Science.gov

Sample records for solar system topics

  1. Our Solar System. Our Solar System Topic Set

    ERIC Educational Resources Information Center

    Phelan, Glen

    2006-01-01

    This book examines the planets and other objects in space that make up the solar system. It also shows how technology helps students learn about our neighbors in space. The suggested age range for this book is 3-8 with a guided reading level of Q-R. The Fry level is 3.2.

  2. NASA Home > News & Features > News Topics > Solar System > Features Send Print Share > Log In To MyNASA | > Sign Up

    E-print Network

    Arizona, University of

    of exploration may one day be used on a mission to Titan, Mars and other planetary bodies. Current proposals together. Image credit: Caltech/ESA/NASA/JPL > Larger view Mission Milestones An armada of robots may oneNASA | > Sign Up News & Features News Topics Shuttle & Station Moon & Mars Solar System Sun-Earth System

  3. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;…

  4. Solar Systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  5. Solar-parabolic dish-Stirling-engine-system module. Task 1: Topical report, market assessment/conceptual design

    SciTech Connect

    Not Available

    1982-11-30

    The major activities reported are: a market study to identify an early market for a dish-Stirling module and assess its commercial potential; preparation of a conceptual system and subsystem design to address this market; and preparation of an early sales implementation plan. A study of the reliability of protection from the effects of walk-off, wherein the sun's image leaves the receiver if the dish is not tracking, is appended, along with an optical analysis and structural analysis. Also appended are the relationship between PURPA and solar thermal energy development and electric utility pricing rationale. (LEW)

  6. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  7. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  8. Solar Variability, Cosmic Rays and Climate: What's up? The topic of possible relations between solar and cosmic

    E-print Network

    Usoskin, Ilya G.

    of long-term solar cycle evolution. Short-term variations of the solar irradiance, which is important, and by Bao and Xie, with respect to solar flares. Martini et al. discuss long-term changes in geomagneticPreface Solar Variability, Cosmic Rays and Climate: What's up? The topic of possible relations

  9. AST 364: Solar System(s) Fall 2014 -Course # 48600

    E-print Network

    Jefferys, William

    ­ 1 ­ AST 364: Solar System(s) Fall 2014 - Course # 48600 MWF 11­12 RLM 15.216B Professor: Dr. Adam 4-5 Course Logistics Text: There is no textbook. I will assigning readings, both pop on top of the topical course material. Course Description & Philosophy The course title is "Solar System

  10. Texasgulf solar cogeneration program. Mid-term topical report

    SciTech Connect

    Not Available

    1981-02-01

    The status of technical activities of the Texasgulf Solar Cogeneration Program at the Comanche Creek Sulfur Mine is described. The program efforts reported focus on preparation of a system specification, selection of a site-specific configuration, conceptual design, and facility performance. Trade-off studies performed to select the site-specific cogeneration facility configuration that would be the basis for the conceptual design efforts are described. Study areas included solar system size, thermal energy storage, and field piping. The conceptual design status is described for the various subsystems of the Comanche Creek cogeneration facility. The subsystems include the collector, receiver, master control, fossil energy, energy storage, superheat boiler, electric power generation, and process heat subsystems. Computer models for insolation and performance are also briefly discussed. Appended is the system specification. (LEW)

  11. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  12. Meteorites and the early solar system

    SciTech Connect

    Kerridge, J.F.; Matthews, M.S.

    1988-01-01

    The present work discusses topics in the source regions for meteorites, their secondary processing, irradiation effects on meteorites, solar system chronology, the early solar system, the chemistry of chondrites and the early solar system, magnetic fields in the early solar system, the nature of chondrules, micrometeorites, inhomogeneity of the nebula, the survival of presolar material in meteorites, nucleosynthesis, and the relationship between extinct radionuclides and nucleocosmochronology. Attention is given to igneous activity in the early solar system, principles of radiometric aging, the cosmochemical classification of the elements, highly labile elements, the potential significance of pristine material, the astrophysical implications of presolar grains, boundary conditions for the origin of the solar system, and iodine-xenon dating.

  13. Homemade Solar Systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Through the use of NASA Tech Briefs, Peter Kask, was able to build a solarized domestic hot water system. Also by applying NASA's solar energy design information, he was able to build a swimming pool heating system with minimal outlay for materials.

  14. Solar powered desalination system

    E-print Network

    Mateo, Tiffany Alisa

    2011-01-01

    efficiency for a PV system is a ratio of the electrical power output to the solarSolar Energy Calculator using Google Maps 23 Table 1.24: PV System Power Production Average Daily Irradiance (kWh/m2) Instillation Efficiencysolar-to-hydrogen (STH) conversion efficiency is 10%. (STH conversion efficiency is power

  15. Tubular solar collector system

    SciTech Connect

    Skopp, A.

    1981-11-10

    A tubular solar collector system is provided in which a heat absorbing fluid is contained within tubular solar collectors completely separate and independent from a fluid circulated through the manifold to which the tubular collectors are operably attached. The collectors extend downwardly from the generally horizontal manifold so that when the fluid within the tubular collector is heated by incident solar radiation it is circulated to a heat exchanger in the manifold by thermosyphoning action.

  16. Solar Electric System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Heat Pipe Technology, Inc. undertook the development of a PV system that could bring solar electricity to the individual home at reasonable cost. His system employs high efficiency PV modules plus a set of polished reflectors that concentrate the solar energy and enhance the output of the modules. Dinh incorporated a sun tracking system derived from space tracking technology. It automatically follows the sun throughout the day and turns the modules so that they get maximum exposure to the solar radiation, further enhancing the system efficiency.

  17. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (inventor)

    1977-01-01

    An improved solar energy collection system, having enhanced energy collection and conversion capabilities, is delineated. The system is characterized by a plurality of receivers suspended above a heliostat field comprising a multiplicity of reflector surfaces, each being adapted to direct a concentrated beam of solar energy to illuminate a target surface for a given receiver. A magnitude of efficiency, suitable for effectively competing with systems employed in collecting and converting energy extracted from fossil fuels, is indicated.

  18. Solar power system

    SciTech Connect

    Hasford, G.S.

    1990-01-30

    This patent describes a solar power system. It comprises: solar concentrator means; power conversion means for converting solar energy from the solar concentrator means to electrical energy, through the medium of a working fluid, to power appropriate loads; integrated combustor/heat exchanger means coupled to the power conversion means for heating the working fluid during periods of solar eclipse and giving off a water combustion product; electrolyzer means for receiving the water combustion product from the integrated combustor/heat exchanger mean and regenerating the water combustion product to gaseous hydrogen and oxygen. The electrolyzer means being coupled to the power conversion means as to be powered thereby during periods of excess electrical energy; and means for supplying the hydrogen and oxygen for combustion in the integrated combustor/heat exchanger during the periods of solar eclipse.

  19. Solar Energy: Solar System Design Fundamentals.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system design fundamentals is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy…

  20. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  1. Solar system fault detection

    DOEpatents

    Farrington, Robert B. (Wheatridge, CO); Pruett, Jr., James C. (Lakewood, CO)

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  2. Solar System: Lethal billiards

    NASA Astrophysics Data System (ADS)

    Claeys, Philippe; Goderis, Steven

    2007-09-01

    A huge collision in the asteroid belt 160 million years ago sent fragments bagatelling around the inner Solar System. One piece might have caused the mass extinction that wiped out the dinosaurs 65 million years ago.

  3. Outer Solar System Exploration

    E-print Network

    Rathbun, Julie A.

    are similar to Uranus and Neptune #12;Oh the Places we'll Go · The outer solar system is target-rich. We'd like to learn more about volcanoes on Io, storms on Titan, the rings around Uranus and whether Ariel ocean and how to access it in the future ­ Uranus orbiter, to study an ice giant in our own solar system

  4. Fragmentary Solar System History

    NASA Technical Reports Server (NTRS)

    Marti, Kurt

    1997-01-01

    The objective of this research is an improved understanding of the early solar system environment and of the processes involved in the nebula and in the evolution of solid bodies. We present results of our studies on the isotopic signatures in selected primitive solar system objects and on the evaluation of the cosmic ray records and of inferred collisional events. Furthermore, we report data of trapped martian atmospheric gases in meteorites and the inferred early evolution of Mars' atmosphere.

  5. Topics in the structure of hadronic systems

    SciTech Connect

    Lebed, R.F. |

    1994-04-01

    In this dissertation the author examines a variety of different problems in the physics of strongly-bound systems. Each is elucidated by a different standard method of analysis developed to probe the properties of such systems. He begins with an examination of the properties and consequences of the current algebra of weak currents in the limit of heavy quark spin-flavor symmetry. In particular, he examines the assumptions in the proof of the Ademollo-Gatto theorem in general and for spin-flavor symmetry, and exhibit the constraints imposed upon matrix elements by this theorem. Then he utilizes the renormalization-group method to create composite fermions in a three-generation electroweak model. Such a model is found to reproduce the same low energy behavior as the top-condensate electroweak model, although in general it may have strong constraints upon its Higgs sector. Next he uncovers subtleties in the nonrelativistic quark model that drastically alter the picture of the physical origins of meson electromagnetic and hyperfine mass splittings; in particular, the explicit contributions due to (m{sub d}{minus}m{sub u}) and electrostatic potentials may be overwhelmed by other effects. Such novel effects are used to explain the anomalous pattern of mass splittings recently measured in bottom mesons. Finally, he considers the topic of baryon masses in heavy fermion chiral perturbation theory, including both tree-level and loop effects.

  6. CCSF Topical Lunch Summary Systems Approach to Sustainable Energy

    E-print Network

    Walter, M.Todd

    systems, wind energy, solar, carbon sequestration biofuels, systems, mathematical and computational interest in systems area: space systems, rotating machinery, combustion, wind energy, electric vehicle, etc for freshmen Paulette Clancy Represents a solar energy group that is based across 2 colleges; looking at solar

  7. GLAST Solar System Science

    SciTech Connect

    Share, Gerald H.; Murphy, Ronald J.

    2007-07-12

    We briefly discuss GLAST's capabilities for observing high-energy radiation from various energetic phenomena in our solar system. These emissions include: bremsstrahlung, nuclear-line and pion-decay gamma-radiation, and neutrons from solar flares; bremsstrahlung and pion-decay gamma radiation from cosmic-ray interactions with the Sun, the Moon, and the Earth's atmosphere; and inverse Compton radiation from cosmic-ray electron interactions with sunlight.

  8. Baby Solar System

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Grady, Carol

    2012-01-01

    What did our solar system look like in its infancy,...... when the planets were forming? We cannot travel back in time to take an image of the early solar system, but in principle we can have the next best thing: images of infant planetary systems around Sun-like stars with ages of 1 to 5 million years, the time we think it took for the giant planets to form. Infant exoplanetary systems are critically important because they can help us understand how our solar system fits within the context of planet formation in general. More than 80% of stars are born with gas- and dust-rich disks, and thus have the potential to form planets. Through many methods we have identified more than 760 planetary systems around middle-aged stars like the Sun, but many of these have architectures that look nothing like our solar system. Young planetary systems are important missing links between various endpoints and may help us understand how and when these differences emerge. Well-known star-forming regions in Taurus, Scorpius. and Orion contain stars that could have infant planetary systems. But these stars are much more distant than our nearest neighbors such as Alpha Centauri or Sirius, making it extremely challenging to produce clear images of systems that can reveal signs of recent planet formation, let alone reveal the planets themselves. Recently, a star with the unassuming name LkCa 15 may have given us our first detailed "baby picture" of a young planetary system similar to our solar system. Located about 450 light-years away in the Taurus starforming region. LkCa 15 has a mass comparable to the Sun (0.97 solar mass) and an age of l to 5 million years, comparable to the time at which Saturn and perhaps Jupiter formed. The star is surrounded by a gas-rich disk similar in structure to the one in our solar system from which the planets formed. With new technologies and observing strategies, we have confirmed suspicions that LkCa 15's disk harbors a young planetary system.

  9. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (inventors)

    1979-01-01

    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.

  10. Solar System Dynamics

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    2002-01-01

    In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.

  11. Solar Stirling system development

    NASA Technical Reports Server (NTRS)

    Stearns, J. W., Jr.; Won, Y. S.; Poon, P. T.; Das, R.; Chow, E. Y.

    1979-01-01

    A low-cost, high-efficiency dish-Stirling solar thermal-electric power system is being developed for test in 1981. System components are the solar concentrator, receiver, fossil fuel combustor, thermal energy storage (TES), engine-generator, and power processing. System conceptualization is completed and design is in progress. Two receiver alternatives are being evaluated, a direct-coupled receiver-engine configuration with no TES and a heat pipe receiver with TES. System cost projections are being made. Goals for the system development task are (1) to develop an advanced dish-Stirling technology, utilizing a team of industrial contractors, (2) to demonstrate that technology at the system level, and (3) to determine how to achieve low production cost.

  12. The organic Solar System

    NASA Astrophysics Data System (ADS)

    Gibb, Bruce C.

    2015-05-01

    In the second of two essays looking at organic chemistry that can be found in the Solar System, Bruce C. Gibb focuses on the gas and ice giants as well as their satellites -- concluding the tour on Saturn's fascinating moon Titan.

  13. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  14. Solar System Remote Sensing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This volume contains abstracts that have been accepted for presentation at the symposium on Solar System Remote Sensing, September 20-21, 2002, in Pittsburgh, Pennsylvania. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Departments at the Lunar and Planetary Institute.

  15. Solar System Dark Matter

    E-print Network

    Stephen L. Adler

    2009-03-27

    I review constraints on solar system-bound dark matter, and discuss the possibility that dark matter could be gravitationally bound to the earth and other planets. I briefly survey various empirical constraints on such planet-bound dark matter, and discuss effects it could produce if present, including anomalous planetary heating and flyby velocity changes.

  16. The New Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2009-01-01

    Since 2006, the details of bodies making up our solar system have been revised. This was largely as a result of new discoveries of a number of planet-like objects beyond the orbit of Pluto. The International Astronomical Union redefined what constituted a planet and established two new classifications--dwarf planets and plutoids. As a result, the…

  17. TOPICAL REVIEW The solar UV-x-ray spectrum from 1.5 to 2000 Å

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.; Feldman, U.

    2010-12-01

    This review illustrates the potential of UV-x-ray spectroscopy for determining the physical conditions in the solar chromosphere, transition region and corona, and how spectroscopy can be used as a tool to understand the physical mechanisms governing the atmosphere. It also illustrates the potential for understanding transient events such as solar flares. This is a vast topic, and therefore the review is necessarily not complete, but we have tried to be as general as possible in showing in particular how solar spectra are currently being used to understand the solar upper atmosphere. The review is intended for non-solar physicists with an interest in spectroscopy as well as for solar physicists who are not specialists in spectroscopy.

  18. Solar System Voyage

    NASA Astrophysics Data System (ADS)

    Brunier, Serge

    2002-11-01

    In the last few decades, the exploration of our solar system has revealed fascinating details about the worlds that lie beyond our Earth. This lavishly illustrated book invites the reader on a journey through the solar system. After locating our planetary system in the Universe, Brunier describes the Sun and its planets, the large satellites, asteroids, and comets. Photographs and information taken from the latest space missions allow readers to experience spectacular scenes: the lunar plains scarred by asteroid impacts, the frozen deserts of Mars and Europa, the continuously erupting volcanoes of Io and the giant geysers of Triton, the rings of Saturn and the clouds of Venus and Titan, and the powerful crash of the comet Shoemaker-Levy into Jupiter. Inspired by the extraordinary photographs and incisive text, readers of Solar System Voyage will gain a greater appreciation of the hospitable planet we call home. Serge Brunier is chief editor of the journal Ciel et Espace, a photojournalist, and the author of many nonfiction books aimed at both specialists and the general public. His previous books include Space Odyssey (Cambridge, 2002), Glorious Eclipses with Jean-Pierre Luminet (Cambridge, 2000), and Majestic Universe (Cambridge, 1999).

  19. Solar power satellite system definition study, volume 4, phase 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results of an overall evaluation of the solar power satellite concept are reported. Specific topics covered include: solid state sandwich configuration; parametric development of reliability design; power distribution system for solid state solar power satellites; multibeam transmission; GEO base system configuration; suppression of the heavy lift launch vehicle trajectory; conceptual design of an offshore space center facility; solar power satellite development and operations scenario; and microwave power transmission technology, advancement, development, and facility requirements.

  20. New mineralogy of the outer solar system and the high-pressure behaviour of methane 

    E-print Network

    Maynard-Casely, Helen E.

    2009-01-01

    This thesis will introduce the study of methane as a mineral. Along with ammonia and water, methane is one of the main planetary-forming materials in the outer solar system. The topic of `new mineralogy of the outer solar ...

  1. The space-age solar system

    SciTech Connect

    Baugher, J.F.

    1988-01-01

    This book is a description of the sun, planets, moons, asteroids, and comets in the solar system. Discussion is based heavily on results obtained from recent space probes to Mercury, Venus, Mars Jupiter, Saturn, and Uranus. Offers detailed descriptions of the moons of Jupiter and Saturn, and the results of the recent probes of Halley's comet. A discussion of meteorites leads to a description of the current models of the solar system. Introductory chapters present theories of the solar system from the ancient Greeks to the present day. Other topics covered include the sun, its structure, and how it generates energy; the surfaces, internal structures, and histories of the planets, from innermost Mercury to farthest Pluto, and their moons.

  2. Solar system exploration

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Ramlose, Terri (editor)

    1989-01-01

    The goal of planetary exploration is to understand the nature and development of the planets, as illustrated by pictures from the first two decades of spacecraft missions and by the imaginations of space artists. Planets, comets, asteroids, and moons are studied to discover the reasons for their similarities and differences and to find clues that contain information about the primordial process of planet origins. The scientific goals established by the National Academy of Sciences as the foundation of NASA's Solar System Exploration Program are covered: to determine the nature of the planetary system, to understand its origin and evolution, the development of life on Earth, and the principles that shape present day Earth.

  3. Solar Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  4. Solar system plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  5. Improved solar heating systems

    DOEpatents

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  6. Solar heating system

    DOEpatents

    Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  7. Solar thermal power system

    DOEpatents

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  8. Integrated voice and visual systems research topics

    NASA Technical Reports Server (NTRS)

    Williams, Douglas H.; Simpson, Carol A.

    1986-01-01

    A series of studies was performed to investigate factors of helicopter speech and visual system design and measure the effects of these factors on human performance, both for pilots and non-pilots. The findings and conclusions of these studies were applied by the U.S. Army to the design of the Army's next generation threat warning system for helicopters and to the linguistic functional requirements for a joint Army/NASA flightworthy, experimental speech generation and recognition system.

  9. Outer Solar System Nomenclature

    NASA Technical Reports Server (NTRS)

    Owen, Tobias C.

    1998-01-01

    The Principal Investigator's responsibilities on this grant fell into two categories according to his participation. In the nomenclature work of the International Astronomical Union (IAU). Owen is chair of the Task Group for the Outer Solar System. He is also a member of the IAU's Working Group on Planetary and Satellite Nomenclature (WGPSN) which is composed of the chairs of the several Task Groups plus the presidents of two IAU Commissions and several outside consultants. The WGPSN is presided over by its President, Professor Kaare Aksnes from the Rosseland Institute for Theoretical Astrophysics in Oslo, Norway.

  10. The outer solar system

    NASA Astrophysics Data System (ADS)

    Morrison, D.; Cruikshank, D. P.

    The nature and discovery of the objects of the solar system lying beyond the orbit of Saturn are reviewed. The discoveries of Uranus by Herschel in 1781, Neptune by Adams and Leverrier in 1845 and 1846, respectively, and Pluto by Tombaugh in 1930 are related, and the orbital prediction methods used in the last two cases are noted. The physical properties of the gas giant planets Uranus and Neptune, which both have diameters of 50,000 Km and atmospheres composed of hydrogen, helium and methane and differ from Jupiter and Saturn in size and composition, are discussed in detail. The smaller icy bodies of the outer solar system are then examined, including Pluto, its satellite Charon, the Uranian satellites Titania, Oberon, Ariel, Umbirel and Miranda, the Neptunian satellites Triton and Neried and the asteroids 944 Hidalgo and 2060 Chiron. Voyager 1 observations of the system of satellites of Saturn, which icy bodies are similar in size to Charon, Chiron and the Uranian satellites, are then discussed, and dramatic differences between satellites of the same size and mass are pointed out

  11. Topic: Catchment system dynamics: Processes and feedbacks

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia

    2015-04-01

    In this meeting we can talk about my main expertise: the focus of my research ocus revolves around understanding catchment system dynamics in a holistic way by incorporating both processes on hillslopes as well as in the river channel. Process knowledge enables explanation of the impact of natural and human drivers on the catchment systems and which consequences these drivers have for water and sediment connectivity. Improved understanding of the catchment sediment and water dynamics will empower sustainable land and river management and mitigate soil threats like erosion and off-side water and sediment accumulation with the help of nature's forces. To be able to understand the system dynamics of a catchment, you need to study the catchment system in a holistic way. In many studies only the hillslopes or even plots are studied; or only the channel. However, these systems are connected and should be evaluated together. When studying a catchment system any intervention to the system will create both on- as well as off sites effects, which should especially be taken into account when transferring science into policy regulations or management decisions.

  12. EECS 598 Special Topic Power System Dynamics and Control

    E-print Network

    Cafarella, Michael J.

    EECS 598 Special Topic Power System Dynamics and Control Wednesday and Friday, 10:30am-12:00pm Fall for improving dynamic performance. It will provide an overview of nonlinear dynamical systems, including of these models will be considered in the context of hybrid dynamical systems. Small disturbance (linear) analysis

  13. Advanced Turbine Systems Program. Topical report

    SciTech Connect

    1993-03-01

    The Allison Gas Turbine Division (Allison) of General Motors Corporation conducted the Advanced Turbine Systems (ATS) program feasibility study (Phase I) in accordance with the Morgantown Energy Technology Center`s (METC`s) contract DE-AC21-86MC23165 A028. This feasibility study was to define and describe a natural gas-fired reference system which would meet the objective of {ge}60% overall efficiency, produce nitrogen oxides (NO{sub x}) emissions 10% less than the state-of-the-art without post combustion controls, and cost of electricity of the N{sup th} system to be approximately 10% below that of the current systems. In addition, the selected natural gas-fired reference system was expected to be adaptable to coal. The Allison proposed reference system feasibility study incorporated Allison`s long-term experience from advanced aerospace and military technology programs. This experience base is pertinent and crucial to the success of the ATS program. The existing aeroderivative technology base includes high temperature hot section design capability, single crystal technology, advanced cooling techniques, high temperature ceramics, ultrahigh turbomachinery components design, advanced cycles, and sophisticated computer codes.

  14. TOPICAL REVIEW: Carbon nanomaterials in biological systems

    NASA Astrophysics Data System (ADS)

    Ke, Pu Chun; Qiao, Rui

    2007-09-01

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment.

  15. Economic Evaluation of Observatory Solar-Energy System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Long-term economic performance of a commercial solar-energy system was analyzed and used to predict economic performance at four additional sites. Analysis described in report was done to demonstrate viability of design over a broad range of environmental/economic conditions. Topics covered are system description, study approach, economic analysis and system optimization.

  16. Magnetopause Boundary Processes Throughout the Solar System

    NASA Astrophysics Data System (ADS)

    Masters, A.

    2014-12-01

    Earth is not the only planet in the Solar System with a natural magnetic shield. Mercury, Jupiter, Saturn, Uranus, and Neptune are similarly protected from the solar wind and cosmic rays. However, like our planet, the magnetic shielding of each of these magnetized planets can break down, driving energy flow through each planetary magnetosphere. Although studies of the magnetopause boundary of Earth's magnetosphere have shed considerable light on the processes that lead to this breakdown, the extent to which we can apply this understanding to the diverse space plasma environments surrounding other planets remains unclear. Here we review what we have learnt so far about the operation of magnetopause boundary processes at all the magnetized planets in the Solar System, and outline some of the relevant outstanding questions. We start by consolidating present understanding of terrestrial magnetopause processes, which is our reference when considering other boundaries. We focus on selected processes (magnetic reconnection, Kelvin-Helmholtz instability), compare how we expect them to operate at each planetary magnetopause, and assess whether or not this is consistent with in situ spacecraft observations. For each planetary magnetosphere we then discuss the nature of the total interaction with the solar wind, and whether this is expected to be dominant over internal drivers of magnetospheric dynamics. A combination of further spacecraft exploration and dedicated numerical modeling is required in order to address the many outstanding questions concerning this topic. Progress in this direction would have broad implications for other space plasma systems, in our solar system and beyond.

  17. Potassium emission absorption system. Topical report 12

    SciTech Connect

    Bauman, L.E.

    1995-04-01

    The Potassium Emission Absorption System is one of the advanced optical diagnostics developed at Mississippi State University to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the upstream of an MHD flow, the system directly measures gas temperature and neutral potassium atom number density through spectroscopic emission absorption techniques. From these measurements the electron density can be inferred from a statistical equilibrium calculation and the electron conductivity in the MHD channel found by use of an electron mobility model. The instrument has been utilized for field test measurements on MHD facilities for almost a decade and has been proven to provide useful measurements as designed for MHD nozzle, channel, and diffuser test sections. The theory of the measurements, a system description, its capabilities, and field test measurement results are reported here. During the development and application of the instrument several technical issues arose which when addressed advanced the state of the art in emission absorption measurement. Studies of these issues are also reported here and include: two-wavelength measurements for particle-laden flows, potassium D-line far wing absorption coefficient, bias in emission absorption measurements arising from dirty windows and misalignments, non-coincident multiwavelength emission absorption sampling errors, and lineshape fitting for boundary layer flow profile information. Although developed for NLHD application, the instrument could be applied to any high temperature flow with a resonance line in the 300 to 800 nm range, for instance other types of flames, rocket plumes or low temperature plasmas.

  18. Structure and Evolution of the Solar system

    E-print Network

    Malhotra, Renu

    Structure and Evolution of the Solar system Renu Malhotra Lunar and Planetary Laboratory system and beyond are truly astronomical! Solar system #12;Solar system: large scale structure disk matter that formed our solar system #12;Solar system: large scale structure disk-like - why disk

  19. 332: 519 Advanced Topics in Systems Engineering Spring 1999

    E-print Network

    Gajic, Zoran

    Theory, SIAM, Philadelphia, 1999. (this is a slightly revised version of the Academic Press 2nd edition to Communication, Networking, and Control Systems Textbook: T. Basar and J. Olsder, Dynamic Noncooperative Game332: 519 Advanced Topics in Systems Engineering Spring 1999 Game Theory with Applications

  20. Selected topics on extrasolar planetary systems

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.

    This thesis investigates the capabilities of planet searches to detect extrasolar planets and measure their mass and orbital parameters. I developed and demonstrated a new technique based on Markov chain Monte Carlo simulations to quantify the uncertainty in the orbital parameters of extrasolar planets using actual radial velocity observations. It is hoped that future astrometric searches will build upon the successes of radial velocity searches, providing new information about currently known planets and discovering new ones. In particular, the Space Interferometry Mission (SIM) will be capable of detecting low-mass planets around nearby stars. I simulated astrometric observations to evaluate the planet-finding capabilities of SIM and estimate the number of planets which SIM planet searches would detect and characterize and explore how various factors would affect SIM's sensitivity. For example, I investigated the tradeoffs between observing more stars at lower precision and observing less stars at higher precision. I also determined that the choice of observing schedule has relatively little effect on SIM's efficiency, so it is likely best to schedule observations so as to minimize overhead (e.g., slewing, measuring grid stars). Similarly, I quantified how much SIM's efficiency is reduced when a target star has an acceleration due to a wide-binary companion, concluding that it is generally preferable to target a nearby star in a wide-binary system rather than a more distant single star. Finally, I explored how the presence of two planets around a star can make it more difficult for SIM to measure the masses and orbital parameters of either planet. I find that the presence a giant planet can significantly reduce the sensitivity of SIM for measuring the low-mass mass and orbital parameters of a low-mass planet. Each of these studies will help guide decisions, so that SIM's valuable observing time can be used most productively.

  1. Solar Systems at Last

    NASA Astrophysics Data System (ADS)

    Villaver, Eva

    2015-12-01

    Planet host stars, the Sun among them, will eventually evolve into giants, through the Planetary Nebula phase to finally end their lives as white dwarfs. Planets will be engulfed along the giant phases, evaporated during the Planetary Nebula phase, and possibly destabilized when the star enters the white dwarf cooling track. A large number of planets will eventually be destroyed and there is a lot to be learned from that. The conditions on the planet surface of those that survive are expected to be modified as well as the result of the evolution of the star. I will discuss the new limits that the theoretical studies allow us to set on the survival and habitability of planets as the star runs out of its hydrogen fuel and the possibilities for the formation of second generation planets. Finally, I will present new results on the real consequences that the presence and destruction of these Extreme Solar systems have in the evolution of stars.

  2. Solar System Sleuth

    NASA Astrophysics Data System (ADS)

    Ryden, Barbara

    2005-11-01

    One of the great astronomers of the last century, Gerhard Peter Kuiper, was born 100 years ago this year. He is considered the father of modern planetary science and an expert on binary and white dwarf stars. Kuiper was recruited by Otto Struve to the Yerkes Observatory and used the 82-inch Telescope at McDonald Observatory for groundbreaking studies of Mars and the giant moons in the outer solar system. Later, he became the founding director of the Lunar and Planetary Laboratory at the University of Arizona. Kuiper predicted that a vast number of asteroid-like objects lie beyond the orbit of Pluto; this was later substantiated and called the Kuiper Belt. Late in life, Kuiper pioneered the use of infrared telescopes and instruments aboard aircraft and the NASA's original flying observatory was named the Kuiper Airborne Observatory in his honor.

  3. Solar Heating Systems: Instructor's Guide.

    ERIC Educational Resources Information Center

    Green, Joanne; And Others

    This Instructor's Guide for a Solar Heating System Curriculum is designed to accompany the Student Manual and the Progress Checks and Test Manual for the course (see note), in order to facilitate the instruction of classes on solar heating systems. The Instructor's Guide contains a variety of materials used in teaching the courses, including…

  4. Solar Heating Systems: Student Manual.

    ERIC Educational Resources Information Center

    Green, Joanne; And Others

    This Student Manual for a Solar Heating System curriculum contains 22 units of instructional materials for students to use in a course or courses on solar heating systems (see note). For each unit (task), objectives, assignment sheets, laboratory assignments, information sheets, checkpoints (tests), and job sheets are provided. Materials are set…

  5. Exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Henderson, A., Jr.; Grey, J.

    1974-01-01

    A sourcebook of information on the solar system and the technology used for its exploration is presented. An outline of the potential achievements of solar system exploration is given along with a course of action which maximizes the rewards to mankind.

  6. Wind in the Solar System

    ERIC Educational Resources Information Center

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might motivate…

  7. Progress in passive solar energy systems. Volume 8. Part 1

    SciTech Connect

    Hayes, J.; Andrejko, D.A.

    1983-01-01

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  8. Advanced turbine systems program conceptual design and product development. Task 3 -- System selection; Topical report

    SciTech Connect

    White, D.J.

    1994-07-01

    Solar Turbines Incorporated has elected to pursue an intercooled and recuperated (ICR) gas turbine system to exceed the goals of the DOE Advanced Turbine Systems (ATS) program, which are to develop and commercialize an industrial gas turbine system that operates at thermal efficiencies at least 15% higher than 1991 products, and with emissions not exceeding eight ppmv NOx and 20 ppmv CO and UHC. Solar`s goal is to develop a commercially viable industrial system (3--20 MW) driven by a gas turbine engine with a thermal efficiency of 50% (ATS50), with the flexibility to meet the differing operational requirements of various markets. Dispersed power generation is currently considered to be the primary future target market for the ICR in the 5--15 MW size class. The ICR integrated system approach provides an ideal candidate for the assumed dispersed power market, with its small footprint, easy transportability, and environmental friendliness. In comparison with other systems that use water or toxic chemicals such as ammonia for NOx control, the ICR has no consumables other than fuel and air. The low pressure ratio of the gas turbine engine also is favorable in that less parasitic power is needed to pump the natural gas into the combustor than for simple-cycle machines. Solar has narrowed the ICR configuration to two basic approaches, a 1-spool, and a 2-spool version of the ATS50. The 1-spool engine will have a lower first-cost but lower part-power efficiencies. The 2-spool ATS may not only have better part-power efficiency, its efficiency will also be less sensitive to reduced turbine rotor inlet temperature levels. Thus hot-end parts life can be increased with only small sacrifices in efficiency. The flexibility of the 2-spool arrangement in meeting customer needs is its major advantage over the 1-spool. This Task 3 Topical Report is intended to present Solar`s preliminary system selection based upon the initial trade-off studies performed to date.

  9. Smaller solar system bodies and orbits; Proceedings of Symposium 3, Workshops II, III, and XXVI, and Topical Meetings of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Astrophysics Data System (ADS)

    Runcorn, S. K.; Carr, M. H.; Moehlmann, D.; Stiller, H.; Matson, D. L.; Ambrosius, B. A. C.; Kessler, D. J.

    Topics discussed in this volume include the reappraisal of the moon and Mars/Phobos/Deimos; the origin and evolution of planetary and satellite systems; asteroids, comets, and dust (a post-IRAS perspective); satellite dynamics; future planetary missions; and orbital debris. Papers are presented on a comparison of the chemistry of moon and Mars, the use of a mobile surface radar to study the atmosphere and ionosphere, and laser-ionization studies with the technical models of the LIMA-D/Phobos. Attention is given to planetogonic scenarios and the evolution of relatively mass-rich preplanetary disks, the kinetic behavior of planetesimals revolving around the sun, the planetary evolution of Mars, and pre- and post-IRAS asteroid taxonomies. Consideration is also given to ocean tides and tectonic plate motions in high-precision orbit determination, the satellite altimeter calibration techniques, a theory of the motion of an artificial satellite in the earth atmosphere, ESA plans for planetary exploration, and the detection of earth orbiting objects by IRAS.

  10. Smaller solar system bodies and orbits; Proceedings of Symposium 3, Workshops II, III, and XXVI, and Topical Meetings of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Runcorn, S. K. (editor); Carr, M. H. (editor); Moehlmann, D. (editor); Stiller, H. (editor); Matson, D. L. (editor); Ambrosius, B. A. C. (editor); Kessler, D. J. (editor)

    1990-01-01

    Topics discussed in this volume include the reappraisal of the moon and Mars/Phobos/Deimos; the origin and evolution of planetary and satellite systems; asteroids, comets, and dust (a post-IRAS perspective); satellite dynamics; future planetary missions; and orbital debris. Papers are presented on a comparison of the chemistry of moon and Mars, the use of a mobile surface radar to study the atmosphere and ionosphere, and laser-ionization studies with the technical models of the LIMA-D/Phobos. Attention is given to planetogonic scenarios and the evolution of relatively mass-rich preplanetary disks, the kinetic behavior of planetesimals revolving around the sun, the planetary evolution of Mars, and pre- and post-IRAS asteroid taxonomies. Consideration is also given to ocean tides and tectonic plate motions in high-precision orbit determination, the satellite altimeter calibration techniques, a theory of the motion of an artificial satellite in the earth atmosphere, ESA plans for planetary exploration, and the detection of earth orbiting objects by IRAS.

  11. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A waste water treatment plant in Wilton, Maine, where sludge is converted to methane gas, and Monsanto Company's Environmental Health Laboratory in St. Louis Missouri, where more than 200 solar collectors provide preheating of boiler feed water for laboratory use are representative of Grumman's Sunstream line of solar energy equipment. This equipment was developed with technology from NASA's Apollo lunar module program.

  12. A science based approach to topical drug classification system (TCS).

    PubMed

    Shah, Vinod P; Yacobi, Avraham; R?dulescu, Flavian ?tefan; Miron, Dalia Simona; Lane, Majella E

    2015-08-01

    The Biopharmaceutics Classification System (BCS) for oral immediate release solid drug products has been very successful; its implementation in drug industry and regulatory approval has shown significant progress. This has been the case primarily because BCS was developed using sound scientific judgment. Following the success of BCS, we have considered the topical drug products for similar classification system based on sound scientific principles. In USA, most of the generic topical drug products have qualitatively (Q1) and quantitatively (Q2) same excipients as the reference listed drug (RLD). The applications of in vitro release (IVR) and in vitro characterization are considered for a range of dosage forms (suspensions, creams, ointments and gels) of differing strengths. We advance a Topical Drug Classification System (TCS) based on a consideration of Q1, Q2 as well as the arrangement of matter and microstructure of topical formulations (Q3). Four distinct classes are presented for the various scenarios that may arise and depending on whether biowaiver can be granted or not. PMID:26070249

  13. Astrometric solar system anomalies

    SciTech Connect

    Nieto, Michael Martin; Anderson, John D

    2009-01-01

    There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.

  14. Solar Power System Design for the Solar Probe+ Mission

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  15. The Early Solar System - Chapter 6

    E-print Network

    Busso, M

    2010-01-01

    This chapter presents a (partial) review of the information we can derive on the early history of the Solar System from radioactive nuclei of very different half-life, which were recognized to have been present alive in pristine solids. In fact, radioactivities open for us a unique window on the evolution of the solar nebula and provide tools for understanding the crucial events that determined and accompanied the formation of the Sun. Discussing these topics will require consideration of (at least) the following issues. i) The determination of an age for solar system bodies, as it emerged especially from the application of radioactive dating. ii) A synthetic account of the measurements that proved the presence of radioactive nuclei (especially those of half-life lower than about 100 Myr) in the Early Solar System (hereafter ESS). iii) An explanation of their existence in terms of galactic nucleosynthesis, and/or of local processes (either exotic or in-situ) preceding and accompanying the formation of the Sun...

  16. Fluorouracil Topical

    MedlinePLUS

    ... topical solution are used to treat actinic or solar keratoses (scaly or crusted lesions [skin areas] caused ... you are using fluorouracil to treat actinic or solar keratoses, you should continue using it until the ...

  17. Solar System Observations with JWST

    NASA Technical Reports Server (NTRS)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid- infrared, with sensitivity and spatial-spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010 (Lunine et al., 2010). It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV in 2012.

  18. Views of the solar system

    SciTech Connect

    Hamilton, C.

    1995-02-01

    Views of the Solar System has been created as an educational tour of the solar system. It contains images and information about the Sun, planets, moons, asteroids and comets found within the solar system. The image processing for many of the images was done by the author. This tour uses hypertext to allow space travel by simply clicking on a desired planet. This causes information and images about the planet to appear on screen. While on a planet page, hyperlinks travel to pages about the moons and other relevant available resources. Unusual terms are linked to and defined in the Glossary page. Statistical information of the planets and satellites can be browsed through lists sorted by name, radius and distance. History of Space Exploration contains information about rocket history, early astronauts, space missions, spacecraft and detailed chronology tables of space exploration. The Table of Contents page has links to all of the various pages within Views Of the Solar System.

  19. Evolution of the Solar System

    NASA Technical Reports Server (NTRS)

    Alfven, H.; Arrhenius, G.

    1976-01-01

    The origin and evolution of the solar system are analyzed. Physical processes are first discussed, followed by experimental studies of plasma-solid reactions and chemical and mineralogical analyses of meteorites and lunar and terrestrial samples.

