Science.gov

Sample records for solar thermal decomposition

  1. Pt deposited TiO2 catalyst fabricated by thermal decomposition of titanium complex for solar hydrogen production

    NASA Astrophysics Data System (ADS)

    Truong, Quang Duc; Le, Thanh Son; Ling, Yong-Chien

    2014-12-01

    C, N codoped TiO2 catalyst has been synthesized by thermal decomposition of a novel water-soluble titanium complex. The structure, morphology, and optical properties of the synthesized TiO2 catalyst were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of the Pt deposited TiO2 catalysts synthesized at different temperatures was evaluated by means of hydrogen evolution reaction under both UV-vis and visible light irradiation. The investigation results reveal that the photocatalytic H2 evolution rate strongly depended on the crystalline grain size as well as specific surface area of the synthesized catalyst. Our studies successfully demonstrate a simple method for the synthesis of visible-light responsive Pt deposited TiO2 catalyst for solar hydrogen production.

  2. Thermal decomposition products of butyraldehyde

    NASA Astrophysics Data System (ADS)

    Hatten, Courtney D.; Kaskey, Kevin R.; Warner, Brian J.; Wright, Emily M.; McCunn, Laura R.

    2013-12-01

    The thermal decomposition of gas-phase butyraldehyde, CH3CH2CH2CHO, was studied in the 1300-1600 K range with a hyperthermal nozzle. Products were identified via matrix-isolation Fourier transform infrared spectroscopy and photoionization mass spectrometry in separate experiments. There are at least six major initial reactions contributing to the decomposition of butyraldehyde: a radical decomposition channel leading to propyl radical + CO + H; molecular elimination to form H2 + ethylketene; a keto-enol tautomerism followed by elimination of H2O producing 1-butyne; an intramolecular hydrogen shift and elimination producing vinyl alcohol and ethylene, a β-C-C bond scission yielding ethyl and vinoxy radicals; and a γ-C-C bond scission yielding methyl and CH2CH2CHO radicals. The first three reactions are analogous to those observed in the thermal decomposition of acetaldehyde, but the latter three reactions are made possible by the longer alkyl chain structure of butyraldehyde. The products identified following thermal decomposition of butyraldehyde are CO, HCO, CH3CH2CH2, CH3CH2CH=C=O, H2O, CH3CH2C≡CH, CH2CH2, CH2=CHOH, CH2CHO, CH3, HC≡CH, CH2CCH, CH3C≡CH, CH3CH=CH2, H2C=C=O, CH3CH2CH3, CH2=CHCHO, C4H2, C4H4, and C4H8. The first ten products listed are direct products of the six reactions listed above. The remaining products can be attributed to further decomposition reactions or bimolecular reactions in the nozzle.

  3. Thermal decomposition mechanism of disilane.

    PubMed

    Yoshida, Kazumasa; Matsumoto, Keiji; Oguchi, Tatsuo; Tonokura, Kenichi; Koshi, Mitsuo

    2006-04-13

    Thermal decomposition of disilane was investigated using time-of-flight (TOF) mass spectrometry coupled with vacuum ultraviolet single-photon ionization (VUV-SPI) at a temperature range of 675-740 K and total pressure of 20-40 Torr. Si(n)H(m) species were photoionized by VUV radiation at 10.5 eV (118 nm). Concentrations of disilane and trisilane during thermal decomposition of disilane were quantitatively measured using the VUV-SPI method. Formation of Si(2)H(4) species was also examined. On the basis of pressure-dependent rate constants of disilane dissociation reported by Matsumoto et al. [J. Phys. Chem. A 2005, 109, 4911], kinetic simulation including gas-phase and surface reactions was performed to analyze thermal decomposition mechanisms of disilane. The branching ratio for (R1) Si(2)H(6) --> SiH(4) + SiH(2)/(R2) Si(2)H(6) --> H(2) + H(3)SiSiH was derived by the pressure-dependent rate constants. Temperature and reaction time dependences of disilane loss and formation of trisilane were well represented by the kinetic simulation. Comparison between the experimental results and the kinetic simulation results suggested that about 70% of consumed disilane was converted to trisilane, which was observed as one of the main reaction products under the present experimental conditions. PMID:16599440

  4. Thermal Decomposition Mechanism of Butyraldehyde

    NASA Astrophysics Data System (ADS)

    Hatten, Courtney D.; Warner, Brian; Wright, Emily; Kaskey, Kevin; McCunn, Laura R.

    2013-06-01

    The thermal decomposition of butyraldehyde, CH_3CH_2CH_2C(O)H, has been studied in a resistively heated SiC tubular reactor. Products of pyrolysis were identified via matrix-isolation FTIR spectroscopy and photoionization mass spectrometry in separate experiments. Carbon monoxide, ethene, acetylene, water and ethylketene were among the products detected. To unravel the mechanism of decomposition, pyrolysis of a partially deuterated sample of butyraldehyde was studied. Also, the concentration of butyraldehyde in the carrier gas was varied in experiments to determine the presence of bimolecular reactions. The results of these experiments can be compared to the dissociation pathways observed in similar aldehydes and are relevant to the processing of biomass, foods, and tobacco.

  5. Thermal decomposition of isooctyl nitrate

    SciTech Connect

    Pritchard, H.O.

    1989-03-01

    The diesel ignition improver DII-3, made by Ethyl Corporation, also known as isooctyl nitrate, is a mixture whose principal constituent (about 95%) is 2-ethyl hexyl nitrate. This note describes an investigation of the thermal decomposition that is not exhaustive, but that is intended to provide sufficient information on the rate and the mechanism so as to make possible the educated guesses needed for modeling the effect of isooctyl nitrate on the diesel ignition process. As is the case with other alkyl nitrates, the decomposition of the neat material is a complex one giving a complicated pressure versus time curve, unsuitable for a quick derivation of the rate constant. However, in the presence of toluene, whose intended purpose is to trap reactive free radicals and thereby simplify the overall mechanism, the pressure rises approximately exponentially to a limit; thus, on the assumption that the reaction is homogeneous and of first order, the rate constants can be determined from the half-life.

