2016-09-06

    An analytical solar radiation pressure (SRP) model, IGGBSPM (an abbreviation for Institute of Geodesy and Geophysics BeiDou Solar Pressure Model), has been developed for three BeiDou satellite types, namely, geostationary orbit (GEO), inclined geosynchronous orbit (IGSO) and medium earth orbit (MEO), based on a ray-tracing method. The performance of IGGBSPM was assessed based on numerical integration, SLR residuals and analyses of empirical SRP parameters (except overlap computations). The numerical results show that the integrated orbit resulting from IGGBSPM differs from the precise ephemerides by approximately 5 m and 2 m for GEO and non-GEO satellites, respectively. Moreover, when IGGBSPM is used as an a priori model to enhance the ECOM (5-parameter) model with stochastic pulses, named ECOM + APR, for precise orbit determination, the SLR RMS residual improves by approximately 20-25 percent over the ECOM-only solution during the yaw-steering period and by approximately 40 percent during the yaw-fixed period. For the BeiDou GEO01 satellite, improvements of 18 and 32 percent can be achieved during the out-of-eclipse season and during the eclipse season, respectively. An investigation of the estimated ECOM D0 parameters indicated that the β-angle dependence that is evident in the ECOM-only solution is no longer present in the ECOM + APR solution.

  4. Solar radiation at Parsons, West Virginia

    Treesearch

    James H. Patric; Stanley Caruso

    1978-01-01

    Twelve years of solar radiation data, measured with a Kipp-Zonen pyranometer, were recorded near Parsons, West Virginia. The data agree well with calculated values of potential and average radiation for the vicinity and are applicable to the central Appalachian region.

  5. Solar radiation is inversely associated with inflammatory bowel disease admissions.

    PubMed

    Jaime, Francisca; Riutort, Maria C; Alvarez-Lobos, Manuel; Hoyos-Bachiloglu, Rodrigo; Camargo, Carlos A; Borzutzky, Arturo

    To explore the associations between latitude and solar radiation with inflammatory bowel disease admission rates in Chile, the country with the largest variation in solar radiation in the world. This is an ecological study, which included data on all hospital-admitted population for inflammatory bowel disease between 2001 and 2012, according to different latitudes and solar radiation exposures in Chile. The data were acquired from the national hospital discharge database from the Department of Health Statistics and Information of the Chilean Ministry of Health. Between 2001 and 2012 there were 12,869 admissions due to inflammatory bowel disease (69% ulcerative colitis, 31% Crohn's disease). Median age was 36 years (IQR: 25-51); 57% were female. The national inflammatory bowel disease admission rate was 6.52 (95% CI: 6.40-6.63) per 100,000 inhabitants with increasing rates over the 12-year period. In terms of latitude, the highest admission rates for pediatric ulcerative colitis and Crohn's disease, as well as adult ulcerative colitis, were observed in the southernmost region with lowest annual solar radiation. Linear regression analysis showed that regional solar radiation was inversely associated with inflammatory bowel disease admissions in Chile (β: -.44, p = .03). Regional solar radiation was inversely associated with inflammatory bowel disease admission rates in Chile; inflammatory bowel disease admissions were highest in the southernmost region with lowest solar radiation. Our results support the potential role of vitamin D deficiency on inflammatory bowel disease flares.

  6. IPR 1.0: an efficient method for calculating solar radiation absorbed by individual plants in sparse heterogeneous woody plant communities

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Chen, W.; Li, J.

    2013-12-01

    Climate change may alter the spatial distribution, composition, structure, and functions of plant communities. Transitional zones between biomes, or ecotones, are particularly sensitive to climate change. Ecotones are usually heterogeneous with sparse trees. The dynamics of ecotones are mainly determined by the growth and competition of individual plants in the communities. Therefore it is necessary to calculate solar radiation absorbed by individual plants for understanding and predicting their responses to climate change. In this study, we developed an individual plant radiation model, IPR (version 1.0), to calculate solar radiation absorbed by individual plants in sparse heterogeneous woody plant communities. The model is developed based on geometrical optical relationships assuming crowns of woody plants are rectangular boxes with uniform leaf area density. The model calculates the fractions of sunlit and shaded leaf classes and the solar radiation absorbed by each class, including direct radiation from the sun, diffuse radiation from the sky, and scattered radiation from the plant community. The solar radiation received on the ground is also calculated. We tested the model by comparing with the analytical solutions of random distributions of plants. The tests show that the model results are very close to the averages of the random distributions. This model is efficient in computation, and is suitable for ecological models to simulate long-term transient responses of plant communities to climate change.

  7. Double-cavity radiometer for high-flux density solar radiation measurements.

    PubMed

    Parretta, A; Antonini, A; Armani, M; Nenna, G; Flaminio, G; Pellegrino, M

    2007-04-20

    A radiometric method has been developed, suitable for both total power and flux density profile measurement of concentrated solar radiation. The high-flux density radiation is collected by a first optical cavity, integrated, and driven to a second optical cavity, where, attenuated, it is measured by a conventional radiometer operating under a stationary irradiation regime. The attenuation factor is regulated by properly selecting the aperture areas in the two cavities. The radiometer has been calibrated by a pulsed solar simulator at concentration levels of hundreds of suns. An optical model and a ray-tracing study have also been developed and validated, by which the potentialities of the radiometer have been largely explored.

  8. Solar Radiation on Mars: Tracking Photovoltaic Array

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos

    1994-01-01

    A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.

  9. Methods to Estimate Solar Radiation Dosimetry in Coral Reefs Using Remote Sensed, Modeled, and in Situ Data.

    EPA Science Inventory

    Solar irradiance has been increasingly recognized as an important determinant of bleaching in coral reefs, but measurements of solar radiation exposure within coral reefs have been relatively limited. Solar irradiance and diffuse down welling attenuation coefficients (Kd, m-1) we...

  10. Terrestrial solar spectral modeling. [SOLTRAN, BRITE, and FLASH codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, R.E.

    The utility of accurate computer codes for calculating the solar spectral irradiance under various atmospheric conditions was recognized. New absorption and extraterrestrial spectral data are introduced. Progress is made in radiative transfer modeling outside of the solar community, especially for space and military applications. Three rigorous radiative transfer codes SOLTRAN, BRITE, and FLASH are employed. The SOLTRAN and BRITE codes are described and results from their use are presented.

  11. Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25

    NASA Astrophysics Data System (ADS)

    Miyake, Shoko; Kataoka, Ryuho; Sato, Tatsuhiko

    2017-04-01

    Weak solar activity and high cosmic ray flux during the coming solar cycle are qualitatively anticipated by the recent observations that show the decline in the solar activity levels. We predict the cosmic ray modulation and resultant radiation exposure at flight altitude by using the time-dependent and three-dimensional model of the cosmic ray modulation. Our galactic cosmic ray (GCR) model is based on the variations of the solar wind speed, the strength of the heliospheric magnetic field, and the tilt angle of the heliospheric current sheet. We reproduce the 22 year variation of the cosmic ray modulation from 1980 to 2015 taking into account the gradient-curvature drift motion of GCRs. The energy spectra of GCR protons obtained by our model show good agreement with the observations by the Balloon-borne Experiment with a Superconducting magnetic rigidity Spectrometer (BESS) and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) except for a discrepancy at the solar maximum. Five-year annual radiation dose around the solar minimum at the solar cycle 24/25 will be approximately 19% higher than that in the last cycle. This is caused by the charge sign dependence of the cosmic ray modulation, such as the flattop profiles in a positive polarity.

  12. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    PubMed

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure.

  13. Absorption of Solar Radiation by the Cloudy Atmosphere Interpretations of Collocated Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.; Cess, Robert D.; Zhang, Minghua; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Vitko, John, Jr.

    1997-01-01

    As part of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE), we have obtained and analyzed measurements made from collocated aircraft of the absorption of solar radiation within the atmospheric column between the two aircraft. The measurements were taken during October 1995 at the ARM site in Oklahoma. Relative to a theoretical radiative transfer model, we find no evidence for excess solar absorption in the clear atmosphere and significant evidence for its existence in the cloudy atmosphere. This excess cloud solar absorption appears to occur in both visible (0.224-0.68 microns) and near-infrared (0.68-3.30 microns) spectral regions, although not at 0.5 microns for the visible contribution, and it is shown to be true absorption rather than an artifact of sampling errors caused by measuring three-dimensional clouds.

  14. Sensitivity analysis of numerical weather prediction radiative schemes to forecast direct solar radiation over Australia

    NASA Astrophysics Data System (ADS)

    Mukkavilli, S. K.; Kay, M. J.; Taylor, R.; Prasad, A. A.; Troccoli, A.

    2014-12-01

    The Australian Solar Energy Forecasting System (ASEFS) project requires forecasting timeframes which range from nowcasting to long-term forecasts (minutes to two years). As concentrating solar power (CSP) plant operators are one of the key stakeholders in the national energy market, research and development enhancements for direct normal irradiance (DNI) forecasts is a major subtask. This project involves comparing different radiative scheme codes to improve day ahead DNI forecasts on the national supercomputing infrastructure running mesoscale simulations on NOAA's Weather Research & Forecast (WRF) model. ASEFS also requires aerosol data fusion for improving accurate representation of spatio-temporally variable atmospheric aerosols to reduce DNI bias error in clear sky conditions over southern Queensland & New South Wales where solar power is vulnerable to uncertainities from frequent aerosol radiative events such as bush fires and desert dust. Initial results from thirteen years of Bureau of Meteorology's (BOM) deseasonalised DNI and MODIS NASA-Terra aerosol optical depth (AOD) anomalies demonstrated strong negative correlations in north and southeast Australia along with strong variability in AOD (~0.03-0.05). Radiative transfer schemes, DNI and AOD anomaly correlations will be discussed for the population and transmission grid centric regions where current and planned CSP plants dispatch electricity to capture peak prices in the market. Aerosol and solar irradiance datasets include satellite and ground based assimilations from the national BOM, regional aerosol researchers and agencies. The presentation will provide an overview of this ASEFS project task on WRF and results to date. The overall goal of this ASEFS subtask is to develop a hybrid numerical weather prediction (NWP) and statistical/machine learning multi-model ensemble strategy that meets future operational requirements of CSP plant operators.

  15. Investigation of the stochastic nature of solar radiation for renewable resources management

    NASA Astrophysics Data System (ADS)

    Koudouris, Giannis; Dimitriadis, Panayiotis; Iliopoulou, Theano; Mamasis, Nikos; Koutsoyiannis, Demetris

    2017-04-01

    A detailed investigation of the variability of solar radiation can be proven useful towards more efficient and sustainable design of renewable resources systems. This variability is mainly caused from the regular seasonal and diurnal variation, as well as its stochastic nature of the atmospheric processes, i.e. sunshine duration. In this context, we analyze numerous observations in Greece (Hellenic National Meteorological Service; http://www.hnms.gr/) and around the globe (NASA SSE - Surface meteorology and Solar Energy; http://www.soda-pro.com/web-services/radiation/nasa-sse) and we investigate the long-term behaviour and double periodicity of the solar radiation process. Also, we apply a parsimonious double-cyclostationary stochastic model to a theoretical scenario of solar energy production for an island in the Aegean Sea. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  16. Distributed solar radiation fast dynamic measurement for PV cells

    NASA Astrophysics Data System (ADS)

    Wan, Xuefen; Yang, Yi; Cui, Jian; Du, Xingjing; Zheng, Tao; Sardar, Muhammad Sohail

    2017-10-01

    To study the operating characteristics about PV cells, attention must be given to the dynamic behavior of the solar radiation. The dynamic behaviors of annual, monthly, daily and hourly averages of solar radiation have been studied in detail. But faster dynamic behaviors of solar radiation need more researches. The solar radiation random fluctuations in minute-long or second-long range, which lead to alternating radiation and cool down/warm up PV cell frequently, decrease conversion efficiency. Fast dynamic processes of solar radiation are mainly relevant to stochastic moving of clouds. Even in clear sky condition, the solar irradiations show a certain degree of fast variation. To evaluate operating characteristics of PV cells under fast dynamic irradiation, a solar radiation measuring array (SRMA) based on large active area photodiode, LoRa spread spectrum communication and nanoWatt MCU is proposed. This cross photodiodes structure tracks fast stochastic moving of clouds. To compensate response time of pyranometer and reduce system cost, the terminal nodes with low-cost fast-responded large active area photodiode are placed besides positions of tested PV cells. A central node, consists with pyranometer, large active area photodiode, wind detector and host computer, is placed in the center of the central topologies coordinate to scale temporal envelope of solar irradiation and get calibration information between pyranometer and large active area photodiodes. In our SRMA system, the terminal nodes are designed based on Microchip's nanoWatt XLP PIC16F1947. FDS-100 is adopted for large active area photodiode in terminal nodes and host computer. The output current and voltage of each PV cell are monitored by I/V measurement. AS62-T27/SX1278 LoRa communication modules are used for communicating between terminal nodes and host computer. Because the LoRa LPWAN (Low Power Wide Area Network) specification provides seamless interoperability among Smart Things without the

  17. Observed Reduction In Surface Solar Radiation - Aerosol Forcing Versus Cloud Feedback?

    NASA Astrophysics Data System (ADS)

    Liepert, B.

    The solar radiation reaching the ground is a key parameter for the climate system. It drives the hydrological cycle and numerous biological processes. Surface solar radi- ation revealed an estimated 7W/m2 or 4% decline at sites worldwide from 1961 to 1990. The strongest decline occurred at the United States sites with 19W/m2 or 10%. Increasing air pollution and hence direct and indirect aerosol effect, as we know today can only explain part of the reduction in solar radiation. Increasing cloud optical thick- ness - possibly due to global warming - is a more likely explanation for the observed reduction in solar radiation in the United States. The analysis of surface solar radiation data will be shown and compared with GCM results of the direct and indirect aerosol effect. It will be argued that the residual declines in surface solar radiation is likely due to cloud feedback.

  18. Evaluating the Effects of Clouds on Solar and Longwave Radiation From Moored Buoys in the North Pacific

    NASA Astrophysics Data System (ADS)

    Balmes, K.; Cronin, M. F.

    2014-12-01

    Clouds play a critical role in the ocean surface radiation balance, along with the solar zenith angle and the atmospheric moisture and aerosol content. Two moored buoys in the North Pacific - KEO (32.3°N, 144.6°E) and Papa (50°N, 145°W) - continuously measure solar and longwave radiation and other atmospheric and oceanic variables through two redundant systems. After identifying the primary system and constructing daily clear sky solar and longwave radiation values, the seasonal and regional clouds effects are quantified for the two locations. Situated south of the Kuroshio Extension, significant moisture content variability, associated with the Asian monsoon, affects solar and longwave radiation and cloud effects at KEO. Less seasonal variability is observed at buoy Papa located in the Gulf of Alaska. At KEO, the negative solar radiation cloud forcing outweigh the positive longwave radiation cloud forcing leading to ocean cooling, particularly in the summer. At Papa, the longwave radiation cloud forcing counteracts the solar cloud forcing during the winter, subsequently warming the ocean. The regional and seasonal variability of clouds represents a difficult aspect of climate modeling and an area for further research.

  19. Relationship between a solar drying model of red pepper and the kinetics of pure water evaporation (1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passamai, V.; Saravia, L.

    1997-05-01

    Drying of red pepper under solar radiation was investigated, and a simple model related to water evaporation was developed. Drying experiments at constant laboratory conditions were undertaken where solar radiation was simulated by a 1,000 W lamp. In this first part of the work, water evaporation under radiation is studied and laboratory experiments are presented with two objectives: to verify Penman`s model of evaporation under radiation, and to validate the laboratory experiments. Modifying Penman`s model of evaporation by introducing two drying conductances as a function of water content, allows the development of a drying model under solar radiation. In themore » second part of this paper, the model is validated by applying it to red pepper open air solar drying experiments.« less

  20. Prostate cancer incidence in Australia correlates inversely with solar radiation.

    PubMed

    Loke, Tim W; Seyfi, Doruk; Sevfi, Doruk; Khadra, Mohamed

    2011-11-01

    What's known on the subject? and What does the study add? Increased sun exposure and blood levels of vitamin D have been postulated to be protective against prostate cancer. This is controversial. We investigated the relationship between prostate cancer incidence and solar radiation in non-urban Australia, and found a lower incidence in regions receiving more sunlight. In landmark ecological studies, prostate cancer mortality rates have been shown to be inversely related to ultraviolet radiation exposure. Investigators have hypothesised that ultraviolet radiation acts by increasing production of vitamin D, which inhibits prostate cancer cells in vitro. However, analyses of serum levels of vitamin D in men with prostate cancer have failed to support this hypothesis. This study has found an inverse correlation between solar radiation and prostate cancer incidence in Australia. Our population (previously unstudied) represents the third group to exhibit this correlation. Significantly, the demographics and climate of Australia differ markedly from those of previous studies conducted on men in the United Kingdom and the United States. • To ascertain if prostate cancer incidence rates correlate with solar radiation among non-urban populations of men in Australia. • Local government areas from each state and territory were selected using explicit criteria. Urban areas were excluded from analysis. • For each local government area, prostate cancer incidence rates and averaged long-term solar radiation were obtained. • The strength of the association between prostate cancer incidence and solar radiation was determined. • Among 70 local government areas of Australia, age-standardized prostate cancer incidence rates for the period 1998-2007 correlated inversely with daily solar radiation averaged over the last two decades. •  There exists an association between less solar radiation and higher prostate cancer incidence in Australia. © 2011 THE AUTHORS. BJU

  1. PROM7: 1D modeler of solar filaments or prominences

    NASA Astrophysics Data System (ADS)

    Gouttebroze, P.

    2018-05-01

    PROM7 is an update of PROM4 (ascl:1306.004) and computes simple models of solar prominences and filaments using Partial Radiative Distribution (PRD). The models consist of plane-parallel slabs standing vertically above the solar surface. Each model is defined by 5 parameters: temperature, density, geometrical thickness, microturbulent velocity and height above the solar surface. It solves the equations of radiative transfer, statistical equilibrium, ionization and pressure equilibria, and computes electron and hydrogen level population and hydrogen line profiles. Moreover, the code treats calcium atom which is reduced to 3 ionization states (Ca I, Ca II, CA III). Ca II ion has 5 levels which are useful for computing 2 resonance lines (H and K) and infrared triplet (to 8500 A).

  2. An Enhanced Box-Wing Solar Radiation pressure model for BDS and initial results

    NASA Astrophysics Data System (ADS)

    Zhao, Qunhe; Wang, Xiaoya; Hu, Xiaogong; Guo, Rui; Shang, Lin; Tang, Chengpan; Shao, Fan

    2016-04-01

    Solar radiation pressure forces are the largest non-gravitational perturbations acting on GNSS satellites, which is difficult to be accurately modeled due to the complicated and changing satellite attitude and unknown surface material characteristics. By the end of 2015, there are more than 50 stations of the Multi-GNSS Experiment(MGEX) set-up by the IGS. The simple box-plate model relies on coarse assumptions about the dimensions and optical properties of the satellite due to lack of more detailed information. So, a physical model based on BOX-WING model is developed, which is more sophisticated and more detailed physical structure has been taken into account, then calculating pressure forces according to the geometric relations between light rays and surfaces. All the MGEX stations and IGS core stations had been processed for precise orbit determination tests with GPS and BDS observations. Calculation range covers all the two kinds of Eclipsing and non-eclipsing periods in 2015, and we adopted the un-differential observation mode and more accurate values of satellite phase centers. At first, we tried nine parameters model, and then eliminated the parameters with strong correlation between them, came into being five parameters of the model. Five parameters were estimated, such as solar scale, y-bias, three material coefficients of solar panel, x-axis and z-axis panels. Initial results showed that, in the period of yaw-steering mode, use of Enhanced ADBOXW model results in small improvement for IGSO and MEO satellites, and the Root-Mean-Square(RMS) error value of one-day arc orbit decreased by about 10%~30% except for C08 and C14. The new model mainly improved the along track acceleration, up to 30% while in the radial track was not obvious. The Satellite Laser Ranging(SLR) validation showed, however, that this model had higher prediction accuracy in the period of orbit-normal mode, compared to GFZ multi-GNSS orbit products, as well with relative post

  3. Estimating daily global solar radiation by day of the year in Algeria

    NASA Astrophysics Data System (ADS)

    Aoun, Nouar; Bouchouicha, Kada

    2017-05-01

    This study presents six empirical models based on the day-of-the-year number for estimating global solar radiation on a horizontal surface. For this case study, 21 years of experimental data sets for 21 cities over the whole Algerian territory are utilized to develop these models for each city and for all of Algeria. In this study, the territory of Algeria was divided into four different climatic zones, i.e., Arid, Semi-arid, Highlands and Mediterranean. The accuracy of the all-Algeria model was tested for each city and for each climate zone. To evaluate the accuracy of the models, the RMSE, rRMSE, MABE, MAPE, and R, which are the most commonly applied statistical parameters, were utilized. The results show that the six developed models provide excellent predictions for global solar radiation for each city and for all-Algeria. Furthermore, the model showing the greatest accuracy is the sine and cosine wave trigonometric model.

  4. Orbit Stability of OSIRIS-REx in the Vicinity of Bennu Using a High-Fidelity Solar Radiation Model

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Hughes, Kyle; Mashiku, Alinda; Longuski, James

    2015-01-01

    The OSIRIS-REx mission (Origins Spectral Interpretation Resource Identification Security Regolith EXPlorer) is an asteroid sample return mission to Bennu (RQ36) that is scheduled to launch in 2016. The planned science operations precluding the small retrieval involve operations in terminator orbits (orbit plane is perpendicular to the sun). Over longer durations the solar radiation pressure (SRP) perturbs the orbit causing it to precess. Our work involves: modeling high fidelity SRP model to capture the perturbations during attitude changes; design a stable orbit from the high fidelity models to analyze the stability over time.

  5. Local effects of partly cloudy skies on solar and emitted radiations

    NASA Technical Reports Server (NTRS)

    Whitney, D. A.; Venable, D. D.

    1981-01-01

    Solar radiation measurements are made on a routine basis. Global solar, atmospheric emitted, downwelled diffuse solar, and direct solar radiation measurement systems are fully operational with the first two in continuous operation. Fractional cloud cover measurements are made from GOES imagery or from ground based whole sky photographs. Normalized global solar irradiance values for partly cloudy skies were correlated to fractional cloud cover.

  6. Estimation of missing values in solar radiation data using piecewise interpolation methods: Case study at Penang city

    NASA Astrophysics Data System (ADS)

    Zainudin, Mohd Lutfi; Saaban, Azizan; Bakar, Mohd Nazari Abu

    2015-12-01

    The solar radiation values have been composed by automatic weather station using the device that namely pyranometer. The device is functions to records all the radiation values that have been dispersed, and these data are very useful for it experimental works and solar device's development. In addition, for modeling and designing on solar radiation system application is needed for complete data observation. Unfortunately, lack for obtained the complete solar radiation data frequently occur due to several technical problems, which mainly contributed by monitoring device. Into encountering this matter, estimation missing values in an effort to substitute absent values with imputed data. This paper aimed to evaluate several piecewise interpolation techniques likes linear, splines, cubic, and nearest neighbor into dealing missing values in hourly solar radiation data. Then, proposed an extendable work into investigating the potential used of cubic Bezier technique and cubic Said-ball method as estimator tools. As result, methods for cubic Bezier and Said-ball perform the best compare to another piecewise imputation technique.

  7. IPR 1.0: an efficient method for calculating solar radiation absorbed by individual plants in sparse heterogeneous woody plant communities

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Chen, W.; Li, J.

    2014-07-01

    Climate change may alter the spatial distribution, composition, structure and functions of plant communities. Transitional zones between biomes, or ecotones, are particularly sensitive to climate change. Ecotones are usually heterogeneous with sparse trees. The dynamics of ecotones are mainly determined by the growth and competition of individual plants in the communities. Therefore it is necessary to calculate the solar radiation absorbed by individual plants in order to understand and predict their responses to climate change. In this study, we developed an individual plant radiation model, IPR (version 1.0), to calculate solar radiation absorbed by individual plants in sparse heterogeneous woody plant communities. The model is developed based on geometrical optical relationships assuming that crowns of woody plants are rectangular boxes with uniform leaf area density. The model calculates the fractions of sunlit and shaded leaf classes and the solar radiation absorbed by each class, including direct radiation from the sun, diffuse radiation from the sky, and scattered radiation from the plant community. The solar radiation received on the ground is also calculated. We tested the model by comparing with the results of random distribution of plants. The tests show that the model results are very close to the averages of the random distributions. This model is efficient in computation, and can be included in vegetation models to simulate long-term transient responses of plant communities to climate change. The code and a user's manual are provided as Supplement of the paper.

  8. Societal Impacts of Solar Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Lean, J. L.

    2000-05-01

    Changes in solar electromagnetic radiation, which occur continuously and at all wavelengths of the spectrum, can have significant societal impacts on a wide range of time scales. Detection of climate change and ozone depletion requires reliable specification of solar-induced processes that mask or exacerbate anthropogenic effects. Living with, and mitigating, climate change and ozone depletion has significant economic, habitat and political impacts of international extent. As an example, taxes to restrict carbon emission may cause undue economic stress if the role of greenhouse gases in global warming is incorrectly diagnosed. Ignoring solar-induced ozone changes in the next century may lead to incorrect assessment of the success of the Montreal Protocol in protecting the ozone layer by limiting the use of ozone-destroying chlorofluorocarbons. Societal infrastructure depends in many ways on space-based technological assets. Communications and navigation for commerce, industry, science and defense rely on satellite signals transmitted through, and reflected by, electrons in the ionosphere. Electron densities change in response to solar flares, and by orders of magnitude in response to EUV and X-ray flux variations during the Sun's 11-year activity cycle. Spacecraft and space debris experience enhanced drag on their orbits when changing EUV radiation causes upper atmosphere densities to increase. Especially affected are spacecraft and debris in lower altitude orbits, such as Iridium-type communication satellites, and the International Space Station (ISS). Proper specification of solar-induced fluctuations in the neutral upper atmosphere can, for example, aid in tracking the ISS and surrounding space debris, reducing the chance of ISS damage from collisions, and maximizing its operations. Aspects of solar electromagnetic radiation variability will be briefly illustrated on a range of time scales, with specific identification of the societal impacts of different

  9. Solar Radiation Management and Olivine Dissolution Methods in Climate Engineering

    NASA Astrophysics Data System (ADS)

    Kone, S.

    2014-12-01

    An overview of solar radiation management and olivine dissolution methods allows to discuss, comparatively, the benefits and consequences of these two geoengineering techniques. The combination of those two techniques allows to concomitantly act on the two main agents intervening in global warming: solar radiation and carbon dioxide. The earth surface temperature increases due mainly to carbon dioxide (a greenhouse gas) that keeps the solar radiation and causes the global warming. Two complementary methods to mitigate climate change are overviewed: SRM method, which uses injected aerosols, aims to reduce the amount of the inbound solar radiation in atmosphere; and olivine dissolution in water, a key chemical reaction envisaged in climate engineering , aiming to reduce the amount of the carbon dioxide in extracting it from atmosphere. The SRM method works on scenarios of solar radiation decrease and the olivine dissolution method works as a carbon dioxide sequestration method. Olivine dissolution in water impacts negatively on the pH of rivers but positively in counteracting ocean acidification and in transporting the silica in ocean, which has benefits for diatom shell formation.

  10. The direct effect of aerosols on solar radiation over the broader Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Papadimas, C. D.; Hatzianastassiou, N.; Matsoukas, C.; Kanakidou, M.; Mihalopoulos, N.; Vardavas, I.

    2012-08-01

    For the first time, the direct radiative effect (DRE) of aerosols on solar radiation is computed over the entire Mediterranean basin, one of the most climatically sensitive world regions, using a deterministic spectral radiation transfer model (RTM). The DRE effects on the outgoing shortwave radiation at the top of atmosphere (TOA), DRETOA, on the absorption of solar radiation in the atmospheric column, DREatm, and on the downward and absorbed surface solar radiation (SSR), DREsurf and DREnetsurf, respectively, are computed separately. The model uses input data for the period 2000-2007 for various surface and atmospheric parameters, taken from satellite (International Satellite Cloud Climatology Project, ISCCP-D2), Global Reanalysis projects (National Centers for Environmental Prediction - National Center for Atmospheric Research, NCEP/NCAR), and other global databases. The spectral aerosol optical properties (aerosol optical depth, AOD, asymmetry parameter, gaer and single scattering albedo, ωaer), are taken from the MODerate resolution Imaging Spectroradiometer (MODIS) of NASA (National Aeronautics and Space Administration) and they are supplemented by the Global Aerosol Data Set (GADS). The model SSR fluxes have been successfully validated against measurements from 80 surface stations of the Global Energy Balance Archive (GEBA) covering the period 2000-2007. A planetary cooling is found above the Mediterranean on an annual basis (regional mean DRETOA = -2.4 W m-2). Although a planetary cooling is found over most of the region, of up to -7 W m-2, large positive DRETOA values (up to +25 W m-2) are found over North Africa, indicating a strong planetary warming, and a weaker warming over the Alps (+0.5 W m-2). Aerosols are found to increase the absorption of solar radiation in the atmospheric column over the region (DREatm = +11.1 W m-2) and to decrease SSR (DREsurf = -16.5 W m-2 and DREnetsurf-13.5 W m-2) inducing thus significant atmospheric warming and surface

  11. A Solar-luminosity Model and Climate

    NASA Technical Reports Server (NTRS)

    Perry, Charles A.

    1990-01-01

    Although the mechanisms of climatic change are not completely understood, the potential causes include changes in the Sun's luminosity. Solar activity in the form of sunspots, flares, proton events, and radiation fluctuations has displayed periodic tendencies. Two types of proxy climatic data that can be related to periodic solar activity are varved geologic formations and freshwater diatom deposits. A model for solar luminosity was developed by using the geometric progression of harmonic cycles that is evident in solar and geophysical data. The model assumes that variation in global energy input is a result of many periods of individual solar-luminosity variations. The 0.1-percent variation of the solar constant measured during the last sunspot cycle provided the basis for determining the amplitude of each luminosity cycle. Model output is a summation of the amplitudes of each cycle of a geometric progression of harmonic sine waves that are referenced to the 11-year average solar cycle. When the last eight cycles in Emiliani's oxygen-18 variations from deep-sea cores were standardized to the average length of glaciations during the Pleistocene (88,000 years), correlation coefficients with the model output ranged from 0.48 to 0.76. In order to calibrate the model to real time, model output was graphically compared to indirect records of glacial advances and retreats during the last 24,000 years and with sea-level rises during the Holocene. Carbon-14 production during the last millenium and elevations of the Great Salt Lake for the last 140 years demonstrate significant correlations with modeled luminosity. Major solar flares during the last 90 years match well with the time-calibrated model.

  12. Models of the Solar Atmospheric Response to Flare Heating

    NASA Technical Reports Server (NTRS)

    Allred, Joel

    2011-01-01

    I will present models of the solar atmospheric response to flare heating. The models solve the equations of non-LTE radiation hydrodynamics with an electron beam added as a flare energy source term. Radiative transfer is solved in detail for many important optically thick hydrogen and helium transitions and numerous optically thin EUV lines making the models ideally suited to study the emission that is produced during flares. I will pay special attention to understanding key EUV lines as well the mechanism for white light production. I will also present preliminary results of how the model solar atmosphere responds to Fletcher & Hudson type flare heating. I will compare this with the results from flare simulations using the standard thick target model.

  13. The topographic distribution of annual incoming solar radiation in the Rio Grande River basin

    NASA Technical Reports Server (NTRS)

    Dubayah, R.; Van Katwijk, V.

    1992-01-01

    We model the annual incoming solar radiation topoclimatology for the Rio Grande River basin in Colorado, U.S.A. Hourly pyranometer measurements are combined with satellite reflectance data and 30-m digital elevation models within a topographic solar radiation algorithm. Our results show that there is large spatial variability within the basin, even at an annual integration length, but the annual, basin-wide mean is close to that measured by the pyranometers. The variance within 16 sq km and 100 sq km regions is a linear function of the average slope in the region, suggesting a possible parameterization for sub-grid-cell variability.

  14. A model for proton-irradiated GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Walker, G. H.; Outlaw, R. A.; Stock, L. V.

    1982-01-01

    A simple model for proton radiation damage in GaAs heteroface solar cells is developed. The model includes the effects of spatial nonuniformity of low energy proton damage. Agreement between the model and experimental proton damage data for GaAs heteroface solar cells is satisfactory. An extension of the model to include angular isotropy, as is appropriate for protons in space, is shown to result in significantly less cell damage than for normal proton incidence.

  15. Solar Radiation Patterns and Glaciers in the Western Himalaya

    NASA Astrophysics Data System (ADS)

    Dobreva, I. D.; Bishop, M. P.

