Science.gov

Sample records for solar system topics

  1. Our Solar System. Our Solar System Topic Set

    ERIC Educational Resources Information Center

    Phelan, Glen

    2006-01-01

    This book examines the planets and other objects in space that make up the solar system. It also shows how technology helps students learn about our neighbors in space. The suggested age range for this book is 3-8 with a guided reading level of Q-R. The Fry level is 3.2.

  2. Sunscreens: topical and systemic approaches for protection of human skin against harmful effects of solar radiation

    SciTech Connect

    Pathak, M.A.

    1982-09-01

    This review deals with topical and systemic approaches for protection of human skin against the harmful effects of solar radiation. Two concerns about the deleterious effects of sun exposure involve: (1) acute effects (e.g., sunburn and drug-induced phototoxicity) and (2) potential long-term risks of repeated sun exposures leading to development of solar elastosis, keratoses, induction of both nonmelanoma and melanoma skin cancer, and alteration of immune responses and functions. Action spectra of normal and abnormal reactions of human skin to acute and chronic effects of solar radiation are presented with a view to helping the physician prescribe the appropriate sunscreens. Factors that influence acute effects of sunburn are reviewed. Various artificial methods effective in minimizing or preventing harmful effects of solar radiation, both in normal individuals and in patients with photosensitivity-related problems, are discussed. Emphasis is placed on the commercially available chemical sunscreens and their properties. Sun protection factor (SPF) values of several brand-name formulations determined with a solar simulator under indoor conditions (laboratory) and with solar radiation under natural, field conditions are presented. Factors responsible for variations of SPF values observed under indoor and outdoor conditions are reviewed. Systemic photoprotective agents and their limitations are outlined. The photobiology of melanin pigmentation (the tanning reaction) is briefly discussed, with emphasis on the dangers of using quick-tanning lotions for stimulation of the tanning reaction.

  3. Sunscreens: topical and systemic approaches for protection of human skin against harmful effects of solar radiation.

    PubMed

    Pathak, M A

    1982-09-01

    This review deals with topical and systemic approaches for protection of human skin against the harmful effects of solar radiation. Two concerns about the deleterious effects of sun exposure involve: (1) acute effects (e.g., sunburn and drug-induced phototoxicity) and (2) potential long-term risks of repeated sun exposures leading to development of solar elastosis, keratoses, induction of both nonmelanoma and melanoma skin cancer, and alteration of immune responses and functions. Action spectra of normal and abnormal reactions of human skin to acute and chronic effects of solar radiation are presented with a view to helping the physician prescribe the appropriate sunscreens. Factors that influence acute effects of sunburn are reviewed. Various artificial methods effective in minimizing or preventing harmful effects of solar radiation, both in normal individuals and in patients with photosensitivity-related problems, are discussed. Emphasis is placed on the commercially available chemical sunscreens and their properties. Sun protection factor (SPF) values of several brand-name formulations determined with a solar simulator under indoor conditions (laboratory) and with solar radiation under natural, field conditions are presented. Factors responsible for variations of SPF values observed under indoor and outdoor conditions are reviewed. Systemic photoprotective agents and their limitations are outlined. The photobiology of melanin pigmentation (the tanning reaction) is briefly discussed, with emphasis on the dangers of using quick-tanning lotions for stimulation of the tanning reaction. PMID:6752223

  4. Sunscreens: topical and systemic approaches for protection of human skin against harmful effects of solar radiation.

    TOXLINE Toxicology Bibliographic Information

    Pathak MA

    1982-09-01

    This review deals with topical and systemic approaches for protection of human skin against the harmful effects of solar radiation. Two concerns about the deleterious effects of sun exposure involve: (1) acute effects (e.g., sunburn and drug-induced phototoxicity) and (2) potential long-term risks of repeated sun exposures leading to development of solar elastosis, keratoses, induction of both nonmelanoma and melanoma skin cancer, and alteration of immune responses and functions. Action spectra of normal and abnormal reactions of human skin to acute and chronic effects of solar radiation are presented with a view to helping the physician prescribe the appropriate sunscreens. Factors that influence acute effects of sunburn are reviewed. Various artificial methods effective in minimizing or preventing harmful effects of solar radiation, both in normal individuals and in patients with photosensitivity-related problems, are discussed. Emphasis is placed on the commercially available chemical sunscreens and their properties. Sun protection factor (SPF) values of several brand-name formulations determined with a solar simulator under indoor conditions (laboratory) and with solar radiation under natural, field conditions are presented. Factors responsible for variations of SPF values observed under indoor and outdoor conditions are reviewed. Systemic photoprotective agents and their limitations are outlined. The photobiology of melanin pigmentation (the tanning reaction) is briefly discussed, with emphasis on the dangers of using quick-tanning lotions for stimulation of the tanning reaction.

  5. Using Solar System Topics to Teach the Scientific Method in an Age of Science Denial

    NASA Astrophysics Data System (ADS)

    Lo Presto, M. C.

    2013-04-01

    A number of excellent opportunities to remind students of the scientific method and how the process of science works come about during coverage of common topics in a Solar System “unit” in an introductory college astronomy course. With the tremendous amount of misinformation about science that students are exposed to through the Internet and other forms of media, this is now more important than ever. If non-science majors can leave introductory astronomy, often the only science course they will take, with a decent appreciation of, or at least an exposure to, how science works, they will then be better able to judge the validity of what they hear about science in the media throughout their lives.

  6. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;

  7. Solar-parabolic dish-Stirling-engine-system module. Task 1: Topical report, market assessment/conceptual design

    SciTech Connect

    Not Available

    1982-11-30

    The major activities reported are: a market study to identify an early market for a dish-Stirling module and assess its commercial potential; preparation of a conceptual system and subsystem design to address this market; and preparation of an early sales implementation plan. A study of the reliability of protection from the effects of walk-off, wherein the sun's image leaves the receiver if the dish is not tracking, is appended, along with an optical analysis and structural analysis. Also appended are the relationship between PURPA and solar thermal energy development and electric utility pricing rationale. (LEW)

  8. Topical and systemic photoprotection.

    PubMed

    Rosen, Cheryl F

    2003-01-01

    Sunscreens are a valuable method of sun protection. Several new compounds are now available. It is important to remember, however, that photoprotection includes more than the use of sunscreens. There are a number of sun-protective behaviors that people can use to decrease their exposure to ultraviolet (UV) radiation. Dermatologists and other health professionals can work toward changing public policy, greatly increasing the ability of people to access shade. In addition, there is growing evidence about the effectiveness of other sun-protective agents. The only systemic medication for sun protection is beta-carotene, which is effective in erythropoietic protoporphyria (EPP). PMID:12919121

  9. Solar Systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  10. The new solar system

    SciTech Connect

    Beatty, J.K.; Oleary, B.; Chaikin, A.

    1981-01-01

    Current knowledge about the solar system is reviewed, with particular emphasis on the results of recent space exploration. Among the many topics discussed are the sun, magnetospheres and the interplanetary medium, the surfaces of the terrestrial bodies, the moon, Mars, asteroids, Jupiter and Saturn, planetary rings, the Galilean satellites, Titan, the outer solar system, comets, and meteorites. Particular attention is given to the Voyager 1 and 2 flybys of Jupiter and Saturn. The work includes many illustrative photographs of the celestial bodies discussed.

  11. Topics in topological band systems

    NASA Astrophysics Data System (ADS)

    Huang, Zhoushen

    The discovery of integer quantum Hall effect and its subsequent theoretical formulation heralded a new paradigm of thinking in condensed matter physics, which has by now blossomed into the rapidly growing field of topological phases. In this work we investigate several mutually related topics in the framework of topological band theory. In Chapter 2, we study solutions to boundary states on a lattice and see how they are related to the bulk topology. To elicit a real space manifestation of the non-trivial topology, the presence of a physical edge is not strictly necessary. We study two other possibilities, namely the entanglement spectrum associated with an imaginary spatial boundary, and the localization centers of Wannier functions, in Chapters 3,4, and 5. Topological classification through discrete indices is so far possible only for systems described by pure quantum states---in the existing scheme, quantization is lost for systems in mixed states. In Chapter 6, we present a program through which discrete topological indices can be defined for topological band systems at finite temperature, based on Uhlmann's parallel transport of density matrices. The potential of topologocal insulators in realistic applications lies in the existence of Dirac nodes on its surface spectrum. Dirac physics, however, is not exclusive to TI surfaces. In a recently discovered class of materials known as Weyl semimetals, energy nodes which emit linear dispersions also occur in the bulk material. In Chapter 7, we study the possibility of resonance states induced by localized impurities near the nodal energy in Weyl semimetals, which will help us in understanding the stability of density-of-state suppression at the energy nodes. Finally, in Chapter 8, we apply the topological characterization developed for noninteracting particles to a class of interacting spin models in 3D, which are generalizations of Kitaev's honeycomb model, and identify several exotic quantum phases such as spin metals and spin semimetals.

  12. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  13. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.

  14. Faraday rotation system. Topical report

    SciTech Connect

    Bauman, L.E.; Wang, W.

    1994-07-01

    The Faraday Rotation System (FRS) is one of the advanced laser-based diagnostics developed at DIAL to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the MHD channel, the system directly measures electron density through a measurement of the induced rotation in the polarization of a far infrared laser beam after passing through the MHD flow along the magnetic field lines. A measurement of the induced polarization ellipticity provides a measure of the electron collision frequency which together with the electron density gives the electron conductivity, a crucial parameter for MHD channel performance. The theory of the measurements, a description of the system, its capabilities, laboratory demonstration measurements on seeded flames with comparison to emission absorption measurements, and the current status of the system are presented in this final report.

  15. Topics in quantum integrable systems

    NASA Astrophysics Data System (ADS)

    Hikami, Kazuhiro; Wadati, Miki

    2003-08-01

    Recent developments in the theory of quantum integrable particle systems in one-dimension with inverse square interactions are reviewed. First the Yangian symmetry is introduced and the energy spectra of the related spin models are discussed. The character of the su(n)1 WZNW theory is shown to be closely related with the Rogers-Szegö polynomial. Second, the infinite dimensional representation for solutions of the Yang-Baxter equation and the reflection equation is given. Based on the representation, the Dunkl operators associated with the classical root systems are constructed. The Macdonald polynomial and its generalization are discussed in connection with the eigenstates for the trigonometric case. Finally, some results on short-range interacting systems are mentioned.

  16. Advanced Topics in Control Systems Theory

    NASA Astrophysics Data System (ADS)

    Lamnabhi-Lagarrigue, Françoise; Loría, Antonio; Panteley, Elena

    Advanced Topics in Control Systems Theory contains selected contributions written by lecturers at the second (annual) Formation d'Automatique de Paris (FAP) (Graduate Control School in Paris). It is addressed to graduate students and researchers in control theory with topics touching on a variety of areas of interest to the control community such as cascaded systems, flatness, optimal control, and Hamiltonian and infinite-dimensional systems. The reader is provided with a well-integrated synthesis of the latest thinking in these subjects without the need for an exhaustive literature review.

  17. Advanced Topics in Control Systems Theory

    NASA Astrophysics Data System (ADS)

    Lorsa, Antonio; Lamnabhi-Lagarrigue, Françoise; Panteley, Elena

    Advanced Topics in Control Systems Theory contains selected contributions written by lecturers at the third (annual) Formation d'Automatique de Paris (FAP) (Graduate Control School in Paris). Following on from the lecture notes from the second FAP (Volume 311 in the same series) it is addressed to graduate students and researchers in control theory with topics touching on a variety of areas of interest to the control community such as nonlinear optimal control, observer design, stability analysis and structural properties of linear systems.

  18. Texasgulf solar cogeneration program. Mid-term topical report

    SciTech Connect

    Not Available

    1981-02-01

    The status of technical activities of the Texasgulf Solar Cogeneration Program at the Comanche Creek Sulfur Mine is described. The program efforts reported focus on preparation of a system specification, selection of a site-specific configuration, conceptual design, and facility performance. Trade-off studies performed to select the site-specific cogeneration facility configuration that would be the basis for the conceptual design efforts are described. Study areas included solar system size, thermal energy storage, and field piping. The conceptual design status is described for the various subsystems of the Comanche Creek cogeneration facility. The subsystems include the collector, receiver, master control, fossil energy, energy storage, superheat boiler, electric power generation, and process heat subsystems. Computer models for insolation and performance are also briefly discussed. Appended is the system specification. (LEW)

  19. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  20. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  1. Systemically and topically active antinociceptive neurotensin compounds.

    PubMed

    Rossi, Grace C; Matulonis, Joshua E; Richelson, Elliott; Barbut, Denise; Pasternak, Gavril W

    2010-09-01

    Neurotensin is a neurotransmitter/modulator with a wide range of actions. Using a series of 10 stable analogs, we have examined neurotensin antinociception in mice. By incorporating (2S)-2-amino-3-(1H-4-indoyl)propanoic acid (l-neoTrp), a series of neurotensin analogs have been synthesized that are stable in serum and are systemically active in vivo. When administered in mice, they all were antinociceptive in the radiant heat tail-flick assay. Time-action curves revealed a peak effect at 30 min and a duration of action ranging from 2 to 4 h. Dose-response curves revealed that two compounds were partial agonists with maximal responses below 75%, whereas all of the remaining compounds displayed a full response. Overall, the compounds were quite potent, with ED(50) values similar to those of opioids. At peak effect, the ED(50) values ranged from 0.91 to 9.7 mg/kg s.c. Two of the analogs were active topically. Together, these studies support the potential of neurotensin analogs as analgesics. They are active systemically and by using them topically, it may be possible to avoid problematic side effects, such as hypothermia and hypotension. PMID:20576795

  2. Development of the Solar System Concept Inventory

    NASA Astrophysics Data System (ADS)

    Hornstein, S.; Prather, E.

    2009-12-01

    Concept inventories can provide useful insight into students’ understanding of key physical concepts. Knowing what your students have learned during a course is a valuable tool for improving your own teaching. Unfortunately, current astronomy concept inventories are not suitable for an introductory solar system course because they either cover too broad of a range of topics (e.g. Astronomy Diagnostic Test) or are too narrowly focused (e.g. Greenhouse Effect Concept Inventory, Lunar Phase Concept Inventory). We have developed the Solar System Concept Inventory (SSCI) to cover those topics commonly taught in an introductory solar system course. The topics included on the SSCI were selected by having faculty identify the key concepts they address when teaching about the solar system. SSCI topics include formation mechanisms, planetary interiors, atmospheric effects, and small solar system bodies. Student interviews were conducted to identify common naive ideas and reasoning difficulties relating to these key topics. The SSCI has been through two semesters of national, multi-institutional field-testing, involving over 1500 students. After the first semester of testing, question statistics were used to flag ineffective questions and flagged questions were revised or eliminated. We will present an overall outline of the SSCI development as well as our question-flagging criteria and question analyses from the latest round of field-testing. We would like to thank the NSF for funding under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  3. Development of a Solar System Concept Inventory

    NASA Astrophysics Data System (ADS)

    Hornstein, Seth D.; Duncan, D.; S, C. A. T.

    2009-01-01

    Concept inventories can provide useful insight into students’ understanding of key physical concepts. Knowing what your students have learned during a course is a valuable tool for improving your own teaching. Unfortunately, current astronomy concept inventories are not suitable for an introductory solar system course because they either cover too broad of a range of topics (e.g. Astronomy Diagnostic Test) or are too narrowly focused (e.g. Greenhouse Effect Concept Inventory, Lunar Phase Concept Inventory). We have developed the Solar System Concept Inventory (SSCI) to cover those topics commonly taught in an introductory solar system course. The topics included on the SSCI were selected by having faculty identify the key concepts they address when teaching about the solar system. SSCI topics include formation mechanisms, planetary interiors, atmospheric effects, and small solar system bodies. Student interviews were conducted to identify common naive ideas and reasoning difficulties relating to these key topics. Preliminary development of the SSCI was completed at the University of Colorado and involved over 400 students. A larger, national, multi-institutional field test is planned for Spring 2009 as a Collaboration of Astronomy Teaching Scholars (CATS) research project. We present here the results from the preliminary development and proposed changes for the next stage of research. We would like to thank the NSF for funding under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  4. Topics in the structure of hadronic systems

    SciTech Connect

    Lebed, R. F.

    1994-04-01

    In this dissertation the author examines a variety of different problems in the physics of strongly-bound systems. Each is elucidated by a different standard method of analysis developed to probe the properties of such systems. He begins with an examination of the properties and consequences of the current algebra of weak currents in the limit of heavy quark spin-flavor symmetry. In particular, he examines the assumptions in the proof of the Ademollo-Gatto theorem in general and for spin-flavor symmetry, and exhibit the constraints imposed upon matrix elements by this theorem. Then he utilizes the renormalization-group method to create composite fermions in a three-generation electroweak model. Such a model is found to reproduce the same low energy behavior as the top-condensate electroweak model, although in general it may have strong constraints upon its Higgs sector. Next he uncovers subtleties in the nonrelativistic quark model that drastically alter the picture of the physical origins of meson electromagnetic and hyperfine mass splittings; in particular, the explicit contributions due to (m{sub d}{minus}m{sub u}) and electrostatic potentials may be overwhelmed by other effects. Such novel effects are used to explain the anomalous pattern of mass splittings recently measured in bottom mesons. Finally, he considers the topic of baryon masses in heavy fermion chiral perturbation theory, including both tree-level and loop effects.

  5. Homemade Solar Systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Through the use of NASA Tech Briefs, Peter Kask, was able to build a solarized domestic hot water system. Also by applying NASA's solar energy design information, he was able to build a swimming pool heating system with minimal outlay for materials.

  6. Solar Electric System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Heat Pipe Technology, Inc. undertook the development of a PV system that could bring solar electricity to the individual home at reasonable cost. His system employs high efficiency PV modules plus a set of polished reflectors that concentrate the solar energy and enhance the output of the modules. Dinh incorporated a sun tracking system derived from space tracking technology. It automatically follows the sun throughout the day and turns the modules so that they get maximum exposure to the solar radiation, further enhancing the system efficiency.

  7. Solar energy collector system

    SciTech Connect

    Natter, H.

    1981-12-29

    A solar energy collector system is described having an array of solar concentrators mounted at spaced intervals along a conduit network through which a heat transfer fluid is circulated. The concentrators include an arcuate channel providing a heat absorption surface and a saddle member for mounting the channel section to the conduit. An insulation shroud surrounds the channel member and conduit. An elongate lens panel is positionable over the absorption surface for focusing incident solar radiation. The angle of inclination of the lens panel can be varied by manual rotation of the solar concentrators about the longitudinal axis of the conduit.

  8. Residential Solar Systems.

    ERIC Educational Resources Information Center

    Fulkerson, Dan

    This publication contains student and teacher instructional materials for a course in residential solar systems. The text is designed either as a basic solar course or as a supplement to extend student skills in areas such as architectural drafting, air conditioning and refrigeration, and plumbing. The materials are presented in four units…

  9. Solar experiment alignment system

    NASA Technical Reports Server (NTRS)

    Fain, D. L.

    1972-01-01

    Sensor system determines absolute alignment of optical axis of experiment package relative to solar vector and provides control information to permit pointing experiment anywhere on solar disc to absolute accuracy of the order of two arc seconds in center and five arc seconds on limb.

  10. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1977-01-01

    An improved solar energy collection system, having enhanced energy collection and conversion capabilities, is delineated. The system is characterized by a plurality of receivers suspended above a heliostat field comprising a multiplicity of reflector surfaces, each being adapted to direct a concentrated beam of solar energy to illuminate a target surface for a given receiver. A magnitude of efficiency, suitable for effectively competing with systems employed in collecting and converting energy extracted from fossil fuels, is indicated.

  11. Goldstone Solar System Radar (GSSR)

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.

    1991-01-01

    The primary objective of the Goldstone Solar System Radar is the investigation of solar system bodies by means of Earth-based radar. Targets of primary interest include the Galilean moons, Saturn's rings and moons, and Earth-approaching asteroids and comets. Planets are also of interest, particularly Mercury and the planets to which NASA has not yet planned spacecraft visits. Based on a history of solid achievement, including the definition of the Astronomical Unit, imaging and topography of Mars, Venus, and Mercury, and contributions to the general theory of relativity, the program will continue to support flight project requirements and its primary objectives. The individual target objectives are presented, and information on the following topics are presented in tabular form: Deep Space Network support, compatibility tests, telemetry, command, and tracking support responsibility.

  12. The solar system

    NASA Astrophysics Data System (ADS)

    Jones, B. W.

    The main concern of this introductory textbook on the solar system is with the present state of knowledge of the solar system. The main features of the solar system are examined, taking into account the semimajor axes of the planets' orbits and the Titius-Bode law, orbits, the center of mass, and axial spins. The earth's interior is considered along with the earth's atmosphere and surface volatiles, Mars, Venus, the acquisition of volatiles by the terrestrial planets, the moon, Mercury, impact cratering of the terrestrial planets, the Jovian system, the Saturnian system, planetary rings, the system of Uranus, the system of Neptune, Pluto, comets, asteroids, meteoroids, and questions regarding the origin and the end of planetary systems. Attention is given to molecular clouds, star formation, cosmogenic theories, the death of stars and of planetary systems, and the possibility of the existence of civilizations on other planetary systems.

  13. Solar Energy: Solar System Design Fundamentals.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system design fundamentals is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy…

  14. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  15. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  16. Fragmentary Solar System History

    NASA Technical Reports Server (NTRS)

    Marti, Kurt

    1997-01-01

    The objective of this research is an improved understanding of the early solar system environment and of the processes involved in the nebula and in the evolution of solid bodies. We present results of our studies on the isotopic signatures in selected primitive solar system objects and on the evaluation of the cosmic ray records and of inferred collisional events. Furthermore, we report data of trapped martian atmospheric gases in meteorites and the inferred early evolution of Mars' atmosphere.

  17. Solar System and Exoplanets

    NASA Astrophysics Data System (ADS)

    Ezoe, Yuichiro; Branduardi-Raymont, Graziella; Guedel, Manuel; Sciortino, Salvatore; Topical Panel SW3. 1: Solar System; Exoplanets

    2015-09-01

    Athena studies of the solar system and exoplanets will enormously advance our understandings on important themes in astrophysics, planetary and space plasma physics such as interactions of space plasmas and magnetic fields, ion and electron acceleration in the planetary magnetosphere, details of the charge exchange process, and physical/chemical evolution of planet atmospheres. We shall review the status of X-ray studies on the solar system and exoplanets, and show the potential of Athena.

  18. Solar heating system

    NASA Technical Reports Server (NTRS)

    Jensen, R. N. (Inventor)

    1977-01-01

    A system is disclosed for using solar energy to heat the interior of a structure. The system utilizes a low cost solar collector to heat a recirculating air mass which then flows through a series of interconnected ducts and passageways without the use of exterior fans or blowers. Heat is transferred from the air mass to the structure's interior and the air mass is then reheated.

  19. Solar-heating system

    SciTech Connect

    Yoshiwa, M.; Hujioka, Y.; Muro, M.; Tokai, M.

    1984-08-28

    A solar heating system including a chemical heat pump for storing thermal energy by converting same into energy in the form of a difference in the concentration of an aqueous multiple-component chemical solution which actuates the chemical heat pump, and a solar collector of a low temperature solar collection type operative to collect excess thermal energy of the sun not used for heating and cooling purposes during the time intermediate the solar irradiance abundant season and the solar irradiance scarce season, or spring and autumn, and store same in the chemical heat pump as energy in the form of a difference in the concentration of an aqueous multiple-component chemical solution. Warm water obtained by heating water by the solar heat collector is supplied in the wintertime to the chemical heat pump as a low temperature heat source and control of flow of a working medium is effected depending on the amount of the solar energy collected in the wintertime, so as to thereby increase the efficiency with which the solar energy is utilized during the intermediate season and winter.

  20. The New Solar System

    NASA Astrophysics Data System (ADS)

    Beatty, J. Kelly; Collins Petersen, Carolyn; Chaikin, Andrew

    1999-01-01

    As the definitive guide for the armchair astronomer, The New Solar System has established itself as the leading book on planetary science and solar system studies. Incorporating the latest knowledge of the solar system, a distinguished team of researchers, many of them Principal Investigators on NASA missions, explain the solar system with expert ease. The completely-revised text includes the most recent findings on asteroids, comets, the Sun, and our neighboring planets. The book examines the latest research and thinking about the solar system; looks at how the Sun and planets formed; and discusses our search for other planetary systems and the search for life in the solar system. In full-color and heavily-illustrated, the book contains more than 500 photographs, portrayals, and diagrams. An extensive set of tables with the latest characteristics of the planets, their moon and ring systems, comets, asteroids, meteorites, and interplanetary space missions complete the text. New to this edition are descriptions of collisions in the solar system, full scientific results from Galileo's mission to Jupiter and its moons, and the Mars Pathfinder mission. For the curious observer as well as the student of planetary science, this book will be an important library acquisition. J. Kelly Beatty is the senior editor of Sky & Telescope, where for more than twenty years he has reported the latest in planetary science. A renowned science writer, he was among the first journalists to gain access to the Soviet space program. Asteroid 2925 Beatty was named on the occasion of his marriage in 1983. Carolyn Collins Petersen is an award-winning science writer and co-author of Hubble Vision (Cambridge 1995). She has also written planetarium programs seen at hundreds of facilities around the world. Andrew L. Chaikin is a Boston-based science writer. He served as a research geologist at the Smithsonian Institution's Center for Earth and Planetary Studies. He is a contributing editor to Popular Science and writes frequently for other publications.

  1. TOPICAL REVIEW The solar UV-x-ray spectrum from 1.5 to 2000 Å

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.; Feldman, U.

    2010-12-01

    This review illustrates the potential of UV-x-ray spectroscopy for determining the physical conditions in the solar chromosphere, transition region and corona, and how spectroscopy can be used as a tool to understand the physical mechanisms governing the atmosphere. It also illustrates the potential for understanding transient events such as solar flares. This is a vast topic, and therefore the review is necessarily not complete, but we have tried to be as general as possible in showing in particular how solar spectra are currently being used to understand the solar upper atmosphere. The review is intended for non-solar physicists with an interest in spectroscopy as well as for solar physicists who are not specialists in spectroscopy.

  2. 2006 LWS TR&T Solar Wind Focused Science Topic Team: Overview of Current Results

    NASA Astrophysics Data System (ADS)

    Miralles, M. P.; LWS Tr&T Solar Wind Fst Team

    2008-12-01

    We present a summary of the research conducted by the members of the 2006 LWS TR&T Solar Wind Focused Science Topic (FST) Team on the physical processes that heat and accelerate the solar wind. The Team applied a combination of theoretical studies, numerical simulations, and observations for their investigation of the role of energy sources and kinetic mechanisms responsible for the heating and acceleration of the solar wind. In particular, the FST Team examined magnetic reconnection, waves, and turbulence as possible heating mechanisms. Plasma properties and their evolution over the solar cycle, determined from the analysis of remote and in situ measurements of solar wind source regions and streams, are being used to constrain the models. The consistency of candidate theoretical models with existing observational data for the solar wind will be discussed.

  3. GLAST Solar System Science

    SciTech Connect

    Share, Gerald H.; Murphy, Ronald J.

    2007-07-12

    We briefly discuss GLAST's capabilities for observing high-energy radiation from various energetic phenomena in our solar system. These emissions include: bremsstrahlung, nuclear-line and pion-decay gamma-radiation, and neutrons from solar flares; bremsstrahlung and pion-decay gamma radiation from cosmic-ray interactions with the Sun, the Moon, and the Earth's atmosphere; and inverse Compton radiation from cosmic-ray electron interactions with sunlight.

  4. Solar system sputtering

    NASA Technical Reports Server (NTRS)

    Tombrello, T. A.

    1982-01-01

    The sites and materials involved in solar system sputtering of planetary surfaces are reviewed, together with existing models for the processes of sputtering. Attention is given to the interaction of the solar wind with planetary atmospheres in terms of the role played by the solar wind in affecting the He-4 budget in the Venus atmosphere, and the erosion and differentiation of the Mars atmosphere by solar wind sputtering. The study is extended to the production of isotopic fractionation and anomalies in interplanetary grains by irradiation, and to erosion effects on planetary satellites with frozen volatile surfaces, such as with Io, Europa, and Ganymede. Further measurements are recommended of the molecular form of the ejected material, the yields and energy spectra of the sputtered products, the iosotopic fractionation sputtering causes, and the possibility of electronic sputtering enhancement with materials such as silicates.

  5. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1979-01-01

    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.

  6. Solar-heating system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report describes solar modular domestic-hot-water and space-heating system intended for use in small single family dwelling where roof-mounted collectors are not feasible. Contents include design, performance, and hardware specifications for assembly, installation, operation, and maintenance of system.

  7. Baby Solar System

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Grady, Carol

    2012-01-01

    What did our solar system look like in its infancy,...... when the planets were forming? We cannot travel back in time to take an image of the early solar system, but in principle we can have the next best thing: images of infant planetary systems around Sun-like stars with ages of 1 to 5 million years, the time we think it took for the giant planets to form. Infant exoplanetary systems are critically important because they can help us understand how our solar system fits within the context of planet formation in general. More than 80% of stars are born with gas- and dust-rich disks, and thus have the potential to form planets. Through many methods we have identified more than 760 planetary systems around middle-aged stars like the Sun, but many of these have architectures that look nothing like our solar system. Young planetary systems are important missing links between various endpoints and may help us understand how and when these differences emerge. Well-known star-forming regions in Taurus, Scorpius. and Orion contain stars that could have infant planetary systems. But these stars are much more distant than our nearest neighbors such as Alpha Centauri or Sirius, making it extremely challenging to produce clear images of systems that can reveal signs of recent planet formation, let alone reveal the planets themselves. Recently, a star with the unassuming name LkCa 15 may have given us our first detailed "baby picture" of a young planetary system similar to our solar system. Located about 450 light-years away in the Taurus starforming region. LkCa 15 has a mass comparable to the Sun (0.97 solar mass) and an age of l to 5 million years, comparable to the time at which Saturn and perhaps Jupiter formed. The star is surrounded by a gas-rich disk similar in structure to the one in our solar system from which the planets formed. With new technologies and observing strategies, we have confirmed suspicions that LkCa 15's disk harbors a young planetary system.

  8. 2006 LWS TR & T Solar Wind Focused Science Topic Team: The Beginnings

    NASA Astrophysics Data System (ADS)

    Miralles, M. P.; Bhattacharjee, A.; Landi, E.; Markovskii, S.; Cranmer, S. R.; Doschek, G. A.; Forbes, T. G.; Isenberg, P. A.; Kohl, J. L.; Ng, C.; Raymond, J. C.; Vasquez, B. J.

    2006-12-01

    The Solar Wind Focused Science Topic (FST) team was created to apply a combination of theoretical studies, numerical simulations, and observations to the understanding of how the fast and slow solar wind are heated and accelerated. Four proposals were selected for this FST team. They will investigate the role of energy sources and kinetic mechanisms responsible for the heating and acceleration of the solar wind. In particular, the FST team will examine magnetic reconnection and turbulence as possible heating mechanisms. Plasma properties and their evolution over the solar cycle, determined from the analysis of remote and in situ measurements, will be used to put firm constraints on the models. The work of the Solar Wind FST team is in its initial stages. The organization, planning, and findings resulting from the first FST team meeting will be reported.

  9. Solar System Dynamics

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    2002-01-01

    In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.

  10. Solar Stirling system development

    NASA Technical Reports Server (NTRS)

    Stearns, J. W., Jr.; Won, Y. S.; Poon, P. T.; Das, R.; Chow, E. Y.

    1979-01-01

    A low-cost, high-efficiency dish-Stirling solar thermal-electric power system is being developed for test in 1981. System components are the solar concentrator, receiver, fossil fuel combustor, thermal energy storage (TES), engine-generator, and power processing. System conceptualization is completed and design is in progress. Two receiver alternatives are being evaluated, a direct-coupled receiver-engine configuration with no TES and a heat pipe receiver with TES. System cost projections are being made. Goals for the system development task are (1) to develop an advanced dish-Stirling technology, utilizing a team of industrial contractors, (2) to demonstrate that technology at the system level, and (3) to determine how to achieve low production cost.

  11. Integrated voice and visual systems research topics

    NASA Technical Reports Server (NTRS)

    Williams, Douglas H.; Simpson, Carol A.

    1986-01-01

    A series of studies was performed to investigate factors of helicopter speech and visual system design and measure the effects of these factors on human performance, both for pilots and non-pilots. The findings and conclusions of these studies were applied by the U.S. Army to the design of the Army's next generation threat warning system for helicopters and to the linguistic functional requirements for a joint Army/NASA flightworthy, experimental speech generation and recognition system.

  12. Topic: Catchment system dynamics: Processes and feedbacks

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia

    2015-04-01

    In this meeting we can talk about my main expertise: the focus of my research ocus revolves around understanding catchment system dynamics in a holistic way by incorporating both processes on hillslopes as well as in the river channel. Process knowledge enables explanation of the impact of natural and human drivers on the catchment systems and which consequences these drivers have for water and sediment connectivity. Improved understanding of the catchment sediment and water dynamics will empower sustainable land and river management and mitigate soil threats like erosion and off-side water and sediment accumulation with the help of nature's forces. To be able to understand the system dynamics of a catchment, you need to study the catchment system in a holistic way. In many studies only the hillslopes or even plots are studied; or only the channel. However, these systems are connected and should be evaluated together. When studying a catchment system any intervention to the system will create both on- as well as off sites effects, which should especially be taken into account when transferring science into policy regulations or management decisions.

  13. The organic Solar System

    NASA Astrophysics Data System (ADS)

    Gibb, Bruce C.

    2015-05-01

    In the second of two essays looking at organic chemistry that can be found in the Solar System, Bruce C. Gibb focuses on the gas and ice giants as well as their satellites -- concluding the tour on Saturn's fascinating moon Titan.

  14. Passive solar lighting system

    SciTech Connect

    Bennett, D.J.; Eijadi, D.A.

    1982-05-11

    A passive solar lighting system is disclosed. A multiplyer lens located within an aperture in a building increases the cone of light acceptance which would result in the absence of lens. Light passing through lens is further refracted by lenses and the resultant light is thereby directed to a target area for interior lighting.

  15. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and

  16. The New Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2009-01-01

    Since 2006, the details of bodies making up our solar system have been revised. This was largely as a result of new discoveries of a number of planet-like objects beyond the orbit of Pluto. The International Astronomical Union redefined what constituted a planet and established two new classifications--dwarf planets and plutoids. As a result, the

  17. Solar System Remote Sensing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This volume contains abstracts that have been accepted for presentation at the symposium on Solar System Remote Sensing, September 20-21, 2002, in Pittsburgh, Pennsylvania. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Departments at the Lunar and Planetary Institute.

  18. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  19. The New Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2009-01-01

    Since 2006, the details of bodies making up our solar system have been revised. This was largely as a result of new discoveries of a number of planet-like objects beyond the orbit of Pluto. The International Astronomical Union redefined what constituted a planet and established two new classifications--dwarf planets and plutoids. As a result, the…

  20. Selecting topical and systemic agents for recurrent aphthous stomatitis.

    PubMed

    Eisen, D; Lynch, D P

    2001-09-01

    Recurrent aphthous stomatitis (RAS) is one of the most common oral diseases worldwide. Although the exact etiology of RAS remains unknown, a variety of topical and systemic preparations may be used for palliation or prevention. In most patients with RAS, topical agents, including over-the-counter preparations such as amlexanox, prescribed corticosteroids, or antimicrobial agents, are sufficient to control the disease. Patients with frequent exacerbations or those with a severe form of RAS that is unresponsive to topical treatments often require systemic agents to control their disease. These include corticosteroids, colchicine, dapsone, pentoxifylline, and thalidomide. All therapies are palliative, and none result in permanent remission. PMID:11579786

  1. TOPICAL REVIEW: Carbon nanomaterials in biological systems

    NASA Astrophysics Data System (ADS)

    Ke, Pu Chun; Qiao, Rui

    2007-09-01

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment.

  2. Potassium emission absorption system. Topical report 12

    SciTech Connect

    Bauman, L.E.

    1995-04-01

    The Potassium Emission Absorption System is one of the advanced optical diagnostics developed at Mississippi State University to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the upstream of an MHD flow, the system directly measures gas temperature and neutral potassium atom number density through spectroscopic emission absorption techniques. From these measurements the electron density can be inferred from a statistical equilibrium calculation and the electron conductivity in the MHD channel found by use of an electron mobility model. The instrument has been utilized for field test measurements on MHD facilities for almost a decade and has been proven to provide useful measurements as designed for MHD nozzle, channel, and diffuser test sections. The theory of the measurements, a system description, its capabilities, and field test measurement results are reported here. During the development and application of the instrument several technical issues arose which when addressed advanced the state of the art in emission absorption measurement. Studies of these issues are also reported here and include: two-wavelength measurements for particle-laden flows, potassium D-line far wing absorption coefficient, bias in emission absorption measurements arising from dirty windows and misalignments, non-coincident multiwavelength emission absorption sampling errors, and lineshape fitting for boundary layer flow profile information. Although developed for NLHD application, the instrument could be applied to any high temperature flow with a resonance line in the 300 to 800 nm range, for instance other types of flames, rocket plumes or low temperature plasmas.

  3. Solar energy system

    SciTech Connect

    Langley, D.T.

    1983-01-25

    A solar energy system is disclosed in which the solar energy is converted to electrical energy for immediate use or the energy may be stored for use at a later date. The solar energy is converted to electrical energy by a large photo-voltaic array and the output of the photo-voltaic array is fed through an inverter and other control circuitry to produce an A.C. electrical output of a predetermined magnitude. The A.C. electrical output may be used directly or the electrical energy may be fed to a storage system for later use. In one embodiment the A.C. electrical energy is employed to drive a pneumatic pump or air compressor for storing the energy in the form of a compressed gas, either in a rigid tank or in a resiliently expandable tank. The compressed air from the tank is released through a control valve and is fed through a pneumatic motor. The pneumatic motor drives an electric generator for producing an A.C. electrical output at the desired times. In another embodiment of the invention, the electrical storage system comprises a system suitable to lift a weight. The potential energy is later converted to kinetic energy by lowering the weight and through a linkage system, is utilized for the generation of electricity through an electric generator.

  4. Solar System Voyage

    NASA Astrophysics Data System (ADS)

    Brunier, Serge

    2002-11-01

    In the last few decades, the exploration of our solar system has revealed fascinating details about the worlds that lie beyond our Earth. This lavishly illustrated book invites the reader on a journey through the solar system. After locating our planetary system in the Universe, Brunier describes the Sun and its planets, the large satellites, asteroids, and comets. Photographs and information taken from the latest space missions allow readers to experience spectacular scenes: the lunar plains scarred by asteroid impacts, the frozen deserts of Mars and Europa, the continuously erupting volcanoes of Io and the giant geysers of Triton, the rings of Saturn and the clouds of Venus and Titan, and the powerful crash of the comet Shoemaker-Levy into Jupiter. Inspired by the extraordinary photographs and incisive text, readers of Solar System Voyage will gain a greater appreciation of the hospitable planet we call home. Serge Brunier is chief editor of the journal Ciel et Espace, a photojournalist, and the author of many nonfiction books aimed at both specialists and the general public. His previous books include Space Odyssey (Cambridge, 2002), Glorious Eclipses with Jean-Pierre Luminet (Cambridge, 2000), and Majestic Universe (Cambridge, 1999).

  5. On solar system nomenclature

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1976-01-01

    Arguments in support of naming topographic features on other solar system objects after human beings other than astronomers are outlined. In particular, it is important to make sure that the end result will be a nonprovincial distribution of nationalities, epochs, and occupations, a distribution that future generations can be proud of. A more consistent scheme for Jovian satellite nomenclature is proposed which consistently maintains the tradition of naming Jovian satellites after prominent consorts.

  6. Fixed solar collection system

    SciTech Connect

    Tipton, H.R.

    1984-07-31

    A fixed solar energy collector system has facing panels of different size forming a Vee-shaped trough open at its base and supporting a plurality of highly reflective convex reflectors strategically disposed upon said panels in reflective relationship to a plurality of Fresnel lenses positioned at the base of the trough. A suitable reflector, disposed beneath the Fresnel lenses, directs the reflected energy to a heat-needy target.

  7. Solar Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  8. Solar power satellite system definition study, volume 4, phase 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results of an overall evaluation of the solar power satellite concept are reported. Specific topics covered include: solid state sandwich configuration; parametric development of reliability design; power distribution system for solid state solar power satellites; multibeam transmission; GEO base system configuration; suppression of the heavy lift launch vehicle trajectory; conceptual design of an offshore space center facility; solar power satellite development and operations scenario; and microwave power transmission technology, advancement, development, and facility requirements.

  9. Solar system plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  10. Advanced solar power systems

    NASA Astrophysics Data System (ADS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-03-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  11. Solar system exploration

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Ramlose, Terri (Editor)

    1989-01-01

    The goal of planetary exploration is to understand the nature and development of the planets, as illustrated by pictures from the first two decades of spacecraft missions and by the imaginations of space artists. Planets, comets, asteroids, and moons are studied to discover the reasons for their similarities and differences and to find clues that contain information about the primordial process of planet origins. The scientific goals established by the National Academy of Sciences as the foundation of NASA's Solar System Exploration Program are covered: to determine the nature of the planetary system, to understand its origin and evolution, the development of life on Earth, and the principles that shape present day Earth.

  12. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  13. Solar thermal power system

    DOEpatents

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  14. The space-age solar system

    SciTech Connect

    Baugher, J.F.

    1988-01-01

    This book is a description of the sun, planets, moons, asteroids, and comets in the solar system. Discussion is based heavily on results obtained from recent space probes to Mercury, Venus, Mars Jupiter, Saturn, and Uranus. Offers detailed descriptions of the moons of Jupiter and Saturn, and the results of the recent probes of Halley's comet. A discussion of meteorites leads to a description of the current models of the solar system. Introductory chapters present theories of the solar system from the ancient Greeks to the present day. Other topics covered include the sun, its structure, and how it generates energy; the surfaces, internal structures, and histories of the planets, from innermost Mercury to farthest Pluto, and their moons.

  15. Solar heating system

    DOEpatents

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  16. Improved solar heating systems

    DOEpatents

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  17. WISE Solar System Science

    NASA Astrophysics Data System (ADS)

    Mainzer, Amanda K.; Wright, E. L.; Bauer, J. M.; Cutri, R.; Dailey, J.; Grav, T.; Masiero, J.; McMillan, R. S.; Tholen, D.; Walker, R.

    2010-10-01

    In early January, 2010, the Wide-field Infrared Survey Explorer (WISE) began imaging the entire sky with sensitivities in the mid-IR hundreds of times greater than previous surveys. WISE consists of a 40 cm cryogenically-cooled telescope taking simultaneous images at 3.4, 4.6, 12 and 22 microns. WISE has recently completed its first full survey of the sky and is expected to continue flight operations through November. Although WISE itself is an astrophysics mission, NASA's Planetary Science Mission Directorate has funded an enhancement to the WISE project, called "NEOWISE", that is dedicated to serving the individual exposures and extracted source lists, providing an interface for small bodies based on orbital elements, and discovering new moving objects. The WISE bandpasses sample the flux from most inner-Solar System bodies near the peak of their thermal emission, making the survey extremely efficient at detecting and discovering solar system objects. Infrared observations are sensitive to the low albedo objects that are preferentially missed by optical surveys. By the time the cryogen is depleted, NEOWISE will observe 700 Near-Earth Objects (NEOs), 200,000 Main Belt Asteroids, 200 comets, and 1500 Trojan asteroids. The NEOWISE dataset represents a treasure trove of new information on small bodies in our Solar System that will leave a legacy for decades to come. We will present preliminary results of the NEOWISE survey from the first six months of flight operations and will offer an introduction to the community on how to access the data when they become available next year. This research was funded in part by the NASA (ROSES) NEOO program. This work makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of UCLA and JPL/Caltech, funded by NASA.

  18. Outer Solar System Nomenclature

    NASA Technical Reports Server (NTRS)

    Owen, Tobias C.

    1998-01-01

    The Principal Investigator's responsibilities on this grant fell into two categories according to his participation. In the nomenclature work of the International Astronomical Union (IAU). Owen is chair of the Task Group for the Outer Solar System. He is also a member of the IAU's Working Group on Planetary and Satellite Nomenclature (WGPSN) which is composed of the chairs of the several Task Groups plus the presidents of two IAU Commissions and several outside consultants. The WGPSN is presided over by its President, Professor Kaare Aksnes from the Rosseland Institute for Theoretical Astrophysics in Oslo, Norway.