  6. Thermal decomposition of allylbenzene ozonide

    SciTech Connect

    Ewing, J.C.; Church, D.F.; Pryor, W.A. )

    1989-07-19

    Thermal decomposition of allylbenzene ozonide (ABO) at 98{degree}C in the liquid phase yields toluene, bibenzyl, phenylacetaldehyde, formic acid, and (benzyloxy)methyl formate as major products; benzyl chloride is formed when chlorinated solvents are employed. These products, as well as benzyl formate, are formed when ABO is decomposed at 37{degree}C. When the decomposition of ABO is carried out in the presence of 1-butanethiol, the product distribution changes: yields of toluene increase, no bibenzyl is formed, and decreases in yields of (benzyloxy)methyl formate, phenylacetladehyde, and benzyl chloride are observed. The decomposition of 1-octene ozonide (OTO) also was studied for comparison. The activation parameters for both ABO and OTO are similar (28.2 kcal/mol, log A = 13.6 and 26.6 kcal/mol, log A = 12.5, respectively); these data suggest that ozonides decompose by homolysis of the O-O bond, rather than by an alternative synchronous two-bond scission process. When ABO is decomposed at 37{degree}C in the presence of the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO) or 3,3,5,5-tetramethyl-1-pyrroline N-oxide (M{sub 4}PO), ESR signals are observed that are consistent with the trapping of benzyl and other carbon- and oxygen-centered radicals. A mechanism for the thermal decomposition of ABO that involves peroxide bond homolysis and subsequent {beta}-scission is proposed. Thus, Criegee ozonides decompose to give free radicals at quite modest temperatures.

  7. Thermal Decomposition Kinetics of HMX

    SciTech Connect

    Burnham, A K; Weese, R K

    2004-11-18

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of thermal analysis data types, including mass loss for isothermal and constant rate heating in an open pan and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 165 kJ/mol range for open pan experiments and about 150 to 165 kJ/mol for sealed pan experiments. Our activation energies tend to be slightly lower than those derived from data supplied by the University of Utah, which we consider the best previous thermal analysis work. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated in closed pan experiments, and one global reaction appears to fit the data well. Comparison of our rate measurements with additional literature sources for open and closed low temperature pyrolysis from Sandia gives a likely activation energy of 165 kJ/mol at 10% conversion.

  8. Thermal decomposition of HN(3).

    PubMed

    Knyazev, Vadim D; Korobeinichev, Oleg P

    2010-01-21

    The two-channel thermal decomposition of hydrogen azide, HN(3), was studied computationally. The reaction produces triplet or singlet NH and N(2). A model of the reaction was created on the basis of the theoretical study of the reaction potential-energy surface and microscopic reaction rates by Besora and Harvey (Besora, M.; Harvey, J. N. J. Chem. Phys. 2008, 129, 044303) and the experimental data on the energy-dependent rate constants reported by Foy et al. (Foy, B. R.; Casassa, M. P.; Stephenson, J. C.; King, D. S. J. Chem. Phys. 1990, 92, 2782) The properties of the model were adjusted to fit the calculated k(E) dependence to the experimental one. The experiments on thermal decomposition of HN(3) described in the literature were analyzed via kinetic modeling; the results of the analysis demonstrate that all but one of the existing studies were affected by contributions from secondary kinetics. The model of the reaction was then used in master-equation calculations of the pressure effects and the value of the critical energy transfer parameter, DeltaE(down), was adjusted based on agreement with the experimental k(T,P) data. Finally, the model was used to determine pressure- and temperature-dependent rate constants for both channels of reaction 1, which do not conform to the traditional formalism of low-pressure-limit and falloff description. Uncertainties of the model and their influence on the calculated thermal rate constant values were analyzed. Finally, parametrized expression for rate coefficients were provided for a wide range of temperatures and pressures. PMID:19916540

  9. Thermal Decomposition Kinetics of HMX

    SciTech Connect

    Burnham, A K; Weese, R K

    2004-05-05

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of types of data, including mass loss for isothermal and constant rate heating in an open pan, and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 150 kJ/mol regime for open pan experiments and about 160 kJ/mol for sealed pan experiments. Our activation energies are about 10% lower than those derived from data supplied by the University of Utah, which we consider the best previous work. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated for closed pan experiments, and one global reaction appears to fit the data well.

  10. Thermal Decomposition Kinetics of HMX

    SciTech Connect

    Burnham, A K; Weese, R K

    2005-03-17

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of types of data, including mass loss for isothermal and constant rate heating in an open pan, and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 165 kJ/mol regime for open pan experiments and about 150-165 kJ/mol for sealed-pan experiments. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated for closed pan experiments, and one global reaction fits the data fairly well. Our A-E values lie in the middle of the values given in a compensation-law plot by Brill et al. (1994). Comparison with additional open and closed low temperature pyrolysis experiments support an activation energy of 165 kJ/mol at 10% conversion.

  11. Unimolecular thermal decomposition of dimethoxybenzenes

    NASA Astrophysics Data System (ADS)

    Robichaud, David J.; Scheer, Adam M.; Mukarakate, Calvin; Ormond, Thomas K.; Buckingham, Grant T.; Ellison, G. Barney; Nimlos, Mark R.