    2013-12-01

    Glacier dynamics in the Himalaya are poorly understood, in part due to variations in topography and climate. It is well known that solar radiation is the dominant surface-energy component governing ablation, although the spatio-temporal patterns of surface irradiance have not been thoroughly investigated given modeling limitations and topographic variations including altitude, relief, and topographic shielding. Glaciation and topographic conditions may greatly influence supraglacial characteristics and glacial dynamics. Consequently, our research objectives were to develop a GIS-based solar radiation model that accounts for Earth's orbital, spectral, atmospheric and topographic dependencies, in order to examine the spatio-temporal surface irradiance patterns on glaciers in the western Himalaya. We specifically compared irradiance patterns to supraglacial characteristics and ice-flow velocity fields. Shuttle Radar Mapping Mission (SRTM) 90 m data were used to compute geomorphometric parameters that were input into the solar radiation model. Simulations results for 2013 were produced for the summer ablation season. Direct irradiance, diffuse-skylight, and total irradiance variations were compared and related to glacier altitude profiles of ice velocity and land-surface topographic parameters. Velocity and surface information were derived from analyses of ASTER satellite data. Results indicate that the direct irradiance significantly varies across the surface of glaciers given local topography and meso-scale relief conditions. Furthermore, the magnitude of the diffuse-skylight irradiance varies with altitude and as a result, glaciers in different topographic settings receive different amounts of surface irradiance. Spatio-temporal irradiance patterns appear to be related to glacier surface conditions including supraglacial lakes, and are spatially coincident with ice-flow velocity conditions on some glaciers. Collectively, our results demonstrate that glacier

  16. Ground truth data for test sites (SL-4). [thermal radiation brightness temperature and solar radiation measurments

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Field measurements performed simultaneous with Skylab overpass in order to provide comparative calibration and performance evaluation measurements for the EREP sensors are presented. Wavelength region covered include: solar radiation (400 to 1300 nanometer), and thermal radiation (8 to 14 micrometer). Measurements consisted of general conditions and near surface meteorology, atmospheric temperature and humidity vs altitude, the thermal brightness temperature, total and diffuse solar radiation, direct solar radiation (subsequently analyzed for optical depth/transmittance), and target reflectivity/radiance. The particular instruments used are discussed along with analyses performed. Detailed instrument operation, calibrations, techniques, and errors are given.

  17. Correcting surface solar radiation of two data assimilation systems against FLUXNET observations in North America

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Lee, Xuhui; Liu, Shoudong

    2013-09-01

    Solar radiation at the Earth's surface is an important driver of meteorological and ecological processes. The objective of this study is to evaluate the accuracy of the reanalysis solar radiation produced by NARR (North American Regional Reanalysis) and MERRA (Modern-Era Retrospective Analysis for Research and Applications) against the FLUXNET measurements in North America. We found that both assimilation systems systematically overestimated the surface solar radiation flux on the monthly and annual scale, with an average bias error of +37.2 Wm-2 for NARR and of +20.2 Wm-2 for MERRA. The bias errors were larger under cloudy skies than under clear skies. A postreanalysis algorithm consisting of empirical relationships between model bias, a clearness index, and site elevation was proposed to correct the model errors. Results show that the algorithm can remove the systematic bias errors for both FLUXNET calibration sites (sites used to establish the algorithm) and independent validation sites. After correction, the average annual mean bias errors were reduced to +1.3 Wm-2 for NARR and +2.7 Wm-2 for MERRA. Applying the correction algorithm to the global domain of MERRA brought the global mean surface incoming shortwave radiation down by 17.3 W m-2 to 175.5 W m-2. Under the constraint of the energy balance, other radiation and energy balance terms at the Earth's surface, estimated from independent global data products, also support the need for a downward adjustment of the MERRA surface solar radiation.

  18. NREL: Renewable Resource Data Center - Solar Resource Models and Tools

    Science.gov Websites

    Solar Resource Models and Tools The Renewable Resource Data Center (RReDC) features the following -supplied hourly average measured global horizontal data. NSRDB Data Viewer Visualize, explore, and download solar resource data from the National Solar Radiation Database. PVWatts® Calculator PVWattsÂ

  19. Correlations between solar wind parameters and auroral kilometric radiation intensity

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Dangelo, N.

    1981-01-01

    The relationship between solar wind properties and the influx of energy into the nightside auroral region as indicated by the intensity of auroral kilometric radiation is investigated. Smoothed Hawkeye satellite observations of auroral radiation at 178, 100 and 56.2 kHz for days 160 through 365 of 1974 are compared with solar wind data from the composite Solar Wind Plasma Data Set, most of which was supplied by the IMP-8 spacecraft. Correlations are made between smoothed daily averages of solar wind ion density, bulk flow speed, total IMF strength, electric field, solar wind speed in the southward direction, solar wind speed multiplied by total IMF strength, the substorm parameter epsilon and the Kp index. The greatest correlation is found between solar wind bulk flow speed and auroral radiation intensity, with a linear correlation coefficient of 0.78 for the 203 daily averages examined. A possible mechanism for the relationship may be related to the propagation into the nightside magnetosphere of low-frequency long-wavelength electrostatic waves produced in the magnetosheath by the solar wind.

  20. Heat Transfer and Geometrical Analysis of Thermoelectric Converters Driven by Concentrated Solar Radiation

    PubMed Central

    Suter, Clemens; Tomeš, Petr; Weidenkaff, Anke; Steinfeld, Aldo

    2010-01-01

    A heat transfer model that couples radiation/conduction/convection heat transfer with electrical potential distribution is developed for a thermoelectric converter (TEC) subjected to concentrated solar radiation. The 4-leg TEC module consists of two pairs of p-type La1.98Sr0.02CuO4 and n-type CaMn0.98Nb0.02O3 legs that are sandwiched between two ceramic Al2O3 hot/cold plates and connected electrically in series and thermally in parallel. The governing equations for heat transfer and electrical potential are formulated, discretized and solved numerically by applying the finite volume (FV) method. The model is validated in terms of experimentally measured temperatures and voltages/power using a set of TEC demonstrator modules, subjected to a peak radiative flux intensity of 300 suns. The heat transfer model is then applied to examine the effect of the geometrical parameters (e.g. length/width of legs) on the solar-to-electricity energy conversion efficiency.

  1. Radiation forces on small particles in the solar system

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Lamy, P. L.; Soter, S.

    1979-01-01

    Solar radiation forces on small particles in the solar system are examined, and the resulting orbital evolution of interplanetary and circumplanetary dust is considered. An expression is derived for the effects of radiation pressure and Poynting-Robertson drag on small, spherical particles using the energy and momentum transformation laws of special relativity, and numerical examples are presented to illustrate that radiation pressure and Poynting-Robertson drag are only important for particles within a narrow size range. The orbital consequences of these radiation forces are considered both for heliocentric and planetocentric orbiting particles, and the coupling between particle sizes and dynamics is discussed. A qualitative derivation is presented for the differential Doppler effect, which is due to the differential Doppler shifting of radiation from approaching and receding solar hemispheres, and the Yarkovsky effect, which is important for rotating meter-to kilometer-sized particles, is briefly described.

  2. Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES.

    PubMed

    Leitner, P; Lemmerer, B; Hanslmeier, A; Zaqarashvili, T; Veronig, A; Grimm-Strele, H; Muthsam, H J

    2017-01-01

    The ANTARES radiation hydrodynamics code is capable of simulating the solar granulation in detail unequaled by direct observation. We introduce a state-of-the-art numerical tool to the solar physics community and demonstrate its applicability to model the solar granulation. The code is based on the weighted essentially non-oscillatory finite volume method and by its implementation of local mesh refinement is also capable of simulating turbulent fluids. While the ANTARES code already provides promising insights into small-scale dynamical processes occurring in the quiet-Sun photosphere, it will soon be capable of modeling the latter in the scope of radiation magnetohydrodynamics. In this first preliminary study we focus on the vertical photospheric stratification by examining a 3-D model photosphere with an evolution time much larger than the dynamical timescales of the solar granulation and of particular large horizontal extent corresponding to [Formula: see text] on the solar surface to smooth out horizontal spatial inhomogeneities separately for up- and downflows. The highly resolved Cartesian grid thereby covers [Formula: see text] of the upper convection zone and the adjacent photosphere. Correlation analysis, both local and two-point, provides a suitable means to probe the photospheric structure and thereby to identify several layers of characteristic dynamics: The thermal convection zone is found to reach some ten kilometers above the solar surface, while convectively overshooting gas penetrates even higher into the low photosphere. An [Formula: see text] wide transition layer separates the convective from the oscillatory layers in the higher photosphere.

  3. Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES

    NASA Astrophysics Data System (ADS)

    Leitner, P.; Lemmerer, B.; Hanslmeier, A.; Zaqarashvili, T.; Veronig, A.; Grimm-Strele, H.; Muthsam, H. J.

    2017-09-01

    The ANTARES radiation hydrodynamics code is capable of simulating the solar granulation in detail unequaled by direct observation. We introduce a state-of-the-art numerical tool to the solar physics community and demonstrate its applicability to model the solar granulation. The code is based on the weighted essentially non-oscillatory finite volume method and by its implementation of local mesh refinement is also capable of simulating turbulent fluids. While the ANTARES code already provides promising insights into small-scale dynamical processes occurring in the quiet-Sun photosphere, it will soon be capable of modeling the latter in the scope of radiation magnetohydrodynamics. In this first preliminary study we focus on the vertical photospheric stratification by examining a 3-D model photosphere with an evolution time much larger than the dynamical timescales of the solar granulation and of particular large horizontal extent corresponding to 25''×25'' on the solar surface to smooth out horizontal spatial inhomogeneities separately for up- and downflows. The highly resolved Cartesian grid thereby covers ˜4 Mm of the upper convection zone and the adjacent photosphere. Correlation analysis, both local and two-point, provides a suitable means to probe the photospheric structure and thereby to identify several layers of characteristic dynamics: The thermal convection zone is found to reach some ten kilometers above the solar surface, while convectively overshooting gas penetrates even higher into the low photosphere. An ≈145 km wide transition layer separates the convective from the oscillatory layers in the higher photosphere.

  4. Periodic annealing of radiation damage in GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Loo, R. Y.; Knechtli, R. C.; Kamath, G. S.

    1980-01-01

    Continuous annealing of GaAs solar cells is compared with periodic annealing to determine their relative effectiveness in minimizing proton radiation damage. It is concluded that continuous annealing of the cells in space at 150 C can effectively reduce the proton radiation damage to the GaAs solar cells. Periodic annealing is most effective if it can be initiated at relatively low fluences (approximating continuous annealing), especially if low temperatures of less than 200 C are to be used. If annealing is started only after the fluence of the damaging protons has accumulated to a high value 10 to the 11th power sq/pcm), effective annealing is still possible at relatively high temperatures. Finally, since electron radiation damage anneals even more easily than proton radiation damage, substantial improvements in GaAs solar cell life can be achieved by incorporating the proper annealing capabilities in solar panels for practical space missions where both electron and proton radiation damage have to be minimized.

  5. The direct effect of aerosols on solar radiation over the broader Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Papadimas, C. D.; Hatzianastassiou, N.; Matsoukas, C.; Kanakidou, M.; Mihalopoulos, N.; Vardavas, I.

    2011-11-01

    For the first time, the direct radiative effect (DRE) of aerosols on solar radiation is computed over the entire Mediterranean basin, one of the most climatically sensitive world regions, by using a deterministic spectral radiation transfer model (RTM). The DRE effects on the outgoing shortwave radiation at the top of atmosphere (TOA), DRETOA, on the absorption of solar radiation in the atmospheric column, DREatm, and on the downward and absorbed surface solar radiation (SSR), DREsurf and DREnetsurf, respectively, are computed separately. The model uses input data for the period 2000-2007 for various surface and atmospheric parameters, taken from satellite (International Satellite Cloud Climatology Project, ISCCP-D2), Global Reanalysis projects (National Centers for Environmental Prediction - National Center for Atmospheric Research, NCEP/NCAR), and other global databases. The spectral aerosol optical properties (aerosol optical depth, AOD, asymmetry parameter, gaer and single scattering albedo, ωaer), are taken from the MODerate resolution Imaging Spectroradiometer (MODIS) of NASA (National Aeronautics and Space Administration) and they are Supplemented by the Global Aerosol Data Set (GADS). The model SSR fluxes have been successfully validated against measurements from 80 surface stations of the Global Energy Balance Archive (GEBA) covering the period 2000-2007. A planetary cooling is found above the Mediterranean on an annual basis (regional mean DRETOA = -2.4 Wm-2). Though planetary cooling is found over most of the region, up to -7 Wm-2, large positive DRETOA values (up to +25 Wm-2) are found over North Africa, indicating a strong planetary warming, as well as over the Alps (+0.5 Wm-2). Aerosols are found to increase the absorption of solar radiation in the atmospheric column over the region (DREatm = +11.1 Wm-2) and to decrease SSR (DREsurf = -16.5 Wm-2 and DREnetsurf -13.5 Wm-2) inducing thus significant atmospheric warming and surface radiative cooling

  6. Nowcast and Short-Term Forecast of Solar Radiation for Photovoltaic power and Solar thermal using 3rd generation geostationary satellite.

    NASA Astrophysics Data System (ADS)

    Takenaka, H.; Teruyuki, N.; Nakajima, T. Y.; Higurashi, A.; Hashimoto, M.; Suzuki, K.; Uchida, J.; Nagao, T. M.; Shi, C.; Inoue, T.

    2017-12-01

    It is important to estimate the earth's radiation budget accurately for understanding of climate. Clouds can cool the Earth by reflecting solar radiation but also maintain warmth by absorbing and emitting terrestrial radiation. similarly aerosols also have an effect on radiation budget by absorption and scattering of Solar radiation. In this study, we developed the high speed and accurate algorithm for shortwave (SW) radiation budget and it's applied to geostationary satellite for rapid analysis. It enabled highly accurate monitoring of solar radiation and photo voltaic (PV) power generation. Next step, we try to update the algorithm for retrieval of Aerosols and Clouds. It indicates the accurate atmospheric parameters for estimation of solar radiation. (This research was supported in part by CREST/EMS).

  7. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    NASA Technical Reports Server (NTRS)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  8. Photosynthetically active radiation (PAR) x ultraviolet radiation (UV) interact to initiate solar injury in apple

    USDA-ARS?s Scientific Manuscript database

    Sunburn or solar injury (SI) in apple is associated with high temperature, high visible light and ultraviolet radiation (UV). Fruit surface temperature (FST) thresholds for SI related disorders have been developed but there are no thresholds established for solar radiation. The objectives of the s...

  9. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    NASA Technical Reports Server (NTRS)

    Worrest, R. C.; Vandyke, H.

    1978-01-01

    Reduction of the earth's ozone layer, with a resultant increase in transmission of solar ultraviolet radiation in the 290 to 320nm waveband (UV-B), via space shuttle operations through the stratosphere is considered. It is shown that simulated solar ultraviolet radiation can, under experimental conditions, detrimentally affect the marine organisms that form the base of the food web of oceanic and estuarine ecosystems. Whether a small increase in biologically harmful ultraviolet radiation might overwhelm these mechanisms and produce changes that will have damaging consequences to the biosphere is discussed. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation and whether these ecosystems are highly stable or amenable to adaptive change is studied. Data are provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer and the sensitivity of key community components to increased UV-B radiation is examined.

  10. NAIRAS aircraft radiation model development, dose climatology, and initial validation.

    PubMed

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-10-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  11. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  12. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    PubMed Central

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-01-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  13. Radiative Effects of Atmospheric Aerosols and Impacts on Solar Photovoltaic Electricity Generation

    NASA Astrophysics Data System (ADS)

    Lund, Cory Christopher

    Atmospheric aerosols, by scattering and absorbing radiation, perturbs the Earth's energy balance and reduces the amount of insolation reaching the surface. This dissertation first studies the radiative effects of aerosols by analyzing the internal mixing of various aerosol species. It then examines the aerosol impact on solar PV efficiency and the resulting influence on power systems, including both atmospheric aerosols and deposition of particulate matter (PM) on PV surfaces,. Chapter 2 studies the radiative effects of black carbon (BC), sulfate and organic carbon (OC) internal mixing using a simple radiative transfer model. I find that internal mixing may not result in a positive radiative forcing compared to external mixing, but blocks additional shortwave radiation from the surface, enhancing the surface dimming effect. Chapter 3 estimates the impact of atmospheric aerosol attenuation on solar PV resources in China using a PV performance model with satellite-derived long-term surface irradiance data. I find that, in Eastern China, annual average reductions of solar resources due to aerosols are more than 20%, with comparable impacts to clouds in winter. Improving air quality in China would increase efficiency of solar PV generation. As a positive feedback, increased PV efficiency and deployment would further reduce air pollutant emissions too. Chapter 4 further quantifies the total aerosol impact on PV efficiency globally, including both atmospheric aerosols and the deposition of PM on PV surfaces. I find that, if panels are uncleaned and soiling is only removed by precipitation, deposition of PM accounts for more than two-thirds of the total aerosol impact in most regions. Cleaning the panels, even every few months, would largely increase PV efficiency in resource-abundant regions. Chapter 5 takes a further step to evaluate the impact of PV generation reduction due to aerosols on a projected 2030 power system in China with 400GW of PV. I find that aerosols

  14. Molecular Substrate Alteration by Solar Wind Radiation Documented on Flown Genesis Mission Array Materials

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, Eileen K.

    2006-01-01

    The Genesis spacecraft sampling arrays were exposed to various regimes of solar wind during flight that included: 313.01 days of high-speed wind from coronal holes, 335.19 days of low-speed inter-stream wind, 191.79 days of coronal mass ejections, and 852.83 days of bulk solar wind at Lagrange 1 orbit. Ellipsometry measurements taken at NASA s Johnson Space Center show that all nine flown array materials from the four Genesis regimes have been altered by solar wind exposure during flight. These measurements show significant changes in the optical constant for all nine ultra-pure materials that flew on Genesis when compared with their non-flight material standard. This change in the optical constant (n and k) of the material suggests that the molecular structure of the all nine ultra-pure materials have been altered by solar radiation. In addition, 50 samples of float-zone and czochralski silicon bulk array ellipsometry results were modeled with an effective medium approximation layer (EMA substrate layer) revealing a solar radiation molecular damage zone depth below the SiO2 native oxide layer ranging from 392 to 613 . This bulk solar wind radiation penetration depth is comparable to the depth of solar wind implantation depth of Mg measured by SIMS and SARISA.

  15. The Simulation of the Recharging Method Based on Solar Radiation for an Implantable Biosensor.

    PubMed

    Li, Yun; Song, Yong; Kong, Xianyue; Li, Maoyuan; Zhao, Yufei; Hao, Qun; Gao, Tianxin

    2016-09-10

    A method of recharging implantable biosensors based on solar radiation is proposed. Firstly, the models of the proposed method are developed. Secondly, the recharging processes based on solar radiation are simulated using Monte Carlo (MC) method and the energy distributions of sunlight within the different layers of human skin have been achieved and discussed. Finally, the simulation results are verified experimentally, which indicates that the proposed method will contribute to achieve a low-cost, convenient and safe method for recharging implantable biosensors.

  16. Satellite-based trends of solar radiation and cloud parameters in Europe

    NASA Astrophysics Data System (ADS)

    Pfeifroth, Uwe; Bojanowski, Jedrzej S.; Clerbaux, Nicolas; Manara, Veronica; Sanchez-Lorenzo, Arturo; Trentmann, Jörg; Walawender, Jakub P.; Hollmann, Rainer

    2018-04-01

    Solar radiation is the main driver of the Earth's climate. Measuring solar radiation and analysing its interaction with clouds are essential for the understanding of the climate system. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based, high-quality climate data records, with a focus on the energy balance and water cycle. Here, multiple of these data records are analyzed in a common framework to assess the consistency in trends and spatio-temporal variability of surface solar radiation, top-of-atmosphere reflected solar radiation and cloud fraction. This multi-parameter analysis focuses on Europe and covers the time period from 1992 to 2015. A high correlation between these three variables has been found over Europe. An overall consistency of the climate data records reveals an increase of surface solar radiation and a decrease in top-of-atmosphere reflected radiation. In addition, those trends are confirmed by negative trends in cloud cover. This consistency documents the high quality and stability of the CM SAF climate data records, which are mostly derived independently from each other. The results of this study indicate that one of the main reasons for the positive trend in surface solar radiation since the 1990's is a decrease in cloud coverage even if an aerosol contribution cannot be completely ruled out.

  17. Uncertainty Model for Total Solar Irradiance Estimation on Australian Rooftops

    NASA Astrophysics Data System (ADS)

    Al-Saadi, Hassan; Zivanovic, Rastko; Al-Sarawi, Said

    2017-11-01

    The installations of solar panels on Australian rooftops have been in rise for the last few years, especially in the urban areas. This motivates academic researchers, distribution network operators and engineers to accurately address the level of uncertainty resulting from grid-connected solar panels. The main source of uncertainty is the intermittent nature of radiation, therefore, this paper presents a new model to estimate the total radiation incident on a tilted solar panel. Where a probability distribution factorizes clearness index, the model is driven upon clearness index with special attention being paid for Australia with the utilization of best-fit-correlation for diffuse fraction. The assessment of the model validity is achieved with the adoption of four goodness-of-fit techniques. In addition, the Quasi Monte Carlo and sparse grid methods are used as sampling and uncertainty computation tools, respectively. High resolution data resolution of solar irradiations for Adelaide city were used for this assessment, with an outcome indicating a satisfactory agreement between actual data variation and model.

  18. Theory of the high base resistivity n(+)pp(+) silicon solar cell and its application to radiation damage effects

    NASA Technical Reports Server (NTRS)

    Goradia, C.; Weinberg, I.

    1985-01-01

    Particulate radiation in space is a principal source of silicon solar cell degradation, and an investigation of cell radiation damage at higher base resistivities appears to have implication toward increasing solar cell and, therefore, useful satellite lifetimes in the space environment. However, contrary to expectations, it has been found that for cells with resistivities of 84 and 1250 ohm cm, the radiation resistance decreases as cell base resistivity increases. An analytical solar-cell computer model was developed with the objective to determine the reasons for this unexpected behavior. The present paper has the aim to describe the analytical model and its use in interpreting the behavior, under irradiation, of high-resistivity solar cells. Attention is given to boundary conditions at the space-charge region edges, cell currents, cell voltages, the generation of the theoretical I-V characteristic, experimental results, and computer calculations.

  19. Usability of NASA Satellite Imagery-Based Daily Solar Radiation for Crop Yield Simulation and Management Decisions

    NASA Astrophysics Data System (ADS)

    Yang, H.; Cassman, K. G.; Stackhouse, P. W.; Hoell, J. M.

    2007-12-01

    We tested the usability of NASA satellite imagery-based daily solar radiation for farm-specific crop yield simulation and management decisions using the Hybrid-Maize model (www.hybridmaize.unl.edu). Solar radiation is one of the key inputs for crop yield simulation. Farm-specific crop management decisions using simulation models require long-term (i.e., 20 years or longer) daily local weather data including solar radiation for assessing crop yield potential and its variation, optimizing crop planting date, and predicting crop yield in a real time mode. Weather stations that record daily solar radiation have sparse coverage and many of them have record shorter than 15 years. Based on satellite imagery and other remote sensed information, NASA has provided estimates of daily climatic data including solar radiation at a resolution of 1 degree grid over the earth surface from 1983 to 2005. NASA is currently continuing to update the database and has plans to provide near real-time data in the future. This database, which is free to the public at http://power.larc.nasa.gov, is a potential surrogate for ground- measured climatic data for farm-specific crop yield simulation and management decisions. In this report, we quantified (1) the similarities between NASA daily solar radiation and ground-measured data atr 20 US sites and four international sites, and (2) the accuracy and precision of simulated corn yield potential and its variability using NASA solar radiation coupled with other weather data from ground measurements. The 20 US sites are in the western Corn Belt, including Iowa, South Dakota, Nebraska, and Kansas. The four international sites are Los Banos in the Philippines, Beijing in China, Cali in Columbia, and Ibatan in Nigeria. Those sites were selected because of their high quality weather record and long duration (more than 20 years on average). We found that NASA solar radiation was highly significantly correlated (mean r2 =0.88**) with the ground

  20. SOLAR ULTRAVIOLET RADIATION AND AQUATIC CARBON, NITROGEN, SULFUR AND METALS CYCLES

    EPA Science Inventory

    Solar ultraviolet radiation (290-400 nm) has a wide-ranging impact on biological and chemical processes that affect the cycling of elements in aquatic environments. This chapter uses recent field and laboratory observations along with models to assess these impacts on carbon, nit...

  1. Probabilistic Solar Energetic Particle Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Dietrich, William F.; Xapsos, Michael A.

    2011-01-01

    To plan and design safe and reliable space missions, it is necessary to take into account the effects of the space radiation environment. This is done by setting the goal of achieving safety and reliability with some desired level of confidence. To achieve this goal, a worst-case space radiation environment at the required confidence level must be obtained. Planning and designing then proceeds, taking into account the effects of this worst-case environment. The result will be a mission that is reliable against the effects of the space radiation environment at the desired confidence level. In this paper we will describe progress toward developing a model that provides worst-case space radiation environments at user-specified confidence levels. We will present a model for worst-case event-integrated solar proton environments that provide the worst-case differential proton spectrum. This model is based on data from IMP-8 and GOES spacecraft that provide a data base extending from 1974 to the present. We will discuss extending this work to create worst-case models for peak flux and mission-integrated fluence for protons. We will also describe plans for similar models for helium and heavier ions.

  2. Accuracy of silicon versus thermopile radiometers for daily and monthly integrated total hemispherical solar radiation

    NASA Astrophysics Data System (ADS)

    Stoffel, Thomas L.; Myers, Daryl R.

    2010-08-01

    Measurement stations for solar radiation resource assessment data are expensive and labor intensive. For this reason, long-term solar radiation measurements are not widely available. Growing interest in solar renewable energy systems has generated a great number of questions about the quality of data obtained from inexpensive silicon photodiode radiometers versus costly thermopile radiometers. We analyze a year of daily total and monthly mean global horizontal irradiance measurements derived from 1-minute averages of 3-second samples of pyranometer signals. The data were collected simultaneously from both types of radiometers at the Solar Radiation Research Laboratory (SRRL) operated by the National Renewable Energy Laboratory in Golden, Colorado. All broadband radiometers in service at SRRL are calibrated annually using an outdoor method with reference radiometers traceable to the World Radiometric Reference. We summarized the data by daily total and monthly mean daily total amounts of solar radiation. Our results show that systematic and random errors (identified in our outdoor calibration process) in each type of radiometer cancel out over periods of one day or more. Daily total and mean monthly daily total solar energy measured by the two pyranometer types compare within 1% to 2%. The individual daily variations among different models of thermopile radiometers may be up to twice as large, up to +/-5%, being highest in the winter (higher average solar zenith angle conditions) and lowest in summer, consistent with the lower solar zenith angle conditions.

  3. Preface: Solar energetic particles, solar modulation and space radiation: New opportunities in the AMS-02 Era

    NASA Astrophysics Data System (ADS)

    Bindi, Veronica

    2017-08-01

    Solar Energetic Particle (SEP) acceleration at high energies and their propagation through the heliosphere and into the magnetosphere are not well understood and are still a matter of debate. Our understanding of solar modulation and transport of different species of galactic cosmic rays (GCR) inside the heliosphere has been significantly improved; however, a lot of work still needs to be done. GCR and SEPs pose a significant radiation risk for people and technology in space, and thus it is becoming increasingly important to understand the space radiation environment. AMS-02 will provide brand new information with unprecedented statistics about GCR and SEPs. Both GCR and heliophysics experiments will contribute to the increased understanding of acceleration physics, and transport of particles in space with improved models. This will inevitably lead to better predictions of space weather and safer operations in space.

  4. The Simulation of the Recharging Method Based on Solar Radiation for an Implantable Biosensor

    PubMed Central

    Li, Yun; Song, Yong; Kong, Xianyue; Li, Maoyuan; Zhao, Yufei; Hao, Qun; Gao, Tianxin

    2016-01-01

    A method of recharging implantable biosensors based on solar radiation is proposed. Firstly, the models of the proposed method are developed. Secondly, the recharging processes based on solar radiation are simulated using Monte Carlo (MC) method and the energy distributions of sunlight within the different layers of human skin have been achieved and discussed. Finally, the simulation results are verified experimentally, which indicates that the proposed method will contribute to achieve a low-cost, convenient and safe method for recharging implantable biosensors. PMID:27626422

  5. Recent Developments in the Radiation Belt Environment Model

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Glocer, A.; Zheng, Q.; Horne, R. B.; Meredith, N. P.; Albert, J. M.; Nagai, T.

    2010-01-01

    The fluxes of energetic particles in the radiation belts are found to be strongly controlled by the solar wind conditions. In order to understand and predict the radiation particle intensities, we have developed a physics-based Radiation Belt Environment (RBE) model that considers the influences from the solar wind, ring current and plasmasphere. Recently, an improved calculation of wave-particle interactions has been incorporated. In particular, the model now includes cross diffusion in energy and pitch-angle. We find that the exclusion of cross diffusion could cause significant overestimation of electron flux enhancement during storm recovery. The RBE model is also connected to MHD fields so that the response of the radiation belts to fast variations in the global magnetosphere can be studied.Weare able to reproduce the rapid flux increase during a substorm dipolarization on 4 September 2008. The timing is much shorter than the time scale of wave associated acceleration.

  6. Solar Cycle Variations and Equatorial Oscillations: Modeling Study

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Drob, D. P.; Chan, K. L.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Solar cycle activity effects (SCAE) in the lower and middle atmosphere, reported in several studies, are difficult to explain on the basis of the small changes in solar radiation that accompany the 11-year cycle, It is therefore natural to speculate that dynamical processes may come into play to produce a leverage. Such a leverage may be provided by the Quasi-Biennial Oscillation (QBO) in the zonal circulation of the stratosphere, which has been linked to solar activity variations. Driven primarily by wave mean flow interaction, the QBO period and its amplitude are variable but are also strongly influenced by the seasonal cycle in the solar radiation. This influence extends to low altitudes referred to as "downward control". Relatively small changes in solar radiative forcing can produce small changes in the period and phase of the QBO, but this in turn can produce measurable differences in the wind field. Thus, the QBO may be an amplifier of solar activity variations and a natural conduit of these variations to lower altitudes. To test this hypothesis, we conducted experiments with a 2D (two-dimensional) version of our Numerical Spectral Model that incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Solar cycle radiance variations (SCRV) are accounted for by changing the radiative heating rate on a logarithmic scale from 0.1 % at the surface to 1 % at 50 km to 10% at 100 km. With and without SCRV, but with the same GW flux, we then conduct numerical experiments to evaluate the magnitude of the SCAE in the zonal circulation. The numerical results indicate that, under certain conditions, the SCAE is significant and can extend to lower altitudes where the SCRV is inconsequential. At 20-km the differences in the modeled wind velocities are as large as 5 m/s. For a modeled QBO period of 30 months, we find that the seasonal cycle in the solar forcing (through the Semi-annual Oscillation (SAO)) acts as a strong pacemaker to lockup the

  7. Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four earth system models

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Alterskjær, K.; Karam, D. Bou; Boucher, O.; Jones, A.; Kristjánsson, J. E.; Niemeier, U.; Schulz, M.; Aaheim, A.; Benduhn, F.; Lawrence, M.; Timmreck, C.

    2012-06-01

    In this study we compare the response of four state-of-the-art Earth system models to climate engineering under scenario G1 of two model intercomparison projects: GeoMIP (Geoengineering Model Intercomparison Project) and IMPLICC (EU project "Implications and risks of engineering solar radiation to limit climate change"). In G1, the radiative forcing from an instantaneous quadrupling of the CO2 concentration, starting from the preindustrial level, is balanced by a reduction of the solar constant. Model responses to the two counteracting forcings in G1 are compared to the preindustrial climate in terms of global means and regional patterns and their robustness. While the global mean surface air temperature in G1 remains almost unchanged compared to the control simulation, the meridional temperature gradient is reduced in all models. Another robust response is the global reduction of precipitation with strong effects in particular over North and South America and northern Eurasia. In comparison to the climate response to a quadrupling of CO2 alone, the temperature responses are small in experiment G1. Precipitation responses are, however, in many regions of comparable magnitude but globally of opposite sign.

  8. Long-term radiation effects on GaAs solar cell characteristics

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Doviak, M. J.

    1978-01-01

    This report investigates preliminary design considerations which should be considered for a space experiment involving Gallium Arsenide (GaAs) solar cells. The electron radiation effects on GaAs solar cells were conducted in a laboratory environment, and a statistical analysis of the data is presented. In order to augment the limited laboratory data, a theoretical investigation of the effect of radiation on GaAs solar cells is also developed. The results of this study are empirical prediction equations which can be used to estimate the actual damage of electrical characteristics in a space environment. The experimental and theoretical studies also indicate how GaAs solar cell parameters should be designed in order to withstand the effects of electron radiation damage.

  9. Use of Displacement Damage Dose in an Engineering Model of GaAs Solar Cell Radiation Damage

    NASA Technical Reports Server (NTRS)

    Morton, T. L.; Chock, R.; Long, K. J.; Bailey, S.; Messenger, S. R.; Walters, R. J.; Summers, G. P.

    2005-01-01

    Current methods for calculating damage to solar cells are well documented in the GaAs Solar Cell Radiation Handbook (JPL 96-9). An alternative, the displacement damage dose (D(sub d)) method, has been developed by Summers, et al. This method is currently being implemented in the SAVANT computer program.

  10. Optically pumped carbon dioxide laser mixtures. [using solar radiation

    NASA Technical Reports Server (NTRS)

    Yesil, O.; Christiansen, W. H.

    1979-01-01

    This work explores the concept of blackbody radiation pumping of CO2 gas as a step toward utilization of solar radiation as a pumping source for laser action. To demonstrate this concept, an experiment was performed in which laser gas mixtures were exposed to 1500 K thermal radiation for brief periods of time. A gain of 2.8 x 10 to the -3rd reciprocal centimeters has been measured at 10.6 microns in a CO2-He gas mixture of 1 Torr pressure. A simple analytical model is used to describe the rate of change of energy of the vibrational modes of CO2 and to predict the gain. Agreement between the prediction and experiment is good.