  20. Solar Power Systems Web Monitoring

    E-print Network

    Kumar, Bimal Aklesh

    2011-01-01

    All over the world the peak demand load is increasing and the load factor is decreasing year-by-year. The fossil fuel is considered insufficient thus solar energy systems are becoming more and more useful, not only in terms of installation but monitoring of these systems is very crucial. Monitoring becomes very important when there are a large number of solar panels. Monitoring would allow early detection if the output falls below required level or one of the solar panel out of 1000 goes down. In this study the target is to monitor and control a developed solar panel by using available internet foundation. This web-enabled software will provide more flexibility over the system such as transmitting data from panel to the host computer and disseminating information to relevant stake holders barring any geographical barrier. The software would be built around web server with dynamic HTML and JAVA, this paper presents the preliminary design of the proposed system.

  1. Exobiology in Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C. (editor); Schwartz, Deborah E. (editor); Huntington, Judith L. (editor)

    1992-01-01

    A symposium, 'Exobiology in Solar System Exploration,' was held on 24-26 Aug. 1988. The symposium provided an in-depth investigation of the role of Exobiology in solar system exploration. It is expected that the symposium will provide direction for future participation of the Exobiology community in solar system exploration and alert the Planetary community to the continued importance of an Exobiology Flight Program. Although the focus of the symposium was primarily on Exobiology in solar system exploration missions, several ground based and Earth-orbital projects such as the Search for Extraterrestrial Intelligence, Gas Grain Facility, and Cosmic Dust Collection Facility represent upcoming research opportunities planned to accommodate the goals and objectives of the Exobiology community as well. This report contains papers for all but one of the presentations given at the symposium.

  2. Solar Thermal Electricity Generating System

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300?C ñ 800?C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at Earth¥s surface. The higher the concentration, the higher the temperatures we can achieve when converting solar radiation into thermal energy

  3. Mycology - an update Part 3: Dermatomycoses: topical and systemic therapy.

    PubMed

    Nenoff, Pietro; Krüger, Constanze; Paasch, Uwe; Ginter-Hanselmayer, Gabriele

    2015-05-01

    Treatment of dermatophyte infections is based on the clinical picture and mycological detection of the causative pathogen. Based on the appropriate indication, onychomycosis can be treated topically using an antimycotic nail lacquer. Atraumatic nail abrasion with 40 % urea ointment has a beneficial effect on healing. Continuous treatment of onychomycosis with terbinafine represents the most effective systemic therapy. Terbinafine or itraconazole are the safest and most effective antimycotic agents for the treatment of onychomycosis in children. For laser therapy of onychomycosis, only a few studies on clinical efficacy are available. Regarding tinea capitis, targeted species-specific therapy of dermatophytosis of the scalp is currently recommended. Terbinafine, yet also itraconazole and fluconazole, are effective in tinea capitis caused by Trichophyton species. Microsporum infections of the scalp are preferably treated with griseofulvin, alternatively with itraconazole or fluconazole. Terbinafine is less effective. Candidal intertrigo are topically treated with nystatin, but azoles or ciclopirox olamine are also suitable candidates. Systemically, fluconazole or itraconazole are used. Topical and systemic antimycotics are equivalent forms of therapy in acute vulvovaginal mycosis. Fluconazole is the drug of choice in chronic recurrent vulvovaginal mycosis caused by Candida albicans. Ketoconazole shows very good efficacy in tinea versicolor. With respect to systemic treatment of severe and widespread tinea versicolor, itraconazole is the drug of choice. PMID:25918080

  4. Comets. [and solar system evolution

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1986-01-01

    The nature, history, and evolution of comets are considered. Cometary ions, formed by photoionization and other processes, are forced into a highly structured ion tail by the interaction with the solar wind. The importance of comets to solar-system studies lies in the possibilities that they are well-preserved samples of either the interstellar cloud which collapsed to form the solar system or the planetesimals from which the outer planets accumulated, and that they provided either the prebiotic complex molecules from which life evolved or some volatiles necessary for the evolution of these molecules.

  5. SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS

    E-print Network

    Heinemann, Detlev

    SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg daily solar radiation forecasts for one to two days in advance have been produced with the Model Output.girodo@uni-oldenburg.de ABSTRACT Solar energy is expected to contribute major shares of the future global energy supply. Due to its

  6. Lunar and Planetary Science XXXV: Early Solar System Chronology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The following topics were presented in this report: Iron Isotopic Fractionation During Vacuum Evaporation of Molten W?stite and Solar Compositions; Mg Isotope Ratio Zonation in CAIs - New Constraints on CAI Evolution; Sm-Nd Systematics of Chondrites; AMS Measurement of Mg-24(He-3,p)Al-26 Cross Section, Implications for the Al-26 Production in the Early Solar System; On Early Solar System Chronology: Implications of an Initially Heterogeneous Distribution of Short-lived Radionuclides; Revisiting Extraterrestrial U Isotope Ratios; Helium-Shell Nucleosynthesis and Extinct Radioactivities; High Spatial Resolution Ion Microprobe Measurements Refine Chronology of Orgueil Carbonate Formation; and Calibration of the Galactic Cosmic Ray Flux.

  7. Solar Heating and Cooling of Residential Buildings: Design of Systems.

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This is the second of two training courses designed to develop the capability of practitioners in the home building industry to design solar heating and cooling systems. The course is organized in 23 modules to separate selected topics and to facilitate learning. Although a compact schedule of one week is shown, a variety of formats can be…

  8. Exploring the Solar System? Let the Math Teachers Help!

    ERIC Educational Resources Information Center

    Charles, Karen; Canales, J. D.; Smith, Angela; Zimmerman, Natalie

    2012-01-01

    Scale measurement and ratio and proportion are topics that fall clearly in the middle-grades mathematics curriculum in Texas. So does the solar system. In their experience, the authors have found that students have trouble manipulating, much less comprehending, very large numbers and very small numbers. These concepts can be brought into students'…

  9. Experiences in solar cooling systems

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Oberoi, H. S.

    Six of the nine solar cooling systems discussed in this paper had negative energy savings. In several cases the solar cooling system used substantially more energy than a conventional system could have been expected to use. Two systems, however, had significant energy savings. These systems (1 residential and 1 commercial) obtained system thermal efficiencies of 12.0 to 12.4 percent. Their system overall efficiences averaged 11.2 and 5.2 percent respectively. The residential-sized system achieved an annual energy savings of about 16.8 GJ/year, or approximately .34 GJ/year.m2 of collector. The commercial system had equivalent values of 137 GJ/year or about .22 GJ/year/sq m of collector. It should be noted that these efficiencies re much lower than those of well-designed and properly controlled cooling systems in commercial sizes. However, with realistic system modifications and subsequent improvements in performance these solar cooling systems can be expected to achieve savings in nonrenewable energy sources of approximately 1.2 GJ/year/sq m of collector. These savings can be compared to those associated with solar space and domestic hot water heating systems of 2.2 and 2.5 GJ/year/sq m of collector, respectively.

  10. Topical nitrogen mustard exposure causes systemic toxic effects in mice.

    PubMed

    Goswami, Dinesh G; Kumar, Dileep; Tewari-Singh, Neera; Orlicky, David J; Jain, Anil K; Kant, Rama; Rancourt, Raymond C; Dhar, Deepanshi; Inturi, Swetha; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2015-02-01

    Vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) are reported to be easily absorbed by skin upon exposure causing severe cutaneous injury and blistering. Our studies show that topical exposure of NM (3.2mg) onto SKH-1 hairless mouse skin, not only caused skin injury, but also led to significant body weight loss and 40-80% mortality (120 h post-exposure), suggesting its systemic effects. Accordingly, further studies herein show that NM exposure initiated an increase in circulating white blood cells by 24h (neutrophils, eosinophils and basophils) and thereafter a decrease (neutrophils, lymphocytes and monocytes). NM exposure also reduced both white and red pulp areas of the spleen. In the small intestine, NM exposure caused loss of membrane integrity of the surface epithelium, abnormal structure of glands and degeneration of villi. NM exposure also resulted in the dilation of glomerular capillaries of kidneys, and an increase in blood urea nitrogen/creatinine ratio. Our results here with NM are consistent with earlier reports that exposure to higher SM levels can cause damage to the hematopoietic system, and kidney, spleen and gastrointestinal tract toxicity. These outcomes will add to our understanding of the toxic effects of topical vesicant exposure, which might be helpful towards developing effective countermeasures against injuries from acute topical exposures. PMID:25481215

  11. Systemic vs. Topical Therapy for the Treatment of Vulvovaginal Candidiasis

    PubMed Central

    1994-01-01

    It is estimated that 75% of all women will experience at least 1 episode of vulvovaginal candidiasis (VVC) during their lifetimes. Most patients with acute VVC can be treated with short-term regimens that optimize compliance. Since current topical and oral antifungals have shown comparably high efficacy rates, other issues should be considered in determining the most appropriate therapy. It is possible that the use of short-duration narrow-spectrum agents may increase selection of more resistant organisms which will result in an increase of recurrent VVC (RVVC). Women who are known or suspected to be pregnant and women of childbearing age who are not using a reliable means of contraception should receive topical therapy, as should those who are breast-feeding or receiving drugs that can interact with an oral azole and those who have previously experienced adverse effects during azole therapy. Because of the potential risks associated with systemic treatment, topical therapy with a broad-spectrum agent should be the method of choice for VVC, whereas systemic therapy should be reserved for either RVVC or cases where the benefits outweigh any possible adverse reactions. PMID:18475346

  12. The Solar System as an Exoplanetary System

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca G.; Livio, Mario

    2015-09-01

    With the availability of considerably more data, we revisit the question of how special our solar system is compared to observed exoplanetary systems. To this goal, we employ a mathematical transformation that allows for a meaningful, statistical comparison. We find that the masses and densities of the giant planets in our solar system are very typical, as is the age of the solar system. While the orbital location of Jupiter is something of an outlier, this is most likely due to strong selection effects toward short-period planets. The eccentricities of the planets in our solar system are relatively small compared to those in observed exosolar systems, but are still consistent with the expectations for an 8-planet system (and could, in addition, reflect a selection bias toward high-eccentricity planets). The two characteristics of the solar system that we find to be most special are the lack of super-Earths with orbital periods of days to months and the general lack of planets inside of the orbital radius of Mercury. Overall, we conclude that, in terms of its broad characteristics, our solar system is not expected to be extremely rare, allowing for a level of optimism in the search for extrasolar life.

  13. Spiking Neural P Systems. Recent Results, Research Topics

    NASA Astrophysics Data System (ADS)

    P?un, Gheorghe; Pérez-Jiménez, Mario J.

    After a quick introduction of spiking neural P systems (a class of P systems inspired from the way neurons communicate by means of spikes, electrical impulses of identical shape), and presentation of typical results (in general equivalence with Turing machines as number computing devices, but also other issues, such as the possibility of handling strings or infinite sequences), we present a long list of open problems and research topics in this area, also mentioning recent attempts to address some of them. The bibliography completes the information offered to the reader interested in this research area.

  14. Chaos in the Solar System

    NASA Technical Reports Server (NTRS)

    Lecar, Myron; Franklin, Fred A.; Holman, Matthew J.; Murray, Norman J.

    2001-01-01

    The physical basis of chaos in the solar system is now better understood: In all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new "short-peroid" comet is discovered each year. They are believed to come from the "Kuiper Belt" (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury in 1012 years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 109 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!

  15. Chaos in the Solar System

    E-print Network

    M. Lecar; F. Franklin; M. Holman; N. Murray

    2001-11-30

    The physical basis of chaos in the solar system is now better understood: in all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its Kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new ``short-period'' comet is discovered each year. They are believed to come from the ``Kuiper Belt'' (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury, in 10^{12} years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 10^9 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!

  16. Solar Program Assessment: Environmental Factors - Solar Total Energy Systems.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental, safety, and social/institutional issues associated with the further development of Solar Total Energy Systems (STES). Solar total energy systems represent a specific application of the Federally-funded solar technologies. To provide a background for this analysis, the…

  17. Installation Guidelines for Solar DHW Systems in One- and Two-Family Dwellings. Second Edition.

    ERIC Educational Resources Information Center

    Hollander, Peter; And Others

    Described are some of the better techniques for installing solar domestic hot water (DHW) systems. By using these guidelines, along with the manufacturer's manual, professional installation contractors and skilled homeowners should be able to install and fill a solar DHW system. Among the topics considered are system layouts, siting, mounting…

  18. IntrAst1 (Petrovay) Chracteristics and origon of the Solar System SOLAR SYSTEM BODIES

    E-print Network

    Petrovay, Kristóf

    IntrAst1 (Petrovay) Chracteristics and origon of the Solar System SOLAR SYSTEM BODIES Planetary The Solar System has 8 planets : Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune #12;IntrAst1 (Petrovay) Chracteristics and origon of the Solar System "Small Solar System Bodies" (SSSB) (IAU 2006

  19. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by such hybrids.

  20. Topical diclofenac in hyaluronan gel for the treatment of solar keratoses.

    PubMed

    Gebauer, Kurt; Brown, Pam; Varigos, George

    2003-02-01

    This randomized, double-blind, placebo-controlled study assessed the efficacy and safety of a topical gel containing 3% diclofenac in 2.5% hyaluronan in 150 patients with solar keratoses (SK). The active treatment was compared with the vehicle only, hyaluronan gel, as placebo over a 12-week period. Patients in both groups applied the active treatment or placebo to a targeted area of skin (0.25 g b.d.). At 12 weeks the mean lesion-count reduction in the targeted area was not significantly different between treatments. However, at post-termination follow up (16 weeks), there was a highly significant decrease in the number of lesions, 6.2 +/- 7.5 standard deviations (SD) (56.1% reduction) in the active treatment group compared with 2.4 +/- 4.3 SD (23.6% reduction) in the placebo group (P < 0.001). Other efficacy measures (complete lesion resolution, >50% lesion reduction) were also significantly different (P < 0.01) between treatments at 16 weeks. In conclusion, topical 3% diclofenac in 2.5% hyaluronan gel was effective and well tolerated in this study, suggesting a role for this therapy in the treatment of SK. PMID:12581080

  1. Roadmap for Solar System Research October 2012

    E-print Network

    Crowther, Paul

    Roadmap for Solar System Research October 2012 DRAFT Prepared by the Solar System Advisory Panel on behalf of the UK Community of Solar and Planetary Scientists for the STFC Programmatic Review Panel and processes that influence its dynamics. The remit of the Solar System Advisory Panel (SSAP) covers all b

  2. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  3. Residential solar-heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  4. Odyssey: a Solar System Mission

    E-print Network

    B. Christophe; P. H. Andersen; J. D. Anderson; S. Asmar; Ph. Bério; O. Bertolami; R. Bingham; F. Bondu; Ph. Bouyer; S. Bremer; J. -M. Courty; H. Dittus; B. Foulon; P. Gil; U. Johann; J. F. Jordan; B. Kent; C. Lämmerzahl; A. Lévy; G. Métris; O. Olsen; J. Pàramos; J. D. Prestage; S. V. Progrebenko; E. Rasel; A. Rathke; S. Reynaud; B. Rievers; E. Samain; T. J. Sumner; S. Theil; P. Touboul; S. Turyshev; P. Vrancken; P. Wolf; N. Yu

    2008-01-18

    The Solar System Odyssey mission uses modern-day high-precision experimental techniques to test the laws of fundamental physics which determine dynamics in the solar system. It could lead to major discoveries by using demonstrated technologies. The mission proposes to perform a set of precision gravitation experiments from the vicinity of Earth to the outer Solar System. Its scientific objectives can be summarized as follows: i) test of the gravity force law in the Solar System up to and beyond the orbit of Saturn; ii) precise investigation of navigation anomalies at the fly-bys; iii) measurement of Eddington's parameter at occultations; iv) mapping of gravity field in the outer solar system and study of the Kuiper belt. To this aim, the Odyssey mission is built up on a main spacecraft, designed to fly up to 13 AU, with the following components: a) a high-precision accelerometer, with bias-rejection system, measuring the deviation of the trajectory from the geodesics; b) Ka-band transponders, as for Cassini, for a precise range and Doppler measurement up to 13 AU, with additional VLBI equipment; c) optional laser equipment, which would allow one to improve the range and Doppler measurement. In this baseline concept, the main spacecraft is designed to operate beyond the Saturn orbit, up to 13 AU. It experiences multiple planetary fly-bys at Earth, Mars or Venus, and Jupiter. The cruise and fly-by phases allow the mission to achieve its baseline scientific objectives (i) to iii) in the above list). In addition to this baseline concept, the Odyssey mission proposes the release of the Enigma radio-beacon at Saturn, allowing one to extend the deep space gravity test up to at least 50 AU, while achieving the scientific objective of a mapping of gravity field in the outer Solar System.

  5. Bring NASA's Year of the Solar System into Your Programs

    NASA Astrophysics Data System (ADS)

    Shupla, C.; Shipp, S.; LaConte, K.; Dalton, H.; Buxner, S.; Boonstra, D.; Ristvey, J.; Wessen, A.; Zimmerman-Brachman, R.; CoBabe-Ammann, E.

    2012-08-01

    NASA's Year of the Solar System ( http://solarsystem.nasa.gov/yss) is a celebration of our exploration of the solar system, which began in October 2010 and continues for one Martian year (687 Earth days) ending in late summer 2012. The diverse planetary missions in this period create a rare opportunity to engage students and the public, using NASA missions to reveal new worlds and new discoveries. Each month focuses on a particular topic, such as the scale of the solar system, its formation, water in the solar system, volcanism, atmospheres, and more! All educators are invited to join the celebration; indeed, the EPO community is needed in order for this event to be successful! Participants at the 2011 ASP Conference surveyed a variety of thematic activities, received resources and implementation ideas, and were invited to share their own experiences and upcoming events!

  6. Solar thermophotovoltaic system using nanostructures.

    PubMed

    Ungaro, Craig; Gray, Stephen K; Gupta, Mool C

    2015-09-21

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids. PMID:26406745

  7. Origin of Outer Solar System

    NASA Technical Reports Server (NTRS)

    Holman, Matthew J.; Lindstrom, David (Technical Monitor)

    2005-01-01

    Our ongoing research program combines extensive deep and wide-field observations using a variety of observational platforms with numerical studies of the dynamics of small bodies in the outer solar system in order to advance the main scientific goals of the community studying the Kuiper belt and the outer solar system. These include: (1) determining the relative populations of the known classes of KBOs as well as other possible classes; ( 2 ) determining the size distributions or luminosity function of the individual populations or the Kuiper belt as a whole; (3) determining the inclinations distributions of these populations; (4) establishing the radial extent of the Kuiper belt; ( 5 ) measuring and relating the physical properties of different types of KBOs to those of other solar system bodies; and, (6) completing our systematic inventory of the satellites of the outer planets.

  8. Decentalized solar photovoltaic energy systems

    SciTech Connect

    Krupka, M. C.

    1980-09-01

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  9. Is the Solar System Stable ?

    E-print Network

    Jacques Laskar

    2012-09-26

    Since the formulation of the problem by Newton, and during three centuries, astronomers and mathematicians have sought to demonstrate the stability of the Solar System. Thanks to the numerical experiments of the last two decades, we know now that the motion of the planets in the Solar System is chaotic, which prohibits any accurate prediction of their trajectories beyond a few tens of millions of years. The recent simulations even show that planetary collisions or ejections are possible on a period of less than 5 billion years, before the end of the life of the Sun.

  10. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  11. Liquid metal solar power system

    SciTech Connect

    Tammen, B.J.

    1984-06-19

    A solar power system for cogenerating heat and electricity is disclosed. An improved solar collector includes a transparent reflector envelope through which a reflective liquid metal such as mercury is circulated. The liquid metal is preheated as it focuses solar radiation onto the receiver of the collector module. A baffle tube within the receiver is perforated to permit the circulation of working fluid out of the absorption chamber of the receiver into the narrow annulus between the baffle tube and the receiver wall, thereby promoting the rapid generation of vapor. The liquid metal vapor is discharged through the channel of a magnetohydrodynamic generator for producing electrical power in a first power generating stage. The liquid metal vapor is condensed and accumulated in a primary storage reservoir for driving a turbine generator in a second generating stage, thereby providing electrical power during periods of insufficient solar radiation. Liquid metal discharged from the turbine is accumulated in a secondary storage reservoir for supplying the solar collector module during periods of adquate solar radiation.

  12. Precipitation in the Solar System

    ERIC Educational Resources Information Center

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  13. Surveying of the solar system

    NASA Technical Reports Server (NTRS)

    Gehrels, Tom

    1991-01-01

    Some populations of objects in the solar system are poorly known, and the long range goal of this program is to improve that situation. For instance, the statistics of Trojan asteroids is being studied. A new technique is being developed for sky surveillance by scanning with CCD, particularly for the discovery of near Earth asteroids.

  14. Sizing up the Solar System

    ERIC Educational Resources Information Center

    Wiebke, Heidi; Rogers, Meredith Park; Nargund-Joshi, Vanashri

    2011-01-01

    The American Association for the Advancement of Science (AAAS 1993) states that by the end of fifth grade, students should understand that a model, such as those depicting the solar system, is a smaller version of the real product, making it easier to physically work with and therefore learn from. However, for students and even adults,…

  15. Maximum collectible solar energy by different solar tracking systems

    SciTech Connect

    Helwa, N.H.; Bahgat, A.B.G.; El Shafee, A.M.R.; El Shenawy, E.T.

    2000-01-01

    The output energy from any solar energy system depends on the solar energy input to that system. Using different ways to track the solar energy system to follow the sun can increase solar energy input according to the type of the tracker. A practical study was carried out on difference solar tract systems. The layout of these systems are a fixed system facing south and tilted 40{degree}, a vertical-axis tracker, a 6{degree} tilted-axis tracker, and a two-axis tracker. All the trackers are microprocessor controlled systems, and all systems have photovoltaic arrays for electric energy production. The evaluation of the different systems is based on a complete year of measurements for solar radiation input to the systems and the electric power output from them. The study also includes the effect of some operating parameters on the tracker operation. These studies showed that the collected solar energy as well as the electrical output energy of the tracking solar system are more than that of the stationary system. These gains are higher in the case of the two-axis tracker and decrease gradually from the vertical-axis tracker to the tilted-axis tracker.

  16. Solafern solar system design brochure

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A complete residential solar space heating and hot water system is described. Low maintenance, durable, and efficient air heating collectors are used. The collectors have a selective absorber and a tempered glass cover nearly one-quarter of an inch thick with an aluminum frame. The solar energy can be delivered directly to the living area when there is a demand; otherwise, it is stored in the form of hot water. Hot water storage is accomplished through the use of an air-to-water exchanger. The hot water storage is used simultaneously to preheat the domestic hot water, as well as to store energy for space heating.

  17. Solar active region display system

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing operation through network firewalls; data is compressed to enhance performance over limited bandwidth connections. All applications and services are written in the JAVA program language for platform independence. Several versions of SARDS have been in operational use by the NASA Space Radiation Analysis Group, NOAA Space Weather Operations, and U.S. Air Force Weather Agency since 1999.

  18. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Application surveys and performance studies were conducted to determine a solar heating and hot water configuration that could be used in a variety of applications, and to identify subsystem modules that could be utilized in a building block fashion to adapt hardware items to single and multi-family residential and commercial systems. Topics discussed include: subsystem development for the solar collectors, controls, other components, energy management module, and the heating system configuration test. Operational tests conducted at an Illinois farmhouse, and a YWCA in Spokane, Washington are discussed.

  19. Chemical aspects of the formation of the solar system

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1978-01-01

    Application of Alfven's theory for the formation of the solar system and the constraints imposed by the chemical composition of space materials are discussed with reference to chemical processes involved in the formation of the solar system. Evidence for the chemical properties of the space medium and the chemical consequences of the postulated physical differentiation processes are outlined, and interpretations based on structure and composition of meteorite material are indicated. A large range of topics, including processes involving chemical differentiation, temperature effects, and isotope fractionation, are examined.

  20. Steamy Solar System

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Annotated Version

    This diagram illustrates the earliest journeys of water in a young, forming star system. Stars are born out of icy cocoons of gas and dust. As the cocoon collapses under its own weight in an inside-out fashion, a stellar embryo forms at the center surrounded by a dense, dusty disk. The stellar embryo 'feeds' from the disk for a few million years, while material in the disk begins to clump together to form planets.

    NASA's Spitzer Space Telescope was able to probe a crucial phase of this stellar evolution - a time when the cocoon is vigorously falling onto the pre-planetary disk. The infrared telescope detected water vapor as it smacks down on a disk circling a forming star called NGC 1333-IRAS 4B. This vapor started out as ice in the outer envelope, but vaporized upon its arrival at the disk.

    By analyzing the water in the system, astronomers were also able learn about other characteristics of the disk, such as its size, density and temperature.

    How did Spitzer see the water vapor deep in the NGC 1333-IRAS 4B system? This is most likely because the system is oriented in just the right way, such that its thicker disk is seen face-on from our Earthly perspective. In this 'face-on' orientation, Spitzer can peer through a window carved by an outflow of material from the embryonic star. This system in this drawing is shown in the opposite 'edge-on' configuration.

  1. High performance solar Stirling system

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.; Haglund, R.

    1981-01-01

    A full-scale Dish-Stirling system experiment, at a power level of 25 kWe, has been tested during 1981 on the Test Bed Concentrator No. 2 at the Parabolic Dish Test Site, Edwards, CA. Test components, designed and developed primarily by industrial contractors for the Department of Energy, include an advanced Stirling engine driving an induction alternator, a directly-coupled solar receiver with a natural gas combustor for hybrid operation and a breadboard control system based on a programmable controller and standard utility substation components. The experiment demonstrated practicality of the solar Stirling application and high system performance into a utility grid. This paper describes the design and its functions, and the test results obtained.

  2. Stability of the Solar System

    NASA Astrophysics Data System (ADS)

    Leubner, I. H.

    2008-12-01

    It is a well established myth that the solar system is stable. The argument is generally based on the fact that the rate of the radiative plus solar wind mass loss of the Sun has a relatively small value of 8.81E-05 (1/Byr = 1/Ma) (radiative: 6.63E-05 (1/By)). Experimental results, e.g., that the Earth is separating from the Sun (10m/100year)(1), put the concept of stability of solar planetary orbits into doubt. An understanding of the stability of the solar system is a critical step towards the understanding of the stability of galaxies and the Universe.(2,3) The stability of planetary orbits, which is the other factor determining the stability of the solar system, has until recently not been modeled.(4) A model is presented which shows that the planetary orbits are weakly bound relative to orbital separation, ranging from 0.6 percent for Mercury to 0.006 for Pluto, and 0.0011 percent for CR105, the furthest reported planetesimal. These values are in the order of solar mass/gravity loss, and as a consequence, the model predicts that the solar system is expanding since its formation. The present separation rate of Earth is calculated to 3.0 m/year. Eventually orbital separation of planets will occur, e.g., at 133.8, 1.30, and 0.23 Billion years for Mercury, Pluto, Cr105, respectively under current conditions. The model shows that Mars was previously closer to the Sun and exposed to higher radiation, and that the transition from water to ice on its surface occurred 3.6 Billion years ago.(4) Predictions of the model are reported for all planets and dwarf planets. References: 1. C. Laemmerzahl, 2006, 70th Annual Meeting, German Physical Society, (DPG); Note: indirect measurements, quote: The cause for the drifting apart of Sun and Earth cannot be explained by present knowledge and methods of gravitation physics' 2. I. H. Leubner, 2003, 'The Formation of the universe (Big Bang) as a Crystallization Process', Rochester Academy of Science, 30th Fall Paper Session, November 15, 2003, College of Science, Rochester Institute of Technology 3. I. H. Leubner, 2008, 'Derivation of the Hubble Constant' 35th Annual Fall Scientific Paper Session, Rochester Academy of Science Nazareth College, Rochester, NY, November 1, 2008 4. I. H. Leubner, 2004, 'Mars Orbit and Temperature: Why and When an Early wet Mars', AGU Fall Meeting, Session P01, #82

  3. Advances in topical drug delivery system: micro to nanofibrous structures.

    PubMed

    Joshi, Mangala; Butola, B S; Saha, Kasturi

    2014-01-01

    This paper is a review of the latest developments in the field of topical drug delivery via which the drug is directly applied onto the skin with high selectivity and efficiency. Advances in microfiber-based medical textiles such as sutures and wound dressings, especially those containing a drug or an antimicrobial agent, have been covered briefly. A special focus is on recent developments in the area of nanofibrous drug delivery systems, which have several advantages due to their large surface area to volume ratio, high porosity and flexibility. The electrospinning technique to produce nanofibers has also been discussed with reference to latest advances such as multiple needles, needleless and coaxial forms of electrospinning. The applications of nanofibers in different areas such as wound dressing, periodontal and anticancer treatment have also been discussed. PMID:24730303

  4. Cosmology of the Solar System

    NASA Astrophysics Data System (ADS)

    Ackerman, J.

    2004-05-01

    The early solar system accreted from ice crystals, which encapsulated the refractory elements. Ice was needed to bind the smallest particles, so accretion only occurred in the outer solar system. Solar wind gusts expelled dust in the inner solar system to where it became accreted into the giant planets. Thus, the original solar system comprised four giant planets, accreted from ice and dust. Their initial accretion was rapid, forming rocky iron cores from the refractory elements. But due to their great orbital radii, the entire process required more than 50 million years, so the bulk of the process was cold. Studies of young Sun-like stars show that hydrogen gas is expelled from the nebula before the accretion had hardly begun. As a result these are all solid bodies and not gas giants. The recognition that Jupiter is solid was masked by a high energy impact which occurred 6,000 years BP. The hot gases still streaming from the impact crater heat the atmosphere, forming the GRS, while the planet remains frozen. The temperature excesses, thought to be primordial, are an important factor in the gas giant assumption. Scientists have come close to recognizing the true nature of these bodies in recent years, due to the study of clathrates beneath the our oceans. These strong, low density structures of water molecules form naturally at low temperature and high pressure, exactly the conditions in the large bodies of the outer solar system. Their properties are responsible for the low average density of the giant planets. Clathrates encapsulate foreign molecules, such as methane. One expert has proposed that clathrates are the most abundant form of matter in the outer solar system - the Galilean moons, Pluto, Charon and the KBOs. However, until now, no one has suggested that the giant planets themselves are so composed, moreover that these bodies alone comprised the original solar system. The terrestrial planets result from later, high energy impacts on the giant planets. Fortunately, the birth of a new terrestrial planet, Venus, occurred within proto-history and the entire process is documented in ancient writings. It formed as a result of the impact on Jupiter cited above, expelling a plasma cloud several times the mass of Venus and thousands of times the volume of Jupiter. Most escaped Jupiter and entered an eccentric planetary orbit, while contracting to a star-like proto-Venus, with a temperature above 10,000K. Its perihelion, close to the ancient interior orbit of Mars, and its aphelion, at the orbit of Jupiter, gave it a period of some five years. But its great orbital energy was rapidly reduced, due to repeated interactions with Mars and the Sun at perihelion. The tidal force of the Sun and its magnetic field combined to heat the ionized, fluid body, slowing its orbital velocity. Each pass reheated it, further reducing its aphelion and increasing the frequency of interactions. Its repeated heating caused the out-gassing of most lighter elements to space by Jeans escape. Thus the loss of orbital energy resulted in the increasing of its average density from 1.3 gm/cm3, the density of Jupiter, to over 5.5 g/cm3, the density of Venus. This is how all terrestrial planets were formed. This catastrophic birth ensures the concentration of iron in the core, the rising of hot radioactive elements Th, Ur, K, and the less dense materials to the surface. Although the volatiles, H2, C, N, O2, which comprised the vast majority of the rebounded cloud, were initially lost, they remained in the inner solar system, to be captured later by the proto-planet as it cooled or by extant planets, thereby rapidly providing the elements necessary for life.

  5. Inhabiting the solar system

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    2011-03-01

    The new field of space architecture is introduced. Defined as the "theory and practice of designing and building inhabited environments in outer space," the field synthesizes human space flight systems engineering subjects with the long tradition of making environments that support human living, work, and aspiration. The scope of the field is outlined, and its three principal domains differentiated. The current state of the art is described in terms of executed projects. Foreseeable options for 21st century developments in human space flight provide a framework to tease out potential space architecture opportunities for the next century.

  6. Introduction to the Solar System Administrative Details

    E-print Network

    Walter, Frederick M.

    Exoplanets B 13 15 Dec 2 Dec 4 Life in the Universe B 24 Dec 10 Final Exam B 1-14, 24, S1 *** note: this plan interpretation of the Solar System · Kepler's Laws, Newton's Laws, and their applications within the Solar System · the possibilities for life on Mars, or elsewhere in the Solar System · how we discover and characterize exoplanets

  7. Adaptive, full-spectrum solar energy system

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  8. Simulating Collisions in the Solar System

    E-print Network

    Richardson, Derek Charles

    Hypothesis" of Solar System formation, planets grow by the pairwise accretion of planetesimals (see [8 Belt Objects, i.e. debris left over from the formation of the Solar System. Asteroid collisions in ourSimulating Collisions in the Solar System Derek C. Richardson Dept. of Astronomy, Univ

  9. Solar Resource and PV Systems Performance

    E-print Network

    Solar Resource and PV Systems Performance at Selected Test Sites Prepared for the U.S. Department Subtask 11.1 Deliverables 2 and 4: Report on Solar Resource and PV Systems Performance at Selected Test agency thereof. #12;1 Solar Resource and PV Systems Performance at Selected Test Sites Contents 1

  10. Solar Forecasting System and Irradiance Variability Characterization

    E-print Network

    Solar Forecasting System and Irradiance Variability Characterization This report describes the HNEI solar forecasting system based on numerical weather prediction plus satellite and ground-based data of Hawai`i at Manoa #12;Development of a Solar Forecasting System and Characterization of Irradiance

  11. Topical and systemic antibiotics in the management of periodontal diseases.

    PubMed

    Mombelli, Andrea; Samaranayake, Lakshman P

    2004-02-01

    Both systemic and topical antibiotics are increasingly used in the management of periodontal infections. Whilst these drugs are used mostly on an empirical basis, some contend that rational use of antibiotics should be the norm due to their wide abuse and consequential global emergence of antibiotic resistance organisms. Here we review the rationale and principles of antimicrobial therapy, treatment goals, drug delivery routes and various antibiotics that are used in the management of periodontal diseases. The pros and cons of systemic and local antibiotic therapy are described together with practical guidelines for their delivery. The available data indicate, in general, that mechanical periodontal treatment alone is adequate to ameliorate or resolve the clinical condition in most cases, but adjunctive antimicrobial agents, delivered either locally or systemically, can enhance the effect of therapy in specific situations. This is particularly true for aggressive (early onset) periodontitis, in patients with generalised systemic disease that may affect host resistance and in case of poor response to conventional mechanical therapy. Locally delivered antibiotics together with mechanical debridement are indicated for non-responding sites of focal infection or in localised recurrent disease. After resolution of the periodontal infection, the patient should be placed on an individually tailored maintenance care programme. Optimal plaque control by the patient is of paramount importance for a favourable clinical and microbiological response to any form of periodontal therapy. PMID:15005467

  12. Decision process for the retrofit of municipal buildings with solar energy systems: a technical guide

    SciTech Connect

    Licciardello, Michael R.; Wood, Brian; Dozier, Warner; Braly, Mark; Yates, Alan

    1980-11-01

    As a background for solar applications, the following topics are covered: solar systems and components for retrofit installations; cost, performance, and quality considerations; and financing alternatives for local government. The retrofit decision process is discussed as follows: pre-screening of buildings, building data requirements, the energy conservation audit, solar system sizing and economics, comparison of alternatives, and implementation. Sample studies are presented for the West Valley Animal Shelter and the Hollywood Police Station. (MHR)

  13. Solar probe power systems concepts

    NASA Technical Reports Server (NTRS)

    Nesmith, Bill J.

    1992-01-01

    Some of the design options under consideration for providing on-board electric power for the Solar Probe Mission are discussed. Five spacecraft configurations were evaluated with slightly different power demands and volumetric constraints on the power system. This resulted in three different baseline power system designs to satisfy the five spacecraft configurations. These three current baseline power system designs use modified general-purpose heat source (GPHS) radioisotope thermoelectric generators (RTGs) similar to those launched on the Galileo and Ulysses spacecraft. The modular RTG currently under development and testing is a potential advanced alternative to the current baseline GPHS-RTG technology design.

  14. Water in the Solar System

    NASA Astrophysics Data System (ADS)

    Encrenaz, Thérèse

    2008-09-01

    Water is ubiquitous in the Universe, and also in the Solar System. By setting the snow line at its condensation level in the protosolar disk, water was responsible for separating the planets into the terrestrial and the giant ones. Water ice is a major constituent of the comets and the small bodies of the outer Solar System, and water vapor is found in the giant planets, both in their interiors and in the stratospheres. Water is a trace element in the atmospheres of Venus and Mars today. It is very abundant on Earth, mostly in liquid form, but it was probably also abundant in the primitive atmospheres of Venus and Mars. Water is found in different states on the three planets, as vapor on Venus and ice (or permafrost) on Mars. Most likely, this difference has played a major role in the diverging destinies of the three planets.

  15. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  16. THE TOPICAL AND SYSTEMIC USE OF CORTISONE IN DERMATOLOGY

    PubMed Central

    Newman, Ben A.; Feldman, Fred F.

    1951-01-01

    Part I of this report deals with the topical use of cortisone in a variety of skin diseases. Fifteen patients with chronic discoid lupus erythematosus, four patients with necrobiosis lipoidica diabeticorum, four with psoriasis, one with lichen planus and one with granuloma annulare were treated with cortisone ointment. All the patients with chronic discoid lupus erythematosus had some degree of improvement. In two patients with chronic lupus erythematosus, complete clearing of the eruption occurred. In four patients with necrobiosis lipoidica diabeticorum remarkable involution resulted. Patients with psoriasis, lichen planus and granuloma annulare were not benefited. Part II deals with the systemic use of cortisone. Eight patients with severe serum sickness-like penicillin reaction responded dramatically to parenterally administered cortisone. In two cases of pemphigus vulgaris and one case of Sulzberger-Garbe disease, the disease was kept in remission with cortisone administered intramuscularly as well as orally. Partial improvement resulted in a case of localized myxedema associated with malignant exophthalmus. Two patients with exfoliative dermatitis due to therapy with heavy metals responded dramatically to cortisone. No beneficial effects were noted in patients with chronic urticaria and atopic dermatitis. The systemic use of ACTH and cortisone in dermatology at present should be confined to patients with known fatal or hopelessly incapacitating diseases and to patients with extreme hypersensitivity reactions which may be protracted or life-endangering, and which can be controlled or cured with a relatively small total dosage of the agents in a short time. PMID:14886729

  17. Small grains of truth. [solar system evolution

    NASA Technical Reports Server (NTRS)

    Nuth, Joe

    1991-01-01

    The evidence concerning the formation of the solar nebula from preexisting clouds found in the chemical composition of solar system grains is discussed. Evidence for sequential star formation in the grains is examined. It is argued that there is no model for the origin of the solar system which can account for the increasing complexity of the evidence.

  18. Hybrid solar lighting distribution systems and components

    DOEpatents

    Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  19. Hybrid solar lighting systems and components

    DOEpatents

    Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  20. Basics of Solar Heating & Hot Water Systems.