  19. Advanced turbine systems program conceptual design and product development. Task 3 -- System selection; Topical report

    SciTech Connect

    White, D.J.

    1994-07-01

    Solar Turbines Incorporated has elected to pursue an intercooled and recuperated (ICR) gas turbine system to exceed the goals of the DOE Advanced Turbine Systems (ATS) program, which are to develop and commercialize an industrial gas turbine system that operates at thermal efficiencies at least 15% higher than 1991 products, and with emissions not exceeding eight ppmv NOx and 20 ppmv CO and UHC. Solar`s goal is to develop a commercially viable industrial system (3--20 MW) driven by a gas turbine engine with a thermal efficiency of 50% (ATS50), with the flexibility to meet the differing operational requirements of various markets. Dispersed power generation is currently considered to be the primary future target market for the ICR in the 5--15 MW size class. The ICR integrated system approach provides an ideal candidate for the assumed dispersed power market, with its small footprint, easy transportability, and environmental friendliness. In comparison with other systems that use water or toxic chemicals such as ammonia for NOx control, the ICR has no consumables other than fuel and air. The low pressure ratio of the gas turbine engine also is favorable in that less parasitic power is needed to pump the natural gas into the combustor than for simple-cycle machines. Solar has narrowed the ICR configuration to two basic approaches, a 1-spool, and a 2-spool version of the ATS50. The 1-spool engine will have a lower first-cost but lower part-power efficiencies. The 2-spool ATS may not only have better part-power efficiency, its efficiency will also be less sensitive to reduced turbine rotor inlet temperature levels. Thus hot-end parts life can be increased with only small sacrifices in efficiency. The flexibility of the 2-spool arrangement in meeting customer needs is its major advantage over the 1-spool. This Task 3 Topical Report is intended to present Solar`s preliminary system selection based upon the initial trade-off studies performed to date.

  20. Our Solar System's Cousin?

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist's concept illustrates two planetary systems -- 55 Cancri (top) and our own. Blue lines show the orbits of planets, including the dwarf planet Pluto in our solar system. The 55 Cancri system is currently the closest known analogue to our solar system, yet there are some fundamental differences.

    The similarities begin with the stars themselves, which are about the same mass and age. Both stars also host big families of planets. Our solar system has eight planets, while 55 Cancri has five, making it the record-holder for having the most known exoplanets. In fact, 55 Cancri could have additional planets, possibly even rocky ones that are too small to be seen with current technologies. All of the planets in the two systems have nearly circular orbits.

    In addition, both planetary systems have giant planets in their outer regions. The giant located far away from 55 Cancri is four times the mass of our Jupiter, and completes one orbit every 14 years at a distance of five times that between Earth and the sun (about 868 million kilometers or 539 million miles). Our Jupiter completes one orbit around the sun every 11.9 years, also at about five times the Earth-sun distance (778 million kilometers or 483 million miles). Fifty-five Cancri is still the only known star besides ours with a planet in a distant Jupiter-like orbit. Both systems also contain inner planets that are less massive than their outer planets.

    The differences begin with the planets' masses. The planets orbiting 55 Cancri are all larger than Earth, and represent a 'souped-up' version of our own solar system. In fact, this is the first star that boasts more giant planets than our sun!

    The arrangement of the planetary systems is also different. The inner four planets of 55 Cancri are all closer to the star than Earth is to the sun. The closest, about the mass of Uranus, whips around the star in just under three days at a distance of approximately 5.6 million kilometers (3.5 million miles). The second planet out from the star is a little smaller than Jupiter and completes one orbit every 14.7 days at a distance of approximately 17.9 million kilometers (11.2 million miles). The third planet out from the star is similar in mass to Saturn and completes one orbit every 44 days at a distance of approximately 35.9 million kilometers (22.3 million miles). The fourth planet is about half the mass of Saturn, orbits every 260 days and is approximately 116.7 million kilometers (72.5 million miles) away from the star.

  1. Solar System Ambassadors Program

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    2004-11-01

    The Solar System Ambassadors Program is an informal education program designed to work with motivated volunteers across the nation. These competitively selected volunteers communicate information about NASA and JPL's space exploration plans and discoveries to members of their local communities. Currently, there are 375 volunteer Solar System Ambassadors in all 50 states, Puerto Rico and the District of Columbia who seek to inspire general public audiences with information about NASA's space exploration missions. Each Ambassador participates in web-based telecon training sessions that provide interaction with NASA scientists, engineers and project team members. As such, each Ambassador's experience with the space program becomes personalized. Training sessions provide Ambassadors with general background on each mission and educate them concerning specific mission milestones, such as launches, planetary flybys, first image returns, arrivals, and ongoing key discoveries. In addition to on-line information, Ambassadors are given DVDs, slides, pamphlets, posters, postcards and lithographs in support of their public engagement.. In addition to participating in on-line trainings with Ambassadors, scientists have the opportunity to partner with, and mentor Ambassadors to strengthen their knowledge of space science and exploration, thereby improving the message that goes out to the general public through these enthusiastic volunteers. Integrating volunteers across the country in an informal education program helps optimize project funding set aside for education and outreach purposes and establishes a nationwide network of regional contacts.

  2. Exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Henderson, A., Jr. (Editor); Grey, J.

    1974-01-01

    The potential achievements of solar system exploration are outlined, and a course of action is suggested which will maximize the rewards. Also provided is a sourcebook of information on the solar system and the technology being brought to bear for its exploration. The document explores the degree to which three practical questions can be answered: why it is necessary to explore the solar system, why understanding of the solar system is important to us, and why we cannot wait until all terrestrial problems are solved before an attempt is made to solve problems in space.

  3. Smaller solar system bodies and orbits; Proceedings of Symposium 3, Workshops II, III, and XXVI, and Topical Meetings of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Runcorn, S. K. (Editor); Carr, M. H. (Editor); Moehlmann, D. (Editor); Stiller, H. (Editor); Matson, D. L. (Editor); Ambrosius, B. A. C. (Editor); Kessler, D. J. (Editor)

    1990-01-01

    Topics discussed in this volume include the reappraisal of the moon and Mars/Phobos/Deimos; the origin and evolution of planetary and satellite systems; asteroids, comets, and dust (a post-IRAS perspective); satellite dynamics; future planetary missions; and orbital debris. Papers are presented on a comparison of the chemistry of moon and Mars, the use of a mobile surface radar to study the atmosphere and ionosphere, and laser-ionization studies with the technical models of the LIMA-D/Phobos. Attention is given to planetogonic scenarios and the evolution of relatively mass-rich preplanetary disks, the kinetic behavior of planetesimals revolving around the sun, the planetary evolution of Mars, and pre- and post-IRAS asteroid taxonomies. Consideration is also given to ocean tides and tectonic plate motions in high-precision orbit determination, the satellite altimeter calibration techniques, a theory of the motion of an artificial satellite in the earth atmosphere, ESA plans for planetary exploration, and the detection of earth orbiting objects by IRAS.

  4. Smaller solar system bodies and orbits; Proceedings of Symposium 3, Workshops II, III, and XXVI, and Topical Meetings of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Astrophysics Data System (ADS)

    Runcorn, S. K.; Carr, M. H.; Moehlmann, D.; Stiller, H.; Matson, D. L.; Ambrosius, B. A. C.; Kessler, D. J.

    Topics discussed in this volume include the reappraisal of the moon and Mars/Phobos/Deimos; the origin and evolution of planetary and satellite systems; asteroids, comets, and dust (a post-IRAS perspective); satellite dynamics; future planetary missions; and orbital debris. Papers are presented on a comparison of the chemistry of moon and Mars, the use of a mobile surface radar to study the atmosphere and ionosphere, and laser-ionization studies with the technical models of the LIMA-D/Phobos. Attention is given to planetogonic scenarios and the evolution of relatively mass-rich preplanetary disks, the kinetic behavior of planetesimals revolving around the sun, the planetary evolution of Mars, and pre- and post-IRAS asteroid taxonomies. Consideration is also given to ocean tides and tectonic plate motions in high-precision orbit determination, the satellite altimeter calibration techniques, a theory of the motion of an artificial satellite in the earth atmosphere, ESA plans for planetary exploration, and the detection of earth orbiting objects by IRAS.

  5. Magnetopause Boundary Processes Throughout the Solar System

    NASA Astrophysics Data System (ADS)

    Masters, A.

    2014-12-01

    Earth is not the only planet in the Solar System with a natural magnetic shield. Mercury, Jupiter, Saturn, Uranus, and Neptune are similarly protected from the solar wind and cosmic rays. However, like our planet, the magnetic shielding of each of these magnetized planets can break down, driving energy flow through each planetary magnetosphere. Although studies of the magnetopause boundary of Earth's magnetosphere have shed considerable light on the processes that lead to this breakdown, the extent to which we can apply this understanding to the diverse space plasma environments surrounding other planets remains unclear. Here we review what we have learnt so far about the operation of magnetopause boundary processes at all the magnetized planets in the Solar System, and outline some of the relevant outstanding questions. We start by consolidating present understanding of terrestrial magnetopause processes, which is our reference when considering other boundaries. We focus on selected processes (magnetic reconnection, Kelvin-Helmholtz instability), compare how we expect them to operate at each planetary magnetopause, and assess whether or not this is consistent with in situ spacecraft observations. For each planetary magnetosphere we then discuss the nature of the total interaction with the solar wind, and whether this is expected to be dominant over internal drivers of magnetospheric dynamics. A combination of further spacecraft exploration and dedicated numerical modeling is required in order to address the many outstanding questions concerning this topic. Progress in this direction would have broad implications for other space plasma systems, in our solar system and beyond.

  6. Solar Systems at Last

    NASA Astrophysics Data System (ADS)

    Villaver, Eva

    2015-12-01

    Planet host stars, the Sun among them, will eventually evolve into giants, through the Planetary Nebula phase to finally end their lives as white dwarfs. Planets will be engulfed along the giant phases, evaporated during the Planetary Nebula phase, and possibly destabilized when the star enters the white dwarf cooling track. A large number of planets will eventually be destroyed and there is a lot to be learned from that. The conditions on the planet surface of those that survive are expected to be modified as well as the result of the evolution of the star. I will discuss the new limits that the theoretical studies allow us to set on the survival and habitability of planets as the star runs out of its hydrogen fuel and the possibilities for the formation of second generation planets. Finally, I will present new results on the real consequences that the presence and destruction of these Extreme Solar systems have in the evolution of stars.

  7. Exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Henderson, A., Jr.; Grey, J.

    1974-01-01

    A sourcebook of information on the solar system and the technology used for its exploration is presented. An outline of the potential achievements of solar system exploration is given along with a course of action which maximizes the rewards to mankind.

  8. Wind in the Solar System

    ERIC Educational Resources Information Center

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might motivate

  9. Wind in the Solar System

    ERIC Educational Resources Information Center

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might motivate…

  10. Economic Evaluation of Observatory Solar-Energy System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Long-term economic performance of a commercial solar-energy system was analyzed and used to predict economic performance at four additional sites. Analysis described in report was done to demonstrate viability of design over a broad range of environmental/economic conditions. Topics covered are system description, study approach, economic analysis and system optimization.

  11. Progress in passive solar energy systems. Volume 8. Part 1

    SciTech Connect

    Hayes, J.; Andrejko, D.A.

    1983-01-01

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  12. Topical imiquimod yields systemic effects due to unintended oral uptake

    PubMed Central

    Grine, Lynda; Steeland, Sophie; Van Ryckeghem, Sara; Ballegeer, Marlies; Lienenklaus, Stefan; Weiss, Siegfried; Sanders, Niek N.; Vandenbroucke, Roosmarijn E.; Libert, Claude

    2016-01-01

    Repetitive application of topical imiquimod is used as an experimental model for the induction of psoriasiform skin lesions in mice. The model is characterized by several inflammatory processes, including cytokine production both locally and systemically, cellular infiltration, and splenomegaly. To investigate the production of type I interferons in response to imiquimod-containing Aldara cream, IFNβ-luciferase reporter mice were imaged in vivo and ex vivo. Type I interferons were found to be produced in the skin, but also in the intestinal system caused by unintended ingestion of imiquimod by the mice. Through the use of Elizabethan collars to prevent ingestion, these effects, including psoriasiform lesions were nearly completely prevented. Our findings reveal that topical treatment with Aldara induces a psoriasiform skin inflammation, but that its mode of action depends on ingestion of the chemical, which leads to systemic responses and affects local inflammation. Therefore, potential ingestion of topical treatments during experimental procedures should be taken into account during assessment of cutaneous inflammatory parameters in skin disease models. PMID:26818707

  13. Topical imiquimod yields systemic effects due to unintended oral uptake.

    PubMed

    Grine, Lynda; Steeland, Sophie; Van Ryckeghem, Sara; Ballegeer, Marlies; Lienenklaus, Stefan; Weiss, Siegfried; Sanders, Niek N; Vandenbroucke, Roosmarijn E; Libert, Claude

    2016-01-01

    Repetitive application of topical imiquimod is used as an experimental model for the induction of psoriasiform skin lesions in mice. The model is characterized by several inflammatory processes, including cytokine production both locally and systemically, cellular infiltration, and splenomegaly. To investigate the production of type I interferons in response to imiquimod-containing Aldara cream, IFNβ-luciferase reporter mice were imaged in vivo and ex vivo. Type I interferons were found to be produced in the skin, but also in the intestinal system caused by unintended ingestion of imiquimod by the mice. Through the use of Elizabethan collars to prevent ingestion, these effects, including psoriasiform lesions were nearly completely prevented. Our findings reveal that topical treatment with Aldara induces a psoriasiform skin inflammation, but that its mode of action depends on ingestion of the chemical, which leads to systemic responses and affects local inflammation. Therefore, potential ingestion of topical treatments during experimental procedures should be taken into account during assessment of cutaneous inflammatory parameters in skin disease models. PMID:26818707

  14. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A waste water treatment plant in Wilton, Maine, where sludge is converted to methane gas, and Monsanto Company's Environmental Health Laboratory in St. Louis Missouri, where more than 200 solar collectors provide preheating of boiler feed water for laboratory use are representative of Grumman's Sunstream line of solar energy equipment. This equipment was developed with technology from NASA's Apollo lunar module program.

  15. Solar Power System Design for the Solar Probe+ Mission

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  16. Topical nitrogen mustard exposure causes systemic toxic effects in mice

    PubMed Central

    Goswami, Dinesh G.; Kumar, Dileep; Tewari-Singh, Neera; Orlicky, David J.; Jain, Anil K.; Kant, Rama; Rancourt, Raymond C.; Dhar, Deepanshi; Inturi, Swetha; Agarwal, Chapla; White, Carl W.; Agarwal, Rajesh

    2014-01-01

    Vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) are reported to be easily absorbed by skin upon exposure causing severe cutaneous injury and blistering. Our studies show that topical exposure of NM (3.2 mg) onto SKH-1 hairless mouse skin, not only caused skin injury, but also led to significant body weight loss and 40–80 % mortality (120 h post-exposure), suggesting its systemic effects. Accordingly, further studies herein show that NM exposure initiated an increase in circulating white blood cells by 24 h (neutrophils, eosinophils and basophils) and thereafter a decrease (neutrophils, lymphocytes and monocytes). NM exposure also reduced both white and red pulp areas of the spleen. In the small intestine, NM exposure caused loss of membrane integrity of the surface epithelium, abnormal structure of glands and degeneration of villi. NM exposure also resulted in the dilation of glomerular capillaries of kidneys, and an increase in blood urea nitrogen/creatinine ratio. Our results here with NM are consistent with earlier reports that exposure to higher SM levels can cause damage to the hematopoietic system, and kidney, spleen and gastrointestinal tract toxicity. These outcomes will add to our understanding of the toxic effects of topical vesicant exposure, which might be helpful towards developing effective countermeasures against injuries from acute topical exposures. PMID:25481215

  17. Topical nitrogen mustard exposure causes systemic toxic effects in mice.

    PubMed

    Goswami, Dinesh G; Kumar, Dileep; Tewari-Singh, Neera; Orlicky, David J; Jain, Anil K; Kant, Rama; Rancourt, Raymond C; Dhar, Deepanshi; Inturi, Swetha; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2015-02-01

    Vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) are reported to be easily absorbed by skin upon exposure causing severe cutaneous injury and blistering. Our studies show that topical exposure of NM (3.2mg) onto SKH-1 hairless mouse skin, not only caused skin injury, but also led to significant body weight loss and 40-80% mortality (120 h post-exposure), suggesting its systemic effects. Accordingly, further studies herein show that NM exposure initiated an increase in circulating white blood cells by 24h (neutrophils, eosinophils and basophils) and thereafter a decrease (neutrophils, lymphocytes and monocytes). NM exposure also reduced both white and red pulp areas of the spleen. In the small intestine, NM exposure caused loss of membrane integrity of the surface epithelium, abnormal structure of glands and degeneration of villi. NM exposure also resulted in the dilation of glomerular capillaries of kidneys, and an increase in blood urea nitrogen/creatinine ratio. Our results here with NM are consistent with earlier reports that exposure to higher SM levels can cause damage to the hematopoietic system, and kidney, spleen and gastrointestinal tract toxicity. These outcomes will add to our understanding of the toxic effects of topical vesicant exposure, which might be helpful towards developing effective countermeasures against injuries from acute topical exposures. PMID:25481215

  18. Introduction - The sun, the solar nebula, and the planetary system

    NASA Astrophysics Data System (ADS)

    Wasson, J. T.; Kivelson, M. G.

    An overview of the solar system is given placing the subsequent subjects in context. Asteroids, comets, planets and assorted moons make up 0.13 percent of the mass of the solar system. Pluto's status as a planet is called into question by the fact that its mass is only one-fifth that of the moon. Other topics include: elliptical orbits, the origin of the planets, the HR diagram, star formation, planet formation and composition of the inner planets.

  19. Crusted (Norwegian) scabies following systemic and topical corticosteroid therapy.

    PubMed

    Binić, Ivana; Janković, Aleksandar; Jovanović, Dragan; Ljubenović, Milanka

    2010-01-01

    It is a case study of a 62-yr-old female with crusted (Norwegian) scabies, which appeared during her treatment with systemic and topical corticosteroid therapy, under the diagnosis of erythroderma. In the same time, the patient had been suffered from hypothyoidism, and her skin changes were misdiagnosed, because it was thought that they are associated with her endocrine disorder. Suddenly, beside the erythema, her skin became hyperkeratotic, with widespread scaling over the trunk and limbs, and crusted lesions appeared on her scalp and ears. The microscopic examination of the skin scales with potassium hydroxide demonstrated numerous scabies mites and eggs. Repeated topical treatments with lindan, benzoyl benzoat and 10% precipitated sulphur ointment led to the complete resolution of her skin condition. PMID:20052371

  20. Astrometric solar system anomalies

    SciTech Connect

    Nieto, Michael Martin; Anderson, John D

    2009-01-01

    There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.

  1. Outer Solar System Nomenclature

    NASA Technical Reports Server (NTRS)

    Owen, Tobias C.; Grant, John (Technical Monitor)

    2003-01-01

    This grant has supported work by T. Owen and B. A. Smith on planetary and satellite nomenclature, carried out under the general auspices of the International Astronomical Union (IAU). The IAU maintains a Working Group on Planetary and Satellite Nomenclature (WGPSN) whose current chair is Prof.Kaare Aksnes of the Rosseland Institute for Theoretical Astrophysics in Oslo, Norway. Both Owen and Smith are members of the WGPSN; Owen as chair of the Outer Solar System Task Group, and Smith as chair of the Mars Task Group. The major activity during the last grant period (2002) was the approval of several new names for features on Mars by Smith's group and features on Jovian satellites plus new names for satellites of Jupiter, Saturn and Uranus by Owen's group. Much of this work was accomplished by e-mail exchanges, but the new nomenclature was formally discussed and approved at a meeting of the WGPSN held in conjunction with the Division for Planetary Sciences meeting in Birmingham, Alabama in October 2002.

  2. The database management system: A topic and a tool

    NASA Technical Reports Server (NTRS)

    Plummer, O. R.

    1984-01-01

    Data structures and data base management systems are common tools employed to deal with the administrative information of a university. An understanding of these topics is needed by a much wider audience, ranging from those interested in computer aided design and manufacturing to those using microcomputers. These tools are becoming increasingly valuable to academic programs as they develop comprehensive computer support systems. The wide use of these tools relies upon the relational data model as a foundation. Experience with the use of the IPAD RIM5.0 program is described.

  3. Solar electric propulsion system technology

    NASA Technical Reports Server (NTRS)

    Masek, T. D.; Macie, T. W.

    1971-01-01

    Achievements in the solar electric propulsion system technology program (SEPST 3) are reported and certain propulsion system-spacecraft interaction problems are discussed. The basic solar electric propulsion system concept and elements are reviewed. Hardware is discussed only briefly, relying on detailed fabrication or assembly descriptions reported elsewhere. Emphasis is placed on recent performance data, which are presented to show the relationship between spacecraft requirements and present technology.

  4. Solar Thermal Electricity Generating System

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at Earth¥s surface. The higher the concentration, the higher the temperatures we can achieve when converting solar radiation into thermal energy

  5. Evolution of the Solar System

    NASA Technical Reports Server (NTRS)

    Alfven, H.; Arrhenius, G.

    1976-01-01

    The origin and evolution of the solar system are analyzed. Physical processes are first discussed, followed by experimental studies of plasma-solid reactions and chemical and mineralogical analyses of meteorites and lunar and terrestrial samples.

  6. Exobiology in Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C. (Editor); Schwartz, Deborah E. (Editor); Huntington, Judith L. (Editor)

    1992-01-01

    A symposium, 'Exobiology in Solar System Exploration,' was held on 24-26 Aug. 1988. The symposium provided an in-depth investigation of the role of Exobiology in solar system exploration. It is expected that the symposium will provide direction for future participation of the Exobiology community in solar system exploration and alert the Planetary community to the continued importance of an Exobiology Flight Program. Although the focus of the symposium was primarily on Exobiology in solar system exploration missions, several ground based and Earth-orbital projects such as the Search for Extraterrestrial Intelligence, Gas Grain Facility, and Cosmic Dust Collection Facility represent upcoming research opportunities planned to accommodate the goals and objectives of the Exobiology community as well. This report contains papers for all but one of the presentations given at the symposium.

  7. Views of the solar system

    SciTech Connect

    Hamilton, C.

    1995-02-01

    Views of the Solar System has been created as an educational tour of the solar system. It contains images and information about the Sun, planets, moons, asteroids and comets found within the solar system. The image processing for many of the images was done by the author. This tour uses hypertext to allow space travel by simply clicking on a desired planet. This causes information and images about the planet to appear on screen. While on a planet page, hyperlinks travel to pages about the moons and other relevant available resources. Unusual terms are linked to and defined in the Glossary page. Statistical information of the planets and satellites can be browsed through lists sorted by name, radius and distance. History of Space Exploration contains information about rocket history, early astronauts, space missions, spacecraft and detailed chronology tables of space exploration. The Table of Contents page has links to all of the various pages within Views Of the Solar System.

  8. Solar System Observations with JWST

    NASA Technical Reports Server (NTRS)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid- infrared, with sensitivity and spatial-spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010 (Lunine et al., 2010). It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV in 2012.

  9. Futuristic systems: Solar and nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Byers, Dave

    1991-01-01

    The following topics are addressed: (1) in-space propulsion impacts; (2) electric propulsion; (3) mission impacts of electric propulsion; and (4) summaries of electric propulsion status and solar and nuclear propulsion.

  10. Lunar and Planetary Science XXXV: Early Solar System Chronology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The following topics were presented in this report: Iron Isotopic Fractionation During Vacuum Evaporation of Molten W?stite and Solar Compositions; Mg Isotope Ratio Zonation in CAIs - New Constraints on CAI Evolution; Sm-Nd Systematics of Chondrites; AMS Measurement of Mg-24(He-3,p)Al-26 Cross Section, Implications for the Al-26 Production in the Early Solar System; On Early Solar System Chronology: Implications of an Initially Heterogeneous Distribution of Short-lived Radionuclides; Revisiting Extraterrestrial U Isotope Ratios; Helium-Shell Nucleosynthesis and Extinct Radioactivities; High Spatial Resolution Ion Microprobe Measurements Refine Chronology of Orgueil Carbonate Formation; and Calibration of the Galactic Cosmic Ray Flux.

  11. Universal solar energy desalination system

    NASA Astrophysics Data System (ADS)

    Fusco, V. S.

    Design considerations to allow site-dependent flexibility in the choice of solar/wind powered desalinization plant configurations are discussed. A prototype design was developed for construction of 6300 cu m per day brackish water treatment in Brownsville, TX. The water is treated to reduce the amount of suspended solids and prevent scaling. A reverse osmosis unit processes the treated liquid to recover water at a ratio of 90%. The power system comprises a parabolic trough solar thermal system with an organic Rankine cycle generator, rock-oil thermal storage, and 200 kW wind turbines. Analysis of the complementarity of the solar and wind subsystems indicates that at any site one system will supplement the other. Energy storage, e.g., battery banks, would increase system costs to unacceptable levels. Climatic conditions will significantly influence the sizing of each segment of the total power system.

  12. Solar Program Assessment: Environmental Factors - Solar Total Energy Systems.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental, safety, and social/institutional issues associated with the further development of Solar Total Energy Systems (STES). Solar total energy systems represent a specific application of the Federally-funded solar technologies. To provide a background for this analysis, the…

  13. The Solar System as an Exoplanetary System

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca G.; Livio, Mario

    2015-09-01

    With the availability of considerably more data, we revisit the question of how special our solar system is compared to observed exoplanetary systems. To this goal, we employ a mathematical transformation that allows for a meaningful, statistical comparison. We find that the masses and densities of the giant planets in our solar system are very typical, as is the age of the solar system. While the orbital location of Jupiter is something of an outlier, this is most likely due to strong selection effects toward short-period planets. The eccentricities of the planets in our solar system are relatively small compared to those in observed exosolar systems, but are still consistent with the expectations for an 8-planet system (and could, in addition, reflect a selection bias toward high-eccentricity planets). The two characteristics of the solar system that we find to be most special are the lack of super-Earths with orbital periods of days to months and the general lack of planets inside of the orbital radius of Mercury. Overall, we conclude that, in terms of its broad characteristics, our solar system is not expected to be extremely rare, allowing for a level of optimism in the search for extrasolar life.

  14. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by such hybrids.

  15. Chaos in the Solar System

    NASA Technical Reports Server (NTRS)

    Lecar, Myron; Franklin, Fred A.; Holman, Matthew J.; Murray, Norman J.

    2001-01-01

    The physical basis of chaos in the solar system is now better understood: In all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new "short-peroid" comet is discovered each year. They are believed to come from the "Kuiper Belt" (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury in 1012 years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 109 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!

  16. Solar Heating and Cooling of Residential Buildings: Design of Systems.

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This is the second of two training courses designed to develop the capability of practitioners in the home building industry to design solar heating and cooling systems. The course is organized in 23 modules to separate selected topics and to facilitate learning. Although a compact schedule of one week is shown, a variety of formats can be…

  17. Exploring the Solar System? Let the Math Teachers Help!

    ERIC Educational Resources Information Center

    Charles, Karen; Canales, J. D.; Smith, Angela; Zimmerman, Natalie

    2012-01-01

    Scale measurement and ratio and proportion are topics that fall clearly in the middle-grades mathematics curriculum in Texas. So does the solar system. In their experience, the authors have found that students have trouble manipulating, much less comprehending, very large numbers and very small numbers. These concepts can be brought into students'

  18. Exploring the Solar System? Let the Math Teachers Help!

    ERIC Educational Resources Information Center

    Charles, Karen; Canales, J. D.; Smith, Angela; Zimmerman, Natalie

    2012-01-01

    Scale measurement and ratio and proportion are topics that fall clearly in the middle-grades mathematics curriculum in Texas. So does the solar system. In their experience, the authors have found that students have trouble manipulating, much less comprehending, very large numbers and very small numbers. These concepts can be brought into students'…

  19. Modular passive solar heating system

    SciTech Connect

    Hunter, B.D.

    1985-03-19

    A modular passive solar energy storage system comprises a plurality of heat tubes which are arranged to form a flat plate solar collector and are releasably connected to a water reservoir by, and are part of, double-walled heat exchangers which penetrate to the water reservoir and enhance the heat transfer characteristics between the collector and the reservoir. The flat plate collector-heat exchanger disassembly, the collector housing, and the reservoir are integrated into a relatively light weight, unitary structural system in which the reservoir is a primary structural element. In addition to light weight, the system features high efficiency and ease of assembly and maintenance.

  20. The Cambridge Guide to the Solar System

    NASA Astrophysics Data System (ADS)

    Lang, Kenneth R.

    2003-10-01

    The Cambridge Guide to the Solar System provides a comprehensive, funamental, and up-to-date description of the solar system. It is written in a concise, light and uniform style, without being unnecessarily weighted down with specialized materials or the variable writing of multiple authors. It is filled with vital facts and information for astronomers of all types and for anyone with a scientific interest in the Earth, our Moon, all the other planets and their satellites, and related topics such as asteroids, comets, meteorites and meteors. The language, style, ideas and profuse illustrations will attract the general reader as well as professionals. A thorough report for general readers, it includes much compact reference data. Metaphors, similes and analogies will be of immense help to the lay person or non-science student, and they add to the enjoyment of the material. Vignettes containing historical, literary and even artistic material make this book unusual and interesting, and enhance its scientific content. Kenneth Lang is professor of astronomy in the Physics and Astronomy Department at Tufts University. He is the author of several astrophysics books, including The Sun from Space (Springer Verlag, 2000), Astrophysical Formulae: Radiation, Gas Processes, and High Energy Physics (Springer Verlag, 1999), Sun, Earth and Sky (Copernicus Books, 1997), Astrophysical Data: Planets and Stars (Springer Verlag, 1993), and Wanderers in Space: Exploration and Discovery in the Solar System (Cambridge, 1991),

  1. Solar hot-water system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design data brochure describes domestic solar water system that uses direct-feed system designed to produce 80 gallons of 140 F hot water per day to meet needs of single family dwelling. Brochure also reviews annual movements of sun relative to earth and explains geographic considerations in collector orientation and sizing.

  2. Residential solar-heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  3. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  4. Keck Meets the Solar System

    NASA Astrophysics Data System (ADS)

    Conrad, Al; Campbell, R.; Goodrich, R.; Le Mignant, D.; Merline, W. J.; Drummond, J. D.; Dumas, C.; Carry, B.

    2007-10-01

    The impact of a 10-meter telescope on solar-system science began in 1994 when comet Shoemaker-Levy 9 collided with Jupiter. Shortly after Keck's observation of this event, the advent of adaptive optics ushered in an explosion of solar-system observation opportunities, including volcanoes on Io, binary asteroids, rings of outer planets, clouds on Titan, shapes of main belt asteroids, imaging near-Earth asteroids, and the study of larger-than-Pluto Kuiper Belt Objects. Seeing limited (non-AO) observations also continue, including the color characterization of Kuiper Belt Objects, and, more recently, measuring the post-impact chemical abundances of Comet 9P/Tempel 1. The continuing discoveries of planets around other stars, one of Keck's greatest achievements, stands as another example of non-AO science which, although not strictly classified as solar-system science, has major implications for understanding our own solar system. As we enter the next phase of adaptive optics capability, which for Keck includes a new wavefront controller with a limiting magnitude of 14.5, and a laser guide-star system with a limiting magnitude of 18, new solar-system discovery opportunities are within our grasp. While meeting the technical challenges of these new technologies, ground-based observing faces the related challenge of scheduling telescope time to meet the phase coverage requirements and ability to react to time-critical events required for efficient exploration of the solar-system from the ground. We review the last 10 years of discovery, and discuss the opportunities and challenges of future technologies and scheduling strategies. In addition to this overview, we also provide specifics of recent work by the authors, including characterization of asteroid (511) Davida's physical properties.

  5. Design data brochure for CSI series V solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Generalized information on system configuration, system sizing, and mechanical layout is presented to assist the architect or designer in preparing construction drawings and specifications for the installation of the CSI integrated solar heating systems. Efficiency in space utilization of a full length collector and the importance of proper sizing of the collector array are among the topics discussed. Details of storage and transport subsystems are provided along with drawings and specifications of all components of the CSI system.

  6. Solar thermophotovoltaic system using nanostructures.

    PubMed

    Ungaro, Craig; Gray, Stephen K; Gupta, Mool C

    2015-09-21

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids. PMID:26406745

  7. Universal solar energy desalination system

    SciTech Connect

    Fusco, V.S.

    1982-08-01

    The design which has been developed for a solar-powered water desalination plant is a highly flexible one; and thus, suitable for worldwide application. The system is modular in nature, utilizing a combination of solar thermal and wind energy to operate the reverse osmosis desalination unit. The system's flexibility lies in the fact that the configuration of the plant can be altered so that it is suitable for any given site. Plant capacity and the size of the solar thermal and wind energy systems are dependent upon a variety of site-specific characteristics. Furthermore, the design of each of the subsystems is also highly interdependent. Examination of the site characteristics and their interactions will allow a design which is optimal for the site.

  8. Solar System Science with JWST

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Lunine, J.; Hammel, H.; Long, K.; Hutchings, J.; Rieke, G.

    2007-01-01

    JWST will enable breakthroughs in our understanding of the physical characteristics of cold bodies in the outer reaches of the Solar System. These objects include Pluto and other Kuiper Belt Objects (KBOs), the icy moons of the giant planets, and distant cometary nuclei. Recent discoveries of large objects in the Kuiper belt, along with many smaller members, make it clear that this region represents a major constituent of our Solar System, one that was hidden until recently because it is so remote and challenging to observe. The near-IR and mid-IR performance of JWST will be unique in its power to probe this region. This poster describes the science drivers for JWST observations of Solar System objects and plans for implementing this capability.

  9. Decentalized solar photovoltaic energy systems

    SciTech Connect

    Krupka, M. C.

    1980-09-01

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  10. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  11. Installation Guidelines for Solar DHW Systems in One- and Two-Family Dwellings. Second Edition.

    ERIC Educational Resources Information Center

    Hollander, Peter; And Others

    Described are some of the better techniques for installing solar domestic hot water (DHW) systems. By using these guidelines, along with the manufacturer's manual, professional installation contractors and skilled homeowners should be able to install and fill a solar DHW system. Among the topics considered are system layouts, siting, mounting…

  12. Solar desalination system and method

    SciTech Connect

    Kruse, C.L.

    1985-03-12

    A solar desalination system in which fresh water is derived from sea water by focussing solar ray energy from a collecting reflector onto an evaporator tube located at substantially the focal apex of the reflector. The reflector/evaporator tube assembly is mounted on a horizontal open grid platform which may support a plurality of parallel reflector/evaporator tube assemblies. The reflectors may serve as pontoons to support the desalination system unit on a body of sea water. The solar heat generated vapor is condensed in condenser tubes immersed in the sea water. Intermittently sea water concentrate is withdrawn from the evaporator tubes. Velocity of the vapor passing from the evaporator tubes to the condensers may be utilized for generating power.

  13. Bring NASA's Year of the Solar System into Your Programs

    NASA Astrophysics Data System (ADS)

    Shupla, C.; Shipp, S.; LaConte, K.; Dalton, H.; Buxner, S.; Boonstra, D.; Ristvey, J.; Wessen, A.; Zimmerman-Brachman, R.; CoBabe-Ammann, E.

    2012-08-01

    NASA's Year of the Solar System ( http://solarsystem.nasa.gov/yss) is a celebration of our exploration of the solar system, which began in October 2010 and continues for one Martian year (687 Earth days) ending in late summer 2012. The diverse planetary missions in this period create a rare opportunity to engage students and the public, using NASA missions to reveal new worlds and new discoveries. Each month focuses on a particular topic, such as the scale of the solar system, its formation, water in the solar system, volcanism, atmospheres, and more! All educators are invited to join the celebration; indeed, the EPO community is needed in order for this event to be successful! Participants at the 2011 ASP Conference surveyed a variety of thematic activities, received resources and implementation ideas, and were invited to share their own experiences and upcoming events!

  14. Simple solar water heating systems: The SWAP program in Florida

    SciTech Connect

    Harrison, J.

    1997-11-01

    This article describes the development of a solar water heating system appropriate for low-income Florida residents and the appliances developed in conjunction with it that may appeal to a wider market. Among the topics discussed are size and design of the system including passive preheaters and affordable active systems. Electric water heaters with 40 and 50 gallon capacity were found to be the most cost effective. The feed-back from customers is also discussed. 3 figs.

  15. Surveying of the solar system

    NASA Technical Reports Server (NTRS)

    Gehrels, Tom

    1991-01-01

    Some populations of objects in the solar system are poorly known, and the long range goal of this program is to improve that situation. For instance, the statistics of Trojan asteroids is being studied. A new technique is being developed for sky surveillance by scanning with CCD, particularly for the discovery of near Earth asteroids.

  16. Magnetospheres in the solar system

    SciTech Connect

    Mcnutt, R.L.

    1984-11-01

    Intrinsic and induced magnetospheres of planets, moons, and comets in the solar system are described. Magnetospheric electric fields, the plasmasphere, rotational effects, and corotation and convection dominated intrinsic magnetospheres are considered. Supersonic and subsonic interactions in induced magnetospheres are discussed. (ESA)

  17. Solar System Bodies and ``Primitiveness''

    NASA Astrophysics Data System (ADS)

    Maurette, Michel

    Planets and small bodies. Besides the Sun, which represents about 99.85% of its mass, the present day solar system include large bodies, i.e., the four terrestrial planets, the four giant planets, and Pluto, which is probably not a planet, but rather an object from the Edgeworth Kuiper belt of comets captured by Neptune; more than 130 satellites of the planets. Jupiter, the most massive planet of the solar system, is about 320 times more massive than the Earth, which weighs about 80 lunar masses. Its orbit separates the two very distinct worlds of the inner solar system, populated by rocky bodies, from the outer solar system, which is the world of the giant gaseous planets, icy bodies and intense coldness, which starts at around 5 astronomical units (AU) from the Sun and ends up at 50,000 AU with the outer edge of the Oort cloud of comets one AU is the average distance between the Earth and the Sun, of about 150 millions of km.

  18. Solar powered automobile cooling system

    SciTech Connect

    Shum, S.

    1987-04-21

    A cooling system is described for the passenger compartment of an automobile, the automobile including a ventilation duct extending between a front portion of the automobile and passenger compartment for admitting external air to the compartment, the system comprising: an evaporative cooler including a water reservoir, an evaporative mesh pad, a pump for circulating water from the reservoir to the pad and a fan for blowing air over the pad and into the passenger compartment, the pad positioned in the ventilation duct in a path of the external air, the fan being positioned in the ventilation duct between the front portion and the pad for blowing air through the pad when the automobile is motionless, the water reservoir comprising a refillable enclosed tank positioned externally of the ventilation duct and the pump being located in the reservoir and connected to the pad by tubing for pumping water from the reservoir to the pad; a solar energy system for converting solar energy to electrical power including solar conversion units mounted externally of the automobile, units connected in an array to provide electrical current at a predetermined voltage; and a thermostatic switch positioned within the automobile, the switch being connected in a series circuit between the solar system and the evaporative cooler.

  19. Decentralized solar photovoltaic energy systems

    NASA Astrophysics Data System (ADS)

    Krupka, M. C.

    1980-09-01

    Emphasis was placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ utilizing a unique solar cell array roof shingle combination. Silicon solar cells, rated at 13.5 percent efficiency at 28 C and 100 mW/sq cm insolation are used to generate 10 kW (peak). An all electric home is considered with lead acid battery storage, DC AC inversion and utility backup. The reference home is compared to others in regions of different insolation. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  20. Sizing up the Solar System

    ERIC Educational Resources Information Center

    Wiebke, Heidi; Rogers, Meredith Park; Nargund-Joshi, Vanashri

    2011-01-01

    The American Association for the Advancement of Science (AAAS 1993) states that by the end of fifth grade, students should understand that a model, such as those depicting the solar system, is a smaller version of the real product, making it easier to physically work with and therefore learn from. However, for students and even adults,

  1. Precipitation in the Solar System

    ERIC Educational Resources Information Center

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's

  2. Sizing up the Solar System

    ERIC Educational Resources Information Center

    Wiebke, Heidi; Rogers, Meredith Park; Nargund-Joshi, Vanashri

    2011-01-01

    The American Association for the Advancement of Science (AAAS 1993) states that by the end of fifth grade, students should understand that a model, such as those depicting the solar system, is a smaller version of the real product, making it easier to physically work with and therefore learn from. However, for students and even adults,…

  3. Precipitation in the Solar System

    ERIC Educational Resources Information Center

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  4. Solar simulator for solar dynamic space power system testing

    NASA Technical Reports Server (NTRS)

    Jefferies, Kent S.

    1993-01-01

    Planned vacuum tank testing of a solar dynamic space power system requires a solar simulator. Several solar simulators were previously built and used for vacuum tank testing of various space systems. However, the apparent solar subtense angle, i.e., the angular size of the apparent sun as viewed from the experiment, of these solar simulators is too large to enable testing of solar dynamic systems. A new design was developed to satisfy the requirements of the solar dynamic testing. This design provides 1.8 kW/m(sup 2) onto a 4.5M diameter test area from a source that subtends only 1 deg, full cone angle. Key features that enable this improved performance are (1) elimination of the collimating mirror commonly used in solar simulators to transform the diverging beam into a parallel beam; (2) a redesigned lamp module that has increased efficiency; and (3) the use of a segmented reflective surface to combine beams from several individual lamp modules at the pseudosun. Each segment of this reflective surface has complex curvature to control the distribution of light. By developing a new solar simulator design for testing of the solar dynamic system instead of modifying current designs, the initial cost was cut in half, the efficiency was increased by 50 percent reducing the operating costs by one-third, and the volume occupied by the solar simulator was reduced by a factor of 10.

  5. Solafern solar system design brochure

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A complete residential solar space heating and hot water system is described. Low maintenance, durable, and efficient air heating collectors are used. The collectors have a selective absorber and a tempered glass cover nearly one-quarter of an inch thick with an aluminum frame. The solar energy can be delivered directly to the living area when there is a demand; otherwise, it is stored in the form of hot water. Hot water storage is accomplished through the use of an air-to-water exchanger. The hot water storage is used simultaneously to preheat the domestic hot water, as well as to store energy for space heating.

  6. Geologic exploration of solar system

    SciTech Connect

    Wood, C.A.

    1987-11-01

    The processes that must have operated on the early Earth have been deduced from evidence from ancient surfaces of the Moon and planets. In particular, such comparative studies have demonstrated that only two geologic processes have been widespread throughout the history of the solar system: impact cratering and volcanism. Impact craters have formed throughout solar system history, indeed the planets themselves were formed by the accumulation of millions of smaller planetesimals, each of which formed an impact crater. Earth could not have escaped the intense bombardment that churned the surfaces of Mars, Mercury, and the Moon. The impact cratering rate dramatically declined about 3.9 billion years ago, but craters 10 km across still form on the Earth on the average of one every 140,000 years, and the 1.5-km wide Meteor Crater in Arizona formed only about 25,000 years ago. Volcanic flows and cones have been observed on nearly all planets and moons in the solar system; the variety and duration of volcanism are directly related to planet mass. Thus, a relatively large planet like the Earth has a wide range of volcanic morphologies and compositions, with activity continuing throughout Earth history. In contrast, the smaller Moon produced a narrow compositional range of basaltic lava flows, with most of the lavas having erupted about 3 billion years ago. Water and sulfur volcanism have also been discovered on the cold satellites of the outer solar system, thus expanding their terrestrial concept of volcanism. Many other processes and materials exist in the solar system, but the Earth remains unique in its richness of resources to support humans. Discovery and exploitation of extraterrestrial resources are beginning and must be greatly increased to prepare for their future as a space-faring race.

  7. Solar system: Interplanetary kidnap

    NASA Astrophysics Data System (ADS)

    Morbidelli, Alessandro

    2006-05-01

    Triton, Neptune's largest moon, was probably part of a two-body object similar to the Pluto-Charon system. This tandem might have been ripped apart when it strayed too close to the planet that Triton is now orbiting.