  11. NASA Radiation Belt Models AP-8 and AE-8

    DTIC Science & Technology

    1989-09-30

    MeV). The quiet day solar cycle variation is defined by taking the ratio of the omni-directional flux measured from solar minimum to a standard...Note 1: Model Evaluation, TREND issued at IASB , Printed at MATRA, ESTEC/Contract #8011/88/NIJMAC, 28 June 1989. "Models of the Trapped Radiation

  12. Ecological study of solar radiation and cancer mortality in Japan.

    PubMed

    Mizoue, Tetsuya

    2004-11-01

    Geographic observation of the increased mortality of some cancers at higher latitudes has led to a hypothesis that vitamin D produced after exposure to solar radiation has anti-carcinogenic effects. However, it is unclear whether such association would be observed in countries like Japan, where fish consumption, and therefore dietary vitamin D intake, is high. Pearson correlation coefficients were calculated between averaged annual solar radiation levels for the period from 1961 through 1990 and cancer mortality in the year 2000 in 47 prefectures in Japan, with adjustments for regional per capita income and dietary factors. A moderate, inverse correlation with solar radiation was observed for cancers of the esophagus, stomach, colon, rectum, pancreas, and gallbladder and bile ducts in both sexes (correlation coefficient, ranging from -0.6 to -0.3). The results of this study support the hypothesis that increased exposure to solar radiation reduces the risk of cancers of the digestive organs.

  13. The National Solar Radiation Database (NSRDB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Habte, Aron; Lopez, Anthony

    This presentation provides a high-level overview of the National Solar Radiation Database (NSRDB), including sensing, measurement and forecasting, and discusses observations that are needed for research and product development.

  14. An influence of solar activity on latitudinal distribution of atmospheric ozone and temperature in 2-D radiative-photochemical model

    NASA Technical Reports Server (NTRS)

    Dyominov, I. G.

    1989-01-01

    On the basis of the 2-D radiative-photochemical model of the ozone layer at heights 0 to 60 km in the Northern Hemisphere there are revealed and analyzed in detail the characteristic features of the season-altitude-latitude variations of ozone and temperature due to changes of the solar flux during the 11 year cycle, electron and proton precipitations.

  15. An improved electrothermal model for the ERBE nonscanning radiometer - Comparison of predicted and measured behavior during solar observations

    NASA Technical Reports Server (NTRS)

    Tira, Nour E.; Mahan, J. R.; Lee, Robert B., III

    1989-01-01

    The improved Earth Radiation Budget Experiment nonscanning-channels electrothermal model presented is used to model two types of solar observations: those obtained through the solar port during solar calibration, and and those obtained during the satellite pitch-over maneuver, in which the sun is observed by the radiometer while it is in earth-viewing configuration. Thermal noise has been separately studied to evaluate its contribution to the radiative energy absorbed by the active cavity. It is found that the scattering of the collimated solar radiation contributes an average of 0.071 mW during solar calibration.

  16. Irregular-Mesh Terrain Analysis and Incident Solar Radiation for Continuous Hydrologic Modeling in Mountain Watersheds

    NASA Astrophysics Data System (ADS)

    Moreno, H. A.; Ogden, F. L.; Alvarez, L. V.

    2016-12-01

    This research work presents a methodology for estimating terrain slope degree, aspect (slope orientation) and total incoming solar radiation from Triangular Irregular Network (TIN) terrain models. The algorithm accounts for self shading and cast shadows, sky view fractions for diffuse radiation, remote albedo and atmospheric backscattering, by using a vectorial approach within a topocentric coordinate system and establishing geometric relations between groups of TIN elements and the sun position. A normal vector to the surface of each TIN element describes slope and aspect while spherical trigonometry allows computingunit vector defining the position of the sun at each hour and day of the year. Thus, a dot product determines the radiation flux at each TIN element. Cast shadows are computed by scanning the projection of groups of TIN elements in the direction of the closest perpendicular plane to the sun vector only in the visible horizon range. Sky view fractions are computed by a simplified scanning algorithm from the highest to the lowest triangles along prescribed directions and visible distances, useful to determine diffuse radiation. Finally, remotealbedo is computed from the sky view fraction complementary functions for prescribed albedo values of the surrounding terrain only for significant angles above the horizon. The sensitivity of the different radiative components is tested a in a moutainuous watershed in Wyoming, to seasonal changes in weather and surrounding albedo (snow). This methodology represents an improvement on the current algorithms to compute terrain and radiation values on triangular-based models in an accurate and efficient manner. All terrain-related features (e.g. slope, aspect, sky view fraction) can be pre-computed and stored for easy access for a subsequent, progressive-in-time, numerical simulation.

  17. Study of radiatively sustained cesium plasmas for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Dunning, G. J.

    1980-01-01

    The results of a study aimed at developing a high temperature solar electric converter are reported. The converter concept is based on the use of an alkali plasma to serve as both an efficient high temperature collector of solar radiation as well as the working fluid for a high temperature working cycle. The working cycle is a simple magnetohydrodynamic (MHD) Rankine cycle employing a solid electrode Faraday MHD channel. Research milestones include the construction of a theoretical model for coupling sunlight in a cesium plasma and the experimental demonstration of cesium plasma heating with a solar simulator in excellent agreement with the theory. Analysis of a solar MHD working cycle in which excimer laser power rather than electric power is extracted is also presented. The analysis predicts a positive gain coefficient on the cesium-xenon excimer laser transition.

  18. New formulation feed method in tariff model of solar PV in Indonesia

    NASA Astrophysics Data System (ADS)

    Djamal, Muchlishah Hadi; Setiawan, Eko Adhi; Setiawan, Aiman

    2017-03-01

    Geographically, Indonesia has 18 latitudes that correlated strongly with the potential of solar radiation for the implementation of solar photovoltaic (PV) technologies. This is becoming the basis assumption to develop a proportional model of Feed In Tariff (FIT), consequently the FIT will be vary, according to the various of latitudes in Indonesia. This paper proposed a new formulation of solar PV FIT based on the potential of solar radiation and some independent variables such as latitude, longitude, Levelized Cost of Electricity (LCOE), and also socio-economic. The Principal Component Regression (PCR) method is used to analyzed the correlation of six independent variables C1-C6 then three models of FIT are presented. Model FIT-2 is chosen because it has a small residual value and has higher financial benefit compared to the other models. This study reveals the value of variable FIT associated with solar energy potential in each region, can reduce the total FIT to be paid by the state around 80 billion rupiahs in 10 years of 1 MW photovoltaic operation at each 34 provinces in Indonesia.

  19. Evidence for Solar Cycle Influence on the Infrared Energy Budget and Radiative Cooling of the Thermosphere

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Martin-Torres, F. Javier; Marshall, B. Thomas; Thompson, R. Earl; Williams, Joshua; Turpin, TImothy; Kratz, D. P.; Russell, James M.; Woods, Tom; Gordley, Larry L.

    2007-01-01

    We present direct observational evidence for solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. By analyzing nearly five years of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, we show that the annual mean infrared power radiated by the nitric oxide (NO) molecule at 5.3 m has decreased by a factor of 2.9. This decrease is correlated (r = 0.96) with the decrease in the annual mean F10.7 solar index. Despite the sharp decrease in radiated power (which is equivalent to a decrease in the vertical integrated radiative cooling rate), the variability of the power as given in the standard deviation of the annual means remains approximately constant. A simple relationship is shown to exist between the infrared power radiated by NO and the F10.7 index, thus providing a fundamental relationship between solar activity and the thermospheric cooling rate for use in thermospheric models. The change in NO radiated power is also consistent with changes in absorbed ultraviolet radiation over the same time period.

  20. Recent developments for realistic solar models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serenelli, Aldo M.

    2014-05-02

    The 'solar abundance problem' has triggered a renewed interest in revising the concept of SSM from different perspectives: 1) constituent microphysics: equation of state, nuclear rates, radiative opacities; 2) constituent macrophysics: the physical processes impact the evolution of the Sun and its present-day structure, e.g. dynamical processes induced by rotation, presence of magnetic fields; 3) challenge the hypothesis that the young Sun was chemically homogeneous: the possible interaction of the young Sun with its protoplanetary disk. Here, I briefly review and then present a (personal) view on recent advances and developments on solar modeling, part of them carried out asmore » attempts to solve the solar abundance problem.« less

  1. Radiation Testing of PICA at the Solar Power Tower

    NASA Technical Reports Server (NTRS)

    White, Susan M.

    2010-01-01

    Sandia National Laboratory's Solar Power Tower was used to irradiate specimens of Phenolic Impregnated Carbon Ablator (PICA), in order to evaluate whether this thermal protection system material responded differently to potential shock layer radiative heating than to convective heating. Tests were run at 50, 100 and 150 Watts per square centimeter levels of concentrated solar radiation. Experimental results are presented both from spectral measurements on 1- 10 mm thick specimens of PICA, as well as from in-depth temperature measurements on instrumented thicker test specimens. Both spectral measurements and measured in-depth temperature profiles showed that, although it is a porous, low-density material, PICA does not exhibit problematic transparency to the tested high levels of NIR radiation, for all pragmatic cm-to-inch scale thicknesses. PICA acted as a surface absorber to efficiently absorb the incident visible and near infrared incident radiation in the top 2 millimeter layer in the Solar Power Tower tests up to 150 Watts per square centimeter.

  2. Excitation of XUV radiation in solar flares

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1992-01-01

    The goal of the proposed research was to understand the means by which XUV radiation in solar flares is excited, and to use this radiation as diagnostics of the energy release and transport processes occurring in the flare. Significant progress in both of these areas, as described, was made.

  3. Validation of solar radiation surfaces from MODIS and reanalysis data over topographically complex terrain

    Treesearch

    Todd A. Schroeder; Robbie Hember; Nicholas C. Coops; Shunlin Liang

    2009-01-01

    The magnitude and distribution of incoming shortwave solar radiation (SW) has significant influence on the productive capacity of forest vegetation. Models that estimate forest productivity require accurate and spatially explicit radiation surfaces that resolve both long- and short-term temporal climatic patterns and that account for topographic variability of the land...

  4. Implementing Badhwar-O'Neill Galactic Cosmic Ray Model for the Analysis of Space Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; O'Neill, Patrick M.; Slaba, Tony C.

    2014-01-01

    For the analysis of radiation risks to astronauts and planning exploratory space missions, accurate energy spectrum of galactic cosmic radiation (GCR) is necessary. Characterization of the ionizing radiation environment is challenging because the interplanetary plasma and radiation fields are modulated by solar disturbances and the radiation doses received by astronauts in interplanetary space are likewise influenced. A model of the Badhwar-O'Neill 2011 (BO11) GCR environment, which is represented by GCR deceleration potential theta, has been derived by utilizing all of the GCR measurements from balloons, satellites, and the newer NASA Advanced Composition Explorer (ACE). In the BO11 model, the solar modulation level is derived from the mean international sunspot numbers with time-delay, which has been calibrated with actual flight instrument measurements to produce better GCR flux data fit during solar minima. GCR fluxes provided by the BO11 model were compared with various spacecraft measurements at 1 AU, and further comparisons were made for the tissue equivalent proportional counters measurements at low Earth orbits using the high-charge and energy transport (HZETRN) code and various GCR models. For the comparison of the absorbed dose and dose equivalent calculations with the measurements by Radiation Assessment Detector (RAD) at Gale crater on Mars, the intensities and energies of GCR entering the heliosphere were calculated by using the BO11 model, which accounts for time-dependent attenuation of the local interstellar spectrum of each element. The BO11 model, which has emphasized for the last 24 solar minima, showed in relatively good agreement with the RAD data for the first 200 sols, but it was resulted in to be less well during near the solar maximum of solar cycle 24 due to subtleties in the changing heliospheric conditions. By performing the error analysis of the BO11 model and the optimization in reducing overall uncertainty, the resultant BO13 model

  5. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    NASA Astrophysics Data System (ADS)

    Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid

    Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.

  6. Radiation balances and the solar constant

    NASA Technical Reports Server (NTRS)

    Crommelynck, D.

    1981-01-01

    The radiometric concepts are defined in order to consider various types of radiation balances and relate them to the diabetic form of the energy balance. Variability in space and time of the components of the radiation field are presented. A specific concept for sweeping which is tailored to the requirements is proposed. Finally, after establishing the truncated character of the present knowledge of the radiation balance. The results of the last observations of the solar constant are given. Ground and satellite measurement techniques are discussed.

  7. A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the U.S.

    PubMed

    Zhou, Qingtao; Flores, Alejandro; Glenn, Nancy F; Walters, Reggie; Han, Bangshuai

    2017-01-01

    Shortwave solar radiation is an important component of the surface energy balance and provides the principal source of energy for terrestrial ecosystems. This paper presents a machine learning approach in the form of a random forest (RF) model for estimating daily downward solar radiation flux at the land surface over complex terrain using MODIS (MODerate Resolution Imaging Spectroradiometer) remote sensing data. The model-building technique makes use of a unique network of 16 solar flux measurements in the semi-arid Reynolds Creek Experimental Watershed and Critical Zone Observatory, in southwest Idaho, USA. Based on a composite RF model built on daily observations from all 16 sites in the watershed, the model simulation of downward solar radiation matches well with the observation data (r2 = 0.96). To evaluate model performance, RF models were built from 12 of 16 sites selected at random and validated against the observations at the remaining four sites. Overall root mean square errors (RMSE), bias, and mean absolute error (MAE) are small (range: 37.17 W/m2-81.27 W/m2, -48.31 W/m2-15.67 W/m2, and 26.56 W/m2-63.77 W/m2, respectively). When extrapolated to the entire watershed, spatiotemporal patterns of solar flux are largely consistent with expected trends in this watershed. We also explored significant predictors of downward solar flux in order to reveal important properties and processes controlling downward solar radiation. Based on the composite RF model built on all 16 sites, the three most important predictors to estimate downward solar radiation include the black sky albedo (BSA) near infrared band (0.858 μm), BSA visible band (0.3-0.7 μm), and clear day coverage. This study has important implications for improving the ability to derive downward solar radiation through a fusion of multiple remote sensing datasets and can potentially capture spatiotemporally varying trends in solar radiation that is useful for land surface hydrologic and terrestrial

  8. A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the U.S.

    PubMed Central

    Flores, Alejandro; Glenn, Nancy F.; Walters, Reggie; Han, Bangshuai

    2017-01-01

    Shortwave solar radiation is an important component of the surface energy balance and provides the principal source of energy for terrestrial ecosystems. This paper presents a machine learning approach in the form of a random forest (RF) model for estimating daily downward solar radiation flux at the land surface over complex terrain using MODIS (MODerate Resolution Imaging Spectroradiometer) remote sensing data. The model-building technique makes use of a unique network of 16 solar flux measurements in the semi-arid Reynolds Creek Experimental Watershed and Critical Zone Observatory, in southwest Idaho, USA. Based on a composite RF model built on daily observations from all 16 sites in the watershed, the model simulation of downward solar radiation matches well with the observation data (r2 = 0.96). To evaluate model performance, RF models were built from 12 of 16 sites selected at random and validated against the observations at the remaining four sites. Overall root mean square errors (RMSE), bias, and mean absolute error (MAE) are small (range: 37.17 W/m2-81.27 W/m2, -48.31 W/m2-15.67 W/m2, and 26.56 W/m2-63.77 W/m2, respectively). When extrapolated to the entire watershed, spatiotemporal patterns of solar flux are largely consistent with expected trends in this watershed. We also explored significant predictors of downward solar flux in order to reveal important properties and processes controlling downward solar radiation. Based on the composite RF model built on all 16 sites, the three most important predictors to estimate downward solar radiation include the black sky albedo (BSA) near infrared band (0.858 μm), BSA visible band (0.3–0.7 μm), and clear day coverage. This study has important implications for improving the ability to derive downward solar radiation through a fusion of multiple remote sensing datasets and can potentially capture spatiotemporally varying trends in solar radiation that is useful for land surface hydrologic and terrestrial

  9. New gridded database of clear-sky solar radiation derived from ground-based observations over Europe

    NASA Astrophysics Data System (ADS)

    Bartok, Blanka; Wild, Martin; Sanchez-Lorenzo, Arturo; Hakuba, Maria Z.

    2017-04-01

    Since aerosols modify the entire energy balance of the climate system through different processes, assessments regarding aerosol multiannual variability are highly required by the climate modelling community. Because of the scarcity of long-term direct aerosol measurements, the retrieval of aerosol data/information from other type of observations or satellite measurements are very relevant. One approach frequently used in the literature is analyze of the clear-sky solar radiation which offer a better overview of changes in aerosol content. In the study first two empirical methods are elaborated in order to separate clear-sky situations from observed values of surface solar radiation available at the World Radiation Data Center (WRDC), St. Petersburg. The daily data has been checked for temporal homogeneity by applying the MASH method (Szentimrey, 2003). In the first approach, clear sky situations are detected based on clearness index, namely the ratio of the surface solar radiation to the extraterrestrial solar irradiation. In the second approach the observed values of surface solar radiation are compared to the climatology of clear-sky surface solar radiation calculated by the MAGIC radiation code (Muller et al. 2009). In both approaches the clear-sky radiation values highly depend on the applied thresholds. In order to eliminate this methodological error a verification of clear-sky detection is envisaged through a comparison with the values obtained by a high time resolution clear-sky detection and interpolation algorithm (Long and Ackermann, 2000) making use of the high quality data from the Baseline Surface Radiation Network (BSRN). As the consequences clear-sky data series are obtained for 118 European meteorological stations. Next a first attempt has been done in order to interpolate the point-wise clear-sky radiation data by applying the MISH (Meteorological Interpolation based on Surface Homogenized Data Basis) method for the spatial interpolation of

  10. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, F. G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.

    2013-03-01

    In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at lower and higher solar zenith angle, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as solar zenith angle decreases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.

  11. Effect of solar radiation on the performance of cross flow wet cooling tower in hot climate of Iran

    NASA Astrophysics Data System (ADS)

    Banooni, Salem; Chitsazan, Ali

    2016-11-01

    In some cities such as Ahvaz-Iran, the solar radiation is very high and the annual-mean-daily of the global solar radiation is about 17.33 MJ m2 d-1. Solar radiation as an external heat source seems to affect the thermal performance of the cooling towers. Usually, in modeling cooling tower, the effects of solar radiation are ignored. To investigate the effect of sunshade on the performance and modeling of the cooling tower, the experiments were conducted in two different states, cooling towers with and without sunshade. In this study, the Merkel's approach and finite difference technique are used to predict the thermal behavior of cross flow wet cooling tower without sunshade and the results are compared with the data obtained from the cooling towers with and without sunshade. Results showed that the sunshade is very efficient and it reduced the outlet water temperature, the approach and the water exergy of the cooling tower up to 1.2 °C, 15 and 1.1 %, respectively and increased the range and the efficiency of the cooling tower up to 29 and 37 %, respectively. Also, the sunshade decreased the error between the experimental data of the cooling tower with sunshade and the modeling results of the cooling tower without sunshade 1.85 % in average.

  12. Kinematic solar dynamo models with a deep meridional flow

    NASA Astrophysics Data System (ADS)

    Guerrero, G. A.; Muñoz, J. D.

    2004-05-01

    We develop two different solar dynamo models to verify the hypothesis that a deep meridional flow can restrict the appearance of sunspots below 45°, proposed recently by Nandy & Choudhuri. In the first one, a single polytropic approximation for the density profile was taken, for both radiative and convective zones. In the second one, that of Pinzon & Calvo-Mozo, two polytropes were used to distinguish between both zones. The magnetic buoyancy mechanism proposed by Dikpati & Charbonneau was chosen in both models. We have in fact obtained that a deep meridional flow pushes the maxima of toroidal magnetic field towards the solar equator, but, in contrast to Nandy & Choudhuri, a second zone of maximal fields remains at the poles. The second model, although closely resembling the solar standard model of Bahcall et al., gives solar cycles three times longer than observed.

  13. Radiation absorption and optimization of solar photocatalytic reactors for environmental applications.

    PubMed

    Colina-Márquez, Jose; Machuca-Martínez, Fiderman; Li Puma, Gianluca

    2010-07-01

    This study provides a systematic and quantitative approach to the analysis and optimization of solar photocatalytic reactors utilized in environmental applications such as pollutant remediation and conversion of biomass (waste) to hydrogen. Ray tracing technique was coupled with the six-flux absorption scattering model (SFM) to analyze the complex radiation field in solar compound parabolic collectors (CPC) and tubular photoreactors. The absorption of solar radiation represented by the spatial distribution of the local volumetric rate of photon absorption (LVRPA) depends strongly on catalyst loading and geometry. The total radiation absorbed in the reactors, the volumetric rate of absorption (VRPA), was analyzed as a function of the optical properties (scattering albedo) of the photocatalyst. The VRPA reached maxima at specific catalyst concentrations in close agreement with literature experimental studies. The CPC has on average 70% higher photon absorption efficiency than a tubular reactor and requires 39% less catalyst to operate under optimum conditions. The "apparent optical thickness" is proposed as a new dimensionless parameter for optimization of CPC and tubular reactors. It removes the dependence of the optimum catalyst concentration on tube diameter and photocatalyst scattering albedo. For titanium dioxide (TiO(2)) Degussa P25, maximum photon absorption occurs at apparent optical thicknesses of 7.78 for CPC and 12.97 for tubular reactors.

  14. Future mission studies: Preliminary comparisons of solar flux models

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.

    1991-01-01

    The results of comparisons of the solar flux models are presented. (The wavelength lambda = 10.7 cm radio flux is the best indicator of the strength of the ionizing radiations such as solar ultraviolet and x-ray emissions that directly affect the atmospheric density thereby changing the orbit lifetime of satellites. Thus, accurate forecasting of solar flux F sub 10.7 is crucial for orbit determination of spacecrafts.) The measured solar flux recorded by National Oceanic and Atmospheric Administration (NOAA) is compared against the forecasts made by Schatten, MSFC, and NOAA itself. The possibility of a combined linear, unbiased minimum-variance estimation that properly combines all three models into one that minimizes the variance is also discussed. All the physics inherent in each model are combined. This is considered to be the dead-end statistical approach to solar flux forecasting before any nonlinear chaotic approach.

  15. Numerical modeling of solar irradiance on earth's surface

    NASA Astrophysics Data System (ADS)

    Mera, E.; Gutierez, L.; Da Silva, L.; Miranda, E.

    2016-05-01

    Modeling studies and estimation of solar radiation in base area, touch from the problems of estimating equation of time, distance equation solar space, solar declination, calculation of surface irradiance, considering that there are a lot of studies you reported the inability of these theoretical equations to be accurate estimates of radiation, many authors have proceeded to make corrections through calibrations with Pyranometers field (solarimeters) or the use of satellites, this being very poor technique last because there a differentiation between radiation and radiant kinetic effects. Because of the above and considering that there is a weather station properly calibrated ground in the Susques Salar in the Jujuy Province, Republic of Argentina, proceeded to make the following modeling of the variable in question, it proceeded to perform the following process: 1. Theoretical Modeling, 2. graphic study of the theoretical and actual data, 3. Adjust primary calibration data through data segmentation on an hourly basis, through horizontal and adding asymptotic constant, 4. Analysis of scatter plot and contrast series. Based on the above steps, the modeling data obtained: Step One: Theoretical data were generated, Step Two: The theoretical data moved 5 hours, Step Three: an asymptote of all negative emissivity values applied, Solve Excel algorithm was applied to least squares minimization between actual and modeled values, obtaining new values of asymptotes with the corresponding theoretical reformulation of data. Add a constant value by month, over time range set (4:00 pm to 6:00 pm). Step Four: The modeling equation coefficients had monthly correlation between actual and theoretical data ranging from 0.7 to 0.9.

  16. Radiation Damage Workshop report. [solar cells

    NASA Technical Reports Server (NTRS)

    Rahilly, W. P.

    1980-01-01

    The starting material, cell design/geometry, and cell processing/fabrication for silicon and gallium arsenide solar cells are addressed with reference to radiation damage. In general, it is concluded that diagnostic sensitivities and material purities are basic to making significant gains in end-of-life performance and thermal annealability. Further, GaAs material characterization is so sketchy that a well defined program to evaluate such material for solar cell application is needed to maximize GaAs cell technology benefits.

  17. Side-effects of a bad attitude: How GNSS spacecraft orientation errors affect solar radiation pressure modelling

    NASA Astrophysics Data System (ADS)

    Dilssner, Florian; Springer, Tim; Schönemann, Erik; Zandbergen, Rene; Enderle, Werner

    2015-04-01

    Solar radiation pressure (SRP) is the largest non-gravitational perturbation for Global Navigation Satellite System (GNSS) satellites, and can therefore have substantial impact on their orbital dynamics. Various SRP force models have been developed over the past 30 years for the purpose of precise orbit determination. They all rely upon the assumption that the satellites continuously maintain a Sun-Nadir pointing attitude with the navigation antenna boresight (body-fixed z-axis) pointing towards Earth center, and the solar panel rotation axis (body-fixed y-axis) being normal to the Sun direction. However, in reality, this is not perfectly the case. Reasons for a non-nominal spacecraft attitude may be eclipse maneuvers, commanded attitude biases and Sun/horizon sensor measurement errors, for example due to mounting misalignment or incorrectly calibrated sensor electronics. In this work the effect of GNSS spacecraft orientation errors on SRP modelling is investigated. Simplified mathematical functions describing the SRP force acting on the solar arrays in the presence of yaw-, pitch- and roll-biases are derived. Special attention is paid to the yaw-bias and its relationship to the SRP dynamics, particular in direction of the spacecraft y-axis ("y-bias force"). Analytical and experimental results gathered from orbit and attitude analyses of GPS Block II/IIA/IIF satellites demonstrate how sensitive the SRP coefficients are to changes in yaw.

  18. Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments

    NASA Technical Reports Server (NTRS)

    Boca, Andreea (Principal Investigator); Stella, Paul; Kerestes, Christopher; Sharps, Paul

    2017-01-01

    This is the Base Period final report DRAFT for the JPL task 'Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments', under Task Plan 77-16518 TA # 21, for NASA's Extreme Environments Solar Power (EESP) project. This report covers the Base period of performance, 7/18/2016 through 5/2/2017.The goal of this project is to develop an ultra-high efficiency lightweight scalable solar array technology for low irradiance, low temperature and high-radiation (LILT/Rad) environments. The benefit this technology will bring to flight systems is a greater than 20 reduction in solar array surface area, and a six-fold reduction in solar array mass and volume. The EESP project objectives are summarized in the 'NRA Goal' column of Table 1. Throughout this report, low irradiance low temperature (LILT) refers to 5AU -125 C test conditions; beginning of life (BOL) refers to the cell state prior to radiation exposure; and end of life (EOL) refers to the test article condition after exposure to a radiation dose of 4e15 1MeV e(-)/cm(exp 2).

  19. Surface Measurements of Solar Spectral Radiative Flux in the Cloud-Free Atmosphere

    NASA Technical Reports Server (NTRS)

    Pilewskie, Peter; Goetz, A. F. H.; Bergstrom, R.; Beal, D.; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    Recent studies (Charlock, et al.; Kato, et. al) have indicated a potential discrepancy between measured solar irradiance in the cloud-free atmosphere and model derived downwelling solar irradiance. These conclusions were based primarily on broadband integrated solar flux. Extinction (both absorption and scattering) phenomena, however, typically have spectral characteristics that would be present in moderate resolution (e.g., 10 nm) spectra, indicating the need for such measurements to thoroughly investigate the cause of any discrepancies. The 1996 Department of Energy Atmospheric Radiation Measurement Program (ARM) Intensive Observation Period (IOP), held simultaneously with the NASA Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) Program, provided an opportunity for two simultaneous but independent measurements of moderate resolution solar spectral downwelling irradiance at the surface. The instruments were the NASA Ames Solar Spectral Flux Radiometer and the Analytical Spectral Devices, Inc., FieldSpecT-FR. Spectral and band integrated quantities from both sets of measurements will be presented, along with estimates of the downwelling solar irradiance from band model and line by line calculations, in an effort to determine the compatibility between measured and calculated solar irradiance in the cloud-free atmosphere.

  20. Solar-Radiation Measuring Equipment and Glossary

    NASA Technical Reports Server (NTRS)

    Carter, E. A.; Patel, A. M.; Greenbaum, S. A.

    1982-01-01

    1976 listing of commercially available solar-radiation measuring equipment is presented in 50-page report. Sensor type, response time, cost data, and comments concerning specifications and intended usage are listed for 145 instruments from 38 manufactures.

  1. Solar radiation alert system : final report.

    DOT National Transportation Integrated Search

    2009-03-01

    The Solar Radiation Alert (SRA) system continuously evaluates measurements of high-energy protons made by instruments on GOES satellites. If the measurements indicate a substantial elevation of effective dose rates at aircraft flight altitudes, the C...

  2. Validation, Optimization and Simulation of a Solar Thermoelectric Generator Model

    NASA Astrophysics Data System (ADS)

    Madkhali, Hadi Ali; Hamil, Ali; Lee, HoSung

    2017-12-01

    This study explores thermoelectrics as a viable option for small-scale solar thermal applications. Thermoelectric technology is based on the Seebeck effect, which states that a voltage is induced when a temperature gradient is applied to the junctions of two differing materials. This research proposes to analyze, validate, simulate, and optimize a prototype solar thermoelectric generator (STEG) model in order to increase efficiency. The intent is to further develop STEGs as a viable and productive energy source that limits pollution and reduces the cost of energy production. An empirical study (Kraemer et al. in Nat Mater 10:532, 2011) on the solar thermoelectric generator reported a high efficiency performance of 4.6%. The system had a vacuum glass enclosure, a flat panel (absorber), thermoelectric generator and water circulation for the cold side. The theoretical and numerical approach of this current study validated the experimental results from Kraemer's study to a high degree. The numerical simulation process utilizes a two-stage approach in ANSYS software for Fluent and Thermal-Electric Systems. The solar load model technique uses solar radiation under AM 1.5G conditions in Fluent. This analytical model applies Dr. Ho Sung Lee's theory of optimal design to improve the performance of the STEG system by using dimensionless parameters. Applying this theory, using two cover glasses and radiation shields, the STEG model can achieve a highest efficiency of 7%.

  3. Solar UV Radiation and the Origin of Life On Earth

    NASA Technical Reports Server (NTRS)

    Heap, S. R.; Lanz, T.; Hubeny, I.; Gaidos, E.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We have embarked on a program aimed at understanding the atmosphere of the early Earth, because of its importance as a greenhouse, radiation shield and energy source for life. Here, we give a progress report on the first phase of this program to establish the UV radiation from the early Sun. We have obtained ultraviolet spectra (STIS, FUSE, EUVE) of carefully selected nearby, young solar-type stars, which act as surrogates for the early Sun We are making detailed non-LTE analyses of the spectra and constructing models of their photospheres + chromospheres. Once validated, these models will allow us to extrapolate our theoretical spectra to other metallicities and to unobserved spectral regions.

  4. Modeling and characterization of the Earth Radiation Budget Experiment (ERBE) nonscanner and scanner sensors

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Pandey, Dhirendra K.; Taylor, Deborah B.

    1989-01-01

    The Earth Radiation Budget Experiment (ERBE) is making high-absolute-accuracy measurements of the reflected solar and Earth-emitted radiation as well as the incoming solar radiation from three satellites: ERBS, NOAA-9, and NOAA-10. Each satellite has four Earth-looking nonscanning radiometers and three scanning radiometers. A fifth nonscanner, the solar monitor, measures the incoming solar radiation. The development of the ERBE sensor characterization procedures are described using the calibration data for each of the Earth-looking nonscanners and scanners. Sensor models for the ERBE radiometers are developed including the radiative exchange, conductive heat flow, and electronics processing for transient and steady state conditions. The steady state models are used to interpret the sensor outputs, resulting in the data reduction algorithms for the ERBE instruments. Both ground calibration and flight calibration procedures are treated and analyzed. The ground and flight calibration coefficients for the data reduction algorithms are presented.

  5. Increased radiation resistance in lithium-counterdoped silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Mehta, S.

    1984-01-01

    Lithium-counterdoped n(+)p silicon solar cells are found to exhibit significantly increased radiation resistance to 1-MeV electron irradiation when compared to boron-doped n(+)p silicon solar cells. In addition to improved radiation resistance, considerable damage recovery by annealing is observed in the counterdoped cells at T less than or equal to 100 C. Deep level transient spectroscopy measurements are used to identify the defect whose removal results in the low-temperature aneal. It is suggested that the increased radiation resistance of the counterdoped cells is primarily due to interaction of the lithium with interstitial oxygen.

  6. Radiation tolerance of low resistivity, high voltage silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Weinberg, I.; Swartz, C. K.

    1984-01-01

    The radiation tolerance of the following three low resistivity, high voltage silicon solar cells was investigated: (1) the COMSAT MSD (multi-step diffused) cell, (2) the MinMIS cell, and (3) the MIND cell. A description of these solar cells is given along with drawings of their configurations. The diffusion length damage coefficients for the cells were calculated and presented. Solar cell spectral response was also discussed. Cells of the MinMIS type were judged to be unsuitable for use in the space radiation environment.