    ERIC Educational Resources Information Center

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  1. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  2. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2001-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  3. Early Solar System Leftovers: Testing Solar System Formation Models

    NASA Astrophysics Data System (ADS)

    Meech, Karen Jean; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R.; Keane, Jacqueline V.; Micheli, Marco; Berdyugina, Svetlana; Bhatt, Bhuwan; Sahu, Devendra; Hsieh, Henry; Veres, Peter; Wainscoat, Richard J.; Riesen, Timm-Emanuel; Kaluna, Heather

    2015-11-01

    One of the most intriguing predictions of the Grand Tack model is the presence of volatile poor objects in the Oort cloud that were swept from the region where the terrestrial planets formed. This volatile-poor material is represented today by ordinary chondrites, enstatite chondrites and differentiated planetesimals. These are the main constituents of the S-type asteroids that reside in the inner Solar system. According to the Grand Tack model, the fraction of S-type material in cometary orbits should be around 0.1-0.2%. Recent Pan-STARRS 1 discoveries of objects on long-period comet orbits that are minimally active while at small perihelia have suggested the intriguing possibility that these could potentially represent inner solar system material that was ejected into the outer solar system during planet migration, that is now making its way back in. The first object discovered, C/2013 P2 has a spectrum redder than D-type objects, but exhibits low-level activity throughout its perihelion passage. The second one, C/2014 S3, appears to have an S-type asteroid spectrum, and likewise exhibits low-level activity.Nearly 100 of these objects have now been identified, approximately half of which are still observable, and more are being discovered. We will report on observations made for a selection of these objects with several facilities including Gemini N 8 m, VLT 8 m, Canada-France-Hawaii 3.6 m, PS1 2 m, UH2.2 m, HCT 2 m, and the Lowell 1.8 m telescopes. We will discuss the implications of seeing volatile activity in these objects.

  4. Jupiter: Giant of the solar system. [its solar orbits

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Jupiter, its relationship to the other planets in the solar system, its twelve natural satellites, solar orbit and the appearance of Jupiter in the sky, and the sightings and motions of Jupiter in 1973 are discussed. Educational study projects for students are also included.

  5. EECS 598 Special Topic Analysis of Electric Power Distribution Systems and Loads

    E-print Network

    Cafarella, Michael J.

    EECS 598 Special Topic Analysis of Electric Power Distribution Systems This course covers the fundamentals of electric power distribution systems and electric loads. Most power system courses focus on analysis of transmission systems

  6. 2006 LWS TR & T Solar Wind Focused Science Topic Team: The ... http://www.agu.org/cgi-bin/SFgate/SFgate?language=English&verb... 1 of 2 11/14/06 11:27 AM

    E-print Network

    Ng, Chung-Sang

    2006 LWS TR & T Solar Wind Focused Science Topic Team: The ... http://www=ng HR: 0800h AN: SH11A-0371 TI: 2006 LWS TR & T Solar Wind Focused Science Topic Team: The Beginnings AU;2006 LWS TR & T Solar Wind Focused Science Topic Team: The ... http://www

  7. Solar system observations with HST

    NASA Astrophysics Data System (ADS)

    Paresce, Francesco; Gerard, Jean-Claude

    1992-07-01

    Imaging and spectrographic measurements of solar system objects with the Hubble Space Telescope (HST) are reviewed from a scientific and technical standpoint. Special emphasis is placed on observations of Jupiter and Io during the Ulysses encounter by the Faint Object Camera and HRS. The bottom line is that, although the mirror aberration limits HST's extragalactic performance, the potential for a deep systematic probe of planetary conditions over a wide range of observing conditions is still practically intact and will get better as the bugs are ironed out and the COSTAR (Corrective Optics Space Telescope Axial Replacement) fix is implemented.

  8. Tracking system for solar collectors

    DOEpatents

    Butler, B.

    1980-10-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  9. Tracking system for solar collectors

    DOEpatents

    Butler, Barry L. (Golden, CO)

    1984-01-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  10. The solar system beyond Neptune

    NASA Technical Reports Server (NTRS)

    Jewitt, David C.; Luu, Jane X.

    1995-01-01

    We present the results of a deep optical survey for distant solar system objects. An area of 1.2 sq deg of the ecliptic has been imaged to apparent red magnitude 25, resulting in the detection of seven trans-Neptunian objects. These are the first detected members of a trans-Neptunian disk that compries about 35 000 objects larger than 100 km in the 30-50 AU heliocentric distance range. We interpret the new measurements using a set of Monte Carlo models in which the effects of observational bias in the data are taken into account.

  11. Items of Information Retrieved as a Function of Cue System and Topical Area.

    ERIC Educational Resources Information Center

    Petelle, John L.; Maybee, Richard

    This study used five cueing systems composed of 16 cues each in combination with three topical areas to form cue-topic pairs which acted as stimulus items for the retrieval of naturally stored information. The five cue systems were composed of: randomly selected words, randomly selected nouns, the Wilson and Arnold system, a modification of the…

  12. Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report

    SciTech Connect

    1995-05-01

    Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

  13. SIPS: Solar Irradiance Prediction System Stefan Achleitner

    E-print Network

    Cerpa, Alberto E.

    prediction accuracy. Using this data for short-term solar forecasting for cloudy days with very high dynamics-time dispatch, which is an important component of successful solar power plant operation, accurate short-termSIPS: Solar Irradiance Prediction System Stefan Achleitner Computer Science and Engineering

  14. Non-tracking solar energy collector system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (inventor to nasa)

    1978-01-01

    A solar energy collector system is described characterized by an improved concentrator for directing incident rays of solar energy on parallel strip-like segments of a flatplate receiver. Individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration supported for independent orientation are asymmetric included with vee-trough concentrators for deflecting incident solar energy toward the receiver.

  15. Solar engineering 1995: Proceedings. Volume 2

    SciTech Connect

    Stine, W.B.; Tanaka, Tadayoshi; Claridge, D.E.

    1995-10-01

    This is Volume 2 of the paper presented at the 1995 ASME/JSME/JSES International Solar Energy Conference. The topics of the papers include testing and measuring devices, space solar power and propulsion issues, materials issues for space solar power systems, some current topics in OTEC and solar ponds, energy fundamentals for solar thermal systems, simulation and performance of solar water heating systems, simulation of renewable energy systems, terrestrial photovoltaics, and thermally activated cooling systems.

  16. Handbook of experiences in the design and installation of solar heating and cooling systems

    SciTech Connect

    Ward, D.S.; Oberoi, H.S.

    1980-07-01

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  17. Research topics on EO systems for maritime platforms

    NASA Astrophysics Data System (ADS)

    Dijk, Judith; Bijl, Piet; van den Broek, Sebastiaan P.; van Eijk, Alenxander M. J.

    2014-10-01

    Our world is constantly changing, and this has its effect on worldwide military operations. For example, there is a change from conventional warfare into a domain that contains asymmetric threats as well. The availability of high-quality imaging information from Electro-Optical (EO) sensors is of high importance, for instance for timely detection and identification of small threatening vessels in an environment with a large amount of neutral vessels. Furthermore, Rules of Engagement often require a visual identification before action is allowed. The challenge in these operations is to detect, classify and identify a target at a reasonable range, while avoiding too many false alarms or missed detections. Current sensor technology is not able to cope with the performance requirements under all circumstances. For example, environmental conditions can reduce the sensor range in such a way that the operational task becomes challenging or even impossible. Further, limitations in automatic detection algorithms occur, e.g. due to the effects of sun glints and spray which are not yet well-modelled in the detection filters. For these reasons, Tactical Decision Aids will become an important factor in future operations to select the best moment to act. In this paper, we describe current research within The Netherlands on this topic. The Defence Research and Development Programme "Multifunctional Electro-Optical Sensor Suite (MEOSS)" aims at the development of knowledge necessary for optimal employment of Electro-Optical systems on board of current and future ships of the Royal Netherlands Navy, in order to carry out present and future maritime operations in various environments and weather conditions.

  18. Solar thermal power systems. Summary report

    SciTech Connect

    Not Available

    1980-06-01

    The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

  19. Tracing Rays In A Solar Power System

    NASA Technical Reports Server (NTRS)

    Jefferies, Kent; Gallo, Chris

    1989-01-01

    OFFSET is ray-tracing computer code for analysis of optics of solar collector. Code models distributions of solar flux within receiver cavity, produced by reflections from collector. Developed to model mathematically offset solar collector of solar dynamic electric power system being developed for Space Station Freedom. Used to develop revised collector-facet concept of four groups of toroidally contoured facets. Also used to develop methods for tailoring distribution of flux incident on receiver. Written in FORTRAN 77 (100 percent).

  20. Biospheres and solar system exploration

    NASA Technical Reports Server (NTRS)

    Paine, Thomas O.

    1990-01-01

    The implications of biosphere technology is briefly examined. The exploration status and prospects of each world in the solar system is briefly reviewed, including the asteroid belt, the moon, and comets. Five program elements are listed as particularly critical for future interplanetary operations during the coming extraterrestrial century. They include the following: (1) a highway to Space (earth orbits); (2) Orbital Spaceports to support spacecraft assembly, storage, repair, maintenance, refueling, launch, and recovery; (3) a Bridge Between Worlds to transport cargo and crews to the moon and beyond to Mars; (4) Prospecting and Resource Utilization Systems to map and characterize the resources of planets, moons, and asteroids; and (5) Closed Ecology Biospheres. The progress in these five field is reviewed.

  1. Infrared observations of solar system objects

    NASA Technical Reports Server (NTRS)

    Lebofsky, Larry A.

    1991-01-01

    This is an ongoing groundbased infrared study of solar system objects. This is a broadbased program with the overall objective of studying the spectral and physical properties of small solar system bodies. The work spans the entire solar system from a study of the mineralogy of Mercury, to several studies of asteroids, and to studies of Triton, Pluto, and Charon. From these studies, it is hoped that a better understanding of the origin and evolution of these bodies and how they fit into the context of the origin and evolution of the solar system as a whole will be gained.

  2. Evaluating Performances of Solar-Energy Systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1987-01-01

    CONC11 computer program calculates performances of dish-type solar thermal collectors and power systems. Solar thermal power system consists of one or more collectors, power-conversion subsystems, and powerprocessing subsystems. CONC11 intended to aid system designer in comparing performance of various design alternatives. Written in Athena FORTRAN and Assembler.

  3. Economic Evaluation of Townhouse Solar Energy System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar-energy site in Columbia, South Carolina, is comprised of four townhouse apartments. Report summarizes economic evaluation of solar--energy system and projected performance of similar systems in four other selected cities. System is designed to supply 65 percent of heating and 75 percent of hot water.

  4. Soiling losses for solar photovoltaic systems in California

    E-print Network

    Mejia, Felipe A; Kleissl, Jan

    2013-01-01

    of the solar panels. 2.2 Solar Conversion Efficiency The 15solar panels was calculated, controlling for the effects of temperature and inverter efficiencysolar panels that causes a decrease in the solar photovoltaic (PV) system’s efficiency.

  5. MOTESS Solar System Observations: Implications for the GNAT System

    NASA Astrophysics Data System (ADS)

    Tucker, R. A.

    2002-12-01

    The Global Network of Astronomical Telescopes is developing a geographically distributed network of relatively small-aperture imaging telescopes. Equipped with CCD cameras and operating in scan mode, these instruments will be able to address a wide variety of solar system, stellar and extragalactic research topics. Although the design of the individual telescope emphasizes simplicity and low cost, the network will be able to deliver in aggregate data that would otherwise require more expensive facilities. The array of instruments may be tailored to the particular observing program by the selection of filters the individual instruments are provided and how the telescopes are pointed at the sky. A prototype array of three instruments has been in use since April of 2001, principally obtaining asteroid astrometry and searching for near-earth objects. The experience relating to solar system observations acquired during this period will be presented along with proposed strategies for future work using the full GNAT array of instruments. This work and continuing operation of the MOTESS prototype is supported in part by a Eugene Shoemaker Grant from The Planetary Society.

  6. Implementations of electric vehicle system based on solar energy in Singapore : assessment of solar photovoltaic systems

    E-print Network

    Sun, Li

    2009-01-01

    To evaluate the feasibility of solar energy based Electric Vehicle Transportation System in Singapore, the state of the art Photovoltaic Systems have been reviewed in this report with a focus on solar cell technologies. ...

  7. Installation package for a solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Installation information is given for a solar heating system installed in Concho Indian School at El Reno, Oklahoma. This package includes a system Operation and Maintenance Manual, hardware brochures, schematics, system operating modes and drawings.

  8. Implementing slab solar water heating system

    NASA Astrophysics Data System (ADS)

    Raveendran, S. K.; Shen, C. Q.

    2015-08-01

    Water heating contributes a significant part of energy consumption in typical household. One of the most employed technologies today that helps in reducing the energy consumption of water heating would be conventional solar water heating system. However, this system is expensive and less affordable by most family. The main objective of this project is to design and implement an alternative type of solar water heating system that utilize only passive solar energy which is known as slab solar water heating system. Slab solar water heating system is a system that heat up cold water using the solar radiance from the sun. The unique part of this system is that it does not require any form of electricity in order to operate. Solar radiance is converted into heat energy through convection method and cold water will be heated up by using conduction method [1]. The design of this system is governed by the criteria of low implementation cost and energy saving. Selection of material in the construction of a slab solar water heating system is important as it will directly affect the efficiency and performance of the system. A prototype has been built to realize the idea and it had been proven that this system was able to provide sufficient hot water supply for typical household usage at any given time.

  9. Methanogens in the Solar System

    NASA Astrophysics Data System (ADS)

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon

    2015-04-01

    The last decade of space science revealed that potential habitats in the Solar System may not be limited to the classical habitable zone supporting life as we know it. These microorganisms were shown to thrive under extremophilic growth conditions. Here, we outline the main eco-physiological characteristics of methanogens like their response on temperature, pressure, or pH changes or their resistance against radiation or desiccation. They can withstand extreme environmental conditions which makes them intriguing organisms for astrobiological studies. On Earth, they are found for example in wetlands, in arctic and antarctic subglacial environments, in ruminants, and even in the environment surrounding the Mars Desert Research Station in Utah. These obligate anaerobic chemolithoautotrophs or chemolithoheterotrophs are able to use e.g. hydrogen and C1 compounds like CO2, formate, or methanol as energy source and carbon source, respectively. We point out their capability to be able to habitat potential extraterrestrial biospheres all over the planetary system. We will give an overview about these possible environments on Mars, icy moons like Europa or Enceladus, and minor planets. We present an overview about studies of methanogens with an astrobiological relevance and we show our conclusions about the role of methanogens for the search for extraterrestrial life in the Solar System. We will present first results of our study about the possibility to cultivate methanogens under Enceladus-like conditions. For that, based on the observations obtained by the Cassini spacecraft concerning the plume compounds, we produce a medium with a composition similar to the ocean composition of this icy moon which is far more Enceladus-like than in any (published) experiment before. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies with these microbes. We point out the importance of future in-situ or even sample and return missions to the mentioned potential habitats.

  10. Solar System Advisory Panel (SSAP) Developing the Roadmap for Solar System Science

    E-print Network

    Crowther, Paul

    Solar System Advisory Panel (SSAP) Developing the Roadmap for Solar System Science Note (chaired by Monica Grady) held a very successful town meeting at the RAS on Monday 10 September, with over of scientists providing an opportunity to highlight key issues in solar system science or to promote future

  11. Solar system radio astronomy at low frequencies

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1987-01-01

    The planetary radio-astronomy observations obtained with the two Voyager spacecraft since their launch in 1977 are briefly characterized and illustrated with graphs, diagrams, and sample spectra. Topics addressed include the spacecraft designs and trajectories, the wavelength coverage of the radio instruments, the Io-controlled LF emission of Jupiter, the solar-wind effect on the Saturn kilometric radiation, the Saturn electrostatic discharges, and the use of the clocklike feature of the Uranus emission to measure the planet's rotation period.

  12. Volcanism in the Solar System

    NASA Astrophysics Data System (ADS)

    Wilson, Lionel

    2009-06-01

    The myriad bodies that occur in the Solar System have a wide range of properties, from giant gaseous planets such as Jupiter to small, solid, rocky satellites such as our Moon. Exploration by spacecraft during the past four decades has shown that volcanism - an important mechanism by which internal heat is transported to the surface - is common on many of these bodies. There are many common traits; for example, relatively quiet eruptions of molten rock occur on such diverse bodies as the Earth, Mars and Jupiter's moon Io. The volcanic constructs produced, however, vary strikingly, and range from Olympus Mons on Mars, at over 20 km high, to relatively tiny cones on Earth no more than a few tens of metres high. The recognition of icy volcanoes spewing water or organic liquids on some of Saturn's moons constitutes one of the most exciting results to emerge from recent space missions.

  13. The Solar System Beyond Neptune

    NASA Technical Reports Server (NTRS)

    Jewitt, David; Nava, David (Technical Monitor)

    2002-01-01

    This proposal supported deep and wide-field optical imaging of the trans-Neptunian Solar System capitalizing on our broad access to state-of-the-art facilities on Mauna Kea. Key quantities determined include the size distribution of Kuiper Belt objects (a differential power law with an index -4), and the inclination and radial distance distributions. We identified an outer edge to the classical Kuiper Belt that has since been confirmed by independent workers. We also obtained an assessment of the population densities in the mean-motion resonances with Neptune and discovered the Scattered Kuiper Belt Object dynamical class. Scientific issues on which these measurements have direct bearing include the collisional environment of the Kuiper Belt, the origin of the short-period comets, and the origin by capture into resonance of Pluto and other Kuiper Belt objects.

  14. Solar System Science with SKA

    E-print Network

    B. J. Butler; D. B. Campbell; I. de Pater; D. E. Gary

    2004-09-09

    Radio wavelength observations of solar system bodies reveal unique information about them, as they probe to regions inaccessible by nearly all other remote sensing techniques and wavelengths. As such, the SKA will be an important telescope for planetary science studies. With its sensitivity, spatial resolution, and spectral flexibility and resolution, it will be used extensively in planetary studies. It will make significant advances possible in studies of the deep atmospheres, magnetospheres and rings of the giant planets, atmospheres, surfaces, and subsurfaces of the terrestrial planets, and properties of small bodies, including comets, asteroids, and KBOs. Further, it will allow unique studies of the Sun. Finally, it will allow for both indirect and direct observations of extrasolar giant planets.

  15. Solar System Searches for Life

    NASA Astrophysics Data System (ADS)

    Chyba, C. F.

    1998-12-01

    Exobiology--the search for extraterrestrial life and the study of conditions relevant to its origins--has been reborn in the past decade. This rebirth has been driven largely by discoveries related to Earth's deep biosphere, and the recognition that there may be several extraterrestrial environments within our own Solar System that could provide plausible environments for subsurface ecologies. Most prominent among these are Mars and Jupiter's moon Europa. In 2003 NASA intends to launch an orbiting spacecraft to Europa, to determine whether a subsurface ocean does in fact exist beneath that world's ice layer. A subsequent lander mission is in the initial planning stages. Lessons learned from the Viking spacecrafts' search for life on Mars over 25 years ago need to be carefully considered. More broadly, the interrelationships between planetary exploration and our understanding of the origin of life are becoming increasingly important.

  16. Solar System Visualization (SSV) Project

    NASA Technical Reports Server (NTRS)

    Todd, Jessida L.

    2005-01-01

    The Solar System Visualization (SSV) project aims at enhancing scientific and public understanding through visual representations and modeling procedures. The SSV project's objectives are to (1) create new visualization technologies, (2) organize science observations and models, and (3) visualize science results and mission Plans. The SSV project currently supports the Mars Exploration Rovers (MER) mission, the Mars Reconnaissance Orbiter (MRO), and Cassini. In support of the these missions, the SSV team has produced pan and zoom animations of large mosaics to reveal details of surface features and topography, created 3D animations of science instruments and procedures, formed 3-D anaglyphs from left and right stereo pairs, and animated registered multi-resolution mosaics to provide context for microscopic images.

  17. An overview: Component development for solar thermal systems

    NASA Astrophysics Data System (ADS)

    Mancini, T. R.

    In this paper, I review the significant issues and the development of solar concentrators and thermal receivers for central-receiver power plants and dish/engine systems. Due to the breadth of the topic area, I have arbitrarily narrowed the content of this paper by choosing not to discuss line-focus (trough) systems and energy storage. I will focus my discussion on the development of heliostats, dishes, and receivers since the 1970s with an emphasis on describing the technologies and their evolution, identifying some key observations and lessons learned, and suggesting what the future in component development may be.

  18. The dynamical history of our solar system

    NASA Astrophysics Data System (ADS)

    Malhotra, Renu

    2012-07-01

    Our understanding of the formation and long term evolution of the solar system has undergone a revolution in recent years, owing to new discoveries and new theoretical insights. The emerging picture is one of a dramatic orbital migration of the giant planets ˜ four gigayears ago (i.e., almost half a gigayear subsequent to the completion of planetary formation), which had major effects on the terrestrial planets and on the minor planet reservoirs also, and which produced the final solar system architecture that we live in today. I will describe the evidence for and our current understanding of giant planet migration in our solar system, the associated late heavy bombardment throughout the solar system, and implications for investigations of many aspects of the solar system and of exo-planetary systems.

  19. Jupiter's role in sculpting the early Solar System

    E-print Network

    Naoz, S

    2015-01-01

    of the early Solar System evolution. (A) The initial settingin the inner Solar System’s early evolution. Proc Natl AcadSolar System. Correspond- ingly, Batygin and Laughlin (5) numerically simulate the evolution

  20. Gamma ray observations of the solar system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  1. Gamma ray observations of the solar system

    SciTech Connect

    Not Available

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  2. Solar-heating system design package

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report describes solar heating system composed of warm-air solar collector, logic control unit, and switching and transport unit, that meets government standards for installation in residential dwellings. Text describes system operation and performance specifications complemented by comprehensive set of subcomponent design drawings.

  3. Dormitory Solar-Energy-System Economics

    NASA Technical Reports Server (NTRS)

    1982-01-01

    102-page report analyzes long-term economic performance of a prepackaged solar energy assembly system at a dormitory installation and extrapolates to four additional sites about the U.S. Method of evaluation is f-chart procedure for solar-heating and domestic hotwater systems.

  4. Topic 5: Renewable Power 1Networking and Distributed Systems

    E-print Network

    Mohsenian-Rad, Hamed

    . · Desired choices (Renewable Sources): · Marine: Wave and Tidal · PV: Solar · Wind · Hydro #12;Carbon Tax Dr of sea levels: · Caused by moon and sun's gravitational forces. · Most places in the ocean usually: ·Are influenced by the alignment of the sun and moon. #12;Tidal Energ

  5. An analysis of distributed solar fuel systems

    E-print Network

    Thomas, Alex, S.M. Massachusetts Institute of Technology

    2012-01-01

    While solar fuel systems offer tremendous potential to address global clean energy needs, most existing analyses have focused on the feasibility of large centralized systems and applications. Not much research exists on ...

  6. The Solar System and Its Origin

    ERIC Educational Resources Information Center

    Dormand, J. R.

    1973-01-01

    Presents a brief explanation of the solar system, including planets, asteroids, satellites, comets, planetary orbits, as well as, old and recent cosmogonic theories. Indicates that man is nearer a solution to the origin of the planetary system than ever before.

  7. Chaotic Evolution of the Solar System

    E-print Network

    Sussman, Gerald J.

    1992-03-01

    The evolution of the entire planetary system has been numerically integrated for a time span of nearly 100 million years. This calculation confirms that the evolution of the solar system as a whole is chaotic, with a ...

  8. Solar heating system installed at Stamford, Connecticut

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar heating system installed at the Lutz-Sotire Partnership Executive East Office Building, Stamford, Connecticut is described. The Executive East Office Building is of moderate size with 25,000 sq ft of heated space in 2 1/2 stories. The solar system was designed to provide approximately 50 percent of the heating requirements. The system components are described. Appended data includes: the system design acceptance test, the operation and maintenance manual, and as-built drawings and photographs.

  9. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  10. Solar heated fluidized bed gasification system

    NASA Astrophysics Data System (ADS)

    Qader, S. A.

    1981-09-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  11. Solar System Science with LSST

    NASA Astrophysics Data System (ADS)

    Jones, R. L.; Chesley, S. R.; Connolly, A. J.; Harris, A. W.; Ivezic, Z.; Knezevic, Z.; Kubica, J.; Milani, A.; Trilling, D. E.

    2008-09-01

    The Large Synoptic Survey Telescope (LSST) will provide a unique tool to study moving objects throughout the solar system, creating massive catalogs of Near Earth Objects (NEOs), asteroids, Trojans, TransNeptunian Objects (TNOs), comets and planetary satellites with well-measured orbits and high quality, multi-color photometry accurate to 0.005 magnitudes for the brightest objects. In the baseline LSST observing plan, back-to-back 15-second images will reach a limiting magnitude as faint as r=24.7 in each 9.6 square degree image, twice per night; a total of approximately 15,000 square degrees of the sky will be imaged in multiple filters every 3 nights. This time sampling will continue throughout each lunation, creating a huge database of observations. Fig. 1 Sky coverage of LSST over 10 years; separate panels for each of the 6 LSST filters. Color bars indicate number of observations in filter. The catalogs will include more than 80% of the potentially hazardous asteroids larger than 140m in diameter within the first 10 years of LSST operation, millions of main-belt asteroids and perhaps 20,000 Trans-Neptunian Objects. Objects with diameters as small as 100m in the Main Belt and <100km in the Kuiper Belt can be detected in individual images. Specialized `deep drilling' observing sequences will detect KBOs down to 10s of kilometers in diameter. Long period comets will be detected at larger distances than previously possible, constrainting models of the Oort cloud. With the large number of objects expected in the catalogs, it may be possible to observe a pristine comet start outgassing on its first journey into the inner solar system. By observing fields over a wide range of ecliptic longitudes and latitudes, including large separations from the ecliptic plane, not only will these catalogs greatly increase the numbers of known objects, the characterization of the inclination distributions of these populations will be much improved. Derivation of proper elements for main belt and Trojan asteroids will allow ever more resolution of asteroid families and their size-frequency distribution, as well as the study of the long-term dynamics of the individual asteroids and the asteroid belt as a whole. Fig. 2 Orbital parameters of Main Belt Asteroids, color-coded according to ugriz colors measured by SDSS. The figure to the left shows osculating elements, the figure to the right shows proper elements - note the asteroid families visible as clumps in parameter space [1]. By obtaining multi-color ugrizy data for a substantial fraction of objects, relationships between color and dynamical history can be established. This will also enable taxonomic classification of asteroids, provide further links between diverse populations such as irregular satellites and TNOs or planetary Trojans, and enable estimates of asteroid diameter with rms uncertainty of 30%. With the addition of light-curve information, rotation periods and phase curves can be measured for large fractions of each population, leading to new insight on physical characteristics. Photometric variability information, together with sparse lightcurve inversion, will allow spin state and shape estimation for up to two orders of magnitude more objects than presently known. This will leverage physical studies of asteroids by constraining the size-strength relationship, which has important implications for the internal structure (solid, fractured, rubble pile) and in turn the collisional evolution of the asteroid belt. Similar information can be gained for other solar system bodies. [1] Parker, A., Ivezic

  12. Solar-Cell-Manufacturing System

    NASA Technical Reports Server (NTRS)

    Kelly, F. G.

    1984-01-01

    Cost of manufacturing solar arrays minimized by using polyimide-ribbed substrates together with silver-plated coils of low-expansion nickel/iron ribbon on solar cells. Polyimide taped to ribbon protects cell from abrasion or from sticking to other tooling.

  13. The Origin and Evolution of the Solar System.

    ERIC Educational Resources Information Center

    Woolfson, M. M.

    1987-01-01

    Describes the major components of the solar system and proposes several features that a theory about the solar system should include. Contains explanations of several theories about the origin of the solar system. (TW)

  14. CPV 481 (A Hierarchical CPV Solar Generation Tracking System

    E-print Network

    Cho, Sung-Bae

    CPV 481 CPV (A Hierarchical CPV Solar Generation Tracking System based on Modular solar generation, photovoltaic tracking system, bayesian network (10044828, ). : 2014 4 21]. . , . , . 1 CPV Fig. 1 CPV Solar System Structure . 2.2 . 1

  15. Robot and Human Surface Operations on Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.

  16. Solar-System Ephemeris Toolbox

    NASA Technical Reports Server (NTRS)

    Walker, Charles F.

    2005-01-01

    NASA s Jet Propulsion Laboratory (JPL) generates planetary and lunar ephemeris data and FORTRAN routines that allow users to obtain state data for the Sun, the moon, and the planets. The JPL Solar System Ephemeris Toolbox, developed at Kennedy Space Center, is a set of functions that provides the same functionality in the MATLAB computing environment along with some additional capabilities. The toolbox can be used interactively via a graphical user interface (GUI), or individual functions can be called from the MATLAB command prompt or other MATLAB scripts and functions. The toolbox also includes utility functions to define and perform coordinate transformation (e.g., mean-of-date, true-of-date, J2000) that are common in the use of these ephemerides. An attached README file guides the user through the process of constructing binary ephemeris files, verifying correct installation, and using functions to extract state data. This process also can be performed using the GUI. Help from each toolbox function is available through MATLAB s "help" function. Many of the functions in the toolbox are MATLAB equivalents of the JPL-written FORTRAN programs and subroutines used for the same purposes. A novice can use the GUI to extract state data, while a more experienced user can use the functions directly, as needed, in his/her applications. The toolbox has been tested using MATLAB Releases 13 an

  17. Solar radiation for Mars power systems

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  18. Accretion in the Early Outer Solar System

    E-print Network

    Scott J. Kenyon; Jane X. Luu

    1999-06-08

    We describe calculations of the evolution of an ensemble of small planetesimals in the outer solar system. In a solar nebula with a mass of several times the Minimum Mass Solar Nebula, objects with radii of 100-1000 km can form on timescales of 10-100 Myr. Model luminosity functions derived from these calculations agree with current observations of bodies beyond the orbit of Neptune (Kuiper Belt objects). New surveys with current and planned instruments can place better constraints on the mass and dynamics of the solar nebula by measuring the luminosity function at red magnitudes of 28 or larger.

  19. Village power plants versus solar home systems

    SciTech Connect

    Schmidt-Kuentzel, B.; Schaefer, G.

    1993-08-01

    Figures on rural energy consumption is presented along with past experience in rural electrification projects which show clearly the limits of any rural electrification policy. Three alternatives are compared using a network for electricity distribution, i.e. connection to the national grid, village networks with diesel and solar power stations, and the solar home system.

  20. Non-tracking solar energy collector system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (inventor)

    1978-01-01

    A solar energy collector system characterized by an improved concentrator for directing incident rays of solar energy on parallel vacuum-jacketed receivers or absorbers is described. Numerous individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration are supported for independent reorientation. Asymmetric vee-trough concentrators are defined.

  1. Prototype solar domestic hot water systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Construction of a double wall heat exchanger using soft copper tube coiled around a hot water storage tank was completed and preliminary tests were conducted. Solar transport water to tank potable water heat exchange tests were performed with a specially constructed test stand. Work was done to improve the component hardware and system design for the solar water heater. The installation of both a direct feed system and a double wall heat exchanger system provided experience and site data to enable informative decisions to be made as the solar market expands into areas where freeze protection is required.

  2. New isotopic clues to solar system formation

    NASA Technical Reports Server (NTRS)

    Lee, T.

    1979-01-01

    The presence of two new extinct nuclides Al-26 and Pd-107 with half lives of approximately one million years in the early solar system implies that there were nucleosynthetic activities involving a great many elements almost at the instant of solar system formation. Rate gas and oxygen isotopic abundance variations ('anomalies') relative to the 'cosmic' composition were observed in a variety of planetary objects, which indicates that isotopic heterogeneities caused by the incomplete mixing of distinct nucleosynthesis components permeate the entire solar system. These new results have major implications for cosmochronology, nucleosynthesis theory, star formation, planetary heating, and the genetic relationship between different planetary bodies

  3. Development of Solar Powered Irrigation System

    NASA Astrophysics Data System (ADS)

    Abdelkerim, A. I.; Sami Eusuf, M. M. R.; Salami, M. J. E.; Aibinu, A.; Eusuf, M. A.

    2013-12-01

    Development of a solar powered irrigation system has been discussed in this paper. This system would be SCADA-based and quite useful in areas where there is plenty of sunshine but insufficient water to carry out farming activities, such as rubber plantation, strawberry plantation, or any plantation, that requires frequent watering. The system is powered by solar system as a renewable energy which uses solar panel module to convert Sunlight into electricity. The development and implementation of an automated SCADA controlled system that uses PLC as a controller is significant to agricultural, oil and gas monitoring and control purpose purposes. In addition, the system is powered by an intelligent solar system in which solar panel targets the radiation from the Sun. Other than that, the solar system has reduced energy cost as well as pollution. The system is equipped with four input sensors; two soil moisture sensors, two level detection sensors. Soil moisture sensor measures the humidity of the soil, whereas the level detection sensors detect the level of water in the tank. The output sides consist of two solenoid valves, which are controlled respectively by two moistures sensors.

  4. Topic 7 : Smart Grid Privacy and Security 1Networking and Distributed Systems

    E-print Network

    Mohsenian-Rad, Hamed

    Topic 7 : Smart Grid Privacy and Security 1Networking and Distributed Systems Department Tech UniversityCommunications and Control in Smart Grid 2 · Smart Meter Privacy · Concerns · Possible Solutions · Smart Grid Security · Load Altering Attacks · False Data Injection Attacks · Impact

  5. Solar power satellite system. [Patent application

    SciTech Connect

    Sarver, G.L. III

    1980-09-01

    A solar power satellite system is provided which includes a power satellite and at least one reflector satellite. The power satellite, which constitutes the great mass of the system, has a geosynchronous, gravity gradient stabilized orbit. The power satellite comprises a planar array of solar cells, with the plane of the satellite being oriented so as to be parallel with the plane of its orbit. An antenna or antennas mounted on the power satellite are powered by the solar cells and serve to transmit microwave energy back to earth. The shape and orbit of the reflector satellite are controlled so that solar radiation is focused by the reflector satellite onto the solar array of the power satellite. NASA

  6. Solar physics in the 1990s; Proceedings of Workshop XV and the Topical Meeting of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Astrophysics Data System (ADS)

    Neidig, D. F.; Hudson, H. S.

    Papers concerning developments in solar physics are presented, focusing on scientific planning for the solar maximum and high-energy detector calibration and observation of nonthermal and superhot sources. Specific topics include solar radioastronomy, VLA observations of the sun, coronal loops, solar observation in the Phobos mission, the Solar-A mission, the Solar and Heliospheric Observatory satellite, the Global Oscillation Network Group, the relation between convection flows and magnetic structure and the solar surface, and solar flares research programs including quasi-dedicated mm-wave imaging, H-alpha, far IR, X-ray spectroscopy, and optical observations. Additional subjects include the manifestation of supergranulation structure of active regions during solar flares, post-flare loops, the relationship of peak emission measure and temperature to peak flare X-ray flux, turbulent and directed motions in solar flares, coronal temperature diagnostics from high-resolution soft W-ray spectra, the study of coronal densities from X-ray line ratios of Ne IX and Mg XI, electron densities in the solar atmosphere, the Coronal Magnetic Structures Observing Campaign, observations of a giant filament, the determination of coronal fieldline connectivity from photospheric flare observations, MHD simulation of mass injection, numerical simulation of solar atmospheric dynamics, intercalibration of hard X-ray spectrometers, the influence of the energy calibration of broad-band X-ray detectors on the determination of plasma parameters, and space experiments measuring solar X-rays.

  7. How special is the Solar System?

    E-print Network

    M. E. Beer; A. R. King; M. Livio; J. E. Pringle

    2004-07-22

    Most mechanisms proposed for the formation of planets are modified versions of the mechanism proposed for the solar system. Here we argue that, in terms of those planetary systems which have been observed, the case for the solar system being a typical planetary system has yet to be established. We consider the possibility that most observed planetary systems have been formed in some quite different way. If so, it may be that none of the observed planetary systems is likely to harbour an earth-like planet.

  8. The solar system mimics a hydrogen atom

    E-print Network

    Je-An Gu

    2014-03-28

    The solar system and the hydrogen atom are two well known systems on different scales and look unrelated: The former is a classical system on the scale of about billions of kilometers and the latter a quantum system of about tens of picometers. Here we show a connection between them. Specifically, we find that the orbital radii of the planets mimic the mean radii of the energy levels of a quantum system under the Coulomb-like potential. This connection might be explained by very light dark matter which manifests quantum behavior in the solar system, thereby hinting at a dark matter mass around $8 \\times 10^{-14}$ electron-volts.

  9. Solar hydrogen energy system. Annual report, 1995--1996

    SciTech Connect

    Veziroglu, T.N.

    1996-12-31

    The paper reports progress on three tasks. Task A, System comparison of hydrogen with other alternative fuels in terms of EPACT requirements, investigates the feasibility of several alternative fuels, namely, natural gas, methanol, ethanol, hydrogen and electricity, to replace 10% of gasoline by the year 2000. The analysis was divided into two parts: analysis of vehicle technologies and analysis of fuel production, storage and distribution. Task B, Photovoltaic hydrogen production, involves this fuel production method for the future. The process uses hybrid solar collectors to generate dc electricity, as well as high temperature steam for input to the electrolyzer. During the first year, solar to hydrogen conversion efficiencies have been considered. The third task, Hydrogen safety studies, covers two topics: a review of codes, standards, regulations, recommendations, certifications, and pamphlets which address safety of gaseous fuels; and an experimental investigation of hydrogen flame impingement.

  10. The NASA atlas of the solar system

    USGS Publications Warehouse

    Greeley, Ronald; Batson, Raymond M.

    1997-01-01

    Describes every planet, moon, and body that has been the subject of a NASA mission, including images of 30 solar system objects and maps of 26 objects. The presentation includes geologic history, geologic and reference maps, and shaded relief maps.

  11. Design data brochure: Solar hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  12. Prototype solar heating and hot water systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress made in the development of a solar hot water and space heating system is described in four quarterly reports. The program schedules, technical status and other program activities from 6 October 1976 through 30 September 1977 are provided.

  13. Igneous processes of the early solar system

    E-print Network

    Singletary, Steven J. (Steven James), 1973-

    2004-01-01

    Experimental, petrographic and numerical methods are used to explore the igneous evolution of the early solar system. Chapters 1 and 2 detail the results of petrographic and experimental studies of a suite of primitive ...

  14. The Birth Environment of the Solar System

    NASA Astrophysics Data System (ADS)

    Brown, Michael; Allen, Lori; Trilling, Davif

    2014-02-01

    In his comprehensive review on the birth environment of the solar system, Adams (2010) uses four primary dynamical, chemical, and radiation constraints to conclude that the solar system formed in a cluster with between 1000 and 10,000 members. The existence of the planetoid Sedna, on a highly elliptical orbit disconnected from the giant planets, is perhaps the weakest of these primary constraints. We propose a small Gemini imaging program to followup serendipitous discoveries of distant objets in the outer solar system from a 30 night Dark Energy Camera near earth asteroid survey. The Gemini observations will allow us to determine orbits of these distant objects which will allow us to (1) determine if Sedna was indeed emplaced by a birth cluster and (2) use full orbital population statistics to constrain the birth environment of the sun using this unique fossil record of the earliest history of our solar system.