    2014-06-01

    The unimolecular thermal decomposition mechanisms of o-, m-, and p-dimethoxybenzene (CH3O-C6H4-OCH3) have been studied using a high temperature, microtubular (μtubular) SiC reactor with a residence time of 100 μs. Product detection was carried out using single photon ionization (SPI, 10.487 eV) and resonance enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry and matrix infrared absorption spectroscopy from 400 K to 1600 K. The initial pyrolytic step for each isomer is methoxy bond homolysis to eliminate methyl radical. Subsequent thermolysis is unique for each isomer. In the case of o-CH3O-C6H4-OCH3, intramolecular H-transfer dominates leading to the formation of o-hydroxybenzaldehyde (o-HO-C6H4-CHO) and phenol (C6H5OH). Para-CH3O-C6H4-OCH3 immediately breaks the second methoxy bond to form p-benzoquinone, which decomposes further to cyclopentadienone (C5H4=O). Finally, the m-CH3O-C6H4-OCH3 isomer will predominantly follow a ring-reduction/CO-elimination mechanism to form C5H4=O. Electronic structure calculations and transition state theory are used to confirm mechanisms and comment on kinetics. Implications for lignin pyrolysis are discussed.

  12. Unimolecular thermal decomposition of dimethoxybenzenes

    SciTech Connect

    Robichaud, David J. Mukarakate, Calvin; Nimlos, Mark R.; Scheer, Adam M.; Ormond, Thomas K.; Buckingham, Grant T.; Ellison, G. Barney

    2014-06-21

    The unimolecular thermal decomposition mechanisms of o-, m-, and p-dimethoxybenzene (CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3}) have been studied using a high temperature, microtubular (μtubular) SiC reactor with a residence time of 100 μs. Product detection was carried out using single photon ionization (SPI, 10.487 eV) and resonance enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry and matrix infrared absorption spectroscopy from 400 K to 1600 K. The initial pyrolytic step for each isomer is methoxy bond homolysis to eliminate methyl radical. Subsequent thermolysis is unique for each isomer. In the case of o-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3}, intramolecular H-transfer dominates leading to the formation of o-hydroxybenzaldehyde (o-HO-C{sub 6}H{sub 4}-CHO) and phenol (C{sub 6}H{sub 5}OH). Para-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3} immediately breaks the second methoxy bond to form p-benzoquinone, which decomposes further to cyclopentadienone (C{sub 5}H{sub 4}=O). Finally, the m-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3} isomer will predominantly follow a ring-reduction/CO-elimination mechanism to form C{sub 5}H{sub 4}=O. Electronic structure calculations and transition state theory are used to confirm mechanisms and comment on kinetics. Implications for lignin pyrolysis are discussed.

  13. Thermal decomposition of magnesium and calcium sulfates

    SciTech Connect

    Roche, S L

    1982-04-01

    The effect of catalyst on the thermal decomposition of MgSO/sub 4/ and CaSO/sub 4/ in vacuum was studied as a function of time in Knudsen cells and for MgSO/sub 4/, in open crucibles in vacuum in a Thermal Gravimetric Apparatus. Platinum and Fe/sub 2/O/sub 3/ were used as catalysts. The CaSO/sub 4/ decomposition rate was approximately doubled when Fe/sub 2/O/sub 3/ was present in a Knudsen cell. Platinum did not catalyze the CaSO/sub 4/ decomposition reaction. The initial decomposition rate for MgSO/sub 4/ was approximately 5 times greater than when additives were present in Knudsen cells but only about 1.5 times greater when decomposition was done in an open crucible.

  14. Solar Thermal Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Sercel, J. C.

    1986-01-01

    Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

  15. Solar Thermal Propulsion Concept

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Harnessing the Sun's energy through Solar Thermal Propulsion will propel vehicles through space by significantly reducing weight, complexity, and cost while boosting performance over current conventional upper stages. Another solar powered system, solar electric propulsion, demonstrates ion propulsion is suitable for long duration missions. Pictured is an artist's concept of space flight using solar thermal propulsion.

  16. Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  17. Thermal decomposition hazard evaluation of hydroxylamine nitrate.

    PubMed

    Wei, Chunyang; Rogers, William J; Mannan, M Sam

    2006-03-17

    Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine family and it is a liquid propellant when combined with alkylammonium nitrate fuel in an aqueous solution. Low concentrations of HAN are used primarily in the nuclear industry as a reductant in nuclear material processing and for decontamination of equipment. Also, HAN has been involved in several incidents because of its instability and autocatalytic decomposition behavior. This paper presents calorimetric measurement for the thermal decomposition of 24 mass% HAN/water. Gas phase enthalpy of formation of HAN is calculated using both semi-empirical methods with MOPAC and high-level quantum chemical methods of Gaussian 03. CHETAH is used to estimate the energy release potential of HAN. A Reactive System Screening Tool (RSST) and an Automatic Pressure Tracking Adiabatic Calorimeter (APTAC) are used to characterize thermal decomposition of HAN and to provide guidance about safe conditions for handling and storing of HAN. PMID:16154263

  18. Solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  19. THERMAL DECOMPOSITION OF URANIUM COMPOUNDS

    DOEpatents

    Magel, T.T.; Brewer, L.

    1959-02-10

    A method is presented of preparing uranium metal of high purity consisting contacting impure U metal with halogen vapor at between 450 and 550 C to form uranium halide vapor, contacting the uranium halide vapor in the presence of H/sub 2/ with a refractory surface at about 1400 C to thermally decompose the uranium halides and deposit molten U on the refractory surface and collecting the molten U dripping from the surface. The entire operation is carried on at a sub-atmospheric pressure of below 1 mm mercury.