  8. Jupiter: The Solar System's Giant

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    At more than 10 times the size of the Earth, Jupiter is the largest planet in the solar system. Although not quite large enough to be a sun, it still has its own system of moons and rings. It's huge magnetic field and fast rotation make Jupiter both the most interesting planet and the most dangerous. From the sulfur volcanoes of Io to the frozen water ice ocean of Europa, Jupiter "rocks". Come experience what NASA has learned about the giant planet

  9. Continued Development of the Solar System Concept Inventory

    NASA Astrophysics Data System (ADS)

    Hornstein, Seth D.; Prather, E. E.; English, T. R.; Desch, S. M.; Keller, J. M.; CATS

    2010-01-01

    The Solar System Concept Inventory (SSCI) was developed in order to provide a pre-/post-instruction assessment instrument suitable for use in an introductory solar system course. The topics included on the SSCI focus on formation mechanisms, planetary interiors, atmospheric and surface effects, and small solar system bodies. These topics were selected by having faculty identify the key concepts they address when teaching about the solar system. Student interviews were then conducted to identify common naive ideas and reasoning difficulties relating to these key topics. As of December 2009, the SSCI has been through four semesters of both pre- and post-instruction classroom testing, involving over 2000 students and 11 institutions (ranging from two-year colleges to doctoral/research universities). After each semester of testing, item analysis statistics such as point biserial, percentage correct on pre- or post-testing, and frequently-chosen distracters (incorrect answers) were used to flag ineffective questions. Flagged questions were revised or eliminated. We present an overall outline of the SSCI development as well as our question-flagging criteria and question analyses from the latest round of field-testing. We would like to thank the NSF for funding under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  10. Steamy Solar System

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Annotated Version

    This diagram illustrates the earliest journeys of water in a young, forming star system. Stars are born out of icy cocoons of gas and dust. As the cocoon collapses under its own weight in an inside-out fashion, a stellar embryo forms at the center surrounded by a dense, dusty disk. The stellar embryo 'feeds' from the disk for a few million years, while material in the disk begins to clump together to form planets.

    NASA's Spitzer Space Telescope was able to probe a crucial phase of this stellar evolution - a time when the cocoon is vigorously falling onto the pre-planetary disk. The infrared telescope detected water vapor as it smacks down on a disk circling a forming star called NGC 1333-IRAS 4B. This vapor started out as ice in the outer envelope, but vaporized upon its arrival at the disk.

    By analyzing the water in the system, astronomers were also able learn about other characteristics of the disk, such as its size, density and temperature.

    How did Spitzer see the water vapor deep in the NGC 1333-IRAS 4B system? This is most likely because the system is oriented in just the right way, such that its thicker disk is seen face-on from our Earthly perspective. In this 'face-on' orientation, Spitzer can peer through a window carved by an outflow of material from the embryonic star. This system in this drawing is shown in the opposite 'edge-on' configuration.

  11. High performance solar Stirling system

    SciTech Connect

    Stearns, J.W.; Haglund, R.

    1981-01-01

    A full-scale Dish-Stirling system experiment, at a power level of 25 kWe, has been tested during 1981 on the Test Bed Concentrator No. 2 at the Parabolic Dish Test Site, Edwards, CA. Test components, designed and developed primarily by industrial contractors for the Department of Energy, include an advanced Stirling engine driving an induction alternator, a directly-coupled solar receiver with a natural gas combustor for hybrid operation and a breadboard control system based on a programmable controller and standard utility substation components. The experiment demonstrated practicality of the solar Stirling application and high system performance into a utility grid. This paper describes the design and its functions, and the test results obtained.

  12. Goldstone solar system radar

    NASA Technical Reports Server (NTRS)

    Jurgens, Raymond F.

    1988-01-01

    Planning, direction, experimental design, and coordination of data-acquisition and engineering activities in support of all Goldstone planetary radar astronomy were performed. This work demands familiarity with the various components of a planetary radar telescope (transmitter, receiver, antenna, computer hardware and software) as well as knowledge of how the entire system must function as a cohesive unit to meet the particular scientific objectives at hand in a given observation. Support radar data-processing facilities, currently being used for virtually all Goldstone data reduction includes: a VAX 11/780 computer system, an FPS 5210 array processor, terminals, tape drives, and image-display devices, as well as a large body of data-reduction software to accommodate the variety of data-acquisition formats and strategems. Successful 113-cm radar observation of Callisto and the near-Earth asteroid 1981 Midas and Goldstone/VLA radar observations of Saturn's rings were obtained. Quick-look verification programs from data taken with phase-coded cw (i.e., ranging) waveforms, applicable to Venus, the Moon, and small bodies were completed. Definition of scientific and engineering requirements on instrument performance, radar system configuration, and personnel, for all 1988 Goldstone radar investigations was accomplished.

  13. Adaptive, full-spectrum solar energy system

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  14. Inhabiting the solar system

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    2011-03-01

    The new field of space architecture is introduced. Defined as the "theory and practice of designing and building inhabited environments in outer space," the field synthesizes human space flight systems engineering subjects with the long tradition of making environments that support human living, work, and aspiration. The scope of the field is outlined, and its three principal domains differentiated. The current state of the art is described in terms of executed projects. Foreseeable options for 21st century developments in human space flight provide a framework to tease out potential space architecture opportunities for the next century.

  15. Research topics on EO systems for maritime platforms

    NASA Astrophysics Data System (ADS)

    Dijk, Judith; Bijl, Piet; van den Broek, Sebastiaan P.; van Eijk, Alenxander M. J.

    2014-10-01

    Our world is constantly changing, and this has its effect on worldwide military operations. For example, there is a change from conventional warfare into a domain that contains asymmetric threats as well. The availability of high-quality imaging information from Electro-Optical (EO) sensors is of high importance, for instance for timely detection and identification of small threatening vessels in an environment with a large amount of neutral vessels. Furthermore, Rules of Engagement often require a visual identification before action is allowed. The challenge in these operations is to detect, classify and identify a target at a reasonable range, while avoiding too many false alarms or missed detections. Current sensor technology is not able to cope with the performance requirements under all circumstances. For example, environmental conditions can reduce the sensor range in such a way that the operational task becomes challenging or even impossible. Further, limitations in automatic detection algorithms occur, e.g. due to the effects of sun glints and spray which are not yet well-modelled in the detection filters. For these reasons, Tactical Decision Aids will become an important factor in future operations to select the best moment to act. In this paper, we describe current research within The Netherlands on this topic. The Defence Research and Development Programme "Multifunctional Electro-Optical Sensor Suite (MEOSS)" aims at the development of knowledge necessary for optimal employment of Electro-Optical systems on board of current and future ships of the Royal Netherlands Navy, in order to carry out present and future maritime operations in various environments and weather conditions.

  16. Chemical aspects of the formation of the solar system

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1978-01-01

    Application of Alfven's theory for the formation of the solar system and the constraints imposed by the chemical composition of space materials are discussed with reference to chemical processes involved in the formation of the solar system. Evidence for the chemical properties of the space medium and the chemical consequences of the postulated physical differentiation processes are outlined, and interpretations based on structure and composition of meteorite material are indicated. A large range of topics, including processes involving chemical differentiation, temperature effects, and isotope fractionation, are examined.

  17. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Application surveys and performance studies were conducted to determine a solar heating and hot water configuration that could be used in a variety of applications, and to identify subsystem modules that could be utilized in a building block fashion to adapt hardware items to single and multi-family residential and commercial systems. Topics discussed include: subsystem development for the solar collectors, controls, other components, energy management module, and the heating system configuration test. Operational tests conducted at an Illinois farmhouse, and a YWCA in Spokane, Washington are discussed.

  18. Volcanoes of the Solar System

    NASA Astrophysics Data System (ADS)

    Frankel, Charles

    1996-09-01

    Nothing can be more breathtaking than the spectacle of a volcano erupting. Space-age lunar and planetary missions offer us an unprecedented perspective on volcanism. Starting with the Earth, Volcanoes of the Solar System takes the reader on a guided tour of the terrestrial planets and moons and their volcanic features. We see lunar lava fields through the eyes of the Apollo astronauts, and take an imaginary hike up the Martian slopes of Olympus Mons--the tallest volcano in the solar system. Complemented by over 150 photographs, this comprehensive and lucid account of volcanoes describes the most recent data on the unique and varied volcanic features of Venus and updates our knowledge on the prodigiously active volcanoes of Io. A member of the Association of European Volcanologists, Charles Frankel has directed documentary films on geology, astronomy and space exploration and has authored a number of articles on the earth sciences.

  19. Solar-powered cooling system

    SciTech Connect

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  20. Solar probe power systems concepts

    NASA Technical Reports Server (NTRS)

    Nesmith, Bill J.

    1992-01-01

    Some of the design options under consideration for providing on-board electric power for the Solar Probe Mission are discussed. Five spacecraft configurations were evaluated with slightly different power demands and volumetric constraints on the power system. This resulted in three different baseline power system designs to satisfy the five spacecraft configurations. These three current baseline power system designs use modified general-purpose heat source (GPHS) radioisotope thermoelectric generators (RTGs) similar to those launched on the Galileo and Ulysses spacecraft. The modular RTG currently under development and testing is a potential advanced alternative to the current baseline GPHS-RTG technology design.

  1. Solar probe power systems concepts

    SciTech Connect

    Nesmith, B.J. )

    1992-01-01

    Some of the design options under consideration for providing on-board electric power for the Solar Probe Mission are discussed. Five spacecraft configurations were evaluated with slightly different power demands and volumetric constraints on the power system. This resulted in three different baseline power system designs to satisfy the five spacecraft configurations. These three current baseline power system designs use modified general-purpose heat source (GPHS) radioisotope thermoelectric generators (RTGs) similar to those launched on the Galileo and Ulysses spacecraft. The modular RTG currently under development and testing is a potential advanced alternative to the current baseline GPHS-RTG technology design. 8 refs.

  2. Reaching the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Werner, Michael W.

    2011-01-01

    A variety of opportunities are available for sending a cruise phase instrument to the outer solar system, or for repurposing existing spacecraft for similar scientific purposes. I will summarize the programs within both the Planetary and the Astrophysics portfolios which might support these investigations, with special emphasis on the schedule for near term opportunities. Based on work carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

  3. Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report

    SciTech Connect

    1995-05-01

    Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

  4. Hybrid solar lighting systems and components

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  5. Hybrid solar lighting distribution systems and components

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  6. Basics of Solar Heating & Hot Water Systems.

    ERIC Educational Resources Information Center

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  7. Small grains of truth. [solar system evolution

    NASA Technical Reports Server (NTRS)

    Nuth, Joe

    1991-01-01

    The evidence concerning the formation of the solar nebula from preexisting clouds found in the chemical composition of solar system grains is discussed. Evidence for sequential star formation in the grains is examined. It is argued that there is no model for the origin of the solar system which can account for the increasing complexity of the evidence.

  8. Modular Solar Electric Power (MSEP) Systems (Presentation)

    SciTech Connect

    Hassani, V.

    2000-06-18

    This presentation discusses the development and deployment of Modular Solar Electric Power (MSEP) systems, the feasibility of application of existing binary power cycles to solar trough technology, and identification of next action items.

  9. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2001-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  10. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  11. Decision process for the retrofit of municipal buildings with solar energy systems: a technical guide

    SciTech Connect

    Licciardello, Michael R.; Wood, Brian; Dozier, Warner; Braly, Mark; Yates, Alan

    1980-11-01

    As a background for solar applications, the following topics are covered: solar systems and components for retrofit installations; cost, performance, and quality considerations; and financing alternatives for local government. The retrofit decision process is discussed as follows: pre-screening of buildings, building data requirements, the energy conservation audit, solar system sizing and economics, comparison of alternatives, and implementation. Sample studies are presented for the West Valley Animal Shelter and the Hollywood Police Station. (MHR)

  12. Decision process for the retrofit of municipal buildings with solar energy systems a technical guide

    NASA Astrophysics Data System (ADS)

    1980-11-01

    As a background for solar applications, the following topics are covered: solar systems and components for retrofit installations; cost, performance, and quality considerations; and financing alternatives for local government. The retrofit decision process is discussed as follows: pre-screening of buildings, building data requirements, the energy conservation audit, solar system sizing and economics, comparison of alternatives, and implementation. Sample studies are presented for the West Valley Animal Shelter and the Hollywood Police Station.

  13. Early Solar System Leftovers: Testing Solar System Formation Models

    NASA Astrophysics Data System (ADS)

    Meech, Karen Jean; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R.; Keane, Jacqueline V.; Micheli, Marco; Berdyugina, Svetlana; Bhatt, Bhuwan; Sahu, Devendra; Hsieh, Henry; Veres, Peter; Wainscoat, Richard J.; Riesen, Timm-Emanuel; Kaluna, Heather

    2015-11-01

    One of the most intriguing predictions of the Grand Tack model is the presence of volatile poor objects in the Oort cloud that were swept from the region where the terrestrial planets formed. This volatile-poor material is represented today by ordinary chondrites, enstatite chondrites and differentiated planetesimals. These are the main constituents of the S-type asteroids that reside in the inner Solar system. According to the Grand Tack model, the fraction of S-type material in cometary orbits should be around 0.1-0.2%. Recent Pan-STARRS 1 discoveries of objects on long-period comet orbits that are minimally active while at small perihelia have suggested the intriguing possibility that these could potentially represent inner solar system material that was ejected into the outer solar system during planet migration, that is now making its way back in. The first object discovered, C/2013 P2 has a spectrum redder than D-type objects, but exhibits low-level activity throughout its perihelion passage. The second one, C/2014 S3, appears to have an S-type asteroid spectrum, and likewise exhibits low-level activity.Nearly 100 of these objects have now been identified, approximately half of which are still observable, and more are being discovered. We will report on observations made for a selection of these objects with several facilities including Gemini N 8 m, VLT 8 m, Canada-France-Hawaii 3.6 m, PS1 2 m, UH2.2 m, HCT 2 m, and the Lowell 1.8 m telescopes. We will discuss the implications of seeing volatile activity in these objects.

  14. Jupiter: Giant of the solar system. [its solar orbits

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Jupiter, its relationship to the other planets in the solar system, its twelve natural satellites, solar orbit and the appearance of Jupiter in the sky, and the sightings and motions of Jupiter in 1973 are discussed. Educational study projects for students are also included.

  15. 'Mini-Me' Solar System

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This artist's conception shows the relative size of a hypothetical brown dwarf-planetary system (below) compared to our own solar system.

    A brown dwarf is a cool or 'failed' star, which lacks the mass to ignite and shine like our Sun. NASA's Spitzer Space Telescope set its infrared eyes on an extraordinarily low-mass brown dwarf called OTS 44 and found a swirling disc of planet-building dust. At only 15 times the mass of Jupiter, OTS 44 is the smallest known brown dwarf to host a planet-forming, or protoplanetary, disc.

    Astronomers believe that this unusual system will eventually spawn planets. If so, they speculate that OTS 44's disc has enough mass to make one small gas giant and a few Earth-sized rocky planets.

    Examples of these possible planets are depicted at the bottom of this picture, circling a low-mass brown dwarf. Above, the bodies of our own solar system have been drawn to the same scale. In each system, the terrestrial planets have been enlarged and the distances between the planets and their parent bodies have been scaled down for easier viewing.

  16. Solar System Science with LSST

    NASA Astrophysics Data System (ADS)

    Jones, R. L.; Ivezic, Zeljko; Malhotra, Renu; Becker, Andy C.; Fernandez, Yan; Myers, Jon; Solontoi, Mike; Parker, Alex H.

    2014-11-01

    Inventorying the Solar System is one of the four key science drivers for the Large Synoptic Survey Telescope (LSST). LSST will survey over 20,000 square degrees with a rapid observational cadence, to typical limiting magnitudes of 24.5. Near the ecliptic, LSST will detect approximately 4000 moving objects per visit with its 9.6 square degree field of view. Automated software will link these individual detections into orbits; these orbits, as well as precisely calibrated astrometry 50mas) and photometry 0.01-0.02 mag) in multiple bandpasses will be available as LSST data products. The result will be multi-color catalogs of hundreds of thousands of NEOs and Jupiter Trojans, millions of asteroids, tens of thousands of TNOs, as well as thousands of other objects such as comets and irregular satellites of the major planets. The LSST catalogs will provide an order of magnitude larger sample sizes than currently exist for small body populations throughout the Solar System, generating new insights into Solar System evolution. Precision multi-color photometry will allow determination of lightcurves and colors for a significant fraction of the objects detected, providing constraints on the physical parameters of small bodies. Some examples of science enabled with this rich data set: A large sample of TNOs with highly accurate orbits (and well-understood sample characteristics) will allow much tighter constraints on planetary migration models. Large samples of comets (especially comets with perihelia beyond a few AU) will provide new constraints on the structure and mass of the Oort Cloud. Derivation of proper elements for Main Belt asteroids would greatly enlarge existing asteroid families, particularly at smaller sizes, and color information will facilitate further division. Using sparse lightcurve inversion, spin state and shape models could be derived for thousands of main belt asteroids.

  17. Tracking system for solar collectors

    DOEpatents

    Butler, B.

    1980-10-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  18. Tracking system for solar collectors

    DOEpatents

    Butler, Barry L.

    1984-01-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  19. The solar system beyond Neptune

    NASA Technical Reports Server (NTRS)

    Jewitt, David C.; Luu, Jane X.

    1995-01-01

    We present the results of a deep optical survey for distant solar system objects. An area of 1.2 sq deg of the ecliptic has been imaged to apparent red magnitude 25, resulting in the detection of seven trans-Neptunian objects. These are the first detected members of a trans-Neptunian disk that compries about 35 000 objects larger than 100 km in the 30-50 AU heliocentric distance range. We interpret the new measurements using a set of Monte Carlo models in which the effects of observational bias in the data are taken into account.

  20. Non-tracking solar energy collector system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1978-01-01

    A solar energy collector system is described characterized by an improved concentrator for directing incident rays of solar energy on parallel strip-like segments of a flatplate receiver. Individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration supported for independent orientation are asymmetric included with vee-trough concentrators for deflecting incident solar energy toward the receiver.

  1. Tracing Rays In A Solar Power System

    NASA Technical Reports Server (NTRS)

    Jefferies, Kent; Gallo, Chris

    1989-01-01

    OFFSET is ray-tracing computer code for analysis of optics of solar collector. Code models distributions of solar flux within receiver cavity, produced by reflections from collector. Developed to model mathematically offset solar collector of solar dynamic electric power system being developed for Space Station Freedom. Used to develop revised collector-facet concept of four groups of toroidally contoured facets. Also used to develop methods for tailoring distribution of flux incident on receiver. Written in FORTRAN 77 (100 percent).

  2. Solar thermal power systems. Summary report

    SciTech Connect

    Not Available

    1980-06-01

    The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

  3. MULTIFUNCTIONAL SOLAR ENERGY SYSTEMS RESEARCH PROJECT

    SciTech Connect

    Byard Wood, Lance Seefeldt, Ronald Sims, Bradley Wahlen, and Dan Dye

    2012-06-29

    The solar energy available within the visible portion of the solar spectrum is about 300 W/m2 (43%) and that available in the UV and IR portion is about 400 W/m2 (57%). This provides opportunities for developing integrated energy systems that capture and use specific wavelengths of the solar spectrum for different purposes. For example: biofuels from photosynthetic microbes use only the visible light; solar cells use a narrow band of the solar spectrum that could be either mostly in the visible or in the IR regions of the solar spectrum, depending on the photovoltaic materials, e.g., gallium antimonide (GaSb) cells utilize predominately IR radiation; and finally, solar panels that heat water utilize a broad range of wavelengths (visible plus IR). The basic idea of this research is that sunlight has many possible end-use applications including both direct use and energy conversion schemes; it is technically feasible to develop multifunctional solar energy systems capable of addressing several end-use needs while increasing the overall solar energy utilization efficiency when compared to single-purpose solar technologies. Such a combination of technologies could lead to more cost-competitive ?multifunctional? systems that add value and broaden opportunities for integrated energy systems. The goal of this research is to increase the overall energy efficacy and cost competitiveness of solar systems. The specific objectives of this research were: 1) Evaluate the efficacy of a combined photobioreactor and electric power system; 2) Improve the reliability and cost effectiveness of hybrid solar lighting systems ? a technology in which sunlight is collected and distributed via optical fibers into the interior of a building; 3) Evaluate the efficacy of using filtered light to increase the production of biomass in photobioreactors and provide more solar energy for other uses; 4) Evaluates several concepts for wavelength shifting such that a greater percentage of the solar spectrum energy can be used for photosynthesis.

  4. Intelligence in the solar system

    NASA Astrophysics Data System (ADS)

    Tough, A.

    Could extraterrestrial intelligence have already reached our solar system--in the form of an interstellar probe, for instance? If any other civilizations exist in our galaxy, they are likely thousands of years older than us. With such advanced science and technology, interstellar exploration is likely easy and attractive for them. If they launched interstellar probes thousands of years ago, at least one may have already reached our solar system. What scientific strategies might detect evidence of such probes? Two strategies are especially promising. (1) Astronomy and space missions could, with very little additional expense, look for evidence of ETI in addition to the observations already scheduled. They could search for derelict probes, exhaust or heat from active probes, ancient mining, monuments, or other artifacts. (2) If a super-smart probe has reached our planet, it is likely monitoring our radio broadcasts, television broadcasts, and World Wide Web. Consequently we could use these media to invite contact. A group of eighty scientists already uses the Web to issue an invitation to ETI.

  5. An Introduction to the Solar System

    NASA Astrophysics Data System (ADS)

    Rothery, David A.; McBride, Neil; Gilmour, Iain

    2011-05-01

    Introduction; 1. A tour of the solar system; 2. The internal structure of the terrestrial planets; 3. Planetary volcanism - Ultima Thule?; 4. Planetary surface processes; 5. Atmospheres of terrestrial planets; 6. The giant planets; 7. Minor bodies of the solar system; 8. The origin of the solar system; 9. Meteorites: a record of formation; Answers and comments; Appendices; Glossary; Further reading; Acknowledgements; Figure references; Index.

  6. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  7. Biospheres and solar system exploration

    NASA Technical Reports Server (NTRS)

    Paine, Thomas O.

    1990-01-01

    The implications of biosphere technology is briefly examined. The exploration status and prospects of each world in the solar system is briefly reviewed, including the asteroid belt, the moon, and comets. Five program elements are listed as particularly critical for future interplanetary operations during the coming extraterrestrial century. They include the following: (1) a highway to Space (earth orbits); (2) Orbital Spaceports to support spacecraft assembly, storage, repair, maintenance, refueling, launch, and recovery; (3) a Bridge Between Worlds to transport cargo and crews to the moon and beyond to Mars; (4) Prospecting and Resource Utilization Systems to map and characterize the resources of planets, moons, and asteroids; and (5) Closed Ecology Biospheres. The progress in these five field is reviewed.

  8. Colorado State University program for developing, testing, evaluation and optimizing solar heating and cooling systems. Project status report, August--September 1993

    SciTech Connect

    Not Available

    1993-09-01

    This report describes activities of the Colorado State University program on solar heating and cooling systems for the months of August and September 1993. The topics include: rating and certification of domestic water heating systems, unique solar system components, advanced residential solar domestic hot water systems, and desiccant cooling of buildings.

  9. The Joys of Applying UV Spectroscopy to Understanding the Solar-Stellar Connection and Related Topics in Astrophysics

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey

    2011-05-01

    For more than 40 years a central theme of my research has been the application of spectroscopy mostly at ultraviolet wavelengths to a clearer understanding of phenomena and physical processes occuring in the outer atmospheres of the Sun, cool stars, premain sequence stars, and the interstellar medium near the Sun. The sensitivity and spectral resolution available for this work has increased enormously over time. My thesis involved the analysis of solar chromosphere spectra of the Ca II H and K lines using the McMath-Pierce solar telescope on Kitt Peak. Then with spectra from the Copernicus and IUE satellites and the GHRS, STIS, and COS instruments on HST, I extended this research to the study of stellar chromospheres. The availability of X-ray observations and spectra with HEAO-1, Einstein, XMM-Newton, and Chandra observatories opened up the study of stellar coronae. Absorption lines observed against stellar emission lines are not noise but important signals leading to a better understanding of the local interstellar medium, deuterium in the Galaxy, and even mass loss from a transiting planet. In all of these research areas, I have had the pleasure of working with and learning from many stimulating graduate students and postdocs. In this talk I will select several key discoveries in the above topics, summarize our present understanding of these topics, identify what we need to understand better, and suggest what observational and theoretical advances should be pursued to improve our understanding.

  10. Evaluating Performances of Solar-Energy Systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1987-01-01

    CONC11 computer program calculates performances of dish-type solar thermal collectors and power systems. Solar thermal power system consists of one or more collectors, power-conversion subsystems, and powerprocessing subsystems. CONC11 intended to aid system designer in comparing performance of various design alternatives. Written in Athena FORTRAN and Assembler.

  11. Economic Evaluation of Townhouse Solar Energy System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar-energy site in Columbia, South Carolina, is comprised of four townhouse apartments. Report summarizes economic evaluation of solar--energy system and projected performance of similar systems in four other selected cities. System is designed to supply 65 percent of heating and 75 percent of hot water.

  12. Implementing slab solar water heating system

    NASA Astrophysics Data System (ADS)

    Raveendran, S. K.; Shen, C. Q.

    2015-08-01

    Water heating contributes a significant part of energy consumption in typical household. One of the most employed technologies today that helps in reducing the energy consumption of water heating would be conventional solar water heating system. However, this system is expensive and less affordable by most family. The main objective of this project is to design and implement an alternative type of solar water heating system that utilize only passive solar energy which is known as slab solar water heating system. Slab solar water heating system is a system that heat up cold water using the solar radiance from the sun. The unique part of this system is that it does not require any form of electricity in order to operate. Solar radiance is converted into heat energy through convection method and cold water will be heated up by using conduction method [1]. The design of this system is governed by the criteria of low implementation cost and energy saving. Selection of material in the construction of a slab solar water heating system is important as it will directly affect the efficiency and performance of the system. A prototype has been built to realize the idea and it had been proven that this system was able to provide sufficient hot water supply for typical household usage at any given time.

  13. Methanogens in the Solar System

    NASA Astrophysics Data System (ADS)

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon

    2015-04-01

    The last decade of space science revealed that potential habitats in the Solar System may not be limited to the classical habitable zone supporting life as we know it. These microorganisms were shown to thrive under extremophilic growth conditions. Here, we outline the main eco-physiological characteristics of methanogens like their response on temperature, pressure, or pH changes or their resistance against radiation or desiccation. They can withstand extreme environmental conditions which makes them intriguing organisms for astrobiological studies. On Earth, they are found for example in wetlands, in arctic and antarctic subglacial environments, in ruminants, and even in the environment surrounding the Mars Desert Research Station in Utah. These obligate anaerobic chemolithoautotrophs or chemolithoheterotrophs are able to use e.g. hydrogen and C1 compounds like CO2, formate, or methanol as energy source and carbon source, respectively. We point out their capability to be able to habitat potential extraterrestrial biospheres all over the planetary system. We will give an overview about these possible environments on Mars, icy moons like Europa or Enceladus, and minor planets. We present an overview about studies of methanogens with an astrobiological relevance and we show our conclusions about the role of methanogens for the search for extraterrestrial life in the Solar System. We will present first results of our study about the possibility to cultivate methanogens under Enceladus-like conditions. For that, based on the observations obtained by the Cassini spacecraft concerning the plume compounds, we produce a medium with a composition similar to the ocean composition of this icy moon which is far more Enceladus-like than in any (published) experiment before. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies with these microbes. We point out the importance of future in-situ or even sample and return missions to the mentioned potential habitats.

  14. Effective topical delivery systems for corticosteroids: dermatological and histological evaluations.

    PubMed

    Eroğlu, İpek; Azizoğlu, Erkan; Özyazıcı, Mine; Nenni, Merve; Gürer Orhan, Hande; Özbal, Seda; Tekmen, Işıl; Ertam, İlgen; Ünal, İdil; Özer, Özgen

    2016-06-01

    Atopic dermatitis (AD) is a chronic and relapsing skin disease with severe eczematous lesions. Long-term topical corticosteroid treatment can induce skin atrophy, hypopigmentation and transepidermal water loss (TEWL) increase. A new treatment approach was needed to reduce the risk by dermal targeting. For this purpose, Betamethasone valerate (BMV)/Diflucortolone valerate (DFV)-loaded liposomes (220-350 nm) were prepared and incorporated into chitosan gel to obtain adequate viscosity (∼13 000 cps). Drugs were localized in stratum corneum + epidermis of rat skin in ex-vivo permeation studies. The toxicity was assessed on human fibroblast cells. In point of in-vivo studies, pharmacodynamic responses, treatment efficacy and skin irritation were evaluated and compared with previously prepared nanoparticles. Liposome/nanoparticle in gel formulations produced higher paw edema inhibition in rats with respect to the commercial cream. Similar skin blanching effect with commercial creams was obtained via liposome in gels although they contain 10 times less drug. Dermatological scoring results, prognostic histological parameters and suppression of mast cell numbers showed higher treatment efficiency of liposome/nanoparticle in gel formulations in AD-induced rats. TEWL and erythema measurements confirmed these results. Overview of obtained results showed that liposomes might be an effective and safe carrier for corticosteroids in skin disease treatment. PMID:25259424

  15. Design of a Traditional Solar Tracking System

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader; Vasant, Pandian

    2010-06-01

    Solar energy is rapidly advancing as an important means of renewable energy resource. More energy is produced by tracking the solar panel to remain aligned to the sun at a right angle to the rays of light. This paper describes in detail the design and construction of a prototype for solar tracking system with two degrees of freedom, which detects the sunlight using photocells. The control circuit for the solar tracker is based on a PIC16F84A microcontroller (MCU). This is programmed to detect the sunlight through the photocells and then actuate the motor to position the solar panel where it can receive maximum sunlight.

  16. Installation package for a solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Installation information is given for a solar heating system installed in Concho Indian School at El Reno, Oklahoma. This package includes a system Operation and Maintenance Manual, hardware brochures, schematics, system operating modes and drawings.

  17. Handbook of experiences in the design and installation of solar heating and cooling systems

    SciTech Connect

    Ward, D.S.; Oberoi, H.S.

    1980-07-01

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  18. Handbook of experiences in the design and installation of solar heating and cooling systems

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Oberoi, H. S.

    1980-07-01

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. Performance topics covered include: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations.

  19. The Solar System Beyond Neptune

    NASA Technical Reports Server (NTRS)

    Jewitt, David; Nava, David (Technical Monitor)

    2002-01-01

    This proposal supported deep and wide-field optical imaging of the trans-Neptunian Solar System capitalizing on our broad access to state-of-the-art facilities on Mauna Kea. Key quantities determined include the size distribution of Kuiper Belt objects (a differential power law with an index -4), and the inclination and radial distance distributions. We identified an outer edge to the classical Kuiper Belt that has since been confirmed by independent workers. We also obtained an assessment of the population densities in the mean-motion resonances with Neptune and discovered the Scattered Kuiper Belt Object dynamical class. Scientific issues on which these measurements have direct bearing include the collisional environment of the Kuiper Belt, the origin of the short-period comets, and the origin by capture into resonance of Pluto and other Kuiper Belt objects.

  20. Solar System Visualization (SSV) Project

    NASA Technical Reports Server (NTRS)

    Todd, Jessida L.

    2005-01-01

    The Solar System Visualization (SSV) project aims at enhancing scientific and public understanding through visual representations and modeling procedures. The SSV project's objectives are to (1) create new visualization technologies, (2) organize science observations and models, and (3) visualize science results and mission Plans. The SSV project currently supports the Mars Exploration Rovers (MER) mission, the Mars Reconnaissance Orbiter (MRO), and Cassini. In support of the these missions, the SSV team has produced pan and zoom animations of large mosaics to reveal details of surface features and topography, created 3D animations of science instruments and procedures, formed 3-D anaglyphs from left and right stereo pairs, and animated registered multi-resolution mosaics to provide context for microscopic images.

  1. MOTESS Solar System Observations: Implications for the GNAT System

    NASA Astrophysics Data System (ADS)

    Tucker, R. A.

    2002-12-01

    The Global Network of Astronomical Telescopes is developing a geographically distributed network of relatively small-aperture imaging telescopes. Equipped with CCD cameras and operating in scan mode, these instruments will be able to address a wide variety of solar system, stellar and extragalactic research topics. Although the design of the individual telescope emphasizes simplicity and low cost, the network will be able to deliver in aggregate data that would otherwise require more expensive facilities. The array of instruments may be tailored to the particular observing program by the selection of filters the individual instruments are provided and how the telescopes are pointed at the sky. A prototype array of three instruments has been in use since April of 2001, principally obtaining asteroid astrometry and searching for near-earth objects. The experience relating to solar system observations acquired during this period will be presented along with proposed strategies for future work using the full GNAT array of instruments. This work and continuing operation of the MOTESS prototype is supported in part by a Eugene Shoemaker Grant from The Planetary Society.

  2. Solar System Science with LSST

    NASA Astrophysics Data System (ADS)

    Jones, R. Lynne; Chesley, S. R.; Connolly, A. J.; Harris, A. W.; Ivezic, Z.; Knezevic, Z.; Kubica, J.; Milani, A.; Trilling, D. E.; LSST Solar System Science Collaboration

    2007-12-01

    LSST will provide a unique tool to study moving objects in the solar system. In the baseline LSST observing plan, back-to-back 15-second images will reach a limiting magnitude as faint as r=24.7 in each 9.6 square degree field twice per night; approximately 15,000 square degrees will be imaged in multiple filters every 3 nights. This time sampling will continue throughout each lunation, creating a massive catalog of solar system objects with accurately measured orbits, as well as colors and lightcurves accurate to 0.005 magnitudes for the brightest objects. The catalog will include more than 80\\% of the potentially hazardous asteroids larger than 140m diameter within 10 years, millions of main-belt asteroids and perhaps 20,000 Trans-Neptunian Objects. By observing fields over a wide range of ecliptic longitudes and latitudes, including large separations from the ecliptic plane, not only will these catalogs greatly increase the numbers of known objects, the characterization of the inclination distributions of these populations will be much improved. Derivation of proper elements for main belt and Trojan asteroids will allow ever more resolution of asteroid families and their size-frequency distribution, as well as the study of the long-term dynamics of the individual asteroids and the asteroid belt as a whole. By obtaining multi-color ugrizy data for a substantial fraction of objects, relationships between color and dynamical history can be established. With the addition of light-curve information, rotation periods and phase curves can be measured for large fractions of each population, leading to new insight on physical characteristics. In addition, long-period comets will be discovered at much larger distances than previously possible, enabling testing of Oort cloud population models.

  3. Working With Solar System Ambassadors

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    2001-11-01

    The Solar System Ambassadors Program is a public outreach program designed to work with motivated volunteers across the nation. These competitively selected volunteers organize and conduct public events that communicate exciting discoveries and plans in Solar System research, exploration and technology through non-traditional forums; e.g. community service clubs, libraries, museums, planetariums, "star parties," mall displays, etc. Each Ambassador participates in on-line (web-based) training sessions that provide interaction with NASA scientists, engineers and project team members. As such, each Ambassador's experience with the space program becomes personalized. Training sessions provide Ambassadors with general background on each mission and educate them concerning specific mission milestones, such as launches, planetary flybys, first image returns, arrivals, and ongoing key discoveries. Additionally, projects provide limited supplies of videos, slide sets, booklets, pamphlets, posters, postcards, lithographs, on-line materials, resource links and information. In addition to participating in on-line trainings with Ambassadors, scientists will be given the opportunity to interact with, and mentor volunteer Ambassadors at regional, weekend conferences designed to strengthen the Ambassadors' knowledge of space science and exploration, thereby improving the space science message that goes out to the general public through these enthusiastic volunteers. Integrating volunteers across the country in a public-engagement program helps optimize project funding set aside for education and outreach purposes, establishing a nationwide network of regional contacts. At the same time, members of communities across the country become an extended part of each mission's team and an important interface between the space exploration community and the general public at large.

  4. Advanced coal fueled gas turbine system definition: Topical report

    SciTech Connect

    James, A.M.; Horner, M.W.

    1987-02-01

    The coal-fired gas turbine system definition and economic assessments are based on the Coal Burning Locomotive Study previously conducted by the GE Transportation Systems Business Operations with Burlington Northern and Norfolk Southern railroad sponsorship, and later with additional funding from the United States Department of Energy. The objectives of that study were to validate the feasibility of locomotive designs using coal as a fuel substitute for diesel oil. The objective of this report is to provide a preliminary definition of a coal fueled gas turbine locomotive system and a preliminary assessment of the system technical merits and economic boundaries. The system definition will be used to guide the technology development efforts in the Advanced Coal Fueled Gas Turbine System Program. The overall program objective is to develop the technological basis necessary for subsequent commercial development of direct coal fueled gas turbine power systems. The system definition will be updated as the technological bases mature through program component development and integrated system testing.

  5. Solar-heating system design package

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report describes solar heating system composed of warm-air solar collector, logic control unit, and switching and transport unit, that meets government standards for installation in residential dwellings. Text describes system operation and performance specifications complemented by comprehensive set of subcomponent design drawings.

  6. The Solar System: An Introductory Bibliography.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1987-01-01

    Surveys resources of astronomical information. Includes bibliographies of books and articles on the solar system in general as well as all of the bodies that occur in the solar system. Lists slide sets available from the Astronomical Society of the Pacific. (CW)

  7. Dormitory Solar-Energy-System Economics

    NASA Technical Reports Server (NTRS)

    1982-01-01

    102-page report analyzes long-term economic performance of a prepackaged solar energy assembly system at a dormitory installation and extrapolates to four additional sites about the U.S. Method of evaluation is f-chart procedure for solar-heating and domestic hotwater systems.

  8. Gamma ray observations of the solar system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  9. Gamma ray observations of the solar system

    SciTech Connect

    Not Available

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  10. Solar physics in the 1990s; Proceedings of Workshop XV and the Topical Meeting of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Astrophysics Data System (ADS)

    Neidig, D. F.; Hudson, H. S.

    Papers concerning developments in solar physics are presented, focusing on scientific planning for the solar maximum and high-energy detector calibration and observation of nonthermal and superhot sources. Specific topics include solar radioastronomy, VLA observations of the sun, coronal loops, solar observation in the Phobos mission, the Solar-A mission, the Solar and Heliospheric Observatory satellite, the Global Oscillation Network Group, the relation between convection flows and magnetic structure and the solar surface, and solar flares research programs including quasi-dedicated mm-wave imaging, H-alpha, far IR, X-ray spectroscopy, and optical observations. Additional subjects include the manifestation of supergranulation structure of active regions during solar flares, post-flare loops, the relationship of peak emission measure and temperature to peak flare X-ray flux, turbulent and directed motions in solar flares, coronal temperature diagnostics from high-resolution soft W-ray spectra, the study of coronal densities from X-ray line ratios of Ne IX and Mg XI, electron densities in the solar atmosphere, the Coronal Magnetic Structures Observing Campaign, observations of a giant filament, the determination of coronal fieldline connectivity from photospheric flare observations, MHD simulation of mass injection, numerical simulation of solar atmospheric dynamics, intercalibration of hard X-ray spectrometers, the influence of the energy calibration of broad-band X-ray detectors on the determination of plasma parameters, and space experiments measuring solar X-rays.

  11. Solar system radio astronomy at low frequencies

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1987-01-01

    The planetary radio-astronomy observations obtained with the two Voyager spacecraft since their launch in 1977 are briefly characterized and illustrated with graphs, diagrams, and sample spectra. Topics addressed include the spacecraft designs and trajectories, the wavelength coverage of the radio instruments, the Io-controlled LF emission of Jupiter, the solar-wind effect on the Saturn kilometric radiation, the Saturn electrostatic discharges, and the use of the clocklike feature of the Uranus emission to measure the planet's rotation period.

  12. Topics in Complexity: From Physical to Life Science Systems

    NASA Astrophysics Data System (ADS)

    Charry, Pedro David Manrique

    Complexity seeks to unwrap the mechanisms responsible for collective phenomena across the physical, biological, chemical, economic and social sciences. This thesis investigates real-world complex dynamical systems ranging from the quantum/natural domain to the social domain. The following novel understandings are developed concerning these systems' out-of-equilibrium and nonlinear behavior. Standard quantum techniques show divergent outcomes when a quantum system comprising more than one subunit is far from thermodynamic equilibrium. Abnormal photon inter-arrival times help fulfill the metabolic needs of a terrestrial photosynthetic bacterium. Spatial correlations within incident light can act as a driving mechanism for an organism's adaptation toward more ordered structures. The group dynamics of non-identical objects, whose assembly rules depend on mutual heterogeneity, yield rich transition dynamics between isolation and cohesion, with the cohesion regime reproducing a particular universal pattern commonly found in many real-world systems. Analyses of covert networks reveal collective gender superiority in the connectivity that provides benefits for system robustness and survival. Nodal migration in a network generates complex contagion profiles that lie beyond traditional approaches and yet resemble many modern-day outbreaks.

  13. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  14. Topics in the theory of heavy-quark systems

    SciTech Connect

    Flory, C.A.

    1981-04-01

    Due to the kinematic and dynamic simplifications possible because of the large mass of heavy quark bound states, certain properties of these systems can be quantitatively analyzed within the framework of quantum chromodynamics. It is clear that dimensionally the size of the bound state is proportional to the inverse quark mass, and for very heavy quarkonia the radius of the system should become smaller than that of normal hadrons. When this small system interacts with external long wavelength field quanta, the natural expansion that results is of a multipole type, analogous to the familiar multipole expansion in electrodynamics. This multipole expansion has better convergence properties than the standard perturbative treatment in certain kinematic regimes, which opens up a new area for strong interaction physics calculations. More specifically, it is ideally suited to investigate soft non-perturbative effects in QCD which appear to be so crucial to present day phenomenology and the conjectured confinement mechanism.

  15. The Solar System and Its Origin

    ERIC Educational Resources Information Center

    Dormand, J. R.

    1973-01-01

    Presents a brief explanation of the solar system, including planets, asteroids, satellites, comets, planetary orbits, as well as, old and recent cosmogonic theories. Indicates that man is nearer a solution to the origin of the planetary system than ever before.

  16. Exploration of the Solar System by Airborne Astronomy

    NASA Technical Reports Server (NTRS)

    Larson, H. P.

    1984-01-01

    The contributions of airborne astronomy to the knowledge of our solar system are reviewed, beginning in 1967 when planetary observations became a vigorous part of NASA's airborne astronomy initiatives using aircraft outfitted with 30 cm diameter telescopes for infrared observations at altitudes between 12 and 15 km. These early facilities and their successor, the Kuiper airborne observatory (KAO), profoundly influenced many areas of planetary science by providing optimized platforms for the conduct of certain types of remote sensing experiments that were incompatible with both ground-based and spacecraft environments. Specific topics reviewed include energy balance in the outer planets, the composition and structure of planetary atmospheres, and planetary ring systems.

  17. An overview: Component development for solar thermal systems

    SciTech Connect

    Mancini, T.R.

    1994-10-01

    In this paper, I review the significant issues and the development of solar concentrators and thermal receivers for central-receiver power plants and dish/engine systems. Due to the breadth of the topic area, I have arbitrarily narrowed the content of this paper by choosing not to discuss line-focus (trough) systems and energy storage. I will focus my discussion on the development of heliostats, dishes, and receivers since the 1970s with an emphasis on describing the technologies and their evolution, identifying some key observations and lessons learned, and suggesting what the future in component development may be.

  18. Solar System Science with LSST

    NASA Astrophysics Data System (ADS)

    Jones, R. L.; Chesley, S. R.; Connolly, A. J.; Harris, A. W.; Ivezic, Z.; Knezevic, Z.; Kubica, J.; Milani, A.; Trilling, D. E.