  15. Cutting Industrial Solar System Costs in Half 

    E-print Network

    Niess, R. C.; Weinstein, A.

    1982-01-01

    While there are technical, social, environmental and institutional barriers to the widespread use of solar systems, the principle barrier is economic. For commercial and industrial firms to turn to this alternate energy source, the first cost must...

  16. Multistep Methods for Integrating the Solar System

    E-print Network

    Skordos, Panayotis S.

    1988-07-01

    High order multistep methods, run at constant stepsize, are very effective for integrating the Newtonian solar system for extended periods of time. I have studied the stability and error growth of these methods when ...

  17. Solar System: Sifting through the debris

    E-print Network

    Asantha Cooray

    2006-08-11

    A quadrillion previously unnoticed small bodies beyond Neptune have been spotted as they dimmed X-rays from a distant source. Models of the dynamics of debris in the Solar System's suburbs must now be reworked.

  18. Solar Energy Usage.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with solar energy use. Its objective is for the student to be able to discuss the broad aspects of solar energy use and to explain the general operation of solar systems. Some topics covered are availability and economics of solar

  19. Innovative Systems for Solar Air Conditioning of Buildings 

    E-print Network

    Kessling, W.; Peltzer, M.

    2004-01-01

    for a high efficient utilization of solar thermal energy. To show the today's and near future potential innovative solar cooling and air conditioning systems are discussed which are well adapted to the utilization of solar energy. The system performance...

  20. Placing the Solar System in its Universal Context

    NASA Astrophysics Data System (ADS)

    Grier, J. A.; Steel, S. J.; Dussault, M. E.; Reinfeld, E. L.; Gould, R. R.

    2004-11-01

    Data from surveys and evaluations of recent space science education programs show that both teachers and students use the terms 'solar system', 'galaxy' and 'universe' interchangeably. For some this merely represents a barrier in vocabulary, but for most, it is indicative of an underlying lack of structure within their internal models of the solar system and universe. Some of the misconceptions of size of the solar system, placement, distance, scale and hierarchy of objects in the galaxy and universe are introduced by not including the solar system in a consistent, coherent picture within the rest of the galaxy and universe. If these ideas and misconceptions are not addressed through a targeted educational experience, they can form barriers to developing new and more accurate internal models, and impede the assimilation of any new evidence or ideas within those models. We are developing focused educational products and experiences that allow students to encounter the topics of 'solar system', 'galaxy' and 'universe' as an integrated whole, showing the common and unique features, natural interrelationships, and hierarchies that allow students and teachers to develop more powerful internal models of their place in space and time. We have used this approach to enhance the learning experience at Girl Scouts 'Train the Trainer' Workshops, in the 'Modeling the Universe' Professional Development Workshops, and in several venues for urban public school teachers. We have also created activities such as the "Cosmic Timeline", and products such as the "How Big is the Universe?" booklet to support learning about size and scale from the Earth to the Sun, and then all the way out to the edge of space.

  1. Solar Energy Systems for Ohioan Residential Homeowners

    NASA Astrophysics Data System (ADS)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  2. Tehachapi solar thermal system first annual report

    SciTech Connect

    Rosenthal, A.

    1993-05-01

    The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

  3. Chemical evolution: A solar system perspective

    NASA Technical Reports Server (NTRS)

    Oro, J.

    1989-01-01

    During the last three decades major advances were made in the understanding of the formation of carbon compounds in the universe and of the occurrence of processes of chemical evolution in the solar system and beyond. This was made possible by the development of new astronomical techniques and by the exploration of the solar system by means of properly instrumented spacecraft. Some of the major findings made as a result of these observations are summarized.

  4. Meteoroids: The Smallest Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Moser, Danille E. (Compiler); Hardin, B. F. (Compiler); Janches, Diego (Compiler)

    2011-01-01

    This volume is a compilation of articles reflecting the current state of knowledge on the physics, chemistry, astronomy, and aeronomy of small bodies in the solar system. The articles included here represent the most recent results in meteor, meteoroid, and related research fields and were presented May 24-28, 2010, in Breckenridge, Colorado, USA at Meteoroids 2010: An International Conference on Minor Bodies in the Solar System.

  5. Chaos and stability of the solar system

    PubMed Central

    Malhotra, Renu; Holman, Matthew; Ito, Takashi

    2001-01-01

    Over the last two decades, there has come about a recognition that chaotic dynamics is pervasive in the solar system. We now understand that the orbits of small members of the solar system—asteroids, comets, and interplanetary dust—are chaotic and undergo large changes on geological time scales. Are the major planets' orbits also chaotic? The answer is not straightforward, and the subtleties have prompted new questions. PMID:11606772

  6. The Solar System: Recent Exploration Results

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The solar system has been visited by space probes, ranging from the Mariner Mercury-Venus mission exploring inward toward the sun, and continuing through the Voyager probes out into interstellar space and (on its way now) the New Horizons probe to Pluto and the Kuiper belt. This talk examines what we know of the planets of the solar system from probes, and talks about where we will go from here.

  7. Climate Fundamentals for Solar Heating.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The design of any solar heating system is influenced heavily by climate; in this bulletin, information on climate as related to solar heating is as related to solar heating is provided. Topics discussed include: (1) solar radiation; (2) degree days; (3) climate and calculations which make use of solar radiation and degree days; and (4)…

  8. The formation of the solar system

    E-print Network

    Pfalzner, S; Gounelle, M; Johansen, A; Muenker, C; Lacerda, P; Zwart, S Portegies; Testi, L; Trieloff, M; Veras, D

    2015-01-01

    The solar system started to form about 4.56 Gyr ago and despite the long intervening time span, there still exist several clues about its formation. The three major sources for this information are meteorites, the present solar system structure and the planet-forming systems around young stars. In this introduction we give an overview of the current understanding of the solar system formation from all these different research fields. This includes the question of the lifetime of the solar protoplanetary disc, the different stages of planet formation, their duration, and their relative importance. We consider whether meteorite evidence and observations of protoplanetary discs point in the same direction. This will tell us whether our solar system had a typical formation history or an exceptional one. There are also many indications that the solar system formed as part of a star cluster. Here we examine the types of cluster the Sun could have formed in, especially whether its stellar density was at any stage hi...

  9. Concentrators Enhance Solar Power Systems

    NASA Technical Reports Server (NTRS)

    2013-01-01

    "Right now, solar electric propulsion is being looked at very seriously," says Michael Piszczor, chief of the photovoltaic and power technologies branch at Glen Research Center. The reason, he explains, originates with a unique NASA mission from the late 1990s. In 1998, the Deep Space 1 spacecraft launched from Kennedy Space Center to test a dozen different space technologies, including SCARLET, or the Solar Concentrator Array with Refractive Linear Element Technology. As a solar array that focused sunlight on a smaller solar cell to generate electric power, SCARLET not only powered Deep Space 1 s instruments but also powered its ion engine, which propelled the spacecraft throughout its journey. Deep Space 1 was the first spacecraft powered by a refractive concentrator design like SCARLET, and also utilized multi-junction solar cells, or cells made of multiple layers of different materials. For the duration of its 38-month mission, SCARLET performed flawlessly, even as Deep Space 1 flew by Comet Borrelly and Asteroid Braille. "Everyone remembers the ion engine on Deep Space 1, but they tend to forget that the SCARLET array powered it," says Piszczor. "Not only did both technologies work as designed, but the synergy between the two, solar power and propulsion together, is really the important aspect of this technology demonstration mission. It was the first successful use of solar electric propulsion for primary propulsion." More than a decade later, NASA is keenly interested in using solar electric propulsion (SEP) for future space missions. A key issue is cost, and SEP has the potential to substantially reduce cost compared to conventional chemical propulsion technology. "SEP allows you to use spacecraft that are smaller, lighter, and less costly," says Piszczor. "Even though it might take longer to get somewhere using SEP, if you are willing to trade time for cost and smaller vehicles, it s a good trade." Potentially, SEP could be used on future science missions in orbit around the Earth or Moon, to planets or asteroids, on deep space science missions, and even on exploration missions. In fact, electric propulsion is already being used on Earth-orbiting satellites for positioning.

  10. Solar system of the Doho Park Gymnasium

    SciTech Connect

    Takama, S.

    1982-01-01

    Conventional solar systems have operated on heating demand, irrespective of the amount of heat gained from the collector. Consequently, there have been cases when large amounts of auxiliary heat were necessary, and the solar fraction was greatly reduced. In particular, there were many cases where a large system, intended for multipurpose use, was controlled simply by the fluid temperature alone. It often happened that the system could not be run by solar heat because of low temperatures, even though effective amounts of solar radiation were available. Therefore, a key point for the effective use of solar systems is to adjust the imbalance between heat gained from the collector and the heating load. The Doho Park Gymnasium project, which has Japan's largest collector area -- 1912 m/sup 2/ for multipurpose use -- took this point into full consideration. In the system, anticipated heat collection, Qu, heat storage, Qs, and heating loads, Ql, are calculated every hour by a minicomputer. The heating load is then controlled in accordance with a prearranged priority order for effective utilization of solar energy and, to a lesser extent, of auxiliary heat.

  11. Basics of a Solar Electric System: Better Buildings Series Solar Electric Fact Sheet

    SciTech Connect

    Not Available

    2002-07-01

    Today's solar technologies are more efficient and versatile than ever before, adding to the appeal of an already desirable energy source. This fact sheet provides information on the basics of a solar electric system, including components of a system, how to choose solar modules, and how to choose a solar system.

  12. INVENTORY OF SOLAR RADIATION/SOLAR ENERGY SYSTEMS ESTIMATORS, MODELS, SITE-SPECIFIC DATA, AND PUBLICATIONS

    E-print Network

    INVENTORY OF SOLAR RADIATION/SOLAR ENERGY SYSTEMS ESTIMATORS, MODELS, SITE-SPECIFIC DATA, and Buildings Systems Integration Center National Renewable Energy Laboratory 8 July 2009 SOLAR SYSTEM POTENTIAL/calculators/PVWATTS/version1/ http://rredc.nrel.gov/solar/calculators/PVWATTS/version2/ Estimates the electrical energy

  13. Mineralogy of the Solar System

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.

    1999-01-01

    The coming decade will witnesses the first sample return missions from solar system bodies in 30 years. These samples will all be very small, some missions return only a few milligrams of total mass. Fortunately, the capability of modem methods to characterize ultra-small samples is well established from analysis of interplanetary dust particles (IDPs), interstellar grains recovered from meteorites, and other materials requiring ultra-sensitive analytical capabilities. Powerful analytical techniques are available that require, under favorable circumstances, single particles of only a few nanograms for entire suites of fairly comprehensive characterizations. A returned sample of greater than 1,000 particles with total mass of just one microgram permits comprehensive quantitative geochemical measurements that are impractical to can-y out in situ by flight instruments. With the Galileo flybys of Gaspra and Ida, it is now recognized that even very small airless bodies have indeed developed a particulate regolith. Acquiring a sample of the bulk regolith, a simple sampling strategy, provides two critical pieces of information about the body. Regolith samples are excellent bulk samples since they normally contain all the key components of the local environment, albeit in particulate form. Furthermore, since this fine fraction dominates remote measurements, regolith samples also provide information about surface alteration processes and are a key link to remote sensing of other bodies. Studies indicate that a statistically significant number of nanogram-sized particles should be able to characterize the regolith of a primitive asteroid, although the presence of larger components within even primitive meteorites (e.g.. Murchison), e.g. chondrules, CAI, large crystal fragments, etc., points out the limitations of using data obtained from nanogram-sized samples to characterize entire primitive asteroids. However, most important asteroidal geological processes have left their mark on the matrix, since this is the finest-grained portion and therefore most sensitive to chemical and physical changes. Thus, the following information can be learned from this fine grain size fraction alone: (1) mineral paragenesis; (2) regolith processes, (3) bulk composition; (4) conditions of thermal and aqueous alteration (if any); (5) relationships to planets, comets, meteorites (via isotopic analyses, including oxygen; (6) abundance of water and hydrated material; (7) abundance of organics; (8) history of volatile mobility, (9) presence and origin of presolar and/or interstellar material.

  14. Photovoltaics: solar electric power systems

    SciTech Connect

    1980-02-01

    The operation and uses of solar cells and the National Photovoltaic Program are briefly described. Eleven DOE photovoltaic application projects are described including forest lookout towers; Wilcox Memorial Hospital in Hawaii; WBNO daytime AM radio station; Schuchuli Indian Village; Meade, Nebraska, agricultural experiment; Mt. Laguna Air Force Station; public schools and colleges; residential applications; and Sea World of Florida. (WHK)

  15. Solar Thermal Power Systems parabolic dish project

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1981-01-01

    The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.

  16. Prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of monthly status reports are given on the development of eight prototype solar heating and cooling systems. This effort calls for the development, manufacturing, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3-, 25-, and 75-ton size units.

  17. Prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of monthly status reports on the development of eight prototype solar heating and cooling systems is presented. The effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3, 25, and 75 ton size units.

  18. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  19. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  20. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  1. The Solar System Presentation for SRS 5th Grade

    E-print Network

    Cohen, David

    The Solar System Presentation for SRS 5th Grade Prof. David Cohen, Swarthmore College #12;What astronomers try to answer: ·What are the things in the solar system like? Planets, moons, comets, asteroids, the Sun... ·Are there good conditions for life anywhere in the solar system? ·How did the solar system

  2. HARETU AND THE STABILITY OF THE SOLAR SYSTEM1

    E-print Network

    Diacu, Florin

    HARETU AND THE STABILITY OF THE SOLAR SYSTEM1 Florin Diacu2 Pacific Institute for the Mathematical the contributions of Spiru Haretu to the problem of the solar system's stability and show their importance relative and the consequences of Haretu's results. Keywords: stability, solar system, n-body problem. #12;Is the solar system

  3. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  4. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  5. An orientable solar panel system for nanospacecraft

    NASA Astrophysics Data System (ADS)

    Santoni, Fabio; Piergentili, Fabrizio; Candini, Gian Paolo; Perelli, Massimo; Negri, Andrea; Marino, Michele

    2014-08-01

    An orientable deployed solar array system for 1-5 kg weight nanospacecraft is described, enhancing the achievable performance of these typically power-limited systems. The system is based on a deployable solar panel system, previously developed with cooperation between Laboratorio di Sistemi Aerospaziali of University of Roma “la Sapienza” and the company IMT (Ingegneria Marketing Tecnologia). The system proposed is a modular one, and suitable in principle for the 1U, 2U and 3U standard Cubesat bus, even if the need for three axis attitude stabilization makes it typically preferred for 3U Cubesats. The size of each solar panel is the size of a lateral Cubesat surface. A single degree of freedom maneuvering capability is given to the deployed solar array, in order to follow the apparent motion of the sun as close as possible, given the mission requirements on the spacecraft attitude. Considerable effort has been devoted to design the system compatible with the Cubesat standard, being mounted outside on the external spacecraft structure, without requiring modifications on the standard prescriptions. The small available volume is the major constraint, which forces to use miniaturized electric motor technology. The system design trade-off is discussed, leading to the selection of an architecture based on two independently steerable solar array wings.

  6. Solar-Electric Dish Stirling System Development

    SciTech Connect

    Mancini, T.R.

    1997-12-31

    Electrical power generated with the heat from the sun, called solar thermal power, is produced with three types of concentrating solar systems - trough or line-focus systems; power towers in which a centrally-located thermal receiver is illuminated with a large field of sun-tracking heliostats; and dish/engine systems. A special case of the third type of system, a dish/Stirling system, is the subject of this paper. A dish/Stirling system comprises a parabolic dish concentrator, a thermal receiver, and a Stirling engine/generator located at the focus of the dish. Several different dish/Stirling systems have been built and operated during the past 15 years. One system claims the world record for net conversion of solar energy to electric power of 29.4%; and two different company`s systems have accumulated thousands of hours of on-sun operation. Due to de-regulation and intense competition in global energy markets as well as the immaturity of the technology, dish/Stirling systems have not yet found their way into the marketplace. This situation is changing as solar technologies become more mature and manufacturers identify high-value niche markets for their products. In this paper, I review the history of dish/Stirling system development with an emphasis on technical and other issues that directly impact the Stirling engine. I also try to provide some insight to the opportunities and barriers confronting the application of dish/Stirling in power generation markets.

  7. Topics in the theory of heavy-quark systems

    SciTech Connect

    Flory, C.A.

    1981-04-01

    Due to the kinematic and dynamic simplifications possible because of the large mass of heavy quark bound states, certain properties of these systems can be quantitatively analyzed within the framework of quantum chromodynamics. It is clear that dimensionally the size of the bound state is proportional to the inverse quark mass, and for very heavy quarkonia the radius of the system should become smaller than that of normal hadrons. When this small system interacts with external long wavelength field quanta, the natural expansion that results is of a multipole type, analogous to the familiar multipole expansion in electrodynamics. This multipole expansion has better convergence properties than the standard perturbative treatment in certain kinematic regimes, which opens up a new area for strong interaction physics calculations. More specifically, it is ideally suited to investigate soft non-perturbative effects in QCD which appear to be so crucial to present day phenomenology and the conjectured confinement mechanism.

  8. Development and Testing of the Solar System Concept Inventory

    NASA Astrophysics Data System (ADS)

    Hornstein, Seth D.; Prather, E. E.; English, T. R.; Desch, S. M.; Keller, J. M.; Collaboration of Astronomy Teaching Scholars CATS

    2011-01-01

    Trying to assess if our students really understand the ideas we present in class can be difficult. Concept inventories are research-validated assessment tools that can provide us with data to better understand whether we are successful in the classroom. The idea for the Solar System Concept Inventory (SSCI) was born after realizing that no concept inventory currently available covered details regarding the formation and evolution of our solar system. Topics were selected by having faculty identify the key concepts they address when teaching about the solar system and interviewing students in order to identify common naive ideas and reasoning difficulties relating to these key topics. Beginning in fall of 2008, a national multi-institutional field test began which would eventually involve nearly 2500 students and 17 instructors from 10 different institutions. After each round of testing, a group of instructors from multiple institutions around the country worked together to analyze the data and revise or eliminate underperforming questions. Each question was examined using a combination of point biserial, percent correct on the pre-test, and item difficulty to determine if the question was properly differentiating student understanding while also ensuring the question was not too easy or too hard. In this talk, I will present an overall outline of the development of the SSCI as well as the final testing results. The final version of the SSCI can be found at http://casa.colorado.edu/ hornstei/ssci/. This material is based upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any findings expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

  9. Theory and Simulations of Solar System Plasmas

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  10. Special Topics in Accounting Survey of Accounting Information Systems Research

    E-print Network

    in the leading accounting journals recently using text mining techniques, and even voice analysis. In addition the way in which accountant and auditors practice, with such standbys as T-accounts, paper ledgers information systems used in business. In practice, we can define AIS as the application of modern information

  11. Planetary magnetism in the outer solar system.

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1973-01-01

    A brief review of the salient considerations which apply to the existence of magnetic fields in connection with planetary and subplanetary objects in the outer solar system is given. Consideration is given to internal dynamo fields, fields which might originate from interaction with the solar wind or magnetospheres (externally driven dynamos) and lastly fossil magnetic fields such as have been discovered on the moon. Where possible, connection is made between magnetism, means of detection, and internal body properties.

  12. Solar energy system with wind vane

    DOEpatents

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  13. Monitoring solar-thermal systems: An outline of methods and procedures

    SciTech Connect

    Rosenthal, A.

    1994-04-01

    This manual discusses the technical issues associated with monitoring solar-thermal systems. It discusses some successful monitoring programs that have been implemented in the past. It gives the rationale for selecting a program of monitoring and gives guidelines for the design of new programs. In this report, solar thermal monitoring systems are classified into three levels. For each level, the report discusses the kinds of information obtained by monitoring, the effort needed to support the monitoring program, the hardware required, and the costs involved. Ultimately, all monitoring programs share one common requirement: the collection of accurate data that characterize some aspect or aspects of the system under study. This report addresses most of the issues involved with monitoring solar thermal systems. It does not address such topics as design fundamentals of thermal systems or the relative merits of the many different technologies employed for collection of solar energy.

  14. Topics on frustrated spin systems and high-temperature superconductors

    SciTech Connect

    Lu Yong.

    1990-01-01

    The numerical study of frustrated spin systems using the Monte Carlo simulation method and the analytic study of fluctuation phenomenon of the thermoelectric power near the superconducting transition using Green's function techniques are presented. The first frustrated system considered is the B-site antiferromagnetic (AF) spinel. Based on an Ising model, various thermodynamic and magnetic properties were studied for both the fully frustrated structure and partially frustrated cases of a small tetragonal distortion. When fully frustrated, an interesting short-range order and some unusual scaling behavior were obtained. The other frustrated spin system studied is the magnetic phase of YBa{sub 2}Cu{sub 3}O{sub 6+x} via a classical spin model, with appropriate anisotropic exchange couplings and randomly located spins of distribution probability as a function of x. There is a first order boundary between Type 1 and Type 2 in the Ising case, while there is no real phase boundary in the cases of continuous spin. In the study on the thermopower fluctuation, the thermopower was determined by the linear response of the electric and heat currents to an electric field, and the linear responses were in turn calculated from correlation functions of the current.

  15. Topics on frustrated spin systems and high-temperature superconductors

    SciTech Connect

    Lu, Yong.

    1990-01-01

    The numerical study of frustrated spin systems using the Monte Carlo simulation method and the analytic study of fluctuation phenomenon of the thermoelectric power near the superconducting transition using Green's function techniques are presented. The first frustrated system considered was the B-site antiferromagnetic (AF) spinel. Based on an Ising model, various thermodynamic and magnetic properties for both the fully frustrated structure and partially frustrated cases of a small tetragonal distortion were studied. When fully frustrated, an interesting short range order and some unusual scaling behavior were obtained. In the two tetragonally distorted cases, contracting and expanding in the crystallographic c-direction, AF long range orders and some hysteresis behavior were found. A general phase diagram was constructed as a function of the degree of the distortion. The other frustrated spin system that was studied is the magnetic phase of YBa2Cu3O(6+x). A classical spin model, was constructed, and various properties in its Ising, Heisenberg, and x-y versions were studied. The susceptibility was calculated as a function of temperature for various values of x. In the study on the thermopower fluctuation, the thermopower was determined by the linear response of the electric and heat currents to an electric field, and the linear responses were in turn calculated from correlation functions of the current.

  16. TOPICAL REVIEW: Prosthetic interfaces with the visual system: biological issues

    NASA Astrophysics Data System (ADS)

    Cohen, Ethan D.

    2007-06-01

    The design of effective visual prostheses for the blind represents a challenge for biomedical engineers and neuroscientists. Significant progress has been made in the miniaturization and processing power of prosthesis electronics; however development lags in the design and construction of effective machine brain interfaces with visual system neurons. This review summarizes what has been learned about stimulating neurons in the human and primate retina, lateral geniculate nucleus and visual cortex. Each level of the visual system presents unique challenges for neural interface design. Blind patients with the retinal degenerative disease retinitis pigmentosa (RP) are a common population in clinical trials of visual prostheses. The visual performance abilities of normals and RP patients are compared. To generate pattern vision in blind patients, the visual prosthetic interface must effectively stimulate the retinotopically organized neurons in the central visual field to elicit patterned visual percepts. The development of more biologically compatible methods of stimulating visual system neurons is critical to the development of finer spatial percepts. Prosthesis electrode arrays need to adapt to different optimal stimulus locations, stimulus patterns, and patient disease states.

  17. Topics in the Physics of Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Zeng, Xiao Cheng

    This dissertation is essentially divided into two parts. In the first part, we have developed a density -functional theory for the two-phase system -, the body-centered-cubic (bcc) solid-liquid interface, within the Ginzburg-Landau formalism. The principal order parameter is the amplitude of the density wave at the smallest nonzero reciprocal-lattice vector of the solid. The parameters entering the theory are fitted to the measured properties of bulk liquid at freezing. Application to surfaces of several systems has been carried out, including metals Na and Fe, semiconductors Si and Ge, the classical one -component-plasma, and quantum boson system He^4 . Agreements with experimental data of surface tension is quite reasonable where comparison is possible. In the second part of this dissertation, we have treated several systems consisting of two types of materials with different physical properties, the so-called two-component granular media or binary composites. Materials of this kind often have properties very different from their components. In particular, we have investigated the optical properties of Drude metal-insulator and normal metal-superconductor composites, by use of a computer simulation technique. A real composite system is modeled by a network of resistor -inductor-capacitor. A very fast numerical algorithm, the propagation algorithm, has been applied for our simulations. Many physical results have been obtained from simulations, for example, strong far-infrared absorption due to clusters of small metal particles in a composite, anomalous far -infrared spectrum of a metal-superconductor composite, and anomalous frequency scaling behavior of Swiss-cheese model of a metal-insulator composite. We have also developed an analytic theory of calculating nonlinear susceptibility for a composite whose component is cubic (so-called "Kerr -like") nonlinear material. The approximation entering our theory is similar in spirit of well-known effective -medium approximation for linear composite media. Finally, we have investigated the superconducting transition behavior for a site-diluted superconductive array, one kind of important granular superconductor, using the state-of-art Monte Carlo simulation method. Results of simulation, such as the power law behavior of transition temperature as a function of volume fraction of superconductive grains, are in excellent agreement with recent experimental measurements.

  18. Discovering the 50 Years of Solar System Exploration: Sharing Your Science with the Public

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Dalton, H.; Shipp, S.; Shupla, C.; Halligan, E.; Boonstra, D.; Wessen, A.; Baerg, G.; Davis, P.; Burdick, A.; Zimmerman Brachman, R.

    2012-10-01

    The Year of the Solar System (YSS) offers ways for scientists to bring NASA’s science discoveries to their audiences! YSS and the continuing salute to the 50-year history of solar system exploration provide an integrated picture of our new understanding of the solar system for educators and the general public. During the last five decades, NASA has launched a variety of robotic spacecraft to study our solar system. Over that time, our understanding of planets has been revolutionized, as has the technology that has made these discoveries possible.Looking forward, the numerous ongoing and future robotic missions are returning new discoveries of our solar system at an unprecedented rate. YSS combines the discoveries of past NASA planetary missions with the most recent findings of the ongoing missions and connects them to related topics based on the big questions of planetary science, including solar system formation, volcanism, ice, and possible life elsewhere. Planetary scientists are encouraged to get involved in YSS in a variety of ways: - Give a talk at a local museum, planetarium, library, or school to share YSS and your research - Partner with a local educational institution to organize a night sky viewing or mission milestone community event - Work with a classroom teacher to explore one of the topics with students - Connect with a planetary science E/PO professional to identify ways to participate, like creating podcasts,vodcasts, or contributing to monthly topics - Share your ideas for events and activities with the planetaryE/PO community to identify partners and pathways for distribution - And more! Promotional and educational materials, updates, a calendar of activities, and a space to share experiences are available at NASA’s Solar System website: http://solarsystem.nasa.gov/yss. This is an exciting time in planetary sciences as we learn about New Worlds and make New Discoveries!

  19. Topics in the mechanics of self-organizing systems

    NASA Astrophysics Data System (ADS)

    Tambe, Dhananjay

    Self-organization, in one of its accepted definitions, is the appearance of non-random structures in a system without explicit constraints from forces outside the system. In this thesis two self-organizing systems are studied from the viewpoint of mechanics. In the first system---semiconductor crystal surfaces---the internal constraints that lead to self-assembly of nanoscale structures on silicon-germanium (SiGe) films are studied. In the second system---actin cytoskeleton---a consequence of dynamic self-organization of actin filaments in the form of motion of micron-sized beads through a cytoplasmic medium is studied. When Ge film is deposited on Si(001) substrate, nanoscale features form on the surface and self-organize by minimizing energy contributions from the surface and the strain resulting from difference in lattice constants of the film and the substrate. Clean Si(001) and Ge(001) surfaces are very similar, but experiments to date have shown that atomic scale defects such as dimer-vacancies self-organize into vacancy lines only on Si(001). Through atomic simulations, we show that the observed difference originate from the magnitude of compressive surface strain which reduces formation energy of the dimer-vacancies. During initial stages of the film deposition, the surface is composed of steps and vacancy lines organized in periodic patterns. Using theory of elasticity and atomic simulations we show that these line defects self-organize due to monopolar nature of steps and dipolar nature of the vacancy lines. This self-organized pattern further develops to form pyramidal islands bounded with (105) facets and high Ge content. Mismatch strain of the island is then reduced by incorporation of Si from the substrate surrounding the island leaving behind trenches whose depth is proportional to the basewidth of the island. Using finite element simulations we show that such a relationship is an outcome of competition between elastic energy and surface energy. Some experimental studies also report observation of steeper (103) and (104) facets on pyramidal islands. Using numerical simulations we derive a phase diagram which shows that the steeper facets are stabilized because they provide better relaxation of mismatch strain with only slight increase in surface energy. In the second system, the actin cytoskeleton is a key structural and propulsion element of eukaryotic cells. Micron-sized "cargoes", which under pathological conditions include bacteria, are propelled by dynamic self-organization of the actin filaments. Recently it is shown that the trajectories of a bacterium, Listeria monocytogenes, propelled by actin filaments are periodic; implying that the organization of actin filaments impart an effective force that spins about the axis of the bacterium. We show that the motion of spherical beads is also non-random; the effective force has an additional degree of freedom due to the spherical symmetry of the bead. Agreement of the theoretical trajectories with experimental observations suggest that the actin-based motility can be generally described using deterministic equations. We also propose microscopic basis for the effective force model which can guide development of microscopic theory to predict the long term trajectories of actin propelled objects.

  20. Advanced worker protection system. Topical report, Phase I

    SciTech Connect

    Myers, J.

    1995-07-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system, maintenance, and dramatically improve worker productivity through longer duration work cycles.

  1. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Solar energy system. 203.18a Section...Eligible Mortgages § 203.18a Solar energy system. (a) The dollar...residence due to the installation of a solar energy system. (b) Solar energy...

  2. Development of a Conceptual Structure for Architectural Solar Energy Systems.

    ERIC Educational Resources Information Center

    Ringel, Robert F.

    Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant…

  3. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Solar energy system. 203.18a Section...Eligible Mortgages § 203.18a Solar energy system. (a) The dollar...residence due to the installation of a solar energy system. (b) Solar energy...

  4. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Solar energy system. 203.18a Section...Eligible Mortgages § 203.18a Solar energy system. (a) The dollar...residence due to the installation of a solar energy system. (b) Solar energy...

  5. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Solar energy system. 203.18a Section...Eligible Mortgages § 203.18a Solar energy system. (a) The dollar...residence due to the installation of a solar energy system. (b) Solar energy...

  6. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Solar energy system. 203.18a Section...Eligible Mortgages § 203.18a Solar energy system. (a) The dollar...residence due to the installation of a solar energy system. (b) Solar energy...

  7. Pump efficiency in solar-energy systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Study investigates characteristics of typical off-the-shelf pumping systems that might be used in solar systems. Report includes discussion of difficulties in predicting pump efficiency from manufacturers' data. Sample calculations are given. Peak efficiencies, flow-rate control, and noise levels are investigated. Review or theory of pumps types and operating characteristics is presented.

  8. CEEN-4940/8946-002 Special Topics: Introduction to Antennas and Radar Systems, Fall 2008

    E-print Network

    Yang, Yaoqing "Lamar"

    . Antennas for RFID 11. Antenna temperature, remote sensing and radar cross section 12. Propagation of radarCEEN-4940/8946-002 Special Topics: Introduction to Antennas and Radar Systems, Fall 2008 Instructor Course Description: This course will provide an introduction to antenna designs and Radar Systems

  9. The Systems Analysis and Design Course: An Educators' Assessment of the Importance and Coverage of Topics

    ERIC Educational Resources Information Center

    Guidry, Brandi N.; Stevens, David P.; Totaro, Michael W.

    2011-01-01

    This study examines instructors' perceptions regarding the skills and topics that are most important in the teaching of a Systems Analysis and Design ("SAD") course and the class time devoted to each. A large number of Information Systems ("IS") educators at AACSB accredited schools across the United States were surveyed. Shannon's entropy is used…

  10. 330: 519 Advanced Topics in Systems Engineering, Spring 1997 Kalman Filtering

    E-print Network

    Gajic, Zoran

    330: 519 Advanced Topics in Systems Engineering, Spring 1997 Kalman Filtering Instructor: Zoran, Kalman Filtering: Theory and Practice, Prentice Hall, Englewood Cliffs, 1993 Office Hours: After: Introduction to Kalman Filtering and Linear Dynamic Systems (Chapters 1 and 2) Week 2: Review of Probability

  11. Interstellar Dust in the Solar System

    E-print Network

    Harald Krueger; Markus Landgraf; Nicolas Altobelli; Eberhard Gruen

    2007-06-21

    The Ulysses spacecraft has been orbiting the Sun on a highly inclined ellipse almost perpendicular to the ecliptic plane (inclination 79 deg, perihelion distance 1.3 AU, aphelion distance 5.4 AU) since it encountered Jupiter in 1992. The in-situ dust detector on board continuously measured interstellar dust grains with masses up to 10^-13 kg, penetrating deep into the solar system. The flow direction is close to the mean apex of the Sun's motion through the solar system and the grains act as tracers of the physical conditions in the local interstellar cloud (LIC). While Ulysses monitored the interstellar dust stream at high ecliptic latitudes between 3 and 5 AU, interstellar impactors were also measured with the in-situ dust detectors on board Cassini, Galileo and Helios, covering a heliocentric distance range between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the inner solar system is altered by the solar radiation pressure force, gravitational focussing and interaction of charged grains with the time varying interplanetary magnetic field. We review the results from in-situ interstellar dust measurements in the solar system and present Ulysses' latest interstellar dust data. These data indicate a 30 deg shift in the impact direction of interstellar grains w.r.t. the interstellar helium flow direction, the reason of which is presently unknown.

  12. The Changing Perception of the Solar System

    E-print Network

    Nesvorny, D

    2015-01-01

    The solar system has changed dramatically since its birth, and so did our understanding of it. A considerable research effort has been invested in the past decade in an attempt to reconstruct the solar system history, including the earliest stages some 4.5 billion years ago. The results indicate how several processes, such as planetary migration and dynamical instabilities, acted to relax the orbital spacing of the outer planets, and provided the needed perturbation to explain the present planetary orbits that are not precisely circular and coplanar. Here we highlight this work and illustrate the key results in a computer simulation that unifies several recently developed theories. The emerging view represents another step away from the initial perception of the solar system as part of unchanging heavens.

  13. Volcanic processes in the Solar System

    USGS Publications Warehouse

    Carr, M.H.

    1987-01-01

    This article stresses that terrestrial volcanism represents only part of the range of volcanism in the solar system. Earth processes of volcanicity are dominated by plate tectonics, which does not seem to operate on other planets, except possibly on Venus. Lunar volcanicity is dominated by lava effusion at enormous rates. Mars is similar, with the addition to huge shield volcanoes developed over fixed hotspots. Io, the moon closest to Jupiter, is the most active body in the Solar System and, for example, much sulphur and silicates are emitted. The eruptions of Io are generated by heating caused by tides induced by Jupiter. Europa nearby seems to emit water from fractures and Ganymede is similar. The satellites of Saturn and Uranus are also marked by volcanic craters, but they are of very low temperature melts, possibly of ammonia and water. The volcanism of the solar system is generally more exotic, the greater the distance from Earth. -A.Scarth

  14. Interstellar Dust in the Solar System

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid

    2010-09-01

    A fraction of the dust in the interstellar medium (ISM) enters the heliosphere and is measured in situ from spacecraft. This review surveys the in situ measurements and discusses a hence derived model of dust in the local interstellar cloud (LIC). The LIC dust model bears similarities to pristine cometary dust and is characteristic of the warm ISM clouds that fill a part of the ISM in the vicinity of the Sun. Recent and future dust in situ measurements provide a basis for closely studying physical processes in the ISM surrounding the Solar System. The LIC dust is the only dust component measurable in the Solar System that was not previously incorporated in larger Solar System objects. Issues for future LIC dust studies are measuring dust fluxes at the outer heliosphere, measuring the mass distribution with meteor observations and observations from spacecraft, and measuring the LIC dust composition in situ in space.

  15. Origin of the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Holman, Matthew J. (Principal Investigator); Boyce, Joseph (Technical Monitor)

    2003-01-01

    Our ongoing research program combines extensive deep and wide-field observations using a variety of observational platforms with numerical studies of the dynamics of small bodies in the outer solar system in order to advance the main scientific goals of the community studying the Kuiper belt and the outer solar system. These include: (1) determining the relative populations of the known classes of KBOs as well as other possible classes; (2) determining the size distributions or luminosity function of the individual populations or the Kuiper belt as a whole; (3) determining the inclinations distributions of these populations; (4) establishing the radial extent of the Kuiper belt; (5) measuring and relating the physical properties of different types of KBOs to those of other solar system bodies; and, (6) completing our systematic inventory of the satellites of the outer planets.

  16. Dark Matter in the Solar System

    E-print Network

    X. Xu; E. R. Siegel

    2008-06-23

    We determine the density and mass distribution of dark matter within our Solar System. We explore the three-body interactions between dark matter particles, the Sun, and the planets to compute the amount of dark matter gravitationally captured over the lifetime of the Solar System. We provide an analytical framework for performing these calculations and detail our numerical simulations accordingly. We find that the local density of dark matter is enhanced by between three and five orders of magnitude over the background halo density, dependent on the radial distance from the Sun. This has profound implications for terrestrial direct dark matter detection searches. We also discuss our results in the context of gravitational signatures, including existing constraints, and find that dark matter captured in this fashion is not responsible for the Pioneer anomaly. We conclude that dark matter appears to, overall, play a much more important role in our Solar System than previously thought.

  17. Star Formation and the Solar System

    NASA Technical Reports Server (NTRS)

    Bally, John; Boss, Alan; Papanastassiou, Dimitri; Sandford, Scott; Sargent, Anneila

    1988-01-01

    We have seen that studies of nearby star-forming regions are beginning to reveal the first signs of protoplanetary disks. Studies of interstellar and interplanetary grains are starting to provide clues about the processing and incorporation of matter into the Solar System. Studies of meteorites have yielded isotopic anomalies which indicate that some of the grains and inclusions in these bodies are very primitive. Although we have not yet detected a true interstellar grain, some of these materials have not been extensively modified since their removal from the ISM. We are indeed close to seeing our interstellar heritage. The overlap between astronomical and Solar System studies is in its infancy. What future experiments, observations, and missions can be performed in the near future that will greatly enhance our understanding of star formation and the formation of the Solar System?

  18. The Cambridge Guide to the Solar System

    NASA Astrophysics Data System (ADS)

    Lang, Kenneth R.

    2011-03-01

    Part I. Changing Views and Fundamental Concepts: 1. Evolving perspectives: a historical prologue; 2. The new, close-up view from space; 3. The invisible buffer zone with space: atmospheres, magnetospheres and the solar wind; Part II. The Inner System - Rocky Worlds: 4. Third rock from the Sun: restless Earth; 5. The Moon: stepping stone to the planets; 6. Mercury: a dense battered world; 7. Venus: the veiled planet; 8. Mars: the red planet; Part III. The Giant Planets, Their Satellites and Their Rings - Worlds of Liquid, Ice and Gas: 9. Jupiter: a giant primitive planet; 10. Saturn: lord of the rings; 11. Uranus and Neptune; Part IV. Remnants of Creation - Small Worlds in the Solar System: 12. Asteroids and meteorites; 13. Colliding worlds; 14. Comets; 15. Beyond Neptune; Part V. Origin of the Solar System and Extrasolar Planets: 16. Brave new worlds; Index.