  7. A hybrid SVM-FFA method for prediction of monthly mean global solar radiation

    NASA Astrophysics Data System (ADS)

    Shamshirband, Shahaboddin; Mohammadi, Kasra; Tong, Chong Wen; Zamani, Mazdak; Motamedi, Shervin; Ch, Sudheer

    2016-07-01

    In this study, a hybrid support vector machine-firefly optimization algorithm (SVM-FFA) model is proposed to estimate monthly mean horizontal global solar radiation (HGSR). The merit of SVM-FFA is assessed statistically by comparing its performance with three previously used approaches. Using each approach and long-term measured HGSR, three models are calibrated by considering different sets of meteorological parameters measured for Bandar Abbass situated in Iran. It is found that the model (3) utilizing the combination of relative sunshine duration, difference between maximum and minimum temperatures, relative humidity, water vapor pressure, average temperature, and extraterrestrial solar radiation shows superior performance based upon all approaches. Moreover, the extraterrestrial radiation is introduced as a significant parameter to accurately estimate the global solar radiation. The survey results reveal that the developed SVM-FFA approach is greatly capable to provide favorable predictions with significantly higher precision than other examined techniques. For the SVM-FFA (3), the statistical indicators of mean absolute percentage error (MAPE), root mean square error (RMSE), relative root mean square error (RRMSE), and coefficient of determination ( R 2) are 3.3252 %, 0.1859 kWh/m2, 3.7350 %, and 0.9737, respectively which according to the RRMSE has an excellent performance. As a more evaluation of SVM-FFA (3), the ratio of estimated to measured values is computed and found that 47 out of 48 months considered as testing data fall between 0.90 and 1.10. Also, by performing a further verification, it is concluded that SVM-FFA (3) offers absolute superiority over the empirical models using relatively similar input parameters. In a nutshell, the hybrid SVM-FFA approach would be considered highly efficient to estimate the HGSR.

  8. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks.

    PubMed

    Zepp, R G; Erickson, D J; Paul, N D; Sulzberger, B

    2011-02-01

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects, they could accelerate the rate of atmospheric CO(2) increase and subsequent climate change beyond current predictions. The effects of predicted changes in climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are expected to vary significantly between regions. The balance of positive and negative effects on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and climate change are likely to contribute to decreasing sink strength in many oceanic regions. Interactions between climate and solar UV radiation will affect cycling of elements other than carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For example, increases in oxygen-deficient regions of the ocean caused by climate change are projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial contaminants could have both beneficial and adverse effects. Taken in total, it is clear that the future changes in UV radiation coupled with human-caused global change will have large impacts on biogeochemical cycles at local, regional and global scales.

  9. Properties of solar generators with reflectors and radiators

    NASA Astrophysics Data System (ADS)

    Ebeling, W. D.; Rex, D.; Bierfischer, U.

    1980-06-01

    Radiation cooled concentrator systems using silicon and GaAs cells were studied. The principle of radiation cooling by the reflector surfaces is discussed for cylindrical parabolic reflectors (SARA), truncated hexagonal pyramids, and a small trough configuration. Beam paths, collection properties for imperfect orientation, and thermal optimization parameters were analyzed. The three concentrating systems with radiation cooling offer advantages over the plane panel and over the large trough. With silicon solar cells they exhibit considerably lower solar cell consumption per Kw and also lower mass per kW. With GaAs cells the SARA system reduces the number of solar cells needed per kW to less than 10%. Also in all other cases SARA offers the best values for alpha and F sub sol, as long as narrow angular tolerances of the panel orientation can be met. Analysis of the energy collecting properties for imperfect orientation shows the superiority of the hexagonal concentrator. This device can produce power for even large angles between the sun and the panel normal.

  10. Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polo, J.; Wilbert, S.; Ruiz-Arias, J. A.

    2016-07-01

    At any site, the bankability of a projected solar power plant largely depends on the accuracy and general quality of the solar radiation data generated during the solar resource assessment phase. The term 'site adaptation' has recently started to be used in the framework of solar energy projects to refer to the improvement that can be achieved in satellite-derived solar irradiance and model data when short-term local ground measurements are used to correct systematic errors and bias in the original dataset. This contribution presents a preliminary survey of different possible techniques that can improve long-term satellite-derived and model-derived solar radiationmore » data through the use of short-term on-site ground measurements. The possible approaches that are reported here may be applied in different ways, depending on the origin and characteristics of the uncertainties in the modeled data. This work, which is the first step of a forthcoming in-depth assessment of methodologies for site adaptation, has been done within the framework of the International Energy Agency Solar Heating and Cooling Programme Task 46 'Solar Resource Assessment and Forecasting.'« less

  11. Training and Validation of the Fast PCRTM_Solar Model

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Liu, X.; Wu, W.; Yang, P.; Wang, C.

    2015-12-01

    Fast and accurate radiative transfer model is the key for satellite data assimilation for remote sensing application. The simulation of the satellite remote sensing radiances is very complicated since many physical processes, such as absorption, emission, and scattering, are involved due to the interactions between electromagnetic radiation and earth surface, water vapor, clouds, aerosols, and gas molecules in the sky. The principal component-based radiative transfer model (PCRTM) has been developed for various passive IR and MW instruments. In this work, we extended PCRTM to including the contribution from solar radiation. The cloud/aerosol bidirectional reflectances have been carefully calculated using the well-known Discrete-Ordinate-Method Radiative Transfer (DISORT) model under over 10 millions of diverse conditions with varying cloud particle size, wavelength, satellite viewing direction, and solar angles. The obtained results were compressed significantly using principal component analysis and used in the mono domain radiance calculation. We used 1352 different atmosphere profiles, each of them has different surface skin temperatures and surface pressures in our training. Different surface emissivity spectra were derived from ASTER database and emissivity models. Some artificially generated emissivity spectra were also used to account for diverse surface types of the earth. Concentrations of sixteen trace gases were varied systematically in the training and the remaining trace gas contributions were accounted for as a fixed gas. Training was done in both clear and cloudy skies conditions. Finally the nonlocal thermal equilibrium (NLTE) induced radiance change was included for daytime conditions. We have updated the PCRTM model for instruments such as IASI, NASTI, CrIS, AIRS, and SHIS. The training results show that the PCRTM model can calculate thousands of channel radiances by computing only a few hundreds of mono radiances. This greatly increased the

  12. Solar UV Radiation and the Origin of Life on Earth

    NASA Technical Reports Server (NTRS)

    Heap, S. R.; Gaidos, E.; Hubeny, I.; Lanz, T. M.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We have embarked on a program aimed at understanding the atmosphere of the early Earth, because of its importance as a greenhouse, radiation shield, and energy source for life. Here, we give a progress report on the first phase of this program: to establish the UV radiation from the early Sun. We are presently obtaining ultraviolet spectra (STIS, FUSE, EUVE) of carefully selected nearby, young solar-type stars, which act as surrogates for the early Sun. We are currently making detailed non-LTE analyses of the spectra and constructing models of their photospheres + chromospheres. once validated, these models will allow us to extrapolate our theoretical spectra to unobserved spectral regions, and to proceed to the next step: to develop photochemical models of the pre-biotic and Archean atmosphere of the Earth.

  13. Effects of solar radiation on glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Kinser, Donald L.

    1991-01-01

    The effects of solar radiation of selected glasses are reported. Optical property degradation is studied using UV-Vis spectrophotometry. Strength changes are measured using a concentric ring bend test. Direct fracture toughness measurements using an indentation test are planned.

  14. The response of the TIMED/SABER O2 nightglow to solar radiation

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Xu, Jiyao; William, Ward

    2015-04-01

    The TIMED/SABER O2 nightglow observations between January 2002 and June 2014 are used to study the response of O2 emission to the solar radiation. both the O2 nightglow emission rate and intensity are found to be positively correlated to the solar radiation. The O2 nightglow emission rate/intensity and F10.7 solar flux index can be expressed by a linear relation very well. The response of the O2 global mean nightglow emission rate to the solar radiation is enhanced with increasing altitude from about 80km, reaches its peak around 92 km and then decreases with increasing altitude. The response of the O2 nightglow intensity to F10.7 index changes with latitude with three peaks around 40S/N and the equator. The response of the O2 global mean nightglow intensity to the solar radiation is about 27 kR/100 sfu, corresponding to 24.1%/100 sfu.

  15. Multiscaling statistics of high frequency global solar radiation data in the Guadeloupean Archipelago

    NASA Astrophysics Data System (ADS)

    Calif, R.; Schmitt, F. G.; Huang, Y.; Soubdhan, T.

    2013-12-01

    The part of the solar power production from photovoltaiccs systems is constantly increasing in the electric grids. Solar energy converter devices such as photovoltaic cells are very sensitive to instantaneous solar radiation fluctuations. Thus rapid variation of solar radiation due to changes in the local meteorological condition can induce large amplitude fluctuations of the produced electrical power and reduce the overall efficiency of the system. When large amount of photovoltaic electricity is send into a weak or small electricity network such as island network, the electric grid security can be in jeopardy due to these power fluctuations. The integration of this energy into the electrical network remains a major challenge, due to the high variability of solar radiation in time and space. To palliate these difficulties, it is essential to identify the characteristic of these fluctuations in order to anticipate the eventuality of power shortage or power surge. A good knowledge of the intermittency of global solar radiation is crucial for selecting the location of a solar power plant and predicting the generation of electricity. This work presents a multifractal analysis study of 367 daily global solar radiation sequences measured with a sampling rate of 1 Hz over one year at Guadeloupean Archipelago (French West Indies) located at 16o15'N latitude and 60o30'W longitude. The mean power spectrum computed follows a power law behaviour close to the Kolmogorov spectrum. The intermittent and multifractal properties of global solar radiation data are investigated using several methods. Under this basis, a characterization for each day using three multifractal parameters is proposed.

  16. The Influence of the Solar Coronal Radiation on Coronal Plasma Structures, I: Determination of the Incident Coronal Radiation

    NASA Astrophysics Data System (ADS)

    Brown, Gerrard M.; Labrosse, Nicolas

    2018-02-01

    Coronal structures receive radiation not only from the solar disc, but also from the corona. This height-dependent incident radiation plays a crucial role in the excitation and the ionisation of the illuminated plasma. The aim of this article is to present a method for computing the detailed incident radiation coming from the solar corona, which is perceived at a point located at an arbitrary height. The coronal radiation is calculated by integrating the radiation received at a point in the corona over all of the corona visible from this point. The emission from the corona at all wavelengths of interest is computed using atomic data provided by CHIANTI. We obtain the spectrum illuminating points located at varying heights in the corona at wavelengths between 100 and 912 Å when photons can ionise H or He atoms and ions in their ground states. As expected, individual spectral lines will contribute most at the height within the corona where the local temperature is closest to their formation temperature. As there are many spectral lines produced by many ions, the coronal intensity cannot be assumed to vary in the same way at all wavelengths and so must be calculated for each separate height that is to be considered. This code can be used to compute the spectrum from the corona illuminating a point at any given height above the solar surface. This brings a necessary improvement to models where an accurate determination of the excitation and ionisation states of coronal plasma structures is crucial.

  17. Solar radiation and human health

    NASA Astrophysics Data System (ADS)

    Juzeniene, Asta; Brekke, Pål; Dahlback, Arne; Andersson-Engels, Stefan; Reichrath, Jörg; Moan, Kristin; Holick, Michael F.; Grant, William B.; Moan, Johan

    2011-06-01

    The Sun has played a major role in the development of life on Earth. In Western culture, people are warned against Sun exposure because of its adverse effects: erythema, photoimmunosuppression, photoageing, photocarcinogenesis, cataracts and photokeratitis. However, Sun exposure is also beneficial, since moderate doses give beneficial physiological effects: vitamin D synthesis, reduction of blood pressure and mental health. Shortage of Sun exposure may be even more dangerous to human health than excessive exposure. Avoiding Sun exposure leads to vitamin D deficiency which is associated not only with rickets and osteomalacia, but also with increased risk of cardiovascular disease, multiple sclerosis, rheumatoid arthritis, diabetes, influenza, many types of cancer and adverse pregnancy outcomes. Solar radiation induces nitric oxide release in tissue and immediate pigment darkening which certainly play important roles, although these are still unknown. Action spectra relevant for health are described. We will also review what is known about spectral and intensity variations of terrestrial solar radiation as well as its penetration through the atmosphere and into human skin and tissue.

  18. Exploration of solar radiation data from three geo-political zones in Nigeria.

    PubMed

    Adejumo, Adebowale O; Suleiman, Esivue A; Okagbue, Hilary I

    2017-08-01

    In this paper, readings of solar radiation received at three meteorological sites in Nigeria were analysed. Analysis of Variance (ANOVA) statistical test was carried out on the data set to observe the significant differences on radiations for each quarter of the specified years. The data were obtained in raw form from Nigerian Meteorological Agency (NIMET), Oshodi, Lagos. In order to get a clear description and visualization of the fluctuations of the radiation data, each year were considered independently, where it was discovered that for the 3rd quarter of each year, there is a great fall in the intensity of the solar radiation to as low as 73.27 (W/m 2 ), 101.66 (W/m 2 ), 158.51 (W/m 2 ) for Ibadan, Port-Harcourt and Sokoto respectively. A detailed data description is available for the averages across months for each quarter. The data can provide insights on the health implications of exposure to solar radiation and the effect of solar radiation on climate change, food production, rainfall and flood patterns.

  19. Preliminary Results on Design and Implementation of a Solar Radiation Monitoring System

    PubMed Central

    Balan, Mugur C.; Damian, Mihai; Jäntschi, Lorentz

    2008-01-01

    The paper presents a solar radiation monitoring system, using two scientific pyranometers and an on-line computer home-made data acquisition system. The first pyranometer measures the global solar radiation and the other one, which is shaded, measure the diffuse radiation. The values of total and diffuse solar radiation are continuously stored into a database on a server. Original software was created for data acquisition and interrogation of the created system. The server application acquires the data from pyranometers and stores it into a database with a baud rate of one record at 50 seconds. The client-server application queries the database and provides descriptive statistics. A web interface allow to any user to define the including criteria and to obtain the results. In terms of results, the system is able to provide direct, diffuse and total radiation intensities as time series. Our client-server application computes also derivate heats. The ability of the system to evaluate the local solar energy potential is highlighted. PMID:27879746

  20. Use of solar radiation for continuous water disinfection in isolated areas.

    PubMed

    Fabbricino, M; d'Antonio, L

    2012-01-01

    This study involved investigation of solar water disinfection in continuously working treatment plants with the aim of producing safe drinking water in isolated areas. Results were obtained from experimental work carried out on a pilot plant operating in different configurations. The use of a simple device to increase solar radiation intensity (solar concentrator) was tested, with results showing that it facilitated better performance. A comparison between transparent and black-painted glass reactors was also made, showing no difference between the two casings. Further, the effect of an increase in water temperature was analysed in detail. Temperature was found to play an important role in the disinfection process, even in cases of limited solar radiation intensities, although a synergistic effect of water heating and solar radiation for effective microbial inactivation was confirmed. Reactor design is also discussed, highlighting the importance of having a plug flow to avoid zones that do not contribute to the overall effectiveness of the process.

  1. Solar spectral irradiance variability in cycle 24: observations and models

    NASA Astrophysics Data System (ADS)

    Marchenko, Sergey V.; DeLand, Matthew T.; Lean, Judith L.

    2016-12-01

    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2) and Solar Radiation and Climate Experiment (SORCE) instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2) and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) models.

  2. Comparison of Solar UVA and UVB Radiation Measured in Selangor, Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamarudin, S. U.; Gopir, G.; Yatim, B.

    The solar ultraviolet A (UVA) radiation data was measured at Physics Building, Universiti Kebangsaan Malaysia (2 degree sign 55' N, 101 degree sign 46' E, 50m asl) by the Xplorer GLX Pasco that connected to UVA Light sensor. The measured solar UVA data were compared with the total daily solar ultraviolet B (UVB) radiation data recorded by the Malaysian Metrological Department at Petaling Jaya, Malaysia (3 degree sign 06' N, 101 degree sign 39' E, 50m asl) for 18 days in year 2007. The daily total average of UVA radiation received is (298{+-}105) kJm{sup -2} while the total daily maximummore » is (600{+-}56) kJm{sup -2}. From the analysis, it shows that the values of UVA radiation data were higher than UVB radiation data with the average ratio of 6.41% between 3-14%. A weak positive correlation was found (the correlation coefficient, r, is 0.22). The amount of UVA radiation that reached the earth surface is less dependence on UVB radiation and the factors were discussed.« less

  3. Potential of Solar Energy in Kota Kinabalu, Sabah: An Estimate Using a Photovoltaic System Model

    NASA Astrophysics Data System (ADS)

    Markos, F. M.; Sentian, J.

    2016-04-01

    Solar energy is becoming popular as an alternative renewable energy to conventional energy source, particularly in the tropics, where duration and intensity of solar radiation are longer. This study is to assess the potential of solar energy generated from solar for Kota Kinabalu, a rapidly developing city in the State of Sabah, Malaysia. A year data of solar radiation was obtained using pyranometer, which was located at Universiti Malaysia Sabah (6.0367° N, 116.1186° E). It was concluded that the annual average solar radiation received in Kota Kinabalu was 182 W/m2. In estimating the potential energy generated from solar for Kota Kinabalu city area, a photovoltaic (PV) system model was used. The results showed that, Kota Kinabalu is estimated to produce 29,794 kWh/m2 of electricity from the solar radiation received in a year. This is equivalent to 0.014 MW of electricity produced just by using one solar panel. Considering the power demand in Sabah by 2020 is 1,331 MW, this model showed that the solar energy can contribute around 4% of energy for power demand, with 1 MW capacity of the PV system. 1 MW of PV system installation will require about 0.0328% from total area of the city. This assessment could suggest that, exploration for solar power energy as an alternative source of renewable energy in the city can be optimised and designed to attain significant higher percentage of contribution to the energy demand in the state.

  4. Comparison of three approaches to model grapevine organogenesis in conditions of fluctuating temperature, solar radiation and soil water content.

    PubMed

    Pallas, B; Loi, C; Christophe, A; Cournède, P H; Lecoeur, J

    2011-04-01

    There is increasing interest in the development of plant growth models representing the complex system of interactions between the different determinants of plant development. These approaches are particularly relevant for grapevine organogenesis, which is a highly plastic process dependent on temperature, solar radiation, soil water deficit and trophic competition. The extent to which three plant growth models were able to deal with the observed plasticity of axis organogenesis was assessed. In the first model, axis organogenesis was dependent solely on temperature, through thermal time. In the second model, axis organogenesis was modelled through functional relationships linking meristem activity and trophic competition. In the last model, the rate of phytomer appearence on each axis was modelled as a function of both the trophic status of the plant and the direct effect of soil water content on potential meristem activity. The model including relationships between trophic competition and meristem behaviour involved a decrease in the root mean squared error (RMSE) for the simulations of organogenesis by a factor nine compared with the thermal time-based model. Compared with the model in which axis organogenesis was driven only by trophic competition, the implementation of relationships between water deficit and meristem behaviour improved organogenesis simulation results, resulting in a three times divided RMSE. The resulting model can be seen as a first attempt to build a comprehensive complete plant growth model simulating the development of the whole plant in fluctuating conditions of temperature, solar radiation and soil water content. We propose a new hypothesis concerning the effects of the different determinants of axis organogenesis. The rate of phytomer appearance according to thermal time was strongly affected by the plant trophic status and soil water deficit. Furthermore, the decrease in meristem activity when soil water is depleted does not result

  5. Solar radiation, cloudiness and longwave radiation over low-latitude glaciers: implications for mass-balance modelling

    NASA Astrophysics Data System (ADS)

    Mölg, Thomas; Cullen, Nicolas J.; Kaser, Georg

    Broadband radiation schemes (parameterizations) are commonly used tools in glacier mass-balance modelling, but their performance at high altitude in the tropics has not been evaluated in detail. Here we take advantage of a high-quality 2 year record of global radiation (G) and incoming longwave radiation (L↓) measured on Kersten Glacier, Kilimanjaro, East Africa, at 5873 m a.s.l., to optimize parameterizations of G and L↓. We show that the two radiation terms can be related by an effective cloud-cover fraction neff, so G or L↓ can be modelled based on neff derived from measured L↓ or G, respectively. At neff = 1, G is reduced to 35% of clear-sky G, and L↓ increases by 45-65% (depending on altitude) relative to clear-sky L↓. Validation for a 1 year dataset of G and L↓ obtained at 4850 m on Glaciar Artesonraju, Peruvian Andes, yields a satisfactory performance of the radiation scheme. Whether this performance is acceptable for mass-balance studies of tropical glaciers is explored by applying the data from Glaciar Artesonraju to a physically based mass-balance model, which requires, among others, G and L↓ as forcing variables. Uncertainties in modelled mass balance introduced by the radiation parameterizations do not exceed those that can be caused by errors in the radiation measurements. Hence, this paper provides a tool for inclusion in spatially distributed mass-balance modelling of tropical glaciers and/or extension of radiation data when only G or L↓ is measured.

  6. Think the way to measure the Earth Radiation Budget and the Total Solar Irradiance with a small satellites constellation

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Keckhut, P.; Damé, L.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.

    2018-05-01

    Within the past decade, satellites constellations have become possible and practical. One of the interest to use a satellites constellation is to measure the true Earth Radiation Imbalance, which is a crucial quantity for testing climate models and for predicting the future course of global warming. This measurement presents a high interest because the 2001-2010 decade has not shown the accelerating pace of global warming that most models predict, despite the fact that the greenhouse-gas radiative forcing continues to rise. All estimates (ocean heat content and top of atmosphere) show that over the past decade the Earth radiation imbalance ranges between 0.5 to 1W-2. Up to now, the Earth radiation imbalance has not been measured directly. The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar radiations (total solar irradiance) and the outgoing terrestrial radiations (top of atmosphere outgoing longwave radiations and shortwave radiations) onboard the same satellite, and ideally, with the same instrument. The incoming solar radiations and the outgoing terrestrial radiations are of nearly equal magnitude of the order of 340.5W-2. The objective is to measure these quantities over time by using differential Sun-Earth measurements (to counter calibration errors) with an accuracy better than 0.05Wm-2 at 1σ. It is also necessary to have redundant instruments to track aging in space in order to measure during a decade and to measure the global diurnal cycle with a dozen satellites. Solar irradiance and Earth Radiation Budget (SERB) is a potential first in orbit demonstration satellite. The SERB nano-satellite aims to measure on the same platform the different components of the Earth radiation budget and the total solar irradiance. Instrumental payloads (solar radiometer and Earth radiometers) can acquire the technical maturity for the future large missions (constellation that insure global measurement cover) by flying in a

  7. Characterizing the Radiation Survivability of Space Solar Cell Technologies for Heliospheric Missions

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Walker, D.; Mann, C. J.; Yue, Y.; Nocerino, J. C.; Smith, B. S.; Mulligan, T.

    2016-12-01

    Space solar cells are responsible for powering the majority of heliospheric space missions. This paper will discuss methods for characterizing space solar cell technologies for on-orbit operations that rely on a series of laboratory tests that include measuring the solar cells' beginning of life performance under simulated (e.g. AM0 or air mass zero) sunlight over different operating temperatures and observing their end of life performance following exposure to laboratory-generated charged particle radiation (protons and electrons). The Aerospace Corporation operates a proton implanter as well as electron gun facilities and collaborates with external radiation effects facilities to expose space solar cells or other space technologies to representative space radiation environments (i.e. heliosphere or magnetosphere of Earth or other planets), with goals of characterizing how the technologies perform over an anticipated space mission timeline and, through the application of precision diagnostic capabilities, understanding what part of the solar cell is impacted by varying space radiation environments. More recently, Aerospace has been hosting solar cell flight tests on its previously-flown CubeSat avionics bus, providing opportunities to compare the laboratory tests to on-orbit observations. We hope through discussion of the lessons learned and methods we use to characterize how solar cells perform after space radiation exposure that similar methodology could be adopted by others to improve the state of knowledge on the survivability of other space technologies required for future space missions.

  8. Prompt Disappearance and Emergence of Radiation Belt Magnetosonic Waves Induced by Solar Wind Dynamic Pressure Variations

    NASA Astrophysics Data System (ADS)

    Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui

    2018-01-01

    Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magnetosonic waves. On the contrary, because of the adiabatic acceleration of the ring current protons by the solar wind dynamic pressure enhancement, magnetosonic waves emerged suddenly. In the absence of impulsive injections of hot protons, magnetosonic waves were observable even only during the time period with the enhanced solar wind dynamic pressure. Our results demonstrate that the solar wind dynamic pressure is an essential parameter for modeling of magnetosonic waves and their effect on the radiation belt electrons.

  9. Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora

    NASA Technical Reports Server (NTRS)

    Emery, Barbara A.; Richardson, Ian G.; Evans, David S.; Rich, Frederick J.; Wilson, Gordon R.

    2011-01-01

    The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from S to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005 -2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (approx.1980, approx.1990, and approx. 2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995-1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27 -day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the > 2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods

  10. Effects of solar radiation pressure torque on the rotational motion of an artificial satellite

    NASA Technical Reports Server (NTRS)

    Zanardi, Maria Cecilia F. P. S.; Vilhenademoraes, Rodolpho

    1992-01-01

    The motion of an artificial satellite about its center of mass is studied considering torques due to the gravity gradient and direct solar radiation pressure. A model for direct solar radiation torque is derived for a circular cylindrical satellite. An analytical solution is obtained by the method of variation of the parameters. This solution shows that the angular variables have secular variation but that the modulus of the rotational angular momentum, the projection of rotational angular momentum on the z axis of the moment of inertia and inertial axis z, suffer only periodic variations. Considering a hypothetical artificial satellite, a numerical application is demonstrated.

  11. Effects of Mg II and Ca II ionization on ab-initio solar chromosphere models

    NASA Technical Reports Server (NTRS)

    Rammacher, W.; Cuntz, M.

    1991-01-01

    Acoustically heated solar chromosphere models are computed considering radiation damping by (non-LTE) emission from H(-) and by Mg II and Ca II emission lines. The radiative transfer equations for the Mg II k and Ca II K emission lines are solved using the core-saturation method with complete redistribution. The Mg II k and Ca II K cooling rates are compared with the VAL model C. Several substantial improvements over the work of Ulmschneider et al. (1987) are included. It is found that the rapid temperature rises caused by the ionization of Mg II are not formed in the middle chromosphere, but occur at larger atmospheric heights. These models represent the temperature structure of the 'real' solar chromosphere much better. This result is a major precondition for the study of ab-initio models for solar flux tubes based on MHD wave propagation and also for ab-initio models for the solar transition layer.

  12. Error sources in the real-time NLDAS incident surface solar radiation and an evaluation against field observations and the NARR

    NASA Astrophysics Data System (ADS)

    Park, G.; Gao, X.; Sorooshian, S.

    2005-12-01

    The atmospheric model is sensitive to the land surface interactions and its coupling with Land surface Models (LSMs) leads to a better ability to forecast weather under extreme climate conditions, such as droughts and floods (Atlas et al. 1993; Beljaars et al. 1996). However, it is still questionable how accurately the surface exchanges can be simulated using LSMs, since terrestrial properties and processes have high variability and heterogeneity. Examinations with long-term and multi-site surface observations including both remotely sensed and ground observations are highly needed to make an objective evaluation on the effectiveness and uncertainty of LSMs at different circumstances. Among several atmospheric forcing required for the offline simulation of LSMs, incident surface solar radiation is one of the most significant components, since it plays a major role in total incoming energy into the land surface. The North American Land Data Assimilation System (NLDAS) and North American Regional Reanalysis (NARR) are two important data sources providing high-resolution surface solar radiation data for the use of research communities. In this study, these data are evaluated against field observations (AmeriFlux) to identify their advantages, deficiencies and sources of errors. The NLDAS incident solar radiation shows a pretty good agreement in monthly mean prior to the summer of 2001, while it overestimates after the summer of 2001 and its bias is pretty close to the EDAS. Two main error sources are identified: 1) GOES solar radiation was not used in the NLDAS for several months in 2001 and 2003, and 2) GOES incident solar radiation when available, was positively biased in year 2002. The known snow detection problem is sometimes identified in the NLDAS, since it is inherited from GOES incident solar radiation. The NARR consistently overestimates incident surface solar radiation, which might produce erroneous outputs if used in the LSMs. Further attention is given to

  13. Updated Model of the Solar Energetic Proton Environment in Space

    NASA Astrophysics Data System (ADS)

    Jiggens, Piers; Heynderickx, Daniel; Sandberg, Ingmar; Truscott, Pete; Raukunen, Osku; Vainio, Rami

    2018-05-01

    The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) model provides environment specification outputs for all aspects of the Solar Energetic Particle (SEP) environment. The model is based upon a thoroughly cleaned and carefully processed data set. Herein the evolution of the solar proton model is discussed with comparisons to other models and data. This paper discusses the construction of the underlying data set, the modelling methodology, optimisation of fitted flux distributions and extrapolation of model outputs to cover a range of proton energies from 0.1 MeV to 1 GeV. The model provides outputs in terms of mission cumulative fluence, maximum event fluence and peak flux for both solar maximum and solar minimum periods. A new method for describing maximum event fluence and peak flux outputs in terms of 1-in-x-year SPEs is also described. SAPPHIRE proton model outputs are compared with previous models including CREME96, ESP-PSYCHIC and the JPL model. Low energy outputs are compared to SEP data from ACE/EPAM whilst high energy outputs are compared to a new model based on GLEs detected by Neutron Monitors (NMs).

  14. Numerical Study on Radiation Effects to Evaporator in Natural Vacuum Solar Desalination System

    NASA Astrophysics Data System (ADS)

    Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.; Ambarita, H.

    2018-01-01

    The need for clean water is increasing day by day due to the increasing factor of living standard of mankind, hence designed natural vacuum solar desalination. The natural vacuum Solar desalination is studied experimentally. A small-scale natural vacuum desalination study consists of evaporator and condenser as the main components designed and manufactured. To transfer heat from the solar collector into the evaporator, the fluid transfer system uses a pump powered by a solar cell. Thus, solar collectors are called hybrid solar collectors. The main purpose of this exposure is to know the characteristics of the radiation effects on incoming energy on the evaporator during the process. This system is tested by exposing the unit to the solar radiation in the 4th floor building in Medan. The experiment was conducted from 8.00 to 16.00 local time. The results show that natural vacuum solar desalination with hybrid solar collectors can be operated perfectly. If the received radiation is high, then the incoming energy received by the evaporator will also be high. From measurements with HOBO microstation, obtained the highest radiation 695.6 W/m2, and the calculation result of incoming energy received evaporator obtained highest result 1807.293 W.

  15. Improvement and Application of Atmospheric Radiative Transfer Models for Prediction of the Climatic Effects of Aerosol

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Mlawer, Eli J.; Sokolik, Irina N.; Clough, Shepard A.; Toon, Owen B.

    1998-01-01

    This paper presents a radiative transfer model that has been developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. The model is designed to be included in numerical climate models. To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. As the thermal spectrum has been treated in other publications, we focus here on the solar part of the spectrum. We perform several example calculations focussing on the question of absorption of solar radiation by gases and aerosols.

  16. Improvement and Application of Atmospheric Radiative Transfer Models for Prediction of the Climatic Effects of Aerosol

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.

    1998-01-01

    This paper presents a radiative transfer model that has been developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. The model is designed to be included in numerical climate models. To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. As the thermal spectrum has been treated in other publications we focus here on the solar part of the spectrum. We perform several example calculations focussing on the question of absorption of solar radiation by gases and aerosols.

  17. Solar Radiation and Cloud Radiative Forcing in the Pacific Warm Pool Estimated Using TOGA COARE Measurements

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chou, Shu-Hsien; Zhao, Wenzhong

    1999-01-01

    The energy budget of the tropical western Pacific (TWP) is particularly important because this is one of the most energetic convection regions on the Earth. Nearly half of the solar radiation incident at the top of atmosphere is absorbed at the surface and only about 22% absorbed in the atmosphere. A large portion of the excess heat absorbed at the surface is transferred to the atmosphere through evaporation, which provides energy and water for convection and precipitation. The western equatorial Pacific is characterized by the highest sea surface temperature (SST) and heaviest rainfall in the world ocean. A small variation of SST associated with the eastward shift of the warm pool during El-Nino/Souther Oscillation changes the atmospheric circulation pattern and affects the global climate. In a study of the TWP surface heat and momentum fluxes during the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) Intensive observing period (IOP) from November 1992 to February have found that the solar radiation is the most important component of the surface energy budget, which undergoes significant temporal and spatial variation. The variations are influenced by the two 40-50 days Madden Julian Oscillations (MJOs) which propagated eastward from the Indian Ocean to the Central Pacific during the IOP. The TWP surface solar radiation during the COARE IOP was investigated by a number of studies. In addition, the effects of clouds on the solar heating of the atmosphere in the TWP was studied using energy budget analysis. In this study, we present some results of the TWP surface solar shortwave or SW radiation budget and the effect of clouds on the atmospheric solar heating using the surface radiation measurements and Japan's Geostationary Meteorological Satellite 4 radiance measurements during COARE IOP.

  18. Radiation Environments for Future Human Exploration Throughout the Solar System.

    NASA Astrophysics Data System (ADS)

    Schwadron, N.; Gorby, M.; Linker, J.; Riley, P.; Torok, T.; Downs, C.; Spence, H. E.; Desai, M. I.; Mikic, Z.; Joyce, C. J.; Kozarev, K. A.; Townsend, L. W.; Wimmer-Schweingruber, R. F.