    2008-09-01

    The Large Synoptic Survey Telescope (LSST) will provide a unique tool to study moving objects throughout the solar system, creating massive catalogs of Near Earth Objects (NEOs), asteroids, Trojans, TransNeptunian Objects (TNOs), comets and planetary satellites with well-measured orbits and high quality, multi-color photometry accurate to 0.005 magnitudes for the brightest objects. In the baseline LSST observing plan, back-to-back 15-second images will reach a limiting magnitude as faint as r=24.7 in each 9.6 square degree image, twice per night; a total of approximately 15,000 square degrees of the sky will be imaged in multiple filters every 3 nights. This time sampling will continue throughout each lunation, creating a huge database of observations. Fig. 1 Sky coverage of LSST over 10 years; separate panels for each of the 6 LSST filters. Color bars indicate number of observations in filter. The catalogs will include more than 80% of the potentially hazardous asteroids larger than 140m in diameter within the first 10 years of LSST operation, millions of main-belt asteroids and perhaps 20,000 Trans-Neptunian Objects. Objects with diameters as small as 100m in the Main Belt and <100km in the Kuiper Belt can be detected in individual images. Specialized `deep drilling' observing sequences will detect KBOs down to 10s of kilometers in diameter. Long period comets will be detected at larger distances than previously possible, constrainting models of the Oort cloud. With the large number of objects expected in the catalogs, it may be possible to observe a pristine comet start outgassing on its first journey into the inner solar system. By observing fields over a wide range of ecliptic longitudes and latitudes, including large separations from the ecliptic plane, not only will these catalogs greatly increase the numbers of known objects, the characterization of the inclination distributions of these populations will be much improved. Derivation of proper elements for main belt and Trojan asteroids will allow ever more resolution of asteroid families and their size-frequency distribution, as well as the study of the long-term dynamics of the individual asteroids and the asteroid belt as a whole. Fig. 2 Orbital parameters of Main Belt Asteroids, color-coded according to ugriz colors measured by SDSS. The figure to the left shows osculating elements, the figure to the right shows proper elements - note the asteroid families visible as clumps in parameter space [1]. By obtaining multi-color ugrizy data for a substantial fraction of objects, relationships between color and dynamical history can be established. This will also enable taxonomic classification of asteroids, provide further links between diverse populations such as irregular satellites and TNOs or planetary Trojans, and enable estimates of asteroid diameter with rms uncertainty of 30%. With the addition of light-curve information, rotation periods and phase curves can be measured for large fractions of each population, leading to new insight on physical characteristics. Photometric variability information, together with sparse lightcurve inversion, will allow spin state and shape estimation for up to two orders of magnitude more objects than presently known. This will leverage physical studies of asteroids by constraining the size-strength relationship, which has important implications for the internal structure (solid, fractured, rubble pile) and in turn the collisional evolution of the asteroid belt. Similar information can be gained for other solar system bodies. [1] Parker, A., Ivezic

  19. Solar heating system installed at Stamford, Connecticut

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar heating system installed at the Lutz-Sotire Partnership Executive East Office Building, Stamford, Connecticut is described. The Executive East Office Building is of moderate size with 25,000 sq ft of heated space in 2 1/2 stories. The solar system was designed to provide approximately 50 percent of the heating requirements. The system components are described. Appended data includes: the system design acceptance test, the operation and maintenance manual, and as-built drawings and photographs.

  20. Topics on Diffusion in Phase Space of Multidimensional Hamiltonian Systems

    NASA Astrophysics Data System (ADS)

    Cincotta, Pablo M.; Giordano, Claudia M.

    2008-09-01

    In the present chapter we review as well as provide new results on the processes that lead to chaotic diffusion in phase space of multidimensional Hamiltonian systems. It is well known that the simplest mechanisms leading to a transition from regularity to chaos, and therefore to diffusion in phase space, are the overlap of resonances, resonance crossings and Arnold diffusion-like processes. When dealing with nearly integrable Hamiltonian systems, chaos actually means the variation of the unperturbed integrals, which is usually called chaotic diffusion. Unfortunately, it does not yet exist any theory that could describe global diffusion in phase space. In other words, it is not possible to estimate either its routes or its extent. Though one could get accurate values of the Lyapunov exponents, the KS entropy or any other indicator of the stability of the motion, they only provide local values for the variation of the integrals. A given orbit in a chaotic component of phase space could have, for instance, a positive and large value for two of the Lyapunov exponents, however, this does not necessarily mean that the unperturbed integrals would change over a rather large domain. This is a natural consequence of the structure of phase space of almost all actual dynamical systems such as planetary systems or galaxies. Therefore, what is actually significant is the extent of the domain and the time scale over which diffusion may occur. In [1] it is shown that in models similar to those suitable for the description of an elliptical galaxy, the time scale over which diffusion becomes relevant is several orders of magnitude the Hubble time. On the other hand, in models corresponding to planetary or asteroidal dynamics, diffusion may occur in physical time scales. All these issues as well as a relatively new fast indicator of the dynamics, the Mean Exponential Growth Factor of Nearby Orbits (MEGNO), are thoroughly discussed in this chapter by both numerical and theoretical means.

  1. TOPICAL REVIEW: Prosthetic interfaces with the visual system: biological issues

    NASA Astrophysics Data System (ADS)

    Cohen, Ethan D.

    2007-06-01

    The design of effective visual prostheses for the blind represents a challenge for biomedical engineers and neuroscientists. Significant progress has been made in the miniaturization and processing power of prosthesis electronics; however development lags in the design and construction of effective machine brain interfaces with visual system neurons. This review summarizes what has been learned about stimulating neurons in the human and primate retina, lateral geniculate nucleus and visual cortex. Each level of the visual system presents unique challenges for neural interface design. Blind patients with the retinal degenerative disease retinitis pigmentosa (RP) are a common population in clinical trials of visual prostheses. The visual performance abilities of normals and RP patients are compared. To generate pattern vision in blind patients, the visual prosthetic interface must effectively stimulate the retinotopically organized neurons in the central visual field to elicit patterned visual percepts. The development of more biologically compatible methods of stimulating visual system neurons is critical to the development of finer spatial percepts. Prosthesis electrode arrays need to adapt to different optimal stimulus locations, stimulus patterns, and patient disease states.

  2. Topics in the mechanics of self-organizing systems

    NASA Astrophysics Data System (ADS)

    Tambe, Dhananjay

    Self-organization, in one of its accepted definitions, is the appearance of non-random structures in a system without explicit constraints from forces outside the system. In this thesis two self-organizing systems are studied from the viewpoint of mechanics. In the first system---semiconductor crystal surfaces---the internal constraints that lead to self-assembly of nanoscale structures on silicon-germanium (SiGe) films are studied. In the second system---actin cytoskeleton---a consequence of dynamic self-organization of actin filaments in the form of motion of micron-sized beads through a cytoplasmic medium is studied. When Ge film is deposited on Si(001) substrate, nanoscale features form on the surface and self-organize by minimizing energy contributions from the surface and the strain resulting from difference in lattice constants of the film and the substrate. Clean Si(001) and Ge(001) surfaces are very similar, but experiments to date have shown that atomic scale defects such as dimer-vacancies self-organize into vacancy lines only on Si(001). Through atomic simulations, we show that the observed difference originate from the magnitude of compressive surface strain which reduces formation energy of the dimer-vacancies. During initial stages of the film deposition, the surface is composed of steps and vacancy lines organized in periodic patterns. Using theory of elasticity and atomic simulations we show that these line defects self-organize due to monopolar nature of steps and dipolar nature of the vacancy lines. This self-organized pattern further develops to form pyramidal islands bounded with (105) facets and high Ge content. Mismatch strain of the island is then reduced by incorporation of Si from the substrate surrounding the island leaving behind trenches whose depth is proportional to the basewidth of the island. Using finite element simulations we show that such a relationship is an outcome of competition between elastic energy and surface energy. Some experimental studies also report observation of steeper (103) and (104) facets on pyramidal islands. Using numerical simulations we derive a phase diagram which shows that the steeper facets are stabilized because they provide better relaxation of mismatch strain with only slight increase in surface energy. In the second system, the actin cytoskeleton is a key structural and propulsion element of eukaryotic cells. Micron-sized "cargoes", which under pathological conditions include bacteria, are propelled by dynamic self-organization of the actin filaments. Recently it is shown that the trajectories of a bacterium, Listeria monocytogenes, propelled by actin filaments are periodic; implying that the organization of actin filaments impart an effective force that spins about the axis of the bacterium. We show that the motion of spherical beads is also non-random; the effective force has an additional degree of freedom due to the spherical symmetry of the bead. Agreement of the theoretical trajectories with experimental observations suggest that the actin-based motility can be generally described using deterministic equations. We also propose microscopic basis for the effective force model which can guide development of microscopic theory to predict the long term trajectories of actin propelled objects.

  3. Solar Energy System Performance Evaluation. Seasonal report for IBM System 1B, Carlsbad, New Mexico

    SciTech Connect

    1980-07-01

    The IBM-Carlsbad Solar Energy System is located in a single family residence at Carlsbad Caverns National Park, New Mexico. This hot air solar heating and hot water system consists of 408 square feet of SEPCO, flat plate air collectors, a rock storage bin containing 12 tons of 3/4'' to 2 1/2'' diameter rocks, an energy transport system, air-to-water heat exchanger, controls and a hot water preheat tank which supplies preheated water to a 52 gallon electric hot water tank. An oil hot-air furnace supplies necessary energy when solar energy is insufficient to supply the space heating load. The system has five different modes of operation and became operational in March, 1978. The following topics are discussed: system description, performance assessment, operating energy, energy savings, maintenance, summary and conclusions.

  4. The Solar System primordial lead

    NASA Astrophysics Data System (ADS)

    Blichert-Toft, Janne; Zanda, Brigitte; Ebel, Denton S.; Albarède, Francis

    2010-11-01

    Knowledge of the primordial isotope composition of Pb in the Solar System is critical to the understanding of the early evolution of Earth and other planetary bodies. Here we present new Pb isotopic data on troilite (FeS) nodules from a number of different iron meteorites: Canyon Diablo, Mundrabilla, Nantan, Seeläsgen, Toluca (IAB-IIICD), Cape York (IIIA), Mt Edith (IIIB), and Seymchan (pallasite). Lead abundances and isotopic compositions typically vary from one troilite inclusion to another, even within the same meteorite. The most primitive Pb was found in three leach fractions of two exceptionally Pb-rich Nantan troilite nodules. Its 204Pb/ 206Pb is identical to that of Canyon Diablo troilite as measured by Tatsumoto et al. [M. Tatsumoto, R.J. Knight, C.J. Allègre, Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206, Science 180(1973) 1279-1283]. However, our measurements of 207Pb/ 206Pb and 208Pb/ 206Pb are significantly higher than theirs, as well as other older literature data obtained by TIMS, while consistent with the recent data of Connelly et al. [J.N. Connelly, M. Bizzarro, K. Thrane, J.A. Baker, The Pb-Pb age of Angrite SAH99555 revisited, Geochim. Cosmochim. Acta 72(2008) 4813-4824], a result we ascribe to instrumental mass fractionation having biased the older data. Our current best estimate of the Solar System primordial Pb is that of Nantan troilite, which has the following isotopic composition: 204Pb/ 206Pb = 0.107459(16), 207Pb/ 206Pb = 1.10759(10), and 208Pb/ 206Pb = 3.17347(28). This is slightly less radiogenic than the intercept of the bundle of isotopic arrays formed in 207Pb/ 206Pb- 204Pb/ 206Pb space by our measurements of Canyon Diablo, Nantan, Seeläsgen, Cape York, and Mundrabilla, as well as literature data, which, in spite of rather large uncertainties, suggests a common primordial Pb component for all of these meteorites. The radiogenic Pb present in most of these irons is dominantly asteroidal and indicates evolution in a high-U/Pb environment. The apparent age of the radiogenic Pb component is consistent with the 39Ar- 40Ar ages of silicate inclusions found in the same meteorites. We propose that the radiogenic Pb was introduced more recently into troilite, from the surface rubble of the parent asteroid, possibly during the impacts that generated the IAB iron meteorites. The excellent correlation between 208Pb/ 206Pb and 204Pb/ 206Pb translates into a Th/U ratio of 3.876 ± 0.016 for the asteroid, which is the most precise estimate for the solar nebula to date.

  5. Phase equilibria in the carbon dioxide + ethane system. Topical report

    SciTech Connect

    Brown, T.S.; Sloan, E.D.; Kidnay, A.J.

    1985-12-01

    The compositions of natural gases vary substantially, but most U.S. and Canadian gases contain significant amounts of both nitrogen and carbon dioxide in addition to the paraffin hydrocarbons. Reliable information on the phase equilibria of carbon dioxide with the hydrocarbon components of natural gas is becoming increasingly important to industry for two reasons. First, the emphasis in the past few years on ethane recovery from natural gas and the use of liquified natural gas peak-shaving facilities by public utilities both require knowledge of the phase equilibria of carbon dioxide systems. Second, the increasing use and cost of natural gas will require future processing of very high carbon dioxide gases that until now were deemed uneconomic for production. There are three objectives to the report: first, to show the results of a literature survey for the carbon dioxide + ethane system; second, to present new, experimental vapor-liquid equilibrium measurements; and third, to discuss the results obtained when the available vapor-liquid equilibria are modeled with a cubic equation of state.

  6. Advanced worker protection system. Topical report, Phase I

    SciTech Connect

    Myers, J.

    1995-07-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system, maintenance, and dramatically improve worker productivity through longer duration work cycles.

  7. The solar wind-magnetosphere-ionosphere system

    PubMed

    Lyon

    2000-06-16

    The solar wind, magnetosphere, and ionosphere form a single system driven by the transfer of energy and momentum from the solar wind to the magnetosphere and ionosphere. Variations in the solar wind can lead to disruptions of space- and ground-based systems caused by enhanced currents flowing into the ionosphere and increased radiation in the near-Earth environment. The coupling between the solar wind and the magnetosphere is mediated and controlled by the magnetic field in the solar wind through the process of magnetic reconnection. Understanding of the global behavior of this system has improved markedly in the recent past from coordinated observations with a constellation of satellite and ground instruments. PMID:10856203

  8. Solar energy food dehydration system: Concept development

    SciTech Connect

    Pham, L.V.

    1988-01-01

    The research activities to be carried out to form the body of this work were planned, first, to increase the general knowledge in the areas of solar energy application and, secondly, to provide sufficient data for the development of a new solar energy powered food dehydrating system. The research work does not aim merely at pursuing the study and development of a new component or a new type of material to be used in the solar industry. But the final and main part of this research is devoted to the development and design of a solar energy system uncharted before the purpose of dehydrating various agricultural products. This proposed solar powered system development is thereby a contribution of technological knowledge to the field of Applied Sciences. It is one of the viable and effective solutions to solving the world's food and energy shortage problem, especially in the less developed regions of the world. The body of this work, thus is divided into three major parts as follows: (1) The search for a thorough understanding of the origin and fundamental characteristics of solar energy. (2) Past and present applications of solar energy. (3) The development and design of a new solar energy powered system for the dehydration of food crops.

  9. Solar power satellite system definition study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A synopsis of the study plan for the solar power satellite system is presented. Descriptions of early task progress is reported for the following areas: (1) laser annealing, (2) solid state power amplifiers, (3) rectenna option, (4) construction of an independent electric orbit transfer vehicle, and (5) construction of a 2.5 GW solar power satellite.

  10. Combined solar collector and energy storage system

    NASA Technical Reports Server (NTRS)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  11. Non-tracking solar energy collector system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1978-01-01

    A solar energy collector system characterized by an improved concentrator for directing incident rays of solar energy on parallel vacuum-jacketed receivers or absorbers is described. Numerous individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration are supported for independent reorientation. Asymmetric vee-trough concentrators are defined.

  12. Prototype solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  13. Astrometric solar-system anomalies

    NASA Astrophysics Data System (ADS)

    Anderson, John D.; Nieto, Michael Martin

    2010-01-01

    There are at least four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. Next, a secular change in the astronomical unit AU is definitely a concern. It is reportedly increasing by about 15 cm yr-1. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists, including us, are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is prudent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.

  14. Solar-System Ephemeris Toolbox

    NASA Technical Reports Server (NTRS)

    Walker, Charles F.

    2005-01-01

    NASA s Jet Propulsion Laboratory (JPL) generates planetary and lunar ephemeris data and FORTRAN routines that allow users to obtain state data for the Sun, the moon, and the planets. The JPL Solar System Ephemeris Toolbox, developed at Kennedy Space Center, is a set of functions that provides the same functionality in the MATLAB computing environment along with some additional capabilities. The toolbox can be used interactively via a graphical user interface (GUI), or individual functions can be called from the MATLAB command prompt or other MATLAB scripts and functions. The toolbox also includes utility functions to define and perform coordinate transformation (e.g., mean-of-date, true-of-date, J2000) that are common in the use of these ephemerides. An attached README file guides the user through the process of constructing binary ephemeris files, verifying correct installation, and using functions to extract state data. This process also can be performed using the GUI. Help from each toolbox function is available through MATLAB s "help" function. Many of the functions in the toolbox are MATLAB equivalents of the JPL-written FORTRAN programs and subroutines used for the same purposes. A novice can use the GUI to extract state data, while a more experienced user can use the functions directly, as needed, in his/her applications. The toolbox has been tested using MATLAB Releases 13 an

  15. Solar- and wind-powered irrigation systems

    NASA Astrophysics Data System (ADS)

    Enochian, R. V.

    1982-02-01

    Five different direct solar and wind energy systems are technically feasible for powering irrigation pumps. However, with projected rates of fossil fuel costs, only two may produce significant unsubsidied energy for irrigation pumping before the turn of the century. These are photovoltaic systems with nonconcentrating collectors (providing that projected costs of manufacturing solar cells prove correct); and wind systems, especially in remote areas where adequate wind is available.

  16. Nitrogen isotope variations in the Solar System

    NASA Astrophysics Data System (ADS)

    Füri, Evelyn; Marty, Bernard

    2015-07-01

    The relative proportion of the two isotopes of nitrogen, 14N and 15N, varies dramatically across the Solar System, despite little variation on Earth. NASA's Genesis mission directly sampled the solar wind and confirmed that the Sun -- and, by inference, the protosolar nebula from which the Solar System formed -- is highly depleted in the heavier isotope compared with the reference nitrogen isotopic composition, that of Earth's atmosphere. In contrast, the inner planets, asteroids, and comets are enriched in 15N by tens to hundreds of per cent; organic matter in primitive meteorites records the highest 15N/14N isotopic ratios. The measurements indicate that the protosolar nebula, inner Solar System, and cometary ices represent three distinct isotopic reservoirs, and that the 15N enrichment generally increases with distance from the Sun. The 15N enrichments were probably not inherited from presolar material, but instead resulted from nitrogen isotope fractionation processes that occurred early in Solar System history. Improvements in analytical techniques and spacecraft observations have made it possible to measure nitrogen isotopic variability in the Solar System at a level of accuracy that offers a window into the processing of early Solar System material, large-scale disk dynamics and planetary formation processes.

  17. Design of a 30-hp solar steam-powered turbine. Topical report

    SciTech Connect

    Kroon, R.P.; Meyer, C.A.; Lior, N.; Yeh, H.

    1980-05-01

    The type-selection and complete design of a 30hp turbine which operates on superheated steam are described. The steam obtains most of its energy (the latent heat of vaporization) from solar energy at approximately 100/sup 0/C (design) and is then superheated by a fuel energy source to 600/sup 0/C (design). The turbine is designed for an exit pressure of 10.086 kPa(abs) corresponding to a condenser temperature of 46/sup 0/C (115/sup 0/F), as required for air-cooled condensers. The turbine selected is of counter-rotation radial outflow design, employing 10 rows of reaction-type blading, and it operates at 15300 rpm (design). The calculated turbine efficiency at design conditions is 75%, well above the efficiency of existing steam turbines of same power and steam conditions. Extensive calculations of the turbine efficiency at off-design conditions indicate a very small deterioration in efficiency, of the order of a few percent, over the practical range of operations.

  18. Development of Solar Powered Irrigation System

    NASA Astrophysics Data System (ADS)

    Abdelkerim, A. I.; Sami Eusuf, M. M. R.; Salami, M. J. E.; Aibinu, A.; Eusuf, M. A.

    2013-12-01

    Development of a solar powered irrigation system has been discussed in this paper. This system would be SCADA-based and quite useful in areas where there is plenty of sunshine but insufficient water to carry out farming activities, such as rubber plantation, strawberry plantation, or any plantation, that requires frequent watering. The system is powered by solar system as a renewable energy which uses solar panel module to convert Sunlight into electricity. The development and implementation of an automated SCADA controlled system that uses PLC as a controller is significant to agricultural, oil and gas monitoring and control purpose purposes. In addition, the system is powered by an intelligent solar system in which solar panel targets the radiation from the Sun. Other than that, the solar system has reduced energy cost as well as pollution. The system is equipped with four input sensors; two soil moisture sensors, two level detection sensors. Soil moisture sensor measures the humidity of the soil, whereas the level detection sensors detect the level of water in the tank. The output sides consist of two solenoid valves, which are controlled respectively by two moistures sensors.

  19. Optimal control studies of solar heating systems

    SciTech Connect

    Winn, C B

    1980-01-01

    In the past few years fuel prices have seen steady increases. Also, the supply of fuel has been on the decline. Because of these two problems there has been an increase in the number of solar heated buildings. Since conventional fuel prices are increasing and as a solar heating system represents a high capital cost it is desirable to obtain the maximum performance from a solar heating system. The control scheme that is used in a solar heated building has an effect on the performance of the solar system. The best control scheme possible would, of course, be desired. This report deals with the control problems of a solar heated building. The first of these problems is to control the inside temperature of the building and to minimize the fuel consumption. This problem applies to both solar and conventionally heated buildings. The second problem considered is to control the collector fluid flow to maximize the difference between the useful energy collected and the energy required to pump the fluid. The third problem is to control the enclosure temperature of a building which has two sources of heat, one solar and the other conventional.

  20. Solar System History from Isotopic Signatures of Volatile Elements

    NASA Astrophysics Data System (ADS)

    Kallenbach, R.; Encrenaz, T.; Geiss, J.; Mauersberger, K.; Owen, T. C.; Robert, F.

    2003-06-01

    This volume focuses on isotopic signatures of volatile elements as tracers for evolutionary processes during the formation of the Sun and the planets from an interstellar molecular cloud and, in turn, illuminates how the isotopic compositions of the present-day solar system objects have been established. The book is an integrated collection of articles by experts in planetary science, solar and plasma physics, astrophysics, mineralogy and chemistry that met for an interdisciplinary workshop at the International Space Science Institute in Bern in January 2002. The authors present analyses of isotope abundance ratios for volatile elements in the sun, planets, satellites, comets, meteorites and interplanetary dust particles, as well as a review of isotopic ratios in star-forming interstellar clouds. This provides insight into the physical and chemical processes in the pre-solar molecular cloud that collapsed to form the Sun and the solar accretion disk. Furthermore, information is presented on dynamical processes and conditions inside this protoplanetary disk, in particular the degree of reprocessing of interstellar solid material, the formation of solids inside the disks, and the formation of terrestrial and giant planets and their satellites. Isotopic fractionation processes discussed in this book include chemical reactions such as ion-molecule and photochemical reactions, nuclear processes inside the sun and in its atmosphere, plasma processes, gravitational escape of gases from planetary atmospheres exposed to the solar wind and solar radiation, thermodynamic processes, a variety of accretion and adsorption processes and mixing of material from the interstellar environment with the material of the evolving solar system. The volume is intended to provide active researchers in the fields of planetary science and space physics with an up-to-date status report on the topic, and also to serve graduate students with introductory material into the field Link: http://www.wkap.nl/prod/b/1-4020-1177-6

  1. Redox storage systems for solar applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Thaller, L. H.

    1981-01-01

    It is noted that the worldwide development of solar photovoltaic and wind turbine systems to meet a range of terrestrial electrical energy requirements has underscored the need for inexpensive and reliable electrical energy storage. The NASA Redox Energy Storage System, based on soluble aqueous iron and chromium chloride redox couples, has exhibited many system-related features which for the most part are unique to this storage system. The technology advances required in the two elements (electrodes and membranes), which are the key to its technological feasibility, have been attained and system development has begun. The design, construction, and testing of a 1-kW system integrated with a solar photovoltaic array is underway to provide early demonstration of the attractive system-related features of the NASA Redox Storage System. Also demonstrated will be its versatility and compatibility with a terrestrial solar photovoltaic electric power system.

  2. A web-based melanoma image diagnosis support system using topic map and AJAX technologies.

    PubMed

    Papastergiou, A; Tzekis, P; Hatzigaidas, A; Tryfon, G; Ioannidis, D; Zaharis, Z; Kampitaki, D; Lazaridis, P

    2008-06-01

    The design and implementation of a web-based diagnostic support tool for melanoma dermatological images and related diagnostic data is presented. The proposed system is semantic web-based and is driven by exploiting the combination of AJAX framework and topic map technology. A novel client/server architecture was developed that enables several clients to interact online with the topic map-based system. Users have the ability to access the system anywhere and anytime via a simple Internet browser. Additionally, an ABCD application has been developed for automated calculation of ABCD parameters and consequently embedded in the proposed TM-based system. PMID:18604754

  3. Origin of Outer Solar System

    NASA Technical Reports Server (NTRS)

    Holman, Matthew J.; Boyce, J. (Technical Monitor)

    2003-01-01

    We feel that at the present moment the available theoretical models of the Kuiper belt are still in advance of the data, and thus our main task has been to conduct observational work guided by theoretical motivations. Our efforts over the past year can be divided into four categories: A) Wide-field Searches for Kuiper Belt Objects; B) Pencil-beam Searches for Kuiper Belt Objects; C) Wide-field Searches for Moons of the Outer Planets; D) Pencil-beam Searches for Faint Uranian and Neptunian Moons; E) Recovery Observations. As of April 2002, we have conducted several searches for Kuiper belt objects using large-format mosaic CCD camera on 4-meter class telescopes. In May 1999, we used the Kitt Peak 4-meter with the NOAO Mosaic camera we attempted a search for KBOs at a range of ecliptic latitudes. In addition to our wide-field searches, we have conducted three 'pencil-beam' searches in the past year. In a pencil-beam search we take repeated integrations of the same field throughout a night. After preprocessing the resulting images we shift and recombine them along a range of rates and directions consistent with the motion of KBOs. Stationary objects then smear out, while objects moving at near the shift rate appear as point sources. In addition to our searches for Kuiper belt objects, we are completing the inventory of the outer solar system by search for faint satellites of the outer planets. In August 2001 we conducted pencil beam searches for faint Uranian and Neptunian satellites at CFHT and CTIO. These searches resulted in the discover of two Neptunian and four Uranian satellite candidates. The discovery of Kuiper belt objects and outer planet satellites is of little use if the discoveries are not followed by systematic, repeated astrometric observations that permit reliable estimates of their orbits.

  4. Solar System Science with LSST

    NASA Astrophysics Data System (ADS)

    Jones, R. Lynne; Chesley, S. R.; Connolly, A. J.; Harris, A. W.; Ivezic, Z.; Knezevic, Z.; Kubica, J.; Milani, A.; Trilling, D. E.; Pierfederici, F.; LSST Solar System Science Collaboration

    2008-09-01

    The Large Synoptic Survey Telescope (LSST) will provide a unique tool to study moving objects throughout the solar system, creating massive catalogs of Near Earth Objects (NEOs), asteroids, Trojans, TransNeptunian Objects (TNOs), comets, planetary satellites and other rare, yet-undiscovered populations, with well-measured orbits and high quality, multi-color photometry, accurate to 0.005 magnitudes for the brightest objects. In the baseline LSST observing plan, back-to-back 15-second images reach a limiting magnitude as faint as r=24.7 in each 9.6 square degree visit, twice per night; a total of approximately 15,000 square degrees of the sky will be imaged in multiple filters every 3 nights. The catalogs will include more than 80\\% of the potentially hazardous asteroids larger than 140m in diameter, millions of main-belt asteroids and perhaps 20,000 Trans-Neptunian Objects. Objects with diameters as small as 100m in the Main Belt and <100km in the Kuiper Belt can be detected in individual images. Specialized deep drilling observing sequences will detect KBOs down to 10s of kilometers in diameter. Derivation of proper elements for main belt and Trojan asteroids will allow ever more resolution of asteroid families and their size-frequency distribution. By obtaining multi-color ugrizy data for a substantial fraction of objects, relationships between color and dynamical history can be established. This will also enable taxonomic classification of asteroids, provide further links between diverse populations such as irregular satellites and TNOs or planetary Trojans, and enable estimates of asteroid diameter with rms uncertainty of 30%. By obtaining high-quality photometric measurements, rotation periods and phase curves will be measured for large fractions of each population, leading to new insight on physical characteristics. Photometric variability information, together with sparse lightcurve inversion, will allow spin state and shape estimation for up to two orders of magnitude more objects than presently known.

  5. Astrometric Solar-System Anomalies

    NASA Astrophysics Data System (ADS)

    Anderson, John D.

    2009-05-01

    There are four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it experiences a gain in total orbital energy per unit mass (Anderson et al., Phys. Rev. Lett. 100, 091102). This amounts to a net velocity increase of 13.5 mm/s for the NEAR spacecraft at a closest approach of 539 km, 3.9 mm/s for the Galileo spacecraft at 960 km, and 1.8 mm/s for the Rosetta spacecraft at 1956 km. Next, I suggest the change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm/yr (Krasinsky and Brumberg, Celes. Mech. & Dynam. Astron. 90, 267). The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions (Anderson et al., Phys. Rev. D 65, 082004). Some, including me, are convinced this effect is of concern, but many are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported increase that is about three times larger than expected (J. G. Williams, DDA/AAS Brouwer Award Lecture, Halifax, Nova Scotia 2006). We suspect that all four anomalies have mundane explanations. However, the possibility that they will be explained by a new theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation of the excess precession of Mercury's perihelion.

  6. Robot and Human Surface Operations on Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.

  7. Modular solar-heating system - design package

    NASA Technical Reports Server (NTRS)

    Sinton, D. S.

    1979-01-01

    Compilation contains design, performance, and hardware specifications in sufficient detail to fabricate or procure materials and install, operate, and maintain complete modular solar heating and hot water system for single family size dwellings.

  8. Chasing shadows in the outer solar system

    NASA Astrophysics Data System (ADS)

    Bianco, Federica

    The characteristics of the populations of objects that inhabit the outer solar system carry the fingerprint of the processes that governed the formation and evolution of the solar system. Occultation surveys push the limit of observation into the very small and distant outer solar system objects, allowing us to set constraints on the structure of the Kuiper belt, Scattered disk and Sedna populations. I collected, reduced, and analyzed vast datasets looking for occultations of stars by outer solar system objects, both working with the Taiwanese American Occultation Survey (TAOS) collaboration and leading the MMT/Megacam occultation effort. Having found no such events in my data, I was able to place upper limits on the Kuiper belt, scattered disk and Sedna population. These limits and their derivation are described here.

  9. Prototype solar heating and hot water systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress made in the development of a solar hot water and space heating system is described in four quarterly reports. The program schedules, technical status and other program activities from 6 October 1976 through 30 September 1977 are provided.

  10. Design data brochure: Solar hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  11. Solar System Visualization: Global Science Maps

    NASA Technical Reports Server (NTRS)

    DeJong, E. M.

    1994-01-01

    The goal of the Solar System Visualization (SSV) project is to re-explore the planets using the data from previous National Aeronautics and Space Administration (NASA) planetary missions on and public information.

  12. Design information for solar-heating systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report contains preliminary design information for two solar-heating and hot water systems presently under development. Information includes quality control data, special tooling specifications, hazard analysis, and preliminary training program for installation contractors.

  13. The NASA atlas of the solar system

    USGS Publications Warehouse

    Greeley, Ronald; Batson, Raymond M.

    1997-01-01

    Describes every planet, moon, and body that has been the subject of a NASA mission, including images of 30 solar system objects and maps of 26 objects. The presentation includes geologic history, geologic and reference maps, and shaded relief maps.

  14. Solar Energy Systems for Ohioan Residential Homeowners

    NASA Astrophysics Data System (ADS)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  15. Solar energy control system. [temperature measurement

    NASA Technical Reports Server (NTRS)

    Currie, J. R. (Inventor)

    1981-01-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  16. Tehachapi solar thermal system first annual report

    SciTech Connect

    Rosenthal, A.

    1993-05-01

    The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

  17. Chemical evolution: A solar system perspective

    NASA Technical Reports Server (NTRS)

    Oro, J.

    1989-01-01

    During the last three decades major advances were made in the understanding of the formation of carbon compounds in the universe and of the occurrence of processes of chemical evolution in the solar system and beyond. This was made possible by the development of new astronomical techniques and by the exploration of the solar system by means of properly instrumented spacecraft. Some of the major findings made as a result of these observations are summarized.

  18. Meteoroids: The Smallest Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Moser, Danielle E. (Compiler); Hardin, B. F. (Compiler); Janches, Diego (Compiler)

    2011-01-01

    This volume is a compilation of articles reflecting the current state of knowledge on the physics, chemistry, astronomy, and aeronomy of small bodies in the solar system. The articles included here represent the most recent results in meteor, meteoroid, and related research fields and were presented May 24-28, 2010, in Breckenridge, Colorado, USA at Meteoroids 2010: An International Conference on Minor Bodies in the Solar System.

  19. The Solar System: Recent Exploration Results

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The solar system has been visited by space probes, ranging from the Mariner Mercury-Venus mission exploring inward toward the sun, and continuing through the Voyager probes out into interstellar space and (on its way now) the New Horizons probe to Pluto and the Kuiper belt. This talk examines what we know of the planets of the solar system from probes, and talks about where we will go from here.

  20. Concentrators Enhance Solar Power Systems

    NASA Technical Reports Server (NTRS)

    2013-01-01

    "Right now, solar electric propulsion is being looked at very seriously," says Michael Piszczor, chief of the photovoltaic and power technologies branch at Glen Research Center. The reason, he explains, originates with a unique NASA mission from the late 1990s. In 1998, the Deep Space 1 spacecraft launched from Kennedy Space Center to test a dozen different space technologies, including SCARLET, or the Solar Concentrator Array with Refractive Linear Element Technology. As a solar array that focused sunlight on a smaller solar cell to generate electric power, SCARLET not only powered Deep Space 1 s instruments but also powered its ion engine, which propelled the spacecraft throughout its journey. Deep Space 1 was the first spacecraft powered by a refractive concentrator design like SCARLET, and also utilized multi-junction solar cells, or cells made of multiple layers of different materials. For the duration of its 38-month mission, SCARLET performed flawlessly, even as Deep Space 1 flew by Comet Borrelly and Asteroid Braille. "Everyone remembers the ion engine on Deep Space 1, but they tend to forget that the SCARLET array powered it," says Piszczor. "Not only did both technologies work as designed, but the synergy between the two, solar power and propulsion together, is really the important aspect of this technology demonstration mission. It was the first successful use of solar electric propulsion for primary propulsion." More than a decade later, NASA is keenly interested in using solar electric propulsion (SEP) for future space missions. A key issue is cost, and SEP has the potential to substantially reduce cost compared to conventional chemical propulsion technology. "SEP allows you to use spacecraft that are smaller, lighter, and less costly," says Piszczor. "Even though it might take longer to get somewhere using SEP, if you are willing to trade time for cost and smaller vehicles, it s a good trade." Potentially, SEP could be used on future science missions in orbit around the Earth or Moon, to planets or asteroids, on deep space science missions, and even on exploration missions. In fact, electric propulsion is already being used on Earth-orbiting satellites for positioning.

  1. Solar hydrogen energy system. Annual report, 1995--1996

    SciTech Connect

    Veziroglu, T.N.

    1996-12-31

    The paper reports progress on three tasks. Task A, System comparison of hydrogen with other alternative fuels in terms of EPACT requirements, investigates the feasibility of several alternative fuels, namely, natural gas, methanol, ethanol, hydrogen and electricity, to replace 10% of gasoline by the year 2000. The analysis was divided into two parts: analysis of vehicle technologies and analysis of fuel production, storage and distribution. Task B, Photovoltaic hydrogen production, involves this fuel production method for the future. The process uses hybrid solar collectors to generate dc electricity, as well as high temperature steam for input to the electrolyzer. During the first year, solar to hydrogen conversion efficiencies have been considered. The third task, Hydrogen safety studies, covers two topics: a review of codes, standards, regulations, recommendations, certifications, and pamphlets which address safety of gaseous fuels; and an experimental investigation of hydrogen flame impingement.

  2. Basics of a Solar Electric System: Better Buildings Series Solar Electric Fact Sheet

    SciTech Connect

    Not Available

    2002-07-01

    Today's solar technologies are more efficient and versatile than ever before, adding to the appeal of an already desirable energy source. This fact sheet provides information on the basics of a solar electric system, including components of a system, how to choose solar modules, and how to choose a solar system.

  3. Photovoltaics: solar electric power systems

    SciTech Connect

    1980-02-01

    The operation and uses of solar cells and the National Photovoltaic Program are briefly described. Eleven DOE photovoltaic application projects are described including forest lookout towers; Wilcox Memorial Hospital in Hawaii; WBNO daytime AM radio station; Schuchuli Indian Village; Meade, Nebraska, agricultural experiment; Mt. Laguna Air Force Station; public schools and colleges; residential applications; and Sea World of Florida. (WHK)

  4. Photovoltaics: Solar electric power systems

    NASA Astrophysics Data System (ADS)

    1980-02-01

    The operation and uses of solar cells and the National Photovoltaic Program are briefly described. Eleven DOE photovoltaic application projects are described including forest lookout towers; Wilcox Memorial Hospital in Hawaii; WBNO daytime AM radio station; Schuchuli Indian Village; Meade, Nebraska, agricultural experiment; Mt. Laguna Air Force Station; public schools and colleges; residential applications; and Sea World of Florida.

  5. Desalting system utilizing solar energy

    SciTech Connect

    Iida, T.

    1985-06-25

    A heat-transfer medium is heated by a solar heat collector and then adiabatically compressed. The heat-transfer medium thus compressed exchanges heat with the seawater to heat it, and is then adiabatically expanded with the heated seawater being evaporated and the steam thus produced, upon heat exchange with the seawater, changed into fresh water.

  6. Mineralogy of the Solar System

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.

    1999-01-01

    The coming decade will witnesses the first sample return missions from solar system bodies in 30 years. These samples will all be very small, some missions return only a few milligrams of total mass. Fortunately, the capability of modem methods to characterize ultra-small samples is well established from analysis of interplanetary dust particles (IDPs), interstellar grains recovered from meteorites, and other materials requiring ultra-sensitive analytical capabilities. Powerful analytical techniques are available that require, under favorable circumstances, single particles of only a few nanograms for entire suites of fairly comprehensive characterizations. A returned sample of greater than 1,000 particles with total mass of just one microgram permits comprehensive quantitative geochemical measurements that are impractical to can-y out in situ by flight instruments. With the Galileo flybys of Gaspra and Ida, it is now recognized that even very small airless bodies have indeed developed a particulate regolith. Acquiring a sample of the bulk regolith, a simple sampling strategy, provides two critical pieces of information about the body. Regolith samples are excellent bulk samples since they normally contain all the key components of the local environment, albeit in particulate form. Furthermore, since this fine fraction dominates remote measurements, regolith samples also provide information about surface alteration processes and are a key link to remote sensing of other bodies. Studies indicate that a statistically significant number of nanogram-sized particles should be able to characterize the regolith of a primitive asteroid, although the presence of larger components within even primitive meteorites (e.g.. Murchison), e.g. chondrules, CAI, large crystal fragments, etc., points out the limitations of using data obtained from nanogram-sized samples to characterize entire primitive asteroids. However, most important asteroidal geological processes have left their mark on the matrix, since this is the finest-grained portion and therefore most sensitive to chemical and physical changes. Thus, the following information can be learned from this fine grain size fraction alone: (1) mineral paragenesis; (2) regolith processes, (3) bulk composition; (4) conditions of thermal and aqueous alteration (if any); (5) relationships to planets, comets, meteorites (via isotopic analyses, including oxygen; (6) abundance of water and hydrated material; (7) abundance of organics; (8) history of volatile mobility, (9) presence and origin of presolar and/or interstellar material.

  7. The Systems Analysis and Design Course: An Educators' Assessment of the Importance and Coverage of Topics

    ERIC Educational Resources Information Center

    Guidry, Brandi N.; Stevens, David P.; Totaro, Michael W.

    2011-01-01

    This study examines instructors' perceptions regarding the skills and topics that are most important in the teaching of a Systems Analysis and Design ("SAD") course and the class time devoted to each. A large number of Information Systems ("IS") educators at AACSB accredited schools across the United States were surveyed. Shannon's entropy is used…

  8. Climate Fundamentals for Solar Heating.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The design of any solar heating system is influenced heavily by climate; in this bulletin, information on climate as related to solar heating is as related to solar heating is provided. Topics discussed include: (1) solar radiation; (2) degree days; (3) climate and calculations which make use of solar radiation and degree days; and (4)…

  9. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  10. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  11. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  12. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  13. 24 CFR 203.18a - Solar energy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  14. Prototype residential solar-energy system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Complete solar-energy domestic-hot-water system for single-family residences is described in brochure. It contains data on procurement, installation, operation, and maintainance of system in residential or light commercial buildings. Appendix includes vendor brochures for major system components. Drawings, tables, and graphs complement text.

  15. Solar Thermal Power Systems parabolic dish project

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1981-01-01

    The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.

  16. Prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of monthly status reports on the development of eight prototype solar heating and cooling systems is presented. The effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3, 25, and 75 ton size units.

  17. Prototype solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of monthly status reports are given on the development of eight prototype solar heating and cooling systems. This effort calls for the development, manufacturing, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3-, 25-, and 75-ton size units.

  18. Residential solar-heating/cooling system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report documents progress of residential solar-heating and cooling system development program at 5-month mark of anticipated 17-month program. System design has been completed, and development and component testing has been initiated. Report includes diagrams, operation overview, optimization studies of subcomponents, and marketing plans for system.

  19. Residential solar-heating system - design brochure

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Design brochure for commercially-available solar-heating system is valuable to architects, engineers, and designers. It contains information on system configuration, system sizing, and mechanical layout. Drawings and specifications of all components and typical installation details are included in appendix.

  20. Theory and Simulations of Solar System Plasmas

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  1. An orientable solar panel system for nanospacecraft

    NASA Astrophysics Data System (ADS)

    Santoni, Fabio; Piergentili, Fabrizio; Candini, Gian Paolo; Perelli, Massimo; Negri, Andrea; Marino, Michele

    2014-08-01

    An orientable deployed solar array system for 1-5 kg weight nanospacecraft is described, enhancing the achievable performance of these typically power-limited systems. The system is based on a deployable solar panel system, previously developed with cooperation between Laboratorio di Sistemi Aerospaziali of University of Roma “la Sapienza” and the company IMT (Ingegneria Marketing Tecnologia). The system proposed is a modular one, and suitable in principle for the 1U, 2U and 3U standard Cubesat bus, even if the need for three axis attitude stabilization makes it typically preferred for 3U Cubesats. The size of each solar panel is the size of a lateral Cubesat surface. A single degree of freedom maneuvering capability is given to the deployed solar array, in order to follow the apparent motion of the sun as close as possible, given the mission requirements on the spacecraft attitude. Considerable effort has been devoted to design the system compatible with the Cubesat standard, being mounted outside on the external spacecraft structure, without requiring modifications on the standard prescriptions. The small available volume is the major constraint, which forces to use miniaturized electric motor technology. The system design trade-off is discussed, leading to the selection of an architecture based on two independently steerable solar array wings.

  2. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases

    PubMed Central

    Zhang, Zheng; Tsai, Pei-Chin; Ramezanli, Tannaz; Michniak-Kohn, Bozena B.

    2013-01-01

    Human skin not only functions as a permeation barrier (mainly due to the stratum corneum layer), but also provides a unique delivery pathway for therapeutic and other active agents. These compounds penetrate via intercellular, intracellular and transappendageal routes, resulting in topical delivery (into skin strata) and transdermal delivery (to subcutaneous tissues and into the systemic circulation). Passive and active permeation enhancement methods have been widely applied to increase the cutaneous penetration. The pathology, pathogenesis and topical treatment approaches of dermatological diseases, such as psoriasis, contact dermatitis, and skin cancer, are then discussed. Recent literature has demonstrated that nanoparticles-based topical delivery systems can be successful in treating these skin conditions. The studies are reviewed starting with the nanoparticles based on natural polymers specially chitosan, followed by those made of synthetic, degradable (aliphatic polyesters) and non-degradable (polyarylates) polymers; emphasis is given to nanospheres made of polymers derived from naturally occurring metabolites, the tyrosine-derived nanospheres (TyroSpheres™). In summary, the nanoparticles-based topical delivery systems combine the advantages of both the nano-sized drug carriers and the topical approach, and are promising for the treatment of skin diseases. For the perspectives, the penetration of ultra-small nanoparticles (size smaller than 40 nm) into skin strata, the targeted delivery of the encapsulated drugs to hair follicle stem cells, and the combination of nanoparticles and microneedle array technologies for special applications such as vaccine delivery are discussed. PMID:23386536

  3. Planetary magnetism in the outer solar system.

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1973-01-01

    A brief review of the salient considerations which apply to the existence of magnetic fields in connection with planetary and subplanetary objects in the outer solar system is given. Consideration is given to internal dynamo fields, fields which might originate from interaction with the solar wind or magnetospheres (externally driven dynamos) and lastly fossil magnetic fields such as have been discovered on the moon. Where possible, connection is made between magnetism, means of detection, and internal body properties.