  19. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases

    PubMed Central

    Zhang, Zheng; Tsai, Pei-Chin; Ramezanli, Tannaz; Michniak-Kohn, Bozena B.

    2013-01-01

    Human skin not only functions as a permeation barrier (mainly due to the stratum corneum layer), but also provides a unique delivery pathway for therapeutic and other active agents. These compounds penetrate via intercellular, intracellular and transappendageal routes, resulting in topical delivery (into skin strata) and transdermal delivery (to subcutaneous tissues and into the systemic circulation). Passive and active permeation enhancement methods have been widely applied to increase the cutaneous penetration. The pathology, pathogenesis and topical treatment approaches of dermatological diseases, such as psoriasis, contact dermatitis, and skin cancer, are then discussed. Recent literature has demonstrated that nanoparticles-based topical delivery systems can be successful in treating these skin conditions. The studies are reviewed starting with the nanoparticles based on natural polymers specially chitosan, followed by those made of synthetic, degradable (aliphatic polyesters) and non-degradable (polyarylates) polymers; emphasis is given to nanospheres made of polymers derived from naturally occurring metabolites, the tyrosine-derived nanospheres (TyroSpheres™). In summary, the nanoparticles-based topical delivery systems combine the advantages of both the nano-sized drug carriers and the topical approach, and are promising for the treatment of skin diseases. For the perspectives, the penetration of ultra-small nanoparticles (size smaller than 40 nm) into skin strata, the targeted delivery of the encapsulated drugs to hair follicle stem cells, and the combination of nanoparticles and microneedle array technologies for special applications such as vaccine delivery are discussed. PMID:23386536

  20. Solar dynamic power system definition study

    NASA Technical Reports Server (NTRS)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  1. Solar heating system installed at Troy, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The completed system was composed of three basic subsystems: the collector system consisting of 3,264 square feet of Owens Illinois evacuated glass tube collectors; the storage system which included a 5,000 gallon insulated steel tank; and the distribution and control system which included piping, pumping and heat transfer components as well as the solemoid activated valves and control logic for the efficient and safe operation of the entire system. This solar heating system was installed in an existing facility and was, therefore, a retrofit system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  2. High throughput solar cell ablation system

    DOEpatents

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2014-10-14

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  3. High throughput solar cell ablation system

    DOEpatents

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  4. Solar-System Tests of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    2005-01-01

    This research is aimed at testing gravitational theory, primarily on an interplanetary scale and using mainly observations of objects in the solar system. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to support this model by placing tighter bounds on any departure from it. For this project, we have analyzed a combination of observational data with our model of the solar system, including planetary radar ranging, lunar laser ranging, and spacecraft tracking, as well as pulsar timing and pulsar VLBI measurements.

  5. Solar-System Tests of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    2005-01-01

    We are engaged in testing gravitational theory, mainly using observations of objects in the solar system and mainly on the interplanetary scale. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to support this model by placing tighter bounds on any departure from it. For this project, we have analyzed a combination of observational data with our model of the solar system, including planetary radar ranging, lunar laser ranging, and spacecraft tracking, as well as pulsar timing and pulsar VLBI measurements. In the past year, we have added to our data, primarily lunar laser ranging measurements, but also supplementary data concerning the physical properties of solar-system objects, such as the solar quadrupole moment, planetary masses, and asteroid radii. Because the solar quadrupole moment contributes to the classical precession of planetary perihelia, but with a dependence on distance from the Sun that differs from that of the relativistic precession, it is possible to estimate effects simultaneously. However, our interest is mainly in the relativistic effect, and we find that imposing a constraint on the quadrupole moment from helioseismology studies, gives us a dramatic (about ten-fold) decrease in the standard error of our estimate of the relativistic component of the perihelion advance.

  6. A DESIGN AND ANALYSIS TOOL FOR SOLAR ELECTRIC SYSTEMS

    E-print Network

    Delaware, University of

    PV PLANNER A DESIGN AND ANALYSIS TOOL FOR SOLAR ELECTRIC SYSTEMS Updated User Manual May 2011 at the master's and doctoral levels. #12;PV PLANNER A DESIGN AND ANALYSIS TOOL FOR SOLAR ELECTRIC SYSTEMS........................................................................................................... 9 5. System Configuration

  7. Solar heating system final design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

  8. Solar system installation at Louisville, Kentucky

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The installation of a solar space heating and domestic hot water system is described. The overall philosophy used was to install both a liquid and a hot air system retrofitted to existing office and combined warehouse building. The 1080 sq. ft. office space is heated first and excess heat is dumped into the warehouse. The two systems offer a unique opportunity to measure the performance and compare results of both air and liquid at one site.

  9. Concentrating solar collector system. Final report

    SciTech Connect

    Mingo, R.D.

    1981-08-30

    A brief report on a solar heat-collecting system for home use is presented. The primary objective of the project was to test the feasibility of using low-cost materials to construct an efficient collector. The system includes a single, large, homemade roof-mounted collector, two heat storage tanks, a moderately complex control unit, and circulating pumps. During operation the heating system provided approximately 60% of the domestic hot water needs for a family of five. (BCS)

  10. Meteorites: messengers from the early solar system.

    PubMed

    Hofmann, Beda A

    2010-01-01

    Meteorites are fragments from solar system bodies, dominantly asteroids. A small fraction is derived from the Moon and from Mars. These rocks tell a rich history of the early solar system and range from solids little changed since the earliest phases of solid matter condensation in the solar nebula (chondrites) to material representing asteroidal metamorphism and melting, impact processes on the Moon and even aqueous alteration near the surface of Mars. Meteorites are very rare. Currently many meteorites result from searches in Antarctica and the hot deserts of North Africa and Arabia. The present high find rate likely represents a unique short-term event, asking for a careful management of this scarce scientific resource. PMID:21138163

  11. Carbonaceous chondritic material in the solar system

    NASA Technical Reports Server (NTRS)

    Wilkening, L. L.

    1978-01-01

    Carbonaceous chondritic matrix material (CCMM) appears to be an important planet-forming unit in the mid-solar system, from the orbits of Mars to that of Uranus. The type specimen for CCMM is the low-temperature (400-500 K) assemblage of clay minerals, organic polymer, magnetite, and Ni-rich iron sulfides which constitutes the black, fine-grained matrix of primitive carbonaceous chondrites. Solar-system objects which appear to be partly or wholly made of CCMM are the satellites of Mars, most asteroids, interplanetary dust, and, perhaps, comets, satellites of the outer planets and the rings of Uranus. CCMM constituents probably formed by low-temperature reactions of higher-temperature condensates with the ambient solar composition gas, or in the case of the organic polymer, by reactions of gaseous species catalyzed by solids.

  12. Supporting Adaptive Ubiquitous Applications with the Solar System

    E-print Network

    Kotz, David

    Supporting Adaptive Ubiquitous Applications with the Solar System Guanling Chen and David Kotz contextual informa- tion. We propose a system infrastructure, Solar, to meet these challenges. Solar uses to identify fun- damental techniques for context-aware adaptation. Our expectation is that Solar's end

  13. On the Solar System-Debris Disk Connecction

    E-print Network

    Amaya Moro-Martin

    2007-12-14

    This paper emphasizes the connection between solar and extra-solar debris disks: how models and observations of the Solar System are helping us understand the debris disk phenomenon, and vice versa, how debris disks are helping us place our Solar System into context.

  14. The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1

    SciTech Connect

    Long, R.C.

    1996-12-31

    This is a report on the feasibility study, design, and construction of a PV and solar thermal system for the Georgia Tech Aquatic Center. The topics of the report include a discussion of site selection and system selection, funding, design alternatives, PV module selection, final design, and project costs. Included are appendices describing the solar thermal system, the SAC entrance canopy PV mockup, and the PV feasibility study.

  15. Solar dynamic power systems for space station

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  16. The topical isoflavonoid NV-07alpha reduces solar-simulated UV-induced suppression of Mantoux reactions in humans.

    PubMed

    Friedmann, Adam C; Halliday, Gary M; Barnetson, Ross StC; Reeve, Vivienne E; Walker, Catherine; Patterson, Clare R S; Damian, Diona L

    2004-01-01

    UV radiation suppresses delayed-type hypersensitivity responses to intradermally injected tuberculin purified protein derivative in Mantoux-positive individuals. The effect of the topically administered isoflavonoid NV-07alpha, a synthetic derivative of the isoflavonoid equol, on UV-induced suppression of Mantoux reactions was assessed in 18 healthy Mantoux-positive volunteers. A single, fixed dose of solar-simulated UV radiation was delivered to the volunteers' lower backs. Different concentrations of NV-07alpha or its vehicle were applied to different sites within the irradiated field immediately after UV exposure and again 24 h later. Forty-eight hours after irradiation, Mantoux testing was performed at both the irradiated sites and adjacent, unirradiated sites. The intensity of Mantoux reactions was measured 72 h later with a reflectance erythema meter and by measuring the diameter of each reaction. Although lower concentrations of NV-07alpha (0.5 and 2 mM) did not prevent UV immunosuppression, 4 mM NV-07alpha partially but significantly attenuated UV-induced suppression of Mantoux-induced erythema. Minimal erythema doses were also determined for sites treated with NV-07alpha or its vehicle immediately after UV exposure. NV-07alpha had no significant effects on UV erythema. We conclude that 4 mM NV-07alpha prevented the suppressive effects of UV radiation on Mantoux responses in humans but did not affect UV-induced erythema at the concentrations used. PMID:15623323

  17. The Telescope Control System of the New Solar Telescope at Big Bear Solar Observatory

    E-print Network

    The Telescope Control System of the New Solar Telescope at Big Bear Solar Observatory G. Yang*a, J of Technology, 323 Martin Luther King Blvd., Newark, NJ 07104; bBig Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314; cKorea Astronomy and Space Science Institute ABSTRACT The New Solar

  18. Black oxide nanoparticles as durable solar absorbing material for high-temperature concentrating solar power system

    E-print Network

    California at San Diego, University of

    solar power system Jaeyun Moon a,c,1 , Tae Kyoung Kim a,c,1 , Bryan VanSaders b,c,1 , Chulmin Choi a Available online 8 January 2015 Keywords: Concentrating solar power Solar absorber Cobalt oxide Light trapping High temperature a b s t r a c t Concentrating solar power is becoming an increasingly important

  19. Formation of the solar system

    NASA Astrophysics Data System (ADS)

    Rawal, J. J.

    1986-02-01

    An alternative method for deriving the Titius-Bode law is examined. Prentice's modern Laplacian theory (1978a, b) which calculates the ratio of orbital radii of successively disposed rings as 1.69, and Rawal's (1984a) 1.442 ratio value derived from the Roche limit concept are reviewed. The interrelations between the supersonic turbulent convection, rotational instability, and Roche limit are analyzed. The equations for evaluating the total energy of a uniformly turbulent cloud of equatorial radius existing in a hydrostatic equilibrium are explained. The influence of turbulence on the cloud is investigated. The supersonic turbulence is unable to completely stabilize the cloud during the collapse from 10,000 to 300 solar radii. The turbulent stress also causes the formation of a very steep density inversion at the photosphere; the effect of turbulence on the differential motion and rotation in the cloud is studied. It is concluded that the Bode constant calculated using the proposed technique is equivalent to the Roche limit.

  20. Solar Heating Systems: Progress Checks & Tests Manual.

    ERIC Educational Resources Information Center

    Green, Joanne; And Others

    This manual contains Progress Checks and Tests for use in a Solar Heating Systems curriculum (see note). It contains master copies of all Progress Checks and Unit Tests accompanying the curriculum, organized by unit. (The master copies are to be duplicated by each school so that adequate copies are available for student use in a self-paced student…

  1. The Dimensions of the Solar System

    ERIC Educational Resources Information Center

    Schneider, Stephen E.; Davis, Kathleen S.

    2007-01-01

    A few new wrinkles have been added to the popular activity of building a scale model of the solar system. Students can learn about maps and scaling using easily accessible online resources that include satellite images. This is accomplished by taking advantage of some of the special features of Google Earth. This activity gives students a much…

  2. Assessment of a Solar System Walk

    ERIC Educational Resources Information Center

    LoPresto, Michael C.; Murrell, Steven R.; Kirchner, Brian

    2010-01-01

    The idea of sending students and the general public on a walk through a scale model of the solar system in an attempt to instill an appreciation of the relative scales of the sizes of the objects compared to the immense distances between them is certainly not new. A good number of such models exist, including one on the National Mall in…

  3. Solar-powered hot-air system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  4. The Colorado Scale-Model Solar System.

    ERIC Educational Resources Information Center

    Bennett, Jeffrey O.; And Others

    1991-01-01

    Describes the Colorado Scale-Model Solar System, a display illustrating the sizes and distances to the Sun and the nine planets on the campus of Colorado University. Discusses the model's educational value and uses for the classroom and the community. (MDH)

  5. Solar tracking control system Sun Chaser

    NASA Technical Reports Server (NTRS)

    Scott, D. R.; White, P. R.

    1978-01-01

    The solar tracking control system, Sun Chaser, a method of tracking the Sun in all types of weather conditions is described. The Sun Chaser follows the Sun from east to west in clear or cloudy weather, and resets itself to the east position after sundown in readiness for the next sunrise.

  6. ACSF Topical Lunch Title: "Strategic and Sustainable Town-Gown Bioenergy Systems"

    E-print Network

    Walter, M.Todd

    ACSF Topical Lunch Title: "Strategic and Sustainable Town-Gown Bioenergy Systems" Host: Ruth and research needed to increase sustainable bioenergy usage throughout Ithaca. Cornell's Carbon Neutrality and byproducts from campus as a source of energy. Cornell's bioenergy feedstocks include agricultural products

  7. PROBLEMS IN DYNAMICAL SYSTEMS AND RELATED TOPICS RAISED IN CONNECTION WITH THE CLAY

    E-print Network

    Katok, Anatole

    PROBLEMS IN DYNAMICAL SYSTEMS AND RELATED TOPICS RAISED IN CONNECTION WITH THE CLAY MATHEMATICS References 45 1. INTRODUCTION At the Clay Mathematics Institute/Mathematical Sciences Research In- stitute these contributions. Thanks are due, therefore, to the Clay Mathematics Insti- tute and the the Mathematical Sciences

  8. Optical waveguide solar energy system for lunar material processing

    SciTech Connect

    Nakamura, T.; Senior, C.L.; Shoji, J.M.; Waldron, R.D.

    1995-11-01

    This paper summarizes the study on the optical waveguide (OW) solar energy system for lunar material processing. In the OW solar energy system, solar radiation is collected by the concentrator which transfers the concentrated solar radiation to the OW transmission line consisting of low-loss optical fibers and related optical components. The OW line transmits the high intensity solar radiation to the thermal reactor of the lunar materials processing plant. Based on the results discussed in this paper the authors conclude that the OW solar energy system is a viable concept which can effectively utilize solar energy for lunar material processing.

  9. How Normal is Our Solar System?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    To date, weve discovered nearly 2000 confirmed exoplanets, as well as thousands of additional candidates. Amidst this vast sea of solar systems, how special is our own? A new study explores the answer to this question.Analyzing DistributionsKnowing whether our solar system is unique among exoplanetary systems can help us to better understand future observations of exoplanets. Furthermore, if our solar system is typical, this allows us to be optimistic about the possibility of life existing elsewhere in the universe.In a recent study, Rebecca Martin (University of Nevada, Las Vegas) and Mario Livio (Space Telescope Science Institute) examine how normal our solar system is, by comparing the properties of our planets to the averages obtained from known exoplanets.Comparing PropertiesSo how do we measure up?Densities of planets as a function of their mass. Exoplanets (N=287) are shown in blue, planets in our solar system are shown in red. [MartinLivio 2015]Planet masses and densitiesThose of the gas giants in our solar system are pretty typical. The terrestrial planets are on the low side for mass, but thats probably a selection effect: its very difficult to detect low-mass planets.Age of the solar systemRoughly half the stars in the disk of our galaxy are younger than the Sun, and half are older. Were definitely not special in age.Orbital locations of the planetsThis is actually a little strange: our solar system is lacking close-in planets. All of our planets, in fact, orbit at a distance that is larger than the mean distance observed in exoplanetary systems. Again, however, this might be a selection effect at work: its easier to detect large planets orbiting very close to their stars.Eccentricities of the planets orbitsOur planets are on very circular orbits and that actually makes us somewhat special too, compared to typical exoplanet systems. There is a possible explanation though: eccentricity of orbits tends to decrease with more planets in the system. Because weve got eight, it might be unsurprising that their eccentricities are so low.Super-EarthsWe dont have any planets in the range of 1-10 times the mass of Earth, which is pretty unusual super-Earths have a high occurrence rate among exoplanets.In summary, the authors find that for the most part, were a pretty typical solar system. Our most unusual features are the lack of a super-Earth, the lack of any close-in planets, and the low eccentricities of our planets. The fact that were fairly average means that, from a habitability standpoint, theres probably nothing special about our little corner of the galaxy. So perhaps life elsewhere is a possibility!CitationRebecca G. Martin and Mario Livio 2015 ApJ 810 105. doi:10.1088/0004-637X/810/2/105

  10. How Normal is Our Solar System?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    To date, weve discovered nearly 2000 confirmed exoplanets, as well as thousands of additional candidates. Amidst this vast sea of solar systems, how special is our own? A new study explores the answer to this question.Analyzing DistributionsKnowing whether our solar system is unique among exoplanetary systems can help us to better understand future observations of exoplanets. Furthermore, if our solar system is typical, this allows us to be optimistic about the possibility of life existing elsewhere in the universe.In a recent study, Rebecca Martin (University of Nevada, Las Vegas) and Mario Livio (Space Telescope Science Institute) examine how normal our solar system is, by comparing the properties of our planets to the averages obtained from known exoplanets.Comparing PropertiesSo how do we measure up?Densities of planets as a function of their mass. Exoplanets (N=287) are shown in blue, planets in our solar system are shown in red. [MartinLivio 2015]Planet masses and densitiesThose of the gas giants in our solar system are pretty typical. The terrestrial planets are on the low side for mass, but thats probably a selection effect: its very difficult to detect low-mass planets.Age of the solar systemRoughly half the stars in the disk of our galaxy are younger than the Sun, and half are older. Were definitely not special in age.Orbital locations of the planetsThis is actually a little strange: our solar system is lacking close-in planets. All of our planets, in fact, orbit at a distance that is larger than the mean distance observed in exoplanetary systems. Again, however, this might be a selection effect at work: its easier to detect large planets orbiting very close to their stars.Eccentricities of the planets orbitsOur planets are on very circular orbits and that actually makes us somewhat special too, compared to typical exoplanet systems. There is a possible explanation though: eccentricity of orbits tends to decrease with more planets in the system. Because weve got eight, it might be unsurprising that their eccentricities are so low.Super-EarthsWe dont have any planets in the range of 1-10 times the mass of Earth, which is pretty unusual super-Earths have a high occurrence rate among exoplanets.In summary, the authors find that for the most part, were a pretty typical solar system. Our most unusual features are the lack of a super-Earth, the lack of any close-in planets, and the low eccentricities of our planets. The fact that were fairly average means that, from a habitability standpoint, theres probably nothing special about our little corner of the galaxy. So perhaps life elsewhere is a possibility!CitationRebecca G. Martin and Mario Livio 2015 ApJ 810 105. doi:10.1088/0004-637X/810/2/105

  11. Solar energy system performance evaluation - final report for Honeywell OTS 45, Salt River Project, Phoenix, Arizona

    SciTech Connect

    Mathur, A K

    1983-09-01

    This report describes the operation and technical performance of the Solar Operational Test Site (OTS 45) at Salt River Project in Phoenix, Arizona, based on the analysis of data collected between April 1981 and March 31, 1982. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 45 is a hydronic heating and cooling system consisting of 8208 square feet of liquid-cooled flat-plate collectors; a 2500-gallon thermal storage tank; two 25-ton capacity organic Rankine-cycle-engine-assisted water chillers; a forced-draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 8 months of the Operational Test Period, the solar system collected 1143 MMBtu of thermal energy of the total incident solar energy of 3440 MMBtu and provided 241 MMBtu for cooling and 64 MMBtu for heating. The projected net annual electrical energy savings due to the solar system was approximately 40,000 kWh(e).

  12. IS SOLAR SYSTEM STABLE? Vladik Kreinovich, Andrew Bernat

    E-print Network

    Kreinovich, Vladik

    IS SOLAR SYSTEM STABLE? A REMARK Vladik Kreinovich, Andrew Bernat Computer Science Department System is stable or not. Common belief is that the Solar System is stable if and only that the Solar system does not have such resonances, and therefore (if the above­mentioned belief is correct), we

  13. IS SOLAR SYSTEM STABLE? Vladik Kreinovich, Andrew Bernat

    E-print Network

    Kreinovich, Vladik

    IS SOLAR SYSTEM STABLE? A REMARK Vladik Kreinovich, Andrew Bernat Computer Science Department System is stable or not. Common belief is that the Solar System is stable if and only, a similar inequality is true for randomly chosen frequencies. In this paper, we show that the Solar system

  14. Exploration missions with a solar bimodal system

    NASA Astrophysics Data System (ADS)

    Zubrin, Robert; Chew, Gilbert; Lowther, Scott

    1997-01-01

    This paper reports the results of an examination of planetary missions performed using a solar bimodal power and propulsion system. The Air force Phillips Laboratory has initiated an Integrated Solar Upper Stage (ISUS) technology demonstration program intended to mature solar bimodal technology to flight demonstration. The ISUS development program has focused on decreasing the cost of placing military satellites in high Earth orbits. This is accomplished by providing high specific impulse thrust for orbital transfer of spacecraft launched from smaller and less expensive boosters. This paper, however, reviews the applications of the ISUS technology to NASA solar system exploration missions. Mission analysis is presented showing the capability of the ISUS to deliver payloads from LEO to orbit around the Moon, Mars, Jupiter and Saturn. Both direct and gravity assisted trajectories are included, as are mission plans including both staged and unstaged strategies for Earth escape. A minimum mass spacecraft system for solar system exploration is presented, and used as a baseline to develop estimates of potential science payload deliverable to each planetary destination of interest as a function of launch booster capability. Booster fairing packaging considerations are examined. Earth escape time using a variety of perigee-kick orbit transfer strategies is also calculated, as is the communication capability of the ISUS as a function of planetary destination. It is shown that the ISUS offers significant potential as a propulsion system supporting interplanetary exploration. In general, it is found that the optimal trajectories for maximum science return require staging the spacecraft off the ISUS shortly before escape from the Earth. Providing other supporting technologies are developed, such a strategy would also allow the ISUS to be returned to LEO for reuse after each mission.

  15. Nonlinear Resonances in the Solar System

    E-print Network

    Renu Malhotra

    1994-06-13

    Orbital resonances are ubiquitous in the Solar system. They play a decisive role in the long term dynamics, and in some cases the physical evolution, of the planets and of their natural satellites, as well as the evolution of small bodies (including dust) in the planetary system. The few-body gravitational problem of hierarchical planetary-type systems allows for a complex range of dynamical timescales, from the fast orbital periods to the very slow orbit precession rates. The interaction of fast and slow degrees of freedom produces a rich diversity of resonance phenomena. Weak dissipative effects --- such as tides or radiation drag forces --- also produce unexpectedly rich dynamical behaviors. This paper provides a mostly qualitative discussion of simple dynamical models for the commonly encountered orbital resonance phenomena in the Solar system.

  16. Chaotic evolution of the solar system

    NASA Technical Reports Server (NTRS)

    Sussman, Gerald J.; Wisdom, Jack

    1992-01-01

    The evolution of the entire planetary system has been numerically integrated for a time span of nearly 100 million years. This calculation confirms that the evolution of the solar system as a whole is chaotic, with a time scale of exponential divergence of about 4 million years. Additional numerical experiments indicate that the Jovian planet subsystem is chaotic, although some small variations in the model can yield quasi-periodic motion. The motion of Pluto is independently and robustly chaotic.

  17. Solar hot water unit and system

    SciTech Connect

    Ward, R.L.

    1982-02-16

    A solar hot water heating system includes a plurality of pipe assemblies, each having an outer pressure-sustaining tube and an inner perforated spiral tubing positioned at the roof of a building for which hot water is supplied. End seals close off the ends of the assemblies and support the inner tubing within the outer tubing. Water mixing and prevention of hot spots is accomplished passively by passing water through the spiral inner tubing. An economically favorable system is achieved.

  18. Development of Experienced Science Teachers' Pedagogical Content Knowledge of Models of the Solar System and the Universe

    ERIC Educational Resources Information Center

    Henze, Ineke; van Driel, Jan H.; Verloop, Nico

    2008-01-01

    This paper investigates the developing pedagogical content knowledge (PCK) of nine experienced science teachers in their first few years of teaching a new science syllabus in the Dutch secondary education system. We aimed to identify the content and structure of the PCK for a specific topic in the new syllabus, "Models of the Solar System and the…

  19. Energy transfer in the solar system

    NASA Astrophysics Data System (ADS)

    Jelbring, H.

    2013-12-01

    Different types of energy transfer are presented from the literature and are approached and commented on. It follows from these articles that energy transfer in addition to solar irradiation is less well understood by contemporary scientist. The transformation of energy between kinetic and potential energy in planetary orbits might be of crucial importance for understanding energy transfer between celestial bodies and the development of commensurabilities. There is evidence pointing to interactions (friction) between space and satellites producing volcanism. The reversible transfer of energy between the orbit of Moon and Earth's rotational energy is crucial to the creation of the 13.6-day and 27.3-day periods in both solar variables and Earth bound climate variables. It is hypothesized that the Earth-Moon system is modulating the sunspot numbers and creating both these periods, and that the great planets are responsible for the 11 yr solar cycle.

  20. Receiver System: Lessons Learned From Solar Two

    SciTech Connect

    LITWIN, ROBERT Z.; PACHECO, JAMES E.

    2002-03-01

    The Boeing Company fabricated the Solar Two receiver as a subcontractor for the Solar Two project. The receiver absorbed sunlight reflected from the heliostat field. A molten-nitrate-salt heat transfer fluid was pumped from a storage tank at grade level, heated from 290 to 565 C by the receiver mounted on top of a tower, then flowed back down into another storage tank. To make electricity, the hot salt was pumped through a steam generator to produce steam that powered a conventional Rankine steam turbine/generator. This evaluation identifies the most significant Solar Two receiver system lessons learned from the Mechanical Design, Instrumentation and Control, Panel Fabrication, Site Construction, Receiver System Operation, and Management from the perspective of the receiver designer/manufacturer. The lessons learned on the receiver system described here consist of two parts: the Problem and one or more identified Solutions. The appendix summarizes an inspection of the advanced receiver panel developed by Boeing that was installed and operated in the Solar Two receiver.

  1. Solar Powered Automobile Interior Climate Control System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor)

    2003-01-01

    There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.

  2. Combined Solar and Wind Energy Systems

    NASA Astrophysics Data System (ADS)

    Tripanagnostopoulos, Y.; Souliotis, M.; Makris, Th.

    2010-01-01

    In this paper we present the new concept of combined solar and wind energy systems for buildings applications. Photovoltaics (PV) and small wind turbines (WTs) can be install on buildings, in case of sufficient wind potential, providing the building with electricity. PVs can be combined with thermal collectors to form the hybrid photovoltaic/thermal (PV/T) systems. The PVs (or the PV/Ts) and WT subsystems can supplement each other to cover building electrical load. In case of using PV/T collectors, the surplus of electricity, if not used or stored in batteries, can increase the temperature of the thermal storage tank of the solar thermal unit. The description of the experimental set-up of the suggested PV/T/WT system and experimental results are presented. In PV/T/WT systems the output from the solar part depends on the sunshine time and the output of the wind turbine part depends on the wind speed and is obtained any time of day or night. The use of the three subsystems can cover a great part of building energy load, contributing to conventional energy saving and environment protection. The PV/T/WT systems are considered suitable in rural and remote areas with electricity supply from stand-alone units or mini-grid connection. PV/T/WT systems can also be used in typical grid connected applications.

  3. New Markets for Solar Photovoltaic Power Systems

    NASA Astrophysics Data System (ADS)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  4. Interstellar dust measurements in the solar system

    NASA Astrophysics Data System (ADS)

    Krüger, H.; Altobelli, Nicolas; Landgraf, Markus; Grün, Eberhard

    2008-09-01

    In the early 1990s, after its Jupiter yby, the Ulysses spacecraft identified interstellar dust in the solar system. Since 1992 until the end of 2007 the in-situ dust detector on board Ulysses continuously monitored interstellar grains with masses up to 10-13 kg, penetrating deep into the solar system. While Ulysses measured the interstellar dust stream at high ecliptic latitudes between 3 and 5 AU, interstellar impactors were also measured with the dust detectors on board Cassini, Galileo and Helios, covering a heliocentric distance range between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the inner solar system is altered by the solar radiation pressure force, gravitational focussing and interaction of charged grains with the time varying interplanetary magnetic field. The grains act as tracers of the physical conditions in the local interstellar cloud (LIC). Our in-situ measurements imply the existence of a population of 'big' interstellar grains (up to 10-13 kg) and a gas-to-dust-mass ratio in the LIC which is a factor of > 2 larger than the one derived from astronomical observations, indicating a concentration of interstellar dust in the very local interstellar medium. Until 2004, the interstellar dust ow direction measured by Ulysses was close to the mean apex of the Sun's motion through the LIC, while in 2005, the data showed a 30 degree shift, the reason of which is presently unknown. We review the in-situ interstellar dust measurements obtained from a fleet of four spacecraft in the solar system and present the latest results from the Ulysses mission.

  5. Solar power satellite system definition study, volume 7

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Guidelines and assumptions used in the design of a system of geosynchronous satellites for transmitting solar power to earth were discussed as well as the design evolutions of the principle types of solar power satellites and space support systems.

  6. Solar heating and cooling systems design and development

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Solar heating and heating/cooling systems were designed for single family, multifamily, and commercial applications. Subsystems considered included solar collectors, heat storage systems, auxiliary energy sources, working fluids, and supplementary controls, piping, and pumps.

  7. Interaction between Topically and Systemically Coadministered P-Glycoprotein Substrates/Inhibitors: Effect on Vitreal Kinetics

    PubMed Central

    Hippalgaonkar, Ketan; Srirangam, Ramesh; Avula, Bharathi; Khan, Ikhlas A.

    2010-01-01

    The objective of the present study was to investigate the effect of topically coadministered P-glycoprotein (P-gp) substrates/inhibitors on the vitreal kinetics of a systemically administered P-gp substrate. Anesthetized male rabbits were used in these studies. The concentration-time profile of quinidine in the vitreous humor, after intravenous administration, was determined alone and in the presence of topically coadministered verapamil, prednisolone sodium phosphate (PP), and erythromycin. The vitreal pharmacokinetic parameters of quinidine in the presence of verapamil [apparent elimination rate constant (?z), 0.0027 ± 0.0002 min?1; clearance (CL_F), 131 ± 21 ml/min; area under the curve (AUC0–?), 39 ± 7.0 ?g · min/ml; and mean residence time, 435 ± 20 min] were significantly different from those of the control (0.0058 ± 0.0006 min?1, 296 ± 46 ml/min, 17 ± 3 ?g · min/ml, and 232 ± 20 min, respectively). A 1.7-fold decrease in the vitreal ?z and a 1.5-fold increase in the vitreal AUC of quinidine were observed in the presence of topical PP. Statistically significant differences between the vitreal profiles of the control and erythromycin-treated group were also observed. Plasma concentration-time profiles of quinidine, alone or in the presence of the topically instilled compounds, remained unchanged, indicating uniform systemic quinidine exposure across groups. This study demonstrates an interaction between topically and systemically coadministered P-gp substrates, probably through the modulation of P-gp on the basolateral membrane of the retinal pigmented epithelium, leading to changes in the vitreal kinetics of the systemically administered agent. PMID:20595378

  8. Solar energy system economic evaluation: IBM System 2, Togus, Maine

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The economic analysis of the solar energy system, is developed for Torgus and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f-chart design procedure with inputs taken on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over a projected twenty year life, life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. Results demonstrate that the solar energy system is economically viable at all of the five sites for which the analysis was conducted.

  9. Solar systems with highly efficient collectors

    NASA Astrophysics Data System (ADS)

    Vitt, B.

    1985-11-01

    Seasonal performance data of solar thermal systems are reported. For southern and middle European climatic conditions, systems with constant operating temperature, two types of a domestic hot water system, as well as a space heating system were evaluated. The results are related to the thermo-optical properties of the collectors. A heat pipe evacuated tubular collector was examined. The impact of the optimization of the selective absorber coating on performance was studied. It is concluded that optimized evacuated tube collectors can be used to generate heat at temperatures 200 C.

  10. MOND habitats within the solar system

    E-print Network

    Jacob Bekenstein; Joao Magueijo

    2006-02-12

    MOdified Newtonian Dynamics (MOND) is an interesting alternative to dark matter in extragalactic systems. We here examine the possibility that mild or even strong MOND behavior may become evident well inside the solar system, in particular near saddle points of the total gravitational potential. Whereas in Newtonian theory tidal stresses are finite at saddle points, they are expected to diverge in MOND, and to remain distinctly large inside a sizeable oblate ellipsoid around the saddle point. We work out the MOND effects using the nonrelativistic limit of the T$e$V$e$S theory, both in the perturbative nearly Newtonian regime and in the deep MOND regime. While strong MOND behavior would be a spectacular ``backyard'' vindication of the theory, pinpointing the MOND-bubbles in the setting of the realistic solar system may be difficult. Space missions, such as the LISA Pathfinder, equipped with sensitive accelerometers, may be able to explore the larger perturbative region.

  11. Streaming of interstellar grains in the solar system

    NASA Technical Reports Server (NTRS)

    Gustafson, B. A. S.; Misconi, N. Y.

    1979-01-01

    Results of a theoretical study of the interactions between interstellar grains streaming through the solar system and the solar wind are presented. It is shown that although elongated core-mantle interstellar particles of a characteristic radius of about 0.12 microns are subject to a greater force due to radiation pressure than to gravitational attraction, they are still able to penetrate deep inside the solar system. Calculations of particle trajectories within the solar system indicate substantial effects of the solar activity cycle as reflected in the interplanetary magnetic field on the distribution of 0.12- and 0.0005-micron interstellar grains streaming through the solar system, leading to a 50-fold increase in interstellar grain densities 3 to 4 AU ahead of the sun during years 8 to 17 of the solar cycle. It is noted that during the Solar Polar Mission, concentrations are expected which will offer the opportunity of detecting interstellar grains in the solar system.

  12. Solar Energy Systems for Lunar Oxygen Generation

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  13. In vitro permeation and in vivo whitening effect of topical hesperetin microemulsion delivery system.

    PubMed

    Tsai, Yi-Hung; Lee, Ko-Feng; Huang, Yaw-Bin; Huang, Chi-Te; Wu, Pao-Chu

    2010-03-30

    Hesperetin is one of the flavonoids and possess anti-inflammatory, UV-protecting and antioxidant effects. Permeation issues for topical delivery systems of such effects are occasionally problematic, and in view of the fact that microemulsions are potential carriers for transdermal delivery system, the objective of this study was to design an optimal microemulsion formulation by in vitro permeation study for hesperetin topical dosage form and determine its topical photoprotective effect and skin irritation by in vivo study. The hesperetin-loaded microemulsion showed an enhanced in vitro permeation compared to the aqueous and isopropyl myristate (IPM) suspension dosage form of hesperetin. In comparison, the effect of co-surfactant on the drug permeation capacity, propylene glycol showed highest permeation rate, followed by ethanol, glycerol and polyethylene glycol (PEG 400). Sunscreen agent padimate O, as a transdermal enhancer could increase the permeation rate of hesperetin. In case of in vivo study, the hesperetin-loaded microemulsion showed significant topical whitening effect and diminished skin irritation when compared with the non-treatment group, indicating that the hesperetin microemulsion could be used as an effective whitening agent. PMID:20060453

  14. Why Are So Many Things in the Solar System Round?

    NASA Astrophysics Data System (ADS)

    Heilig, Steven J.

    2010-09-01

    Several years ago a student asked why so many things in the solar system were round. He noted that many objects in the solar system, although not all, are round. The standard answer, which he knew, is that the mutual gravitational attraction of the molecules pulls them into the shape that gets them as close to each other as possible: a sphere. This argument works fine for fluid bodies such as the Sun or Jupiter, but it isn't so simple for a solid object-we have all seen rocks that are not round. There is still a gravitational attraction acting between the rock's molecules, butfor small rocks that force does not overcome the strength of the bonds holding those molecules in their relative positions. Since the strength of the gravitational force grows with the size of the object, a large enough rock will have a strong enough gravitational attraction to force a deformation into a round shape. But how large is that? A simple model gives an answer to this question. There is also renewed interest in this topic as a result of the new definition of a planet approved by the International Astronomical Union, which says in part, ``A `planet' is a celestial body that... has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape.''1 What size object is large enough to satisfy this criterion? Where does Pluto fall regarding this question?

  15. Life beyond the solar system.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1972-01-01

    Review of some of the highlights and more recent developments in the search for extraterrestrial intelligence. The first major problem is one of the generality of the formation of planetary systems. Observations of the nearest stars which are not members of binary or multiple stars indicates that fully half have companions of planetary mass. The presence of organic compounds in meteorites, probably in Jovian planets, in comets, in the interstellar medium, and in cool stars implies that the production of organic compounds essential for the origin of life should be pervasive throughout the universe. Possibilities of interstellar communication are discussed.

  16. Solar-energy-system performance evaluation: Honeywell OTS 44, Ocmulgee, Georgia

    NASA Technical Reports Server (NTRS)

    Mathur, A. K.; Pederson, S.

    1982-01-01

    The operation and technical performance of the solar operational test site (OTS 44) are described, based on data collected between April, 1981 and August, 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 44 is a hydronic heating and cooling system consisting of 5040 square feet of liquid cooled flat plate collectors; a 4000 gallon thermal storage tank; one 25 ton capacity organic Rankine cycle engine assisted water chillers; a forced draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes for providing space conditioning and hot water to the building. Data monitored during the 4 months of the operational test period found that the solar system collected 285 MMBtu of thermal energy of the total incident solar energy of 1040 MMBtu and provided 210 MMBtu for cooling and 10 MMBtu for heating and hot water. The net electrical energy saving due to the solar system was approximately 2600 kWh(e), and fossil energy saving was about 20 million Btu (MMBtu).