  20. Thermal decomposition of carbon tetrachloride

    SciTech Connect

    Michael, J.V.; Lim, K.P. ); Kumaran, S.S.; Kiefer, J.H. )

    1993-03-04

    The first rate measurements of the thermal dissociation of CCl[sub 4] are reported. Three detection techniques were used in monitoring the reaction rate for various dilutions over a wide temperature range: (i) ARAS of product Cl atoms in reflected shock waves using 3.2--6.4 ppM of CCl[sub 4] in Ar over 1084--1705 K and 150--908 Torr, (ii) decay of CCl[sub 4] by molecular absorption of O-atom resonance radiation in reflected shock waves using 48--173 ppM of CCl[sub 4] in Ar over 1192--1733 K and 219--855 Torr, and (iii) laser schlieren density gradients in incident shock waves using 0.5 and 2% CCl[sub 4] in Kr over 1470--2186 K and 90--660 Torr. The second-order rates from ARAS and molecular absorption measurements for the bond fission reaction CCl[sub 4] [yields] CCl[sub 3] + Cl are in complete agreement with the laser schlieren results where they overlap. The temperature and pressure dependence of these rates is well characterized by Gorin model RRKM calculations using current [Delta]H[degrees][sub 0] = 67.71 kcal/mol for E[sub 0], derived from [Delta][sub f]H[degrees][sub 298] = 17.0 kcal/mol for for CCl[sub 3]. The low-pressure rate constant (k[sub 0]) derived from this RRKM fit is log k[sub 0] (cm[sup 3]/(mol s)) = 54.980 [minus] 10.624 log T [minus] 74.796 (kcal/mol)/2.303RT. These low-pressure rates require unusually large [beta][sub c] corresponding to a [l angle][Delta]E[r angle][sub down] = 1200 cm[sup [minus]1]. This may be a general feature of chlorocarbon dissociations. The ARAS data indicate that two Cl atoms are ultimately produced for each CCl[sub 4] that dissociates, with the second Cl atom forming slower than the first. Here all the measurements are consistent with a further dissociation of CCl[sub 3], CCl[sub 3] [yields] CCl[sub 2] + Cl, as the dominant source of secondary Cl-atom at a rate about 0.1 that of the primary fission. 31 refs., 9 figs., 2 tabs.

  1. Mechanism of the Thermal Decomposition of Furan

    NASA Astrophysics Data System (ADS)

    Vasiliou, Angayle; Ellison, G. Barney; Nimlos, Mark R.; Daily, John W.

    2009-06-01

    Both furan (C_4H_4O) and furfural (C_4H_3O-CHO) areimportant products in biomass pyrolysis. We have used a resistively-heated SiC tubular reactor with a 30 microseconds residence time to study the thermal cracking of furan. The decomposition products are identified by two independent techniques: 118.2 nm VUV photoionization mass spectroscopy and infrared spectroscopy. We observe three different thermal dissociation channels leading to: a) CH_3CCH + CO b) HCCH + CH_2CO c) HCCCH_2.

  2. Thermal Decomposition of IMX-104: Ingredient Interactions Govern Thermal Insensitivity

    SciTech Connect

    Maharrey, Sean; Wiese-Smith, Deneille; Highley, Aaron M.; Steill, Jeffrey D.; Behrens, Richard; Kay, Jeffrey J.

    2015-04-01

    This report summarizes initial studies into the chemical basis of the thermal insensitivity of INMX-104. The work follows upon similar efforts investigating this behavior for another DNAN-based insensitive explosive, IMX-101. The experiments described demonstrate a clear similarity between the ingredient interactions that were shown to lead to the thermal insensitivity observed in IMX-101 and those that are active in IMX-104 at elevated temperatures. Specifically, the onset of decomposition of RDX is shifted to a lower temperature based on the interaction of the RDX with liquid DNAN. This early onset of decomposition dissipates some stored energy that is then unavailable for a delayed, more violent release.

  3. Treatment of nitrocellulose by thermal decomposition

    SciTech Connect

    Campbell, R.K.; Freedman, D.L.; Kim, B.J.

    1999-07-01

    Waste fines generated during the manufacture of nitrocellulose (NC) are classified as a RCRA K044 hazardous waste due to their explosive properties. The objective of this study was to evaluate controlled thermal treatment of NC in order to render it nonhazardous and allow for more economical ultimate disposal. The results indicate that controlled thermal decomposition at 130--150 C is a technically feasible process. Rates improved significantly at higher temperatures. At 150 C, only 10 hours were needed to reduce the nitrogen content of NC from 13.7% to below 10% (versus 105 h at 130 C), a level found in many commercial, nonhazardous grades of NC. The air flow rate over the heated NC, and the moisture content of the NC or air above it had no discernible effect on rates of nitrogen removal. Greater mass loss from the NC than what was attributable to the nitro groups alone indicated that decomposition of the polymer backbone also occurred. This was confirmed by FTIR analyses, the appearance of CO{sub 2} in the off-gas, and a lack of correlation between percent nitrogen and heat of combustion. Samples of thermally treated NC containing 9.7% nitrogen failed three of the basic tests used by the Bureau of Explosives to ascertain explosive characteristics, indicating that the product was no longer hazardous based on its energetic properties. Although technically feasible, use of thermal decomposition to treat NC fines will most likely be restricted by safety concerns. Operating close to 130 C would mitigate the risk, but considerably extends the time required for treatment. The most suitable application of this technology may instead by treatment of NC-contaminated soils.

  4. Solar thermal power towers

    NASA Astrophysics Data System (ADS)

    Kreith, F.; Meyer, R. T.

    1984-07-01

    The solar thermal central receiver technology, known as solar power towers, is rapidly evolving to a state of near-term energy availability for electrical power generation and industrial process heat applications. The systems consist of field arrays of heliostat reflectors, a central receiver boiler, short term thermal storage devices, and either turbine-generators or heat exchangers. Fluid temperatures up to 550 C are currently achievable, and technology developments are underway to reach 1100 C. Six solar power towers are now under construction or in test operation in five countries around the world.