  4. Chaos and stability of the solar system

    PubMed Central

    Malhotra, Renu; Holman, Matthew; Ito, Takashi

    2001-01-01

    Over the last two decades, there has come about a recognition that chaotic dynamics is pervasive in the solar system. We now understand that the orbits of small members of the solar system—asteroids, comets, and interplanetary dust—are chaotic and undergo large changes on geological time scales. Are the major planets' orbits also chaotic? The answer is not straightforward, and the subtleties have prompted new questions. PMID:11606772

  5. Solar energy system with wind vane

    SciTech Connect

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  6. Solar-Electric Dish Stirling System Development

    SciTech Connect

    Mancini, T.R.

    1997-12-31

    Electrical power generated with the heat from the sun, called solar thermal power, is produced with three types of concentrating solar systems - trough or line-focus systems; power towers in which a centrally-located thermal receiver is illuminated with a large field of sun-tracking heliostats; and dish/engine systems. A special case of the third type of system, a dish/Stirling system, is the subject of this paper. A dish/Stirling system comprises a parabolic dish concentrator, a thermal receiver, and a Stirling engine/generator located at the focus of the dish. Several different dish/Stirling systems have been built and operated during the past 15 years. One system claims the world record for net conversion of solar energy to electric power of 29.4%; and two different company`s systems have accumulated thousands of hours of on-sun operation. Due to de-regulation and intense competition in global energy markets as well as the immaturity of the technology, dish/Stirling systems have not yet found their way into the marketplace. This situation is changing as solar technologies become more mature and manufacturers identify high-value niche markets for their products. In this paper, I review the history of dish/Stirling system development with an emphasis on technical and other issues that directly impact the Stirling engine. I also try to provide some insight to the opportunities and barriers confronting the application of dish/Stirling in power generation markets.

  7. Solar thermionic power systems for terrestrial applications

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Swerdling, M.

    1977-01-01

    The results of a feasibility study which showed that a low-temperature, high-efficient thermionic power system can efficiently convert solar energy to electrical energy without heat transport, as required by most solar thermal systems are described. A 3-dimensional (2-axis tracking) 93 sq m parabolic solar concentrator, consisting of mirrors on a foam glass substrate and designed to a concentration ratio (mirror area/aperture area) of 2000 is considered for producing a design temperature of 1100 C at an efficiency of 74%. A tracking subsystem must track the sun at an accuracy of a nominal plus or minus 1.0 degree for maximum use of the sun's energy. Each complete solar thermionic power system unit rated at about 20 kWe peak can generate approximately 48,000 kWh/yr. In addition, a thermal energy conversion system can be cascaded within the thermionic power system so that the high quality waste heat can be further utilized to increase the net electrical output. Potential applications of a solar thermionic power generation system are remote sites, apartment house complexes, heating and cooling, hydrogen production and large power stations.

  8. Embedding Analogical Reasoning into 5E Learning Model: A Study of the Solar System

    ERIC Educational Resources Information Center

    Devecioglu-Kaymakci, Yasemin

    2016-01-01

    The purpose of this study was to investigate how the 5E learning model affects learning about the Solar System when an analogical model is utilized in teaching. The data were gathered in an urban middle school 7th grade science course while teaching relevant astronomy topics. The analogical model developed by the researchers was administered to 20…

  9. Topical acne drugs: review of clinical properties, systemic exposure, and safety.

    PubMed

    Akhavan, Arash; Bershad, Susan

    2003-01-01

    This review examines the commonly available topical acne agents and factors that determine their percutaneous absorption. Reported and theoretical adverse effects from systemic exposure are detailed. The topical retinoid class, which includes tretinoin, adapalene and tazarotene, and the topical antibacterials, clindamycin and erythromycin, are regulated by prescription in most countries. Used appropriately, the above-mentioned drugs deliver, at most, miniscule amounts of active ingredient into the circulation. Clear-cut links to systemic toxicity in humans are practically nonexistent, except in the case of topical clindamycin, which has been associated with diarrhea rarely, and there have been 2 cases of pseudomembranous colitis reported. Birth defects have occurred in two patients treated with tretinoin and one patient treated with adapalene, but causation was not proven. Another prescription drug, 20% azelaic acid, is associated with relatively high systemic exposure, which is presumed innocuous because it is a normal dietary constituent whose endogenous levels are not altered by topical use. Benzoyl peroxide, salicylic acid, sulfur, and sodium sulfacetamide are available in concentrations of 2% or more in over-the-counter acne treatments and some prescription products. All of these agents are known to exhibit some degree of percutaneous absorption. They remain largely unregulated because, other than skin irritation, only local allergic contact dermatitis from benzoyl peroxide in about 2.5% of patients and rare local and systemic hypersensitivity reactions from sodium sulfacetamide have been reported. Salicylism has occurred using methyl salicylate ointments and high concentrations of salicylic acid on widespread areas of hyperkeratotic skin, but there are no known cases resulting from salicylic acid acne products. Caution is advised in special circumstances, such as during childhood, pregnancy, lactation and concomitant therapy with other drugs, because relevant studies are lacking. Animal data support avoidance of many topical agents, particularly known teratogens such as retinoids and salicylic acid, in pregnant women. Salicylate avoidance is advised during lactation, because aspirin use carries the risk of bleeding disorders in nursing infants. PMID:12814337

  10. Development of a Conceptual Structure for Architectural Solar Energy Systems.

    ERIC Educational Resources Information Center

    Ringel, Robert F.

    Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant

  11. Development of a Conceptual Structure for Architectural Solar Energy Systems.

    ERIC Educational Resources Information Center

    Ringel, Robert F.

    Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant…

  12. Application and design of solar photovoltaic system

    NASA Astrophysics Data System (ADS)

    Tianze, Li; Hengwei, Lu; Chuan, Jiang; Luan, Hou; Xia, Zhang

    2011-02-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  13. Solar Assisted Adsorptive Desiccant Cooling System

    NASA Astrophysics Data System (ADS)

    Ohkura, Masashi; Kodama, Akio

    Desiccant cooling processes can supply dry air by using lower temperature heat energy such as waste heat or solar heat. Especially, solar heat is useful heat source for the desiccant cooling since solar heat in summer tends to be surplus. This paper discusses the hourly cooling performance of the solar assisted desiccant cooling system, which consists of a desiccant wheel, a thermal wheel, two evaporative coolers, a cooling coil and flat plate solar water heater, assuming that the cooling system is applied to an office room of 250m3 in volume. The estimation indicated that the surface area needed to satisfy the dehumidifying performance in a sunny day was at least 30m2. Furthermore, surface area of 40m2 or larger provided a surplus dehumidifying performance causing a sensible cooling effect in evaporative cooler. Surface area of 30 m2 did not satisfy the dehumidifying performance required for high humidity condition, over 18.0g/kg(DA). The cooling demand of the cooling coil increased in such humidity condition due to the decrease in the sensible cooling effect of evaporative cooler. Auxiliary heater was required in a cloudy day since the temperature of water supplied from solar water heater of 40m2 did not reach sufficient level.

  14. Development and Testing of the Solar System Concept Inventory

    NASA Astrophysics Data System (ADS)

    Hornstein, Seth D.; Prather, E. E.; English, T. R.; Desch, S. M.; Keller, J. M.; Collaboration of Astronomy Teaching Scholars CATS

    2011-01-01

    Trying to assess if our students really understand the ideas we present in class can be difficult. Concept inventories are research-validated assessment tools that can provide us with data to better understand whether we are successful in the classroom. The idea for the Solar System Concept Inventory (SSCI) was born after realizing that no concept inventory currently available covered details regarding the formation and evolution of our solar system. Topics were selected by having faculty identify the key concepts they address when teaching about the solar system and interviewing students in order to identify common naive ideas and reasoning difficulties relating to these key topics. Beginning in fall of 2008, a national multi-institutional field test began which would eventually involve nearly 2500 students and 17 instructors from 10 different institutions. After each round of testing, a group of instructors from multiple institutions around the country worked together to analyze the data and revise or eliminate underperforming questions. Each question was examined using a combination of point biserial, percent correct on the pre-test, and item difficulty to determine if the question was properly differentiating student understanding while also ensuring the question was not too easy or too hard. In this talk, I will present an overall outline of the development of the SSCI as well as the final testing results. The final version of the SSCI can be found at http://casa.colorado.edu/ hornstei/ssci/. This material is based upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS). Any findings expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

  15. Pump efficiency in solar-energy systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Study investigates characteristics of typical off-the-shelf pumping systems that might be used in solar systems. Report includes discussion of difficulties in predicting pump efficiency from manufacturers' data. Sample calculations are given. Peak efficiencies, flow-rate control, and noise levels are investigated. Review or theory of pumps types and operating characteristics is presented.

  16. Topics on Test Methods for Space Systems and Operations Safety: Applicability of Experimental Data

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2009-01-01

    This viewgraph presentation reviews topics on test methods for space systems and operations safety through experimentation and analysis. The contents include: 1) Perception of reality through experimentation and analysis; 2) Measurements, methods, and correlations with real life; and 3) Correlating laboratory aerospace materials flammability data with data in spacecraft environments.

  17. Topical immune modulation (TIM): a novel approach to the immunotherapy of systemic disease.

    PubMed

    Stricker, R B; Goldberg, B; Epstein, W L

    1997-12-01

    In this article, we present the concept of topical immune modulation, or TIM. TIM is based on the observation that skin contact sensitizing agents such as poison ivy, poison oak and dinitrochlorobenzene (DNCB) are potent stimulants of the cellular immune system that combats viruses and other pathogens. We discuss the evolution of DNCB as a therapeutic modality in the acquired immunodeficiency syndrome (AIDS) and we explore the mechanism by which DNCB directs the immune response. The potential use of topical immune modulators in autoimmune disease and vaccine development is also delineated. TIM represents a novel approach to immunotherapy that should have widespread application for immunologic diseases. PMID:9419021

  18. Boundary Conditions of the Solar System

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.

    1992-12-01

    The solar system is embedded in the edge of a low density interstellar cloud which is part of an evolved superbubble due to stars in the Scorpius-Centaurus constellations. The physical properties of this cloud set the boundary conditions of the solar system. The range of viable pressures for the present day ambient interstellar cloud is presented as a function of the cloud model, giving a relatively large radius for the heliopause. The pressure in this warm low density ambient interstellar cloud is dominated by magnetic and cosmic ray pressures, suggesting that the neglect of these terms in ISM models is not justified. In addition, the absense of regions with high interstellar pressure in the third galactic quadrant suggests the solar system has a historically large heliopause radius (greater than 75 au). This research has been supported by NASA grant NAGW-2610.

  19. The Cambridge Guide to the Solar System

    NASA Astrophysics Data System (ADS)

    Lang, Kenneth R.

    2011-03-01

    Part I. Changing Views and Fundamental Concepts: 1. Evolving perspectives: a historical prologue; 2. The new, close-up view from space; 3. The invisible buffer zone with space: atmospheres, magnetospheres and the solar wind; Part II. The Inner System - Rocky Worlds: 4. Third rock from the Sun: restless Earth; 5. The Moon: stepping stone to the planets; 6. Mercury: a dense battered world; 7. Venus: the veiled planet; 8. Mars: the red planet; Part III. The Giant Planets, Their Satellites and Their Rings - Worlds of Liquid, Ice and Gas: 9. Jupiter: a giant primitive planet; 10. Saturn: lord of the rings; 11. Uranus and Neptune; Part IV. Remnants of Creation - Small Worlds in the Solar System: 12. Asteroids and meteorites; 13. Colliding worlds; 14. Comets; 15. Beyond Neptune; Part V. Origin of the Solar System and Extrasolar Planets: 16. Brave new worlds; Index.

  20. Volcanic processes in the Solar System

    USGS Publications Warehouse

    Carr, M.H.

    1987-01-01

    This article stresses that terrestrial volcanism represents only part of the range of volcanism in the solar system. Earth processes of volcanicity are dominated by plate tectonics, which does not seem to operate on other planets, except possibly on Venus. Lunar volcanicity is dominated by lava effusion at enormous rates. Mars is similar, with the addition to huge shield volcanoes developed over fixed hotspots. Io, the moon closest to Jupiter, is the most active body in the Solar System and, for example, much sulphur and silicates are emitted. The eruptions of Io are generated by heating caused by tides induced by Jupiter. Europa nearby seems to emit water from fractures and Ganymede is similar. The satellites of Saturn and Uranus are also marked by volcanic craters, but they are of very low temperature melts, possibly of ammonia and water. The volcanism of the solar system is generally more exotic, the greater the distance from Earth. -A.Scarth

  1. Star Formation and the Solar System

    NASA Technical Reports Server (NTRS)

    Bally, John; Boss, Alan; Papanastassiou, Dimitri; Sandford, Scott; Sargent, Anneila

    1988-01-01

    We have seen that studies of nearby star-forming regions are beginning to reveal the first signs of protoplanetary disks. Studies of interstellar and interplanetary grains are starting to provide clues about the processing and incorporation of matter into the Solar System. Studies of meteorites have yielded isotopic anomalies which indicate that some of the grains and inclusions in these bodies are very primitive. Although we have not yet detected a true interstellar grain, some of these materials have not been extensively modified since their removal from the ISM. We are indeed close to seeing our interstellar heritage. The overlap between astronomical and Solar System studies is in its infancy. What future experiments, observations, and missions can be performed in the near future that will greatly enhance our understanding of star formation and the formation of the Solar System?

  2. Monitoring solar-thermal systems: An outline of methods and procedures

    SciTech Connect

    Rosenthal, A.

    1994-04-01

    This manual discusses the technical issues associated with monitoring solar-thermal systems. It discusses some successful monitoring programs that have been implemented in the past. It gives the rationale for selecting a program of monitoring and gives guidelines for the design of new programs. In this report, solar thermal monitoring systems are classified into three levels. For each level, the report discusses the kinds of information obtained by monitoring, the effort needed to support the monitoring program, the hardware required, and the costs involved. Ultimately, all monitoring programs share one common requirement: the collection of accurate data that characterize some aspect or aspects of the system under study. This report addresses most of the issues involved with monitoring solar thermal systems. It does not address such topics as design fundamentals of thermal systems or the relative merits of the many different technologies employed for collection of solar energy.

  3. Redox storage systems for solar applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Thaller, L. H.

    1980-01-01

    The NASA Redox energy storage system is described. The system is based on soluble aqueous iron and chromium chloride redox couples. The needed technology advances in the two elements (electrodes and membranes) that are key to its technological feasibility have been achieved and system development has begun. The design, construction, and test of a 1 kilowatt system integrated with a solar photovoltaic array is discussed.

  4. Systemic and Topical Use of Tranexamic Acid in Spinal Surgery: A Systematic Review.

    PubMed

    Winter, Sebastian F; Santaguida, Carlo; Wong, Jean; Fehlings, Michael G

    2016-05-01

    Study Design Combination of narrative and systematic literature reviews. Objectives Massive perioperative blood loss in complex spinal surgery often requires blood transfusions and can negatively affect patient outcome. Systemic use of the antifibrinolytic agent tranexamic acid (TXA) has become widely used in the management of surgical bleeding. We review the clinical evidence for the use of intravenous TXA as a hemostatic agent in spinal surgery and discuss the emerging role for its complementary use as a topical agent to reduce perioperative blood loss from the surgical site. Through a systematic review of published and ongoing investigations on topical TXA for spinal surgery, we wish to make spine practitioners aware of this option and to suggest opportunities for further investigation in the field. Methods A narrative review of systemic TXA in spinal surgery and topical TXA in surgery was conducted. Furthermore, a systematic search (using PRISMA guidelines) of PubMed (MEDLINE), EMBASE, and Cochrane CENTRAL databases as well as World Health Organization International Clinical Trials Registry Platform, ClinicalTrials.gov (National Institutes of Health), and International Standard Randomized Controlled Trial Number registries was conducted to identify both published literature and ongoing clinical trials on topical TXA in spinal surgery. Results Of 1,631 preliminary search results, 2 published studies were included in the systematic review. Out of 285 ongoing clinical trials matching the search criteria, a total of 4 relevant studies were included and reviewed. Conclusion Intravenous TXA is established as an efficacious hemostatic agent in spinal surgery. Use of topical TXA in surgery suggests similar hemostatic efficacy and potentially improved safety as compared with intravenous TXA. For spinal surgery, the literature on topical TXA is sparse but promising, warranting further clinical investigation and consideration as a clinical option in cases with significant anticipated surgical site blood loss. PMID:27099820

  5. Testing relativity with solar system dynamics

    NASA Technical Reports Server (NTRS)

    Hellings, R. W.

    1984-01-01

    A major breakthrough is described in the accuracy of Solar System dynamical tests of relativistic gravity. The breakthrough was achieved by factoring in ranging data from Viking Landers 1 and 2 from the surface of Mars. Other key data sources included optical transit circle observations, lunar laser ranging, planetary radar, and spacecraft (Mariner 9 to Mars and Mariner 10 to Mercury). The Solar System model which is used to fit the data and the process by which such fits are performed are explained and results are discussed. The results are fully consistent with the predictions of General Relativity.

  6. High throughput solar cell ablation system

    SciTech Connect

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  7. An Introduction to the Solar System

    NASA Astrophysics Data System (ADS)

    McBride, Neil; Gilmour, Iain

    2004-03-01

    Compiled by a team of experts, this textbook has been designed for elementary university courses in planetary science. It starts with a tour of the Solar System and an overview of its formation that reviews in detail the terrestrial planets, giant planets and minor bodies. It concludes with a discussion of the origin of the Solar System. The text contains numerous useful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. It is also supported by a website hosting further teaching materials.

  8. Solar-System Tests of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    2005-01-01

    This research is aimed at testing gravitational theory, primarily on an interplanetary scale and using mainly observations of objects in the solar system. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to support this model by placing tighter bounds on any departure from it. For this project, we have analyzed a combination of observational data with our model of the solar system, including planetary radar ranging, lunar laser ranging, and spacecraft tracking, as well as pulsar timing and pulsar VLBI measurements.

  9. High throughput solar cell ablation system

    SciTech Connect

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2014-10-14

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  10. Infrared observations of small solar system bodies

    NASA Technical Reports Server (NTRS)

    Brown, R. H.

    1991-01-01

    Infrared reflectance spectra were measured of dark primitive asteroids in the 2 to 5 micron wavelength region. The search was for organic complexes such and CN, CH, and NH in dark material on small bodies in the solar system. A search and study was made of volatiles such as nitrogen, methane, ammonia, and carbon monoxide, both as free ices and hydrates/clathrates, on icy surfaces in the outer solar system, using high resolution spectra obtained with a multichannel cooled grating, infrared spectrometer. An absorption that can be attributed to X-C (triple bond) N in the matrix of dark materials on the primitive asteroids.

  11. Solar-System Tests of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    2005-01-01

    We are engaged in testing gravitational theory, mainly using observations of objects in the solar system and mainly on the interplanetary scale. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to support this model by placing tighter bounds on any departure from it. For this project, we have analyzed a combination of observational data with our model of the solar system, including planetary radar ranging, lunar laser ranging, and spacecraft tracking, as well as pulsar timing and pulsar VLBI measurements. In the past year, we have added to our data, primarily lunar laser ranging measurements, but also supplementary data concerning the physical properties of solar-system objects, such as the solar quadrupole moment, planetary masses, and asteroid radii. Because the solar quadrupole moment contributes to the classical precession of planetary perihelia, but with a dependence on distance from the Sun that differs from that of the relativistic precession, it is possible to estimate effects simultaneously. However, our interest is mainly in the relativistic effect, and we find that imposing a constraint on the quadrupole moment from helioseismology studies, gives us a dramatic (about ten-fold) decrease in the standard error of our estimate of the relativistic component of the perihelion advance.

  12. Discovering the 50 Years of Solar System Exploration: Sharing Your Science with the Public

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Dalton, H.; Shipp, S.; Shupla, C.; Halligan, E.; Boonstra, D.; Wessen, A.; Baerg, G.; Davis, P.; Burdick, A.; Zimmerman Brachman, R.

    2012-10-01

    The Year of the Solar System (YSS) offers ways for scientists to bring NASA’s science discoveries to their audiences! YSS and the continuing salute to the 50-year history of solar system exploration provide an integrated picture of our new understanding of the solar system for educators and the general public. During the last five decades, NASA has launched a variety of robotic spacecraft to study our solar system. Over that time, our understanding of planets has been revolutionized, as has the technology that has made these discoveries possible.Looking forward, the numerous ongoing and future robotic missions are returning new discoveries of our solar system at an unprecedented rate. YSS combines the discoveries of past NASA planetary missions with the most recent findings of the ongoing missions and connects them to related topics based on the big questions of planetary science, including solar system formation, volcanism, ice, and possible life elsewhere. Planetary scientists are encouraged to get involved in YSS in a variety of ways: - Give a talk at a local museum, planetarium, library, or school to share YSS and your research - Partner with a local educational institution to organize a night sky viewing or mission milestone community event - Work with a classroom teacher to explore one of the topics with students - Connect with a planetary science E/PO professional to identify ways to participate, like creating podcasts,vodcasts, or contributing to monthly topics - Share your ideas for events and activities with the planetaryE/PO community to identify partners and pathways for distribution - And more! Promotional and educational materials, updates, a calendar of activities, and a space to share experiences are available at NASA’s Solar System website: http://solarsystem.nasa.gov/yss. This is an exciting time in planetary sciences as we learn about New Worlds and make New Discoveries!

  13. System-level solar module optimization

    NASA Astrophysics Data System (ADS)

    Rivera, Monica; Roach, Grahm C.; Mitchell, Joseph N.; Boehme, Jeffrey L.

    2013-05-01

    Concentrated photovoltaic (CPV) systems achieve the highest level of solar conversion efficiency of all photovoltaic (PV) technologies by combining solar concentration, sun tracking, and high-efficiency multi-junction PV cells. Although these design features increase the overall efficiency of the device, they also dramatically increase the cost and physical volume of the system and make the system fragile and unwieldy. In this paper, we present recent progress towards the development of a robust, reduced form-factor CPV system. The CPV system is designed for portable applications and utilizes a series of low profile optical and optomechanical components to concentrate the solar spectrum, enhance energy absorption, and track the sun throughout the diurnal cycle. Based on commercial off-the-shelf (COTS) single-junction PV cells, the system exploits the efficiency gains associated with tuning the wavelength of the incoming light to the band-gap of a PV material. This is accomplished by spectrally splitting the concentrated incident beam into multiple wavelength bands via a series of custom optical elements. Additional energy is harvested by the system through the use of scavenger PV cells, thermoelectric generators, and biologically inspired anti-reflective materials. The system's compact, low-profile active solar tracking module minimizes the effects of wind-induced loads and reduces the overall size of the system, thus enabling future ruggedization of the system for defense applications. Designed from a systems engineering approach, the CPV system has been optimized to maximize efficiency while reducing system size and cost per kilowatt-hour. Results from system tests will be presented and design trade-offs will be discussed.

  14. Solar dynamic power system definition study

    NASA Technical Reports Server (NTRS)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  15. A hybrid system for solar irradiance specification

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Bouwer, S.

    2006-12-01

    Space environment research and space weather operations require solar irradiances in a variety of time scales and spectral formats. We describe the development of solar irradiance characterization using four models and systems that are also used for space weather operations. The four models/systems include SOLAR2000 (S2K), SOLARFLARE (SFLR), APEX, and IDAR, which are used by Space Environment Technologies (SET) to provide solar irradiances from the soft X-rays through the visible spectrum. SFLR uses the GOES 0.1 0.8 nm X-rays in combination with a Mewe model subroutine to provide 0.1 30.0 nm irradiances at 0.1 nm spectral resolution, at 1 minute time resolution, and in a 6-hour XUV EUV spectral solar flare evolution forecast with a 7 minute latency and a 2 minute cadence. These irradiances have been calibrated with the SORCE XPS observations and we report on the inclusion of these irradiances into the S2K model. The APEX system is a real-time data retrieval system developed in conjunction with the University of Southern California Space Sciences Center (SSC) to provide SOHO SEM data processing and distribution. SSC provides the updated SEM data to the research community and SET provides the operational data to the space operations community. We describe how the SOHO SEM data, and especially the new S10.7 index, is being integrated directly into the S2K model for space weather operations. The IDAR system has been developed by SET to extract coronal hole boundaries, streamers, coronal loops, active regions, plage, network, and background (internetwork) features from solar images for comparison with solar magnetic features. S2K, SFLR, APEX, and IDAR outputs are integrated through the S2K solar irradiance platform that has become a hybrid system, i.e., a system that is able to produce irradiances using different processes, including empirical and physics-based models combined with real-time data integration.

  16. Meteorites: messengers from the early solar system.

    PubMed

    Hofmann, Beda A

    2010-01-01

    Meteorites are fragments from solar system bodies, dominantly asteroids. A small fraction is derived from the Moon and from Mars. These rocks tell a rich history of the early solar system and range from solids little changed since the earliest phases of solid matter condensation in the solar nebula (chondrites) to material representing asteroidal metamorphism and melting, impact processes on the Moon and even aqueous alteration near the surface of Mars. Meteorites are very rare. Currently many meteorites result from searches in Antarctica and the hot deserts of North Africa and Arabia. The present high find rate likely represents a unique short-term event, asking for a careful management of this scarce scientific resource. PMID:21138163

  17. Exploring the Trans-Neptunian Solar System

    NASA Astrophysics Data System (ADS)

    1998-01-01

    A profound question for scientists, philosophers and, indeed, all humans concerns how the solar system originated and subsequently evolved. To understand the solar system's formation, it is necessary to document fully the chemical and physical makeup of its components today, particularly those parts thought to retain clues about primordial conditions and processes.] In the past decade, our knowledge of the outermost, or trans-neptunian, region of the solar system has been transformed as a result of Earth-based observations of the Pluto-Charon system, Voyager 2's encounter with Neptune and its satellite Triton, and recent discoveries of dozens of bodies near to or beyond the orbit of Neptune. As a class, these newly detected objects, along with Pluto, Charon, and Triton, occupy the inner region of a hitherto unexplored component of the solar system, the Kuiper Belt. The Kuiper Belt is believed to be a reservoir of primordial objects of the type that formed in the solar nebula and eventually accreted to form the major planets. The Kuiper Belt is also thought to be the source of short-period comets and a population of icy bodies, the Centaurs, with orbits among the giant planets. Additional components of the distant outer solar system, such as dust and the Oort comet cloud, as well as the planet Neptune itself, are not discussed in this report. Our increasing knowledge of the trans-neptunian solar system has been matched by a corresponding increase in our capabilities for remote and in situ observation of these distant regions. Over the next 10 to 15 years, a new generation of ground- and space-based instruments, including the Keck and Gemini telescopes and the Space Infrared Telescope Facility, will greatly expand our ability to search for and conduct physical and chemical studies on these distant bodies. Over the same time span, a new generation of lightweight spacecraft should become available and enable the first missions designed specifically to explore the icy bodies that orbit 30 astronomical units (AU) or more from the Sun. The combination of new knowledge, plus the technological capability to greatly expand this knowledge over the next decade or so, makes this a particularly opportune time to review current understanding of the trans-neptunian solar system and to begin planning for the future exploration of this distant realm. Based on current knowledge, studies of trans-neptunian objects are important for a variety of reasons that can be summarized under five themes: (1) Exploration of new territory; (2) reservoirs of primitive materials; (3) Processes that reveal the solar system's origin and evolution; (4) Links to extrasolar planets; and (5) prebiotic chemistry. These five themes are not on an equal footing. The first three are well-established areas of scientific investigation and are backed up by a substantial body of observational and theoretical understanding. The last two, however are more speculative. They are included here because they raise a number of interesting possibilities that seem particularly suited to an interdisciplinary approach uniting planetary scientists with their colleagues in the astrophysical and life science communities. Although not considered in any detail in this report, the distant outer solar system also has direct relevance to Earth and the other terrestrial planets because it is the source of comets that bring volatiles into the inner solar system. The resulting inevitable impacts between comets and other planetary bodies can play major roles in the evolution of life as suggested by, for example, the Cretaceous-tertiary boundary bolide and the extinction of the dinosaurs.

  18. Solar heating system installed at Troy, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The completed system was composed of three basic subsystems: the collector system consisting of 3,264 square feet of Owens Illinois evacuated glass tube collectors; the storage system which included a 5,000 gallon insulated steel tank; and the distribution and control system which included piping, pumping and heat transfer components as well as the solemoid activated valves and control logic for the efficient and safe operation of the entire system. This solar heating system was installed in an existing facility and was, therefore, a retrofit system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  19. Solar heating system final design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

  20. Solar system installation at Louisville, Kentucky

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The installation of a solar space heating and domestic hot water system is described. The overall philosophy used was to install both a liquid and a hot air system retrofitted to existing office and combined warehouse building. The 1080 sq. ft. office space is heated first and excess heat is dumped into the warehouse. The two systems offer a unique opportunity to measure the performance and compare results of both air and liquid at one site.

  1. Passive vapor transport solar heating systems

    SciTech Connect

    Hedstrom, J.C.; Neeper, D.A.

    1985-01-01

    In the systems under consideration, refrigerant is evaporated in a solar collector and condensed in thermal storage for space or water heating located within the building at a level below that of the collector. Condensed liquid is lifted to an accumulator above the collector by the vapor pressure generated in the collector. Tests of two systems are described, and it is concluded that one of these systems offers distinct advantages.

  2. Solar internal lighting system with an automated solar tracker for daylight harvesting

    NASA Astrophysics Data System (ADS)

    Kumar, Upkar; Raj, Retheesh; Aaryan, Animesh; Gopalan, Kavitha K.; Nampoori, Vadakedathu P. N.

    2013-09-01

    The paper reports the design and realization of a solar internal lighting system equipped with a solar tracking system. Full visible spectrum solar light has been focussed using a solar concentrator and guided inside the building through optical fiber whose other end is coupled to a fiber texture for lighting in building during day hours. The developed system is found to be an efficient system for interior lighting during daytime.

  3. Solar tracking control system Sun Chaser

    NASA Technical Reports Server (NTRS)

    Scott, D. R.; White, P. R.

    1978-01-01

    The solar tracking control system, Sun Chaser, a method of tracking the Sun in all types of weather conditions is described. The Sun Chaser follows the Sun from east to west in clear or cloudy weather, and resets itself to the east position after sundown in readiness for the next sunrise.

  4. Solar-thermodynamic power systems in space

    NASA Astrophysics Data System (ADS)

    Klein, Marian

    The physical characteristics of a dynamic solar system with the organic Rankine cycle are presented. It is shown that dynamic power generation can satisfy the high energy requirements of future space applications. A theoretical diagram and physical equations for efficiency are presented as well as a functional scheme of the device. Toluene is shown to be the optimal working fluid.

  5. Solar-powered hot-air system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  6. Solar Energy Forecast System Development and Implementation

    NASA Astrophysics Data System (ADS)

    Jascourt, S. D.; Kirk-Davidoff, D. B.; Cassidy, C.

    2012-12-01

    Forecast systems for predicting real-time solar energy generation are being developed along similar lines to those of more established wind forecast systems, but the challenges and constraints are different. Clouds and aerosols play a large role, and for tilted photovoltaic panels and solar concentrating plants, the direct beam irradiance, which typically has much larger forecast errors than global horizontal irradiance, must be utilized. At MDA Information Systems, we are developing a forecast system based on first principles, with the well-validated REST2 clear sky model (Gueymard, 2008) at its backbone. In tuning the model and addressing aerosol scattering and surface albedo, etc., we relied upon the wealth of public data sources including AERONET (aerosol optical depth at different wavelengths), Suominet (GPS integrated water vapor), NREL MIDC solar monitoring stations, SURFRAD (includes upwelling shortwave), and MODIS (albedo in different wavelength bands), among others. The forecast itself utilizes a blend of NWP model output, which must be brought down to finer time resolution based on the diurnal cycle rather than simple interpolation. Many models currently do not output the direct beam irradiance, and one that does appears to have a bias relative to its global horizontal irradiance, with equally good performance attained by utilizing REST2 and the model global radiation to estimate the direct component. We will present a detailed assessment of various NWP solar energy products, evaluating forecast skill at a range of photovoltaic installations.

  7. The Dimensions of the Solar System

    ERIC Educational Resources Information Center

    Schneider, Stephen E.; Davis, Kathleen S.

    2007-01-01

    A few new wrinkles have been added to the popular activity of building a scale model of the solar system. Students can learn about maps and scaling using easily accessible online resources that include satellite images. This is accomplished by taking advantage of some of the special features of Google Earth. This activity gives students a much

  8. Assessment of a Solar System Walk

    ERIC Educational Resources Information Center

    LoPresto, Michael C.; Murrell, Steven R.; Kirchner, Brian

    2010-01-01

    The idea of sending students and the general public on a walk through a scale model of the solar system in an attempt to instill an appreciation of the relative scales of the sizes of the objects compared to the immense distances between them is certainly not new. A good number of such models exist, including one on the National Mall in

  9. Assessment of a Solar System Walk

    ERIC Educational Resources Information Center

    LoPresto, Michael C.; Murrell, Steven R.; Kirchner, Brian

    2010-01-01

    The idea of sending students and the general public on a walk through a scale model of the solar system in an attempt to instill an appreciation of the relative scales of the sizes of the objects compared to the immense distances between them is certainly not new. A good number of such models exist, including one on the National Mall in…

  10. The Dimensions of the Solar System

    ERIC Educational Resources Information Center

    Schneider, Stephen E.; Davis, Kathleen S.

    2007-01-01

    A few new wrinkles have been added to the popular activity of building a scale model of the solar system. Students can learn about maps and scaling using easily accessible online resources that include satellite images. This is accomplished by taking advantage of some of the special features of Google Earth. This activity gives students a much…

  11. Small Comet Abundance and Solar System Location

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Moore, J.; Zahnle, K.

    2001-12-01

    We present geological, historical, and observational evidence which implies that the proportion of small comets is related to where in the solar system the population is counted. A detailed count of craters in the 1-5 km size range on Jupiter's moon Europa yields a slope of -1.45 for the cumulative size-frequency crater distribution. This is strongly depleted in small objects relative to the far outer solar system. We compare the Europan distribution to crater counts on Neptune's moon Triton and extrapolated observational evidence of Kuiper Belt Objects. We find that small comets appear to be rarer at Triton than in the Kuiper Belt, and that small comets are five times rarer at Europa than they appear to be at Triton. We have extended our study into the inner solar system by considering the discovery histories of long and short period comets. We find that, while large comets have been discovered at ever-increasing rates over the last few centuries, small comets have not paralleled this increase. In one example, the known number of small Jupiter-family comets in Earth-crossing orbits has not changed significantly in the two and a half centuries since comet detection has been intensely pursued. In another example, we focus on the sungrazing comets as found by the SOHO satellite and otherwise. Many of the sungrazers are undoubtedly small comets. But 94 of the 95 known sungrazers follow the same orbit - i.e., they are fragments of one great comet disrupted by close passage to the Sun long ago. Thus SOHO could see unique small comets, if they were present, and so the number of unique small objects in the inner solar system is few to none. Small comets are therefore found relatively frequently in the outer solar system, but their numbers decrease by the orbit of Jupiter, and they are very rare in the inner solar system. One explanation for this decrease is the preferential sublimation and coupled sublimation-enhancing disaggregation of small icy bodies as they approach the inner solar system. Smaller objects have a greater surface area to volume ratio than larger objects, and thus are more subject to this process.

  12. Statement of work for solar thermal power systems and photovoltaic solar-energy systems technical support services

    SciTech Connect

    1982-01-01

    Work is broken down in the following areas: solar thermal central receiver systems analysis; advanced solar thermal systems analysis and engineering; thermal power systems support; total energy systems mission analysis; irrigation and small community mission analysis; photovoltaics mission analysis; Solar Thermal Test Facility and Central Receiver Pilot Plant systems engineering. (LEW)

  13. ORNL studies effects of solar storms on power systems

    SciTech Connect

    Not Available

    1990-01-01

    A solar storm, or solar flare, is a giant explosion on the sun's surface. The frequency and intensity of solar storms is related to the sunspot cycle. Solar storms increase the intensity of the solar cosmic rays bombarding Earth. As a result the interaction between solar radiation and Earth's magnetic field is stronger. ORNL researchers are studying the effects of solar storms and other solar activity on electric power systems in the USA. This research is being sponsored by the DOE and the Defense Nuclear Agency.

  14. How Normal is Our Solar System?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    To date, weve discovered nearly 2000 confirmed exoplanets, as well as thousands of additional candidates. Amidst this vast sea of solar systems, how special is our own? A new study explores the answer to this question.Analyzing DistributionsKnowing whether our solar system is unique among exoplanetary systems can help us to better understand future observations of exoplanets. Furthermore, if our solar system is typical, this allows us to be optimistic about the possibility of life existing elsewhere in the universe.In a recent study, Rebecca Martin (University of Nevada, Las Vegas) and Mario Livio (Space Telescope Science Institute) examine how normal our solar system is, by comparing the properties of our planets to the averages obtained from known exoplanets.Comparing PropertiesSo how do we measure up?Densities of planets as a function of their mass. Exoplanets (N=287) are shown in blue, planets in our solar system are shown in red. [MartinLivio 2015]Planet masses and densitiesThose of the gas giants in our solar system are pretty typical. The terrestrial planets are on the low side for mass, but thats probably a selection effect: its very difficult to detect low-mass planets.Age of the solar systemRoughly half the stars in the disk of our galaxy are younger than the Sun, and half are older. Were definitely not special in age.Orbital locations of the planetsThis is actually a little strange: our solar system is lacking close-in planets. All of our planets, in fact, orbit at a distance that is larger than the mean distance observed in exoplanetary systems. Again, however, this might be a selection effect at work: its easier to detect large planets orbiting very close to their stars.Eccentricities of the planets orbitsOur planets are on very circular orbits and that actually makes us somewhat special too, compared to typical exoplanet systems. There is a possible explanation though: eccentricity of orbits tends to decrease with more planets in the system. Because weve got eight, it might be unsurprising that their eccentricities are so low.Super-EarthsWe dont have any planets in the range of 1-10 times the mass of Earth, which is pretty unusual super-Earths have a high occurrence rate among exoplanets.In summary, the authors find that for the most part, were a pretty typical solar system. Our most unusual features are the lack of a super-Earth, the lack of any close-in planets, and the low eccentricities of our planets. The fact that were fairly average means that, from a habitability standpoint, theres probably nothing special about our little corner of the galaxy. So perhaps life elsewhere is a possibility!CitationRebecca G. Martin and Mario Livio 2015 ApJ 810 105. doi:10.1088/0004-637X/810/2/105

  15. SIMS prototype system 1: Design data brochure. [solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage was designed for installation into a single family dwelling. The system, subsystem, and installation requirements are described. System operation and performance are discussed, and procedures for sizing the system to a specific site are presented.

  16. Similarity Rules for Scaling Solar Sail Systems

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen L.; Peddieson, John; Garbe, Gregory

    2010-01-01

    Future science missions will require solar sails on the order of 200 square meters (or larger). However, ground demonstrations and flight demonstrations must be conducted at significantly smaller sizes, due to limitations of ground-based facilities and cost and availability of flight opportunities. For this reason, the ability to understand the process of scalability, as it applies to solar sail system models and test data, is crucial to the advancement of this technology. This paper will approach the problem of scaling in solar sail models by developing a set of scaling laws or similarity criteria that will provide constraints in the sail design process. These scaling laws establish functional relationships between design parameters of a prototype and model sail that are created at different geometric sizes. This work is applied to a specific solar sail configuration and results in three (four) similarity criteria for static (dynamic) sail models. Further, it is demonstrated that even in the context of unique sail material requirements and gravitational load of earth-bound experiments, it is possible to develop appropriate scaled sail experiments. In the longer term, these scaling laws can be used in the design of scaled experimental tests for solar sails and in analyzing the results from such tests.

  17. Research on solar-blind UV optical imaging system

    NASA Astrophysics Data System (ADS)

    Wang, Baohua; Wang, Yuanyuan; Zhong, Xiaoming; Ruan, Ningjuan

    2015-02-01

    Solar blind UV detecting system has many advantages such as strong environmental adaptability, low error rate, small volume and without refrigeration. To in-depth develop UV solar blind detection system research work has important significance for further improving solar blind UV detection technology. The working principle of solar blind UV detection system and the basic components were introduced firstly, and then the key technology of solar blind UV detection system was deeply analyzed. Finally, large coverage solar blind UV optical imaging system was designed according to the actual demand for greater coverage of the solar blind UV detection system. The result shows that the system has good imaging quality, simple and compact structure. This system can be used in various types of solar blind UV detection system, and is of high application value.

  18. The blood flow patterns of microsurgical procedures in rats with topical and systemic vasodilators.

    PubMed

    Notodihardjo, H W; Ogawa, Y; Kusumoto, K

    1998-09-01

    The change in blood flow after anastomosis and the effects on the anastomosed artery of different classes of vasodilators such as lidocaine and chlorpromazine given topically (n = 10 in each group), and prostaglandin E1 (PGE1)(n = 12) and diltiazem hydrochloride (n = 10) given systemically, were investigated in the femoral arteries of rats. The blood flow after anastomosis decreased by 45%-60% compared with that before the anastomosis. Lidocaine showed almost the same pattern of blood flow as chlorpromazine. The former dilated the diameter of the vessel less than the latter, and the depression of the heart rate was less with lidocaine than in chlorpromazine. PGE1 had a longer and stronger vasodilatative action than diltiazem, and resulted in a remarkable increase in blood flow. Clinically, the topical application of chlorpromazine or lidocaine is recommended during an operation, and PGE1 should be given systemically after an operation to obtain adequate blood flow. PMID:9785427

  19. Receiver System: Lessons Learned From Solar Two

    SciTech Connect

    LITWIN, ROBERT Z.; PACHECO, JAMES E.

    2002-03-01

    The Boeing Company fabricated the Solar Two receiver as a subcontractor for the Solar Two project. The receiver absorbed sunlight reflected from the heliostat field. A molten-nitrate-salt heat transfer fluid was pumped from a storage tank at grade level, heated from 290 to 565 C by the receiver mounted on top of a tower, then flowed back down into another storage tank. To make electricity, the hot salt was pumped through a steam generator to produce steam that powered a conventional Rankine steam turbine/generator. This evaluation identifies the most significant Solar Two receiver system lessons learned from the Mechanical Design, Instrumentation and Control, Panel Fabrication, Site Construction, Receiver System Operation, and Management from the perspective of the receiver designer/manufacturer. The lessons learned on the receiver system described here consist of two parts: the Problem and one or more identified Solutions. The appendix summarizes an inspection of the advanced receiver panel developed by Boeing that was installed and operated in the Solar Two receiver.

  20. Solar Powered Automobile Interior Climate Control System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor)

    2003-01-01

    There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.

  1. Topical and systemic therapies for oral and perioral herpes simplex virus infections.

    PubMed

    Stoopler, Eric T; Balasubramaniam, Ramesh

    2013-04-01

    Oral and perioral herpes simplex virus (HSV) infections in healthy individuals often present with signs and symptoms that are clearly recognized by oral health care providers (OHCPs). Management of these infections is dependent upon a variety of factors and several agents may be used for treatment to accelerate healing and decrease symptoms associated with lesions. This article will review the pertinent aspects of topical and systemic therapies of HSV infections for the OHCP. PMID:23705241

  2. Chaotic evolution of the solar system.

    PubMed

    Sussman, G J; Wisdom, J

    1992-07-01

    The evolution of the entire planetary system has been numerically integrated for a time span of nearly 100 million years. This calculation confirms that the evolution of the solar system as a whole is chaotic, with a time scale of exponential divergence of about 4 million years. Additional numerical experiments indicate that the Jovian planet subsystem is chaotic, although some small variations in the model can yield quasiperiodic motion. The motion of Pluto is independently and robustly chaotic. PMID:17800710

  3. Solar-powered environmental data collection system

    SciTech Connect

    Randolph, H.W.

    1980-02-01

    A solar-powered system consisting of a multipurpose remote data collector, a radio data link, and a data receiving station has been designed to acquire data from various remote areas at the Savannah River Plant. A prototype system has been built to monitor gamma radiation at the plant perimeter. It is operating satisfactorily and will be installed to monitor gamma radiation or other environmental parameters at many remote locations on the plant.

  4. Chaotic evolution of the solar system

    NASA Technical Reports Server (NTRS)

    Sussman, Gerald J.; Wisdom, Jack

    1992-01-01

    The evolution of the entire planetary system has been numerically integrated for a time span of nearly 100 million years. This calculation confirms that the evolution of the solar system as a whole is chaotic, with a time scale of exponential divergence of about 4 million years. Additional numerical experiments indicate that the Jovian planet subsystem is chaotic, although some small variations in the model can yield quasi-periodic motion. The motion of Pluto is independently and robustly chaotic.