  17. MODELING DISTRIBUTION SYSTEM IMPACTS OF SOLAR VARIABILIY AND INTERCONNECTION LOCATION

    E-print Network

    1 MODELING DISTRIBUTION SYSTEM IMPACTS OF SOLAR VARIABILIY AND INTERCONNECTION LOCATION Matthew J the variable nature of the distribution system load and solar energy throughout the year with cloud-scale residential PV. These studies require knowledge of the solar system power output characteristics

  18. Astronomy 241: Foundations of Astrophysics I 21. Solar System Formation

    E-print Network

    Barnes, Joshua Edward

    Astronomy 241: Foundations of Astrophysics I 21. Solar System Formation #12;Star-Forming Clouds impacts in early solar system: -- explain rotation of Uranus,Venus -- form Moon from collision debris 2 this happen in our solar system? -- disk cleared by Sun's wind or external effects -- some migration needed

  19. Tuesday, March 13, 2007 SOLAR SYSTEM FORMATION AND EVOLUTION

    E-print Network

    Rathbun, Julie A.

    Tuesday, March 13, 2007 SOLAR SYSTEM FORMATION AND EVOLUTION 8:30 a.m. Marina Plaza Ballroom Chairs" with an organic coating. Results hold implications for the formation of organics in the early solar system. 10. M. García-Lario P. Manchado A. Massive AGB Stars in the Early Solar System? [#1879] We present

  20. Installation package for a sunspot cascade solar water heating system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  1. Early Solar System Chronology K.D. McKeegan

    E-print Network

    Reiners, Peter W.

    . The latter is a general term referring to the phase(s) of solar system evolut- ion intermediate between1.16 Early Solar System Chronology K.D. McKeegan University of California, Los Angeles, CA, USA Meteorites as Probes of Early Solar System Evolution 2 1.16.1.2 Short-Lived Radioactivity at the Origin

  2. Controlling access to pervasive information in the "Solar" system

    E-print Network

    Kotz, David

    Controlling access to pervasive information in the "Solar" system Kazuhiro Minami and David Kotz. We describe our approach in terms of a specific context-dissemination frame- work, the Solar system into the event streams desired by the applications. Our Solar system, described in a companion paper [4], is one

  3. SOLAR SYSTEM MODELS WITH A SELECTED SET OF FREQUENCIES

    E-print Network

    Politècnica de Catalunya, Universitat

    SOLAR SYSTEM MODELS WITH A SELECTED SET OF FREQUENCIES G. G´OMEZ IEEC & Departament de Matem, such as a spacecraft or an asteroid, in the Solar System. The procedure is based on applying refined Fourier analysis that depend explicitly on nat- ural frequencies of the Solar System. Some examples of these new models

  4. Is the outer Solar System chaotic? WAYNE B. HAYES

    E-print Network

    Loss, Daniel

    LETTERS Is the outer Solar System chaotic? WAYNE B. HAYES Computer Science Department, University. There exists both apparently unassailable evidence that the outer Solar System is chaotic1 development. The Solar System is known to be `practically stable', in the sense that none of the known planets

  5. Scientific Goals for Exploration of the Outer Solar System

    E-print Network

    Rathbun, Julie A.

    Scientific Goals for Exploration of the Outer Solar System Explore Diverse Worlds How did the outer planets mold the solar system and create habitable worlds? OPAG Report DRAFT 27 March 2015 #12;2 Outline the science objectives for exploration of the outer solar system. It is consistent with Visions and Voyages

  6. Elementary Students' Mental Models of the Solar System

    ERIC Educational Resources Information Center

    Calderon-Canales, Elena; Flores-Camacho, Fernando; Gallegos-Cazares, Leticia

    2013-01-01

    This research project aimed to identify and analyze Mexican primary school students' ideas about the components of the solar system. In particular, this study focused on conceptions of the solar system and representations of the dynamics of the solar system based on the functional and structural models that students make in school. Using a…

  7. Modeling of Performance, Cost, and Financing of Concentrating Solar, Photovoltaic, and Solar Heat Systems (Poster)

    SciTech Connect

    Blair, N.; Mehos, M.; Christiansen, C.

    2006-10-03

    This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, 2006 in Boulder, Colorado, discusses the modeling, performance, cost, and financing of concentrating solar, photovoltaic, and solar heat systems.

  8. Vesta and Ceres: crossing the history of the Solar System

    E-print Network

    Coradini, Angioletta; Federico, Costanzo; Magni, Gianfranco

    2011-01-01

    The evolution of the Solar System can be schematically divided into three different phases: the Solar Nebula, the Primordial Solar System and the Modern Solar System. These three periods were characterized by very different conditions, both from the point of view of the physical conditions and from that of the processes there were acting through them. Across the Solar Nebula phase, planetesimals and planetary embryos were forming and differentiating due to the decay of short-lived radionuclides. At the same time, giant planets formed their cores and accreted the nebular gas to reach their present masses. After the gas dispersal, the Primordial Solar System began its evolution. In the inner Solar System, planetary embryos formed the terrestrial planets and, in combination with the gravitational perturbations of the giant planets, depleted the residual population of planetesimals. In the outer Solar System, giant planets underwent a violent, chaotic phase of orbital rearrangement which caused the Late Heavy Bom...

  9. MINIPILOT SOLAR SYSTEM: DESIGN/OPERATION OF SYSTEM AND RESULTS OF NON-SOLAR TESTING AT MRI

    EPA Science Inventory

    A Minipilot Solar Reactor System (MSRS) with liquid organic feed was designed, constructed and tested without solar input (the Solar Tests were to be done later at DOE's National Renewable Energy Laboratory). he non-solar tests were done to determine whether use of EPA's sampling...

  10. Solar panel truss mounting systems and methods

    DOEpatents

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  11. Solar system constraints on disformal gravity theories

    NASA Astrophysics Data System (ADS)

    Ip, Hiu Yan; Sakstein, Jeremy; Schmidt, Fabian

    2015-10-01

    Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to ? gtrsim 100 eV. These constraints render all disformal effects irrelevant for cosmology.

  12. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1997-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1 sec. The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have been using adaptive optics (AO) on a 4-m class telescope to obtain 0.1 sec resolution images solar system objects at far red and near infrared wavelengths (0.7-2.5 micron) which best discriminate their spectral signatures. Our efforts has been put into areas of research for which high angular resolution is essential, such as the mapping of Titan and of large asteroids, the dynamics and composition of Neptune stratospheric clouds, the infrared photometry of Pluto, Charon, and close satellites previously undetected from the ground.

  13. Testing QMOND in the Solar System

    E-print Network

    Galianni, Pasquale; Zhao, Hongsheng; Horne, Keith

    2011-01-01

    A unique signature of the modified Newtonian dynamics (MOND) paradigm is its peculiar behavior in the vicinity of the points where the total Newtonian acceleration exactly cancels. In the Solar System, these are the saddle points of the gravitational potential near the planets. Typically, such points are embedded into low-acceleration bubbles where modified gravity theories a` la MOND predict significant deviations from Newton's laws. As has been pointed out recently, the Earth-Sun bubble may be visited by the LISA Pathfinder spacecraft in the near future, providing a unique occasion to put these theories to a direct test. In this work, we present a high-precision model of the Solar System's gravitational potential to determine accurate positions and motions of these saddle points and study the predicted dynamical anomalies within the framework of quasi-linear MOND. Considering the expected sensitivity of the LISA Pathfinder probe, we argue that interpolation functions which exhibit a "faster" transition betw...

  14. Constraining MOND with Solar System dynamics

    E-print Network

    Lorenzo Iorio

    2008-02-15

    In this letter we investigate the deep Newtonian regime of the MOND paradigm from a purely phenomenological point of view by exploiting the least-square estimated corrections to the secular rates of the perihelia of the inner and of some of the outer planets of the Solar System by E.V. Pitjeva with the EPM2004 ephemerides. By using $\\mu(x)\\approx 1-k_0(1/x)^n$ for the interpolating MONDian function, and by assuming that $k_0$, considered body-independent so to avoid violations of the equivalence principle, experiences no spatial variations throughout the Solar System we tightly constrain $n$ with the ratios of the perihelion precessions for different pairs of planets. We find that the range $1\\leq n\\leq 2$ is neatly excluded at much more than $3-\\sigma$ level. Such a test would greatly benefit from the use of extra-precessions of perihelia independently estimated by other groups as well.

  15. Our Solar System Features Eight Planets

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Our solar system features eight planets, seen in this artist's diagram. Although there is some debate within the science community as to whether Pluto should be classified as a Planet or a dwarf planet, the International Astronomical Union has decided on the term plutoid as a name for dwarf planets like Pluto.

    This representation is intentionally fanciful, as the planets are depicted far closer together than they really are. Similarly, the bodies' relative sizes are inaccurate. This is done for the purpose of being able to depict the solar system and still represent the bodies with some detail. (Otherwise the Sun would be a mere speck, and the planets even the majestic Jupiter would be far too small to be seen.)

  16. Dark matter chaos in the Solar System

    E-print Network

    J. Lages; D. L. Shepelyansky

    2012-12-02

    We study the capture of galactic dark matter particles in the Solar System produced by rotation of Jupiter. It is shown that the capture cross section is much larger than the area of Jupiter orbit being inversely diverging at small particle energy. We show that the dynamics of captured particles is chaotic and is well described by a simple symplectic dark map. This dark map description allows to simulate the scattering and dynamics of $10^{14}$ dark matter particles during the life time of the Solar System and to determine dark matter density profile as a function of distance from the Sun. The mass of captured dark matter in the radius of Neptune orbit is estimated to be $2 \\cdot 10^{15} g$. The radial density of captured dark matter is found to be approximately constant behind Jupiter orbit being similar to the density profile found in galaxies.

  17. Solar System Constraints on Disformal Gravity Theories

    E-print Network

    Hiu Yan Ip; Jeremy Sakstein; Fabian Schmidt

    2015-10-15

    Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to $\\mathcal{M} \\gtrsim 100$ eV. These constraints render all disformal effects irrelevant for cosmology.

  18. Solar System constraints to nonminimally coupled gravity

    E-print Network

    Orfeu Bertolami; Riccardo March; Jorge Páramos

    2013-06-05

    We extend the analysis of Chiba, Smith and Erickcek \\cite{CSE} of Solar System constraints on $f(R)$ gravity to a class of nonminimally coupled (NMC) theories of gravity. These generalize $f(R)$ theories by replacing the action functional of General Relativity (GR) with a more general form involving two functions $f^1(R)$ and $f^2(R)$ of the Ricci scalar curvature $R$. While the function $f^1(R)$ is a nonlinear term in the action, analogous to $f(R)$ gravity, the function $f^2(R)$ yields a NMC between the matter Lagrangian density $\\LL_m$ and the scalar curvature. The developed method allows for obtaining constraints on the admissible classes of functions $f^1(R)$ and $f^2(R)$, by requiring that predictions of NMC gravity are compatible with Solar System tests of gravity. We apply this method to a NMC model which accounts for the observed accelerated expansion of the Universe.

  19. Rings in the solar system

    SciTech Connect

    Pollack, J.B.; Cuzzi, J.N.

    1981-11-01

    Saturn, Jupiter, and Uranus have rings with different structure and composition. The rings consist of tiny masses in independent orbits. Photographs and data obtained by the Voyager project have aided in the understanding of Saturn's rings. Spokes have been found in B ring and boards, knots, and twist in F ring. Particles on the order of a micrometer in size are believed to occur in F, B, and A rings. The dominant component is water ice. The rings of Uranus are narrow and separated by broad empty regions. The technique used to study them has been stellar occulation. Nothing is known of particle size. The dominant component is believed to be silicates rich in compounds that absorb sunlight. Jupiter's rings consist of 3 main parts: a bright ring, a diffuse disk, and a halo. Use of Pioneer 10 data and other techniques have indicated particle sizes on the order of several micrometers and some at least a centimeter in diameter. The architecture of the ring system results from the interplay of a number of forces. These include gravitational forces due to moons outside the rings and moonlets embedded in them, electromagnetic forces due to the planet's rotating magnetic field, and even the gentle forces exerted by the dilute gaseous medium in which the rings rotate. Each of these forces is discussed. Several alternative explanations of how the rings arose are considered. The primary difference in these hypotheses is the account of the relationship between the ring particles of today and the primordial ring material. (SC)

  20. Life in the solar system.

    PubMed

    Brack, A

    1999-01-01

    Life, defined as a chemical system capable of transferring its molecular information via self-replication and also capable of evolving, must develop within a liquid to take advantage of the diffusion of complex molecules. On Earth, life probably originated from the evolution of reduced organic molecules in liquid water. Organic matter might have been formed in the primitive Earth's atmosphere or near hydrothermal vents. A large fraction of prebiotic organic molecules might have been brought by extraterrestrial-meteoritic and cometary dust grains decelerated by the atmosphere. Any celestial body harboring permanent liquid water may therefore accumulate the ingredients that generated life on the primitive Earth. The possibility that life might have evolved on early Mars when water existed on the surface marks it as a prime candidate in a search for bacterial life beyond the Earth. Europa has an icy carapace. However, cryovolcanic flows at the surface point to a possible water subsurface region which might harbor a basic life form. The atmosphere and surface components of Titan are also of interest to exobiology for insight into a hydrocarbon-rich chemically evolving world. One-handed complex molecules and preferential isotopic fractionation of carbon, common to all terrestrial life forms, can be used as basic indicators when searching for life beyond the Earth. PMID:11543327

  1. The Earliest Solar System Weathering: Mega-Solar-Wind Effects in Early Solar System Silicates

    NASA Astrophysics Data System (ADS)

    Wetteland, C. J.; Sickafus, K. E.; McSween, H. Y.; Taylor, L. A.

    2015-11-01

    Early solar materials may be exposed to large fluxes of high-energy protons during stellar evolution. Experimental results indicate that small fragments of minerals may be melted, and low Z atoms can be transmuted to exotic isotopes.

  2. The outer solar system - Perspectives for exobiology

    NASA Technical Reports Server (NTRS)

    Owen, T.

    1974-01-01

    An attempt is made to summarize the current knowledge about the composition and structures of outer planet atmospheres with special emphasis on Jupiter, Saturn, and Titan. The nature of the substances which are responsible for the yellow coloration observed on both Jupiter and Saturn is discussed. The analysis of planetary conditions conducted shows that the outer solar system offers a variety of environments in which natural experiments in prebiotic organic synthesis must be taking place at the present time.

  3. Solar tracking control system Sun Chaser

    NASA Technical Reports Server (NTRS)

    Scott, D. R.; White, P. R.

    1979-01-01

    The solar tracking control system (Sun Chaser) is believed to be an improved method of tracking the Sun in all types of weather conditions. The Sun Chaser will follow the Sun from east to west in clear or cloudy weather, and reset itself to the east position after sundown in readiness for the next sunrise. A description of the Sun Chaser hardware and its operation together with results is presented.

  4. Solar energy collector/storage system

    SciTech Connect

    Bettis, J.R.; Clearman, F.R.

    1983-05-24

    A solar energy collector/storage system which includes an insulated container having working fluid inlets and outlets and an opening, a light-transmitting member positioned over the opening, and a heat-absorbing member which is centrally situated, is supported in the container, and is made of a mixture of gypsum , lampblack, and water. A light-reflecting liner made of corrugated metal foil preferably is attached to the internal surface of the container. The opening of the container is positioned in optical alignment with a source of solar energy. A light-reflecting cover optionally can be hingedly attached to the container, and can be positioned such as to reflect solar energy rays into the container. The system is adaptable for use with a working gas (e.g., air) and/or a working liquid (e.g., water) in separated flows which absorb heat from the heat-absorbing member, and which are useable per se or in an associated storage and/or circulatory system that is not part of this invention. The heatabsorbing mixture can also contain glass fibers. The heatabsorbing member is of such great load-bearing strength that it can also be used simultaneously as a structural member, e.g., a wall or ceiling of a room; and, thereby, the system can be used to heat a room, if a window of the room is the light-transmitting member and is facing the sun, and if the heat-absorbing member is a wall and/or the ceiling of the room and receives solar energy through the window.

  5. Overview: Exobiology in solar system exploration

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C.; Schwartz, Deborah E.

    1992-01-01

    In Aug. 1988, the NASA Ames Research Center held a three-day symposium in Sunnyvale, California, to discuss the subject of exobiology in the context of exploration of the solar system. Leading authorities in exobiology presented invited papers and assisted in setting future goals. The goals they set were as follows: (1) review relevant knowledge learned from planetary exploration programs; (2) detail some of the information that is yet to be obtained; (3) describe future missions and how exobiologists, as well as other scientists, can participate; and (4) recommend specific ways exobiology questions can be addressed on future exploration missions. These goals are in agreement with those of the Solar System Exploration Committee (SSEC) of the NASA Advisory Council. Formed in 1980 to respond to the planetary exploration strategies set forth by the Space Science Board of the National Academy of Sciences' Committee on Planetary and Lunar Exploration (COMPLEX), the SSEC's main function is to review the entire planetary program. The committee formulated a long-term plan (within a constrained budget) that would ensure a vital, exciting, and scientifically valuable effort through the turn of the century. The SSEC's goals include the following: determining the origin, evolution, and present state of the solar system; understanding Earth through comparative planetology studies; and revealing the relationship between the chemical and physical evolution of the solar system and the appearance of life. The SSEC's goals are consistent with the over-arching goal of NASA's Exobiology Program, which provides the critical framework and support for basic research. The research is divided into the following four elements: (1) cosmic evolution of the biogenic compounds; (2) prebiotic evolution; (3) origin and early evolution of life; and (4) evolution of advanced life.

  6. Radar Studies in the Solar System

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    1996-01-01

    We aid in a study of the solar system by means of ground-based radar. We have concentrated on (1) developing the ephemerides needed to acquire radar data at Arecibo Observatory and (2) analyzing the resultant data to: test fundamental laws of gravitation; determine the size, shape, topography, and spin vectors of the targets; and study the surface properties of these objects, through their scattering law and polarization characteristics.

  7. Solar system constraints on Rindler acceleration

    E-print Network

    Sante Carloni; Daniel Grumiller; Florian Preis

    2011-05-09

    We discuss the classical tests of general relativity in the presence of Rindler acceleration. Among these tests the perihelion shifts give the tightest constraints and indicate that the Pioneer anomaly cannot be caused by a universal solar system Rindler acceleration. We address potential caveats for massive test-objects. Our tightest bound on Rindler acceleration that comes with no caveats is derived from radar echo delay and yields |a|<3nm/s^2.

  8. Semiautomatic news analysis, indexing, and classification system based on topic preselection

    NASA Astrophysics Data System (ADS)

    Hanjalic, Alan; Lagendijk, Reginald L.; Biemond, Jan

    1998-12-01

    In this paper, we present the concept of an efficient semiautomatic system for analysis, classification and indexing of TV news program material, and show the feasibility of its practical realization. The only input into the system, other than the news program itself, are the spoken words, serving as keys for topic prespecification. The chosen topics express user's current professional or private interests and are used for filtering the news material correspondingly. After the basic analysis steps on a news program stream, including the processes of shot change detection and key frame extraction, the system automatically represents the news program as a series of longer higher-level segments. Each of them contains one or more video shots and belongs to one of the coarse categories, such as anchorperson (news reader) shots, news shot series, the starting and ending program sequence. The segmentation procedure is performed on the video component of the news program stream and the results are used to define the corresponding segments in the news audio stream. In the next step, the system uses the prespecified audio keys to index the segments and group them into reports, being the actual retrieval units. This step is performed on the segmented news audio stream by applying the wordspotting procedure to each segment. As a result, all the reports on prespecified topics are easily reachable for efficient retrieval.

  9. The supernova fragmentation model of solar system formation

    NASA Astrophysics Data System (ADS)

    Brown, W. K.; Gritzo, L. A.

    1986-06-01

    The authors have further developed Brown's model of solar system formation. In this model, each fragment of an ejected supernova shell evolves into a separate solar system. Specifically, the authors have formulated the reverse-flow hypothesis that may be responsible for the inner, earthlike planets. They have written a computer program with which it is possible to calculate mass distributions within a solar nebula. They have found mass distributions similar to our solar system over a wide range of the model parameters.

  10. Testing gravity law in the solar system

    NASA Astrophysics Data System (ADS)

    Lamine, B.; Courty, J.-M.; Reynaud, S.; Jaekel, M.-T.

    2011-10-01

    The predictions of General relativity (GR) are in good agreement with observations in the solar system. Nevertheless, unexpected anomalies appeared during the last decades, along with the increasing precision of measurements. Those anomalies are present in spacecraft tracking data (Pioneer and flyby anomalies) as well as ephemerides. In addition, the whole theory is challenged at galactic and cosmic scales with the dark matter and dark energy issues. Finally, the unification in the framework of quantum field theories remains an open question, whose solution will certainly lead to modifications of the theory, even at large distances. As long as those "dark sides" of the universe have no universally accepted interpretation nor are they observed through other means than the gravitational anomalies they have been designed to cure, these anomalies may as well be interpreted as deviations from GR. In this context, there is a strong motivation for improved and more systematic tests of GR inside the solar system, with the aim to bridge the gap between gravity experiments in the solar system and observations at much larger scales. We review a family of metric extensions of GR which preserve the equivalence principle but modify the coupling between energy and curvature and provide a phenomenological framework which generalizes the PPN framework and "fifth force" extensions of GR. We briefly discuss some possible observational consequences in relation with highly accurate ephemerides.

  11. Gravitational Anomalies in the Solar System?

    E-print Network

    Lorenzo Iorio

    2015-03-16

    Mindful of the anomalous perihelion precession of Mercury discovered by U. Le Verrier in the second half of the nineteenth century and its successful explanation by A. Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known bodies have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the Universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gravitational anomalies in the Solar system is critically reviewed. They are: a) Possible anomalous advances of planetary perihelia; b) Unexplained orbital residuals of a recently discovered moon of Uranus (Mab); c) The lingering unexplained secular increase of the eccentricity of the orbit of the Moon; d) The so-called Faint Young Sun Paradox; e) The secular decrease of the mass parameter of the Sun; f) The Flyby Anomaly; g) The Pioneer Anomaly; and h) The anomalous secular increase of the astronomical unit

  12. Solar System Test of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    2003-01-01

    We are engaged in testing gravitational theory, mainly using observations of objects in the solar system and mainly on the interplanetary scale. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to place tighter bounds on such departures. For this project, we have analyzed a combination of observational data with our model of the solar system, including primarily planetary radar ranging, lunar laser ranging, and spacecraft tracking, but also including both pulsar timing and pulsar VLBI measurements. In the past year, we have included new data in the analysis, primarily tracking data from the Mars Pathfinder mission. Although these data are relatively few in number, they extend the time span of high-precision tracking on the surface of Mars from six years to over 20. As a result, the statistical standard deviation of our estimate of Mars precession rate has nearly halved, and the rest of the parameters in our solar-system model have experienced a corresponding, albeit smaller, improvement (about 20% for t,he relevant asteroid masses, 10% for the semimajor axis of Mars orbit, and smaller amounts for most other parameters). In the coming year, we plan to continue adding data to our set, as available. Ne 2 expect to use these data and improved models to obtain estimates of the gravitational- theory parameters and to publish these results.

  13. Gravitational anomalies in the solar system?

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo

    2015-02-01

    Mindful of the anomalous perihelion precession of Mercury discovered by Le Verrier in the second half of the nineteenth century and its successful explanation by Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known matter-energy distributions have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in either cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century, and technology itself. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gravitational anomalies in the Solar system is critically reviewed. They are: (a) Possible anomalous advances of planetary perihelia. (b) Unexplained orbital residuals of a recently discovered moon of Uranus (Mab). (c) The lingering unexplained secular increase of the eccentricity of the orbit of the Moon. (d) The so-called Faint Young Sun Paradox. (e) The secular decrease of the mass parameter of the Sun. (f) The Flyby Anomaly. (g) The Pioneer Anomaly. (h) The anomalous secular increase of the astronomical unit.

  14. Quantization of Masses in the Solar System

    E-print Network

    A. M. Ilyanok; I. A. Timoshchenko

    2002-01-28

    The hypothesis of quantization of masses of the solar system planets is considered. It is supposed that the solar system was bearing during the Protosun squeezing from the red giant to a yellow dwarf. According to mass and orbit redistribution of interior planets the condition of the origin of satellites of internal and external planets located in the ecliptic plane are found. It is shown, that the main source of substance for these satellites and majority of meteorites and asteroids in the solar system is mantle and bark of the Mars separated from it under influence of gravitation forces about 4 billion years ago, caused by squeezing of the sun and Jupiter. In these condition there is a probability of contamination of the Earth by DNA of living organisms from Mars. It is shown that Uranus and Neptune were formed as a result of protosaturn decay. It is found that from all external planets only Uranus has the large cavity inside. As a result there is no internal power source, and the considerable shift of a magnetic axis relative to rotate axis is observed.

  15. Spacewatch Survey of the Solar System

    NASA Technical Reports Server (NTRS)

    McMillan, Robert S.

    2000-01-01

    The purpose of the Spacewatch project is to explore the various populations of small objects throughout the solar system. Statistics on all classes of small bodies are needed to infer their physical and dynamical evolution. More Earth Approachers need to be found to assess the impact hazard. (We have adopted the term "Earth Approacher", EA, to include all those asteroids, nuclei of extinct short period comets, and short period comets that can approach close to Earth. The adjective "near" carries potential confusion, as we have found in communicating with the media, that the objects are always near Earth, following it like a cloud.) Persistent and voluminous accumulation of astrometry of incidentally observed main belt asteroids MBAs will eventually permit the Minor Planet Center (MPQ to determine the orbits of large numbers (tens of thousands) of asteroids. Such a large body of information will ultimately allow better resolution of orbit classes and the determinations of luminosity functions of the various classes, Comet and asteroid recoveries are essential services to planetary astronomy. Statistics of objects in the outer solar system (Centaurs, scattered-disk objects, and Trans-Neptunian Objects; TNOs) ultimately will tell part of the story of solar system evolution. Spacewatch led the development of sky surveying by electronic means and has acted as a responsible interface to the media and general public on this discipline and on the issue of the hazard from impacts by asteroids and comets.

  16. Testing gravity law in the solar system

    E-print Network

    B. Lamine; J. -M. Courty; S. Reynaud; M. -T. Jaekel

    2011-05-31

    The predictions of General relativity (GR) are in good agreement with observations in the solar system. Nevertheless, unexpected anomalies appeared during the last decades, along with the increasing precision of measurements. Those anomalies are present in spacecraft tracking data (Pioneer and flyby anomalies) as well as ephemerides. In addition, the whole theory is challenged at galactic and cosmic scales with the dark matter and dark energy issues. Finally, the unification in the framework of quantum field theories remains an open question, whose solution will certainly lead to modifications of the theory, even at large distances. As long as those "dark sides" of the universe have no universally accepted interpretation nor are they observed through other means than the gravitational anomalies they have been designed to cure, these anomalies may as well be interpreted as deviations from GR. In this context, there is a strong motivation for improved and more systematic tests of GR inside the solar system, with the aim to bridge the gap between gravity experiments in the solar system and observations at much larger scales. We review a family of metric extensions of GR which preserve the equivalence principle but modify the coupling between energy and curvature and provide a phenomenological framework which generalizes the PPN framework and "fifth force" extensions of GR. We briefly discuss some possible observational consequences in connection with highly accurate ephemerides.

  17. A Distant Solar System (Artist's Concept Animation)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation portrays an artist's concept of a distant hypothetical solar system, about the same age as our own. It begins close to the star, and then moves out past a number of planets. Though 'extrasolar' planets are too small to be seen with telescopes, astronomers have detected more than 100 gas giants like Jupiter via their gravitational tug on their parent stars.

    The view pulls back to reveal the outer fringes of the system and a ring of dusty debris that circles the star. This debris is all that remains of the planet-forming disk from which the planets evolved.

    Planets are formed when dusty material in a large disk surrounding a young star clumps together. Leftover material is eventually blown out by solar wind or pushed out by gravitational interactions with planets. Billions of years later, only an outer disk of debris remains.

    These outer debris disks are too faint to be imaged directly by visible-light telescopes. They are washed out by the glare of the Sun. However, NASA's Spitzer Space Telescope can detect their heat, or excess thermal emission, in infrared light. This allows astronomers to study the aftermath of planet building in distant solar systems like our own.

  18. Publications of the JPL Solar Thermal Power Systems Project, 1976 to 1983

    NASA Technical Reports Server (NTRS)

    Gray, V. (compiler); Marsh, C. (compiler); Panda, P. (compiler)

    1984-01-01

    The bibliographical listings in this publication are documentation products associated with the solar thermal power system project carried out by the Jet Propulsion Laboratory from 1976 to 1983. Documents listed are categorized as conference and journal papers, JPL external reports, JPL internal reports, or contractor reports. Alphabetical listings by title were used in the bibliography itself to facilitate location of the document by subject. Two indexes are included for ease of reference: one, an author index; the other, a topical index.

  19. Beyond Earth's boundaries: Human exploration of the Solar System in the 21st Century

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is an annual report describing work accomplished in developing the knowledge base that will permit informed recommendations and decisions concerning national space policy and the goal of human expansion into the solar system. The following topics are presented: (1) pathways to human exploration; (2) human exploration case studies; (3) case study results and assessment; (4) exploration program implementation strategy; (5) approach to international cooperation; (6) recommendations; and (7) future horizons.

  20. Forming the Solar System from Pebbles

    NASA Astrophysics Data System (ADS)

    Kretke, Katherine A.; Levison, H. F.

    2015-12-01

    In recent years, theories surrounding the formation of small-bodies and planets have been undergoing a radical shift. Particles with stopping times comparable to their orbital times, often called "pebbles" (although they range from sub-centimeter to meter sizes), interact with gaseous protoplanetary disks in very special ways. This allows them to be not only be concentrated, allowing them to gravitationally collapse and directly produce the planetesimal building blocks of planetary systems, but also later be efficiently accreted on to these planetesimals, rapidly producing larger planets. Here we present simulations using the planet formation code LIPAD, which can follow the dynamical evolution of planetary system all the way from pebbles and planetesimals to mature planetary systems. We show how pebble accretion can explain the observed structure of our Solar System, by forming a system of giant planets, ice giants, and a system of terrestrial planets; even providing an explanation the for the low mass of Mars and of the Asteroid Belt.

  1. Laser and solar-photovoltaic space power systems comparison. II.

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Stripling, J.; Enderson, T. M.; Humes, D. H.; Davis, W. T.

    1984-01-01

    A comparison of total system cost is made between solar photovoltaic and laser/receiver systems. The laser systems assume either a solar-pumped CO2 blackbody transfer laser with MHD receiver or a solar pumped liquid neodymium laser with a photovoltaic receiver. Total system costs are less for the laser systems below 300 km where drag is significant. System costs are highly dependent on altitude.

  2. Solar dynamic systems for spacecraft power applications

    NASA Technical Reports Server (NTRS)

    Roschke, E. J.

    1986-01-01

    Results are presented of a parametric study of the potential for using solar dynamic (SD) power supply systems on deep space probes. The SD systems would consist of a parabolic concentrator to focus solar energy on a thermal receiver for conversion by Brayton, organic Rankine or Stirling engines. The net thermal power and efficiencies available from each of the types of conversion devices were analyzed for a power requirement of 0.5 kWe. Examinations were also carried out of the optical, thermodynamic, materials and size limitations of the devices. The subsystem drivers were found to be the quality of concentrator reflectance and the system temperature level. Lower temperature systems are preferred for farther distances from the sun, mainly due to the required concentrator area. The SD system could be used out to 6 A.U. in optimal conditions. It is concluded that Brayon and Stirling engines have the best chances for further development, and that Rankine systems have already been optimized. Further evaluations are dependent on the definition of specific mission requirements.

  3. Suprathermal Chemistry in the Solar System

    NASA Astrophysics Data System (ADS)

    Shematovich, Valery

    Many celestial bodies in the Solar System are surrounded by gaseous envelopes. Chemical evolution of the gaseous envelopes of icy astrophysical objects of different masses and sizes (dust particles with icy mantles, icy planetesimals, comets and KBOs, icy satellites in the Jovian and Saturnian systems, and etc.) is determined by the complex influence of a large number of interrelated processes including: - photolysis by the solar XUV (soft X-rays and extreme ultraviolet) radiation, - radiolysis by the solar wind/magnetospheric plasma, - catalysis on the icy surface, - chemical exchange between the surface and atmosphere, - chemical changes in the gas composition of the envelope. These physical and chemical processes are initiated by the solar forcing, and are characterized by strongly differing time scales and the degrees of non-equilibrium. Theoretical predictions of the composition and chemical evolution of near-surface atmospheres of the icy astrophysical objects are of great importance for assessing the biological potential of these objects (Herbst and van Dishoeck, 2009). The water vapour is usually the dominant parent species in such gaseous envelope because of the ejection from the object’s icy surface due to the thermal outgassing, non-thermal photolysis and radiolysis and other active processes at work on the surface (Shematovich 2008). The photochemistry of water vapour in the near-surface atmospheric layer (Shematovich, 2008, 2012) and the radiolysis of icy regolith result in the supply of the atmosphere by an admixture of H _{2}O, H _{2}, O _{2}, OH and O with thermal and suprathermal kinetic energies. Returning molecules have a species-dependent behaviour in the impact with icy surface and non-thermal energy distributions for the chemical radicals. The suprathermal radicals OH, H, and O entering the regolith can drive the radiolytic chemistry. Chemical complexity of the near-surface atmosphere of the icy astrophysical object arises due to both primary processes of dissociation and ionization by solar XUV radiation and magnetospheric electrons and induced ion-molecular chemistry, and by chemical exchange between near-surface atmospheric layer and the satellite icy surface due to the thermal and non-thermal desorption processes (Shematovich, 2008, 2012). The standard astrochemical UDFA05 network is usually used to follow the main chemical pathways of photochemistry in the near-surface atmosphere and of diffusive chemistry in the icy regolith. Achievements and problems of the studies of suprathermal chemistry in the atmosphere-icy surface interface for the icy objects in the Solar System will be discussed. This work is supported by the RFBR project No. 14-02-00838a and by the Basic Research Program of the Presidium of the Russian Academy of Sciences (Program 22). begin{itemize} Herbst E., and van Dishoeck E.F., ARA&A, 2009, v. 47, 427. Shematovich, V.I. Solar System Res., 2008, v. 42, 473. Shematovich, V.I. Solar System Res., 2012, v. 46, 391.

  4. Walk Through Solar System Times: An Exhibit with an Astrobiology Emphasis

    NASA Technical Reports Server (NTRS)

    Cheung, C. Y.

    2012-01-01

    In this astrobiology outreach project, we attempt to present the research of the Goddard Center for Astrobiology (GCA) in the context of the history of the Solar System. GCA research emphasizes the origin and formation of complex pre-biotic organic materials in extraterrestrial environments and explores whether the delivery of these primordial materials and water to the early Earth enabled the emergence and evolution of life. The content expounds on areas that are usually not touched upon in a timeline of the Earth's formation. The exhibit addresses the questions: How did our solar system form? How is the formation of our solar systems similar or different from others? How did the organic molecules we observe in space get to the Earth? What conditions are most suitable for life? We will address the issues and challenges of designing the exhibit and of explaining advanced astrobiology research topics to the public.

  5. Maximizing Efficiency of Solar-Powered Systems by Load Matching

    E-print Network

    Shinozuka, Masanobu

    Maximizing Efficiency of Solar-Powered Systems by Load Matching Pai H. Chou, Dexin Li and Sungjun,dexinl,ksungjun}@uci.edu ABSTRACT Solar power is an important source of renewable energy for many low-power systems. Matching's total en- ergy output under a given solar profile by load matching. The power efficiency was validated

  6. Benefit assessment of solar-augmented natural gas systems

    NASA Technical Reports Server (NTRS)

    Davis, E. S.; French, R. L.; Sohn, R. L.

    1980-01-01

    Report details how solar-energy-augmented system can reduce natural gas consumption by 40% to 70%. Applications discussed include: domestic hot water system, solar-assisted gas heat pumps, direct heating from storage tank. Industrial uses, solar-assisted appliances, and economic factors are discussed.

  7. Performance modeling of nonconcentrating solar detoxification systems

    SciTech Connect

    March, M.; Martin, A.; Saltiel, C.

    1995-03-01

    A detailed simulation model is developed for predicting the performance of solar detoxification systems. Concentration profiles are determined via a method of lines approach during sunlight hours for acquired and synthetic (simulating clear and cloudy days) ultraviolet radiation intensity data. Verification of the model is performed with comparison against indoor laboratory and outdoor field test results. Simulations are performed over a range of design parameters to examine system sensitivity. Discussions are focused on the determination of optimal sizing and operating conditions. 17 refs., 8 figs.

  8. Is the outer Solar System chaotic?

    E-print Network

    Wayne B. Hayes

    2007-02-07

    The existence of chaos in the system of Jovian planets has been in question for the past 15 years. Various investigators have found Lyapunov times ranging from about 5 millions years upwards to infinity, with no clear reason for the discrepancy. In this paper, we resolve the issue. The position of the outer planets is known to only a few parts in 10 million. We show that, within that observational uncertainty, there exist Lyapunov timescales in the full range listed above. Thus, the ``true'' Lyapunov timescale of the outer Solar System cannot be resolved using current observations.

  9. Similarity Rules for Scaling Solar Sail Systems

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen L.; Beard, James W., III; Peddieson, John; Ewing, Anthony; Garbe, Greg

    2004-01-01

    Future science missions will require solar sails on the order 10,000 sq m (or larger). However, ground and flight demonstrations must be conducted at significantly smaller Sizes (400 sq m for ground demo) due to limitations of ground-based facilities and cost and availability of flight opportunities. For this reason, the ability to understand the process of scalability, as it applies to solar sail system models and test data, is crucial to the advancement of this technology. This report will address issues of scaling in solar sail systems, focusing on structural characteristics, by developing a set of similarity or similitude functions that will guide the scaling process. The primary goal of these similarity functions (process invariants) that collectively form a set of scaling rules or guidelines is to establish valid relationships between models and experiments that are performed at different orders of scale. In the near term, such an effort will help guide the size and properties of a flight validation sail that will need to be flown to accurately represent a large, mission-level sail.

  10. Prototype solar heating and hot water systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Alternative approaches to solar heating and hot water system configurations were studied, parametrizing the number and location of the dampers, the number and location of the fans, the interface locations with the furnace, the size and type of subsystems, and operating modes. A two-pass air-heating collector was selected based on efficiency and ease of installation. Also, an energy transport module was designed to compactly contain all the mechanical and electrical control components. System performance calculations were carried out over a heating season for the tentative site location at Tunkhnana, Pa. Results illustrate the effect of collector size, storage capacity, and use of a reflector. Factors which affected system performance include site location, insulative quality of the house, and of the system components. A preliminary system performance specification is given.

  11. Irradiation chemistry in the outer solar system

    NASA Astrophysics Data System (ADS)

    Brown, Michael E.

    2014-11-01

    The dark, reddish tinged surfaces of icy bodies in the outer solar are usually attributed to the long term irradiation of simple hydrocarbons such as methane leading to the loss of hydrogen and the production of long carbon chains. While methane is stable and detected on the most massive bodies in the Kuiper belt, evidence of active irradiation chemistry is scant except for the presence of ethane on methane-rich Makemake and possible detections of ethane on more methane-poor Pluto and Quaoar. We have obtained deep high signal-to-noise spectra of Makemake from 1.5 to 2.5 microns in an attempt to trace the radiation chemistry in the outer solar system beyond the initial ethane formation. We present the first astrophysical detections of solid ethylene, acetylene, and possibly propane -- all expected products of the continued irradiation of methane, and use these species to map the chemical pathway from methane to long-chain hydrocarbons.