    2016-12-01

    Acute space radiation hazards pose one of the most serious risks to future human and robotic exploration. The ability to predict when and where large events will occur is necessary in order to mitigate their hazards. The largest events are usually associated with complex sunspot groups (also known as active regions) that harbor strong, stressed magnetic fields. Highly energetic protons accelerated very low in the corona by the passage of coronal mass ejection (CME)-driven compressions or shocks and from flares travel near the speed of light, arriving at Earth minutes after the eruptive event. Whether these particles actually reach Earth, the Moon, Mars (or any other point) depends on their transport in the interplanetary magnetic field and their magnetic connection to the shock. Recent contemporaneous observations during the largest events in almost a decade show the unique longitudinal distributions of this ionizing radiation broadly distributed from sources near the Sun and yet highly isolated during the passage of CME shocks. Over the last decade, we have observed space weather events as the solar wind exhibits extremely low densities and magnetic field strengths, representing states that have never been observed during the space age. The highly abnormal solar activity during cycles 23 and 24 has caused the longest solar minimum in over 80 years and continues into the unusually small solar maximum of cycle 24. As a result of the remarkably weak solar activity, we have also observed the highest fluxes of galactic cosmic rays in the space age and relatively small particle radiation events. We have used observations from LRO/CRaTER to examine the implications of these highly unusual solar conditions for human space exploration throughout the inner solar system. While these conditions are not a show-stopper for long-duration missions (e.g., to the Moon, an asteroid, or Mars), galactic cosmic ray radiation remains a significant and worsening factor that limits

  19. Effects of solar UV-B radiation on aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Häder, D.-P.

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO 2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position

  20. Effects of solar UV-B radiation on aquatic ecosystems.

    PubMed

    Hader, D P

    2000-01-01

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position

  1. SOLAR UV RADIATION AND AQUATIC BIOGEOCHEMISTRY

    EPA Science Inventory

    During the past decade significant interest has developed in the influence of solar UV radiation on biogeochemical cycles in surface waters of lakes and the sea. A major portion of this research has focused on photoreactions of the colored component of dissolved organic matter, ...

  2. CODE's new solar radiation pressure model for GNSS orbit determination

    NASA Astrophysics Data System (ADS)

    Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A.

    2015-08-01

    The Empirical CODE Orbit Model (ECOM) of the Center for Orbit Determination in Europe (CODE), which was developed in the early 1990s, is widely used in the International GNSS Service (IGS) community. For a rather long time, spurious spectral lines are known to exist in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates, which could recently be attributed to the ECOM. These effects grew creepingly with the increasing influence of the GLONASS system in recent years in the CODE analysis, which is based on a rigorous combination of GPS and GLONASS since May 2003. In a first step we show that the problems associated with the ECOM are to the largest extent caused by the GLONASS, which was reaching full deployment by the end of 2011. GPS-only, GLONASS-only, and combined GPS/GLONASS solutions using the observations in the years 2009-2011 of a global network of 92 combined GPS/GLONASS receivers were analyzed for this purpose. In a second step we review direct solar radiation pressure (SRP) models for GNSS satellites. We demonstrate that only even-order short-period harmonic perturbations acting along the direction Sun-satellite occur for GPS and GLONASS satellites, and only odd-order perturbations acting along the direction perpendicular to both, the vector Sun-satellite and the spacecraft's solar panel axis. Based on this insight we assess in the third step the performance of four candidate orbit models for the future ECOM. The geocenter coordinates, the ERP differences w. r. t. the IERS 08 C04 series of ERPs, the misclosures for the midnight epochs of the daily orbital arcs, and scale parameters of Helmert transformations for station coordinates serve as quality criteria. The old and updated ECOM are validated in addition with satellite laser ranging (SLR) observations and by comparing the orbits to those of the IGS and other analysis centers. Based on all tests, we present a new extended ECOM which

  3. A Polytropic Model of the Solar Interior

    NASA Astrophysics Data System (ADS)

    Calvo-Mozo, B.; Buitrago Casas, J. C.; Martinez Oliveros, J. C.

    2015-12-01

    In this work we considered different processes in the solar interior that can be described using polytropes. This assumption implies a radially variable continuous polytropic exponent, that is, our model is a multi-polytropic model of the Sun. We derived the equations for this type of multi-polytropic structure and solved them using numerical integration methods. Both, the exponent and proportionality factor in the polytropic model equation of state were taken as input functions, for each spherical layer in the solar interior. Using the spatial distribution of the density and pressure terms from a solar standard model (SSM) we obtained the variable with depth polytropic exponents. We found that the radial distribution of these exponents show four different zones. These can be interpreted as a first region where the energy transport is controlled by radiation. The second region is defined by a sudden change in the polytropic index, which can be associated to the tachocline, followed by a region with a nearly constant polytropic index which suits well a convective zone. Finally, the exponent decreases radially at the photosphere.

  4. Ultrafast High Accuracy PCRTM_SOLAR Model for Cloudy Atmosphere

    NASA Technical Reports Server (NTRS)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Yang, Ping; Wang, Chenxi

    2015-01-01

    An ultrafast high accuracy PCRTM_SOLAR model is developed based on PCA compression and principal component-based radiative transfer model (PCRTM). A fast algorithm for simulation of multi-scattering properties of cloud and/or aerosols is integrated into the fast infrared PCRTM. We completed radiance simulation and training for instruments, such as IASI, AIRS, CrIS, NASTI and SHIS, under diverse conditions. The new model is 5 orders faster than 52-stream DISORT with very high accuracy for cloudy sky radiative transfer simulation. It is suitable for hyperspectral remote data assimilation and cloudy sky retrievals.

  5. Implementation of Bessel's method for solar eclipses prediction in the WRF-ARW model

    NASA Astrophysics Data System (ADS)

    Montornes, Alex; Codina, Bernat; Zack, John W.; Sola, Yolanda

    2016-05-01

    Solar eclipses are predictable astronomical events that abruptly reduce the incoming solar radiation into the Earth's atmosphere, which frequently results in non-negligible changes in meteorological fields. The meteorological impacts of these events have been analyzed in many studies since the late 1960s. The recent growth in the solar energy industry has greatly increased the interest in providing more detail in the modeling of solar radiation variations in numerical weather prediction (NWP) models for the use in solar resource assessment and forecasting applications. The significant impact of the recent partial and total solar eclipses that occurred in the USA (23 October 2014) and Europe (20 March 2015) on solar power generation have provided additional motivation and interest for including these astronomical events in the current solar parameterizations.Although some studies added solar eclipse episodes within NWP codes in the 1990s and 2000s, they used eclipse parameterizations designed for a particular case study. In contrast to these earlier implementations, this paper documents a new package for the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model that can simulate any partial, total or hybrid solar eclipse for the period 1950 to 2050 and is also extensible to a longer period. The algorithm analytically computes the trajectory of the Moon's shadow and the degree of obscuration of the solar disk at each grid point of the domain based on Bessel's method and the Five Millennium Catalog of Solar Eclipses provided by NASA, with a negligible computational time. Then, the incoming radiation is modified accordingly at each grid point of the domain.This contribution is divided in three parts. First, the implementation of Bessel's method is validated for solar eclipses in the period 1950-2050, by comparing the shadow trajectory with values provided by NASA. Latitude and longitude are determined with a bias lower than 5 x 10-3 degrees (i

  6. Tailoring Meridional and Seasonal Radiative Forcing by Sulfate Aerosol Solar Geoengineering

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Weisenstein, D. K.; Keith, D. W.

    2018-01-01

    We study the possibility of designing solar radiation management schemes to achieve a desired meridional radiative forcing (RF) profile using a two-dimensional chemistry-transport-aerosol model. Varying SO2 or H2SO4 injection latitude, altitude, and season, we compute RF response functions for a broad range of possible injection schemes, finding that linear combinations of these injection cases can roughly achieve RF profiles that have been proposed to accomplish various climate objectives. Globally averaged RF normalized by the sulfur injection rate (the radiative efficacy) is largest for injections at high altitudes, near the equator, and using emission of H2SO4 vapor into an aircraft wake to produce accumulation-mode particles. There is a trade-off between radiative efficacy and control as temporal and spatial control is best achieved with injections at lower altitudes and higher latitudes. These results may inform studies using more realistic models that couple aerosol microphysics, chemistry, and stratospheric dynamics.

  7. The radiative impact of cumulus cloudiness in a general circulation model

    NASA Technical Reports Server (NTRS)

    Moeng, C. H.; Randall, D. A.

    1982-01-01

    The effect of cumulus cloudiness on the radiational heating and, on other aspects of the climate were simulated by the GLAS Climate Model. An experiment in which the cumulus cloudiness is neglected completely for purposes of the solar and terrestrial radiation parameterizations was performed. The results are compared with those of a control run, in which 100% cumulus cloud cover is assumed. The net solar radiation input into the Earth atmosphere system is more realistic in the experiment, and the model's underprediction of the global mean outgoing thermal radiation at the top of the atmosphere is reduced. The results suggest that there is a positive feedback between cumulus convection and the radiation field. The upper troposphere is warmer in the experiment, the surface air temperature increases over land, and the thermal lows over the continents intensity.

  8. Prediction of the optimum surface orientation angles to achieve maximum solar radiation using Particle Swarm Optimization in Sabha City Libya

    NASA Astrophysics Data System (ADS)

    Mansour, F. A.; Nizam, M.; Anwar, M.

    2017-02-01

    This research aims to predict the optimum surface orientation angles in solar panel installation to achieve maximum solar radiation. Incident solar radiation is calculated using koronakis mathematical model. Particle Swarm Optimization (PSO) is used as computational method to find optimum angle orientation for solar panel installation in order to get maximum solar radiation. A series of simulation has been carried out to calculate solar radiation based on monthly, seasonally, semi-yearly and yearly period. South-facing was calculated also as comparison of proposed method. South-facing considers azimuth of 0°. Proposed method attains higher incident predictions than South-facing that recorded 2511.03 kWh/m2for monthly. It were about 2486.49 kWh/m2, 2482.13 kWh/m2and 2367.68 kWh/m2 for seasonally, semi-yearly and yearly. South-facing predicted approximately 2496.89 kWh/m2, 2472.40 kWh/m2, 2468.96 kWh/m2, 2356.09 kWh/m2for monthly, seasonally, semi-yearly and yearly periods respectively. Semi-yearly is the best choice because it needs twice adjustments of solar panel in a year. Yet it considers inefficient to adjust solar panel position in every season or monthly with no significant solar radiation increase than semi-yearly and solar tracking device still considers costly in solar energy system. PSO was able to predict accurately with simple concept, easy and computationally efficient. It has been proven by finding the best fitness faster.

  9. Validating solar and solar-like star opacities

    NASA Astrophysics Data System (ADS)

    Le Pennec, Maëlle; TURCK-CHIEZE, Sylvaine; RIBEYRE, Xavier; DUCRET, Jean-Eric; BLANCARD, Christophe; COSSE, Philippe; MONDET, Guillaume; FAUSSURIER, Gérald

    2015-08-01

    The Sun is, as being our closest star, a privilege place to test and validate physics. However, the solar physics is not yet completely understood. Indeed, since the recent update of the solar composition, there are differences between solar models and seismic data, visible on the solar sound speed profile comparison. This well established large discrepancy (Turck-Chièze et al. 2001, 2004, 2011, Christensen-Dalsgaard et al. 2009, Basu et al. 2015) could be linked to radiative transfer issue.Two directions of investigation are proposed. One possibility to explain this gap could be that the Sun produces slightly more energy that it liberates on its surface (around 5%). This energy could be transformed into macroscopic motions in the radiative zone, which are not taken into account in the solar standard model. Another explanation could be that the calculations of energy transport are not correctly taken into account either on the calculation of the Rosseland mean values or in the treatment of the radiative acceleration. This could have an impact on the determination of the internal solar abundances.Unfortunately, there are very few experiments to validate these calculations (Bailey et al. 2014). That's why we are proposing an opacity experiment on a high-energy laser like LMJ, in the conditions of the radiative zone (T=[2 - 15.106 K] and ρ=[0.2 - 150 g/cm3]). The aim is to measure the opacity of the most important contributors to the global opacity in this solar area : iron, oxygen and silicon. We are exploiting in that purpose a technical approach called the Double Ablation Front. During the laser-plasma interaction, the plasma radiative effects allow to reach these high temperatures and densities at LTE and validate or not plasma effects and line widths. We will show the principle of this technique and the results of our simulations on several elements.In the mean time, we are also exploiting new opacity calculations thanks to the OPAS code (Blancard et al. 2012

  10. Response of different regional online coupled models to aerosol-radiation interactions

    NASA Astrophysics Data System (ADS)

    Forkel, Renate; Balzarini, Alessandra; Brunner, Dominik; Baró, Rocio; Curci, Gabriele; Hirtl, Marcus; Honzak, Luka; Jiménez-Guerrero, Pedro; Jorba, Oriol; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Tuccella, Paolo; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela

    2016-04-01

    The importance of aerosol-meteorology interactions and their representation in online coupled regional atmospheric chemistry-meteorology models was investigated in COST Action ES1004 (EuMetChem, http://eumetchem.info/). Case study results from different models (COSMO-Muscat, COSMO-ART, and different configurations of WRF-Chem), which were applied for Europe as a coordinated exercise for the year 2010, are analyzed with respect to inter-model variability and the response of the different models to direct and indirect aerosol-radiation interactions. The main focus was on two episodes - the Russian heat wave and wildfires episode in July/August 2010 and a period in October 2010 with enhanced cloud cover and rain and including an of Saharan dust transport to Europe. Looking at physical plausibility the decrease in downward solar radiation and daytime temperature due to the direct aerosol effect is robust for all model configurations. The same holds for the pronounced decrease in cloud water content and increase in solar radiation for cloudy conditions and very low aerosol concentrations that was found for WRF-Chem when aerosol cloud interactions were considered. However, when the differences were tested for statistical significance no significant differences in mean solar radiation and mean temperature between the baseline case and the simulations including the direct and indirect effect from simulated aerosol concentrations were found over Europe for the October episode. Also for the fire episode differences between mean temperature and radiation from the simulations with and without the direct aerosol effect were not significant for the major part of the modelling domain. Only for the region with high fire emissions in Russia, the differences in mean solar radiation and temperature due to the direct effect were found to be significant during the second half of the fire episode - however only for a significance level of 0.1. The few observational data indicate that

  11. Real-Time Aircraft Cosmic Ray Radiation Exposure Predictions from the NAIRAS Model

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Tobiska, W.; Kress, B. T.; Xu, X.

    2012-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. There is also interest in extending NAIRAS to the LEO environment to address radiation hazard issues for the emerging commercial spaceflight industry. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. Real-time observations are required at a variety of locations within the geospace environment. The NAIRAS model is driven by real-time input data from ground-, atmospheric-, and space-based platforms. During the development of the NAIRAS model, new science questions and observational data gaps were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. The focus of this talk is to present the current capabilities of the NAIRAS model, discuss future developments in aviation radiation modeling and instrumentation, and propose strategies and methodologies of bridging known gaps in current modeling and observational capabilities.

  12. Comparison of Radiative Energy Flows in Observational Datasets and Climate Modeling

    NASA Technical Reports Server (NTRS)

    Raschke, Ehrhard; Kinne, Stefan; Rossow, William B.; Stackhouse, Paul W. Jr.; Wild, Martin

    2016-01-01

    This study examines radiative flux distributions and local spread of values from three major observational datasets (CERES, ISCCP, and SRB) and compares them with results from climate modeling (CMIP3). Examinations of the spread and differences also differentiate among contributions from cloudy and clear-sky conditions. The spread among observational datasets is in large part caused by noncloud ancillary data. Average differences of at least 10Wm(exp -2) each for clear-sky downward solar, upward solar, and upward infrared fluxes at the surface demonstrate via spatial difference patterns major differences in assumptions for atmospheric aerosol, solar surface albedo and surface temperature, and/or emittance in observational datasets. At the top of the atmosphere (TOA), observational datasets are less influenced by the ancillary data errors than at the surface. Comparisons of spatial radiative flux distributions at the TOA between observations and climate modeling indicate large deficiencies in the strength and distribution of model-simulated cloud radiative effects. Differences are largest for lower-altitude clouds over low-latitude oceans. Global modeling simulates stronger cloud radiative effects (CRE) by +30Wmexp -2) over trade wind cumulus regions, yet smaller CRE by about -30Wm(exp -2) over (smaller in area) stratocumulus regions. At the surface, climate modeling simulates on average about 15Wm(exp -2) smaller radiative net flux imbalances, as if climate modeling underestimates latent heat release (and precipitation). Relative to observational datasets, simulated surface net fluxes are particularly lower over oceanic trade wind regions (where global modeling tends to overestimate the radiative impact of clouds). Still, with the uncertainty in noncloud ancillary data, observational data do not establish a reliable reference.

  13. Effect of solar radiation on the functional components of mulberry (Morus alba L.) leaves.

    PubMed

    Sugiyama, Mari; Katsube, Takuya; Koyama, Akio; Itamura, Hiroyuki

    2016-08-01

    The functional components of mulberry leaves have attracted the attention of the health food industry, and increasing their concentrations is an industry goal. This study investigated the effects of solar radiation, which may influence the production of flavonol and 1-deoxynojirimycin (DNJ) functional components in mulberry leaves, by comparing a greenhouse (poor solar radiation) and outdoor (rich solar radiation) setting. The level of flavonol in leaves cultivated in the greenhouse was markedly decreased when compared with those cultivated outdoors. In contrast, the DNJ content in greenhouse-cultivated plants was increased only slightly when compared with those cultivated outdoors. Interestingly, the flavonol content was markedly increased in the upper leaves of mulberry trees that were transferred from a greenhouse to the outdoors compared with those cultivated only in the outdoors. Solar radiation conditions influence the synthesis of flavonol and DNJ, the functional components of mulberry leaves. Under high solar radiation, the flavonol level becomes very high but the DNJ level becomes slightly lower, suggesting that the impact of solar radiation is great on flavonol but small on DNJ synthesis. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009

    NASA Astrophysics Data System (ADS)

    Turnock, S. T.; Spracklen, D. V.; Carslaw, K. S.; Mann, G. W.; Woodhouse, M. T.; Forster, P. M.; Haywood, J.; Johnson, C. E.; Dalvi, M.; Bellouin, N.; Sanchez-Lorenzo, A.

    2015-08-01

    Substantial changes in anthropogenic aerosols and precursor gas emissions have occurred over recent decades due to the implementation of air pollution control legislation and economic growth. The response of atmospheric aerosols to these changes and the impact on climate are poorly constrained, particularly in studies using detailed aerosol chemistry-climate models. Here we compare the HadGEM3-UKCA (Hadley Centre Global Environment Model-United Kingdom Chemistry and Aerosols) coupled chemistry-climate model for the period 1960-2009 against extensive ground-based observations of sulfate aerosol mass (1978-2009), total suspended particle matter (SPM, 1978-1998), PM10 (1997-2009), aerosol optical depth (AOD, 2000-2009), aerosol size distributions (2008-2009) and surface solar radiation (SSR, 1960-2009) over Europe. The model underestimates observed sulfate aerosol mass (normalised mean bias factor (NMBF) = -0.4), SPM (NMBF = -0.9), PM10 (NMBF = -0.2), aerosol number concentrations (N30 NMBF = -0.85; N50 NMBF = -0.65; and N100 NMBF = -0.96) and AOD (NMBF = -0.01) but slightly overpredicts SSR (NMBF = 0.02). Trends in aerosol over the observational period are well simulated by the model, with observed (simulated) changes in sulfate of -68 % (-78 %), SPM of -42 % (-20 %), PM10 of -9 % (-8 %) and AOD of -11 % (-14 %). Discrepancies in the magnitude of simulated aerosol mass do not affect the ability of the model to reproduce the observed SSR trends. The positive change in observed European SSR (5 %) during 1990-2009 ("brightening") is better reproduced by the model when aerosol radiative effects (ARE) are included (3 %), compared to simulations where ARE are excluded (0.2 %). The simulated top-of-the-atmosphere aerosol radiative forcing over Europe under all-sky conditions increased by > 3.0 W m-2 during the period 1970-2009 in response to changes in anthropogenic emissions and aerosol concentrations.

  15. Simulation of the radiation exposure in space during a large solar energetic particle event with GEANT4

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Berger, Thomas; Puchalska, Monika; Reitz, Guenther

    The radiation field in space is complex due to the various contributing sources and astronauts at the International Space Station (ISS) in low Earth orbit or beyond are exposed to significantly increased doses compared to on ground or in the lower atmosphere. The main sources of the increased radiation level are Galactic Cosmic Ray (GCR) particles, mainly fully charged ions from hydrogen to iron with energies up to hundreds of GeV per nucleon and more, trapped protons from the radiation belts with energies up to several hundreds of MeV, and solar energetic particles up to several GeV released in large eruptions on the sun related to solar x-ray flares and coronal mass ejections. While the intensities of Galactic Cosmic Rays and trapped protons are relatively stable and changing slowly over the solar cycle, solar energetic particle events last for several hours up to days and are characterized by strong increases in the particle intensity. The radiation exposure during a large particle event can be very harmful to astronauts especially during extra vehicular activities and outside the protective magnetic field of the Earth. The MATROSHKA human phantom was and is used on the International Space Station to measure the radiation exposure in and outside ISS in order to evaluate the radiation risk in low Earth orbit. A voxel-based description of the MATROSHKA phantom (NUNDO-Numerical RANDO Model) was used in the present work to numerically estimate the radiation exposure of the human body and the individual organs during a large solar particle event. The transport of primary protons following an exponential energy distribution was simulated in order to calculate the energy deposition and organ doses in the MATROSHKA phantom during such an event taking into account different amounts of shielding provided by a surrounding aluminum shell. The primary particle energy distribution used in this work follows the description of the spectrum of the solar energetic particle event

  16. Solar radiation as a forest management tool: a primer of principles and application

    Treesearch

    Howard G. Halverson; James L. Smith

    1979-01-01

    Forests are products of solar radiation use. The sun also drives the hydrologic cycle on forested watersheds. Some basic concepts of climatology and solar radiation are summarized in including earth-sun relations, polar tilt, solar energy, terrestrial energy, energy balance, and local energy. An example shows how these principles can be applied in resource management....

  17. Evolution of the solar radiative forcing on climate during the Holocene

    NASA Astrophysics Data System (ADS)

    Vieira, Luis Eduardo; Solanki, Sami K.; Krivova, Natalie

    The main external heating source of the Earth's coupled atmosphere-ocean system is the solar radiative energy input. The variability of this energy source produces corresponding changes on the coupled system. However, there is still significant uncertainty on the level of changes. One way to distinguish the influence of the Sun on the climate from other sources is to search for its influence in the pre-industrial period, when the influence of human activities on the atmosphere composition and Earth's surface properties can be neglected. Such studies require long time series of solar and geophysical parameters, ideally covering the whole Holocene. Here, we compute the total and spectral irradiance for the Holocene employing the reconstructions of the open flux and sunspot number obtained from the cosmogenic isotope 14C. The model employed in this study is identical to the spectral and total irradiance reconstruction (SATIRE) models employed to study these parameters on time scales from days to centuries, but adapted to work with decadal averaged data. The model is tested by comparing to the total and spectral solar irradiance reconstructions from the sunspot number for the last 4 centuries. We also discuss limits and uncertainties of the model.

  18. Development of gridded solar radiation data over Belgium based on Meteosat and in-situ observations

    NASA Astrophysics Data System (ADS)

    Journée, Michel; Vanderveken, Gilles; Bertrand, Cédric

    2013-04-01

    Knowledge on solar resources is highly important for all forms of solar energy applications. With the recent development in solar-based technologies national meteorological services are faced with increasing demands for high-quality and reliable site-time specific solar resource information. Traditionally, solar radiation is observed by means of networks of meteorological stations. Costs for installation and maintenance of such networks are very high and national networks comprise only few stations. Consequently the availability of ground-based solar radiation measurements has proven to be spatially and temporally inadequate for many applications. To overcome such a limitation, a major effort has been undertaken at the Royal Meteorological Institute of Belgium (RMI) to provide the solar energy industry, the electricity sector, governments, and renewable energy organizations and institutions with the most suitable and accurate information on the solar radiation resources at the Earth's surface over the Belgian territory. Only space-based observations can deliver a global coverage of the solar irradiation impinging on horizontal surface at the ground level. Because only geostationary data allow to capture the diurnal cycle of the solar irradiance at the Earth's surface, a method that combines information from Meteosat Second Generation satellites and ground-measurement has been implemented at RMI to generate high resolution solar products over Belgium on an operational basis. Besides these new products, the annual and seasonal variability of solar energy resource was evaluated, solar radiation climate zones were defined and the recent trend in solar radiation was characterized.

  19. Determination of solar proton fluxes and energies at high solar latitudes by UV radiation measurements

    NASA Technical Reports Server (NTRS)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The latitudinal variation of the solar proton flux and energy causes a density increase at high solar latitudes of the neutral gas penetrating the heliosphere. Measurements of the neutral density by UV resonance radiation observations from interplanetary spacecraft thus permit deductions on the dependence of the solar proton flux on heliographic latitude. Using both the results of Mariner 10 measurements and of other off-ecliptic solar wind observations, the values of the solar proton fluxes and energies at polar heliographic latitudes are determined for several cases of interest. The Mariner 10 analysis, together with IPS results, indicate a significant decrease of the solar proton flux at polar latitudes.

  20. Solar cosmic rays as a specific source of radiation risk during piloted space flight.

    PubMed

    Petrov, V M

    2004-01-01

    Solar cosmic rays present one of several radiation sources that are unique to space flight. Under ground conditions the exposure to individuals has a controlled form and radiation risk occurs as stochastic radiobiological effects. Existence of solar cosmic rays in space leads to a stochastic mode of radiation environment as a result of which any radiobiological consequences of exposure to solar cosmic rays during the flight will be probabilistic values. In this case, the hazard of deterministic effects should also be expressed in radiation risk values. The main deterministic effect under space conditions is radiation sickness. The best dosimetric functional for its analysis is the blood forming organs dose equivalent but not an effective dose. In addition, the repair processes in red bone marrow affect strongly on the manifestation of this pathology and they must be taken into account for radiation risk assessment. A method for taking into account the mentioned above peculiarities for the solar cosmic rays radiation risk assessment during the interplanetary flights is given in the report. It is shown that radiation risk of deterministic effects defined, as the death probability caused by radiation sickness due to acute solar cosmic rays exposure, can be comparable to risk of stochastic effects. Its value decreases strongly because of the fractional mode of exposure during the orbital movement of the spacecraft. On the contrary, during the interplanetary flight, radiation risk of deterministic effects increases significantly because of the residual component of the blood forming organs dose from previous solar proton events. The noted quality of radiation responses must be taken into account for estimating radiation hazard in space. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  1. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    PubMed

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.

  2. Solar irradiance changes and photobiological effects at earth's surface following astrophysical ionizing radiation events.

    PubMed

    Thomas, Brian C; Neale, Patrick J; Snyder, Brock R

    2015-03-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance but that relative estimates for increase in exposure to DNA-damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.

  3. Spatial and Temporal Variabilities of Solar and Longwave Radiation Fluxes below a Coniferous Forest in the French Alps

    NASA Astrophysics Data System (ADS)

    Sicart, J. E.; Ramseyer, V.; Lejeune, Y.; Essery, R.; Webster, C.; Rutter, N.

    2017-12-01

    At high altitudes and latitudes, snow has a large influence on hydrological processes. Large fractions of these regions are covered by forests, which have a strong influence on snow accumulation and melting processes. Trees absorb a large part of the incoming shortwave radiation and this heat load is mostly dissipated as longwave radiation. Trees shelter the snow surface from wind, so sub-canopy snowmelt depends mainly on the radiative fluxes: vegetation attenuates the transmission of shortwave radiation but enhances longwave irradiance to the surface. An array of 13 pyranometers and 11 pyrgeometers was deployed on the snow surface below a coniferous forest at the CEN-MeteoFrance Col de Porte station in the French Alps (1325 m asl) during the 2017 winter in order to investigate spatial and temporal variabilities of solar and infrared irradiances in different meteorological conditions. Sky view factors measured with hemispherical photographs at each radiometer location were in a narrow range from 0.2 to 0.3. The temperature of the vegetation was measured with IR thermocouples and an IR camera. In clear sky conditions, the attenuation of solar radiation by the canopy reached 96% and its spatial variability exceeded 100 W m-2. Longwave irradiance varied by 30 W m-2 from dense canopy to gap areas. In overcast conditions, the spatial variabilities of solar and infrared irradiances were reduced and remained closely related to the sky view factor. A simple radiative model taking into account the penetration through the canopy of the direct and diffuse solar radiation, and isotropic infrared emission of the vegetation as a blackbody emitter, accurately reproduced the dynamics of the radiation fluxes at the snow surface. Model results show that solar transmissivity of the canopy in overcast conditions is an excellent proxy of the sky view factor and the emitting temperature of the vegetation remained close to the air temperature in this typically dense Alpine forest.

  4. Absolute high spectral resolution measurements of surface solar radiation for detection of water vapour continuum absorption.

    PubMed

    Gardiner, T D; Coleman, M; Browning, H; Tallis, L; Ptashnik, I V; Shine, K P

    2012-06-13

    Solar-pointing Fourier transform infrared (FTIR) spectroscopy offers the capability to measure both the fine scale and broadband spectral structure of atmospheric transmission simultaneously across wide spectral regions. It is therefore suited to the study of both water vapour monomer and continuum absorption behaviours. However, in order to properly address this issue, it is necessary to radiatively calibrate the FTIR instrument response. A solar-pointing high-resolution FTIR spectrometer was deployed as part of the 'Continuum Absorption by Visible and Infrared radiation and its Atmospheric Relevance' (CAVIAR) consortium project. This paper describes the radiative calibration process using an ultra-high-temperature blackbody and the consideration of the related influence factors. The result is a radiatively calibrated measurement of the solar irradiation at the ground across the IR region from 2000 to 10 000 cm(-1) with an uncertainty of between 3.3 and 5.9 per cent. This measurement is shown to be in good general agreement with a radiative-transfer model. The results from the CAVIAR field measurements are being used in ongoing studies of atmospheric absorbers, in particular the water vapour continuum.

  5. Solar Activity, Ultraviolet Radiation and Consequences in Birds in Mexico City, 2001- 2002

    NASA Astrophysics Data System (ADS)

    Valdes, M.; Velasco, V.

    2008-12-01

    Anomalous behavior in commercial and pet birds in Mexico City was reported during 2002 by veterinarians at the Universidad Nacional Autonoma de Mexico. This was attributed to variations in the surrounding luminosity. The solar components, direct, diffuse, global, ultraviolet band A and B, as well as some meteorological parameters, temperature, relative humidity, and precipitation, were then analyzed at the Solar Radiation Laboratory. Although the total annual radiance of the previously mentioned radiation components did not show important changes, ultraviolet Band-B solar radiation did vary significantly. During 2001 the total annual irradiance , 61.05 Hjcm² to 58.32 Hjcm², was 1.6 standard deviations lower than one year later, in 2002 and increased above the mean total annual irradiance, to 65.75 Hjcm², 2.04 standard deviations, giving a total of 3.73 standard deviations for 2001-2002. Since these differences did not show up clearly in the other solar radiation components, daily extra-atmosphere irradiance was analyzed and used to calculate the total annual extra-atmosphere irradiance, which showed a descent for 2001. Our conclusions imply that Ultraviolet Band-B solar radiation is representative of solar activity and has an important impact on commercial activity related with birds.

  6. Radiative transfer of X-rays in the solar corona

    NASA Technical Reports Server (NTRS)

    Acton, L. W.

    1978-01-01

    The problem of resonance scattering of X-ray emission lines in the solar corona is investigated. For the resonance lines of some helium-like ions, significant optical depths are reached over distances small compared with the size of typical coronal features. A general integral equation for the transfer of resonance-line radiation under solar coronal conditions is derived. This expression is in a form useful for modeling the complex three-dimensional temperature and density structure of coronal active regions. The transfer equation is then cast in a form illustrating the terms which give rise to the attenuation or enhancement of the resonance-line intensity. The source function for helium-like oxygen (O VII) under coronal conditions is computed and discussed in terms of the relative importance of scattering.

  7. Two solar proton fluence models based on ground level enhancement observations

    NASA Astrophysics Data System (ADS)

    Raukunen, Osku; Vainio, Rami; Tylka, Allan J.; Dietrich, William F.; Jiggens, Piers; Heynderickx, Daniel; Dierckxsens, Mark; Crosby, Norma; Ganse, Urs; Siipola, Robert

    2018-01-01

    Solar energetic particles (SEPs) constitute an important component of the radiation environment in interplanetary space. Accurate modeling of SEP events is crucial for the mitigation of radiation hazards in spacecraft design. In this study we present two new statistical models of high energy solar proton fluences based on ground level enhancement (GLE) observations during solar cycles 19-24. As the basis of our modeling, we utilize a four parameter double power law function (known as the Band function) fits to integral GLE fluence spectra in rigidity. In the first model, the integral and differential fluences for protons with energies between 10 MeV and 1 GeV are calculated using the fits, and the distributions of the fluences at certain energies are modeled with an exponentially cut-off power law function. In the second model, we use a more advanced methodology: by investigating the distributions and relationships of the spectral fit parameters we find that they can be modeled as two independent and two dependent variables. Therefore, instead of modeling the fluences separately at different energies, we can model the shape of the fluence spectrum. We present examples of modeling results and show that the two methodologies agree well except for a short mission duration (1 year) at low confidence level. We also show that there is a reasonable agreement between our models and three well-known solar proton models (JPL, ESP and SEPEM), despite the differences in both the modeling methodologies and the data used to construct the models.