  5. Solar-System Tests of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    2002-01-01

    We are engaged in testing gravitational theory by means of observations of objects in the solar system. This work tests the equivalence principle (EP), the Shapiro time delay, the advances of planetary perihelion, the possibility of a secular variation G(dot) in the 'gravitational constant' G, and the rate of the de Sitter (geodetic) precession of the Earth-Moon system. We describe here the results under this contract.

  6. Surface ices in the outer solar system

    NASA Astrophysics Data System (ADS)

    Roush, Ted L.; Cruikshank, Dale P.

    Planetary volatile inventories are products of several factors: (1) condensation-accretion of pre-planetary material which determines the bulk volatile inventory; (2) energy history of a planet, including timing, causes, and mechanisms of degassing; (3) the volatile sinks, including temporary, long term, and permanent; and (4) external processes operating on the volatile inventory. Information regarding the current surface compositions provide insight into both internal and surface-atmosphere evolutionary history. Our discussion focuses upon the surface composition of outer solar system planets and satellites as determined by spacecraft and telescopic spectral observations. We provide a review and an update of the recent work by Cruikshank and Brown that includes more recent observations and interpretations. In the context of formation and evolution of solar system bodies, the interesting ices typically considered are simple molecules formed from elements having high cosmic abundances. These mainly include ices of H2O, NH3, SO2, H2S, CH4, CO, CO2, and N2. In the solid state, these ices have vibrational spectral features, analogous to their gaseous counterparts but rotational transitions are quenched, that lie in the near- and mid-infrared. The overtone and combination modes, occurring in the visible and near-IR region, are of particular importance as standard observational techniques used to identify these ices rely upon reflected solar energy. Table I summarizes the ices found on various bodies in the outer solar system. H2O is most abundant surface material in the inner and middle regions while more volatile species appear to dominate surfaces in the outermost edge of the outer solar system.

  7. Development and validation of an in vitro release method for topical particulate delivery systems.

    PubMed

    Lusina Kregar, Maja; Dürrigl, Marjana; Rožman, Andrea; Jelčić, Želimir; Cetina-Čižmek, Biserka; Filipović-Grčić, Jelena

    2015-05-15

    The aim of this study was to develop an in vitro release method for topical particulate delivery systems using the immersion cell in combination with paddle dissolution apparatus. Chitosan- and methacrylate-based microparticles with mupirocin were prepared and used as model topical delivery systems for method development. Diffusion of the drug occurred across a mixed cellulose ester membrane, which demonstrated low drug adsorption and low diffusional resistance. After an initial lag phase the amount of drug released became proportional to the square root of time. The method was discriminative toward differences in formulation, as well as toward differences in drug concentration inside the sample compartment. The method was further used to confirm sameness between batches of the same composition prepared by the same process. Variations in paddle rotation speed (25 rpm, 50 rpm, 100 rpm), paddle height (1cm, 2.5 cm) and volume of release medium (100ml, 200 ml) did not significantly alter the release rates. The method of analysis was validated according to ICH guidelines. Currently there are no compendial or standard methods and apparatuses for in vitro release testing of topical microparticles. The developed method can be a useful guide in formulation development of such delivery systems. PMID:25772416

  8. Solar heating and cooling systems design and development

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Solar heating and heating/cooling systems were designed for single family, multifamily, and commercial applications. Subsystems considered included solar collectors, heat storage systems, auxiliary energy sources, working fluids, and supplementary controls, piping, and pumps.

  9. Jet Propulsion Laboratory's Space Explorations Part 2: Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Chau, Savio

    2005-01-01

    This slide presentation reviews what is currently known about the solar system and the objects that make up the solar system. Information about the individual planets, comets, asteroids and moons is reviewed.

  10. Solar power satellite system definition study, volume 7

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Guidelines and assumptions used in the design of a system of geosynchronous satellites for transmitting solar power to earth were discussed as well as the design evolutions of the principle types of solar power satellites and space support systems.

  11. New Markets for Solar Photovoltaic Power Systems

    NASA Astrophysics Data System (ADS)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  12. Streaming of interstellar grains in the solar system

    NASA Technical Reports Server (NTRS)

    Gustafson, B. A. S.; Misconi, N. Y.

    1979-01-01

    Results of a theoretical study of the interactions between interstellar grains streaming through the solar system and the solar wind are presented. It is shown that although elongated core-mantle interstellar particles of a characteristic radius of about 0.12 microns are subject to a greater force due to radiation pressure than to gravitational attraction, they are still able to penetrate deep inside the solar system. Calculations of particle trajectories within the solar system indicate substantial effects of the solar activity cycle as reflected in the interplanetary magnetic field on the distribution of 0.12- and 0.0005-micron interstellar grains streaming through the solar system, leading to a 50-fold increase in interstellar grain densities 3 to 4 AU ahead of the sun during years 8 to 17 of the solar cycle. It is noted that during the Solar Polar Mission, concentrations are expected which will offer the opportunity of detecting interstellar grains in the solar system.

  13. The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1

    SciTech Connect

    Long, R.C.

    1996-12-31

    This is a report on the feasibility study, design, and construction of a PV and solar thermal system for the Georgia Tech Aquatic Center. The topics of the report include a discussion of site selection and system selection, funding, design alternatives, PV module selection, final design, and project costs. Included are appendices describing the solar thermal system, the SAC entrance canopy PV mockup, and the PV feasibility study.

  14. Solar energy system economic evaluation: IBM System 2, Togus, Maine

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The economic analysis of the solar energy system, is developed for Torgus and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f-chart design procedure with inputs taken on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over a projected twenty year life, life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. Results demonstrate that the solar energy system is economically viable at all of the five sites for which the analysis was conducted.

  15. Prototype solar-heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Complete air-collector system to meet needs of single-family dwelling is designed to operate in any region of United States except extreme north and south. Design can be scaled up or down to accomodate wide range of heating and hot-water requirements for single-family, multi-family, or commercial buildings without significantly changing design concept.

  16. Chemistry of the solar system: An elementary introductionto cosmochemistry

    NASA Technical Reports Server (NTRS)

    Suess, Hans E.

    1987-01-01

    An introduction is presented to the chemistry of the solar system. The qualitative and quantitative elemental analysis of the solar system is reviewed, and the elemental synthesis processes that led to the formation of the solar system are discussed. The chemical processes of the primordial mixture from which the solar system formed are examined, and the resulting chemical composition of meteorites, asteroids, comets, and planets is described.

  17. Solar energy system performance evaluation - final report for Honeywell OTS 45, Salt River Project, Phoenix, Arizona

    SciTech Connect

    Mathur, A K

    1983-09-01

    This report describes the operation and technical performance of the Solar Operational Test Site (OTS 45) at Salt River Project in Phoenix, Arizona, based on the analysis of data collected between April 1981 and March 31, 1982. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 45 is a hydronic heating and cooling system consisting of 8208 square feet of liquid-cooled flat-plate collectors; a 2500-gallon thermal storage tank; two 25-ton capacity organic Rankine-cycle-engine-assisted water chillers; a forced-draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 8 months of the Operational Test Period, the solar system collected 1143 MMBtu of thermal energy of the total incident solar energy of 3440 MMBtu and provided 241 MMBtu for cooling and 64 MMBtu for heating. The projected net annual electrical energy savings due to the solar system was approximately 40,000 kWh(e).

  18. Solar Energy Systems for Lunar Oxygen Generation

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  19. Modeling of Performance, Cost, and Financing of Concentrating Solar, Photovoltaic, and Solar Heat Systems (Poster)

    SciTech Connect

    Blair, N.; Mehos, M.; Christiansen, C.

    2006-10-03

    This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, 2006 in Boulder, Colorado, discusses the modeling, performance, cost, and financing of concentrating solar, photovoltaic, and solar heat systems.

  20. Elementary Students' Mental Models of the Solar System

    ERIC Educational Resources Information Center

    Calderon-Canales, Elena; Flores-Camacho, Fernando; Gallegos-Cazares, Leticia

    2013-01-01

    This research project aimed to identify and analyze Mexican primary school students' ideas about the components of the solar system. In particular, this study focused on conceptions of the solar system and representations of the dynamics of the solar system based on the functional and structural models that students make in school. Using a

  1. Installation package for a sunspot cascade solar water heating system

    NASA Astrophysics Data System (ADS)

    1980-09-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  2. Installation package for a sunspot cascade solar water heating system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  3. Elementary Students' Mental Models of the Solar System

    ERIC Educational Resources Information Center

    Calderon-Canales, Elena; Flores-Camacho, Fernando; Gallegos-Cazares, Leticia

    2013-01-01

    This research project aimed to identify and analyze Mexican primary school students' ideas about the components of the solar system. In particular, this study focused on conceptions of the solar system and representations of the dynamics of the solar system based on the functional and structural models that students make in school. Using a…

  4. The effect of systemically and topically applied drugs on ultraviolet-induced erythema in the rat.

    PubMed Central

    Law, E; Lewis, A J

    1977-01-01

    1. Exposure of the skin of rats to u.v. light (greater than 295 nm) for 30 s or longer elicited a delayed erythema response, the rate of onset increasing with period of irradiation. The erythema was still present at 24 h and was replaced by scab formation in 48 hours. 2. Both topically applied steroidal and non-steroidal anti-inflammatory drugs reduced the erythema formation when administered immediately after u.v. exposure. Propyl gallate, an antioxidant with sun screening properties in man, also possessed topical anti-erythemic activity. 3. Both steroidal and non-steroidal anti-inflammatory drugs, systemically administered 1 h before u.v. exposure, reduced and erythema. However, the steroidal compounds were less effective than the non-steroids and reduced the intensity of erythema by less than 50%. Antagonists of 5-hydroxytryptamine (5-HT) reduced the erythema but several other drugs with different pharmacological activities were ineffective. 4. Neither topical nor systemic treatments of any of the drugs examined suppressed the scab formation at 48 hours. 5. These results and those using other selective blocking agents indicate that in the mediation of the erythema reaction prostaglandins may play a major role and 5-HT perhaps a minor one but that H1 histamine receptors and alpha- and beta-adrenoceptors have no significant role. PMID:870122

  5. Evolution of the solar system in the presence of a solar companion star

    NASA Astrophysics Data System (ADS)

    Hut, Piet

    A review is presented of the dynamical implications of a companion star in a wide orbit around the sun, with a semimajor axis of about half a parsec. The motivation behind the hypothesis of a solar companion star is reviewed briefly along with alternative hypotheses, and the general problem of solar system dynamics with a solar companion star is discussed. Four principal questions are posed and answered concerning the consistency of the solar companion theory in providing the required modulation in comet arrival times: (1) what is the expected lifetime of a solar companion? (2) how stable is the orbital period? (3) does a single perihelion passage of a solar companion perturb enough comets? (4) do repeated perihelion passages of a solar companion perturb too many comets? Some applications outside the solar system involving wide binaries, interstellar clouds, and dark matter in the Galactic disk are discussed, and the viability of the solar companion theory is critically assessed.

  6. MINIPILOT SOLAR SYSTEM: DESIGN/OPERATION OF SYSTEM AND RESULTS OF NON-SOLAR TESTING AT MRI

    EPA Science Inventory

    A Minipilot Solar Reactor System (MSRS) with liquid organic feed was designed, constructed and tested without solar input (the Solar Tests were to be done later at DOE's National Renewable Energy Laboratory). he non-solar tests were done to determine whether use of EPA's sampling...

  7. Life beyond the solar system.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1972-01-01

    Review of some of the highlights and more recent developments in the search for extraterrestrial intelligence. The first major problem is one of the generality of the formation of planetary systems. Observations of the nearest stars which are not members of binary or multiple stars indicates that fully half have companions of planetary mass. The presence of organic compounds in meteorites, probably in Jovian planets, in comets, in the interstellar medium, and in cool stars implies that the production of organic compounds essential for the origin of life should be pervasive throughout the universe. Possibilities of interstellar communication are discussed.

  8. Economic Evaluation of Space Solar Power System

    NASA Astrophysics Data System (ADS)

    Matsuoka, L.

    2004-12-01

    In this paper, we evaluate the value that the solar panels will be set on the orbit from the economic standpoint and consider the necessity of the Space Solar Power System (SSPS). In order to these evaluations, we compare the SSPS with the photovoltaic power system on the ground (PVPSG). Firstly, we examined the generation cost of the PVPSG. When the PVPSG do not have some storage system and can not supply the electricity for the base-load power, the cost of generating power calculated is about 8.1 yen/kWh in the minimum cost cases, the cost of the equipments around the solar cell is the predictive values. The SSPS is expensive slightly than it of the PVPSG in this future scenario. Secondary, we suppose the case that the PVPSG have to have some storage system in order that the PVPSG need to send the electricity stably. The pumped hydropower, the lead battery and the fuel cell are assumed as the storages in this paper. In these cases, the costs of generating power become expensive over 30 yen/kWh. It is possible that the SSPS is not expensive than it with some cost reductions about the transportation cost to the earth orbit.

  9. Our Solar System Features Eight Planets

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Our solar system features eight planets, seen in this artist's diagram. Although there is some debate within the science community as to whether Pluto should be classified as a Planet or a dwarf planet, the International Astronomical Union has decided on the term plutoid as a name for dwarf planets like Pluto.

    This representation is intentionally fanciful, as the planets are depicted far closer together than they really are. Similarly, the bodies' relative sizes are inaccurate. This is done for the purpose of being able to depict the solar system and still represent the bodies with some detail. (Otherwise the Sun would be a mere speck, and the planets even the majestic Jupiter would be far too small to be seen.)

  10. Exploring the Solar System with ALMA

    NASA Astrophysics Data System (ADS)

    Moullet, A.

    2015-12-01

    The unprecedented capabilities offered by the Atacama Large Millimeter Array (ALMA) in terms of sensitivity, high spectral resolution and instantaneous imaging are very well suited to study a variety of science cases in the Solar System. Observations performed in Early Science already provided cutting edge atmospheric measurements in Solar System targets as diverse as Venus, giant planets and moons. The upcoming availability of extended configurations will enable high-resolution mapping, as demonstrated by the first thermal image of an asteroid's surface obtained during the Long Baselines Campaign. ALMA provides a unique access to atmospheric properties such as thermal structure, dynamics and composition, as well as radiative and thermal surface properties. These measurements are highly complementary of observations from planetary missions and large ground-based observatories, and essential to constrain the processes acting upon planetary surfaces and atmospheres.

  11. Constraining MOND with Solar System Dynamics

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo

    2008-02-01

    In this letter we investigate the deep Newtonian regime of the MOND paradigm from a purely phenomenological point of view by exploiting the least-square estimated corrections to the secular rates of the perihelia of the inner and of some of the outer planets of the Solar System by E.V. Pitjeva with the EPM2004 ephemerides. By using μ(x) ≈ 1 - k0(1/x)n for the interpolating MONDian function, and by assuming that k0, considered body-independent so to avoid violations of the equivalence principle, experiences no spatial variations throughout the Solar System we tightly constrain n with the ratios of the perihelion precessions for different pairs of planets. We find that the range 1 ≤ n ≤ 2 is neatly excluded at much more than 3 - σ level. Such a test would greatly benefit from the use of extra-precessions of perihelia independently estimated by other groups as well.

  12. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1997-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1 sec. The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have been using adaptive optics (AO) on a 4-m class telescope to obtain 0.1 sec resolution images solar system objects at far red and near infrared wavelengths (0.7-2.5 micron) which best discriminate their spectral signatures. Our efforts has been put into areas of research for which high angular resolution is essential, such as the mapping of Titan and of large asteroids, the dynamics and composition of Neptune stratospheric clouds, the infrared photometry of Pluto, Charon, and close satellites previously undetected from the ground.

  13. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1999-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1". The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have successfully used adaptive optics on a 4-m class telescope to obtain 0.1" resolution images of solar system objects in the far red and near infrared (0.7-2.5 microns), aE wavelengths which best discl"lmlnate their spectral signatures. Our efforts have been put into areas of research for which high angular resolution is essential.

  14. Solar electric propulsion systems - A survey

    SciTech Connect

    Grilikhes, V.A.; Zavialova, G.M.; Popov, L.B.

    1980-01-01

    The Solar Electric Propulsion System (SEPS) currently under development in the United States offers several advantages as a third-stage power system for interplanetary and inter-earth-orbit flights. Its electric propulsion motors (EPM), with the relatively large specific impulse of 30,000 m/sec each, consume less propellant than do chemical rocket motors or compressed-gas engines, and constitute, with the solar batteries, 50% of the SEPS dry mass. Outfitted with 8-10 energy converters with attainable efficiency of 92%, SEPS is being considered for missions that range from the transport of payloads to geosynchronous orbit to an interplanetary rendezvous with Halley's Comet. The paper also presents configuration options and subsystem parameters.

  15. Solar panel truss mounting systems and methods

    SciTech Connect

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  16. Solar system object observations with Gaia Mission

    NASA Astrophysics Data System (ADS)

    Kudryashova, Maria; Tanga, Paolo; Mignard, Francois; CARRY, Benoit; Christophe, Ordenovic; DAVID, Pedro; Hestroffer, Daniel

    2016-05-01

    After a commissioning period, the astrometric mission Gaia of the European Space Agency (ESA) started its survey in July 2014. Throughout passed two years the Gaia Data Processing and Analysis Consortium (DPAC) has been treating the data. The current schedule anticipates the first Gaia Data Release (Gaia-DR1) toward the end of summer 2016. Nevertheless, it is not planned to include Solar System Objects (SSO) into the first release. This is due to a special treatment required by solar system objects, as well as by other peculiar sources (multiple and extended ones). In this presentation, we address issues and recent achivements in SSO processing, in particular validation of SSO-short term data processing chain, GAIA-SSO alerts, as well as the first runs of SSO-long term pipeline.

  17. Vesta and Ceres: Crossing the History of the Solar System

    NASA Astrophysics Data System (ADS)

    Coradini, A.; Turrini, D.; Federico, C.; Magni, G.

    2011-12-01

    The evolution of the Solar System can be schematically divided into three different phases: the Solar Nebula, the Primordial Solar System and the Modern Solar System. These three periods were characterized by very different conditions, both from the point of view of the physical conditions and from that of the processes there were acting through them. Across the Solar Nebula phase, planetesimals and planetary embryos were forming and differentiating due to the decay of short-lived radionuclides. At the same time, giant planets formed their cores and accreted the nebular gas to reach their present masses. After the gas dispersal, the Primordial Solar System began its evolution. In the inner Solar System, planetary embryos formed the terrestrial planets and, in combination with the gravitational perturbations of the giant planets, depleted the residual population of planetesimals. In the outer Solar System, giant planets underwent a violent, chaotic phase of orbital rearrangement which caused the Late Heavy Bombardment. Then the rapid and fierce evolution of the young Solar System left place to the more regular secular evolution of the Modern Solar System. Vesta, through its connection with HED meteorites, and plausibly Ceres too were between the first bodies to form in the history of the Solar System. Here we discuss the timescale of their formation and evolution and how they would have been affected by their passage through the different phases of the history of the Solar System, in order to draw a reference framework to interpret the data that Dawn mission will supply on them.

  18. Solar Energy Usage.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with solar energy use. Its objective is for the student to be able to discuss the broad aspects of solar energy use and to explain the general operation of solar systems. Some topics covered are availability and economics of solar…

  19. Solar simulator for concentrator photovoltaic systems.

    PubMed

    Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2008-09-15

    A solar simulator for measuring performance of large area concentrator photovoltaic (CPV) modules is presented. Its illumination system is based on a Xenon flash light and a large area collimator mirror, which simulates natural sun light. Quality requirements imposed by the CPV systems have been characterized: irradiance level and uniformity at the receiver, light collimation and spectral distribution. The simulator allows indoor fast and cost-effective performance characterization and classification of CPV systems at the production line as well as module rating carried out by laboratories. PMID:18795026

  20. Rings in the solar system

    SciTech Connect

    Pollack, J.B.; Cuzzi, J.N.

    1981-11-01

    Saturn, Jupiter, and Uranus have rings with different structure and composition. The rings consist of tiny masses in independent orbits. Photographs and data obtained by the Voyager project have aided in the understanding of Saturn's rings. Spokes have been found in B ring and boards, knots, and twist in F ring. Particles on the order of a micrometer in size are believed to occur in F, B, and A rings. The dominant component is water ice. The rings of Uranus are narrow and separated by broad empty regions. The technique used to study them has been stellar occulation. Nothing is known of particle size. The dominant component is believed to be silicates rich in compounds that absorb sunlight. Jupiter's rings consist of 3 main parts: a bright ring, a diffuse disk, and a halo. Use of Pioneer 10 data and other techniques have indicated particle sizes on the order of several micrometers and some at least a centimeter in diameter. The architecture of the ring system results from the interplay of a number of forces. These include gravitational forces due to moons outside the rings and moonlets embedded in them, electromagnetic forces due to the planet's rotating magnetic field, and even the gentle forces exerted by the dilute gaseous medium in which the rings rotate. Each of these forces is discussed. Several alternative explanations of how the rings arose are considered. The primary difference in these hypotheses is the account of the relationship between the ring particles of today and the primordial ring material. (SC)

  1. Overview: Exobiology in solar system exploration

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C.; Schwartz, Deborah E.

    1992-01-01

    In Aug. 1988, the NASA Ames Research Center held a three-day symposium in Sunnyvale, California, to discuss the subject of exobiology in the context of exploration of the solar system. Leading authorities in exobiology presented invited papers and assisted in setting future goals. The goals they set were as follows: (1) review relevant knowledge learned from planetary exploration programs; (2) detail some of the information that is yet to be obtained; (3) describe future missions and how exobiologists, as well as other scientists, can participate; and (4) recommend specific ways exobiology questions can be addressed on future exploration missions. These goals are in agreement with those of the Solar System Exploration Committee (SSEC) of the NASA Advisory Council. Formed in 1980 to respond to the planetary exploration strategies set forth by the Space Science Board of the National Academy of Sciences' Committee on Planetary and Lunar Exploration (COMPLEX), the SSEC's main function is to review the entire planetary program. The committee formulated a long-term plan (within a constrained budget) that would ensure a vital, exciting, and scientifically valuable effort through the turn of the century. The SSEC's goals include the following: determining the origin, evolution, and present state of the solar system; understanding Earth through comparative planetology studies; and revealing the relationship between the chemical and physical evolution of the solar system and the appearance of life. The SSEC's goals are consistent with the over-arching goal of NASA's Exobiology Program, which provides the critical framework and support for basic research. The research is divided into the following four elements: (1) cosmic evolution of the biogenic compounds; (2) prebiotic evolution; (3) origin and early evolution of life; and (4) evolution of advanced life.

  2. Radar Studies in the Solar System

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    1996-01-01

    We aid in a study of the solar system by means of ground-based radar. We have concentrated on (1) developing the ephemerides needed to acquire radar data at Arecibo Observatory and (2) analyzing the resultant data to: test fundamental laws of gravitation; determine the size, shape, topography, and spin vectors of the targets; and study the surface properties of these objects, through their scattering law and polarization characteristics.

  3. Solar energy collector/storage system

    SciTech Connect

    Bettis, J.R.; Clearman, F.R.

    1983-05-24

    A solar energy collector/storage system which includes an insulated container having working fluid inlets and outlets and an opening, a light-transmitting member positioned over the opening, and a heat-absorbing member which is centrally situated, is supported in the container, and is made of a mixture of gypsum , lampblack, and water. A light-reflecting liner made of corrugated metal foil preferably is attached to the internal surface of the container. The opening of the container is positioned in optical alignment with a source of solar energy. A light-reflecting cover optionally can be hingedly attached to the container, and can be positioned such as to reflect solar energy rays into the container. The system is adaptable for use with a working gas (e.g., air) and/or a working liquid (e.g., water) in separated flows which absorb heat from the heat-absorbing member, and which are useable per se or in an associated storage and/or circulatory system that is not part of this invention. The heatabsorbing mixture can also contain glass fibers. The heatabsorbing member is of such great load-bearing strength that it can also be used simultaneously as a structural member, e.g., a wall or ceiling of a room; and, thereby, the system can be used to heat a room, if a window of the room is the light-transmitting member and is facing the sun, and if the heat-absorbing member is a wall and/or the ceiling of the room and receives solar energy through the window.

  4. Advanced instrumentation for Solar System gravitational physics

    NASA Astrophysics Data System (ADS)

    Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.

    2010-05-01

    The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser tracking, will be discussed.

  5. Condensation and Evaporation of Solar System Materials

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Richter, F. M.

    2003-12-01

    It is widely believed that the materials making up the solar system were derived from a nebular gas and dust cloud that went through an early high-temperature stage during which virtually all of the material was in the gas phase. At one time, it was thought that the entire inner solar nebula was hot, but it is now believed that most material was processed through regions where high temperatures were achieved. Certainly some material, such as presolar grains (cf., Mendybaev et al., 2002a), has never been exposed to high temperatures. As the system cooled, solids and perhaps liquids began to condense, but at some point the partially condensed materials became isolated from the remaining gas. Various lines of evidence support this view. At the largest scale, there is the observation that the Earth, Moon, Mars, and all chondritic meteorites except for the CI chondrites are depleted to varying degrees in the abundances of moderately volatile elements relative to bulk solar system composition. The CI chondrites reflect the bulk composition of the solar system for all but hydrogen, carbon, nitrogen, oxygen, and the rare gases, the most volatile elements (see Chapter 1.03; Palme et al., 1988; McDonough and Sun, 1995; Humayun and Cassen, 2000). The depletions in moderately volatile elements are, to a significant degree, correlated with condensation temperature, suggesting progressive removal of gas as condensation proceeded ( Cassen, 1996). Additional observations that can be explained by partial condensation are that various particularly primitive components of meteorites (e.g., calcium-, aluminum-rich refractory inclusions, and certain metal grains) have mineralogy and/or details of their chemical composition that are remarkably similar to what is calculated for equilibrium condensates from a solar composition gas. For example, the calcium-, aluminum-rich inclusions (CAIs) in chondritic meteorites have compositions very similar to that calculated for the first 5% of total condensable matter (see Chapter 1.08; Grossman, 1973; Wänke et al., 1974; Grossman and Ganapathy, 1976; Grossman et al., 1977), where CI chondrites are taken to represent total condensable matter.Elemental abundance patterns ordered by volatility certainly could have been produced by partial condensation, but they could also have been caused by partial evaporation. The relative importance of these opposite processes is still subject to debate and uncertainty. It should be remembered that condensation calculations typically assume chemical equilibrium in a closed system, in which case the system has no memory of the path by which it arrived at a given state, and thus the chemical and isotopic composition of the condensed phase cannot be used to distinguish between partial condensation and partial evaporation. Humayun and Clayton (1995) have taken a somewhat different view by arguing that condensation and evaporation are distinguishable, in that evaporation, but not condensation, will produce isotopically fractionated residues. With this idea in mind, they carefully measured the potassium isotopic compositions of a broad range of solar system materials with different degrees of potassium depletion and found them to be indistinguishable. This they took as evidence that evaporation could not have been a significant process in determining the diverse elemental abundance patterns of the various solar system materials they measured, because had evaporation been important in fractionating potassium it would have also fractionated the potassium isotopes. We will qualify this line of reasoning by arguing that evaporation and condensation can under certain conditions produce isotopically fractionated condensed phases (i.e., that partial evaporation can produce isotopically heavy residues and that partial condensation can produce isotopically light condensates) but that under other conditions both can produce elemental fractionations without significant isotopic fractionation. The absence of isotopic fractionation in a volatile element-depleted condensed phase is more a measure of the degree to which the system maintained thermodynamic equilibrium than a diagnostic of whether the path involved condensation or evaporation.The pervasive volatile element depletion of inner solar system planets and the asteroidal parent bodies of most meteorites is a major, but by no means the only reason to consider evaporation and condensation processes in the early history of the solar system. Chondrules appear to have been rapidly heated and then cooled over a period of minutes to hours (see Chapter 1.07). If this occurred in a gas of solar composition under nonequilibrium conditions, chondrules should have partially evaporated and an isotopic fractionation record should remain. The absence of such effects can be used to chonstrain the conditions of chondrule formation (e.g., Alexander et al., 2000; Alexander and Wang, 2001). There is good petrologic, chemical, and isotopic evidence suggesting that certain solar system materials such as the coarse-grained CAIs are likely evaporation residues. For example, the type B CAIs are often found to have correlated enrichments in the heavy isotopes of silicon and magnesium ( Figure 1), and these isotopic fractionations are very much like those of evaporation residues produced in laboratory experiments. Condensation also appears to be a major control of elemental zoning patterns in metal grains in CH chondrites (Meibom et al., 1999, 2001; Campbell et al., 2001; Petaev et al., 2001; Campbell et al., 2002). A more contemporary example is the isotopic and chemical compositions of deep-sea spherules that have been significantly affected by evaporative loss during atmospheric entry ( Davis et al., 1991a; Davis and Brownlee, 1993; Herzog et al., 1994, 1999; Xue et al., 1995; Alexander et al., 2002). (7K)Figure 1. Isotopic mass fractionation effects in CAIs. Most coarse-grained CAIs have enrichments of a few ‰ amu-1 in magnesium and silicon, whereas "fractionation and unknown nuclear" (FUN) CAIs are isotopically heavier. The volatile element depletion patterns of planetary size objects and the chemical and isotopic composition of numerous smaller objects such as chondrules and CAIs provide the motivation to consider evaporation and condensation process in the early solar system. The key point is that the processes that led to chondrules and planets appear to have occurred under conditions very close to equilibrium, whereas the processes that led to CAIs involved significant departures from equilibrium.

  6. Solar-energy-system performance evaluation: Honeywell OTS 44, Ocmulgee, Georgia

    NASA Technical Reports Server (NTRS)

    Mathur, A. K.; Pederson, S.

    1982-01-01

    The operation and technical performance of the solar operational test site (OTS 44) are described, based on data collected between April, 1981 and August, 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 44 is a hydronic heating and cooling system consisting of 5040 square feet of liquid cooled flat plate collectors; a 4000 gallon thermal storage tank; one 25 ton capacity organic Rankine cycle engine assisted water chillers; a forced draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes for providing space conditioning and hot water to the building. Data monitored during the 4 months of the operational test period found that the solar system collected 285 MMBtu of thermal energy of the total incident solar energy of 1040 MMBtu and provided 210 MMBtu for cooling and 10 MMBtu for heating and hot water. The net electrical energy saving due to the solar system was approximately 2600 kWh(e), and fossil energy saving was about 20 million Btu (MMBtu).

  7. Solar System Test of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    2003-01-01

    We are engaged in testing gravitational theory, mainly using observations of objects in the solar system and mainly on the interplanetary scale. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to place tighter bounds on such departures. For this project, we have analyzed a combination of observational data with our model of the solar system, including primarily planetary radar ranging, lunar laser ranging, and spacecraft tracking, but also including both pulsar timing and pulsar VLBI measurements. In the past year, we have included new data in the analysis, primarily tracking data from the Mars Pathfinder mission. Although these data are relatively few in number, they extend the time span of high-precision tracking on the surface of Mars from six years to over 20. As a result, the statistical standard deviation of our estimate of Mars precession rate has nearly halved, and the rest of the parameters in our solar-system model have experienced a corresponding, albeit smaller, improvement (about 20% for t,he relevant asteroid masses, 10% for the semimajor axis of Mars orbit, and smaller amounts for most other parameters). In the coming year, we plan to continue adding data to our set, as available. Ne 2 expect to use these data and improved models to obtain estimates of the gravitational- theory parameters and to publish these results.

  8. Gravitational anomalies in the solar system?

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo

    2015-02-01

    Mindful of the anomalous perihelion precession of Mercury discovered by Le Verrier in the second half of the nineteenth century and its successful explanation by Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known matter-energy distributions have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in either cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century, and technology itself. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gravitational anomalies in the Solar system is critically reviewed. They are: (a) Possible anomalous advances of planetary perihelia. (b) Unexplained orbital residuals of a recently discovered moon of Uranus (Mab). (c) The lingering unexplained secular increase of the eccentricity of the orbit of the Moon. (d) The so-called Faint Young Sun Paradox. (e) The secular decrease of the mass parameter of the Sun. (f) The Flyby Anomaly. (g) The Pioneer Anomaly. (h) The anomalous secular increase of the astronomical unit.

  9. A Distant Solar System (Artist's Concept Animation)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation portrays an artist's concept of a distant hypothetical solar system, about the same age as our own. It begins close to the star, and then moves out past a number of planets. Though 'extrasolar' planets are too small to be seen with telescopes, astronomers have detected more than 100 gas giants like Jupiter via their gravitational tug on their parent stars.

    The view pulls back to reveal the outer fringes of the system and a ring of dusty debris that circles the star. This debris is all that remains of the planet-forming disk from which the planets evolved.

    Planets are formed when dusty material in a large disk surrounding a young star clumps together. Leftover material is eventually blown out by solar wind or pushed out by gravitational interactions with planets. Billions of years later, only an outer disk of debris remains.

    These outer debris disks are too faint to be imaged directly by visible-light telescopes. They are washed out by the glare of the Sun. However, NASA's Spitzer Space Telescope can detect their heat, or excess thermal emission, in infrared light. This allows astronomers to study the aftermath of planet building in distant solar systems like our own.

  10. Spacewatch Survey of the Solar System

    NASA Technical Reports Server (NTRS)

    McMillan, Robert S.

    2000-01-01

    The purpose of the Spacewatch project is to explore the various populations of small objects throughout the solar system. Statistics on all classes of small bodies are needed to infer their physical and dynamical evolution. More Earth Approachers need to be found to assess the impact hazard. (We have adopted the term "Earth Approacher", EA, to include all those asteroids, nuclei of extinct short period comets, and short period comets that can approach close to Earth. The adjective "near" carries potential confusion, as we have found in communicating with the media, that the objects are always near Earth, following it like a cloud.) Persistent and voluminous accumulation of astrometry of incidentally observed main belt asteroids MBAs will eventually permit the Minor Planet Center (MPQ to determine the orbits of large numbers (tens of thousands) of asteroids. Such a large body of information will ultimately allow better resolution of orbit classes and the determinations of luminosity functions of the various classes, Comet and asteroid recoveries are essential services to planetary astronomy. Statistics of objects in the outer solar system (Centaurs, scattered-disk objects, and Trans-Neptunian Objects; TNOs) ultimately will tell part of the story of solar system evolution. Spacewatch led the development of sky surveying by electronic means and has acted as a responsible interface to the media and general public on this discipline and on the issue of the hazard from impacts by asteroids and comets.

  11. The Cradle of the Solar System

    NASA Astrophysics Data System (ADS)

    Hester, J. Jeff; Desch, Steven J.; Healy, Kevin R.; Leshin, Laurie A.

    2004-05-01

    The recent discovery of decay products of 60Fe in meteorites challenges conventional wisdom about the environment in which the Sun and planets formed. Rather than a region like the well-studied Taurus-Auriga molecular cloud, the solar system must have formed instead in a region more like the Eagle nebula--a region that contained one or more massive stars that went supernova, injecting newly synthesized radionuclides into the nascent solar system. In their Perspective, Hester et al. discuss a scenario by which the solar system--and other low-mass stars like the Sun--could have formed. Radiant energy from massive, luminous stars first compresses surrounding interstellar gas, triggering the formation of Sun-like stars, then quickly disperses this material, exposing newborn stars and their protoplanetary disks to harsh radiation from the massive stars. When the massive stars go supernova, they pelt surrounding protoplanetary disks with ejecta laden with the products of stellar nucleosynthesis that are required to explain the isotopic composition we see today.

  12. Rosacea: a review of current topical, systemic and light-based therapies.

    PubMed

    Kennedy Carney, C; Cantrell, W; Elewski, B E

    2009-12-01

    Rosacea is a common chronic inflammatory disorder of the facial skin characterized by periods of exacerbation, remission and possible progression. The principle subtypes include erythematotelangiectatic rosacea, papulopustular rosacea, phymatous rosacea and ocular rosacea. Although the pathogenesis is unknown, rosacea is largely recognized as an inflammatory disorder. Individual subtypes are likely a result of different pathogenic factors and respond best to different therapeutic regimens. The non-pharmacologic approach to therapy is adequate skin care, trigger avoidance and photoprotection; in addition, there are several topical, herbal, systemic and light based therapies available. Standard Food and Drug Administration (FDA) approved treatments include topical sodium sulfacetamide, metronidazole, and azelaic acid. Anti-inflammatory dose doxycycline, a controlled-release 40 mg formulation offers a non-antibiotic, anti-inflammatory treatment option. Combination of azelaic acid or topical metronidazole with anti-inflammatory doxycycline appears to have a synergistic effect. Oral isotretinoin may be effective for phymatous rosacea and treatment resistant rosacea. Light based therapies with pulsed dye laser and intense pulsed light are effective in treatment of erythema and telangiectasias. As our knowledge of rosacea and its therapeutic options expand, a multifaceted approach to treatment is warranted. PMID:19907406

  13. Efficacy and safety of topical herbal medicine treatment on recurrent aphthous stomatitis: a systemic review

    PubMed Central

    Li, Chun-Lei; Huang, He-Long; Wang, Wan-Chun; Hua, Hong

    2016-01-01

    This study aimed to evaluate the efficacy and safety of topical treatment with natural herbal medicines on recurrent aphthous stomatitis (RAS). Nine electronic databases were searched to identify the randomized controlled trials and clinical controlled trials that reported the potential effect of natural herbal medicines on RAS published in Chinese or English. Ulcer size and duration, and remission of pain were assessed as main outcome measures. The methodological quality of the studies was evaluated using the Cochrane Handbook for Systemic Review of Interventions and Rev Man software. Thirteen trials with a total of 1,515 patients were included in the present analysis, which showed that topical treatment with natural herbal medicines seemed to benefit RAS patients by reducing ulcer size, shortening ulcer duration, and relieving pain without severe side effects. In conclusion, there is some evidence of the efficacy of topically applied natural herbal medicines with regards to improved RAS outcome measures and fewer side effects. However, given the limitations of this study, the evidence remains insufficient. Well-designed and high-quality randomized controlled trials are required for further exploration. PMID:26770058

  14. Topic Maps: Adopting User-Centred Indexing Technologies in Course Management Systems

    ERIC Educational Resources Information Center

    Venkatesh, Vivek; Shaw, Steven; Dicks, Dennis; Lowerison, Gretchen; Zhang, Dai; Sanjakdar, Roukana

    2007-01-01

    This article provides an empirical evaluation of an indexing technology, topic maps (ISO 13250), in the context of an academic task in a higher education context. Topic maps are a form of indexing that define and display the interrelationships between various topics in a given domain, as well as anchor these topics to specific resources that help…

  15. Development of Experienced Science Teachers' Pedagogical Content Knowledge of Models of the Solar System and the Universe

    ERIC Educational Resources Information Center

    Henze, Ineke; van Driel, Jan H.; Verloop, Nico

    2008-01-01

    This paper investigates the developing pedagogical content knowledge (PCK) of nine experienced science teachers in their first few years of teaching a new science syllabus in the Dutch secondary education system. We aimed to identify the content and structure of the PCK for a specific topic in the new syllabus, "Models of the Solar System and the

  16. Development of Experienced Science Teachers' Pedagogical Content Knowledge of Models of the Solar System and the Universe

    ERIC Educational Resources Information Center

    Henze, Ineke; van Driel, Jan H.; Verloop, Nico

    2008-01-01

    This paper investigates the developing pedagogical content knowledge (PCK) of nine experienced science teachers in their first few years of teaching a new science syllabus in the Dutch secondary education system. We aimed to identify the content and structure of the PCK for a specific topic in the new syllabus, "Models of the Solar System and the…

  17. Solar nebula chemistry - Implications for volatiles in the solar system

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.; Prinn, Ronald G.

    1989-01-01

    Current theoretical models of solar nebula chemistry which take into account the interplay between chemistry and dynamics are presented for the abundant reactive volatile elements including hydrogen, carbon, nitrogen, oxygen, and sulfur. Results of these models indicate that, in the solar nebula, the dominant carbon and nitrogen gases were CO and NO, whereas, in giant planet subnebulae, the dominant carbon and nitrogen gases were CH4 and NH3; in the solar nebula, the Fe metal grains catalyzed the formation of organic compounds from CO and H2 via the Fischer-Tropsch-type reaction. It was also found that, in solar nebula, bulk FeS formation was kinetically favorable, while FeO incorporation into silicates and bulk Fe3O4 formation were kinetically inhibited. Furthermore, clathrate formation was kinetically inhibited in the solar nebula, while it was kinetically favorable in giant planet subnebulae.

  18. Reliability of hot water solar systems in Greece

    SciTech Connect

    Panteliou, S.; Chondros, T.; Bouziotis, G. ); Dimarogonas, A.D. )

    1990-01-01

    Ten thousand domestic hot water solar systems were surveyed in Greece to assess component and system reliability. Data concerning the functioning condition of the systems was collected, a computerized data base was established and statistical analysis was performed. This work is part of a solar system evaluation program within the European Community. Greece was selected due to the high concentration of solar collector systems and the fact that these systems have reached maturity, the average lifespan being five years.

  19. Laser and solar-photovoltaic space power systems comparison. II.

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Stripling, J.; Enderson, T. M.; Humes, D. H.; Davis, W. T.

    1984-01-01

    A comparison of total system cost is made between solar photovoltaic and laser/receiver systems. The laser systems assume either a solar-pumped CO2 blackbody transfer laser with MHD receiver or a solar pumped liquid neodymium laser with a photovoltaic receiver. Total system costs are less for the laser systems below 300 km where drag is significant. System costs are highly dependent on altitude.

  20. Suprathermal Chemistry in the Solar System

    NASA Astrophysics Data System (ADS)

    Shematovich, Valery

    Many celestial bodies in the Solar System are surrounded by gaseous envelopes. Chemical evolution of the gaseous envelopes of icy astrophysical objects of different masses and sizes (dust particles with icy mantles, icy planetesimals, comets and KBOs, icy satellites in the Jovian and Saturnian systems, and etc.) is determined by the complex influence of a large number of interrelated processes including: - photolysis by the solar XUV (soft X-rays and extreme ultraviolet) radiation, - radiolysis by the solar wind/magnetospheric plasma, - catalysis on the icy surface, - chemical exchange between the surface and atmosphere, - chemical changes in the gas composition of the envelope. These physical and chemical processes are initiated by the solar forcing, and are characterized by strongly differing time scales and the degrees of non-equilibrium. Theoretical predictions of the composition and chemical evolution of near-surface atmospheres of the icy astrophysical objects are of great importance for assessing the biological potential of these objects (Herbst and van Dishoeck, 2009). The water vapour is usually the dominant parent species in such gaseous envelope because of the ejection from the object’s icy surface due to the thermal outgassing, non-thermal photolysis and radiolysis and other active processes at work on the surface (Shematovich 2008). The photochemistry of water vapour in the near-surface atmospheric layer (Shematovich, 2008, 2012) and the radiolysis of icy regolith result in the supply of the atmosphere by an admixture of H _{2}O, H _{2}, O _{2}, OH and O with thermal and suprathermal kinetic energies. Returning molecules have a species-dependent behaviour in the impact with icy surface and non-thermal energy distributions for the chemical radicals. The suprathermal radicals OH, H, and O entering the regolith can drive the radiolytic chemistry. Chemical complexity of the near-surface atmosphere of the icy astrophysical object arises due to both primary processes of dissociation and ionization by solar XUV radiation and magnetospheric electrons and induced ion-molecular chemistry, and by chemical exchange between near-surface atmospheric layer and the satellite icy surface due to the thermal and non-thermal desorption processes (Shematovich, 2008, 2012). The standard astrochemical UDFA05 network is usually used to follow the main chemical pathways of photochemistry in the near-surface atmosphere and of diffusive chemistry in the icy regolith. Achievements and problems of the studies of suprathermal chemistry in the atmosphere-icy surface interface for the icy objects in the Solar System will be discussed. This work is supported by the RFBR project No. 14-02-00838a and by the Basic Research Program of the Presidium of the Russian Academy of Sciences (Program 22). begin{itemize} Herbst E., and van Dishoeck E.F., ARA&A, 2009, v. 47, 427. Shematovich, V.I. Solar System Res., 2008, v. 42, 473. Shematovich, V.I. Solar System Res., 2012, v. 46, 391.

  1. Benefit assessment of solar-augmented natural gas systems

    NASA Technical Reports Server (NTRS)

    Davis, E. S.; French, R. L.; Sohn, R. L.

    1980-01-01

    Report details how solar-energy-augmented system can reduce natural gas consumption by 40% to 70%. Applications discussed include: domestic hot water system, solar-assisted gas heat pumps, direct heating from storage tank. Industrial uses, solar-assisted appliances, and economic factors are discussed.