  5. Thermal Decomposition of Furan Generates Propargyl Radicals

    SciTech Connect

    Vasiliou, A.; Nimlos, M. R.; Daily, J. W.; Ellison, G. B.

    2009-07-01

    The thermal decomposition of furan has been studied by a 1 mm x 2 cm tubular silicon carbide reactor, C{sub 4}H{sub 4}O + {Delta} {yields} products. Unlike previous studies, these experiments are able to identify the initial furan decomposition products. Furan is entrained in either He or Ar carrier gas and is passed through a heated (1600 K) SiC tubular reactor. Furan decomposes during transit through the tubular reactor (approximately 65 {micro}s) and exits to a vacuum chamber. Within one nozzle diameter of leaving the nozzle, the gases cool to less than 50 K, and all reactions cease. The resultant molecular beam is interrogated by photoionization mass spectroscopy as well as infrared spectroscopy. Earlier G2(MP2) electronic structure calculations predicted that furan will thermally decompose to acetylene, ketene, carbon monoxide, and propyne at lower temperatures. At higher temperatures, these calculations forecast that propargyl radical could result. We observe all of these species (see Scheme 1). As the pressure in the tubular reactor is raised, the photoionization mass spectra show clear evidence for the formation of aromatic hydrocarbons.

  6. Solar Thermophotovoltaics: Combining Solar Thermal and Photovoltaics

    NASA Astrophysics Data System (ADS)

    Luque, Antonio

    2007-02-01

    An analysis of ideal solar converters from a thermodynamic point of view is presented that distinguishes between solar thermal and photovoltaic converters. The later do not have hot elements. Ideal solar thermophotovoltaic converters are also described as needing a Carnot machine for operation. The ideal solar cells can be such Carnot machine and therefore a solar thermophotovoltaic converter is a solar thermal converter whose engine is a solar cell. Once hot elements are accepted, several novel modalities of converters are described including thermophotonic converters, combined photovoltaic thermal converters and hot electron converters.

  7. Steadily propagating slip pulses driven by thermal decomposition

    NASA Astrophysics Data System (ADS)

    Platt, John D.; Viesca, Robert C.; Garagash, Dmitry I.

    2015-09-01

    Geophysical observations suggest that mature faults weaken significantly at seismic slip rates. Thermal pressurization and thermal decomposition are two mechanisms commonly used to explain this dynamic weakening. Both rely on pore fluid pressurization with thermal pressurization achieving this through thermal expansion of native solids and pore fluid and thermal decomposition by releasing additional pore fluid during a reaction. Several recent papers have looked at the role thermal pressurization plays during a dynamically propagating earthquake, but no previous models have studied the role of thermal decomposition. In this paper we present the first solutions accounting for thermal decomposition during dynamic rupture, solving for steady state self-healing slip pulses propagating at a constant rupture velocity. First, we show that thermal decomposition leads to longer slip durations, larger total slips, and a distinctive along-fault slip rate profile. Next, we show that accounting for more than one weakening mechanism allows multiple steady slip pulses to exist at a given background stress, with some solutions corresponding to different balances between thermal pressurization and thermal decomposition, and others corresponding to activating a single reaction multiple times. Finally, we study how the rupture properties depend on the fault properties and show that the impact of thermal decomposition is largely controlled by the ratio of the hydraulic and thermal diffusivities χ = αhy/αth and the ratio of pore pressure generated to temperature rise buffered by the reaction Pr/Er.

  8. Solar thermal financing guidebook

    SciTech Connect

    Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

    1983-05-01

    This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

  9. Solar Thermal Propulsion Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  10. Thermal decomposition studies of halogenated organic compounds

    SciTech Connect

    Michael, J.V.; Kumaran, S.S.

    1997-06-01

    Thermal decomposition results for CCl{sub 4}, CHCl{sub 3}, CH{sub 2}Cl{sub 2}, CH{sub 3}Cl, C{sub 3}H{sub 3}Cl, CFCl{sub 3}, CF{sub 2}Cl{sub 2}, CF{sub 3}Cl, CF{sub 2}HCl, CF{sub 3}I, CH{sub 3}I, C{sub 2}H{sub 5}I, C{sub 6}H{sub 5}I, and CCl{sub 2}O are presented. The results were obtained by shock tube techniques coupled with optical spectroscopic detection of transient species formed from dissociation. The method is illustrated with the CH{sub 3}I (+ Kr) {yields} CH{sub 3} + I (+ Kr) reaction where decomposition was monitored using I-atomic resonance absorption spectrometry (ARAS). Modern unimolecular rate theoretical analysis has been carried out on the present cases, and the conclusions from these calculations are discussed. Lastly, the possible destruction of halo-organics by incineration is considered and some implications are discussed.

  11. The Thermal Decomposition of Basic Copper(II) Sulfate.

    ERIC Educational Resources Information Center

    Tanaka, Haruhiko; Koga, Nobuyoshi

    1990-01-01

    Discussed is the preparation of synthetic brochantite from solution and a thermogravimetric-differential thermal analysis study of the thermal decomposition of this compound. Other analyses included are chemical analysis and IR spectroscopy. Experimental procedures and results are presented. (CW)

  12. Solar Thermal Power.

    ERIC Educational Resources Information Center

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  13. Kinetics of thermal decomposition of surrogate solid wastes

    SciTech Connect

    Missoum, A.; Gupta, A.K.; Chen, J.; Keating, E.L.