  8. Solar radiation pressure resonances in Low Earth Orbits

    NASA Astrophysics Data System (ADS)

    Alessi, Elisa Maria; Schettino, Giulia; Rossi, Alessandro; Valsecchi, Giovanni B.

    2018-01-01

    The aim of this work is to highlight the crucial role that orbital resonances associated with solar radiation pressure can have in Low Earth Orbit. We review the corresponding literature, and provide an analytical tool to estimate the maximum eccentricity which can be achieved for well-defined initial conditions. We then compare the results obtained with the simplified model with the results obtained with a more comprehensive dynamical model. The analysis has important implications both from a theoretical point of view, because it shows that the role of some resonances was underestimated in the past, and also from a practical point of view in the perspective of passive deorbiting solutions for satellites at the end-of-life.

  9. Short-term solar irradiance forecasting via satellite/model coupling

    DOE PAGES

    Miller, Steven D.; Rogers, Matthew A.; Haynes, John M.; ...

    2017-12-01

    The short-term (0-3 h) prediction of solar insolation for renewable energy production is a problem well-suited to satellite-based techniques. The spatial, spectral, temporal and radiometric resolution of instrumentation hosted on the geostationary platform allows these satellites to describe the current cloud spatial distribution and optical properties. These properties relate directly to the transient properties of the downwelling solar irradiance at the surface, which come in the form of 'ramps' that pose a central challenge to energy load balancing in a spatially distributed network of solar farms. The short-term evolution of the cloud field may be approximated to first order simplymore » as translational, but care must be taken in how the advection is handled and where the impacts are assigned. In this research, we describe how geostationary satellite observations are used with operational cloud masking and retrieval algorithms, wind field data from Numerical Weather Prediction (NWP), and radiative transfer calculations to produce short-term forecasts of solar insolation for applications in solar power generation. The scheme utilizes retrieved cloud properties to group pixels into contiguous cloud objects whose future positions are predicted using four-dimensional (space + time) model wind fields, selecting steering levels corresponding to the cloud height properties of each cloud group. The shadows associated with these clouds are adjusted for sensor viewing parallax displacement and combined with solar geometry and terrain height to determine the actual location of cloud shadows. For mid/high-level clouds at mid-latitudes and high solar zenith angles, the combined displacements from these geometric considerations are non-negligible. The cloud information is used to initialize a radiative transfer model that computes the direct and diffuse-sky solar insolation at both shadow locations and intervening clear-sky regions. Here, we describe the formulation of

  10. Short-term solar irradiance forecasting via satellite/model coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Steven D.; Rogers, Matthew A.; Haynes, John M.

    The short-term (0-3 h) prediction of solar insolation for renewable energy production is a problem well-suited to satellite-based techniques. The spatial, spectral, temporal and radiometric resolution of instrumentation hosted on the geostationary platform allows these satellites to describe the current cloud spatial distribution and optical properties. These properties relate directly to the transient properties of the downwelling solar irradiance at the surface, which come in the form of 'ramps' that pose a central challenge to energy load balancing in a spatially distributed network of solar farms. The short-term evolution of the cloud field may be approximated to first order simplymore » as translational, but care must be taken in how the advection is handled and where the impacts are assigned. In this research, we describe how geostationary satellite observations are used with operational cloud masking and retrieval algorithms, wind field data from Numerical Weather Prediction (NWP), and radiative transfer calculations to produce short-term forecasts of solar insolation for applications in solar power generation. The scheme utilizes retrieved cloud properties to group pixels into contiguous cloud objects whose future positions are predicted using four-dimensional (space + time) model wind fields, selecting steering levels corresponding to the cloud height properties of each cloud group. The shadows associated with these clouds are adjusted for sensor viewing parallax displacement and combined with solar geometry and terrain height to determine the actual location of cloud shadows. For mid/high-level clouds at mid-latitudes and high solar zenith angles, the combined displacements from these geometric considerations are non-negligible. The cloud information is used to initialize a radiative transfer model that computes the direct and diffuse-sky solar insolation at both shadow locations and intervening clear-sky regions. Here, we describe the formulation of

  11. Solar Radiation Measurements Onboard the Research Aircraft HALO

    NASA Astrophysics Data System (ADS)

    Lohse, I.; Bohn, B.; Werner, F.; Ehrlich, A.; Wendisch, M.

    2014-12-01

    Airborne measurements of the separated upward and downward components of solar spectral actinic flux densities for the determination of photolysis frequencies and of upward nadir spectral radiance were performed with the HALO Solar Radiation (HALO-SR) instrument package onboard the High Altitude and Long Range Research Aircraft (HALO). The instrumentation of HALO-SR is characterized and first measurement data from the Next-generation Aircraft Remote-Sensing for Validation Studies (NARVAL) campaigns in 2013 and 2014 are presented. The measured data are analyzed in the context of the retrieved microphysical and optical properties of clouds which were observed underneath the aircraft. Detailed angular sensitivities of the two optical actinic flux receivers were determined in the laboratory. The effects of deviations from the ideal response are investigated using radiative transfer calculations of atmospheric radiance distributions under various atmospheric conditions and different ground albedos. Corresponding correction factors are derived. Example photolysis frequencies are presented, which were sampled in the free troposphere and lower stratosphere over the Atlantic Ocean during the 2013/14 HALO NARVAL campaigns. Dependencies of photolysis frequencies on cloud cover, flight altitude and wavelength range of the photolysis process are investigated. Calculated actinic flux densities in the presence of clouds benefit from the measured spectral radiances. Retrieved cloud optical thicknesses and effective droplet radii are used as model input for the radiative transfer calculations. By comparison with the concurrent measurements of actinic flux densities the retrieval approach is validated. Acknowledgements: Funding by the Deutsche Forschungsgemeinschaft within the priority program HALO (BO 1580/4-1, WE 1900/21-1) is gratefully acknowledged.

  12. SEPEM: A tool for statistical modeling the solar energetic particle environment

    NASA Astrophysics Data System (ADS)

    Crosby, Norma; Heynderickx, Daniel; Jiggens, Piers; Aran, Angels; Sanahuja, Blai; Truscott, Pete; Lei, Fan; Jacobs, Carla; Poedts, Stefaan; Gabriel, Stephen; Sandberg, Ingmar; Glover, Alexi; Hilgers, Alain

    2015-07-01

    Solar energetic particle (SEP) events are a serious radiation hazard for spacecraft as well as a severe health risk to humans traveling in space. Indeed, accurate modeling of the SEP environment constitutes a priority requirement for astrophysics and solar system missions and for human exploration in space. The European Space Agency's Solar Energetic Particle Environment Modelling (SEPEM) application server is a World Wide Web interface to a complete set of cross-calibrated data ranging from 1973 to 2013 as well as new SEP engineering models and tools. Both statistical and physical modeling techniques have been included, in order to cover the environment not only at 1 AU but also in the inner heliosphere ranging from 0.2 AU to 1.6 AU using a newly developed physics-based shock-and-particle model to simulate particle flux profiles of gradual SEP events. With SEPEM, SEP peak flux and integrated fluence statistics can be studied, as well as durations of high SEP flux periods. Furthermore, effects tools are also included to allow calculation of single event upset rate and radiation doses for a variety of engineering scenarios.

  13. An a priori solar radiation pressure model for the QZSS Michibiki satellite

    NASA Astrophysics Data System (ADS)

    Zhao, Qile; Chen, Guo; Guo, Jing; Liu, Jingnan; Liu, Xianglin

    2018-02-01

    It has been noted that the satellite laser ranging (SLR) residuals of the Quasi-Zenith Satellite System (QZSS) Michibiki satellite orbits show very marked dependence on the elevation angle of the Sun above the orbital plane (i.e., the β angle). It is well recognized that the systematic error is caused by mismodeling of the solar radiation pressure (SRP). Although the error can be reduced by the updated ECOM SRP model, the orbit error is still very large when the satellite switches to orbit-normal (ON) orientation. In this study, an a priori SRP model was established for the QZSS Michibiki satellite to enhance the ECOM model. This model is expressed in ECOM's D, Y, and B axes (DYB) using seven parameters for the yaw-steering (YS) mode, and additional three parameters are used to compensate the remaining modeling deficiencies, particularly the perturbations in the Y axis, based on a redefined DYB for the ON mode. With the proposed a priori model, QZSS Michibiki's precise orbits over 21 months were determined. SLR validation indicated that the systematic β -angle-dependent error was reduced when the satellite was in the YS mode, and better than an 8-cm root mean square (RMS) was achieved. More importantly, the orbit quality was also improved significantly when the satellite was in the ON mode. Relative to ECOM and adjustable box-wing model, the proposed SRP model showed the best performance in the ON mode, and the RMS of the SLR residuals was better than 15 cm, which was a two times improvement over the ECOM without a priori model used, but was still two times worse than the YS mode.

  14. Solar Radiation during Rewarming from Torpor in Elephant Shrews: Supplementation or Substitution of Endogenous Heat Production?

    PubMed Central

    Thompson, Michelle L.; Mzilikazi, Nomakwezi; Bennett, Nigel C.; McKechnie, Andrew E.

    2015-01-01

    Many small mammals bask in the sun during rewarming from heterothermy, but the implications of this behaviour for their energy balance remain little understood. Specifically, it remains unclear whether solar radiation supplements endogenous metabolic thermogenesis (i.e., rewarming occurs through the additive effects of internally-produced and external heat), or whether solar radiation reduces the energy required to rewarm by substituting (i.e, replacing) metabolic heat production. To address this question, we examined patterns of torpor and rewarming rates in eastern rock elephant shrews (Elephantulus myurus) housed in outdoor cages with access to either natural levels of solar radiation or levels that were experimentally reduced by means of shade cloth. We also tested whether acclimation to solar radiation availability was manifested via phenotypic flexibility in basal metabolic rate (BMR), non-shivering thermogenesis (NST) capacity and/or summit metabolism (Msum). Rewarming rates varied significantly among treatments, with elephant shrews experiencing natural solar radiation levels rewarming faster than conspecifics experiencing solar radiation levels equivalent to approximately 20% or 40% of natural levels. BMR differed significantly between individuals experiencing natural levels of solar radiation and conspecifics experiencing approximately 20% of natural levels, but no between-treatment difference was evident for NST capacity or Msum. The positive relationship between solar radiation availability and rewarming rate, together with the absence of acclimation in maximum non-shivering and total heat production capacities, suggests that under the conditions of this study solar radiation supplemented rather than substituted metabolic thermogenesis as a source of heat during rewarming from heterothermy. PMID:25853244

  15. Solar radiation during rewarming from torpor in elephant shrews: supplementation or substitution of endogenous heat production?

    PubMed

    Thompson, Michelle L; Mzilikazi, Nomakwezi; Bennett, Nigel C; McKechnie, Andrew E

    2015-01-01

    Many small mammals bask in the sun during rewarming from heterothermy, but the implications of this behaviour for their energy balance remain little understood. Specifically, it remains unclear whether solar radiation supplements endogenous metabolic thermogenesis (i.e., rewarming occurs through the additive effects of internally-produced and external heat), or whether solar radiation reduces the energy required to rewarm by substituting (i.e, replacing) metabolic heat production. To address this question, we examined patterns of torpor and rewarming rates in eastern rock elephant shrews (Elephantulus myurus) housed in outdoor cages with access to either natural levels of solar radiation or levels that were experimentally reduced by means of shade cloth. We also tested whether acclimation to solar radiation availability was manifested via phenotypic flexibility in basal metabolic rate (BMR), non-shivering thermogenesis (NST) capacity and/or summit metabolism (Msum). Rewarming rates varied significantly among treatments, with elephant shrews experiencing natural solar radiation levels rewarming faster than conspecifics experiencing solar radiation levels equivalent to approximately 20% or 40% of natural levels. BMR differed significantly between individuals experiencing natural levels of solar radiation and conspecifics experiencing approximately 20% of natural levels, but no between-treatment difference was evident for NST capacity or Msum. The positive relationship between solar radiation availability and rewarming rate, together with the absence of acclimation in maximum non-shivering and total heat production capacities, suggests that under the conditions of this study solar radiation supplemented rather than substituted metabolic thermogenesis as a source of heat during rewarming from heterothermy.

  16. A solar escalator on Mars: Self-lifting of dust layers by radiative heating

    NASA Astrophysics Data System (ADS)

    Daerden, F.; Whiteway, J. A.; Neary, L.; Komguem, L.; Lemmon, M. T.; Heavens, N. G.; Cantor, B. A.; Hébrard, E.; Smith, M. D.

    2015-09-01

    Dust layers detected in the atmosphere of Mars by the light detection and ranging (LIDAR) instrument on the Phoenix Mars mission are explained using an atmospheric general circulation model. The layers were traced back to observed dust storm activity near the edge of the north polar ice cap where simulated surface winds exceeded the threshold for dust lifting by saltation. Heating of the atmospheric dust by solar radiation caused buoyant instability and mixing across the top of the planetary boundary layer (PBL). Differential advection by wind shear created detached dust layers above the PBL that ascended due to radiative heating and arrived at the Phoenix site at heights corresponding to the LIDAR observations. The self-lifting of the dust layers is similar to the "solar escalator" mechanism for aerosol layers in the Earth's stratosphere.

  17. Multiscale computational modeling of a radiantly driven solar thermal collector

    NASA Astrophysics Data System (ADS)

    Ponnuru, Koushik

    The objectives of the master's thesis are to present, discuss and apply sequential multiscale modeling that combines analytical, numerical (finite element-based) and computational fluid dynamic (CFD) analysis to assist in the development of a radiantly driven macroscale solar thermal collector for energy harvesting. The solar thermal collector is a novel green energy system that converts solar energy to heat and utilizes dry air as a working heat transfer fluid (HTF). This energy system has important advantages over competitive technologies: it is self-contained (no energy sources are needed), there are no moving parts, no oil or supplementary fluids are needed and it is environmentally friendly since it is powered by solar radiation. This work focuses on the development of multi-physics and multiscale models for predicting the performance of the solar thermal collector. Model construction and validation is organized around three distinct and complementary levels. The first level involves an analytical analysis of the thermal transpiration phenomenon and models for predicting the associated mass flow pumping that occurs in an aerogel membrane in the presence of a large thermal gradient. Within the aerogel, a combination of convection, conduction and radiation occurs simultaneously in a domain where the pore size is comparable to the mean free path of the gas molecules. CFD modeling of thermal transpiration is not possible because all the available commercial CFD codes solve the Navier Stokes equations only for continuum flow, which is based on the assumption that the net molecular mass diffusion is zero. However, thermal transpiration occurs in a flow regime where a non-zero net molecular mass diffusion exists. Thus these effects are modeled by using Sharipov's [2] analytical expression for gas flow characterized by high Knudsen number. The second level uses a detailed CFD model solving Navier Stokes equations for momentum, heat and mass transfer in the various

  18. AEETES - A solar reflux receiver thermal performance numerical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, R.E. Jr.

    1994-02-01

    Reflux solar receivers for dish-Stirling electric power generation systems are currently being investigated by several companies and laboratories. In support of these efforts, the AEETES thermal performance numerical model has been developed to predict thermal performance of pool-boiler and heat-pipe reflux receivers. The formulation of the AEETES numerical model, which is applicable to axisymmetric geometries with asymmetric incident fluxes, is presented in detail. Thermal efficiency predictions agree to within 4.1% with test data from on-sun tests of a pool-boiler reflux receiver. Predicted absorber and sidewall temperatures agree with thermocouple data to within 3.3 and 7.3%, respectively. The importance of accountingmore » for the asymmetric incident fluxes is demonstrated in comparisons with predictions using azimuthally averaged variables. The predicted receiver heat losses are characterized in terms of convective, solar radiative, and infrared radiative, and conductive heat transfer mechanisms.« less

  19. Utilization of solar radiation by polar animals: an optical model for pelts.

    PubMed

    Grojean, R E; Sousa, J A; Henry, M C

    1980-02-01

    A summary of existing passive solar-heat conversion panels provides the basis for a definition of an ideal passive solar-heat converter. Evidence for the existence of a biological greenhouse effect in certain homopolar homeothermic species is reviewed. The thermal and optical properties of homeothermic pelts, in particular those of the polar bear, are described, and a qualitative optical model of the polar bear pelt is proposed. The effectiveness of polar bear and seal pelts as solar-heat converters is discussed, and comparison is made with the ideal converter.

  20. Radiation model predictions and validation using LDEF satellite data

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1993-01-01

    Predictions and comparisons with the radiation dose measurements on Long Duration Exposure Facility (LDEF) by thermoluminescent dosimeters were made to evaluate the accuracy of models currently used in defining the ionizing radiation environment for low Earth orbit missions. The calculations include a detailed simulation of the radiation exposure (altitude and solar cycle variations, directional dependence) and shielding effects (three-dimensional LDEF geometry model) so that differences in the predicted and observed doses can be attributed to environment model uncertainties. The LDEF dose data are utilized to assess the accuracy of models describing the trapped proton flux, the trapped proton directionality, and the trapped electron flux.

  1. Solar Storm's Radiation at Martian Orbit and Surface

    NASA Image and Video Library

    2017-09-29

    Energetic particles from a large solar storm in September 2017 were seen both in Mars orbit and on the surface of Mars by NASA missions to the Red Planet. The horizontal axis for both parts of this graphic is the time from Sept. 10 to Sept. 15, 2017. The upper portion of this graphic shows the increase in protons in two ranges of energy levels (15- to-100 million electron volts and 80-to-220 million electron volts), as recorded by the Solar Energetic Particle instrument on NASA's on NASA's Mars Atmosphere and Volatile Evolution orbiter, or MAVEN. The lower portion shows the radiation dose on the Martian surface, in micrograys per day, as measured by the Radiation Assessment Monitor instrument on NASA' Curiosity Mars rover. Micrograys are unit of measurement for absorbed radiation dose. Note that only protons in the higher bracket of energy levels penetrate the atmosphere enough to be detected on the surface. https://photojournal.jpl.nasa.gov/catalog/PIA21856

  2. Effects of solar radiation on hair and photoprotection.

    PubMed

    Dario, Michelli F; Baby, André R; Velasco, Maria Valéria R

    2015-12-01

    In this paper the negative effects of solar radiation (ultraviolet, visible and infrared wavelengths) on hair properties like color, mechanical properties, luster, protein content, surface roughness, among others, will be discussed. Despite knowing that radiation damages hair, there are no consensus about the particular effect of each segment of solar radiation on the hair shaft. The hair photoprotection products are primarily targeted to dyed hair, specially auburn pigments, and gray shades. They are usually based on silicones, antioxidants and quaternary chemical UV filters that have more affinity for negatively charged hair surface and present higher efficacy. Unfortunately, there are no regulated parameters, like for skin photoprotection, for efficacy evaluation of hair care products, which makes impossible to compare the results published in the literature. Thus, it is important that researchers make an effort to apply experimental conditions similar to a real level of sun exposure, like dose, irradiance, time, temperature and relative humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Solar Sail Spaceflight Simulation

    NASA Technical Reports Server (NTRS)

    Lisano, Michael; Evans, James; Ellis, Jordan; Schimmels, John; Roberts, Timothy; Rios-Reyes, Leonel; Scheeres, Daniel; Bladt, Jeff; Lawrence, Dale; Piggott, Scott

    2007-01-01

    The Solar Sail Spaceflight Simulation Software (S5) toolkit provides solar-sail designers with an integrated environment for designing optimal solar-sail trajectories, and then studying the attitude dynamics/control, navigation, and trajectory control/correction of sails during realistic mission simulations. Unique features include a high-fidelity solar radiation pressure model suitable for arbitrarily-shaped solar sails, a solar-sail trajectory optimizer, capability to develop solar-sail navigation filter simulations, solar-sail attitude control models, and solar-sail high-fidelity force models.

  4. Electron Radiation Belts of the Solar System

    NASA Astrophysics Data System (ADS)

    Mauk, Barry; Fox, Nicola

    To address the question of what factors dictate similarities and differences between radiation belts, we present comparisons between the electron radiation belt spectra of all five strongly magnetized planets within the solar system: Earth, Jupiter, Saturn, Uranus, and Neptune. We choose the highest intensity observed electron spectrum within each system (highest specifically near 1 MeV) and compare them against expectations based on the so-called Kennel-Petschek limit (KP; 1966) for each system. For evaluating the KP limit, we begin with the new relativis-tically correct formulation of Summers et al. (2009) but then add several refinements of our own. Specifically, we: 1) utilized a much more flexible analytic spectral shape that allows us to accurately fit observed radiation belt spectra; 2) adopt the point of view that the anisotropy parameter is not a free parameter but must take on a minimal value, as originally proposed by Kennel and Petschek (1966); and 3) examine the differential characteristics of the KP limit along the lines of what Schulz and Davidson (1988) performed for the non-relativistic formula-tion. We find that three factors limit the highest electron radiation belt intensities within solar system planetary magnetospheres: a) whistler mode interactions that limit spectral intensities to a differential Kennel-Petschek limit (3 planets); b) the absence of robust acceleration pro-cesses associated with injection dynamics (1 planet); and c) material interactions between the radiation particles and clouds of gas and dust (1 planet).

  5. Deflection of the local interstellar dust flow by solar radiation pressure

    NASA Technical Reports Server (NTRS)

    Landgraf, M.; Augustsson, K.; Grun, E.; Gustafson, B. A.

    1999-01-01

    Interstellar dust grains intercepted by the dust detectors on the Ulysses and Galileo spacecrafts at heliocentric distances from 2 to 4 astronomical units show a deficit of grains with masses from 1 x 10(-17) to 3 x 10(-16) kilograms relative to grains intercepted outside 4 astronomical units. To divert grains out of the 2- to 4-astronomical unit region, the solar radiation pressure must be 1.4 to 1.8 times the force of solar gravity. These figures are consistent with the optical properties of spherical or elongated grains that consist of astronomical silicates or organic refractory material. Pure graphite grains with diameters of 0.2 to 0.4 micrometer experience a solar radiation pressure force as much as twice the force of solar gravity.

  6. The impact of radiation belts region on top side ionosphere condition during last solar minimum.

    NASA Astrophysics Data System (ADS)

    Rothkaehl, Hanna; Przepiórka, Dororta; Matyjasiak, Barbara

    2014-05-01

    The wave particle interactions in radiation belts region are one of the key parameters in understanding the global physical processes which govern the near Earth environment. The populations of outer radiation belts electrons increasing in response to changes in the solar wind and the interplanetary magnetic field, and decreasing as a result of scattering into the loss cone and subsequent absorption by the atmosphere. The most important question in relation to understanding the physical processes in radiation belts region relates to estimate the ratio between acceleration and loss processes. This can be also very useful for construct adequate models adopted in Space Weather program. Moreover the wave particle interaction in inner radiation zone and in outer radiation zone have significant influence on the space plasma property at ionospheric altitude. The aim of this presentation is to show the manifestation of radiation belts region at the top side ionosphere during the last long solar minimum. The presentation of longitude and seasonal changes of plasma parameters affected by process occurred in radiation belts region has been performed on the base of the DEMETER and COSMIC 3 satellite registration. This research is partly supported by grant O N517 418440

  7. Molecular effects of 1-naphthyl-methylcarbamate and solar radiation exposures on human melanocytes.

    PubMed

    Ferrucio, Bianca; Tiago, Manoela; Fannin, Richard D; Liu, Liwen; Gerrish, Kevin; Maria-Engler, Silvya Stuchi; Paules, Richard S; Barros, Silvia Berlanga de Moraes

    2017-02-01

    Carbaryl (1-naphthyl-methylcarbamate), a broad-spectrum insecticide, has recently been associated with the development of cutaneous melanoma in an epidemiological cohort study with U.S. farm workers also exposed to ultraviolet radiation, the main etiologic factor for skin carcinogenesis. We hypothesized that carbaryl exposure may increase deleterious effects of UV solar radiation on skin melanocytes. This study aimed to characterize human melanocytes after individual or combined exposure to carbaryl (100μM) and solar radiation (375mJ/cm 2 ). In a microarray analysis, carbaryl, but not solar radiation, induced an oxidative stress response, evidenced by the upregulation of antioxidant genes, such as Hemeoxygenase-1 (HMOX1), and downregulation of Microphtalmia-associated Transcription Factor (MITF), the main regulator of melanocytic activity; results were confirmed by qRT-PCR. Carbaryl and solar radiation induced a gene response suggestive of DNA damage and cell cycle alteration. The expression of CDKN1A, BRCA1/2 and MDM2 genes was notably more intense in the combined treatment group, in a synergistic manner. Flow cytometry assays demonstrated S-phase cell cycle arrest, reduced apoptosis levels and faster induction of cyclobutane pyrimidine dimers (CPD) lesions in carbaryl treated groups. Our data suggests that carbaryl is genotoxic to human melanocytes, especially when associated with solar radiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Characterization of Tin/Ethylene Glycol Solar Nanofluids Synthesized by Femtosecond Laser Radiation.

    PubMed

    Torres-Mendieta, Rafael; Mondragón, Rosa; Puerto-Belda, Verónica; Mendoza-Yero, Omel; Lancis, Jesús; Juliá, J Enrique; Mínguez-Vega, Gladys

    2017-05-05

    Solar energy is available over wide geographical areas and its harnessing is becoming an essential tool to satisfy the ever-increasing demand for energy with minimal environmental impact. Solar nanofluids are a novel solar receiver concept for efficient harvesting of solar radiation based on volumetric absorption of directly irradiated nanoparticles in a heat transfer fluid. Herein, the fabrication of a solar nanofluid by pulsed laser ablation in liquids was explored. This study was conducted with the ablation of bulk tin immersed in ethylene glycol with a femtosecond laser. Laser irradiation promotes the formation of tin nanoparticles that are collected in the ethylene glycol as colloids, creating the solar nanofluid. The ability to trap incoming electromagnetic radiation, thermal conductivity, and the stability of the solar nanofluid in comparison with conventional synthesis methods is enhanced. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Estimation of atmospheric turbidity and surface radiative parameters using broadband clear sky solar irradiance models in Rio de Janeiro-Brasil

    NASA Astrophysics Data System (ADS)

    Flores, José L.; Karam, Hugo A.; Marques Filho, Edson P.; Pereira Filho, Augusto J.

    2016-02-01

    The main goal of this paper is to estimate a set of optimal seasonal, daily, and hourly values of atmospheric turbidity and surface radiative parameters Ångström's turbidity coefficient ( β), Ångström's wavelength exponent ( α), aerosol single scattering albedo ( ω o ), forward scatterance ( F c ) and average surface albedo ( ρ g ), using the Brute Force multidimensional minimization method to minimize the difference between measured and simulated solar irradiance components, expressed as cost functions. In order to simulate the components of short-wave solar irradiance (direct, diffuse and global) for clear sky conditions, incidents on a horizontal surface in the Metropolitan Area of Rio de Janeiro (MARJ), Brazil (22° 51' 27″ S, 43° 13' 58″ W), we use two parameterized broadband solar irradiance models, called CPCR2 and Iqbal C, based on synoptic information. The meteorological variables such as precipitable water ( u w ) and ozone concentration ( u o ) required by the broadband solar models were obtained from moderate-resolution imaging spectroradiometer (MODIS) sensor on Terra and Aqua NASA platforms. For the implementation and validation processes, we use global and diffuse solar irradiance data measured by the radiometric platform of LabMiM, located in the north area of the MARJ. The data were measured between the years 2010 and 2012 at 1-min intervals. The performance of solar irradiance models using optimal parameters was evaluated with several quantitative statistical indicators and a subset of measured solar irradiance data. Some daily results for Ångström's wavelength exponent α were compared with Ångström's parameter (440-870 nm) values obtained by aerosol robotic network (AERONET) for 11 days, showing an acceptable level of agreement. Results for Ångström's turbidity coefficient β, associated with the amount of aerosols in the atmosphere, show a seasonal pattern according with increased precipitation during summer months (December

  10. The Solar Dynamic radiator with a historical perspective

    NASA Technical Reports Server (NTRS)

    Mclallin, K. L.; Fleming, M. L.; Hoehn, F. W.; Howerton, R.

    1988-01-01

    A historical perspective on pumped loop space radiators provides a basis for the design of the Space Station Solar Dynamic (SD) power module radiator. SD power modules, capable of generating 25 kWe each, are planned for growth Station power requirements. The Brayton (cycle) SD module configuration incorporates a pumped loop radiator that must reject up to 99 kW. The thermal/hydraulic design conditions in combination with required radiator orientation and packaging envelope form a unique set of constraints as compared to previous pumped loop radiator systems. Nevertheless, past program successes have demonstrated a technology base which can be applied to the SD radiator development program to ensure a low risk, low cost system.

  11. Trends in solar radiation in NCEP/NCAR database and measurements in northeastern Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Vicente de Paulo Rodrigues da; Silva, Roberta Araujo e; Cavalcanti, Enilson Palmeira

    2010-10-15

    The database from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) re-analysis project available for the period from 1948 to 2009 was used for obtaining long-term solar radiation for northeastern Brazil. Measurements of global solar radiation (R{sub s}) from data collection platform (DCP) for four climatic zones of northeastern Brazil were compared to the re-analysis data. Applying cluster analysis to R{sub s} from database, homogeneous sub-regions in northeastern Brazil were determined. Long times series of R{sub s} and sunshine duration measurements data for two sites, Petrolina (09 09'S, 40 22'W) and Juazeiro (09 24'S, 40 26'W), exceedingmore » 30 years, were analyzed. In order to exclude the decadal variations which are linked to the Pacific Decadal Oscillation, high-frequency cycles in the solar radiation and sunshine duration time series were eliminated by using a 14-year moving average, and the Mann-Kendall test was employed to assess the long-term variability of re-analysis and measured solar radiation. This study provides an overview of the decrease in solar radiation in a large area, which can be attributed to the global dimming effect. The global solar radiation obtained from the NCEP/NCAR re-analysis data overestimate that obtained from DCP measurements by 1.6% to 18.6%. Results show that there is a notable symmetry between R{sub s} from the re-analysis data and sunshine duration measurements. (author)« less

  12. Monitoring of Solar Radiation Intensity using Wireless Sensor Network for Plant Growing

    NASA Astrophysics Data System (ADS)

    Siregar, B.; Fadli, F.; Andayani, U.; Harahap, LA; Fahmi, F.

    2017-01-01

    Abstract— Plant growth is highly depending on the sunlight, if the consumption of sunlight is enough, it will grow well. The plant will be green because of its chlorophyll and it can perform photosynthesis at maximum; but if the plants get less sunlight, it will make the plants be yellowing. Radiation is electromagnetic waves that are good for plants, so-called visible light. In the electromagnetic wave spectrum the best wavelength range from 400-700 nm for the plant. A monitoring of sun intensity is needed in order to obtain sufficient solar radiation consumption and provide notification if there is a high radiation. In this study, several sensors and devices were combined such as photosynthetic solar radiation sensors, GSM / GPRS and waspmote as a main board or a microcontroller. The test was carried out on at least three occasions; the system has a stable radiation in the morning with an average of 505.51 micrometers. IN this study, we have successfully developed a monitoring tools for solar radiation intensity applied on plant growth by using wireless sensor network.

  13. Effects of solar ultraviolet radiations on Bacillus subtilis spores and T-7 bacteriophage

    NASA Technical Reports Server (NTRS)

    Spizizen, J.; Isherwood, J. E.; Taylor, G. R.

    1975-01-01

    Spores of Bacillus subtilis HA 101 and the DNA polymerase I-defective mutant HA 101 (59)F were exposed to selected wavelengths of solar ultraviolet light and space vacuum during the return of Apollo 16. In addition, coliphage T-7 suspensions were exposed to solar ultraviolet radiation as part of the Microbial Response to Space Environment Experiment. Optical filters were employed to provide different energy levels at wavelengths 254 nm and 280 nm. Dose-response curves for lethal and mutagenic effects were compared with ground-based data. A close parallel was observed between the results of solar radiation and ground tests with spores of the two strains. However, significantly greater inactivation of T-7 bacteriophage was observed after exposure to solar ultraviolet radiation.

  14. Solar Spectral Radiative Forcing Due to Dust Aerosol During the Puerto Rico Dust Experiment

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Bergstrom, R.; Rabbette, M.; Livingston, J.; Russell, P.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    During the Puerto Rico Dust Experiment (PRIDE) upwelling and downwelling solar spectral irradiance was measured on board the SPAWAR Navajo and downwelling solar spectral flux was measured at a surface site using the NASA Ames Solar Spectral Flux Radiometer. These data will be used to determine the net solar radiative forcing of dust aerosol and to quantify the solar spectral radiative energy budget in the presence of elevated aerosol loading. We will assess the variability in spectral irradiance using formal principal component analysis procedures and relate the radiative variability to aerosol microphysical properties. Finally, we will characterize the sea surface reflectance to improve aerosol optical depth retrievals from the AVHRR satellite and to validate SeaWiFS ocean color products.

  15. Diffuse solar radiation and associated meteorological parameters in India

    NASA Astrophysics Data System (ADS)

    Bhattacharya, A. B.; Kar, S. K.; Bhattacharya, R.