  2. Optical waveguide system for solar power applications in space

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    2009-08-01

    In this paper we will discuss an innovative optical system for solar power applications in space. In this system solar radiation is collected by the concentrator array which transfers the concentrated solar radiation to the optical waveguide (OW) transmission line made of low loss optical fibers. The OW transmission line directs the solar radiation to the place of solar power utilization such as: the thermochemical receiver for processing of lunar regolith for oxygen production; or the plant growth facility where the solar light is used for biomass production.

  3. Forming the Solar System from Pebbles

    NASA Astrophysics Data System (ADS)

    Kretke, Katherine A.; Levison, H. F.

    2015-12-01

    In recent years, theories surrounding the formation of small-bodies and planets have been undergoing a radical shift. Particles with stopping times comparable to their orbital times, often called "pebbles" (although they range from sub-centimeter to meter sizes), interact with gaseous protoplanetary disks in very special ways. This allows them to be not only be concentrated, allowing them to gravitationally collapse and directly produce the planetesimal building blocks of planetary systems, but also later be efficiently accreted on to these planetesimals, rapidly producing larger planets. Here we present simulations using the planet formation code LIPAD, which can follow the dynamical evolution of planetary system all the way from pebbles and planetesimals to mature planetary systems. We show how pebble accretion can explain the observed structure of our Solar System, by forming a system of giant planets, ice giants, and a system of terrestrial planets; even providing an explanation the for the low mass of Mars and of the Asteroid Belt.

  4. Design package for a solar-heating system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report contains sufficient information to assemble complete tested residential flat-plate solar heating system. Descriptive material provides design, performance, and hardware specifications for utilization by architectural engineers, and contractors in procurement, installation, operation, and maintenance of similar solar applications.

  5. Optical Waveguide Solar Energy System for Lunar Materials Processing

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Case, J. A.; Senior, C. L.

    1997-01-01

    This paper discusses results of our work on development of the Optical Waveguide (OW) Solar Energy System for Lunar Materials Processing. In the OW system as shown, solar radiation is collected by the concentrator which transfers the concentrated solar radiation to the OW transmission line consisting of low-loss optical fibers. The OW line transmits the solar radiation to the thermal reactor of the lunar materials processing plant. The feature of the OW system are: (1) Highly concentrated solar radiation (up to 104 suns) can be transmitted via flexible OW lines directly into the thermal reactor for materials processing: (2) Solar radiation intensity or spectra can be tailored to specific materials processing steps; (3) Provide solar energy to locations or inside of enclosures that would not otherwise have an access to solar energy; and (4) The system can be modularized and can be easily transported to and deployed at the lunar base.

  6. Continued Analysis of EUVE Solar System Observations

    NASA Technical Reports Server (NTRS)

    Gladstone, G. Randall

    2001-01-01

    This is the final report for this project. We proposed to continue our work on extracting important results from the EUVE (Extreme UltraViolet Explorer) archive of lunar and jovian system observations. In particular, we planned to: (1) produce several monochromatic images of the Moon at the wavelengths of the brightest solar EUV emission lines; (2) search for evidence of soft X-ray emissions from the Moon and/or X-ray fluorescence at specific EUV wavelengths; (3) search for localized EUV and soft X-ray emissions associated with each of the Galilean satellites; (4) search for correlations between localized Io Plasma Torus (IPT) brightness and volcanic activity on Io; (5) search for soft X-ray emissions from Jupiter; and (6) determine the long term variability of He 58.4 nm emissions from Jupiter, and relate these to solar variability. However, the ADP review panel suggested that the work concentrate on the Jupiter/IPT observations, and provided half the requested funding. Thus we have performed no work on the first two tasks, and instead concentrated on the last three. In addition we used funds from this project to support reduction and analysis of EUVE observations of Venus. While this was not part of the original statement of work, it is entirely in keeping with extracting important results from EUVE solar system observations.

  7. Similarity Rules for Scaling Solar Sail Systems

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen L.; Beard, James W., III; Peddieson, John; Ewing, Anthony; Garbe, Greg

    2004-01-01

    Future science missions will require solar sails on the order 10,000 sq m (or larger). However, ground and flight demonstrations must be conducted at significantly smaller Sizes (400 sq m for ground demo) due to limitations of ground-based facilities and cost and availability of flight opportunities. For this reason, the ability to understand the process of scalability, as it applies to solar sail system models and test data, is crucial to the advancement of this technology. This report will address issues of scaling in solar sail systems, focusing on structural characteristics, by developing a set of similarity or similitude functions that will guide the scaling process. The primary goal of these similarity functions (process invariants) that collectively form a set of scaling rules or guidelines is to establish valid relationships between models and experiments that are performed at different orders of scale. In the near term, such an effort will help guide the size and properties of a flight validation sail that will need to be flown to accurately represent a large, mission-level sail.

  8. Survivable solar power-generating systems for use with spacecraft

    SciTech Connect

    Nakamura, T.

    1992-02-18

    This patent describes a solar power-generating system for use on board spacecraft. It comprises: optical means positioned to collect and concentrate solar energy flux; a flexible solar energy flux transmission line for conducting the concentrated solar energy flux towards a solar energy converter; solar energy conversion means including an array of photovoltaic cells for converting the solar energy flux to electrical power to be applied to on-board equipment of the spacecraft; a protective enclosure positioned about the photovoltaic cells for substantially shielding the photovoltaic cells from destructive radiation and particulate matter. This patent also describes the system wherein the energy conversion means further includes devices for converting solar energy flux into other forms of energy. It comprises: optical switch means for selectively distributing the gathered solar energy flux to various ones of the devices in accordance with the needs of the on-board equipment.

  9. Solar dynamic systems for spacecraft power applications

    NASA Technical Reports Server (NTRS)

    Roschke, E. J.

    1986-01-01

    Results are presented of a parametric study of the potential for using solar dynamic (SD) power supply systems on deep space probes. The SD systems would consist of a parabolic concentrator to focus solar energy on a thermal receiver for conversion by Brayton, organic Rankine or Stirling engines. The net thermal power and efficiencies available from each of the types of conversion devices were analyzed for a power requirement of 0.5 kWe. Examinations were also carried out of the optical, thermodynamic, materials and size limitations of the devices. The subsystem drivers were found to be the quality of concentrator reflectance and the system temperature level. Lower temperature systems are preferred for farther distances from the sun, mainly due to the required concentrator area. The SD system could be used out to 6 A.U. in optimal conditions. It is concluded that Brayon and Stirling engines have the best chances for further development, and that Rankine systems have already been optimized. Further evaluations are dependent on the definition of specific mission requirements.

  10. Relativistic Celestial Mechanics of the Solar System

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully tested general relativity to a remarkable level of precision. Exploring relativistic gravity in the solar system now involves a variety of high-accuracy techniques, for example, very long baseline radio interferometry, pulsar timing, spacecraft Doppler tracking, planetary radio ranging, lunar laser ranging, the global positioning system (GPS), torsion balances and atomic clocks. Over the last few decades, various groups within the International Astronomical Union have been active in exploring the application of the general theory of relativity to the modeling and interpretation of high-accuracy astronomical observations in the solar system and beyond. A Working Group on Relativity in Celestial Mechanics and Astrometry was formed in 1994 to define and implement a relativistic theory of reference frames and time scales. This task was successfully completed with the adoption of a series of resolutions on astronomical reference systems, time scales, and Earth rotation models by the 24th General Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolutions only form a framework for the practical application of relativity theory, and there have been continuing questions on the details of the proper application of relativity theory to many common astronomical problems. To ensure that these questions are properly addressed, the 26th General Assembly of the IAU, held in Prague in August 2006, established the IAU Commission 52, "Relativity in Fundamental Astronomy". The general scientific goals of the new commission are to: * clarify the geometrical and dynamical concepts of fundamental astronomy within a relativistic framework, * provide adequate mathematical and physical formulations to be used in fundamental astronomy, * deepen the understanding of relativity among astronomers and students of astronomy, and * promote research needed to accomplish these tasks. The present book is intended to make a theoretical contribution to the efforts undertaken by this commission. The first three chapters of the book review the foundations of celestial mechanics as well as those of special and general relativity. Subsequent chapters discuss the theoretical and experimental principles of applied relativity in the solar system. The book is written for graduate students and researchers working in the area of gravitational physics and its applications inmodern astronomy. Chapters 1 to 3 were written by Michael Efroimsky and Sergei Kopeikin, Chapters 4 to 8 by Sergei Kopeikin, and Chapter 9 by George Kaplan. Sergei Kopeikin also edited the overall text. It hardly needs to be said that Newtonian celestial mechanics is a very broad area. In Chapter 1, we have concentrated on derivation of the basic equations, on explanation of the perturbed two-body problem in terms of osculating and nonosculating elements, and on discussion of the gauge freedom in the six-dimensional configuration space of the orbital parameters. The gauge freedom of the configuration space has many similarities to the gauge freedom of solutions of the Einstein field equations in general theory of relativity. It makes an important element of the Newtonian theory of gravity, which is often ignored in the books on classic celestial mechanics. Special relativity is discussed in Chapter 2. While our treatment is in many aspects similar to the other books on special relativity, we have carefully emphasised the explanation of the Lorentz and Poincaré transformations, and the appropriate transformation properties of geometric objects like vectors and tensors, for example, the velocity, acceleration, force, electromagnetic field, and so on. Chapter 3 is devoted to general relativity. It explains the main ideas of the tensor calculus on curved manifolds, the theory of the affine connection and parallel transport, and the mathematical and physical foundations of Einstein's approach to gravity. Within this chapter, we have also included topics which are not well covered in standard books on general relativity: namely, the variational analysis on manifolds and the multipolar expansion of gravitational radiation. Chapter 4 introduces a detailed theory of relativistic reference frames and time scales in an N-body system comprised of massive, extended bodies - like our own solar system. Here, we go beyond general relativity and base our analysis on the scalar-tensor theory of gravity. This allows us to extend the domain of applicability of the IAU resolutions on relativistic reference frames, which in their original form were applicable only in the framework of general relativity. We explain the principles of construction of reference frames, and explore their relationship with the solutions of the gravitational field equations. We also discuss the post-Newtonian multipolemoments of the gravitational field from the viewpoint of global and local coordinates. Chapter 5 discusses the principles of derivation of transformations between reference frames in relativistic celestial mechanics. The standard parameterized post-Newtonian (PPN) formalism by K. Nordtevdt and C. Will operates with a single coordinate frame covering the entire N-body system, but it is insufficient for discussion of more subtle relativistic effects showing up in orbital and rotational motion of extended bodies. Consideration of such effects require, besides the global frame, the introduction of a set of local frames needed to properly treat each body and its internal structure and dynamics. The entire set of global and local frames allows us to to discover and eliminate spurious coordinate effects that have no physical meaning. The basic mathematical technique used in our theoretical treatment is based on matching of asymptotic post-Newtonian expansions of the solutions of the gravity field equations. In Chapter 6, we discuss the principles of relativistic celestial mechanics of massive bodies and particles. We focus on derivation of the post-Newtonian equations of orbital and rotational motion of an extended body possessing multipolar moments. These moments couple with the tidal gravitational fields of other bodies, making the motion of the body under consideration very complicated. Simplification is possible if the body can be assumed spherically symmetric. We discuss the conditions under which this simplification can be afforded, and derive the equations of motion of spherically-symmetric bodies. These equations are solved in the case of the two-body problem, and we demonstrate the rich nature of the possible coordinate presentations of such a solution. The relativistic celestial mechanics of light particles (photons) propagating in a time-dependent gravitational field of an N-body system is addressed in Chapter 7. This is a primary subject of relativistic astrometry which became especially important for the analysis of space observations from the Hipparcos satellite in the early 1990s. New astrometric space missions, orders of magnitude more accurate than Hipparcos, for example, Gaia, SIM, JASMINE, and so on, will require even more complete developments. Additionally, relativistic effects play an important role in other areas of modern astronomy, such as, pulsar timing, very long baseline radio interferometry, cosmological gravitational lensing, and so on. High-precision measurements of gravitational light bending in the solar system are among the most crucial experimental tests of the general theory of relativity. Einstein predicted that the amount of light bending by the Sun is twice that given by a Newtonian theory of gravity. This prediction has been confirmed with a relative precision about 0.01%. Measurements of light bending by major planets of the solar system allow us to test the dynamical characteristics of spacetime and draw conclusions about the ultimate speed of gravity as well as to explore the so-called gravitomagnetic phenomena. Chapter 8 deals with the theoretical principles and methods of the high-precision gravimetry and geodesy, based on the framework of general relativity. A gravitational field and the properties of geocentric and topocentric reference frames are described by the metric tensor obtained from the Einstein equations with the help of post-Newtonian iterations. Bymatching the asymptotic, post-Newtonian expansions of the metric tensor in geocentric and topocentric coordinates, we derive the relationship between the reference frames, and relativistic corrections to the Earth's force of gravity and its gradient. Two definitions of a relativistic geoid are discussed, and we prove that these geoids coincide under the condition of a constant rigid-body rotation of the Earth.We consider, as a model of the Earth's matter, the notion of the relativistic level surface of a self-gravitating perfect fluid. We discover that, under conditions of constant rigid rotation of the fluid and hydrostatic behavior of tides, the post-Newtonian equation of the level surface is the same as that of the relativistic geoid. In the conclusion of this chapter, a relativistic generaisation of the Clairaut's equation is obtained. Chapter 9 is a practical guide to the relativistic resolutions of the IAU, with enough background information to place these resolutions into the context of the late twentieth century positional astronomy. These resolutions involve the definitions of reference systems, time scales, and Earth rotationmodels; and some of the resolutions are quite detailed. Although the recommended Earth rotation models have not been developed ab initio within the relativistic framework presented in the other resolutions (in that regard, there still exist some difficult problems to solve), their relativistic terms are accurate enough for all the current and near-future observational techniques. At that level, the Earth rotation models are consistent with the general relativity framework recommended by the IAU and considered in this book. The chapter presents practical algorithms for implementing the recommended models. The appendices to the book contain a list of astronomical constants and the original text of the relevant IAU resolutions adopted by the IAU General Assemblies in 1997, 2000, 2006, and 2009. Numerous colleagues have contributed to this book in one way or or another. It is a pleasure for us to acknowledge the enlightening discussions which one or more of the authors had on different occasions with Victor A. Brumberg of the Institute of Applied Astronomy (St. Petersburg, Russia); Tianyi Huang and Yi Xie of Nanjing University (China); Edward B. Fomalont of the National Radio Astronomical Observatory (USA); Valeri V. Makarov, William J. Tangren, and James L. Hilton of the US Naval Observatory; Gerhard Schäfer of the Institute of Theoretical Physics (Jena, Germany); Clifford M. Will of Washington University (St. Louis, USA); Ignazio Ciufolini of the Università del Salento and INFN Sezione di Lecce (Italy); and Patrick Wallace, retired from Her Majesty's Nautical Almanac Office (UK). We also would like to thank Richard G. French of Wellesley College (Massachusetts, USA); Michael Soffel and Sergei Klioner of the Technical University of Dresden; Bahram Mashhoon of the University of Missouri-Columbia; John D. Anderson, retired from the Jet Propulsion Laboratory (USA); the late Giacomo Giampieri, also of JPL; Michael Kramer, Axel Jessner, and Norbert Wex of the Max-Planck-Institut für Radioastronomie (Bonn, Germany); Alexander F. Zakharov of the Institute of Theoretical and Experimental Physics (Moscow, Russia); the late Yuri P. Ilyasov from Astro Space Center of Russian Academy of Science; Michael V. Sazhin, Vladimir A. Zharov, and Igor Yu. Vlasov of the Sternberg Astronomical Institute (Moscow, Russia); and Vladimir B. Braginsky of Moscow State University (Russia) for their remarks and comments, all of which helped us to properly formulate the theoretical concepts and other material presented in this book. The discussions among themembers of the IAU Worki! ng Group on Relativity in Celestial Mechanics and Astrometry as well as those within the Working Group on Nomenclature for Fundamental Astronomy have also been quite valuable and have contributed to what is presented here. The numerous scientific papers written by Nicole Capitaine of the Paris Observatory and her collaborators have been essential references. Victor Slabinski and Dennis D. McCarthy of the US Naval Observatory, P. Kenneth Seidelmann of the University of Virginia, Catherine Y. Hohenkerk of Her Majesty's Nautical Almanac Office, and E. Myles Standish, retired from the Jet Propulsion Laboratory, reviewed early drafts of the material that became Chapter 9 and made many substantial suggestions for improvement. We were, of course, influenced by many other textbooks available in this field. We would like to pay particular tribute to: C.W. Misner, K. S. Thorne and J. A. Wheeler "Gravitation" V.A. Brumberg "Essential Relativistic Celestial Mechanics" B.F. Schutz "Geometrical Methods of Mathematical Physics" M.H. Soffel "Relativity in Celestial Mechanics, Astrometry and Geodesy" C.M. Will "Theory and Experiment in Gravitational Physics". There are many other books and influential papers that are important as well which are referenced in the relevant parts of the present book. Not one of our aforementioned colleagues is responsible for any remaining errors or omissions in this book, for which, of course, the authors bear full responsibility. Last, but by nomeans least,Michael Efroimsky and George Kaplan wish to thank John A. Bangert of the US Naval Observatory for the administrative support which he so kindly provided to the project during all of its stages. Sergei Kopeikin is sincerely grateful to the Research Council of the University of Missouri-Columbia for the generous financial support (grants RL-08-027, URC-08-062B, SRF-09-012) that was essential for the successful completion of the book.

  11. Irradiation chemistry in the outer solar system

    NASA Astrophysics Data System (ADS)

    Brown, Michael E.

    2014-11-01

    The dark, reddish tinged surfaces of icy bodies in the outer solar are usually attributed to the long term irradiation of simple hydrocarbons such as methane leading to the loss of hydrogen and the production of long carbon chains. While methane is stable and detected on the most massive bodies in the Kuiper belt, evidence of active irradiation chemistry is scant except for the presence of ethane on methane-rich Makemake and possible detections of ethane on more methane-poor Pluto and Quaoar. We have obtained deep high signal-to-noise spectra of Makemake from 1.5 to 2.5 microns in an attempt to trace the radiation chemistry in the outer solar system beyond the initial ethane formation. We present the first astrophysical detections of solid ethylene, acetylene, and possibly propane -- all expected products of the continued irradiation of methane, and use these species to map the chemical pathway from methane to long-chain hydrocarbons.

  12. NASA's SPICE System Models the Solar System

    NASA Technical Reports Server (NTRS)

    Acton, Charles

    1996-01-01

    SPICE is NASA's multimission, multidiscipline information system for assembling, distributing, archiving, and accessing space science geometry and related data used by scientists and engineers for mission design and mission evaluation, detailed observation planning, mission operations, and science data analysis.

  13. A brief survey of the solar system

    NASA Astrophysics Data System (ADS)

    Owen, T.

    These lectures review the physical and chemical characteristics of the objects found in the solar system today, with an attempt made to identify features that can be used to shed light on the processes involved in the origin and evolution of the entire system. Attention is also given to the debris left over from the formation process - the bodies that were too small or in the wrong place to become incorporated into planets. Included here are comets, asteroids, meteoroids, and the small satellites whose orbits suggest that they might be captured bodies. There is also a treatment of the origin and evolution of the planetary atmospheres. The search for exterrestrial intelligence is discussed.

  14. Analysis of Solar Electrical and Thermal Systems

    NASA Technical Reports Server (NTRS)

    Selcuk, M. Kudret

    1987-01-01

    Report describes computer program for parametric analysis of alternative ways of generating heat and electrical power on satellite or spacecraft. Program, Solar Space Power Analysis Code (SOSPAC), examines changes in area, weight, and cost of generator system for changing conditions, in particular for changes in ratio of thermal to electrical outputs. Outlines execution procedure and presents sample set of input data. Gives example of mass and area calculations for sample data for each type of generator system and illustrates results with variety of charts.

  15. Performance modeling of nonconcentrating solar detoxification systems

    SciTech Connect

    March, M.; Martin, A.; Saltiel, C.

    1995-03-01

    A detailed simulation model is developed for predicting the performance of solar detoxification systems. Concentration profiles are determined via a method of lines approach during sunlight hours for acquired and synthetic (simulating clear and cloudy days) ultraviolet radiation intensity data. Verification of the model is performed with comparison against indoor laboratory and outdoor field test results. Simulations are performed over a range of design parameters to examine system sensitivity. Discussions are focused on the determination of optimal sizing and operating conditions. 17 refs., 8 figs.

  16. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    NASA Astrophysics Data System (ADS)

    Harber, H.

    1981-09-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  17. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    NASA Technical Reports Server (NTRS)

    Harber, H.

    1981-01-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  18. Beyond Sedna: Probing the Distant Solar System

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.

    This thesis presents studies in observational planetary astronomy probing the structure of the Kuiper belt and beyond. The discovery of Sedna on a highly eccentric orbit beyond Neptune challenges our understanding of the solar system and suggests the presence of a population of icy bodies residing past the Kuiper belt. With a perihelion of 76 AU, Sedna is well beyond the reach of the gas-giants and could not be scattered onto its highly eccentric orbit from interactions with Neptune alone. Sedna's aphelion at ˜1000 AU is too far from the edge of the solar system to feel the perturbing effects of passing stars or galactic tides in the present-day solar neighborhood. Sedna must have been emplaced in its orbit at an earlier time when massive unknown bodies were present in or near the solar system. The orbits of distant Sedna-like bodies are dynamically frozen and serve as the relics of their formation process. We have performed two surveys to search for additional members of the Sedna population. In order to find the largest and brightest Sedna-like bodies we have searched ˜12,000 deg² within +/-30 degrees of the ecliptic to a limiting R magnitude of 21.3 using the QUEST camera on the 1.2m Samuel Oschin Telescope. To search for the fainter, more common members of this distant class of solar system bodies, we have performed an deep survey using the Subaru Prime Focus Camera on the 8.2m Subaru telescope covering 43 deg² to a limiting R magnitude of 25.3. Searching over a two-night baseline, we were sensitive to motions out to distances of approximately 1000 AU. We present the results of these surveys. We discuss the implications for a distant Sedna-like population beyond the Kuiper belt and discuss future prospects for detecting and studying these distant bodies, focusing in particular on the constraints we can place on the embedded stellar cluster environment the early Sun may have been born in, where the location and distribution of Sedna-like orbits sculpted by multiple stellar encounters is indicative of the birth cluster size. These surveys were specifically designed to find the select members of a distant Sedna population but were also sensitive to the dynamically excited off ecliptic populations of the Kuiper belt including the hot classicals, resonant, scattered disk, and detached Kuiper belt populations. We present our observed latitude distributions and implications for the plutino population.

  19. Young Solar System's Fifth Giant Planet?

    NASA Astrophysics Data System (ADS)

    Nesvorný, David

    2011-12-01

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside ~15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  20. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    SciTech Connect

    Nesvorny, David

    2011-12-15

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside {approx}15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  1. Prototype solar heating and hot water systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Alternative approaches to solar heating and hot water system configurations were studied, parametrizing the number and location of the dampers, the number and location of the fans, the interface locations with the furnace, the size and type of subsystems, and operating modes. A two-pass air-heating collector was selected based on efficiency and ease of installation. Also, an energy transport module was designed to compactly contain all the mechanical and electrical control components. System performance calculations were carried out over a heating season for the tentative site location at Tunkhnana, Pa. Results illustrate the effect of collector size, storage capacity, and use of a reflector. Factors which affected system performance include site location, insulative quality of the house, and of the system components. A preliminary system performance specification is given.

  2. Unites solar, San Diego Gas & Electric complete urban PV system

    SciTech Connect

    Aldrich, C.

    1996-12-01

    A solar electric system developed for a public restroom and parking lot is very briefly described. The system was developed by San Diego Gas and Electric, the California Department of Parks and Recreation, and United Solar Systems Corporation. The specifications of the 2.4 kilowatt photovoltaic array system and the solar roof are outlined. The system was installed at a cost of $52,000; an electrical line extension to the site had been estimated to cost $135,000.

  3. Beyond Earth's boundaries: Human exploration of the Solar System in the 21st Century

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is an annual report describing work accomplished in developing the knowledge base that will permit informed recommendations and decisions concerning national space policy and the goal of human expansion into the solar system. The following topics are presented: (1) pathways to human exploration; (2) human exploration case studies; (3) case study results and assessment; (4) exploration program implementation strategy; (5) approach to international cooperation; (6) recommendations; and (7) future horizons.

  4. Publications of the JPL Solar Thermal Power Systems Project, 1976 to 1983

    NASA Technical Reports Server (NTRS)

    Gray, V. (Compiler); Marsh, C. (Compiler); Panda, P. (Compiler)

    1984-01-01

    The bibliographical listings in this publication are documentation products associated with the solar thermal power system project carried out by the Jet Propulsion Laboratory from 1976 to 1983. Documents listed are categorized as conference and journal papers, JPL external reports, JPL internal reports, or contractor reports. Alphabetical listings by title were used in the bibliography itself to facilitate location of the document by subject. Two indexes are included for ease of reference: one, an author index; the other, a topical index.

  5. A comprehensive solar energy system analysis data base in Huntsville, Alabama

    NASA Technical Reports Server (NTRS)

    Goddard, J. P.

    1978-01-01

    The history of a comprehensive solar energy system analysis data base developed by NASA/Marshall Space Flight Center and the University of Alabama is presented, along with its current status. The Marshall Information Retrieval and Data Storage (MIRADS) system was chosen for the data base, and feedback systems were arranged to cope with changes in the needs of the program management for the type of data gathered. The final structure of the data base consists of 22 files divided into 6 topical sections: summaries, climatological, utility rates, architectural, equipment, and economics. The data base offers help to the solar industry in two ways: it provides information and it serves as a model for users trying to establish the climatic and socioeconomic variables they should take into account when they examine a potential market for solar energy equipment.

  6. Walk Through Solar System Times: An Exhibit with an Astrobiology Emphasis

    NASA Technical Reports Server (NTRS)

    Cheung, C. Y.

    2012-01-01

    In this astrobiology outreach project, we attempt to present the research of the Goddard Center for Astrobiology (GCA) in the context of the history of the Solar System. GCA research emphasizes the origin and formation of complex pre-biotic organic materials in extraterrestrial environments and explores whether the delivery of these primordial materials and water to the early Earth enabled the emergence and evolution of life. The content expounds on areas that are usually not touched upon in a timeline of the Earth's formation. The exhibit addresses the questions: How did our solar system form? How is the formation of our solar systems similar or different from others? How did the organic molecules we observe in space get to the Earth? What conditions are most suitable for life? We will address the issues and challenges of designing the exhibit and of explaining advanced astrobiology research topics to the public.

  7. Solar power satellite system sizing tradeoffs

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Monford, L. G.

    1981-01-01

    Technical and economic tradeoffs of smaller solar power satellite systems configured with larger antennas, reduced output power, and smaller rectennas, are considered. The differential costs in electricity for seven antenna/rectenna configurations operating at 2.45 GHz and five satellite systems operating at 5.8 GHz are calculated. Two 2.45 GHz configurations dependent upon the ionospheric power density limit are chosen as examples. If the ionospheric limit could be increased to 54 mW sq/cm from the present 23 mW sq/cm level, a 1.53 km antenna satellite operating at 2.45 GHz would provide 5.05 GW of output power from a 6.8 km diameter rectenna. This system gives a 54 percent reduction in rectenna area relative to the reference solar power satellite system at a modest 17 percent increase in electricity costs. At 5.8 GHz, an 0.75 km antenna providing 2.72 GW of power from a 5.8 km diameter rectenna is selected for analysis. This configuration would have a 67 percent reduction in rectenna area at a 36 percent increase in electricity costs. Ionospheric, atmospheric, and thermal limitations are discussed. Antenna patterns for three configurations to show the relative main beam and sidelobe characteristics are included.

  8. Young Solar System in the Making

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger annotated version

    This artist's diagram compares the Epsilon Eridani system to our own solar system. The two systems are structured similarly, and both host asteroids (brown), comets (blue) and planets (white dots).

    Epsilon Eridani is our closest known planetary system, located about 10 light-years away in the constellation Eridanus. Its central star is a younger, fainter version of our sun, and is about 800 million years old about the same age of our solar system when life first took root on Earth.

    Observations from NASA's Spitzer Space Telescope show that the system hosts two asteroid belts, in addition to previously identified candidate planets and an outer comet ring.

    Epsilon Eridani's inner asteroid belt is located at about the same position as ours, approximately three astronomical units from its star (an astronomical unit is the distance between Earth and the sun.). The system's second, denser belt lies at about the same place where Uranus orbits in our solar system, or 20 astronomical units from the star.

    In the same way that Jupiter lies just outside our asteroid belt, shepherding its rocky debris into a ring, Epsilon Eridani is thought to have planets orbiting near the rims of its two belts. The first of these planets was identified in 2000 via the radial velocity technique. Called Epsilon Eridani b, it orbits at an average distance of 3.4 astronomical units placing it just outside the system's inner asteroid belt.

    The second planet orbiting near the rim of the outer asteroid belt at 20 astronomical units was inferred when Spitzer discovered the belt.

    A third planet might orbit in Epsilon Eridani at the inner edge of its outermost comet ring, which lies between 35 and 90 astronomical units. This planet was first hinted at in 1998 due to observed lumpiness in the comet ring.

    The outer comet ring around Epsilon Eridani is denser than our comet ring, called the Kuiper belt, because the system is younger. Over time, Epsilon Eridani's ring will become wispier like the Kuiper Belt. Its comets will collide with each other and break up, or get pushed out of the ring by the gravitational influences of planets.

  9. Passive solar systems performance under conditions in Bulgaria

    SciTech Connect

    Lekov, A.B.; Balcomb, J.D.

    1989-12-01

    This paper presents energy performance of 12 passive solar systems for three climatically different zones of Bulgaria. The results are compared with a base-case residential house that has a design typical for these areas. The different passive solar systems are compared on the basis of the percentage of solar savings and the yield, which is the annual net benefit of adding the passive solar system. The analyses are provided based on monthly meteorological data, and the method used for calculations is the Solar Load Ratio. Recommendations for Bulgarian conditions are given. 5 refs., 4 figs., 1 tab.

  10. Solar-hydrogen energy system for Pakistan

    SciTech Connect

    Lutfi, N.

    1990-01-01

    A solar-hydrogen energy system has been proposed for Pakistan as the best replacement for the present fossil fuel based energy system. It has been suggested to produce hydrogen via photovoltaic-electrolysis, utilizing the available non-agricultural sunny terrain in Baluchistan region. There will be a desalination plant for sea water desalination. The area under the photovoltaic panels with the availability of water would provide suitable environment for growing some cash crops. This would change the cast useless desert land into green productive farms. In order to show the quantitative benefits of the proposed system, future trends of important energy and economical parameters have been studied with and without hydrogen introduction. The following parameters have been included: population, energy demand (fossil + hydrogen), energy production (fossil + hydrogen), gross national product, fossil energy imports, world energy prices, air pollution, quality of life, environmental savings due to hydrogen introduction, savings due to the higher utilization efficiency of hydrogen, by-product credit, agricultural income, income from hydrogen sale, photovoltaic cell area, total land area, water desalination plant capacity, capital investment, operating and maintenance cost, and total income from the system. The results indicate that adopting the solar-hydrogen energy system would eliminate the import dependency of fossil fuels, increase gross product per capita, reduce pollution, improve quality of life and establish a permanent and clean energy system. The total annual expenditure on the proposed system is less than the total income from the proposed system. The availability of water, the cash crop production, electricity and hydrogen would result in rapid development of Baluchistan, the largest province of Pakistan.

  11. What are we 'tweeting' about obesity? Mapping tweets with Topic Modeling and Geographic Information System.

    PubMed

    Ghosh, Debarchana Debs; Guha, Rajarshi

    2013-01-01

    Public health related tweets are difficult to identify in large conversational datasets like Twitter.com. Even more challenging is the visualization and analyses of the spatial patterns encoded in tweets. This study has the following objectives: How can topic modeling be used to identify relevant public health topics such as obesity on Twitter.com? What are the common obesity related themes? What is the spatial pattern of the themes? What are the research challenges of using large conversational datasets from social networking sites? Obesity is chosen as a test theme to demonstrate the effectiveness of topic modeling using Latent Dirichlet Allocation (LDA) and spatial analysis using Geographic Information System (GIS). The dataset is constructed from tweets (originating from the United States) extracted from Twitter.com on obesity-related queries. Examples of such queries are 'food deserts', 'fast food', and 'childhood obesity'. The tweets are also georeferenced and time stamped. Three cohesive and meaningful themes such as 'childhood obesity and schools', 'obesity prevention', and 'obesity and food habits' are extracted from the LDA model. The GIS analysis of the extracted themes show distinct spatial pattern between rural and urban areas, northern and southern states, and between coasts and inland states. Further, relating the themes with ancillary datasets such as US census and locations of fast food restaurants based upon the location of the tweets in a GIS environment opened new avenues for spatial analyses and mapping. Therefore the techniques used in this study provide a possible toolset for computational social scientists in general and health researchers in specific to better understand health problems from large conversational datasets. PMID:25126022

  12. Installation package for a Sunspot Cascade Solar Water Heating System

    SciTech Connect

    1980-09-01

    Elcam, Incorporated of Santa Barbara, California, has developed two solar water heating systems. The systems have been installed at Tempe, Arizona and San Diego, California. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank and controls. General guidelines are provided which may be utilized in development of detailed instalation plans and specifications. In addition, it provides instruction on operation, maintenance and installation of solar hot water systems.

  13. Solar energy system economic evaluation: IBM System 4, Clinton, Mississippi

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An economic analysis of the solar energy system was developed for five sites, typical of a wide range of environmental and economic conditions in the continental United States. The analysis was based on the technical and economic models in the F-chart design procedure, with inputs based on the characteristic of the installed system and local conditions. The results are of the economic parameters of present worth of system cost over a 20 year time span: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated.

  14. Dark matter in the outer solar system

    NASA Technical Reports Server (NTRS)

    Owen, T.; Cruikshank, D.; De Bergh, C.; Geballe, T.

    1994-01-01

    There are now a large number of small bodies in the outer solar system that are known to be covered with dark material. Attempts to identify that material have been thwarted by the absence of discrete absorption features in the reflection spectra of these planetesimals. An absorption at 2.2 micrometers that appeared to be present in several objects has not been confirmed by new observations. Three absorptions in the spectrum of the unusually red planetesimal 5145 Pholus are well-established, but their identity remains a mystery.

  15. SOLAR SYSTEM OBJECTS AS COSMIC RAYS DETECTORS

    SciTech Connect

    Privitera, P.; Motloch, P.

    2014-08-10

    In a recent Letter, Jupiter is presented as an efficient detector for Ultra-High Energy Cosmic Rays (UHECRs), through measurement by an Earth-orbiting satellite of gamma rays from UHECRs showers produced in Jupiter's atmosphere. We show that this result is incorrect, due to erroneous assumptions on the angular distribution of shower particles. We evaluated other solar system objects as potential targets for UHECRs detection, and found that the proposed technique is either not viable or not competitive with traditional ground-based UHECRs detectors.

  16. Microarray assays for solar system exploration

    NASA Astrophysics Data System (ADS)

    Steele, Andrew; Toporski, Jan; McKay, David S.; Schweitzer, Mary; Pincus, Seth; Pérez-Mercader, Juan; Parro García, Victor

    2001-08-01

    The detection of evidence of extinct and extant life is a key issue in astrobiological research, particularly with respect to future exploration of the solar system. Simple life forms may have evolved and developed on planetary bodies such as Mars or Europa. At this point in time, tests whether life once was or still is present can only be carried out by means of in situ experiments. Here, we discuss the potential and advantages of immunological concepts for life detection and the development of a miniaturized automated immunoassay flight device.

  17. Nonlocal gravity in the solar system

    NASA Astrophysics Data System (ADS)

    Chicone, C.; Mashhoon, B.

    2016-04-01

    The implications of the recent classical nonlocal generalization of Einstein’s theory of gravitation for gravitational physics in the solar system are investigated. In this theory, the nonlocal character of gravity appears to simulate dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a 0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a 0 is determined.

  18. The interstellar connection to solar system bodies

    NASA Astrophysics Data System (ADS)

    Greenberg, J. M.; Hage, J.

    1991-04-01

    Solar system bodies such as comets and meteorites are examined for interstellar signatures which may ultimately indicate what the protoplanetary nebula conditions were at the time the bodies formed. This involves retracing the sequence starting with a dense interstellar cloud, through the accretion disk phase of the protoplanetary nebula to the various steps in the aggregation process and finally to the physical and chemical metamorphic processes in the final body during the subsequent 4.55 billion years. Models of interstellar dust and comets which aid in such analysis are presented.

  19. Test and evaluation of a solar-heating system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report documents results of evaluation tests performed on components of commerical solar heating and hot water system. Subsystems tested include flat plate solar collector, energy transport module, and control panel. Tests conducted include snow and wind loads, flame spread, and smoke classification as well as solar heating operation.

  20. Ultraviolet Radiation in the Solar System

    NASA Astrophysics Data System (ADS)

    Vázquez, M., Hanslmeier, A.

    UV radiation is an important part in the electromagnetic spectrum since the energy of the photons is great enough to produce important chemical reactions in the atmospheres of planets and satellites of our Solar System, thereby affecting the transmission of this radiation to the ground and its physical properties. Scientists have used different techniques (balloons and rockets) to access to the information contained in this radiation, but the pioneering of this new frontier has not been free of dangers. The Sun is our main source of UV radiation and its description occupies the first two chapters of the book. The Earth is the only known location where life exists in a planetary system and therefore where the interaction of living organism with UV radiation can be tested through different epochs and on distinct species. The development of the human technology has affected the natural shield of ozone that protects complex lifeforms against damaging UV irradiation. The formation of the ozone hole and its consequences are described, together with the possible contribution of UV radiation to recent climate changes. Finally, we will discuss the the potential role of ultraviolet light in the development of life on bodies such as Mars, Europa and Titan. The Solar System is not isolated; other external sources can contribute to the enhancement of the UV radiation in our environment. The influence of such events as nearby supernovae and gamma-ray bursts are described, together with the consequences to terrestrial life from such events.

  1. Cratering Rates in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Zahnle, K.; Levison, H.; Dones, L.; Schenk, P.

    1999-09-01

    We use numerical simulations of the orbital evolution of stray Kuiper Belt objects to relate the number of comets striking the planets to the number of Jupiter-family comets observed in the inner solar system. Cratering rates are obtained by accounting for gravitational focusing, cratering efficiency, and an intuitive average of the various available calibrations of cometary mass. The most telling craters are those of Triton, a retrograde moon in a prograde system. It is well-known that much of Triton's surface is relatively young. Less well-known is that Triton features the most startling hemispheric cratering asymmetry in the solar system: fresh impact craters are almost exclusively limited to the leading hemisphere. It would seem that Triton has been colliding almost exclusively with planetocentric debris. If so, then we conclude that Triton's trailing hemisphere is less than 10 million years old. Recent too must be the event that cratered the leading hemisphere. Once admitted we must consider planetocentric cratering of other, prograde satellites. In particular, the lack of a strong apex-antapex asymmetry on Ganymede is not as good an argument for nonsynchronous rotation as we once thought. Rather, many or most of Ganymede's craters might prove to be secondaries, most likely made by ejecta launched into orbit about Jupiter, only to return not too much later, like the insatiable shards of Texas in Armageddon II: The New Millenium.

  2. Improving the efficiency of solar photovoltaic power system

    NASA Astrophysics Data System (ADS)

    Aribisala, Henry A.

    As the local and national clamor for foreign energy independent United States continues to grow unabated; renewable energy has been receiving increased focus and it's widely believed that it's not only the answer to ever increasing demand for energy in this country, but also the environmentally friendly means of meeting such demand. During the spring of 2010, I was involved with a 5KW solar power system design project; the project involved designing and building solar panels and associated accessories like the solar array mounts and Solar Inverter system. One of the key issues we ran into during the initial stage of the project was how to select efficient solar cells for panel building at a reasonable cost. While we were able to purchase good solar cells within our allocated budget, the issue of design for efficiency was not fully understood , not just in the contest of solar cells performance , but also in the overall system efficiency of the whole solar power system, hence the door was opened for this thesis. My thesis explored and expanded beyond the scope of the aforementioned project to research different avenues for improving the efficiency of solar photo-voltaic power system from the solar cell level to the solar array mounting, array tracking and DC-AC inversion system techniques.

  3. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design and development of marketable solar heating and cooling systems for single family and commercial applications is described. The delivery, installation, and monitoring of the prototype systems are discussed. Seven operational test sites are discussed in terms of system performance. Problems encountered with equipment and installation were usually due to lack of skills required for solar system installation.

  4. The New Swedish Solar Telescope Control System

    NASA Astrophysics Data System (ADS)

    Dettori, Peter M.; Hosinsky, Göran

    2002-12-01

    This paper describes the new Swedish solar telescope control system which is currently in the final phases of testing and tuning. The telescope has two current controlled motors per axis and encoder resolution of 0.0016 arcsecond per pulse. The servo consists of a cascaded position-velocity loop system implemented on a Compaq Alpha workstation class computer. The servo position correction loop runs at a frequency of 100 Hz whilst the faster velocity loop runs at 1KHz. This choice of servo allows a methodical tuning of gains because each gain is correcting a seperate frequency range. We shall describe the mechanical design employed in the telescope and the computer control. The real time requirements of the control servo will be explained along with how we have used standard commercial hardware and operating system to achieve this.

  5. An innovative deployable solar panel system for Cubesats

    NASA Astrophysics Data System (ADS)

    Santoni, Fabio; Piergentili, Fabrizio; Donati, Serena; Perelli, Massimo; Negri, Andrea; Marino, Michele

    2014-02-01

    One of the main Cubesat bus limitations is the available on-board power. The maximum power obtained using body mounted solar panels and advanced triple junction solar cells on a triple unit Cubesat is typically less than 10 W. The Cubesat performance and the mission scenario opened to these small satellite systems could be greatly enhanced by an increase of the available power. This paper describes the design and realization of a modular deployable solar panel system for Cubesats, consisting of a modular hinge and spring system that can be potentially used on-board single (1U), double(2U), triple (3U) and six units (6U) Cubesats. The size of each solar panels is the size of a lateral Cubesat surface. The system developed is the basis for a SADA (Solar Array Drive Assembly), in which a maneuvering capability is added to the deployed solar array in order to follow the apparent motion of the sun. The system design trade-off is discussed, comparing different deployment concepts and architectures, leading to the final selection for the modular design. A prototype of the system has been realized for a 3U Cubesat, consisting of two deployable solar panel systems, made of three solar panels each, for a total of six deployed solar panels. The deployment system is based on a plastic fiber wire and thermal cutters, guaranteeing a suitable level of reliability. A test-bed for the solar panel deployment testing has been developed, supporting the solar array during deployment reproducing the dynamical situation in orbit. The results of the deployment system testing are discussed, including the design and realization of the test-bed, the mechanical stress given to the solar cells by the deployment accelerations and the overall system performance. The maximum power delivered by the system is about 50.4 W BOL, greatly enhancing the present Cubesat solar array performance.

  6. A Space Based Solar Power Satellite System

    NASA Astrophysics Data System (ADS)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one. Based on the expected revenues from about 300 customers, SPoTS needs a significant contribution from public funding to be commercial viable. However, even though the system might seem to be a huge investment first, it provides a unique steppingstone for future space based wireless transfer of energy to the Earth. Also the public funding is considered as an interest free loan and is due to be paid back over de lifetime period of SPoTS. These features make the SPoTS very attractive in comparison to other space projects of the same science field.

  7. Solar energy utilization and microcomputer control in the greenhouse builk curing and drying solar system

    SciTech Connect

    Nassar, A.N.H.

    1987-01-01

    Three agricultural applications in a specially designed greenhouse solar system functioning as a multi-purpose solar air collector for crop production and curing/drying processes are examined. An automated hydroponic crop production system is proposed for the greenhouse solar system. Design criteria of the proposed system and its utilization of solar energy for root-zone warming are presented and discussed. Based upon limited testing of the hydroponic system considered, hydroponic production of greenhouse crops is believed reasonable to complement the year-round use of the greenhouse solar system. The hardware/software design features of a microcomputer-based control system applied in the greenhouse solar barn are presented and discussed. On-line management and utilization of incident solar energy by the microcomputer system are investigated for both the greenhouse and tobacco curing/drying modes of operation. The design approach considered for the microcomputer control system is believed suitable for regulating solar energy collection and utilization for crop production applications in greenhouse systems.

  8. CALL FOR PAPERS: Topical issue on the nonstationary Casimir effect and quantum systems with moving boundaries

    NASA Astrophysics Data System (ADS)

    Barton, Gabriel; Dodonov, Victor V.; Man'ko, Vladimir I.