    1996-12-31

    Decomposition behavior of different materials in a controlled environment at different heating rates are presented. The surrogate materials used are cellulose, polyethylene, polystyrene, polypropylene, nylon and bisphenol-A-polycarbonate. A series of tests were performed using a Perkin-Elmer 7 series thermal analysis system. Two heating rates of 10 C/minute and 100 C/minute were used. The temperature dependence and mass load characteristics of materials was obtained and used to obtain Arrhenius kinetic parameters and therefore the decomposition rates under defined conditions of pressure, temperature, environment, heating rate and waste composition. This information is helpful in characterizing and understanding the thermal decomposition properties of these materials during their thermal destruction. The decomposition rates are affected by the heating rate. The higher the heating rate the faster the decomposition. The results show that an increase in heating rate shifted thermal decomposition to higher temperatures and that the temperature at which maximum devolatilization began and ended was affected by heating rate. The kinetic parameters were calculated and the char yield from the different samples was less than 2% by weight except for polycarbonate which was around 5%. The remaining char in nylon and polycarbonate is attributed to the inert impurities in these materials. The thermal decomposition of the materials studied here could be related to their composition. It was found that polyethylene, polypropylene and polycarbonate have comparable decomposition rates over the same temperature range. Cellulose has the lowest decomposition rate and polystyrene has the highest.

  14. Solar thermal energy receiver

    NASA Technical Reports Server (NTRS)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  15. Concentrating solar thermal power.

    PubMed

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept. PMID:23816910

  16. Thermal decomposition of bioactive sodium titanate surfaces

    NASA Astrophysics Data System (ADS)

    Ravelingien, Matthieu; Mullens, Steven; Luyten, Jan; Meynen, Vera; Vinck, Evi; Vervaet, Chris; Remon, Jean Paul

    2009-09-01

    Alkali-treated orthopaedic titanium surfaces have earlier shown to induce apatite deposition. A subsequent heat treatment under air improved the adhesion of the sodium titanate layer but decreased the rate of apatite deposition. Furthermore, insufficient attention was paid to the sensitivity of titanium substrates to oxidation and nitriding during heat treatment under air. Therefore, in the present study, alkali-treated titanium samples were heat-treated under air, argon flow or vacuum. The microstructure and composition of their surfaces were characterized to clarify what mechanism is responsible for inhibiting in vitro calcium phosphate deposition after heat treatment. All heat treatments under various atmospheres turned out to be detrimental for apatite deposition. They led to the thermal decomposition of the dense sodium titanate basis near the interface with the titanium substrate. Depending on the atmosphere, several forms of Ti yO z were formed and Na 2O was sublimated. Consequently, less exchangeable sodium ions remained available. This pointed to the importance of the ion exchange capacity of the sodium titanate layer for in vitro bioactivity.

  17. Solar Thermal Concept Evaluation

    NASA Technical Reports Server (NTRS)

    Hawk, Clark W.; Bonometti, Joseph A.

    1995-01-01

    Concentrated solar thermal energy can be utilized in a variety of high temperature applications for both terrestrial and space environments. In each application, knowledge of the collector and absorber's heat exchange interaction is required. To understand this coupled mechanism, various concentrator types and geometries, as well as, their relationship to the physical absorber mechanics were investigated. To conduct experimental tests various parts of a 5,000 watt, thermal concentrator, facility were made and evaluated. This was in anticipation at a larger NASA facility proposed for construction. Although much of the work centered on solar thermal propulsion for an upper stage (less than one pound thrust range), the information generated and the facility's capabilities are applicable to material processing, power generation and similar uses. The numerical calculations used to design the laboratory mirror and the procedure for evaluating other solar collectors are presented here. The mirror design is based on a hexagonal faceted system, which uses a spherical approximation to the parabolic surface. The work began with a few two dimensional estimates and continued with a full, three dimensional, numerical algorithm written in FORTRAN code. This was compared to a full geometry, ray trace program, BEAM 4, which optimizes the curvatures, based on purely optical considerations. Founded on numerical results, the characteristics of a faceted concentrator were construed. The numerical methodologies themselves were evaluated and categorized. As a result, the three-dimensional FORTRAN code was the method chosen to construct the mirrors, due to its overall accuracy and superior results to the ray trace program. This information is being used to fabricate and subsequently, laser map the actual mirror surfaces. Evaluation of concentrator mirrors, thermal applications and scaling the results of the 10 foot diameter mirror to a much larger concentrator, were studied. Evaluations

  18. Solar thermal power system

    DOEpatents

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  19. Thermal decomposition of metal p-hydroxybenzoates

    SciTech Connect

    Musaev, F.N.; Nadzhafov, G.N.; Mamedov, Kh.S.

    1986-11-01

    The thermal decomposition of the p-hydroxybenzoato complexes of divalent Mg, Mn, Co, Ni, Zn, Cu, Cd, and Ba has been studied under dynamic conditions in air in the 20-1000/sup 0/C temperature range. It has been found that the polyaquo complexes of Mg, Mn, Co, Ni, Zn, and Cu form a series of isomorphous compounds, whose structures consist of octahedral (M(H/sub 2/O)/sub 6//sup 2 +/ aquo ions /or an (Cd(H/sub 2/O)/sub 5/(PHB))/sub 2//sup +/ ion in the case of the Cd complex/, two anions of the acid, and two molecules of water of crystallization. The temperature ranges for the existence of the intermediate phases with low water contents and anhydrous phases have been established. The destruction of the anhydrous complexes takes place with the release of p-hydroxybenzoic acid and the formation of stable intermediates. The Mn, Cd, and Ni complexes decompose with the release of 1 mole of p-hydroxybenzoic acid, while the Mg, Co, and Zn complexes decompose with the release of 0.5 mole of the acid. The thermal stability of the anhydrous complexes decreases along the series Cd > Mn > Mg > Co > Cu > Zn > Ni. The stable phases have been identified by the methods of thin-layer chromatography, chemical analysis, x-ray diffraction analysis, and x-ray structural analysis, the crystal structure of the intermediate triaquo(hydroxybenzoato)manganese has been interpreted, and a structure has been proposed for anhydrous zinc p-hydroxybenzoate. It has been shown that the polyaquo Mn, Cd, and Zn complexes are converted into isomeric hydrates at 35-55/sup 0/C as a consequence of the displacement of the two weakly bound water molecules located in trans positions to one another to the hydration shell of the metal by O atoms of the COO groups of two p-hydroxybenzoate anions. The final thermolysis products are the oxides of the respective metals and BaCO/sub 3/. The Ni, Co, and Cu complexes initially decompose to the free metal, which then undergoes oxidation.