    1996-10-01

    Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another. Acknowledgements. We gratefully appreciate the on-line DMSP database facility at APL (Newell et al., 1991) from which this study has benefited greatly. We wish to thank E. Friis-Christensen for his encouragement and useful discussions. A. Y. would like to thank the Danish Meteorological Institute, where this work was done, for its hospitality during his stay there and the Nordic Baltic Scholarship Scheme for its financial support of this stay. Topical Editor K.-H. Glassmeier thanks M. J. Engebretson and H. Lühr for their help in evaluating this paper.--> Correspondence to: A. Yahnin-->

  16. Observed ozone response to variations in solar ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Smythe, C. M.; Heath, D. F.

    1984-01-01

    During the winter of 1979, the solar ultraviolet irradiance varied with a period of 13.5 days and an amplitude of 1 percent. The zonal mean ozone values in the tropics varied with the solar irradiance, with an amplitude of 0.25 to 0.60 percent. This observation agrees with earlier calculations, although the response may be overestimated. These results imply changes in ozone at an altitude of 48 kilometers of up to 12 percent over an 11-year solar cycle. Interpretation of ozone changes in the upper stratosphere will require measurements of solar ultraviolet radiation at wavelengths near 200 nanometers.

  17. Radiative transfer model of snow for bare ice regions

    NASA Astrophysics Data System (ADS)

    Tanikawa, T.; Aoki, T.; Niwano, M.; Hosaka, M.; Shimada, R.; Hori, M.; Yamaguchi, S.

    2016-12-01

    Modeling a radiative transfer (RT) for coupled atmosphere-snow-bare ice systems is of fundamental importance for remote sensing applications to monitor snow and bare ice regions in the Greenland ice sheet and for accurate climate change predictions by regional and global climate models. Recently, the RT model for atmosphere-snow system was implemented for our regional and global climate models. However, the bare ice region where recently it has been expanded on the Greenland ice sheet due to the global warming, has not been implemented for these models, implying that this region leads miscalculations in these climate models. Thus, the RT model of snow for bare ice regions is needed for accurate climate change predictions. We developed the RT model for coupled atmosphere-snow-bare ice systems, and conducted a sensitivity analysis of the RT model to know the effect of snow, bare ice and geometry parameters on the spectral radiant quantities. The RT model considers snow and bare-ice inherent optical properties (IOPs), including snow grain size, air bubble size and its concentration and bare ice thickness. The conventional light scattering theory, Mie theory, was used for IOP calculations. Monte Carlo method was used for the multiple scattering. The sensitivity analyses showed that spectral albedo for the bare ice increased with increasing the concentration of the air bubble in the bare ice for visible wavelengths because the air bubble is scatterer with no absorption. For near infrared wavelengths, spectral albedo has no dependence on the air bubble due to the strong light absorption by ice. When increasing solar zenith angle, the spectral albedo were increased for all wavelengths. This is the similar trend with spectral snow albedo. Cloud cover influenced the bare ice spectral albedo by covering direct radiation into diffuse radiation. The purely diffuse radiation has an effective solar zenith angle near 50°. Converting direct into diffuse radiation reduces the

  18. Radiation tolerance of boron doped dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.

    1980-01-01

    The potential of dendritic web silicon for giving radiation hard solar cells is compared with the float zone silicon material. Solar cells with n(+)-p-P(+) structure and approximately 15% (AMl) efficiency were subjected to 1 MeV electron irradiation. Radiation tolerance of web cell efficiency was found to be at least as good as that of the float zone silicon cell. A study of the annealing behavior of radiation-induced defects via deep level transient spectroscopy revealed that E sub v + 0.31 eV defect, attributed to boron-oxygen-vacancy complex, is responsible for the reverse annealing of the irradiated cells in the temperature range of 150 to 350 C.

  19. A space radiation shielding model of the Martian radiation environment experiment (MARIE)

    NASA Technical Reports Server (NTRS)

    Atwell, W.; Saganti, P.; Cucinotta, F. A.; Zeitlin, C. J.

    2004-01-01

    The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20-500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  20. An investigation of solar erythemal ultraviolet radiation at two sites in tourist attraction areas of Thailand

    NASA Astrophysics Data System (ADS)

    Buntoung, Sumaman; Pattarapanitchai, Somjet; Wattan, Rungrat; Masiri, Itsara; Promsen, Worrapass; Tohsing, Korntip; Janjai, Serm

    2013-05-01

    Islands on the southern coasts of Thailand are famous attractions for local and foreign tourists. Tourists usually expose their skins to solar radiation for tanning. Thus information on solar ultraviolet radiation (UV) is of importance for tourists to protect themselves from adverse effects of UV. In this work, solar erythemal ultraviolet radiation (EUV) at two touristic sites namely Samui island (9.451°N, 100.033°E) and Phuket island (8.104°N, 98.304°E) was investigated. In investigating EUV, broadband UV radiometers (Kipp & Zonen, model UVS-B-C) were installed at existing meteorological stations in Samui and Phuket islands. A one-year period of EUV data from these two sites was analyzed. The level of UV index at these sites was studied. The values of UV index higher than 12 at noon time of clear days are usually found in the summer at both sites. Seasonal variation of EUV at both sites was investigated. It was found that the tropical monsoons have strong influence on this variation. Finally, global broadband radiation measured at the sites was also used to establish a correlation between EUV and global broadband radiation. Higher correlation was found for the case of clear sky, as compared to the case of cloudy sky. The correlation obtained from this analysis can be used to estimate EUV from global broadband radiation at these two sites.

  1. Progress in Space Weather Modeling and Observations Needed to Improve the Operational NAIRAS Model Aircraft Radiation Exposure Predictions

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Kress, B. T.; Wiltberger, M. J.; Tobiska, W.; Xu, X.

    2011-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. During the development of the NAIRAS model, new science questions were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. Addressing these science questions require improvements in both space weather modeling and observations. The focus of this talk is to present these science questions, the proposed methodologies for addressing these science questions, and the anticipated improvements to the operational predictions of atmospheric radiation exposure. The overarching goal of this work is to provide a decision support tool for the aviation industry that will enable an optimal balance to be achieved between minimizing health risks to passengers and aircrew while simultaneously minimizing costs to the airline companies.

  2. Are Solar Activity Variations Amplified by the QBO: A Modeling Study

    NASA Technical Reports Server (NTRS)

    Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Solar cycle activity effects (SCAE) in the lower and middle atmosphere, reported in several studies, are difficult to explain on the basis of the small changes in solar radiation that accompany the 11-year cycle. It is therefore natural to speculate that dynamical processes may come into play to produce a leverage. Such a leverage may be provided by the Quasi-Biennial Oscillation (QBO) in the zonal circulation of the stratosphere, which has been linked to solar activity variations. Driven primarily by wave mean flow interaction, the QBO period and its amplitude are variable but are also strongly influenced by the seasonal cycle in the solar radiation. This influence extends to low altitudes and is referred to as 'downward control'. Small changes in the solar radiative forcing may produce small changes in the period and phase of the QBO, but these in turn may produce measurable differences in the wind field. Thus, the QBO may be an amplifier of solar activity variations and a natural conduit of these variations to lower altitudes. To test this hypothesis, we conducted experiments with a 2D version of our Numerical Spectral Model that incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Solar cycle radiance variations (SCRV) are accounted for by changing the radiative heating rate on a logarithmic scale from 0.1% at the surface to 1% at 50 km to 10% at 100 km. With and without SCRV, but with the same GW flux, we then conduct numerical experiments to evaluate the magnitude of the SCAE in the zonal circulation. The numerical results indicate that, under certain conditions, the SCAE is significant and can extend to lower altitudes where the SCRV is small. For a modeled QBO period of 30 months, we find that the seasonal cycle in the solar forcing acts as a strong pacemaker to lock up the phase and period of the QBO. The SCAE then shows up primarily as a distinct but relatively weak amplitude modulation. But with a different QBO period

  3. Erosion of carbon/carbon by solar wind charged particle radiation during a solar probe mission

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold; O'Donnell, Tim; Millard, Jerry

    1991-01-01

    The possible erosion of a carbon/carbon thermal shield by solar wind-charged particle radiation is reviewed. The present knowledge of erosion data for carbon and/or graphite is surveyed, and an explanation of erosion mechanisms under different charged particle environments is discussed. The highest erosion is expected at four solar radii. Erosion rates are analytically estimated under several conservative assumptions for a normal quiet and worst case solar wind storm conditions. Mass loss analyses and comparison studies surprisingly indicate that the predicted erosion rate by solar wind could be greater than by nominal free sublimation during solar wind storm conditions at four solar radii. The predicted overall mass loss of a carbon/carbon shield material during the critical four solar radii flyby can still meet the mass loss mission requirement of less than 0.0025 g/sec.

  4. Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Wen, G.; Cahalan, R.; Rind, D.; Jonas, J.; Pilewskie, P.; Harder, J.

    2012-01-01

    We report a series of experiments to explore clima responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations.

  5. BOREAS HYD-3 Subcanopy Incoming Solar Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Hardy, Janet P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Davis, Robert E.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-3 team collected several data sets related to the hydrology of forested areas. This data set contains solar radiation measurements from several pyranometers (solar radiometers) placed on the snow surface in jack pine (1994) and black spruce and aspen forests (1996) in the BOREAS southern study area (SSA). An array of radiometers was used to collect data for three to four consecutive days in each forest type to study the hypothesis that energy transfer and snow water equivalent would vary spatially as a function of canopy closure. The quality of the data is good, because the days were generally clear and the radiometers were checked daily to remove anything that landed on the radiometers. The data are available in tabular ASCII files. The subcanopy incoming solar radiation measurement data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  6. Numerical modeling of reflux solar receivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, R.E. Jr.

    1993-05-01

    Using reflux solar receivers to collect solar energy for dish-Stirling electric power generation systems is presently being investigated by several organizations, including Sandia National Laboratories, Albuquerque, N. Mex. In support of this program, Sandia has developed two numerical models describing the thermal performance of pool-boiler and heat-pipe reflux receivers. Both models are applicable to axisymmetric geometries and they both consider the radiative and convective energy transfer within the receiver cavity, the conductive and convective energy transfer from the receiver housing, and the energy transfer to the receiver working fluid. The primary difference between the models is the level of detailmore » in modeling the heat conduction through the receiver walls. The more detailed model uses a two-dimensional finite control volume method, whereas the simpler model uses a one-dimensional thermal resistance approach. The numerical modeling concepts presented are applicable to conventional tube-type solar receivers, as well as to reflux receivers. Good agreement between the two models is demonstrated by comparing the predicted and measured performance of a pool-boiler reflux receiver being tested at Sandia. For design operating conditions, the receiver thermal efficiencies agree within 1 percent and the average receiver cavity temperature within 1.3 percent. The thermal efficiency and receiver temperatures predicted by the simpler thermal resistance model agree well with experimental data from on-sun tests of the Sandia reflux pool-boiler receiver. An analysis of these comparisons identifies several plausible explanations for the differences between the predicted results and the experimental data.« less

  7. Solar Spectral Irradiance Variability in Cycle 24: Model Predictions and OMI Observations

    NASA Technical Reports Server (NTRS)

    Marchenko, S.; DeLand, M.; Lean, J.

    2016-01-01

    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265-500 nanometers during the ongoing Cycle 24. We supplement the OMI data with concurrent observations from the GOME-2 (Global Ozone Monitoring Experiment - 2) and SORCE (Solar Radiation and Climate Experiment) instruments and find fair-to-excellent agreement between the observations and predictions of the NRLSSI2 (Naval Research Laboratory Solar Spectral Irradiance - post SORCE) and SATIRE-S (the Naval Research Laboratory's Spectral And Total Irradiance REconstruction for the Satellite era) models.

  8. Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective climate model

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.; Stone, P. H.

    1980-01-01

    The feedback between the ice albedo and temperature is included in a one-dimensional radiative-convective climate model. The effect of this feedback on global sensitivity to changes in solar constant is studied for the current climate conditions. This ice-albedo feedback amplifies global sensitivity by 26 and 39%, respectively, for assumptions of fixed cloud altitude and fixed cloud temperature. The global sensitivity is not affected significantly if the latitudinal variations of mean solar zenith angle and cloud cover are included in the global model. The differences in global sensitivity between one-dimensional radiative-convective models and energy balance models are examined. It is shown that the models are in close agreement when the same feedback mechanisms are included. The one-dimensional radiative-convective model with ice-albedo feedback included is used to compute the equilibrium ice line as a function of solar constant.

  9. Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Boucher, O.; Schwartz, S. E.; Ackerman, T. P.; Anderson, T. L.; Bergstrom, B.; Bonnel, B.; Dahlback, A.; Fouquart, Y.; Chylek, P.; Fu, Q.; hide

    2000-01-01

    The importance of aerosols as agents of climate change has recently been highlighted. However, the magnitude of aerosol forcing by scattering of shortwave radiation (direct forcing) is still very uncertain even for the relatively well characterized sulfate aerosol. A potential source of uncertainty is in the model representation of aerosol optical properties and aerosol influences on radiative transfer in the atmosphere. Although radiative transfer methods and codes have been compared in the past, these comparisons have not focused on aerosol forcing (change in net radiative flux at the top of the atmosphere). Here we report results of a project involving 12 groups using 15 models to examine radiative forcing by sulfate aerosol for a wide range of values of particle radius, aerosol optical depth, surface albedo, and solar zenith angle. Among the models that were employed were high and low spectral resolution models incorporating a variety of radiative transfer approximations as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the several radiative transfer models were examined, and the discrepancies were characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence) except at high surface albedo combined with small solar zenith angle. The relative standard deviation of the zenith-angle-averaged normalized broadband forcing for 15 models-was 8% for particle radius near the maximum in this forcing (approx. 0.2 microns) and at low surface albedo. Somewhat greater model-to-model discrepancies were exhibited at specific solar zenith angles. Still greater discrepancies were exhibited at small particle radii and much greater discrepancies were exhibited at high surface albedos, at which the forcing changes sign; in these situations, however, the normalized forcing is

  10. Variability of Solar Radiation under Cloud-Free Skies in China: The Role of Aerosols

    NASA Technical Reports Server (NTRS)

    Qian, Yun; Wang, Weiguo; Leung, L. ruby; Kaiser, Dale P.

    2007-01-01

    In this study, we analyzed long-term surface global and diffuse solar radiation, aerosol single scattering albedo (SSA), and relative humidity (RH) from China. Our analysis reveals that much of China experienced significant decreases in global solar radiation (GSR) and increases in diffuse solar radiation under cloud-free skies between the 1960s and 1980s. With RH and aerosol SSA being rather constant during that time period, we suggest that the increasing aerosol loading from emission of pollutants is responsible for the observed reduced GSR and increased diffuse radiation in cloud-free skies. Although pollutant emissions continue to increase after the 1980s, the increment of aerosol SSA since 1980s can partly explain the transition of GSR from a decreasing trend to no apparent trend around that time. Preliminary analysis is also provided on the potential role of RH in affecting the global and diffuse solar radiation reaching the earth surface.

  11. NUMERICAL STUDY ON IN SITU PROMINENCE FORMATION BY RADIATIVE CONDENSATION IN THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, T.; Yokoyama, T., E-mail: kaneko@eps.s.u-tokyo.ac.jp

    2015-06-10

    We propose an in situ formation model for inverse-polarity solar prominences and demonstrate it using self-consistent 2.5 dimensional MHD simulations, including thermal conduction along magnetic fields and optically thin radiative cooling. The model enables us to form cool dense plasma clouds inside a flux rope by radiative condensation, which is regarded as an inverse-polarity prominence. Radiative condensation is triggered by changes in the magnetic topology, i.e., formation of the flux rope from the sheared arcade field, and by thermal imbalance due to the dense plasma trapped inside the flux rope. The flux rope is created by imposing converging and shearingmore » motion on the arcade field. Either when the footpoint motion is in the anti-shearing direction or when heating is proportional to local density, the thermal state inside the flux rope becomes cooling-dominant, leading to radiative condensation. By controlling the temperature of condensation, we investigate the relationship between the temperature and density of prominences and derive a scaling formula for this relationship. This formula suggests that the proposed model reproduces the observed density of prominences, which is 10–100 times larger than the coronal density. Moreover, the time evolution of the extreme ultraviolet emission synthesized by combining our simulation results with the response function of the Solar Dynamics Observatory Atmospheric Imaging Assembly filters agrees with the observed temporal and spatial intensity shift among multi-wavelength extreme ultraviolet emission during in situ condensation.« less

  12. Numerical research of dynamic characteristics in tower solar cavity receiver based on step-change radiation flux

    NASA Astrophysics Data System (ADS)

    Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi

    2013-07-01

    The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.

  13. A new empirical solar radiation pressure model for BeiDou GEO satellites

    NASA Astrophysics Data System (ADS)

    Liu, Junhong; Gu, Defeng; Ju, Bing; Shen, Zhen; Lai, Yuwang; Yi, Dongyun

    2016-01-01

    Two classic empirical solar radiation pressure (SRP) models, the Extended Center for Orbit Determination in Europe (CODE) Orbit Model ECOM 5 and ECOM 9 have been widely used for Global Positioning System (GPS) Medium Earth Orbit (MEO) satellites precise orbit determination (POD). However, these two models are not suitable for BeiDou Geostationary Earth Orbit (GEO) satellites due to their special attitude control mode. With the experimental design method this paper proposes a new empirical SRP model for BeiDou GEO satellites, which is featured by three constant terms in DYX directions, two sine terms in DX directions and one cosine term in the Y direction. It is the first time to reveal that the periodic terms in the D direction are more important than those in YX directions for BeiDou GEO satellites. Compared with ECOM 5 and ECOM 9, the BeiDou GEO satellite orbits are significantly stabilized with the new SRP force model. The average orbit overlapping root mean square (RMS) achieved by the proposed model is 7.5 cm in the radial component, which is evidently improved over those of 37.4 and 13.2 cm for ECOM 5 and ECOM 9, respectively. In addition, the correlation coefficients between GEO orbit overlaps precision and the elevation angle of the Sun have been decreased to -0.12, 0.21, and -0.03 in radial, along-track and cross-track components by using the proposed model, while they are -0.94, -0.79 and -0.29 for ECOM 5 and -0.70, 0.21 and 0.10 for ECOM 9. Moreover, the standard deviation (STD) of Satellite Laser Ranging (SLR) data residuals for the GEO satellite C01 is reduced by 37.4% and 16.1% compared with those of ECOM 5 and ECOM 9 SRP models.

  14. Habitat Design Considerations for Implementing Solar Particle Event Radiation Protection

    NASA Technical Reports Server (NTRS)

    Simon, Mathew A.; Clowdsley, Martha S.; Walker, Steven A.

    2013-01-01

    Radiation protection is an important habitat design consideration for human exploration missions beyond Low Earth Orbit. Fortunately, radiation shelter concepts can effectively reduce astronaut exposure for the relatively low proton energies of solar particle events, enabling moderate duration missions of several months before astronaut exposure (galactic cosmic ray and solar particle event) approaches radiation exposure limits. In order to minimize habitat mass for increasingly challenging missions, design of radiation shelters must minimize dedicated, single-purpose shielding mass by leveraging the design and placement of habitat subsystems, accommodations, and consumables. NASA's Advanced Exploration Systems RadWorks Storm Shelter Team has recently designed and performed radiation analysis on several low dedicated mass shelter concepts for a year-long mission. This paper describes habitat design considerations identified during the study's radiation analysis. These considerations include placement of the shelter within a habitat for improved protection, integration of human factors guidance for sizing shelters, identification of potential opportunities for habitat subsystems to compromise on individual subsystem performances for overall vehicle mass reductions, and pre-configuration of shelter components for reduced deployment times.

  15. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species.

    PubMed

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H C

    2015-08-18

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation.

  16. The solar dynamic radiator with a historical perspective

    NASA Technical Reports Server (NTRS)

    Mclallin, K. L.; Fleming, M. L.; Hoehn, F. W.; Howerton, R. L.

    1988-01-01

    A historical perspective on pumped-fluid loop space radiators provides a basis for the design of the Space Station Solar Dynamic (SD) power module radiator. SD power modules, capable of generating 25 kW (electrical) each, are planned for growth in Station power requirements. The Brayton cycle SD module configuration incorporates a pumped-fluid loop radiator that must reject up to 99 kW (thermal). The thermal/hydraulic design conditions in combination with required radiator orientation and packaging envelope form a unique set of constraints as compared to previous pumped-fluid loop radiator systems. Nevertheless, past program successes have demonstrated a technology base that can be applied to the SD radiator development program to ensure a low risk, low cost system.

  17. Increased intracranial pressure in mini-pigs exposed to simulated solar particle event radiation

    NASA Astrophysics Data System (ADS)

    Sanzari, Jenine K.; Muehlmatt, Amy; Savage, Alexandria; Lin, Liyong; Kennedy, Ann R.

    2014-02-01

    Changes in intracranial pressure (ICP) during space flight have stimulated an area of research in space medicine. It is widely speculated that elevations in ICP contribute to structural and functional ocular changes, including deterioration in vision, which is also observed during space flight. The aim of this study was to investigate changes in opening pressure (OP) occurring as a result of ionizing radiation exposure (at doses and dose-rates relevant to solar particle event radiation). We used a large animal model, the Yucatan mini-pig, and were able to obtain measurements over a 90 day period. This is the first investigation to show long term recordings of ICP in a large animal model without an invasive craniotomy procedure. Further, this is the first investigation reporting increased ICP after radiation exposure.

  18. Evaluation and prediction of solar radiation for energy management based on neural networks

    NASA Astrophysics Data System (ADS)

    Aldoshina, O. V.; Van Tai, Dinh

    2017-08-01

    Currently, there is a high rate of distribution of renewable energy sources and distributed power generation based on intelligent networks; therefore, meteorological forecasts are particularly useful for planning and managing the energy system in order to increase its overall efficiency and productivity. The application of artificial neural networks (ANN) in the field of photovoltaic energy is presented in this article. Implemented in this study, two periodically repeating dynamic ANS, that are the concentration of the time delay of a neural network (CTDNN) and the non-linear autoregression of a network with exogenous inputs of the NAEI, are used in the development of a model for estimating and daily forecasting of solar radiation. ANN show good productivity, as reliable and accurate models of daily solar radiation are obtained. This allows to successfully predict the photovoltaic output power for this installation. The potential of the proposed method for controlling the energy of the electrical network is shown using the example of the application of the NAEI network for predicting the electric load.

  19. Predictability of Solar Radiation for Photovoltaics systems over Europe: from short-term to seasonal time-scales

    NASA Astrophysics Data System (ADS)

    De Felice, Matteo; Petitta, Marcello; Ruti, Paolo

    2014-05-01

    Photovoltaic diffusion is steadily growing on Europe, passing from a capacity of almost 14 GWp in 2011 to 21.5 GWp in 2012 [1]. Having accurate forecast is needed for planning and operational purposes, with the possibility to model and predict solar variability at different time-scales. This study examines the predictability of daily surface solar radiation comparing ECMWF operational forecasts with CM-SAF satellite measurements on the Meteosat (MSG) full disk domain. Operational forecasts used are the IFS system up to 10 days and the System4 seasonal forecast up to three months. Forecast are analysed considering average and variance of errors, showing error maps and average on specific domains with respect to prediction lead times. In all the cases, forecasts are compared with predictions obtained using persistence and state-of-art time-series models. We can observe a wide range of errors, with the performance of forecasts dramatically affected by orography and season. Lower errors are on southern Italy and Spain, with errors on some areas consistently under 10% up to ten days during summer (JJA). Finally, we conclude the study with some insight on how to "translate" the error on solar radiation to error on solar power production using available production data from solar power plants. [1] EurObserver, "Baromètre Photovoltaïque, Le journal des énergies renouvables, April 2012."

  20. Standard solar model

    NASA Technical Reports Server (NTRS)

    Guenther, D. B.; Demarque, P.; Kim, Y.-C.; Pinsonneault, M. H.

    1992-01-01

    A set of solar models have been constructed, each based on a single modification to the physics of a reference solar model. In addition, a model combining several of the improvements has been calculated to provide a best solar model. Improvements were made to the nuclear reaction rates, the equation of state, the opacities, and the treatment of the atmosphere. The impact on both the structure and the frequencies of the low-l p-modes of the model to these improvements are discussed. It is found that the combined solar model, which is based on the best physics available (and does not contain any ad hoc assumptions), reproduces the observed oscillation spectrum (for low-l) within the errors associated with the uncertainties in the model physics (primarily opacities).

  1. A new CM SAF Solar Surface Radiation Climate Data Set derived from Meteosat Satellite Observations

    NASA Astrophysics Data System (ADS)

    Trentmann, J.; Mueller, R. W.; Pfeifroth, U.; Träger-Chatterjee, C.; Cremer, R.

    2014-12-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. It is mandatory to monitor this part of the earth's energy balance, and thus gain insights on the state and variability of the climate system. In addition, data sets of the surface solar radiation have received increased attention over the recent years as an important source of information for the planning of solar energy applications. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving surface solar radiation from geostationary and polar-orbiting satellite instruments. While CM SAF is focusing on the generation of high-quality long-term climate data records, also operationally data is provided in short time latency within 8 weeks. Here we present SARAH (Solar Surface Radiation Dataset - Heliosat), i.e. the new CM SAF Solar Surface Radiation data set based on Meteosat satellite observations. SARAH provides instantaneous, daily- and monthly-averaged data of the effective cloud albedo (CAL), the direct normalized solar radiation (DNI) and the solar irradiance (SIS) from 1983 to 2013 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05 deg allowing for detailed regional studies, and are available in netcdf-format at no cost without restrictions at www.cmsaf.eu. We provide an overview of the data sets, including a validation against reference measurements from the BSRN and GEBA surface station networks.

  2. On solar radiation-driven surface transport of sodium atoms at Mercury

    NASA Astrophysics Data System (ADS)

    Ip, W.-H.

    1990-06-01

    The ballistic motion of the exospheric sodium atoms on the surface Mercury is modeled, taking into account the solar radiation pressure acceleration and partial surface thermal accommodation. The Monte Carlo simulations show that there should be a significant degree of limb brightening as well as brightness enhancement over the poles. To maintain the observed sodium optical emission, a surface production rate on the order of 5-9 x 10 to the 24th atoms/s is needed. It is also found that, under the present set of assumptions, a reasonable agreement can be reached between theoretical results and ground-based measurements for the dependence of the disk-averaged abundance of the sodium atoms on the solar radiation pressure acceleration. If the low-altitude portion of the planetary surface is shielded from the magnetospheric convective electric field, the effective loss rate of the sodium atoms via photoionization and magnetospheric pickup may be reduced to about 2 x 10 to the 24th atoms/s, with the polar regions acting as the main area of ion outflows.

  3. INTERACTIONS OF SOLAR ULTRAVIOLET RADIATION AND DISSOLVED ORGANIC MATTER IN FRESHWATER AND MARINE ENVIRONMENTS

    EPA Science Inventory

    Solar radiation provides the primary driving force for the biogeochemical cycles upon which life and climate depend. Recent studies have demonstrated that the absorption of solar radiation, especially 'm the ultraviolet spectral region, results in photochemical reactions that can...

  4. Realistic Modeling of Multi-Scale MHD Dynamics of the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina; Mansour, Nagi N.; Wray, Alan; Couvidat, Sebastian; Yoon, Seokkwan; Kosovichev, Alexander

    2014-01-01

    Realistic 3D radiative MHD simulations open new perspectives for understanding the turbulent dynamics of the solar surface, its coupling to the atmosphere, and the physical mechanisms of generation and transport of non-thermal energy. Traditionally, plasma eruptions and wave phenomena in the solar atmosphere are modeled by prescribing artificial driving mechanisms using magnetic or gas pressure forces that might arise from magnetic field emergence or reconnection instabilities. In contrast, our 'ab initio' simulations provide a realistic description of solar dynamics naturally driven by solar energy flow. By simulating the upper convection zone and the solar atmosphere, we can investigate in detail the physical processes of turbulent magnetoconvection, generation and amplification of magnetic fields, excitation of MHD waves, and plasma eruptions. We present recent simulation results of the multi-scale dynamics of quiet-Sun regions, and energetic effects in the atmosphere and compare with observations. For the comparisons we calculate synthetic spectro-polarimetric data to model observational data of SDO, Hinode, and New Solar Telescope.

  5. Comparative modeling of InP solar cell structures

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Weinberg, I.; Flood, D. J.

    1991-01-01

    The comparative modeling of p(+)n and n(+)p indium phosphide solar cell structures is studied using a numerical program PC-1D. The optimal design study has predicted that the p(+)n structure offers improved cell efficiencies as compared to n(+)p structure, due to higher open-circuit voltage. The various cell material and process parameters to achieve the maximum cell efficiencies are reported. The effect of some of the cell parameters on InP cell I-V characteristics was studied. The available radiation resistance data on n(+)p and p(+)p InP solar cells are also critically discussed.

  6. Comparison of the measured and predicted response of the Earth Radiation Budget Experiment active cavity radiometer during solar observations

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Tira, N. E.; Lee, Robert B., III; Keynton, R. J.

    1989-01-01

    The Earth Radiation Budget Experiment consists of an array of radiometric instruments placed in earth orbit by the National Aeronautics and Space Administration to monitor the longwave and visible components of the earth's radiation budget. Presented is a dynamic electrothermal model of the active cavity radiometer used to measure the earth's total radiative exitance. Radiative exchange is modeled using the Monte Carlo method and transient conduction is treated using the finite element method. Also included is the feedback circuit which controls electrical substitution heating of the cavity. The model is shown to accurately predict the dynamic response of the instrument during solar calibration.

  7. Support vector regression methodology for estimating global solar radiation in Algeria

    NASA Astrophysics Data System (ADS)

    Guermoui, Mawloud; Rabehi, Abdelaziz; Gairaa, Kacem; Benkaciali, Said

    2018-01-01

    Accurate estimation of Daily Global Solar Radiation (DGSR) has been a major goal for solar energy applications. In this paper we show the possibility of developing a simple model based on the Support Vector Regression (SVM-R), which could be used to estimate DGSR on the horizontal surface in Algeria based only on sunshine ratio as input. The SVM model has been developed and tested using a data set recorded over three years (2005-2007). The data was collected at the Applied Research Unit for Renewable Energies (URAER) in Ghardaïa city. The data collected between 2005-2006 are used to train the model while the 2007 data are used to test the performance of the selected model. The measured and the estimated values of DGSR were compared during the testing phase statistically using the Root Mean Square Error (RMSE), Relative Square Error (rRMSE), and correlation coefficient (r2), which amount to 1.59(MJ/m2), 8.46 and 97,4%, respectively. The obtained results show that the SVM-R is highly qualified for DGSR estimation using only sunshine ratio.

  8. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Kuehne, M.; Lemaire, P.; Marsch, E.

    1992-01-01

    The experiment Solar Ultraviolet Measurements of Emitted Radiation (SUMER) is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. Specifically, SUMER will measure profiles and intensities of Extreme Ultraviolet (EUV) lines emitted in the solar atmosphere ranging from the upper chromosphere to the lower corona; determine line broadenings, spectral positions and Doppler shifts with high accuracy, provide stigmatic images of selected areas of the Sun in the EUV with high spatial, temporal and spectral resolution and obtain full images of the Sun and the inner corona in selectable EUV lines, corresponding to a temperature from 10,000 to more than 1,800,000 K.

  9. Estimation of Transmittance of Solar Radiation in the Visible Domain Based on Remote Sensing: Evaluation of Models Using In Situ Data

    NASA Astrophysics Data System (ADS)

    Zoffoli, M. Laura; Lee, Zhongping; Ondrusek, Michael; Lin, Junfang; Kovach, Charles; Wei, Jianwei; Lewis, Marlon

    2017-11-01

    The transmittance of solar radiation in the oceanic water column plays an important role in heat transfer and photosynthesis, with implications for the global carbon cycle, global circulation, and climate. Globally, the transmittance of solar radiation in the visible domain (˜400-700 nm) (TRVIS) through the water column, which determines the vertical distribution of visible light, has to be based on remote sensing products. There are models centered on chlorophyll-a (Chl) concentration or Inherent Optical Properties (IOPs) as both can be derived from ocean color measurements. We present evaluations of both schemes with field data from clear oceanic and from coastal waters. Here five models were evaluated: (1) Morel and Antoine (1994) (MA94), (2) Ohlmann and Siegel (2000) (OS00), (3) Murtugudde et al. (2002) (MU02), (4) Manizza et al. (2005) (MA05), and (5) Lee et al. ([Lee, Z., 2005]) (IOPs05), where the first four are Chl-based and the last one is IOPs-based, with all inputs derived from remote sensing reflectance. It is found that the best performing model is the IOPs05, with Unbiased Absolute Percent Difference (UAPD) ˜23%, while Chl-based models show higher uncertainties (UAPD for MA94: ˜54%, OS00: ˜133%, MU02: ˜56%, and MA05: ˜39%). The IOPs-based model was insensitive to the type of water, allowing it to be applied in most marine environments; whereas some of the Chl-based models (MU02 and MA05) show much higher sensitivities in coastal turbid waters (higher Chl waters). These results highlight the applicablity of using IOPs products for such applications.