  12. Solar heating and cooling

    NASA Technical Reports Server (NTRS)

    Bartera, R. E.

    1978-01-01

    To emphasize energy conservation and low cost energy, the systems of solar heating and cooling are analyzed and compared with fossil fuel systems. The application of solar heating and cooling systems for industrial and domestic use are discussed. Topics of discussion include: solar collectors; space heating; pools and spas; domestic hot water; industrial heat less than 200 F; space cooling; industrial steam; and initial systems cost. A question and answer period is generated which closes out the discussion.

  13. Experimental Research of an Active Solar Heating System 

    E-print Network

    Gao, X.; Li, D.

    2006-01-01

    : Solar is an abundant renewable energy, which is used more and more frequently with the emphasis on environment protection, especially in building heating. The different devised methods between an active solar heating system and normal heating...

  14. Homemade system for solar heating of hot water. Final report

    SciTech Connect

    Johnson, G.E.

    1982-08-01

    A basic homemade system for solar heating of hot water was constructed, including a homemade solar collector, self-priming pump, and electrical components. Collector efficiency is reported to be poor. (LEW)

  15. Tuning energy transport in solar thermal systems using nanostructured materials

    E-print Network

    Lenert, Andrej

    2014-01-01

    Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

  16. Optical Waveguide Solar Energy System for Lunar Materials Processing

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Case, J. A.; Senior, C. L.

    1997-01-01

    This paper discusses results of our work on development of the Optical Waveguide (OW) Solar Energy System for Lunar Materials Processing. In the OW system as shown, solar radiation is collected by the concentrator which transfers the concentrated solar radiation to the OW transmission line consisting of low-loss optical fibers. The OW line transmits the solar radiation to the thermal reactor of the lunar materials processing plant. The feature of the OW system are: (1) Highly concentrated solar radiation (up to 104 suns) can be transmitted via flexible OW lines directly into the thermal reactor for materials processing: (2) Solar radiation intensity or spectra can be tailored to specific materials processing steps; (3) Provide solar energy to locations or inside of enclosures that would not otherwise have an access to solar energy; and (4) The system can be modularized and can be easily transported to and deployed at the lunar base.

  17. Beyond Sedna: Probing the Distant Solar System

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.

    This thesis presents studies in observational planetary astronomy probing the structure of the Kuiper belt and beyond. The discovery of Sedna on a highly eccentric orbit beyond Neptune challenges our understanding of the solar system and suggests the presence of a population of icy bodies residing past the Kuiper belt. With a perihelion of 76 AU, Sedna is well beyond the reach of the gas-giants and could not be scattered onto its highly eccentric orbit from interactions with Neptune alone. Sedna's aphelion at ˜1000 AU is too far from the edge of the solar system to feel the perturbing effects of passing stars or galactic tides in the present-day solar neighborhood. Sedna must have been emplaced in its orbit at an earlier time when massive unknown bodies were present in or near the solar system. The orbits of distant Sedna-like bodies are dynamically frozen and serve as the relics of their formation process. We have performed two surveys to search for additional members of the Sedna population. In order to find the largest and brightest Sedna-like bodies we have searched ˜12,000 deg² within +/-30 degrees of the ecliptic to a limiting R magnitude of 21.3 using the QUEST camera on the 1.2m Samuel Oschin Telescope. To search for the fainter, more common members of this distant class of solar system bodies, we have performed an deep survey using the Subaru Prime Focus Camera on the 8.2m Subaru telescope covering 43 deg² to a limiting R magnitude of 25.3. Searching over a two-night baseline, we were sensitive to motions out to distances of approximately 1000 AU. We present the results of these surveys. We discuss the implications for a distant Sedna-like population beyond the Kuiper belt and discuss future prospects for detecting and studying these distant bodies, focusing in particular on the constraints we can place on the embedded stellar cluster environment the early Sun may have been born in, where the location and distribution of Sedna-like orbits sculpted by multiple stellar encounters is indicative of the birth cluster size. These surveys were specifically designed to find the select members of a distant Sedna population but were also sensitive to the dynamically excited off ecliptic populations of the Kuiper belt including the hot classicals, resonant, scattered disk, and detached Kuiper belt populations. We present our observed latitude distributions and implications for the plutino population.

  18. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    SciTech Connect

    Nesvorny, David

    2011-12-15

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside {approx}15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  19. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    NASA Astrophysics Data System (ADS)

    Harber, H.

    1981-09-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  20. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    NASA Technical Reports Server (NTRS)

    Harber, H.

    1981-01-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  1. Young Solar System in the Making

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger annotated version

    This artist's diagram compares the Epsilon Eridani system to our own solar system. The two systems are structured similarly, and both host asteroids (brown), comets (blue) and planets (white dots).

    Epsilon Eridani is our closest known planetary system, located about 10 light-years away in the constellation Eridanus. Its central star is a younger, fainter version of our sun, and is about 800 million years old about the same age of our solar system when life first took root on Earth.

    Observations from NASA's Spitzer Space Telescope show that the system hosts two asteroid belts, in addition to previously identified candidate planets and an outer comet ring.

    Epsilon Eridani's inner asteroid belt is located at about the same position as ours, approximately three astronomical units from its star (an astronomical unit is the distance between Earth and the sun.). The system's second, denser belt lies at about the same place where Uranus orbits in our solar system, or 20 astronomical units from the star.

    In the same way that Jupiter lies just outside our asteroid belt, shepherding its rocky debris into a ring, Epsilon Eridani is thought to have planets orbiting near the rims of its two belts. The first of these planets was identified in 2000 via the radial velocity technique. Called Epsilon Eridani b, it orbits at an average distance of 3.4 astronomical units placing it just outside the system's inner asteroid belt.

    The second planet orbiting near the rim of the outer asteroid belt at 20 astronomical units was inferred when Spitzer discovered the belt.

    A third planet might orbit in Epsilon Eridani at the inner edge of its outermost comet ring, which lies between 35 and 90 astronomical units. This planet was first hinted at in 1998 due to observed lumpiness in the comet ring.

    The outer comet ring around Epsilon Eridani is denser than our comet ring, called the Kuiper belt, because the system is younger. Over time, Epsilon Eridani's ring will become wispier like the Kuiper Belt. Its comets will collide with each other and break up, or get pushed out of the ring by the gravitational influences of planets.

  2. Electric Current Systems in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    LaBonte, B. J.; Mickey, D. L.

    2000-05-01

    The first study to show the persistence of local field-aligned current systems in active regions was reported by Pevtsov, Canfield, and Metcalf (Astrophys. J., 425, L117, 1994). Their work was limited to a sample of complex, flare-productive regions because of the sensitivity limit of the data from the Haleakala Stokes Polarimeter. I report here on a new survey of active regions with the Imaging Vector Magnetograph (IVM) at Mees Solar Observatory. The IVM data permit a look at current systems in simpler, more typical active regions, because of better sensitivity, temporal sampling, spatial resolution and field-of-view. Small scale current systems are commonly seen. Transport of current systems by advective processes is commonly seen over times of hours. This work was supported by NASA grant NAG5-4941 and by a subcontract with LMSAL in support of NASA contract NAS8-40801 for YOHKOH SXT.

  3. Combined solar and fossil fuel systems for electric power generation

    NASA Astrophysics Data System (ADS)

    Li, K. W.; Cashman, J.

    The paper is intended to present a parametric study for the combined solar and fossil fuel system for electric power generation. The combined system is so designed that the solar energy will be utilized to a maximum extent at the time when the solar energy is available. The balance of energy requirement is met by burning fossil fuels such as coal, oil and natural gas. The basic system arrangement is the partial heating of feedwater by solar energy. The study includes an identification of major parameters affecting the solar energy utilization as a supplementary fuel for electric power generation. In addition a break-even cost analysis is made.

  4. Solar energy system economic evaluation: IBM System 4, Clinton, Mississippi

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An economic analysis of the solar energy system was developed for five sites, typical of a wide range of environmental and economic conditions in the continental United States. The analysis was based on the technical and economic models in the F-chart design procedure, with inputs based on the characteristic of the installed system and local conditions. The results are of the economic parameters of present worth of system cost over a 20 year time span: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated.

  5. Design and Characterization of Silicone and Surfactant Based Systems for Topical Drug Delivery.

    PubMed

    Oyafuso, Márcia Helena; Carvalho, Flávia Chiva; Chiavacci, Leila Aparecida; Gremião, Maria Palmira Daflon; Chorilli, Marlus

    2015-01-01

    Nanotechnology offers advantages for new drug delivery design by providing drug targeting while minimizing the side effects. Polyoxyethylene 20 cetyl alcohol (CETETH-20) is a surfactant that may form nanostructured systems, such as liquid crystals, when in contact with water/oil, which are structurally similar to biological membranes and may improve skin interaction. The aim of this study was to develop and characterize CETETH 20-based nanostructured systems by combining CETETH-20 with water and different oily phases, including PEG-12-dimethicone for topical drug administration. The systems were characterized by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), rheology, texture profile analyses (TPA), in vitro cytotoxicity and histopathological analyses of rabbits' skin. Lamellar, hexagonal and cubic phases were identified and their viscoelastic moduli varied according to each phase. The stiffness of the cubic phase was 3-fold higher and twice more adhesive than the hexagonal phase. The formulations did not affect the normal macrophages cells, neither promoted skin irritation. They were spontaneously obtained by simply mixing the components, which corroborates for an ease scaled-up. These results suggest that systems composed of CETETH 20, PEG-12-dimethicone and water are a promising new approach for designing nanostructured topical drug delivery systems. PMID:26328446

  6. Installation package for a Sunspot Cascade Solar Water Heating System

    SciTech Connect

    1980-09-01

    Elcam, Incorporated of Santa Barbara, California, has developed two solar water heating systems. The systems have been installed at Tempe, Arizona and San Diego, California. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank and controls. General guidelines are provided which may be utilized in development of detailed instalation plans and specifications. In addition, it provides instruction on operation, maintenance and installation of solar hot water systems.

  7. Chemical evolution of primitive solar system bodies

    NASA Technical Reports Server (NTRS)

    Oro, J.; Mills, T.

    1989-01-01

    Observations on organic molecules and compounds containing biogenic elements in the interstellar medium and in the primitive bodies of the solar system are reviewed. The discovery of phosphorus molecular species in dense interstellar clouds, the existence of organic ions in the dust and gas phase of the comas of Comet Halley, and the presence of presolar, deuterium-hydrogen ratios in the amino acids of carbonaceous chondrites are discussed. The relationships between comets, dark asteroids, and carbonaceous chondrites are examined. Also, consideration is given to the chemical evolution of Titan, the primitive earth, and early Mars.

  8. Dark matter in the outer solar system

    NASA Technical Reports Server (NTRS)

    Owen, T.; Cruikshank, D.; De Bergh, C.; Geballe, T.

    1994-01-01

    There are now a large number of small bodies in the outer solar system that are known to be covered with dark material. Attempts to identify that material have been thwarted by the absence of discrete absorption features in the reflection spectra of these planetesimals. An absorption at 2.2 micrometers that appeared to be present in several objects has not been confirmed by new observations. Three absorptions in the spectrum of the unusually red planetesimal 5145 Pholus are well-established, but their identity remains a mystery.

  9. Microarray assays for solar system exploration

    NASA Astrophysics Data System (ADS)

    Steele, Andrew; Toporski, Jan; McKay, David S.; Schweitzer, Mary; Pincus, Seth; Pérez-Mercader, Juan; Parro García, Victor

    2001-08-01

    The detection of evidence of extinct and extant life is a key issue in astrobiological research, particularly with respect to future exploration of the solar system. Simple life forms may have evolved and developed on planetary bodies such as Mars or Europa. At this point in time, tests whether life once was or still is present can only be carried out by means of in situ experiments. Here, we discuss the potential and advantages of immunological concepts for life detection and the development of a miniaturized automated immunoassay flight device.

  10. SOLAR SYSTEM OBJECTS AS COSMIC RAYS DETECTORS

    SciTech Connect

    Privitera, P.; Motloch, P.

    2014-08-10

    In a recent Letter, Jupiter is presented as an efficient detector for Ultra-High Energy Cosmic Rays (UHECRs), through measurement by an Earth-orbiting satellite of gamma rays from UHECRs showers produced in Jupiter's atmosphere. We show that this result is incorrect, due to erroneous assumptions on the angular distribution of shower particles. We evaluated other solar system objects as potential targets for UHECRs detection, and found that the proposed technique is either not viable or not competitive with traditional ground-based UHECRs detectors.

  11. Rosacea: a review of current topical, systemic and light-based therapies.

    PubMed

    Kennedy Carney, C; Cantrell, W; Elewski, B E

    2009-12-01

    Rosacea is a common chronic inflammatory disorder of the facial skin characterized by periods of exacerbation, remission and possible progression. The principle subtypes include erythematotelangiectatic rosacea, papulopustular rosacea, phymatous rosacea and ocular rosacea. Although the pathogenesis is unknown, rosacea is largely recognized as an inflammatory disorder. Individual subtypes are likely a result of different pathogenic factors and respond best to different therapeutic regimens. The non-pharmacologic approach to therapy is adequate skin care, trigger avoidance and photoprotection; in addition, there are several topical, herbal, systemic and light based therapies available. Standard Food and Drug Administration (FDA) approved treatments include topical sodium sulfacetamide, metronidazole, and azelaic acid. Anti-inflammatory dose doxycycline, a controlled-release 40 mg formulation offers a non-antibiotic, anti-inflammatory treatment option. Combination of azelaic acid or topical metronidazole with anti-inflammatory doxycycline appears to have a synergistic effect. Oral isotretinoin may be effective for phymatous rosacea and treatment resistant rosacea. Light based therapies with pulsed dye laser and intense pulsed light are effective in treatment of erythema and telangiectasias. As our knowledge of rosacea and its therapeutic options expand, a multifaceted approach to treatment is warranted. PMID:19907406

  12. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design and development of marketable solar heating and cooling systems for single family and commercial applications is described. The delivery, installation, and monitoring of the prototype systems are discussed. Seven operational test sites are discussed in terms of system performance. Problems encountered with equipment and installation were usually due to lack of skills required for solar system installation.

  13. Topic Maps: Adopting User-Centred Indexing Technologies in Course Management Systems

    ERIC Educational Resources Information Center

    Venkatesh, Vivek; Shaw, Steven; Dicks, Dennis; Lowerison, Gretchen; Zhang, Dai; Sanjakdar, Roukana

    2007-01-01

    This article provides an empirical evaluation of an indexing technology, topic maps (ISO 13250), in the context of an academic task in a higher education context. Topic maps are a form of indexing that define and display the interrelationships between various topics in a given domain, as well as anchor these topics to specific resources that help…

  14. Solar Dynamic Power System Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Dias, Lakshman G.

    1996-01-01

    The objective of this research is to conduct various fault simulation studies for diagnosing the type and location of faults in the power distribution system. Different types of faults are simulated at different locations within the distribution system and the faulted waveforms are monitored at measurable nodes such as at the output of the DDCU's. These fault signatures are processed using feature extractors such as FFT and wavelet transforms. The extracted features are fed to a clustering based neural network for training and subsequent testing using previously unseen data. Different load models consisting of constant impedance and constant power are used for the loads. Open circuit faults and short circuit faults are studied. It is concluded from present studies that using features extracted from wavelet transforms give better success rates during ANN testing. The trained ANN's are capable of diagnosing fault types and approximate locations in the solar dynamic power distribution system.

  15. Occultation studies of the solar system

    NASA Technical Reports Server (NTRS)

    Millis, Robert L.

    1988-01-01

    Occultations of stars by planets, satellites, planetary ring systems, asteroids, and comets provide valuable opportunities to probe the Solar System in ways otherwise impossible from the surface of the earth. For example, one can precisely measure the size and shape of objects which are much too small to be resolved directly, accurately map the structure and transparency of ring systems, and detect the faintest trace of an atmosphere. In this investigation, researchers identify upcoming occultations through wide-ranging computer searches, provide accurate predictions for the more important events, and observe selected occultations with our specially designed portable photometric equipment. During the past year, researchers produced accurate predictions for an occultation of AG+40 degrees 0783 by 324 Bamberga on 8 December 1987 and coordinated efforts to observe this event. The occultation was successfully observed at 13 sites including two manned by Lowell Observatory astronomers.

  16. Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor

    E-print Network

    Herndon, J M

    2006-01-01

    Only three processes, operant during the formation of the Solar System, are responsible for the diversity of matter in the Solar System and are directly responsible for planetary internal-structures, including planetocentric nuclear fission reactors, and for dynamical processes, including and especially, geodynamics. These processes are: (i) Low-pressure, low-temperature condensation from solar matter in the remote reaches of the Solar System or in the interstellar medium; (ii) High-pressure, high-temperature condensation from solar matter associated with planetary-formation by raining out from the interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial volatile components from the inner portion of the Solar System by super-intense solar wind associated with T-Tauri phase mass-ejections, presumably during the thermonuclear ignition of the Sun. As described herein, these processes lead logically, in a causally related manner, to a coherent vision of planetary formation with profound imp...

  17. Solar Sailing

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  18. Test and evaluation of a solar-heating system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report documents results of evaluation tests performed on components of commerical solar heating and hot water system. Subsystems tested include flat plate solar collector, energy transport module, and control panel. Tests conducted include snow and wind loads, flame spread, and smoke classification as well as solar heating operation.

  19. The Submillimeter Wave Astronomy Satellite (SWAS) solar array system

    NASA Technical Reports Server (NTRS)

    Sneiderman, Gary

    1993-01-01

    The SWAS (Submillimeter Wave Astronomy Satellite) solar array system is described. It is an innovative approach to meet the missions requirements. The SWAS satellite provides a three axis stabilized platform to survey a variety of galactic cloud structures. This system includes highly reliable, lightweight launch latch, deployment, and lock mechanisms, and solar array panels that provide the maximum solar cell area. The design of the solar arrays are the result of system trades that included instrument and spacecraft thermal constraints, attitude control system maneuvering rates and pointing accuracies, the power system, and the spacecraft structure.

  20. Accepted for publication in Knowledge and Information Systems Analyzing Topics and Authors in Chat

    E-print Network

    Fung, Benjamin C. M.

    : I have candy nose. come and pick. [21:07] John: wht abt ice cock? (topicD) ..........etc [23:07] Steven: did u give him tht? [23:08] Mark: yes. wht abt u?..did u worked hard on tht grl [23:09] Steven webcam candy nose baby ice coke ...etc ...etc 0 10 20 30 40 50 60 topicS topicD topicI 0 10 20 30 40 50

  1. Solar energy utilization and microcomputer control in the greenhouse builk curing and drying solar system

    SciTech Connect

    Nassar, A.N.H.

    1987-01-01

    Three agricultural applications in a specially designed greenhouse solar system functioning as a multi-purpose solar air collector for crop production and curing/drying processes are examined. An automated hydroponic crop production system is proposed for the greenhouse solar system. Design criteria of the proposed system and its utilization of solar energy for root-zone warming are presented and discussed. Based upon limited testing of the hydroponic system considered, hydroponic production of greenhouse crops is believed reasonable to complement the year-round use of the greenhouse solar system. The hardware/software design features of a microcomputer-based control system applied in the greenhouse solar barn are presented and discussed. On-line management and utilization of incident solar energy by the microcomputer system are investigated for both the greenhouse and tobacco curing/drying modes of operation. The design approach considered for the microcomputer control system is believed suitable for regulating solar energy collection and utilization for crop production applications in greenhouse systems.

  2. ECE 461 FUNDAMENTALS OF SOLAR ENERGY Time/Day: TBA Room: TBA

    E-print Network

    Stuart, Steven J.

    1 ECE 461 FUNDAMENTALS OF SOLAR ENERGY Time/Day: TBA Room: TBA Instructor: Rajendra Singh Topics Covered Topic Hours Course Overview 1 Solar Energy: Introduction 2 Importance of Solar Energy as Clean & Sustainable Energy 3 Fundamentals & Technology of Solar Thermal Systems 3 Fundamentals

  3. A dissipative model of solar system

    NASA Astrophysics Data System (ADS)

    Vladimir, V. G.

    2009-04-01

    In classical model of Solar system of a planet are represented by the material points cooperating under the law of universal gravitation. This model remains fair if planet to consider as absolutely firm spheres with spherical distribution of density. The gravitational potential of such body coincides with potential of a material point, and rotation of each sphere concerning his centre of weights occurs to constant angular speed. Movement concerning the centre of weights of a sphere is represented by rotation with constant angular speed concerning an axis of an any direction, and movement of the centers of weights of spherical planets identically to movement in the appropriate problem of N points. Let's notice, that forms of planets of Solar system are close to spherical as dominant forces at formation of planets are gravitational forces to which forces of molecular interaction in substance of a planet counteract. The model of the isolated Solar system submitted in a not indignant condition N by homogeneous viscoelastic spheres is considered. Under action of own rotation and tidal gravitational forces the spherical planet changes the form: there is "flattening" a planet in a direction of a vector of its angular speed and formation of tidal humps on the lines connecting the centre of a planet with the centers of other planets. From a variational principle of Hamilton the full system of the equations describing movements of the centers of weights of planets, rotations of systems of coordinates, by integrated image connected with planets, and deformations of planets be relative these of systems of coordinates is received. It is supposed, that tidal gravitational, centrifugal and elastic forces result in small change of the spherical form of a planet. In system there are small parameters - inversely proportional of the Young modules of materials of the planets, providing small deformations of planets at influence on them of the centrifugal forces produced by own rotation of planets, and the small tidal deformations arising under influence of gradients of gravitational forces. The method of division of movements receives the equations describing movements of the centers of weights of planets and their own rotations. In the offered model takes place a dissipation of the energy which source are internally viscous forces of each planet. The system supposes the first integral - the law of preservation of the kinetic moment concerning the centre of weights of system. As a result of deformations of planets in the law of the universal gravitation which has been written down for material points, there are small conservative amendments. The equations of movement describe movement of the centers of weights of planets and their rotation around of the centers of weights in view of the tidal phenomena and the dissipative forces. The connected system of the equations consists of 3N the vector equations of the second order representing the theorems of movement of the centers of weights of planets, and N the vector equations of the first order determining changes of the own kinetic moments of each planet. Stationary values of full mechanical energy on the variety set in integral of the kinetic moment, correspond to stationary movements - to rotations of system as firm body with constant angular speed around of the centre of weights of all system. Angular speed of stationary rotation is directed along a constant vector of the kinetic moment, and the axis of rotation is the main central axis of inertia of system. We shall notice, that deformations of planets in stationary movement are constant, as in system of coordinates rotating with constant angular speed centrifugal forces and forces of gravitational interaction of planets are constant. Stationary configurations of system are determined according to Routh`s technique as stationary points of the changed potential energy submitted by the sum potential energies of centrifugal and gravitational forces. The first variation of the changed potential energy addresses in zero on a stationa

  4. Accretion and evolution of solar system bodies

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.; Davis, Donald R.

    1991-01-01

    We use a combination of analytical and numerical methods to study dynamical processes involved in the formation of planets and smaller bodies in the solar system. Our goal was to identify and understand critical processes and to link them in a numerical model of planetesimal accretion. We study effects of these processes by applying them in the context of the standard model of solar system formation, which involves accretion of the terrestrial planets and cores of the giant planet from small planetesimals. The principal focus of our research effort is the numerical simulation of accretion of a swarm of planetesimals into bodies of planetary size. Our computer code uses a Monte Carlo method to determine collisional interactions within the swarm. These interactions are not determined simply by a relative velocity, but rather by explicit distributions of keplerian orbital elements. The planetesimal swarm is divided into a number of zones in semimajor axis, which are allowed to interact. The present version of our code has the capability of following detailed distributions of size, eccentricity, and inclination in each zone.

  5. Solar-System Tests of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    2001-01-01

    We are engaged in testing gravitational theory, primarily using observations of objects in the solar system and primarily on that scale. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to place tighter bounds on such departures. For this project, we have analyzed a combination of observational data with our model of the solar system, including mostly planetary radar ranging, lunar laser ranging, and spacecraft tracking, but also including both pulsar timing and pulsar very long base interferometry (VLBI) measurements. This year, we have extended our model of Earth nutation with adjustable correction terms at the principal frequencies. We also refined our model of tidal drag on the Moon's orbit. We believe these changes will make no substantial changes in the results, but we are now repeating the analysis of the whole set of data to verify that belief. Additional information is contained in the original extended abstract.

  6. Solar-System Tests of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin

    1997-01-01

    We are engaged in testing gravitational theory by means of observations of objects in the solar system. These tests include an examination of the Principle Of Equivalence (POE), the Shapiro delay, the advances of planetary perihelia, the possibility of a secular variation G in the "gravitational constant" G, and the rate of the de Sitter (geodetic) precession of the Earth-Moon system. These results are consistent with our preliminary results focusing on the contribution of Lunar Laser Ranging (LLR), which were presented at the seventh Marcel Grossmann meeting on general relativity. The largest improvement over previous results comes in the uncertainty for (eta): a factor of five better than our previous value. This improvement reflects the increasing strength of the LLR data. A similar analysis presented at the same meeting by a group at the Jet Propulsion Laboratory gave a similar result for (eta). Our value for (beta) represents our first such result determined simultaneously with the solar quadrupole moment from the dynamical data set. These results are being prepared for publication. We have shown how positions determined from different planetary ephemerides can be compared and how the combination of VLBI and pulse timing information can yield a direct tie between planetary and radio frames. We have continued to include new data in our analysis as they became available. Finally, we have made improvement in our analysis software (PEP) and ported it to a network of modern workstations from its former home on a "mainframe" computer.

  7. Solar System Test for Alternative Gravity Theories

    NASA Astrophysics Data System (ADS)

    Bustos, Richard

    2015-04-01

    Over the past year I've worked with Dr. Biswas and Dr.Brans from Loyola University, on different aspects of General relativity. More recently we have been focusing on particle and photon orbits in Schwarzschild-like metric which is relevant to understand observations such as photon deflection and perihelion precession of Mercury. These observations can be used to test alternative gravity theories, such as f(R) Theories. Such solar system tests have proved extremely useful to constrain alternative theories of gravity, such as f(R) theories that try to solve the dark energy problem. While so far most theorists have focused on the simplest f(R) type of modification of gravity to realize the phase of late time cosmic speed-up that we are observing, there are several other viable candidates. In particular, many ``effective'' approaches to gravity gives rise to f(R,G) type of modifications, where G is the Gauss Bonnet term. Accordingly, we are currently trying to understand how solar system tests can constrain this more general class of f(R,G) dark energy models. In my talk I will present our progress in this direction. NSF Grant

  8. Planet Formation in the Outer Solar System

    E-print Network

    Scott J. Kenyon

    2001-12-05

    This paper reviews coagulation models for planet formation in the Kuiper Belt, emphasizing links to recent observations of our and other solar systems. At heliocentric distances of 35-50 AU, single annulus and multiannulus planetesimal accretion calculations produce several 1000 km or larger planets and many 50-500 km objects on timescales of 10-30 Myr in a Minimum Mass Solar Nebula. Planets form more rapidly in more massive nebulae. All models yield two power law cumulative size distributions, N_C propto r^{-q} with q = 3.0-3.5 for radii larger than 10 km and N_C propto r^{-2.5} for radii less than 1 km. These size distributions are consistent with observations of Kuiper Belt objects acquired during the past decade. Once large objects form at 35-50 AU, gravitational stirring leads to a collisional cascade where 0.1-10 km objects are ground to dust. The collisional cascade removes 80% to 90% of the initial mass in the nebula in roughly 1 Gyr. This dust production rate is comparable to rates inferred for alpha Lyr, beta Pic, and other extrasolar debris disk systems.

  9. OSSOS: The Outer Solar System Origins Survey

    NASA Astrophysics Data System (ADS)

    Gladman, Brett; Bannister, Michele; Kavelaars, Jj; Petit, Jean-Marc; Gwyn, Stephen; Chen, Ying-Tung

    2014-11-01

    We present the first detection set from the Outer Solar System Origins Survey (OSSOS) which is a mammoth 560-hour CFHT Large Program over 4 years (finishing January 2017). This is likely to be the largest Kuiper Belt survey before LSST comes on line (in terms of the number of precise transneptunian object (TNO) orbits it provides).OSSOS studies gradually-slewing 21-square degree blocks of sky that are repeatedly imaged in many dark runs over two semesters. This strategy is designed to detect and track TNOs in order to provide extremely high-quality orbits in a short amount of time; in 16-18 month arcs we are obtaining fractional semimajor axis uncertainties in the range 0.01-0.1% and accuracies in the libration amplitudes of resonant objects better than 10 degrees, due to mean astrometric residuals routinely being of order 50-100 milliarcseconds.This talk will present the survey design and full detection sample for objects observed in the first half of 2013 and 2014. We will report how adding these detections to those from the Canada-France Ecliptic Plane Survey (CFEPS) modifies conclusions about the orbital and size distribution of main classical Kuiper Belt, as well as other non-resonant sub-populations. In particular, because OSSOS is sensitive to, and has detected objects, from 8 AU to beyond 60 AU, we will report on how the combined distance and magnitude distribution impact dicsussions of the absolute magnitude distribution of outer Solar System objects.

  10. Phase 1 of the First Solar Small Power System Experiment (experimental System No. 1). Volume 3: Appendix E - N

    NASA Technical Reports Server (NTRS)

    Clark, T. B. (editor)

    1979-01-01

    The design of a solar electric power plant for a small community is reported. Topics covered include: (1) control configurations and interface requirements for the baseline power system; (2) annual small power system output; (3) energy requirements for operation of the collectors and control building; (4) life cycle costs and reliability predictions; (5) thermal conductivities and costs of receiver insulation materials; (6) transient thermal modelling for the baseline receiver/thermal transport system under normal and inclement operating conditions; (7) high temperature use of sodium; (8) shading in a field of parabolic collectors; and (9) buffer storage materials.

  11. Water in small bodies of the Solar System

    NASA Astrophysics Data System (ADS)

    Bockelee-Morvan, Dominique

    2015-08-01

    Water in form of ice or vapour is observed in comets, transneptunian objects and icy satellites formed in the outer regions of the Solar System, as well as in objects orbiting in the inner Solar System, such as dwarf planet Ceres.I will present an overview of the water content and properties in these objects and the implications in terms of solar system formation and evolution.

  12. Megawatt solar power systems for lunar surface operations

    NASA Technical Reports Server (NTRS)

    Adams, B.; Alhadeff, S.; Beard, S.; Carlile, D.; Cook, D.; Douglas, C.; Garcia, D.; Gillespie, D.; Golingo, R.; Gonzalez, D.

    1990-01-01

    The work presented here shows that a solar power system can provide power on the order of one megawatt to a lunar base with a fairly high specific power. The main drawback to using solar power is still the high mass, and therefore, cost of supplying energy storage through the solar night. The use of cryogenic reactant storage in a fuel cell system, however, greatly reduces the total system mass over conventional energy storage schemes.

  13. Organic Matter in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Cruiskshank, Dale P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Many solid bodies in the outer Solar System are covered with ices of various compositions, including water, carbon dioxide, methane, nitrogen, and other molecules that are solid at the low temperatures that prevail there. These ices have all been detected by remote sensing observations made with telescopes on Earth, or more recently, spacecraft in orbit (notably Galileo at Jupiter). The data also reveal other solid materials that could be minerals or complex carbon-bearing organic molecules. A study in progress using large ground-based telescopes to acquire infrared spectroscopic data, and laboratory results on the optical properties of complex organic matter, seeks to identify the non-icy materials on several satellites of Saturn, Uranus, and Neptune. The work on the satellites of Saturn is in part preparatory to the Cassini spacecraft investigation of the Saturn system, which will begin in 2004 and extend for four years.

  14. Six Hot Topics in Planetary Astronomy

    E-print Network

    David Jewitt

    2008-11-14

    Six hot topics in modern planetary astronomy are described: 1) lightcurves and densities of small bodies 2) colors of Kuiper belt objects and the distribution of the ultrared matter 3) spectroscopy and the crystallinity of ice in the outer Solar system 4) irregular satellites of the giant planets 5) the Main Belt Comets and 6) comets and meteor stream parents.

  15. Formation of the Solar System What properties of our solar

    E-print Network

    Crenshaw, Michael

    the gravitational collapse of a giant interstellar gas cloud--the solar nebula (Nebula is the Latin word for cloud pulls in her arms · Collisions between particles in the cloud caused it to flatten into a disk Accretion of Planetesimals · Many smaller objects collected into just a few large ones #12;7 How did jovian

  16. Implementation of optimum solar electricity generating system

    SciTech Connect

    Singh, Balbir Singh Mahinder Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  17. Implementation of optimum solar electricity generating system

    NASA Astrophysics Data System (ADS)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  18. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress made in the manufacture, test, evaluation, installation, problem resolution, performance evaluation, and development of eight prototype solar heating and combined heating and cooling systems is described.

  19. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Eight prototype solar heating and combined heating and cooling systems are being developed. The effort includes development, manufacture, test, installation, maintenance, problem resolution, and performance evaluation.

  20. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Eight prototype solar heating and combined heating and cooling systems are considered. This effort includes development, manufacture, test, installation, maintenance, problem resolution, and performance evaluation.

  1. Experience with solar systems for heating swimming pools in Germany

    SciTech Connect

    Croy, R.; Peuser, F.A. )

    1994-07-01

    The results of the demonstration programme [open quotes]Efficient Use of Energy in Swimming Pool Construction[close quotes] has had a positive effect on the dissipation of solar systems for swimming pools. Infrared measurements show how a homogeneous flow can be achieved in the absorber field. The fact that solar systems are acceptable can be clearly in evidence that the behaviour of visitors to purely solar-heated pools with variable water temperature does not differ in principle from conventionally-heated pools with constant temperature. Economic considerations of the operation show that swimming pool solar systems are competitive with conventional heating systems.

  2. Potential of solar cooling systems for peak demand reduction

    SciTech Connect

    Pesaran, A.A.; Neymark, J.

    1994-11-01

    We investigated the technical feasibility of solar cooling for peak demand reduction using a building energy simulation program (DOE2.1D). The system studied was an absorption cooling system with a thermal coefficient of performance of 0.8 driven by a solar collector system with an efficiency of 50% with no thermal storage. The analysis for three different climates showed that, on the day with peak cooling load, about 17% of the peak load could be met satisfactorily with the solar-assisted cooling system without any thermal storage. A performance availability analysis indicated that the solar cooling system should be designed for lower amounts of available solar resources that coincide with the hours during which peak demand reduction is required. The analysis indicated that in dry climates, direct-normal concentrating collectors work well for solar cooling; however, in humid climates, collectors that absorb diffuse radiation work better.

  3. Solar Assisted Adsorptive Desiccant Cooling System

    NASA Astrophysics Data System (ADS)

    Ohkura, Masashi; Kodama, Akio

    Solar assisted desiccant coo1ing process is an effective means to reduce a latent heat load of the ventilation air. This paper describes the influences of ambient humidity and sensible heat factor (SHF) of the indoor room on the performance and scale of the desiccant cooling system. Two process configurations termed “ambient air mode” and “mixed air mode” were assumed. At “ambient air mode”, only ambient air is dehumidified and cooled in the desiccant process. The dehumidified air stream is mixed with return air and further cooled in the cooling coil. At “mixed air mode”, ambient air is mixed with return air and this mixed air stream is dehumidified in the desiccant process and cooled at the cooling coil. At “ambient air mode”, ambient air humidity had a significant impact on required amount of dehumidification since humid ambient air entered the desiccant process directly. In this case, higher temperature level and quantity, which is impossible to be supplied from commonly commercialized flat panel solar collectors, was required. At “mixed air mode”, the influence of increase of ambient humidity was not significant since humidity of the air entering the desiccant process became low by mixing with return air. At this mode, it was expected that 70°C of the circulating water and 37m2 of surface area of solar collector could produce a sufficient dehumidifying performance even in high latent heat condition. The contributing ratio of the desiccant wheel was also estimated. The ratio increased in higher latent heat condition due to increase of required amount of dehumidification. The contributing ratio of the thermal wheel became lower due to increase of saturated air temperature in the evaporative cooler.

  4. Installation package for a solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  5. Design data brochure for a pyramidal optics solar system

    SciTech Connect

    Not Available

    1980-09-01

    This Design Data Brochure provides information on a Pyramidal Optics Solar System for solar heating and domestic hot water. The system is made up of the collecting, storage, and distribution subsystems. Contained in the brochure are such items as system description, available accessories, installation arrangements, physical data, piping and wiring diagrams, and guide specifications.

  6. Heat-Transfer Fluids for Solar-Energy Systems

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1982-01-01

    43-page report investigates noncorrosive heat-transport fluids compatible with both metallic and nonmetallic solar collectors and plumbing systems. Report includes tables and figures of X-ray inspections for corrosion and schematics of solar-heat transport systems and heat rejection systems.

  7. 77 FR 39736 - Certain Integrated Solar Power Systems and Components Thereof; Notice of Termination of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ...337-TA-811] Certain Integrated Solar Power Systems and Components Thereof; Notice...Westinghouse Solar, Inc. and Andalay Solar, Inc., both of Campbell...importation of certain integrated solar power systems and components thereof by...

  8. Developing, testing, evaluating, and optimizing solar heating and cooling systems

    NASA Astrophysics Data System (ADS)

    1992-01-01

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991 to 92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems; (2) a project to build and test several generic solar water heaters; (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems; (4) a liquid desiccant cooling system development project; (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research; and (6) a management task. The objectives and progress in each task are described in this report.

  9. Developing, testing, evaluating and optimizing solar heating and cooling systems

    SciTech Connect

    Not Available

    1992-01-24

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems; (2) a project to build and test several generic solar water heaters; (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems; (4) a liquid desiccant cooling system development project; (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research; and (6) a management task. The objectives and progress in each task are described in this report.

  10. Advanced solar dynamic technology program

    NASA Astrophysics Data System (ADS)

    Calogeras, James

    Viewgraphs and discussion on Advanced Solar Dynamic Technology Program are presented. Topics covered include: advanced solar dynamic technology program; advanced concentrators; advanced heat receivers; power conversion systems; dished all metal honeycomb sandwich panels; Stirling cavity heat pipe receiver; Brayton solar receiver; and thermal energy storage technology.

  11. Solar astronomy

    NASA Technical Reports Server (NTRS)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  12. NASA Science Mission Directorate's Year of the Solar System: An Opportunity for Scientist Involvement

    NASA Astrophysics Data System (ADS)

    Dalton, Heather; Shipp, S.; Boonstra, D.; Shupla, C.; CoBabe-Ammann, E.; LaConte, K.; Ristvey, J.; Wessen, A.; Zimmerman-Bachman, R.; Science E/PO Community, Planetary

    2010-10-01

    Between October 2010 and August 2012 - across a Martian year - a large number of Science Mission Directorate's (SMD) planetary missions will pass milestones (e.g., EPOXI, Stardust-NExT, MESSENGER, Dawn, Juno, GRAIL, and Mars Science Laboratory), with many other missions continuing to explore (e.g., Lunar Reconnaissance Orbiter, Mars Odyssey, Mars Exploration Rovers, Mars Reconnaissance Orbiter, Mars Express, Cassini, New Horizons, and Voyager). This Year of the Solar System (YSS) offers the Planetary Science Education and Public Outreach (E/PO) community an opportunity to collaborate with each other and the science community. Based on audience needs from formal and informal educators, YSS is structured to have monthly thematic topics that are driven by mission milestones, as well as observing opportunities. YSS will connect to ongoing and planned events nationwide. A website for YSS is in development and will be hosted off of the existing JPL Solar System website (http://solarsystem.nasa.gov/index.cfm). Once live, scientists, educators, and E/PO professionals will have a place to interact and collaborate. YSS will tie to NASA's Big Questions in Planetary Science - how did the Sun's family of planets and minor bodies originate and how have they evolved? - how did life begin and evolve on Earth, is it elsewhere, and what characteristics of the solar system lead to the origins of life? The thematic topics are broad in order to encompass many missions and planetary bodies each month, as well as address the Big Questions. YSS will kick off in October with the theme "Solar System Components and Scale” and a national event involving building solar system scale models across the country. Scientists are encouraged to contact schools, museums, planetaria, etc. in their communities to give presentations, provide science content, and collaborate on educational materials and events related to YSS.