  20. Effect of mechanical dispersion of lignite on its thermal decomposition

    SciTech Connect

    Yusupov, T.S.; Shumskaya, L.G.; Burdukov, A.P.

    2007-09-15

    It is studied how the high-rate mechanical grinding affects thermal decomposition of lignite extracted from the Kansk-Achinsk Coal Basin. It has been shown that dispersion of lignite in the high energy intensive vibration-centrifugal and planetary mills causes formation of structures exhibiting lower thermal stability. That results in the shift of primary decomposition phenomena into the low-temperature region and, thus, in the higher reactivity of coals.

  1. Thermal Decomposition Characteristics of Orthorhombic Ammonium Perchlorate (o-AP)

    SciTech Connect

    Behrens, R.; Minier, L.

    1999-03-01

    Preliminary STMBMS and SEM results of the thermal decomposition of AP in the orthorhombic phase are presented. The overall decomposition is shown to be complex and controlled by both physical and chemical processes. The data show that the physical and chemical processes can be probed and characterized utilizing SEM and STMBMS. The overall decomposition is characterized by three distinguishing features: an induction period, and accelerator period and a deceleratory period. The major decomposition event occurs in the subsurface of the AP particles and propagates towards the center of the particle with time. The amount of total decomposition is dependent upon particle size and increases from 23% for {approximately}50{micro}m-diameter AP to 33% for {approximately}200{micro}m-diameter AP. A conceptual model of the physical processes is presented. Insight into the chemical processes is provided by the gas formation rates that are measured for the gaseous products. To our knowledge, this is the first presentation of data showing that the chemical and physical decomposition processes can be identified from one another, probed and characterized at the level that is required to better understand the thermal decomposition behavior of AP. Future work is planned with the goal of obtaining data that can be used to develop a mathematical description for the thermal decomposition of o-AP.

  2. Solar thermal electricity generation

    NASA Astrophysics Data System (ADS)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish

  3. Solar/Thermal Powerplant Simulation

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M.; El Gabalawi, N.; Hill, G. M.; Slonski, M. L.

    1985-01-01

    Simulation program evaluates performances and energy costs of diverse solar/thermal powerplant configurations. Approach based on optimizing sizes of collector and storage subsystems to give minimum energy cost for specified plant rating and load factor. Methodology provides for consistent comparative evaluation of solar/thermal powerplants.

  4. High temperature solar thermal technology

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-01-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  5. Analysis of cured carbon-phenolic decomposition products to investigate the thermal decomposition of nozzle materials

    NASA Technical Reports Server (NTRS)

    Thompson, James M.; Daniel, Janice D.

    1989-01-01

    The development of a mass spectrometer/thermal analyzer/computer (MS/TA/Computer) system capable of providing simultaneous thermogravimetry (TG), differential thermal analysis (DTA), derivative thermogravimetry (DTG) and evolved gas detection and analysis (EGD and EGA) under both atmospheric and high pressure conditions is described. The combined system was used to study the thermal decomposition of the nozzle material that constitutes the throat of the solid rocket boosters (SRB).

  6. Solar thermal electric hybridization issues

    SciTech Connect

    Williams, T A; Bohn, M S; Price, H W

    1994-10-01

    Solar thermal electric systems have an advantage over many other renewable energy technologies because the former use heat as an intermediate energy carrier. This is an advantage as it allows for a relatively simple method of hybridization by using heat from fossil-fuel. Hybridization of solar thermal electric systems is a topic that has recently generated significant interest and controversy and has led to many diverse opinions. This paper discusses many of the issues associated with hybridization of solar thermal electric systems such as what role hybridization should play; how it should be implemented; what are the efficiency, environmental, and cost implications; what solar fraction is appropriate; how hybrid systems compete with solar-only systems; and how hybridization can impact commercialization efforts for solar thermal electric systems.

  7. Inflatable Solar Thermal Concentrator Delivered

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol M.

    1999-01-01

    Space-based solar thermal power systems are very appealing as a space power source because they generate power efficiently. However, solar thermal (dynamic) systems currently incorporate rigid concentrators that are relatively heavy and require significant packaging volume and robust deployment schemes. In many ways, these requirements make these systems less appealing than photovoltaic systems. As an alternative to solar thermal power systems with rigid concentrators, solar thermal power systems with thin film inflation-deployed concentrators have low cost, are lightweight, and are efficiently packaged and deployed. Not only are inflatable concentrators suitable for low Earth orbit and geosynchronous orbit applications, but they can be utilized in deep space missions to concentrate solar energy to high-efficiency solar cells.

  8. Thermal Decomposition of Copper (II) Calcium (II) Formate

    NASA Astrophysics Data System (ADS)

    Leyva, A. G.; Polla, G.; de Perazzo, P. K.; Lanza, H.; de Benyacar, M. A. R.

    1996-05-01

    The presence of different stages in the thermal decomposition process of CuCa(HCOO) 4has been established by means of TGA at different heating rates, X-ray powder diffraction of quenched samples, and DSC methods. During the first stage, decomposition of one of the two copper formate structural units contained in the unit cell takes place. The presence of CuCa 2(HCOO) 6has been detected. Calcium formate structural units break down at higher temperatures; the last decomposition peak corresponds to the appearance of different calcium-copper oxides.