  10. Absorption of Solar Radiation by Clouds: An Overview

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This talk provides an overview of the subject of absorption of solar radiation by clouds in the earth's atmosphere. The paper summarizes the available evidence which points to disagreements between theoretical and observed values of cloud absorption (and reflections). The importance of these discrepancies, particularly to remote sensing of clouds as well as to studies of cloud physics and earth radiation budgets, is emphasized. Existing cloud absorption and reflection measurements are reviewed and the persistent differences that exist between calculated and measured near-infrared cloud albedos are highlighted. Various explanations for these reflection and absorption discrepancies are discussed under two separate paths: a theoretician's approach and an experimentalist's approach. Examples for the former approach include model accuracy tests, large-droplet hypothesis, excess absorbing aerosol, enhanced water vapor continuum absorption, and effects of cloud inhomogeneity. The latter approach focuses on discussions of instrumental device, calibration, operational strategy, and signal/noise separation. A recommendation for future activities on this subject will be given.

  11. Impact of buildings on surface solar radiation over urban Beijing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu

    The rugged surface of an urban area due to varying buildings can interact with solar beams and affect both the magnitude and spatiotemporal distribution of surface solar fluxes. Here we systematically examine the impact of buildings on downward surface solar fluxes over urban Beijing by using a 3-D radiation parameterization that accounts for 3-D building structures vs. the conventional plane-parallel scheme. We find that the resulting downward surface solar flux deviations between the 3-D and the plane-parallel schemes are generally ±1–10 W m -2 at 800 m grid resolution and within ±1 W m -2 at 4 km resolution. Pairsmore » of positive–negative flux deviations on different sides of buildings are resolved at 800 m resolution, while they offset each other at 4 km resolution. Flux deviations from the unobstructed horizontal surface at 4 km resolution are positive around noon but negative in the early morning and late afternoon. The corresponding deviations at 800 m resolution, in contrast, show diurnal variations that are strongly dependent on the location of the grids relative to the buildings. Both the magnitude and spatiotemporal variations of flux deviations are largely dominated by the direct flux. Furthermore, we find that flux deviations can potentially be an order of magnitude larger by using a finer grid resolution. Atmospheric aerosols can reduce the magnitude of downward surface solar flux deviations by 10–65 %, while the surface albedo generally has a rather moderate impact on flux deviations. The results imply that the effect of buildings on downward surface solar fluxes may not be critically significant in mesoscale atmospheric models with a grid resolution of 4 km or coarser. However, the effect can play a crucial role in meso-urban atmospheric models as well as microscale urban dispersion models with resolutions of 1 m to 1 km.« less

  12. On piecewise interpolation techniques for estimating solar radiation missing values in Kedah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saaban, Azizan; Zainudin, Lutfi; Bakar, Mohd Nazari Abu

    2014-12-04

    This paper discusses the use of piecewise interpolation method based on cubic Ball and Bézier curves representation to estimate the missing value of solar radiation in Kedah. An hourly solar radiation dataset is collected at Alor Setar Meteorology Station that is taken from Malaysian Meteorology Deparment. The piecewise cubic Ball and Bézier functions that interpolate the data points are defined on each hourly intervals of solar radiation measurement and is obtained by prescribing first order derivatives at the starts and ends of the intervals. We compare the performance of our proposed method with existing methods using Root Mean Squared Errormore » (RMSE) and Coefficient of Detemination (CoD) which is based on missing values simulation datasets. The results show that our method is outperformed the other previous methods.« less

  13. Measurement and modeling of solar irradiance components on horizontal and tilted planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padovan, Andrea; Col, Davide del

    2010-12-15

    In this work new measurements of global and diffuse solar irradiance on the horizontal plane and global irradiance on planes tilted at 20 and 30 oriented due South and at 45 and 65 oriented due East are used to discuss the modeling of solar radiation. Irradiance data are collected in Padova (45.4 N, 11.9 E, 12 m above sea level), Italy. Some diffuse fraction correlations have been selected to model the hourly diffuse radiation on the horizontal plane. The comparison with the present experimental data shows that their prediction accuracy strongly depends on the sky characteristics. The hourly irradiance measurementsmore » taken on the tilted planes are compared with the estimations given by one isotropic and three anisotropic transposition models. The use of an anisotropic model, based on a physical description of the diffuse radiation, provides a much better accuracy, especially when measurements of the diffuse irradiance on the horizontal plane are not available and thus transposition models have to be applied in combination with a diffuse fraction correlation. This is particularly significant for the planes oriented away from South. (author)« less

  14. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species

    PubMed Central

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K.; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H.C.

    2015-01-01

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation. PMID:26282711

  15. Orbit determination modelling analysis using GPS including perturbations due to geopotential coefficients of high degree and order, solar radiation pressure and luni-solar attraction

    NASA Astrophysics Data System (ADS)

    Vilhena de Moraes, Rodolpho; Cristiane Pardal, Paula; Koiti Kuga, Helio

    The problem of orbit determination consists essentially of estimating parameter values that completely specify the body trajectory in the space, processing a set of information (measure-ments) from this body. Such observations can be collected through a conventional tracking network on Earth or through sensors like GPS. The Global Positioning System (GPS) is a powerful and low cost way to allow the computation of orbits for artificial Earth satellites. The Topex/Poseidon satellite is normally used as a reference for analyzing this system for space positioning. The orbit determination of artificial satellites is a nonlinear problem in which the disturbing forces are not easily modeled, like geopotential and direct solar radiation pressure. Through an onboard GPS receiver it is possible to obtain measurements (pseudo-range and phase) that can be used to estimate the state of the orbit. One intends to analyze the modeling of the orbit of an artificial satellite, using signals of the GPS constellation and least squares algorithms as a method of estimation, with the aim of analyzing the performance of the orbit estimation process. Accuracy is not the main goal; one pursues to verify how differences of modeling can affect the final accuracy of the orbit determination. To accomplish that, the following effects were considered: perturbations up to high degree and order for the geopoten-tial coefficients; direct solar radiation pressure, Sun attraction, and Moon attraction. It was also considered the position of the GPS antenna on the satellite body that, lately, consists of the influence of the satellite attitude motion in the orbit determination process. Although not presenting the ultimate accuracy, pseudo-range measurements corrected from ionospheric effects were considered enough to such analysis. The measurements were used to feed the batch least squares orbit determination process, in order to yield conclusive results about the orbit modeling issue. An application

  16. Solar Radiation Pressure Binning for the Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.; Ghrist, R. W.

    2011-01-01

    Orbital maintenance parameters for individual satellites or groups of satellites have traditionally been set by examining orbital parameters alone, such as through apogee and perigee height binning; this approach ignored the other factors that governed an individual satellite's susceptibility to non-conservative forces. In the atmospheric drag regime, this problem has been addressed by the introduction of the "energy dissipation rate," a quantity that represents the amount of energy being removed from the orbit; such an approach is able to consider both atmospheric density and satellite frontal area characteristics and thus serve as a mechanism for binning satellites of similar behavior. The geo-synchronous orbit (of broader definition than the geostationary orbit -- here taken to be from 1300 to 1800 minutes in orbital period) is not affected by drag; rather, its principal non-conservative force is that of solar radiation pressure -- the momentum imparted to the satellite by solar radiometric energy. While this perturbation is solved for as part of the orbit determination update, no binning or division scheme, analogous to the drag regime, has been developed for the geo-synchronous orbit. The present analysis has begun such an effort by examining the behavior of geosynchronous rocket bodies and non-stabilized payloads as a function of solar radiation pressure susceptibility. A preliminary examination of binning techniques used in the drag regime gives initial guidance regarding the criteria for useful bin divisions. Applying these criteria to the object type, solar radiation pressure, and resultant state vector accuracy for the analyzed dataset, a single division of "large" satellites into two bins for the purposes of setting related sensor tasking and orbit determination (OD) controls is suggested. When an accompanying analysis of high area-to-mass objects is complete, a full set of binning recommendations for the geosynchronous orbit will be available.

  17. Survival of antibiotic resistant bacteria following artificial solar radiation of secondary wastewater effluent.

    PubMed

    Glady-Croue, Julie; Niu, Xi-Zhi; Ramsay, Joshua P; Watkin, Elizabeth; Murphy, Riley J T; Croue, Jean-Philippe

    2018-06-01

    Urban wastewater treatment plant effluents represent one of the major emission sources of antibiotic-resistant bacteria (ARB) in natural aquatic environments. In this study, the effect of artificial solar radiation on total culturable heterotrophic bacteria and ARB (including amoxicillin-resistant, ciprofloxacin-resistant, rifampicin-resistant, sulfamethoxazole-resistant, and tetracycline-resistant bacteria) present in secondary effluent was investigated. Artificial solar radiation was effective in inactivating the majority of environmental bacteria, however, the proportion of strains with ciprofloxacin-resistance and rifampicin-resistance increased in the surviving populations. Isolates of Pseudomonas putida, Serratia marcescens, and Stenotrophomonas maltophilia nosocomial pathogens were identified as resistant to solar radiation and to at least three antibiotics. Draft genome sequencing and typing revealed isolates carrying multiple resistance genes; where S. maltophilia (resistant to all studied antibiotics) sequence type was similar to strains isolated in blood infections. Results from this study confirm that solar radiation reduces total bacterial load in secondary effluent, but may indirectly increase the relative abundance of ARB. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Innovative second-generation wavelets construction with recurrent neural networks for solar radiation forecasting.

    PubMed

    Capizzi, Giacomo; Napoli, Christian; Bonanno, Francesco

    2012-11-01

    Solar radiation prediction is an important challenge for the electrical engineer because it is used to estimate the power developed by commercial photovoltaic modules. This paper deals with the problem of solar radiation prediction based on observed meteorological data. A 2-day forecast is obtained by using novel wavelet recurrent neural networks (WRNNs). In fact, these WRNNS are used to exploit the correlation between solar radiation and timescale-related variations of wind speed, humidity, and temperature. The input to the selected WRNN is provided by timescale-related bands of wavelet coefficients obtained from meteorological time series. The experimental setup available at the University of Catania, Italy, provided this information. The novelty of this approach is that the proposed WRNN performs the prediction in the wavelet domain and, in addition, also performs the inverse wavelet transform, giving the predicted signal as output. The obtained simulation results show a very low root-mean-square error compared to the results of the solar radiation prediction approaches obtained by hybrid neural networks reported in the recent literature.

  19. Synergistic effect of solar radiation and solar heating to disinfect drinking water sources.

    PubMed

    Rijal, G K; Fujioka, R S

    2001-01-01

    Waterborne diseases are still common in developing countries as drinking water sources are contaminated and feasible means to reliably treat and disinfect these waters are not available. Many of these developing countries are in the tropical regions of the world where sunlight is plentiful. The objective of this study was to evaluate the effectiveness of combining solar radiation and solar heating to disinfect contaminated water using a modified Family Sol*Saver System (FSP). The non-UV transmittable cover sheet of the former FSP system was replaced with an UV transmittable plastic cover sheet to enable more wavelengths of sunlight to treat the water. Disinfection efficiency of both systems was evaluated based on reduction of the natural populations of faecal coliform, E. coli, enterococci, C. perfringens, total heterotrophic bacteria, hydrogen sulphide producing bacteria and FRNA virus. The results showed that under sunny and partly sunny conditions, water was heated to critical temperature (60 degrees C) in both the FSP systems inactivating more than 3 log (99.9%) of the concentrations of faecal coliform and E. coli to undetectable levels of < 1 CFU/100 mL within 2-5 h exposure to sunlight. However, under cloudy conditions, the two FSP systems did not reduce the concentrations of faecal indicator bacteria to levels of < 1 CFU/100 mL. Nonetheless, sufficient evidence was obtained to show that UV radiation of sunlight plus heat worked synergistically to enhance the inactivation of faecal indicator bacteria. The relative log removal of indicator microorganism in the FSP treated water was total heterotrophic bacteria < C. perfringens < F RNA virus < enterococci < E. coli < faecal coliform. In summary, time of exposure to heat and radiation effects of sunlight were important in disinfecting water by solar units. The data indicated that direct radiation of sunlight worked synergistically with solar heating of the water to disinfect the water. Thus, effective

  20. Atmospheric radiation model for water surfaces

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Gaskill, D. W.; Lierzer, J. R.

    1982-01-01

    An atmospheric correction model was extended to account for various atmospheric radiation components in remotely sensed data. Components such as the atmospheric path radiance which results from singly scattered sky radiation specularly reflected by the water surface are considered. A component which is referred to as the virtual Sun path radiance, i.e. the singly scattered path radiance which results from the solar radiation which is specularly reflected by the water surface is also considered. These atmospheric radiation components are coded into a computer program for the analysis of multispectral remote sensor data over the Great Lakes of the United States. The user must know certain parameters, such as the visibility or spectral optical thickness of the atmosphere and the geometry of the sensor with respect to the Sun and the target elements under investigation.

  1. Studies of Particle Acceleration, Transport and Radiation in Impulsive Phase of Solar Flares

    NASA Technical Reports Server (NTRS)

    Petrosian, Vahe

    2005-01-01

    Solar activity and its most prominent aspect, the solar flares, have considerable influence on terrestrial and space weather. Solar flares also provide a suitable laboratory for the investigation of many plasma and high energy processes important in the magnetosphere of the Earth and many other space and astrophysical situations. Hence, progress in understanding of flares will have considerable scientific and societal impact. The primary goal of this grant is the understanding of two of the most important problems of solar flare physics, namely the determination of the energy release mechanism and how this energy accelerates particles. This is done through comparison of the observations with theoretical models, starting from observations and gradually proceeding to theoretically more complex situations as the lower foundations of our understanding are secured. It is generally agreed that the source of the flare energy is the annihilation of magnetic fields by the reconnection process. Exactly how this energy is released or how it is dissipated remains controversial. Moreover, the exact mechanism of the acceleration of the particles is still a matter of debate. Data from many spacecrafts and ground based instruments obtained over the past decades have given us some clues. Theoretical analyses of these data have led to the standard thick target model (STT) where most of the released energy goes into an (assumed) power law spectrum of accelerated particles, and where all the observed radiations are the consequence of the interaction of these particles with the flare plasma. However, some theoretical arguments, and more importantly some new observations, have led us to believe that the above picture is not complete. It appears that plasma turbulence plays a more prominent role than suspected previously, and that it is the most likely agent for accelerating particles. The model we have developed is based on production of a high level of plasma waves and turbulence in

  2. National Solar Radiation Database 1991-2010 Update: User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, S. M.

    This user's manual provides information on the updated 1991-2010 National Solar Radiation Database. Included are data format descriptions, data sources, production processes, and information about data uncertainty.

  3. Atlas of albedo and absorbed solar radiation derived from Nimbus 7 earth radiation budget data set, November 1985 to October 1987

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Rutan, David; Bess, T. Dale

    1992-01-01

    An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented for 21 months from Nov. 1985 to Oct. 1987. These data were retrieved from measurements made by the shortwave wide-field-of-view radiometer of the Earth Radiation Budget (ERB) instrument aboard the Nimbus 7 spacecraft. Profiles of zonal mean albedos and absorbed solar radiation were tabulated. These geographical distributions are provided as a resource for researchers studying the radiation budget of the Earth. The El Nino/Southern Oscillation event of 1986-1987 is included in this data set. This atlas of albedo and absorbed solar radiation extends to 12 years the period covered by two similar atlases: NASA RP-1230 (Jul. 1975 - Oct. 1978) and NASA RP-1231 (Nov. 1978 - Oct. 1985). These three compilations complement the atlases of outgoing longwave radiation by Bess and Smith in NASA RP-1185, RP-1186, and RP-1261, which were also based on the Nimbus 6 and 7 ERB data.

  4. Decadal variability of surface incident solar radiation over China: Observations, satellite retrievals, and reanalyses

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun; Ma, Qian; Li, Zhijun; Wang, Jiankai

    2015-07-01

    Existing studies have shown that observed surface incident solar radiation (Rs) over China may have important inhomogeneity issues. This study provides metadata and reference data to homogenize observed Rs, from which the decadal variability of Rs over China can be accurately derived. From 1958 to 1990, diffuse solar radiation (Rsdif) and direct solar radiation (Rsdir) were measured separately, and Rs was calculated as their sum. The pyranometers used to measure Rsdif had a strong sensitivity drift problem, which introduced a spurious decreasing trend into the observed Rsdif and Rs data, whereas the observed Rsdir did not suffer from this sensitivity drift problem. From 1990 to 1993, instruments and measurement methods were replaced and measuring stations were restructured in China, which introduced an abrupt increase in the observed Rs. Intercomparisons between observation-based and model-based Rs performed in this research show that sunshine duration (SunDu)-derived Rs is of high quality and can be used as reference data to homogenize observed Rs data. The homogenized and adjusted data of observed Rs combines the advantages of observed Rs in quantifying hourly to monthly variability and SunDu-derived Rs in depicting decadal variability and trend. Rs averaged over 105 stations in China decreased at -2.9 W m-2 per decade from 1961 to 1990 and remained stable afterward. This decadal variability is confirmed by the observed Rsdir and diurnal temperature ranges, and can be reproduced by high-quality Earth System Models. However, neither satellite retrievals nor reanalyses can accurately reproduce such decadal variability over China.

  5. Evaluation of CLM4 Solar Radiation Partitioning Scheme Using Remote Sensing and Site Level FPAR Datasets

    DOE PAGES

    Wang, Kai; Mao, Jiafu; Dickinson, Robert; ...

    2013-06-05

    This paper examines a land surface solar radiation partitioning scheme, i.e., that of the Community Land Model version 4 (CLM4) with coupled carbon and nitrogen cycles. Taking advantage of a unique 30-year fraction of absorbed photosynthetically active radiation (FPAR) dataset derived from the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) data set, multiple other remote sensing datasets, and site level observations, we evaluated the CLM4 FPAR ’s seasonal cycle, diurnal cycle, long-term trends and spatial patterns. These findings show that the model generally agrees with observations in the seasonal cycle, long-term trends, and spatial patterns,more » but does not reproduce the diurnal cycle. Discrepancies also exist in seasonality magnitudes, peak value months, and spatial heterogeneity. Here, we identify the discrepancy in the diurnal cycle as, due to, the absence of dependence on sun angle in the model. Implementation of sun angle dependence in a one-dimensional (1-D) model is proposed. The need for better relating of vegetation to climate in the model, indicated by long-term trends, is also noted. Evaluation of the CLM4 land surface solar radiation partitioning scheme using remote sensing and site level FPAR datasets provides targets for future development in its representation of this naturally complicated process.« less

  6. Recent solar extreme ultraviolet irradiance observations and modeling: A review

    NASA Technical Reports Server (NTRS)

    Tobiska, W. Kent

    1993-01-01

    For more than 90 years, solar extreme ultraviolet (EUV) irradiance modeling has progressed from empirical blackbody radiation formulations, through fudge factors, to typically measured irradiances and reference spectra was well as time-dependent empirical models representing continua and line emissions. A summary of recent EUV measurements by five rockets and three satellites during the 1980s is presented along with the major modeling efforts. The most significant reference spectra are reviewed and threee independently derived empirical models are described. These include Hinteregger's 1981 SERF1, Nusinov's 1984 two-component, and Tobiska's 1990/1991/SERF2/EUV91 flux models. They each provide daily full-disk broad spectrum flux values from 2 to 105 nm at 1 AU. All the models depend to one degree or another on the long time series of the Atmosphere Explorer E (AE-E) EUV database. Each model uses ground- and/or space-based proxies to create emissions from solar atmospheric regions. Future challenges in EUV modeling are summarized including the basic requirements of models, the task of incorporating new observations and theory into the models, the task of comparing models with solar-terrestrial data sets, and long-term goals and modeling objectives. By the late 1990s, empirical models will potentially be improved through the use of proposed solar EUV irradiance measurements and images at selected wavelengths that will greatly enhance modeling and predictive capabilities.

  7. Evaluation of simple model for net radiation estimates above various vegetation covers

    NASA Astrophysics Data System (ADS)

    Hlavinka, P.; Trnka, M.; Fischer, M.; Kucera, J.; Mozny, M.; Zalud, Z.

    2010-09-01

    The main objective of submitted study was to calibrate and verify the simple model for net radiation (Rn) estimates during the growing periods of selected agricultural crops. In the same time the soil heat flux (G) measurements were analysed. The model needs incoming solar radiation, air temperature, vapor pressure measurements and information about albedo as input. The net radiation is determined as difference between the incoming net shortwave radiation (Rns) and the outgoing net longwave radiation (Rnl). The Rns is estimated from incoming solar radiation using albedo. The Rnl is estimated from daily maximum and minimum temperature, vapour pressure, incoming solar radiation and derived clear-sky radiation. The accuracy of the model was assessed on the basis of radiation balance measurements (by Net radiometer Schenk 8110) at two experimental stations in the Czech Republic (i.e. Polkovice 49°23´ (N), 17°17´ (E), 205 m a.s.l.; Domanínek 49°32´ (N), 16°15´ (E), 544 m a.s.l.) during the years 2009 and 2010. The parameter G was measured by Hukseflux Thermal Sensor HFP01. For the purpose of mentioned analyses the measurements were conducted during the growing season of spring barley, winter wheat, winter rape, grass, poplars and above field after harvest of cereals (after/without tillage). These covers are very common type of surface within agricultural landscape in Central Europe. The enhanced method of Rn and G estimation were then used for the SoilClim model runs. The present version of SoilClim uses very simple algorithm for radiation balance and should be modified to be closer to reality. Namely the estimates of reference evapotranspiration (ETo), actual evapotranspiration (ETa) and soil water content could be substantially improved by this way. Acknowledgement: We gratefully acknowledge the support of the Grant Agency of the Czech Republic (no. 521/09/P479) and Research plan No. MSM6215648905 "Biological and technological aspects of sustainability of

  8. Modeling and simulation of the solar concentrator in photovoltaic systems through the application of a new BRDF function model

    NASA Astrophysics Data System (ADS)

    Plachta, Kamil

    2016-04-01

    The paper presents a new algorithm that uses a combination of two models of BRDF functions: Torrance-Sparrow model and HTSG model. The knowledge of technical parameters of a surface is especially useful in the construction of the solar concentrator. The concentrator directs the reflected solar radiation on the surface of photovoltaic panels, increasing the amount of incident radiance. The software applying algorithm allows to calculate surface parameters of the solar concentrator. Performed simulation showing the share of diffuse component and directional component in reflected stream for surfaces made from particular materials. The impact of share of each component in reflected stream on the efficiency of the solar concentrator and photovoltaic surface has also been described. Subsequently, simulation change the value of voltage, current and power output of monocrystalline photovoltaic panels installed in a solar concentrator system has been made for selected surface of materials solar concentrator.

  9. A Model of Magnetic Braking of Solar Rotation that Satisfies Observational Constraints

    NASA Astrophysics Data System (ADS)

    Denissenkov, Pavel A.

    2010-08-01

    The model of magnetic braking of solar rotation considered by Charbonneau & MacGregor has been modified so that it is able to reproduce for the first time the rotational evolution of both the fastest and slowest rotators among solar-type stars in open clusters of different ages, without coming into conflict with other observational constraints, such as the time evolution of the atmospheric Li abundance in solar twins and the thinness of the solar tachocline. This new model assumes that rotation-driven turbulent diffusion, which is thought to amplify the viscosity and magnetic diffusivity in stellar radiative zones, is strongly anisotropic with the horizontal components of the transport coefficients strongly dominating over those in the vertical direction. Also taken into account is the poloidal field decay that helps to confine the width of the tachocline at the solar age. The model's properties are investigated by numerically solving the azimuthal components of the coupled momentum and magnetic induction equations in two dimensions using a finite element method.

  10. Drivers of solar radiation variability in the McMurdo Dry Valleys, Antarctica

    USGS Publications Warehouse

    Obryk, Maciej; Fountain, Andrew G.; Doran, Peter; Lyons, Berry; Eastman, Ryan

    2018-01-01

    Annually averaged solar radiation in the McMurdo Dry Valleys, Antarctica has varied by over 20 W m−2 during the past three decades; however, the drivers of this variability are unknown. Because small differences in radiation are important to water availability and ecosystem functioning in polar deserts, determining the causes are important to predictions of future desert processes. We examine the potential drivers of solar variability and systematically eliminate all but stratospheric sulfur dioxide. We argue that increases in stratospheric sulfur dioxide increase stratospheric aerosol optical depth and decrease solar intensity. Because of the polar location of the McMurdo Dry Valleys (77–78°S) and relatively long solar ray path through the stratosphere, terrestrial solar intensity is sensitive to small differences in stratospheric transmissivity. Important sources of sulfur dioxide include natural (wildfires and volcanic eruptions) and anthropogenic emission.

  11. Accuracy of Estimating Solar Radiation Pressure for GEO Debris with Tumbling Effect

    NASA Astrophysics Data System (ADS)

    Chao, Chia-Chun George

    2009-03-01

    The accuracy of estimating solar radiation pressure for GEO debris is examined and demonstrated, via numerical simulations, by fitting a batch (months) of simulated position vectors. These simulated position vectors are generated from a "truth orbit" with added white noise using high-precision numerical integration tools. After the long-arc fit of the simulated observations (position vectors), one can accurately and reliably determine how close the estimated value of solar radiation pressure is to the truth. Results of this study show that the inherent accuracy in estimating the solar radiation pressure coefficient can be as good as 1% if a long-arc fit span up to 180 days is used and the satellite is not tumbling. The corresponding position prediction accuracy can be as good as, in maximum error, 1 km along in-track, 0.3 km along radial and 0.1 km along cross-track up to 30 days. Similar accuracies can be expected when the object is tumbling as long as the rate of attitude change is different from the orbit rate. Results of this study reveal an important phenomenon that the solar radiation pressure significantly affects the orbit motion when the spin rate is equal to the orbit rate.

  12. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, M. C. E.; Lemaire, P.; Marsch, E.; Poland, A. I.

    1988-01-01

    The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established.

  13. Method and apparatus for measuring solar radiation in a vegetative canopy

    DOEpatents

    Gutschick, V.P.; Barron, M.H.; Waechter, D.A.; Wolf, M.A.

    1985-04-30

    An apparatus and method for measuring solar radiation received in a vegetative canopy. A multiplicity of sensors selectively generates electrical signals in response to impinging photosynthetically active radiation in sunlight. Each sensor is attached to a plant within the canopy and is electrically connected to a separate port in a junction box having a multiplicity of ports. Each port is connected to an operational amplifier. Each amplifier amplifies the signals generated by the sensors. Each amplifier is connected to an analog-to-digital convertor which digitizes each signal. A computer is connected to the convertors and accumulates and stores solar radiation data. A data output device such as a printer is connected to the computer and displays the data.

  14. Method and apparatus for measuring solar radiation in a vegetative canopy

    DOEpatents

    Gutschick, Vincent P.; Barron, Michael H.; Waechter, David A.; Wolf, Michael A.

    1987-01-01

    An apparatus and method for measuring solar radiation received in a vegetative canopy. A multiplicity of sensors selectively generates electrical signals in response to impinging photosynthetically active radiation in sunlight. Each sensor is attached to a plant within the canopy and is electrically connected to a separate port in a junction box having a multiplicity of ports. Each port is connected to an operational amplifier. Each amplifier amplifies the signals generated by the sensors. Each amplifier is connected to an analog-to-digital convertor which digitizes each signal. A computer is connected to the convertors and accumulates and stores solar radiation data. A data output device such as a printer is connected to the computer and displays the data.

  15. Modeling the Solar Dust Environment at 9.5 Solar Radii: Revealing Radiance Trends with MESSENGER Star Tracker Data

    NASA Astrophysics Data System (ADS)

    Strong, S. B.; Strikwerda, T.; Lario, D.; Raouafi, N.; Decker, R.

    2010-12-01

    The main components of interplanetary dust are created through destruction, erosion, and collision of asteroids and comets (e.g. Mann et al. 2006). Solar radiation forces distribute these interplanetary dust particles throughout the solar system. The percent contribution of these source particulates to the net interplanetary dust distribution can reveal information about solar nebula conditions, within which these objects are formed. In the absence of observational data (e.g. Helios, Pioneer), specifically at distances less than 0.3 AU, the precise dust distributions remain unknown and limited to 1 AU extrapolative models (e.g. Mann et al. 2003). We have developed a model suitable for the investigation of scattered dust and electron irradiance incident on a sensor for distances inward of 1 AU. The model utilizes the Grün et al. (1985) and Mann et al. (2004) dust distribution theory combined with Mie theory and Thomson electron scattering to determine the magnitude of solar irradiance scattered towards an optical sensor as a function of helio-ecliptic latitude and longitude. MESSENGER star tracker observations (launch to 2010) of the ambient celestial background combined with Helios data (Lienert et al. 1982) reveal trends in support of the model predictions. This analysis further emphasizes the need to characterize the inner solar system dust environment in anticipation of near-Solar missions.

  16. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    NASA Technical Reports Server (NTRS)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat

  17. Instrumentation for remote sensing solar radiation from light aircraft.

    PubMed

    Howard, J A; Barton, I J

    1973-10-01

    The paper outlines the instrumentation needed to study, from a light aircraft, the solar radiation reflected by ground surfaces and the incoming solar radiation. A global shortwave radiometer was mounted on the roof of the aircraft and a specially designed mount was used to support a downward pointing 70-mm aerial camera, a downward pointing narrow-beam pyranometer, and, sometimes, a downward pointing global shortwave pyranometer. Calibration factors were determined for the three pyranometers by comparison with a standard Angstrom compensation pyrheliometer. Results have indicated trends in the albedos of major plant communities and have shown that the calculated albedo values vary according to whether the downward pointing instrument is narrow-beam or global. Comparisons were also made with albedos measured on the ground.

  18. Aerosols attenuating the solar radiation collected by solar tower plants: The horizontal pathway at surface level

    NASA Astrophysics Data System (ADS)

    Elias, Thierry; Ramon, Didier; Dubus, Laurent; Bourdil, Charles; Cuevas-Agulló, Emilio; Zaidouni, Taoufik; Formenti, Paola

    2016-05-01

    Aerosols attenuate the solar radiation collected by solar tower plants (STP), along two pathways: 1) the atmospheric column pathway, between the top of the atmosphere and the heliostats, resulting in Direct Normal Irradiance (DNI) changes; 2) the grazing pathway close to surface level, between the heliostats and the optical receiver. The attenuation along the surface-level grazing pathway has been less studied than the aerosol impact on changes of DNI, while it becomes significant in STP of 100 MW or more. Indeed aerosols mostly lay within the surface atmospheric layer, called the boundary layer, and the attenuation increases with the distance covered by the solar radiation in the boundary layer. In STP of 100 MW or more, the distance between the heliostats and the optical receiver becomes large enough to produce a significant attenuation by aerosols. We used measured aerosol optical thickness and computed boundary layer height to estimate the attenuation of the solar radiation at surface level at Ouarzazate (Morocco). High variabilities in aerosol amount and in vertical layering generated a significant magnitude in the annual cycle and significant inter-annual changes. Indeed the annual mean of the attenuation caused by aerosols over a 1-km heliostat-receiver distance was 3.7% in 2013, and 5.4% in 2014 because of a longest desert dust season. The monthly minimum attenuation of less than 3% was observed in winter and the maximum of more than 7% was observed in summer.

  19. The Homogeneity of the Potsdam Solar Radiation Data

    NASA Astrophysics Data System (ADS)

    Behrens, K.

    2009-04-01

    At Meteorological Station in Potsdam (Germany) the measurement of sunshine duration started already in 1983. Later on, in 1937 the registration of global, diffuse and direct solar radiation was begun with pyranometers and a pyrheliometer. Since 1983 sunshine duration has been measured with the same method, the Campbell-Stokes sunshine recorder, at the same site, while the measurements of solar radiation changed as well as in equipment, measurement methods and location. Furthermore, it was firstly necessary to supplement some missing data within the time series and secondly, it was desirable to extend the series of global radiation by regression with the sunshine duration backward to 1893. Because solar radiation, especially global radiation, is one of the most important quantities for climate research, it is necessary to investigate the homogeneity of these time series. At first the history was studied and as much as possible information about all parameters, which could influence the data, were gathered. In a second step these metadata were reviewed critically followed by a discussion about the potential effects of local factors on the homogeneity of the data. In a first step of data rehabilitation the so-called engineering correction (data levelling to WRR and SI units) were made followed by the supplementation of gaps. Finally, for every month and the year the so generated time series of measured data (1937/2008) and the complete series, prolonged by regression and measurements (1893/2008), were tested on homogeneity with the following distribution-free tests: WILCOXON (U) test, MANN-KENDALL test and progressive analysis were used for the examination of the stability of the mean and the dispersion, while with the Wald-Wolfowitz test the first order autocorrelation was checked. These non-parametric test were used, because frequently radiation data do not fulfil the assumption of a GAUSSian or normal distribution. The investigations showed, that discontinuities

  20. Modeling of thin, back-wall silicon solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.

    1979-01-01

    The performance of silicon solar cells with p-n junctions on the nonilluminated surface (i.e., upside-down or back-wall cells) was calculated. These structures consisted of a uniformly shaped p-type substrate layer, a p(+)-type field layer on the front (illuminated) surface, and a shallow, n-type junction on the back (nonilluminated) surface. A four-layer solar cell model was used to calculate efficiency, open-circuit voltage, and short-circuit current. The effect on performance of p-layer thickness and resistivity was determined. The diffusion length was varied to simulate the effect of radiation damage. The results show that peak initial efficiencies greater than 15 percent are possible for cell thicknesses or 100 micrometers or less. After 10 years of radiation damage in geosynchronous orbit, thin (25 to 50 micrometers thick) cells made from 10 to 100 ohm cm material show the smallest decrease (approximately 10 percent) in performance.