  13. Prototype residential solar-energy system-design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Compilation includes documents and drawings for complete solar-heating system. It discussed system installed in residential building at Veterns' Administration Hospital in Togus, Maine. System can be adapted to other buildings without changing design.

  14. Preliminary design activities for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  15. PRELIMINARY ENVIRONMENTAL ASSESSMENT OF SOLAR ENERGY SYSTEMS

    EPA Science Inventory

    This report addresses the environmental consequences of three kinds of solar energy utilization: photovoltaic, concentrator (steam electric) and flat plate. The application of solar energy toward central power generating stations is emphasized. Discussions of combined modes and o...

  16. Solar energy grid integration systems "SEGIS"

    SciTech Connect

    None, None

    2007-10-01

    The inevitable transformation of the electrical grid to a more distributed generation configuration requires solar system capabilities well beyond simple net-metered, grid-connected approaches. Time-of-use and peak-demand rate structures will require more sophisticated systems designs that integrate energy management and/or energy storage into the system architecture. Controlling power flow into and from the utility grid will be required to ensure grid reliability and power quality. Alternative protection strategies will also be required to accommodate large numbers of distributed energy sources. This document provides an overview of the R&D needs and describes some pathways to promising solutions. The solutions will, in many cases, require R&D of new components, innovative inverter/controllers, energy management systems, innovative energy storage and a suite of advanced control algorithms, technical methodologies, protocols and the associated communications. It is expected that these solutions will help to push the “advanced integrated system” and “smart grid” evolutionary processes forward in a faster but focused manner.

  17. Chemical compositions of primitive solar system particles

    NASA Technical Reports Server (NTRS)

    Sutton, Steve R.; Bajt, S.

    1994-01-01

    Chemical studies of micrometeorites are of fundamental importance primarily because atmospheric entry selection effects (such as destruction of friable objects) are less significant than those for conventional meteorites. As a result, particles that have experienced very little postaccretional processing have a significant chance of surviving the Earth encounter and subsequent collection. Thus, chemical analyses of these relatively unaltered micrometeorites may lead to a better understanding of the compositions of the most primitive materials in the solar system and thereby constrain the conditions (physical and chemical) that existed in the early solar nebula. Micrometeorites have been collected from the stratosphere, polar ices, and ocean sediments, but the stratospheric collection is the best source for the most unaltered material because they are small and are not heated to their melting points. Despite the fact that the stratospheric micrometeorites have masses in the nanogram range, a variety of microanalytical techniques have been applied to bulk chemical analyses with part-per-million sensitivity. In some cases, multi-disciplinary studies (e.g., chemistry and mineralogy) have been performed on individual particles. The first-order conclusion is that the chondrite-like particles are chemically similar to carbonaceous chondrites but in detail are distinct from members of the conventional meteorite collection. The purpose of this paper is to provide an overview of the results to date and identify important areas for further study.

  18. A solar heating system with annual storage

    NASA Astrophysics Data System (ADS)

    Lazzari, F.; Raffellini, G.

    1981-07-01

    A solar heated house with long term storage capability, built in Trento, Italy, is described. The one story house was built from modular components and has a total heated volume of 1130 cu m. Flat plate solar collectors with a water-antifreeze medium are located beneath the lawn, and six cylindrical underground tanks holding 130 cu m of water heated by thermal energy from the collectors are situated under the garden. The house walls have an 8 cm cavity filled with 5 cm of formaldehyde foam, yielding a heat transmission (U) of 0.37 W/sq m/deg C. The roof and ceilings are insulated with fiberglass and concrete, producing U-values of 0.46 W/sq m/deg C and 0.57 W/sq m/deg C, respectively. Heat pumps using 6 kW move thermal energy between the house and the tanks. Direct hot water heating occurs in the summer, and direct home heating when the stored water temperature exceeds 32 C. A computer model was developed which traces the annual heat flow and it is shown that the system supplies all heating requirements for the house, with electrical requirements equal to 20 percent of the annual house needs.

  19. COSIS: Coimbra Observatory Solar Information System

    NASA Astrophysics Data System (ADS)

    Dorotovi?, I.; Fernandes, J.; Fonseca, J. M.; Mora, A.; Moreira, C.; Ribiero, R. A.

    2007-05-01

    Since 1926 full-disk spectroheliograms have been routinely taken in Coimbra Observatory in the Ca II K line (K1 and K3) and in 1990 regular observations in the H? line have also started. These observations are preformed by a spectroheliograph, a twin of the spectroheliograph operated at the Observatoire de Meudon. In 2002 we started to digitalize our collection of more than 30 000 solar images. In 2005 we started the project COSIS (Coimbra Observatory: Solar Information System). The purpose of COSIS is to develop a software tool for automatic image processing and feature recognition of sunspots (K1), chromospheric plages (K3), and filaments (H?) for usage by astronomers and other interested parties. At this stage of the project only automatic image processing of sunspot is being performed and the first results are presented in this contribution. However, we intend in the future to extend the automatic feature recognition process to chromospheric spectroheliograms (K3 and H?) as well. Financed by FCT, MCTES, Lisbon, Portugal: POCTI-CTE-AST/58333/2004.

  20. Quantum Signatures of Solar System Dynamics

    E-print Network

    Arkady L. Kholodenko

    2008-10-17

    Let w(i) be a period of rotation of the i-th planet around the Sun (or w(j;i) be a period of rotation of j-th satellite around the i-th planet). From empirical observations it is known that the sum of n(i)w(i)=0 (or the sum of n(j)w(j;i)=0) for some integers n(i) (or n(j)), different for different satellite systems. These conditions, known as resonance conditions, make uses of theories such as KAM difficult to implement. The resonances in Solar System are similar to those encountered in old quantum mechanics where applications of methods of celestial mechanics to atomic and molecular physics were highly sucsessful. With such a success, the birth of new quantum mechanics is difficult to understand. In short, the rationale for its birth lies in simplicity with which the same type of calculations are done using new methods capable of taking care of resonances. The solution of quantization puzzle was found by Heisenberg. In this paper new uses of Heisenberg's ideas are found. When superimposed with the equivalence principle of general relativity, they lead to quantum mechanical tratment of observed resonances in Solar System. To test correctness of our theoretical predictions the number of allowed stable orbits for planets and for equatorial stable orbits of satellites of heavy planets is calculated resulting in good agreement with observational data. In addition, the paper briefly discusses quantum mechanical nature of rings of heavy planets and potential usefulness of the obtained results for cosmology.

  1. Comparison of photovoltaic energy systems for the solar village

    NASA Astrophysics Data System (ADS)

    Piercefrench, Eric C.

    1988-08-01

    Three different solar photovoltaic (PV) energy systems are compared to determine if the electrical needs of a solar village could be supplied more economically by electricity generated by the sun than by existing utility companies. The solar village, a one square mile community of 900 homes and 50 businesses, would be located in a semi-remote area of the Arizona desert. A load survey is conducted and information on the solar PV industry is reviewed for equipment specifications, availability, and cost. Three specific PV designs, designated as Stand-Alone, Stand-Alone with interconnection, and Central Solar Plant, were created and then economically compared through present worth analysis against utility supplied electrical costs. A variety of technical issues, such as array protection, system configuration and operation, and practicability, are discussed for each design. The present worth analysis conclusively shows none of the solar PV designs could supply electricity to the solar village for less cost than utility supplied electricity, all other factors being equal. No construction on a solar village should begin until the cost of solar generated electricity is more competitive with electricity generated by coal, oil, and nuclear energy. However, research on ways to reduce solar PV equipment costs and on ways to complement solar PV energy, such as the use of solar thermal ponds for heating and cooling, should continue.

  2. A systems approach for analysis of high content screening assay data with topic modeling

    PubMed Central

    2013-01-01

    Background High Content Screening (HCS) has become an important tool for toxicity assessment, partly due to its advantage of handling multiple measurements simultaneously. This approach has provided insight and contributed to the understanding of systems biology at cellular level. To fully realize this potential, the simultaneously measured multiple endpoints from a live cell should be considered in a probabilistic relationship to assess the cell's condition to response stress from a treatment, which poses a great challenge to extract hidden knowledge and relationships from these measurements. Method In this work, we applied a text mining method of Latent Dirichlet Allocation (LDA) to analyze cellular endpoints from in vitro HCS assays and related to the findings to in vivo histopathological observations. We measured multiple HCS assay endpoints for 122 drugs. Since LDA requires the data to be represented in document-term format, we first converted the continuous value of the measurements to the word frequency that can processed by the text mining tool. For each of the drugs, we generated a document for each of the 4 time points. Thus, we ended with 488 documents (drug-hour) each having different values for the 10 endpoints which are treated as words. We extracted three topics using LDA and examined these to identify diagnostic topics for 45 common drugs located in vivo experiments from the Japanese Toxicogenomics Project (TGP) observing their necrosis findings at 6 and 24 hours after treatment. Results We found that assay endpoints assigned to particular topics were in concordance with the histopathology observed. Drugs showing necrosis at 6 hour were linked to severe damage events such as Steatosis, DNA Fragmentation, Mitochondrial Potential, and Lysosome Mass. DNA Damage and Apoptosis were associated with drugs causing necrosis at 24 hours, suggesting an interplay of the two pathways in these drugs. Drugs with no sign of necrosis we related to the Cell Loss and Nuclear Size assays, which is suggestive of hepatocyte regeneration. Conclusions The evidence from this study suggests that topic modeling with LDA can enable us to interpret relationships of endpoints of in vitro assays along with an in vivo histological finding, necrosis. Effectiveness of this approach may add substantially to our understanding of systems biology. PMID:24267543

  3. What are we ‘tweeting’ about obesity? Mapping tweets with Topic Modeling and Geographic Information System

    PubMed Central

    Ghosh, Debarchana (Debs); Guha, Rajarshi

    2014-01-01

    Public health related tweets are difficult to identify in large conversational datasets like Twitter.com. Even more challenging is the visualization and analyses of the spatial patterns encoded in tweets. This study has the following objectives: How can topic modeling be used to identify relevant public health topics such as obesity on Twitter.com? What are the common obesity related themes? What is the spatial pattern of the themes? What are the research challenges of using large conversational datasets from social networking sites? Obesity is chosen as a test theme to demonstrate the effectiveness of topic modeling using Latent Dirichlet Allocation (LDA) and spatial analysis using Geographic Information System (GIS). The dataset is constructed from tweets (originating from the United States) extracted from Twitter.com on obesity-related queries. Examples of such queries are ‘food deserts’, ‘fast food’, and ‘childhood obesity’. The tweets are also georeferenced and time stamped. Three cohesive and meaningful themes such as ‘childhood obesity and schools’, ‘obesity prevention’, and ‘obesity and food habits’ are extracted from the LDA model. The GIS analysis of the extracted themes show distinct spatial pattern between rural and urban areas, northern and southern states, and between coasts and inland states. Further, relating the themes with ancillary datasets such as US census and locations of fast food restaurants based upon the location of the tweets in a GIS environment opened new avenues for spatial analyses and mapping. Therefore the techniques used in this study provide a possible toolset for computational social scientists in general and health researchers in specific to better understand health problems from large conversational datasets. PMID:25126022

  4. Chaotic Disintegration of the Inner Solar System

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Morbidelli, Alessandro; Holman, Matthew J.

    2015-02-01

    On timescales that greatly exceed an orbital period, typical planetary orbits evolve in a stochastic yet stable fashion. On even longer timescales, however, planetary orbits can spontaneously transition from bounded to unbound chaotic states. Large-scale instabilities associated with such behavior appear to play a dominant role in shaping the architectures of planetary systems, including our own. Here we show how such transitions are possible, focusing on the specific case of the long-term evolution of Mercury. We develop a simple analytical model for Mercury's dynamics and elucidate the origins of its short-term stochastic behavior as well as of its sudden progression to unbounded chaos. Our model allows us to estimate the timescale on which this transition is likely to be triggered, i.e., the dynamical lifetime of the solar system as we know it. The formulated theory is consistent with the results of numerical simulations and is broadly applicable to extrasolar planetary systems dominated by secular interactions. These results constitute a significant advancement in our understanding of the processes responsible for sculpting of the dynamical structures of generic planetary systems.

  5. CHAOTIC DISINTEGRATION OF THE INNER SOLAR SYSTEM

    SciTech Connect

    Batygin, Konstantin; Morbidelli, Alessandro; Holman, Mathew J.

    2015-02-01

    On timescales that greatly exceed an orbital period, typical planetary orbits evolve in a stochastic yet stable fashion. On even longer timescales, however, planetary orbits can spontaneously transition from bounded to unbound chaotic states. Large-scale instabilities associated with such behavior appear to play a dominant role in shaping the architectures of planetary systems, including our own. Here we show how such transitions are possible, focusing on the specific case of the long-term evolution of Mercury. We develop a simple analytical model for Mercury's dynamics and elucidate the origins of its short-term stochastic behavior as well as of its sudden progression to unbounded chaos. Our model allows us to estimate the timescale on which this transition is likely to be triggered, i.e., the dynamical lifetime of the solar system as we know it. The formulated theory is consistent with the results of numerical simulations and is broadly applicable to extrasolar planetary systems dominated by secular interactions. These results constitute a significant advancement in our understanding of the processes responsible for sculpting of the dynamical structures of generic planetary systems.

  6. Chaotic Disintegration of the Inner Solar System

    E-print Network

    Konstantin Batygin; Alessandro Morbidelli; Mathew J. Holman

    2014-11-18

    On timescales that greatly exceed an orbital period, typical planetary orbits evolve in a stochastic yet stable fashion. On even longer timescales, however, planetary orbits can spontaneously transition from bounded to unbound chaotic states. Large-scale instabilities associated with such behavior appear to play a dominant role in shaping the architectures of planetary systems, including our own. Here we show how such transitions are possible, focusing on the specific case of the long-term evolution of Mercury. We develop a simple analytical model for Mercury's dynamics and elucidate the origins of its short term stochastic behavior as well as of its sudden progression to unbounded chaos. Our model allows us to estimate the timescale on which this transition is likely to be triggered, i.e. the dynamical lifetime of the Solar System as we know it. The formulated theory is consistent with the results of numerical simulations and is broadly applicable to extrasolar planetary systems dominated by secular interactions. These results constitute a significant advancement in our understanding of the processes responsible for sculpting of the dynamical structures of generic planetary systems.

  7. Operations Concept for a Solar System Internetwork

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Denis, Michel; Braatz, Lena

    2011-01-01

    Space communications to date has been largely managed at the link layer, with simple point-to-point links between a spacecraft at Earth. However, future space exploration scenarios involve much richer communications scenarios, with complex network scenarios involving space assets communicating back to Earth via multiple intermediate relay service providers. To support these more complex network scenarios, the Space Internetworking Strategy Group has developed an operations concept for a Solar System Internetwork (SSI). The operations concept draws on the successes of the terrestrial Internet while addressing unique aspects of space communications. Key elements of the operations concept include a standardized network layer across the end-to-end SSI and the underlying processes for development of a contact plan that captures the link layer connectivity among SSI network nodes.

  8. Gravity fields of the solar system

    NASA Technical Reports Server (NTRS)

    Zendell, A.; Brown, R. D.; Vincent, S.

    1975-01-01

    The most frequently used formulations of the gravitational field are discussed and a standard set of models for the gravity fields of the earth, moon, sun, and other massive bodies in the solar system are defined. The formulas are presented in standard forms, some with instructions for conversion. A point-source or inverse-square model, which represents the external potential of a spherically symmetrical mass distribution by a mathematical point mass without physical dimensions, is considered. An oblate spheroid model is presented, accompanied by an introduction to zonal harmonics. This spheroid model is generalized and forms the basis for a number of the spherical harmonic models which were developed for the earth and moon. The triaxial ellipsoid model is also presented. These models and their application to space missions are discussed.

  9. Long Periodic Terms in the Solar System

    NASA Technical Reports Server (NTRS)

    Bretagnon, P.

    1982-01-01

    The long period variations of the first eight planets in the solar system are studied. First, the Lagrangian solution is calculated and then the long period terms with fourth order eccentricities and inclinations are introduced into the perturbation function. A second approximation was made taking into account the short period terms' contribution, namely the perturbations of first order with respect to the masses. Special attention was paid to the determination of the integration constants. The relative importance of the different contributions is shown. It is useless, for example, to introduce the long period terms of fifth order if no account has been taken of the short period terms. Meanwhile, the terms that have been neglected would not introduce large changes in the integration constants. Even so, the calculation should be repeated with higher order short period terms and fifth order long periods.

  10. Anomalous frequency shifts in the solar system

    E-print Network

    Jacques Moret-Bailly

    2005-07-19

    The improvements of the observations of the solar system allowed by the use of probes and big instruments let appear several problems: The frequencies of the radio signals received from the probes sent over 5 UA from the Sun are too high; the explanation by spicules or siphon-flows of the frequency shifts of UV emissions observed on the surface of the sun by SOHO is not satisfactory; the anisotropy of the CMB seems bound to the ecliptic. This problems are solved using a coherent optical effect, deduced from standard spectroscopy and easily observed with lasers. In a gas containing atomic hydrogen in states 2S and (or) 2P, transfers of energy between light beams, allowed by thermodynamics, produce the required frequency shifts or amplifications.

  11. Testing for wSolar System

    E-print Network

    Jerome Martin; Carlo Schimd; Jean-Philippe Uzan

    2005-10-07

    In scalar-tensor theories of gravity, the equation of state of dark energy, w, can become smaller than -1 without violating any energy condition. The value of w today is tied to the level of deviations from general relativity which, in turn, is constrained by solar system and pulsars timing experiments. The conditions on these local constraints for w to be significantly less than -1 are established. It is demonstrated that this requires to consider theories that differ from the Jordan-Fierz-Brans-Dicke theory and that involve either a steep coupling function or a steep potential. It is also shown how a robust measurement of w could probe scalar-tensor theories.

  12. The boundary of the solar system

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.; Torbett, M.

    1984-01-01

    The shape of the boundary of the solar system, defined as the surface within which the gravitational attraction of the sun rather than that of the rest of the Galaxy controls the orbital motion of planets and comets, has been determined. Outside of this surface, the dominant factors are the radial tides due to the galactic center and the vertical tides caused by the galactic disk. Orbits which are direct with respect to the galactic plane have a boundary which differs from that for retrograde orbits, both being 10-20 percent oblate and both larger than the present Oort cloud. The surface may have been the boundary of the early cloud of comets which was later reduced by the passages of stars and molecular clouds.

  13. Solar system ice - Amorphous or crystalline?

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.

    1983-01-01

    The meteoritic bombardment of icy surfaces is discussed, focusing on the formation of amorphous ice and its thermal, mechanical, and optical properties. A numerical code has been developed for evaluating the ratio of the volume of the melted and vaporized ice target to the volume of the projectile that has impacted the surface and left a crater. However, water will only vaporize with impact speeds over 4 to 6 km/sec, and subsequent condensation into ice below 150 K will produce amorphous ice. A denser form of amorphous ice exists below 10 K, with the transition into a crystalline form occurring above 150 K. Maximum impact velocities have been defined for all major bodies in the solar system, with the finding that crystalline ice will form in the crater while amorphous ice will form on the ejecta. The amount of each is dependent on the ratio of solidified water to condensed water vapor and on the fraction of solid ejecta.

  14. Evolution of density in solar system ices

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.; Mcwilliam, A.; Marie, M.

    1984-01-01

    Pores present in ices in the solar system do not remain unchanged. In isothermal conditions they shrink, while in a thermal gradient they migrate towards the higher temperature and escape so that the ice densifies. This motion has been investigated for pure H2O- and CO2-ices in a very simple one-dimensional model assuming uniform thermal conductivity and temperature gradient. The results indicate that the densification of H2O-ice is so slow that it could be significant only for icy satellites having an internal heat source. On the other hand, CO2-ice densifies orders of magnitude faster and the effect should be important for the CO2 component of cometary nuclei. No effect is expected for icy planetary rings.

  15. Solar system tests of brane world models

    E-print Network

    Christian G. Boehmer; Tiberiu Harko; Francisco S. N. Lobo

    2008-02-05

    The classical tests of general relativity (perihelion precession, deflection of light, and the radar echo delay) are considered for the Dadhich, Maartens, Papadopoulos and Rezania (DMPR) solution of the spherically symmetric static vacuum field equations in brane world models. For this solution the metric in the vacuum exterior to a brane world star is similar to the Reissner-Nordstrom form of classical general relativity, with the role of the charge played by the tidal effects arising from projections of the fifth dimension. The existing observational solar system data on the perihelion shift of Mercury, on the light bending around the Sun (obtained using long-baseline radio interferometry), and ranging to Mars using the Viking lander, constrain the numerical values of the bulk tidal parameter and of the brane tension.

  16. Solar system events at high spatial resolution

    SciTech Connect

    Baines, K H; Gavel, D T; Getz, A M; Gibbartd, S G; MacIntosh, B; Max, C E; McKay, C P; Young, E F; de Pater, I

    1999-02-19

    Until relatively recent advances in technology, astronomical observations from the ground were limited in image resolution by the blurring effects of earth's atmosphere. The blur extent, ranging typically from 0.5 to 2 seconds of arc at the best astronomical sights, precluded ground-based observations of the details of the solar system's moons, asteroids, and outermost planets. With the maturing of a high resolution image processing technique called speckle imaging the resolution limitation of the atmosphere can now be largely overcome. Over the past three years they have used speckle imaging to observe Titan, a moon of Saturn with an atmospheric density comparable to Earth's, Io, the volcanically active innermost moon of Jupiter, and Neptune, a gas giant outer planet which has continually changing planet-encircling storms. These observations were made at the world's largest telescope, the Keck telescope in Hawaii and represent the highest resolution infrared images of these objects ever taken.

  17. Methane clathrates in the Solar System

    E-print Network

    Mousis, Olivier; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-01-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form in the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined.

  18. Study of combined /photovoltaic-thermal/ solar energy systems

    NASA Astrophysics Data System (ADS)

    Neville, R. C.

    A theoretical analysis of a combined photovoltaic-thermal energy system for converting solar energy is presented. Optical concentration is employed to intensify the available solar energy density. The thermal energy extraction works both to cool the solar cells and to provide heat energy. Overall system efficiencies (total output energy, both thermal and electrical, divided by the available insolation) are shown to reach values close to 40%, with predicted capital costs less than 0.1 cent per kWh.

  19. Solar heating and cooling technical data and systems analysis

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1976-01-01

    The accomplishments of a project to study solar heating and air conditioning are outlined. Presentation materials (data packages, slides, charts, and visual aids) were developed. Bibliographies and source materials on materials and coatings, solar water heaters, systems analysis computer models, solar collectors and solar projects were developed. Detailed MIRADS computer formats for primary data parameters were developed and updated. The following data were included: climatic, architectural, topography, heating and cooling equipment, thermal loads, and economics. Data sources in each of these areas were identified as well as solar radiation data stations and instruments.

  20. Daniel K. Inouye Solar Telescope system safety

    NASA Astrophysics Data System (ADS)

    Hubbard, Robert P.; Bulau, Scott E.; Shimko, Steve; Williams, Timothy R.

    2014-08-01

    System safety for the Daniel K. Inouye Solar Telescope (DKIST) is the joint responsibility of a Maui-based safety team and the Tucson-based systems engineering group. The DKIST project is committed to the philosophy of "Safety by Design". To that end the project has implemented an aggressive hazard analysis, risk assessment, and mitigation system. It was initially based on MIL-STD-882D, but has since been augmented in a way that lends itself to direct application to the design of our Global Interlock System (GIS). This was accomplished by adopting the American National Standard for Industrial Robots and Robot Systems (ANSI/RIA R15.06) for all identified hazards that involve potential injury to personnel. In this paper we describe the details of our augmented hazard analysis system and its use by the project. Since most of the major hardware for the DKIST (e.g., the enclosure, and telescope mount assembly) has been designed and is being constructed by external contractors, the DKIST project has required our contractors to perform a uniform hazard analysis of their designs using our methods. This paper also describes the review and follow-up process implemented by the project that is applied to both internal and external subsystem designs. Our own weekly hazard analysis team meetings have now largely turned to system-level hazards and hazards related to specific tasks that will be encountered during integration, test, and commissioning and maintenance operations. Finally we discuss a few lessons learned, describing things we might do differently if we were starting over today.

  1. Methane clathrates in the solar system.

    PubMed

    Mousis, Olivier; Chassefière, Eric; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-04-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate layers may exist on Pluto as well. Key Words: Methane clathrate-Protosolar nebula-Terrestrial planets-Outer Solar System. Astrobiology 15, 308-326. PMID:25774974

  2. Cratering Rates in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    2003-01-01

    We have constructed a self-consistent study of cratering rates in the outer solar system. Two papers were written, one on cratering asymmetries on synchronously rotating satellites and the other on the cratering rates themselves. The first addresses the well-founded expectation that the leading hemisphere of a synchronously rotating satellite should be more heavily cratered than the trailing hemisphere, and how our solar system has avoided showing much sign of this. We conclude that Ganymede has in the past rotated nonsynchronously, which may imply that it once harboured a thicker inner ocean than it does now. The other study began as an attempt to determine the age of the surface of Europa at a time when Europa was regarded as a major Exobiological target. In keeping with changing times the study expanded to the point that it now recommends cratering rates for worlds as diverse as Charon and Pluto, and includes the contributions of several invaluable co-authors, none of whom would agree with all of my conclusions. The nexus of the work is the size-frequency distribution of comets striking Jupiter (Figure). This was determined using the historically observed record of comets striking or nearly striking Jupiter; the size-frequency distributions of craters on lightly cratered surfaces of Europa, Ganymede, and Triton; and the size-frequncy distribution of Kuiper Belt objects. Extreme reductionists will be happy to know that the surface of Europa probably has an age of around 50 million years. Perhaps more intriguing is that Neptune's moon Triton, by origin a giant comet and by capture and orbital evolution a once fully melted giant comet, has a surface that is probably no older than Europa's.

  3. JWST Planetary Observations Within the Solar System

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan; Hammel, Heidi; Schaller, Emily; Sonneborn, George; Orton, Glenn; Rieke, George; Rieke, Marcia

    2010-01-01

    JWST provides capabilities unmatched by other telescopic facilities in the near to mid infrared part of the electromagnetic spectrum. Its combination of broad wavelength range, high sensitivity and near diffraction-limited imaging around two microns wavelength make it a high value facility for a variety of Solar System targets. Beyond Neptune, a class of cold, large bodies that include Pluto, Triton and Eris exhibits surface deposits of nitrogen, methane, and other molecules that are poorly observed from the ground, but for which JWST might provide spectral mapping at high sensitivity and spatial resolution difficult to match with the current generation of ground-based observatories. The observatory will also provide unique sensitivity in a variety of near and mid infrared windows for observing relatively deep into the atmospheres of Uranus and Neptune, searching there for minor species. It will examine the Jovian aurora in a wavelength regime where the background atmosphere is dark. Special provision of a subarray observing strategy may allow observation of Jupiter and Saturn over a larger wavelength range despite their large surface brightnesses, allowing for detailed observation of transient phenomena including large scale storms and impact-generation disturbances. JWST's observations of Saturn's moon Titan will overlap with and go beyond the 2017 end-of-mission for Cassini, providing an important extension to the time-series of meteorological studies for much of northern hemisphere summer. It will overlap with a number of other planetary missions to targets for which JWST can make unique types of observations. JWST provides a platform for linking solar system and extrasolar planet studies through its unique observational capabilities in both arenas.

  4. The Redox flow system for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Odonnell, P.; Gahn, R. F.

    1976-01-01

    A new method of storage was applied to a solar photovoltaic system. The storage method is a redox flow system which utilizes the oxidation-reduction capability of two soluble electrochemical redox couples for its storage capacity. The particular variant described separates the charging and discharging function of the system such that the electrochemical couples are simultaneously charged and discharged in separate parts of the system. The solar array had 12 solar cells; wired in order to give a range of voltages and currents. The system stored the solar energy so that a load could be run continually day and night. The main advantages of the redox system are that it can accept a charge in the low voltage range and produce a relatively constant output regardless of solar activity.

  5. SOLAR SYSTEM MOONS AS ANALOGS FOR COMPACT EXOPLANETARY SYSTEMS

    SciTech Connect

    Kane, Stephen R.; Hinkel, Natalie R.; Raymond, Sean N.

    2013-11-01

    The field of exoplanetary science has experienced a recent surge of new systems that is largely due to the precision photometry provided by the Kepler mission. The latest discoveries have included compact planetary systems in which the orbits of the planets all lie relatively close to the host star, which presents interesting challenges in terms of formation and dynamical evolution. The compact exoplanetary systems are analogous to the moons orbiting the giant planets in our solar system, in terms of their relative sizes and semimajor axes. We present a study that quantifies the scaled sizes and separations of the solar system moons with respect to their hosts. We perform a similar study for a large sample of confirmed Kepler planets in multi-planet systems. We show that a comparison between the two samples leads to a similar correlation between their scaled sizes and separation distributions. The different gradients of the correlations may be indicative of differences in the formation and/or long-term dynamics of moon and planetary systems.

  6. Public Science: From Earth to the Solar System

    NASA Astrophysics Data System (ADS)

    Arcand, K. K.; Watzke, M.

    2012-09-01

    This talk will describe how the International Year of Astronomy (IYA2009) was used to launch a new initiative of science outreach, which the authors describe as "public science." The enormous scope and range of IYA2009 allowed From Earth to the Universe (FETTU) to reach millions of people around the globe by putting large-scale astronomical images into public and community-based settings such as parks, metro stations, libraries, and more. Currently, its derivative project, From Earth to the Solar System (FETTSS), continues the implementation of this public science paradigm. Public science projects, like FETTU and FETTSS, are very much akin to public art, which attempts to gain attention and expose large numbers of people to its content. Can such public science projects be used to increase exposure and awareness for STEM (science, technology, engineering, and mathematics) topics? This talk will briefly describe some of the measureable outcomes in this area found in FETTU, which have already been published in scholarly journals. We will also share some preliminary findings from new data being collected from FETTSS, as well as discuss other public science projects in development. The presenter will finally explore how this concept of public science may be useful for science communication efforts in the future.

  7. Energization of planetary pickup ions in the solar system

    NASA Astrophysics Data System (ADS)

    Jarvinen, R.; Kallio, E.

    2014-01-01

    We study the solar wind-induced ion escape from planetary atmospheres at different radial heliospheric distances in the solar system. We derive histograms of the gyroaveraged E×B velocities, energies, and Larmor radii of planetary ions in the solar wind at Mercury, Venus, Earth, and Mars. The statistical analysis is based on the interplanetary Pioneer Venus Orbiter and OMNI solar wind data sets. In addition to the energization in the undisturbed solar wind we also model how planetary heavy ions get energized in the solar wind interaction of an unmagnetized planet at different distances to the Sun. We found that due to the Parker spiral, pickup ions are expected to be found on average at lower energies and at velocities more perpendicular to the solar wind flow, the closer to the Sun a planet or a comet is. According to a global hybrid simulation, planetary heavy ion energization is influenced qualitatively in a similar way in the presence of an induced magnetosphere than in the upstream solar wind under different Parker spiral angles due to fact that the structure of an induced magnetosphere depends strongly on the interplanetary magnetic field and solar wind conditions. Finally, the energization and dynamics of the pickup ions vary considerably with the solar activity. The variation is stronger the farther away from the Sun an object is. The Larmor radii of the pickup ions are largest during a solar minimum while the pickup ion energies are highest during the declining phase of a solar cycle.

  8. Outline of the Solar System: Activities for elementary students

    NASA Technical Reports Server (NTRS)

    Hartsfield, J.; Sellers, M.

    1990-01-01

    An introduction to the solar system for the elementary school student is given. The introduction contains historical background, facts, and pertinent symbols concerning the sun, the nine major planets and their moons, and information about comets and asteroids. Aids to teaching are given, including a solar system crossword puzzle with answers.

  9. Why Are So Many Things in the Solar System Round?

    ERIC Educational Resources Information Center

    Heilig, Steven J.

    2010-01-01

    Several years ago a student asked why so many things in the solar system were round. He noted that many objects in the solar system, although not all, are round. The standard answer, which he knew, is that the mutual gravitational attraction of the molecules pulls them into the shape that gets them as close to each other as possible: a sphere.…

  10. SURVEILLANCE OF PHOTOVOLTAIC SOLAR ENERGY SYSTEMS USING METEOSAT DERIVED IRRADIANCES

    E-print Network

    Heinemann, Detlev

    SURVEILLANCE OF PHOTOVOLTAIC SOLAR ENERGY SYSTEMS USING METEOSAT DERIVED IRRADIANCES Annette Hammer.Heinemann@uni-oldenburg.de 2Enecolo AG, Lindhof 235, CH-8617 M¨onchaltorf 3Fraunhofer Insitute for Solar Energy Systems Wiemken3, Hans Georg Beyer4, Vincent van Dijk5, Jethro Betcke5 1Dept. of Energy and Semiconductor Research

  11. Astronomical Resources. The Solar System: An Introductory Bibliography.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    This reference surveys resources of astronomical information including books and articles about the solar system, Mercury, Venus, Earth, the Moon, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto, Asteroids, Comets, and Meteors. Also included is a list of seven available slide sets about the solar system. (CW)

  12. Our Solar System at a Glance. Information Summaries.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The United States has explored the solar system with automated spacecraft and human-crewed expeditions that have produced a quantum leap in our knowledge and understanding of the solar system. Through the electronic sight and other "senses" of our automated spacecraft, color and complexion have been given to worlds that for centuries appeared to…

  13. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    These combined quarterly reports summarize the activities from November 1977 through September 1978, and over the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water. The system consists of the following subsystems: solar collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  14. Thermoeconomic Analysis of a Solar Heat-Pump System 

    E-print Network

    Gao, Y.; Wang, S.

    2006-01-01

    This paper introduces a solar energy heat-pump system and analyzes the thermoeconomics. The results show that the solar energy heat-pump system can be operated in different modes and used for room heating in winter and cooling in summer and...

  15. Solar System tests disfavor $f(R)$ gravities

    E-print Network

    Xing-hua Jin; Dao-jun Liu; Xin-zhou Li

    2007-03-06

    Using the elegant method employed recently by Erickcek, Smith and Kamionkowski, on the premise that the space-time of Solar System is described by a metric with constant-curvature background added by a static perturbation, we show that many $f(R)$ gravities are ruled out by Solar System tests.

  16. Space Moves: Adding Movement to Solar System Lessons

    ERIC Educational Resources Information Center

    Jenkins, Deborah Bainer; Heidorn, Brent

    2009-01-01

    Earth and space science figure prominently in the National Science Education Standards for levels 5-8 (NRC 1996). The Earth in the Solar System standard focuses on students' ability to understand (1) the composition of the solar system (Earth, Moon, Sun, planets with their moons, and smaller objects like asteroids and comets) and (2) that…

  17. Momentum harvesting techniques for solar system travel

    NASA Technical Reports Server (NTRS)

    Willoughby, Alan J.

    1990-01-01

    Astronomers are lately estimating there are 400,000 Earth visiting asteroids larger than 100 meters in diameter. These asteroids are accessible sources of building materials, propellants, oxygen, water, and minerals which also constitute a huge momentum reserve, potentially usable for travel throughout the solar system. To use this momentum, these stealthy objects must be tracked and the extraction of the momentum wanted must be learned. Momentum harvesting by momentum transfer from asteroid to spacecraft, and by using the momentum of the extraterrestrial material to help deliver itself to the destination are discussed. A net and tether concept is the suggested means of asteroid capture, the basic momentum exchange process. The energy damping characteristics of the tether will determine the velocity mismatch that can be tolerated, and hence the amount of momentum that can be harvested per capture. As it plays out of its reel, drag on the tether steadily accelerates the spacecraft. A variety of concepts for riding and using the asteroid after capture are discussed. The hitchhiker uses momentum transfer only. The beachcomber, the caveman, the swinger, the prospector, and the rock wrecker also take advantage of raw asteroidal materials. The chemist and the hijacker go further, they process the asteroid into propellant. Or, an 'asteroid railway system' could evolve with each hijacked asteroid becoming a scheduled train. Travelers could board the space railway system assured that water, oxygen, and propellants await them.

  18. Future exploration of the outer solar system

    NASA Astrophysics Data System (ADS)

    Johnson, T.

    Exploration of the outer solar system is constrained by vast distances, consequent communications and light time limitations, power, and long flight times. Early reconnaissance missions (Pioneer 10 and 11, Voyager 1 and 2) employed relatively fast trajectories resulting in very fast fly-bys. The next generation of exploration (Galileo and Cassini) has been characterized by spacecraft with large propellant systems and relatively slow (gravity assist) trajectories needed energetically to achieve orbit around Jupiter and Saturn. All of these spacecraft utilized radioisotope thermoelectric generators for reliable, but modest power. Future exploration priorities require highly capable spacecraft systems that go into orbit around the primary planet and then perform multiple tasks (e.g. orbiting individual moons and delivering surface and atmospheric scientific probes). To achieve major scientific advances will require significant increases in communication rates, improved instrumentation and high power available for experiments. Fission-powered nuclear electric propulsion is being studied to meet these requirements. A Jupiter Icy Moons Orbiter is proposed as the first of this class of new, highly capable missions. The paper will review the scientific rationale for the JIMO mission and prospects for applying these techniques to exploration of Saturn and the other outer planets.

  19. Impact Processes in the Solar System

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2004-01-01

    The three main topics of this program as described initially in our May 2003 proposal are: 1) Shock-induced damage and attenuation in planetary materials. 2 ) Shock-induced melting and phase changes. 3) Impact-induced volatilization and vapor speciation of planetary materials Topic 4 has been the subject of a continuing investigation since approximately 1990. On Topic 5, we have a paper in preparation and have submitted a proposal to Astrobiology. 4) Responses of planetary atmospheres to giant impact, 5) Effects of impact-induced shock waves on microbial life

  20. A Comparison Of A Solar Power Satellite Concept To A Concentrating Solar Power System

    NASA Technical Reports Server (NTRS)

    Smitherman, David V.

    2013-01-01

    A comparison is made of a Solar Power Satellite concept in geostationary Earth orbit to a Concentrating Solar Power system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the Solar Power Satellite concept has a higher end-to-end efficiency, that the combined space and ground collector infrastructure is still about the same size as a comparable Concentrating Solar Power system on the ground.