    2004-05-01

    The past few years have seen a growing interest in quantum mechanical systems with moving boundaries. One of its manifestations was the First International Workshop on Problems with Moving Boundaries organized by Professor J Dittrich in Prague in October 2003. Another event in this series will be the (first) International Workshop on the Dynamical Casimir Effect in Padua in June 2004, organized by Professor G Carugno (see webpage www.pd.infn.it/casimir/ for details). As Guest Editors we invite researchers working in any area related to moving boundaries to contribute to a Topical Issue of Journal of Optics B: Quantum and Semiclassical Optics on the nonstationary Casimir effect and quantum systems with moving boundaries. Our intention is to cover a wide range of topics. In particular, we envisage possible contributions in the following areas: Theoretical and experimental studies on quantum fields in cavities with moving boundaries and time-dependent media. This area includes, in particular, various manifestations of the nonstationary (dynamical) Casimir effect, such as creation of quanta and modifications of Casimir force due to the motion of boundaries. Other relevant subjects are: generation and evolution of nonclassical states of fields and moving mirrors; interaction between quantized fields and atoms in cavities with moving boundaries; decoherence and entanglement due to the motion of boundaries; field quantization in nonideal cavities with moving boundaries taking into account losses and dispersion; nano-devices with moving boundaries. Quantum particles in domains confined with moving boundaries. This area includes: new exact and approximate solutions of the evolution equations (Schrödinger, Klein-Gordon, Dirac, Fokker-Planck, etc); quantum carpets and revivals; escape and tunnelling through moving barriers; evolution of quantum packets in the presence of moving boundaries; ultracold atoms (ions) in traps with moving boundaries. The topical issue is scheduled for publication in March 2005 and the deadline for submission of contributions is 1 August 2004. The Editorial Division of Institute of Physics Publishing at the P. N. Lebedev Physical Institute in Moscow will oversee editorial procedures in association with the main Publishing Office in Bristol. All contributions will be peer-reviewed in accordance with the normal refereeing procedures and standards of Journal of Optics B: Quantum and Semiclassical Optics. Submissions should preferably be in either standard LaTeX form or Microsoft Word. Advice on publishing your work in the journal may be found at www.iop.org/journals/authors/jopb. There are no page charges for publication. Contributions to the topical issue, quoting `Topical Issue/NCE', should be submitted by e-mail to IOPP@sci.lebedev.ru or as hard copy (enclosing the electronic code) to IOPP Division, P. N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 Russia.

  9. Targeted localized use of therapeutic antibodies: a review of non-systemic, topical and oral applications.

    PubMed

    Jones, Russell G A; Martino, Angela

    2016-06-01

    Therapeutic antibodies provide important tools in the "medicine chest" of today's clinician for the treatment of a range of disorders. Typically monoclonal or polyclonal antibodies are administered in large doses, either directly or indirectly into the circulation, via a systemic route which is well suited for disseminated ailments. Diseases confined within a specific localized tissue, however, may be treated more effectively and at reduced cost by a delivery system which targets directly the affected area. To explore the advantages of the local administration of antibodies, we reviewed current alternative, non-systemic delivery approaches which are in clinical use, being trialed or developed. These less conventional approaches comprise: (a) local injections, (b) topical and (c) peroral administration routes. Local delivery includes intra-ocular injections into the vitreal humor (i.e. Ranibizumab for age-related macular degeneration), subconjunctival injections (e.g. Bevacizumab for corneal neovascularization), intra-articular joint injections (i.e. anti-TNF alpha antibody for persistent inflammatory monoarthritis) and intratumoral or peritumoral injections (e.g. Ipilimumab for cancer). A range of other strategies, such as the local use of antibacterial antibodies, are also presented. Local injections of antibodies utilize doses which range from 1/10th to 1/100th of the required systemic dose therefore reducing both side-effects and treatment costs. In addition, any therapeutic antibody escaping from the local site of disease into the systemic circulation is immediately diluted within the large blood volume, further lowering the potential for unwanted effects. Needle-free topical application routes become an option when the condition is restricted locally to an external surface. The topical route may potentially be utilized in the form of eye drops for infections or corneal neovascularization or be applied to diseased skin for psoriasis, dermatitis, pyoderma gangrenosum, antibiotic resistant bacterial infections or ulcerated wounds. Diseases confined to the gastrointestinal tract can be targeted directly by applying antibody via the injection-free peroral route. The gastrointestinal tract is unusual in that its natural immuno-tolerant nature ensures the long-term safety of repeatedly ingesting heterologous antiserum or antibody materials. Without the stringent regulatory, purity and clean room requirements of manufacturing parenteral (injectable) antibodies, production costs are minimal, with the potential for more direct low-cost targeting of gastrointestinal diseases, especially with those caused by problematic antibiotic resistant or toxigenic bacteria (e.g. Clostridium difficile, Helicobacter pylori), viruses (e.g. rotavirus, norovirus) or inflammatory bowel disease (e.g. ulcerative colitis, Crohn's disease). Use of the oral route has previously been hindered by excessive antibody digestion within the gastrointestinal tract; however, this limitation may be overcome by intelligently applying one or more strategies (i.e. decoy proteins, masking therapeutic antibody cleavage sites, pH modulation, enzyme inhibition or encapsulation). These aspects are additionally discussed in this review and novel insights also provided. With the development of new applications via local injections, topical and peroral routes, it is envisaged that an extended range of ailments will increasingly fall within the clinical scope of therapeutic antibodies further expanding this market. PMID:25600465

  10. Solar-System Tests of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin

    1997-01-01

    We are engaged in testing gravitational theory by means of observations of objects in the solar system. These tests include an examination of the Principle Of Equivalence (POE), the Shapiro delay, the advances of planetary perihelia, the possibility of a secular variation G in the "gravitational constant" G, and the rate of the de Sitter (geodetic) precession of the Earth-Moon system. These results are consistent with our preliminary results focusing on the contribution of Lunar Laser Ranging (LLR), which were presented at the seventh Marcel Grossmann meeting on general relativity. The largest improvement over previous results comes in the uncertainty for (eta): a factor of five better than our previous value. This improvement reflects the increasing strength of the LLR data. A similar analysis presented at the same meeting by a group at the Jet Propulsion Laboratory gave a similar result for (eta). Our value for (beta) represents our first such result determined simultaneously with the solar quadrupole moment from the dynamical data set. These results are being prepared for publication. We have shown how positions determined from different planetary ephemerides can be compared and how the combination of VLBI and pulse timing information can yield a direct tie between planetary and radio frames. We have continued to include new data in our analysis as they became available. Finally, we have made improvement in our analysis software (PEP) and ported it to a network of modern workstations from its former home on a "mainframe" computer.

  11. OSSOS: The Outer Solar System Origins Survey

    NASA Astrophysics Data System (ADS)

    Gladman, Brett; Bannister, Michele; Kavelaars, Jj; Petit, Jean-Marc; Gwyn, Stephen; Chen, Ying-Tung

    2014-11-01

    We present the first detection set from the Outer Solar System Origins Survey (OSSOS) which is a mammoth 560-hour CFHT Large Program over 4 years (finishing January 2017). This is likely to be the largest Kuiper Belt survey before LSST comes on line (in terms of the number of precise transneptunian object (TNO) orbits it provides).OSSOS studies gradually-slewing 21-square degree blocks of sky that are repeatedly imaged in many dark runs over two semesters. This strategy is designed to detect and track TNOs in order to provide extremely high-quality orbits in a short amount of time; in 16-18 month arcs we are obtaining fractional semimajor axis uncertainties in the range 0.01-0.1% and accuracies in the libration amplitudes of resonant objects better than 10 degrees, due to mean astrometric residuals routinely being of order 50-100 milliarcseconds.This talk will present the survey design and full detection sample for objects observed in the first half of 2013 and 2014. We will report how adding these detections to those from the Canada-France Ecliptic Plane Survey (CFEPS) modifies conclusions about the orbital and size distribution of main classical Kuiper Belt, as well as other non-resonant sub-populations. In particular, because OSSOS is sensitive to, and has detected objects, from 8 AU to beyond 60 AU, we will report on how the combined distance and magnitude distribution impact dicsussions of the absolute magnitude distribution of outer Solar System objects.

  12. Solar System Portrait - Views of 6 Planets

    NASA Technical Reports Server (NTRS)

    1990-01-01

    These six narrow-angle color images were made from the first ever 'portrait' of the solar system taken by Voyager 1, which was more than 4 billion miles from Earth and about 32 degrees above the ecliptic. The spacecraft acquired a total of 60 frames for a mosaic of the solar system which shows six of the planets. Mercury is too close to the sun to be seen. Mars was not detectable by the Voyager cameras due to scattered sunlight in the optics, and Pluto was not included in the mosaic because of its small size and distance from the sun. These blown-up images, left to right and top to bottom are Venus, Earth, Jupiter, and Saturn, Uranus, Neptune. The background features in the images are artifacts resulting from the magnification. The images were taken through three color filters -- violet, blue and green -- and recombined to produce the color images. Jupiter and Saturn were resolved by the camera but Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposure times. Earth appears to be in a band of light because it coincidentally lies right in the center of the scattered light rays resulting from taking the image so close to the sun. Earth was a crescent only 0.12 pixels in size. Venus was 0.11 pixel in diameter. The planetary images were taken with the narrow-angle camera (1500 mm focal length).

  13. Solar-System Tests of Gravitational Theories

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.

    2001-01-01

    We are engaged in testing gravitational theory, primarily using observations of objects in the solar system and primarily on that scale. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to place tighter bounds on such departures. For this project, we have analyzed a combination of observational data with our model of the solar system, including mostly planetary radar ranging, lunar laser ranging, and spacecraft tracking, but also including both pulsar timing and pulsar very long base interferometry (VLBI) measurements. This year, we have extended our model of Earth nutation with adjustable correction terms at the principal frequencies. We also refined our model of tidal drag on the Moon's orbit. We believe these changes will make no substantial changes in the results, but we are now repeating the analysis of the whole set of data to verify that belief. Additional information is contained in the original extended abstract.

  14. An Introduction to the Solar System

    NASA Astrophysics Data System (ADS)

    McBride, Neil; Gilmour, Iain

    2004-02-01

    Compiled by a team of experts, this textbook has been designed for introductory university courses in planetary science. It starts with a tour of the Solar System and an overview of its formation. The composition, internal structure, surface morphology and atmospheres of the terrestrial planets are then described. This leads naturally to a discussion of the giant planets and why they are compositionally different. Minor bodies are reviewed and the book concludes with a discussion of the origin of the Solar System and the evidence from meteorites. Written in an accessible style that avoids complex mathematics, and illustrated in colour throughout, this book is suitable for self-study and will appeal to amateur enthusiasts as well as undergraduate students. It contains numerous helpful learning features such as boxed summaries, student exercises with full solutions, and a glossary of terms. The book is also supported by a website hosting further teaching materials. Written by a team of experts in an accessible style that avoids complex mathematics, and illustrated in colour throughout Contains numerous pedagogical features including boxed summaries, brief biographies of pioneering astronomers, bulleted questions and answers throughout, over 90 exercises with full solutions, and a glossary of terms Supported by a website hosting additional teaching materials including illustrations, further exercises and links to other Internet resources

  15. A Ninth Planet in Our Solar System?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    The recent discovery that the orbits of some Kuiper belt objects (KBOs) share properties has proved puzzling. A pair of scientists have now proposed a bold explanation: there may be a planet-sized object yet undetected in our solar system.Mysterious ClusteringKBOs, the population of mainly small objects beyond Neptune, have proven an especially interesting subject of study in the last decade as many small, distant bodies (such as Eris, the object that led to the demotion of Pluto to dwarf planet) have been discovered.Previous studies have recently discovered that some especially distant KBOs those that orbit with semimajor axes of a 150 AU, nearly four times that of Pluto all cross the ecliptic at a similar phase in their elliptical trajectories. This is unexpected, since gravitational tugs from the giant planets should have randomized this parameter over our solar systems multi-billion-year lifespan.Physical alignment of the orbits of Kuiper belt objects with a 250 AU (and two objects with a 150 AU that are dynamically stable). [Batygin Brown 2016]Two scientists at California Institute of Technology, Konstantin Batygin and Michael Brown (you might recognize Brown as the man who killed Pluto) have now increased the mystery. In a recently published a study, they demonstrate that for KBOs that have orbits with a 250 AU, the orbits are actually physically aligned.To explain this unexpected alignment which Batygin and Brown calculate has only a 0.007% probability of having occurred by chance the authors ask an exciting question: could this be caused by the presence of an unseen, large, perturbing body further out in the solar system?Simulating a Ninth PlanetThe authors test this hypothesis by carrying out both analytical calculations and numerical N-body simulations designed to determine if the gravitational influence of a distant, planetary-mass companion can explain the behavior we observe from the large-orbit KBOs.Simulation of the effect of a distant planet (M = 10 M, a = 700 AU, and e = 0.6) on KBOs; click for a better look! The perihelion position of KBOs with a 250 AU clusters around 180 from the perihelion position of the perturbing planet. More-transparent points are less observable. [Batygin Brown 2016]The result? It turns out that such a distant planet can cause the orbits of KBOs with a 250 AU to all align in the opposite direction of the orbit of the planet. Whats more, the gravitational pull of this planet can also explain other unresolved puzzles about the Kuiper belt, such as the presence of high-perihelion Sedna-like objects, as well as a population of KBOs weve observed that have misaligned orbits.Unfortunately, Batygin and Brown found it isnt possible to exactly determine the properties of the possible planet, since multiple combinations of its mass, eccentricity, and semimajor axis can create the same observational results. That said, they believe the distant perturbers orbit is highly eccentric, its orbital inclination is low, and its fairly massive (since anything less than an Earth-mass wont create the observed clustering of KBO orbits within the age of the solar system).As an example, one possible set of parameters that approximately reproduces the observed KBO orbits is the following:planet mass of 10 Earth-massessemi-major axis of a = 700 AUeccentricity of e = 0.6This would correspond to a perihelion distance of 280 AU and an aphelion distance of 1,120 AU.The authors speculate such a planet might have been formed closer in to the Sun, but it was ejected later on during our solar systems evolution. Interactions with the Suns birth cluster could have then caused the planet to be retained in a bound orbit.Future TestsOur solar system on a logarithmic scale (click for the full view). KBOs with a semimajor axis of a 250 AU may be being aligned by a planetary-mass body with an even more distant orbit. [NASA]How can we test this hypothesis of a ninth planet? Obviously, directly observing the planet would confirm its presence. But the authors model has an additional testable hypothesis: if its correct, there should be a population of high-perihelion Kuiper belt objects that dont exhibit the same alignment of their orbits as the KBOs we know about, but instead have opposite-aligned orbits. If we discover such a collection of objects, that would be an excellent confirmation of this model.The authors caution that their work is preliminary, and additional investigation will be required to better understand the possibilities presented here. But with any luck, future theoretical work, as well as observational tests of this models predictions, will help us determine whether there might be a distant ninth planet in our solar system!BonusCheck out this video (created with WWT!), which walks us first through a view of the six aligned KBO orbits, then shows a possible orbit for the hypothesized planet, and then shows an additional population of already-discovered objects (also predicted by the model) that have orbits perpendicular both to the plane of the solar system and to the planets orbit. [Caltech/Robert Hurt]http://aasnova.org/wp-content/uploads/2016/01/Planet9_anim_720.m4vCitationKonstantin Batygin and Michael E. Brown 2016 AJ 151 22. doi:10.3847/0004-6256/151/2/22

  16. Solar energy system performance evaluation: final report for Honeywell OTS 41, Shenandoah (Newnan), Georgia

    SciTech Connect

    Mathur, A K; Pederson, S

    1982-08-01

    The operation and technical performance of the Solar Operational Test Site (OTS 41) located at Shenandoah, Georgia, are described, based on the analysis of data collected between January and August 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 41 is a hydronic heating and cooling system consisting of 702 square feet of liquid-cooled flat-plate collectors; a 1000-gallon thermal storage tank; a 3-ton capacity organic Rankine-cycle-engine-assisted air conditioner; a water-to-air heat exchanger for solar space heating; a finned-tube coil immersed in the storage tank to preheat water for a gas-fired hot water heater; and associated piping, pumps, valves, and controls. The solar system has six basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 7 months of the Operational Test Period, the solar system collected 53 MMBtu of thermal energy of the total incident solar energy of 219 MMBtu and provided 11.4 MMBtu for cooling, 8.6 MMBtu for heating, and 8.1 MMBtu for domestic hot water. The projected net annual energy savings due to the solar system were approximately 50 MMBtu of fossil energy (49,300 cubic feet of natural gas) and a loss of 280 kWh(e) of electrical energy.

  17. Solar Sailing

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  18. Megawatt solar power systems for lunar surface operations

    NASA Technical Reports Server (NTRS)

    Adams, B.; Alhadeff, S.; Beard, S.; Carlile, D.; Cook, D.; Douglas, C.; Garcia, D.; Gillespie, D.; Golingo, R.; Gonzalez, D.

    1990-01-01

    The work presented here shows that a solar power system can provide power on the order of one megawatt to a lunar base with a fairly high specific power. The main drawback to using solar power is still the high mass, and therefore, cost of supplying energy storage through the solar night. The use of cryogenic reactant storage in a fuel cell system, however, greatly reduces the total system mass over conventional energy storage schemes.

  19. Rosacea: part II. Topical and systemic therapies in the treatment of rosacea.

    PubMed

    Two, Aimee M; Wu, Wiggin; Gallo, Richard L; Hata, Tissa R

    2015-05-01

    Although rosacea's impact on physical health is limited, it has profound effects on a person's psychological well-being. Therefore, treating rosacea can greatly affect a person's quality of life. Patient education regarding trigger avoidance and skin care techniques such as moisturizing and sun protection are important non-pharmacologic first steps in treating rosacea. Pharmacologic interventions range from topical to systemic medications, with the ideal medication choice dependent on the symptoms and severity of each individual patient. Despite this variety of therapeutic options, none of these therapies are completely curative, and therefore further research into the pathophysiology of rosacea is required in order to create more targeted and efficacious treatment options. PMID:25890456

  20. Effect of dacryocystorhinostomy on systemic adverse effects of topical timolol maleate

    PubMed Central

    Roy, Kakoli; Mondal, Kanchan Kumar; Ray, Biswarup; Chakraborty, Soumen; Biswas, Supreeti; Baral, Bijoy Kumar

    2012-01-01

    Purpose: To evaluate whether transformation of the naso-lacrimal passage as happens after dacryocystorhinostomy (DCR) operation has any effect on the systemic adverse effects of topically administered timolol maleate. Materials and Methods: Fifty otherwise healthy adult patients without any prior history of cardiac or pulmonary problems scheduled for elective DCR surgery received a drop of timolol maleate 0.5% on the healthy eye. This eye served as a control. Six weeks after successful DCR surgery, the operated eye received the same medication. Parameters compared included intraocular pressure (IOP), pulse rate, blood pressure and forced expiratory volume in the first second (FEV1) findings. Observations: Post DCR patients showed an increased incidence of reduced pulse rate and FEV1. Conclusion: Timolol maleate ophthalmic preparation should be used with caution in post-DCR patients. PMID:22446904

  1. Organic Matter in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Cruiskshank, Dale P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Many solid bodies in the outer Solar System are covered with ices of various compositions, including water, carbon dioxide, methane, nitrogen, and other molecules that are solid at the low temperatures that prevail there. These ices have all been detected by remote sensing observations made with telescopes on Earth, or more recently, spacecraft in orbit (notably Galileo at Jupiter). The data also reveal other solid materials that could be minerals or complex carbon-bearing organic molecules. A study in progress using large ground-based telescopes to acquire infrared spectroscopic data, and laboratory results on the optical properties of complex organic matter, seeks to identify the non-icy materials on several satellites of Saturn, Uranus, and Neptune. The work on the satellites of Saturn is in part preparatory to the Cassini spacecraft investigation of the Saturn system, which will begin in 2004 and extend for four years.

  2. Nanoformulations of Rilpivirine for Topical Pericoital and Systemic Coitus-Independent Administration Efficiently Prevent HIV Transmission

    PubMed Central

    Date, Abhijit A.; Long, Julie M.; Nochii, Tomonori; Belshan, Michael; Shibata, Annemarie; Vincent, Heather; Baker, Caroline E.; Thayer, William O.; Kraus, Guenter; Lachaud-Durand, Sophie; Williams, Peter; Destache, Christopher J.; Garcia, J. Victor

    2015-01-01

    Vaginal HIV transmission accounts for the majority of new infections worldwide. Currently, multiple efforts to prevent HIV transmission are based on pre-exposure prophylaxis with various antiretroviral drugs. Here, we describe two novel nanoformulations of the reverse transcriptase inhibitor rilpivirine for pericoital and coitus-independent HIV prevention. Topically applied rilpivirine, encapsulated in PLGA nanoparticles, was delivered in a thermosensitive gel, which becomes solid at body temperature. PLGA nanoparticles with encapsulated rilpivirine coated the reproductive tract and offered significant protection to BLT humanized mice from a vaginal high-dose HIV-1 challenge. A different nanosuspension of crystalline rilpivirine (RPV LA), administered intramuscularly, protected BLT mice from a single vaginal high-dose HIV-1 challenge one week after drug administration. Using transmitted/founder viruses, which were previously shown to establish de novo infection in humans, we demonstrated that RPV LA offers significant protection from two consecutive high-dose HIV-1 challenges one and four weeks after drug administration. In this experiment, we also showed that, in certain cases, even in the presence of drug, HIV infection could occur without overt or detectable systemic replication until levels of drug were reduced. We also showed that infection in the presence of drug can result in acquisition of multiple viruses after subsequent exposures. These observations have important implications for the implementation of long-acting antiretroviral formulations for HIV prevention. They provide first evidence that occult infections can occur, despite the presence of sustained levels of antiretroviral drugs. Together, our results demonstrate that topically- or systemically administered rilpivirine offers significant coitus-dependent or coitus-independent protection from HIV infection. PMID:26271040

  3. Solar Assisted Adsorptive Desiccant Cooling System

    NASA Astrophysics Data System (ADS)

    Ohkura, Masashi; Kodama, Akio

    Solar assisted desiccant coo1ing process is an effective means to reduce a latent heat load of the ventilation air. This paper describes the influences of ambient humidity and sensible heat factor (SHF) of the indoor room on the performance and scale of the desiccant cooling system. Two process configurations termed “ambient air mode” and “mixed air mode” were assumed. At “ambient air mode”, only ambient air is dehumidified and cooled in the desiccant process. The dehumidified air stream is mixed with return air and further cooled in the cooling coil. At “mixed air mode”, ambient air is mixed with return air and this mixed air stream is dehumidified in the desiccant process and cooled at the cooling coil. At “ambient air mode”, ambient air humidity had a significant impact on required amount of dehumidification since humid ambient air entered the desiccant process directly. In this case, higher temperature level and quantity, which is impossible to be supplied from commonly commercialized flat panel solar collectors, was required. At “mixed air mode”, the influence of increase of ambient humidity was not significant since humidity of the air entering the desiccant process became low by mixing with return air. At this mode, it was expected that 70°C of the circulating water and 37m2 of surface area of solar collector could produce a sufficient dehumidifying performance even in high latent heat condition. The contributing ratio of the desiccant wheel was also estimated. The ratio increased in higher latent heat condition due to increase of required amount of dehumidification. The contributing ratio of the thermal wheel became lower due to increase of saturated air temperature in the evaporative cooler.

  4. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Eight prototype solar heating and combined heating and cooling systems are considered. This effort includes development, manufacture, test, installation, maintenance, problem resolution, and performance evaluation.

  5. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress made in the manufacture, test, evaluation, installation, problem resolution, performance evaluation, and development of eight prototype solar heating and combined heating and cooling systems is described.

  6. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Eight prototype solar heating and combined heating and cooling systems are being developed. The effort includes development, manufacture, test, installation, maintenance, problem resolution, and performance evaluation.

  7. Solar astronomy

    NASA Technical Reports Server (NTRS)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  8. PRELIMINARY ENVIRONMENTAL ASSESSMENT OF SOLAR ENERGY SYSTEMS

    EPA Science Inventory

    This report addresses the environmental consequences of three kinds of solar energy utilization: photovoltaic, concentrator (steam electric) and flat plate. The application of solar energy toward central power generating stations is emphasized. Discussions of combined modes and o...

  9. Implementation of optimum solar electricity generating system

    SciTech Connect

    Singh, Balbir Singh Mahinder Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  10. Implementation of optimum solar electricity generating system

    NASA Astrophysics Data System (ADS)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  11. Resources and Opportunities to Help Scientists Engage Learners in Solar System Exploration

    NASA Astrophysics Data System (ADS)

    Shipp, S. S.; Halligan, E.; Shupla, C.; Dalton, H.; Boonstra, D.; Buxner, S.; Zimmerman-Brachman, R.; Wessen, A.; Baerg, G.; Davis, P.; Burdick, A.

    2012-12-01

    Within NASA's New Worlds, New Discoveries initiative, the Year of the Solar System (YSS) and 50 Years of Solar System Exploration offer resources and opportunities to help scientists engage the public. An unprecedented number of missions - from Curiosity roving Mars, to Cassini's stunning images of Saturn, to New Horizons' journey to the icy world of Pluto - are building a new scientific understanding of our solar system and affording opportunities to engage the public in the excitement of discovery. More than 20 thematic topics are presented on the YSS website, including ice in the solar system, planetary volcanism, small bodies, and the possibility of life elsewhere. Each is accompanied by recommended activities for classroom and informal learning environments, educational resources, current research results, and opportunities to engage the public, such as mission milestones and celestial events. Scientists are encouraged to integrate the resources into their current education and public outreach activities, or use the opportunities for engagement to initiate a new activity. Examples of successful ways the resources are being used in the classroom, with informal venues, and with the public will be presented. Through the YSS resources, scientists are invited to share the excitement of new solar system discoveries with teachers, students, and families in their communities.

  12. Communicating Herschel Key Programs in Solar System Studies to the Public

    NASA Astrophysics Data System (ADS)

    Rengel, M.; Hartogh, P.; Müller, T.

    2011-10-01

    The Herschel Space Observatory, one of the cornerstone missions of the European Space Agency (ESA) with participation from NASA, is delivering a wealth of far-infrared and sub-millimeter observations of the cold Universe. A considerable part of the observing time for the nominal three year mission lifetime has been awarded in the form of Key Programs. Between the 42 key programs (guaranteed and open times), only two key programs are dedicated to study the Solar System: "Water and Related Chemistry in the Solar System", also known as Herschel Solar System Observations (HssO) project [1], and "TNOs are Cool: A Survey of the Transneptunian Region" [2]. In the framework of these Programs, a serie of public outreach activities and efforts of its results are being carried out. We present some of the outreach strategies developed (e.g. press releases, web pages, logos, public lectures, exhibitions, interviews, reports, etc.) and some plans in this direction. Our activities introduce people to knowledge and beauty of solar system research and wider the opportunities for the public to become more involved in topics like solar system studies, specially in the times of frequent exo-planet discoveries.

  13. Design data brochure for a pyramidal optics solar system

    SciTech Connect

    Not Available

    1980-09-01

    This Design Data Brochure provides information on a Pyramidal Optics Solar System for solar heating and domestic hot water. The system is made up of the collecting, storage, and distribution subsystems. Contained in the brochure are such items as system description, available accessories, installation arrangements, physical data, piping and wiring diagrams, and guide specifications.

  14. Design data brochure for a pyramidal optical solar system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A pyramidal optics solar system for solar heating and domestic hot water is described. The system is made up of the collecting, storage, and distribution subsystems. System description, available accessories, installation arrangements, physical data, piping and wiring diagrams, and guide specifications are included.

  15. Installation package for a solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  16. Heat-Transfer Fluids for Solar-Energy Systems

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1982-01-01

    43-page report investigates noncorrosive heat-transport fluids compatible with both metallic and nonmetallic solar collectors and plumbing systems. Report includes tables and figures of X-ray inspections for corrosion and schematics of solar-heat transport systems and heat rejection systems.

  17. Inhibitor analysis for a solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    Tabony, J. H.

    1977-01-01

    A study of potential corrosion inhibitors for the NASA solar heating and cooling system which uses aluminum solar panels is provided. Research consisted of testing using a dynamic corrosion system, along with an economic analysis of proposed corrosion inhibitors. Very good progress was made in finding a suitable inhibitor for the system.

  18. Developing, testing, evaluating and optimizing solar heating and cooling systems

    SciTech Connect

    Not Available

    1992-01-24

    The objective is to develop and test various integrated solar heating, cooling and domestic hot water systems, and to evaluate their performance. Systems composed of new, as well as previously tested, components are carefully integrated so that effects of new components on system performance can be clearly delineated. The SEAL-DOE program includes six tasks which have received funding for the 1991--92 fifteen-month period. These include: (1) a project employing isothermal operation of air and liquid solar space heating systems; (2) a project to build and test several generic solar water heaters; (3) a project that will evaluate advanced solar domestic hot water components and concepts and integrate them into solar domestic hot water systems; (4) a liquid desiccant cooling system development project; (5) a project that will perform system modeling and analysis work on solid desiccant cooling systems research; and (6) a management task. The objectives and progress in each task are described in this report.

  19. Chemical compositions of primitive solar system particles

    NASA Technical Reports Server (NTRS)

    Sutton, Steve R.; Bajt, S.

    1994-01-01

    Chemical studies of micrometeorites are of fundamental importance primarily because atmospheric entry selection effects (such as destruction of friable objects) are less significant than those for conventional meteorites. As a result, particles that have experienced very little postaccretional processing have a significant chance of surviving the Earth encounter and subsequent collection. Thus, chemical analyses of these relatively unaltered micrometeorites may lead to a better understanding of the compositions of the most primitive materials in the solar system and thereby constrain the conditions (physical and chemical) that existed in the early solar nebula. Micrometeorites have been collected from the stratosphere, polar ices, and ocean sediments, but the stratospheric collection is the best source for the most unaltered material because they are small and are not heated to their melting points. Despite the fact that the stratospheric micrometeorites have masses in the nanogram range, a variety of microanalytical techniques have been applied to bulk chemical analyses with part-per-million sensitivity. In some cases, multi-disciplinary studies (e.g., chemistry and mineralogy) have been performed on individual particles. The first-order conclusion is that the chondrite-like particles are chemically similar to carbonaceous chondrites but in detail are distinct from members of the conventional meteorite collection. The purpose of this paper is to provide an overview of the results to date and identify important areas for further study.

  20. MOND effects in the inner Solar system

    NASA Astrophysics Data System (ADS)

    Milgrom, Mordehai

    2009-10-01

    I pinpoint a previously unrecognized MOND effect that may act in the inner Solar system, and is due to the galactic acceleration gg = ?a0: a byproduct of the MOND external-field effect. Predictions of the effect are not generic to the MOND paradigm, but depend on the particular MOND formulation at hand. However, the modified Poisson formulation, on which I concentrate, uniquely predicts a subtle anomaly that may be detected in planetary and spacecraft motions (and perhaps in other precision systems, such as binary pulsars), despite their very high accelerations, and even if the MOND interpolating function is arbitrarily close to unity at high accelerations. Near the Sun, this anomaly appears as a quadrupole field, with the acceleration at position u from the Sun being gai(u) = -qaijuj, with qaij diagonal, axisymmetric and traceless: -2qaxx = -2qayy = qazz = q(?)(a0/RM), where RM = (MsolarG/a0)1/2 ~ 8 103au is the MOND transition radius of the Sun. The anomaly is described and analysed as the Newtonian field of the fictitious cloud of `phantom matter' that hovers around the Sun. I find, for the relevant range of ? values and for a range of interpolating functions, ?(x), values of 10-2 <~ -q <~ 0.3, which turn out to be sensitive to the form of ?(x) around the MOND-to-Newtonian transition. This range verges on the present bounds from Solar system measurements. There might thus exist favourable prospects for either measuring the effect or constraining the theory and relevant parameters. Probing this anomaly may also help distinguish between modified-inertia and modified-gravity formulations of MOND. I also discuss briefly an anomaly that is generic to MOND in all its formulations, and competes with the quadrupole anomaly in the special case that 1 - ?(x) vanishes as x-3/2 as x -> ?.

  1. Carbon in the outer solar system

    NASA Technical Reports Server (NTRS)

    Simonelli, D. P.; Pollack, J. B.; Mckay, C. P.

    1990-01-01

    The satellites of Uranus, with densities between 1.3 and 1.7 g cm(-3) (from Voyager 2 observations) and the Pluto-Charon system, with a mean density of just above 1.8 g cm(-3) (from terrestrial observations of mutual eclipse events), are too dense to have a significant amount of methane ice in their interiors. However, the observed densities do not preclude contributions from such organic materials as the acid-insoluble residue in carbonaceous chondrites and laboratory-produced tholins, which have densities on the order of approximately 1.5 g cm(-3). These and other considerations have led researchers to investigate the carbon mass budget in the outer solar system, with an emphasis on understanding the contribution of organic materials. Modeling of the interiors of Pluto and Charon (being carried out by R. Reynolds and A. Summers of NASA/Ames), assuming rock and water ice as the only constituents, suggests a silicate mass fraction for this system on the order of 0.65 to 0.70. The present work includes the most recent estimates of the C/H enhancements and high z/low z ratios of the giant planets (Pollack and Bodenheimer, 1987), and involves a more careful estimation of the high z/low z mass ratio expected from solar abundances than was used in Pollack et al. (1986), including the influence of the fraction of C in CO on the amount of condensed water ice. These calculations indicate that for a particular fraction of C in CO and a given fraction of C-bearing planetesimals that dissolve in the envelope (most likely in the range 0.50 to 0.75), (1) Jupiter and Saturn require a larger fraction of C in condensed materials than Uranus and Neptune, but (2) the Jupiter and Saturn results are much less strongly constrained by the error bars on the observed C/H enhancements and high z/low z ratios than is the case for Uranus and Neptune. The clearest result is that in the region of the solar nebula near Uranus and Neptune, the minority of carbon that is not in gaseous CO (1) must include a nonzero amount of condensed material, but (2) is most likely not condensed material alone, i.e., there must be a third carbon-bearing component besides condensed material and gaseous CO. Given the implied dearth of methane ice, the condensed carbon is likely dominated by organic material, and the third component present in addition to CO and organics is assumed to be CH4 gas.

  2. Isotopic heterogeneities in the solar system - Special report

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Papanastassiou, D. A.; Lee, T.

    1979-01-01

    The paper discusses the nature of isotopic anomalies in solar system material with emphasis on correlated anomalies in refractory elements. Evidence for the existence of short-lived radioactive nuclides in the early solar system is used to estimate the time scale for the last injection of freshly synthesized nuclear material. It is shown that the early solar nebula was incompletely mixed and contained debris which was injected from a stellar source at most a few million years prior to the formation of the solar system. The average solar system material consists of ambient interstellar material deficient in certain nuclear species to which a small fraction of freshly synthesized material was added. The isotopic variations reflect slightly different proportions of nuclei from different stellar sources which were locally well mixed and homogenized prior to or during the formation of the early solar nebula condensates.

  3. Solar heating and cooling technical data and systems analysis

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1976-01-01

    The accomplishments of a project to study solar heating and air conditioning are outlined. Presentation materials (data packages, slides, charts, and visual aids) were developed. Bibliographies and source materials on materials and coatings, solar water heaters, systems analysis computer models, solar collectors and solar projects were developed. Detailed MIRADS computer formats for primary data parameters were developed and updated. The following data were included: climatic, architectural, topography, heating and cooling equipment, thermal loads, and economics. Data sources in each of these areas were identified as well as solar radiation data stations and instruments.

  4. Prototype residential solar-energy system-design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Compilation includes documents and drawings for complete solar-heating system. It discussed system installed in residential building at Veterns' Administration Hospital in Togus, Maine. System can be adapted to other buildings without changing design.

  5. Preliminary design activities for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  6. High-temperature solar cell for concentrated solar-power hybrid systems

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Yang, Wenzheng; Tang, Weidong; Sun, Chuandong

    2013-08-01

    A high-temperature solar cell is proposed that harvests solar energy at elevated temperatures. Carrier separation is achieved by selective contacts that preferentially extract electrons or holes. The theoretical conversion efficiency of the proposed device is 38.6% at 600 K and an incident solar radiation concentration of 1000. The waste heat of this cell could be used by a secondary thermal converter boosting the total efficiency of the hybrid system above 55%.

  7. Connecting Your Solar Electric System to the Utility Grid: Better Buildings Series Solar Electric Fact Sheet

    SciTech Connect

    Not Available

    2002-07-01

    In recent years, the number of solar-powered homes connected to the local utility grid has increased dramatically. These''grid-connected'' buildings have solar electric panels or''modules'' that provide some or even most of their power, while still being connected to the local utility. This fact sheet provides information on connecting your solar electric system to the utility grid, including information on net metering.

  8. Mapping the interstellar dust flow into the solar system

    NASA Astrophysics Data System (ADS)

    Baggaley, W. J.; Galligan, D. P.

    2001-11-01

    The Advanced Meteor Orbit Radar facility (AMOR) monitors the dynamcial properties of meteoroids of sizes down to about 40 μm. The oprbital data set secured to date contains about 106 orbits. The population of inner Solar System meteoroids sampled contains a significant proportion of particles that are moving in unbound solar orbits. Maps the far-sun inflow directions of this extra-Solar System population show the presence of both a broad interstellar inflow and discrete sources.

  9. Cost study of solar cell space power systems

    NASA Technical Reports Server (NTRS)

    Bernatowicz, D. T.

    1972-01-01

    Historical costs for solar cell space power systems were evaluated. The study covered thirteen missions that represented a broad cross section of flight projects over the past decade. Fully burdened costs in terms of 1971 dollars are presented for the system and the solar array. The costs correlate reasonably well with array area and do not increase in proportion to array area. The trends for array costs support the contention that solar cell and module standardization reduce costs.

  10. Study of combined /photovoltaic-thermal/ solar energy systems

    NASA Astrophysics Data System (ADS)

    Neville, R. C.

    A theoretical analysis of a combined photovoltaic-thermal energy system for converting solar energy is presented. Optical concentration is employed to intensify the available solar energy density. The thermal energy extraction works both to cool the solar cells and to provide heat energy. Overall system efficiencies (total output energy, both thermal and electrical, divided by the available insolation) are shown to reach values close to 40%, with predicted capital costs less than 0.1 cent per kWh.

  11. Bexarotene Topical

    MedlinePlus

    ... your skin sensitive to sunlight.do not use insect repellants or other products containing DEET during your treatment with topical bexarotene.do not scratch the affected areas during your treatment with topical bexarotene.

  12. Gravity fields of the solar system

    NASA Technical Reports Server (NTRS)

    Zendell, A.; Brown, R. D.; Vincent, S.

    1975-01-01

    The most frequently used formulations of the gravitational field are discussed and a standard set of models for the gravity fields of the earth, moon, sun, and other massive bodies in the solar system are defined. The formulas are presented in standard forms, some with instructions for conversion. A point-source or inverse-square model, which represents the external potential of a spherically symmetrical mass distribution by a mathematical point mass without physical dimensions, is considered. An oblate spheroid model is presented, accompanied by an introduction to zonal harmonics. This spheroid model is generalized and forms the basis for a number of the spherical harmonic models which were developed for the earth and moon. The triaxial ellipsoid model is also presented. These models and their application to space missions are discussed.

  13. Evolution of density in solar system ices

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.; Mcwilliam, A.; Marie, M.

    1984-01-01

    Pores present in ices in the solar system do not remain unchanged. In isothermal conditions they shrink, while in a thermal gradient they migrate towards the higher temperature and escape so that the ice densifies. This motion has been investigated for pure H2O- and CO2-ices in a very simple one-dimensional model assuming uniform thermal conductivity and temperature gradient. The results indicate that the densification of H2O-ice is so slow that it could be significant only for icy satellites having an internal heat source. On the other hand, CO2-ice densifies orders of magnitude faster and the effect should be important for the CO2 component of cometary nuclei. No effect is expected for icy planetary rings.

  14. Solar system tests of brane world models

    NASA Astrophysics Data System (ADS)

    Böhmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.

    2008-02-01

    The classical tests of general relativity (perihelion precession, deflection of light and the radar echo delay) are considered for the Dadhich, Maartens, Papadopoulos and Rezania (DMPR) solution of the spherically symmetric static vacuum field equations in brane world models. For this solution the metric in the vacuum exterior to a brane world star is similar to the Reissner Nordström form of classical general relativity, with the role of the charge played by the tidal effects arising from projections of the fifth dimension. The existing observational solar system data on the perihelion shift of Mercury, on the light bending around the Sun (obtained using long-baseline radio interferometry), and ranging to Mars using the Viking lander, constrain the numerical values of the bulk tidal parameter and of the brane tension.

  15. Solar system events at high spatial resolution

    SciTech Connect

    Baines, K H; Gavel, D T; Getz, A M; Gibbartd, S G; MacIntosh, B; Max, C E; McKay, C P; Young, E F; de Pater, I

    1999-02-19

    Until relatively recent advances in technology, astronomical observations from the ground were limited in image resolution by the blurring effects of earth's atmosphere. The blur extent, ranging typically from 0.5 to 2 seconds of arc at the best astronomical sights, precluded ground-based observations of the details of the solar system's moons, asteroids, and outermost planets. With the maturing of a high resolution image processing technique called speckle imaging the resolution limitation of the atmosphere can now be largely overcome. Over the past three years they have used speckle imaging to observe Titan, a moon of Saturn with an atmospheric density comparable to Earth's, Io, the volcanically active innermost moon of Jupiter, and Neptune, a gas giant outer planet which has continually changing planet-encircling storms. These observations were made at the world's largest telescope, the Keck telescope in Hawaii and represent the highest resolution infrared images of these objects ever taken.

  16. Methane Clathrates in the Solar System

    NASA Astrophysics Data System (ADS)

    Mousis, Olivier; Chassefière, Eric; Holm, Nils G.; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-04-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form in the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined.

  17. What color is the solar system?

    NASA Technical Reports Server (NTRS)

    Young, A. T.

    1985-01-01

    Estimates are made of the true visual colors of various planets and moons in the solar system. Account is taken of the components of perceived color, i.e., hue, saturation and lightness. Earth is a blue planet while most of the others, including Mars, are yellow and differ only in their lightness. Widely disseminated Voyager images of Jupiter have been computer-enhanced to highlight details. A reflectance spectrum established by the International Commission on Illumination provides reference lines which are measured and compared with reference colors which would be seen on earth in normal daylight. Uranus is actually a light aqua color due to its absorption of 6190 A light and reflectance of 5000 A blue green light.

  18. Long Periodic Terms in the Solar System

    NASA Technical Reports Server (NTRS)

    Bretagnon, P.

    1982-01-01

    The long period variations of the first eight planets in the solar system are studied. First, the Lagrangian solution is calculated and then the long period terms with fourth order eccentricities and inclinations are introduced into the perturbation function. A second approximation was made taking into account the short period terms' contribution, namely the perturbations of first order with respect to the masses. Special attention was paid to the determination of the integration constants. The relative importance of the different contributions is shown. It is useless, for example, to introduce the long period terms of fifth order if no account has been taken of the short period terms. Meanwhile, the terms that have been neglected would not introduce large changes in the integration constants. Even so, the calculation should be repeated with higher order short period terms and fifth order long periods.

  19. Operations Concept for a Solar System Internetwork

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Denis, Michel; Braatz, Lena

    2011-01-01

    Space communications to date has been largely managed at the link layer, with simple point-to-point links between a spacecraft at Earth. However, future space exploration scenarios involve much richer communications scenarios, with complex network scenarios involving space assets communicating back to Earth via multiple intermediate relay service providers. To support these more complex network scenarios, the Space Internetworking Strategy Group has developed an operations concept for a Solar System Internetwork (SSI). The operations concept draws on the successes of the terrestrial Internet while addressing unique aspects of space communications. Key elements of the operations concept include a standardized network layer across the end-to-end SSI and the underlying processes for development of a contact plan that captures the link layer connectivity among SSI network nodes.

  20. Volcanic processes in the solar system

    USGS Publications Warehouse

    Carr, M.H.

    1987-01-01

    Eruptions of ammonia, water, and sulfur. These have become some of the concerns of planetary volcanologists as they try to understand volcanic processes on other planetary bodies. As exploration of the Solar System has continues, we have been confronted with more and more exotic forms of volcanism and have come to realize that the types of volcanic activity observed on Earth represent only a fraction of the array of volcanic phenomena that are possible. Some volcanic features of other planets have close terrestrial counterparts and appear to have been formed by similar mechanisms and from similar magmas to those on the Earth. but other features are totally different and appear to have been formed from materials that are not normally associated with volcanism on Earth.