  9. The Products of the Thermal Decomposition of CH3CHO

    SciTech Connect

    Vasiliou, AnGayle; Piech, Krzysztof M.; Zhang, Xu; Nimlos, Mark R.; Ahmed, Musahid; Golan, Amir; Kostko, Oleg; Osborn, David L.; Daily, John W.; Stanton, John F.; Ellison, G. Barney

    2011-04-06

    We have used a heated 2 cm x 1 mm SiC microtubular (mu tubular) reactor to decompose acetaldehyde: CH3CHO + DELTA --> products. Thermal decomposition is followed at pressures of 75 - 150 Torr and at temperatures up to 1700 K, conditions that correspond to residence times of roughly 50 - 100 mu sec in the mu tubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: VUV photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH3CHO, we have studied three isotopologues, CH3CDO, CD3CHO, and CD3CDO. We have identified the thermal decomposition products CH3(PIMS), CO (IR, PIMS), H (PIMS), H2 (PIMS), CH2CO (IR, PIMS), CH2=CHOH (IR, PIMS), H2O (IR, PIMS), and HC=CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH3CHO: Radical decomposition: CH3CHO + DELTA --> CH3 + [HCO] --> CH3 + H + CO Elimination: CH3CHO + DELTA --> H2 + CH2=C=O. Isomerization/elimination: CH3CHO + DELTA --> [CH2=CH-OH] --> HC=CH + H2O. Both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH2=C:, as an intermediate in the decomposition of vinyl alchohol: CH2=CH-OH + DELTA --> [CH2=C:] + H2O --> HC=CH + H2O.

  10. USAF solar thermal applications overview

    NASA Technical Reports Server (NTRS)

    Hauger, J. S.; Simpson, J. A.

    1981-01-01

    Process heat applications were compared to solar thermal technologies. The generic process heat applications were analyzed for solar thermal technology utilization, using SERI's PROSYS/ECONOMAT model in an end use matching analysis and a separate analysis was made for solar ponds. Solar technologies appear attractive in a large number of applications. Low temperature applications at sites with high insolation and high fuel costs were found to be most attractive. No one solar thermal technology emerges as a clearly universal or preferred technology, however,, solar ponds offer a potential high payoff in a few, selected applications. It was shown that troughs and flat plate systems are cost effective in a large number of applications.

  11. Solar Thermal Electricity Generating System

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at

  12. Thermal decomposition behaviors of lignite by pyrolysis-FTIR

    SciTech Connect

    Feng, J.; Li, W.Y.; Xie, K.C.

    2006-01-21

    An in situ pyrolysis reactor combined with the Fourier transformation infrared spectrometer (PFTIR) technique is employed to study the coal structure and its thermal decomposition behaviors. The interface of pyroprobe with FTIR was designed delicately to ensure the path of the laser beam in FTIR was just 3 {mu}m above the coal sample, so any detection information of products from coal pyrolysis would be acquired previous to the secondary reaction. The PFTIR technique can be adopted to determine the activation energy of coal pyrolysis. Lignite coal has been used to evaluate this new method. The thermal decomposition behaviors of functional groups from lignite pyrolysis coincide with the first-order reaction.

  13. A coke oven model including thermal decomposition kinetics of tar

    SciTech Connect

    Munekane, Fuminori; Yamaguchi, Yukio; Tanioka, Seiichi

    1997-12-31

    A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.

  14. Autocatalytic behavior of trimethylindium during thermal decomposition

    SciTech Connect

    McDaniel, A.H.; Allendorf, M.D.

    2000-02-01

    Pyrolysis of trimethylindium (TMIn) in a hot-wall flow-tube reactor has been investigated at temperatures between 573 and 723 K using a modulated molecular-beam mass-sampling technique and detailed numerical modeling. The TMIn was exposed to various mixtures of carrier gases: He, H{sub 2}, D{sub 2}, and C{sub 2}H{sub 4}, in an effort to elucidated the behavior exhibited by this compound in different chemical environments. The decomposition of TMIn is a heterogeneous, autocatalytic process with an induction period that is carrier-gas dependent and lasts on the order of minutes. After activation of the tube wall, the thermolysis exhibits a steady-state behavior that is surface mediated. This result is contrary to prior literature reports, which state that decomposition occurs in the gas phase via successive loss of the CH{sub 3} ligands. This finding also suggests that the bond dissociation energy for the (CH{sub 3}){sub 2}In-CH{sub 3} bond derived from flow-tube investigations is erroneous and should be reevaluated.

  15. Solar Thermal Demonstration Project

    SciTech Connect

    Biesinger, K; Cuppett, D; Dyer, D

    2012-01-30

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with Kalwall building panels. An added feature of the Kalwall system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  16. Scattering Solar Thermal Concentrators

    SciTech Connect

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the

  17. Thermal decomposition of substituted phenols in supercritical water

    SciTech Connect

    Martino, C.J.; Savage, P.E.

    1997-05-01

    The thermal decomposition of cresols, hydroxybenzaldehydes, nitrophenols, and benzenediols was studied in dilute aqueous solutions and in the absence of oxygen at 460 C and 250 atm for residence times around 10 s. Thermolysis under these conditions produced conversions of less than 10% for o-, m-, and p-cresol, whereas hydroxybenzaldehydes and nitrophenols were much more reactive. Global rate expressions are reported for the thermolysis of each hydroxybenzaldehyde and nitrophenol isomer. Phenol was a major product from the decomposition of all of the substituted phenols studied. For a given substituent, ortho-substituted phenols reacted more rapidly than the other isomers. For a given substituted position, nitrophenols reacted more rapidly than hydroxybenzaldehydes, which in turn reacted more rapidly than cresols. These results demonstrate that the treatment of CHO- and NO{sub 2}-substituted phenols by oxidation in supercritical water will involve the oxidation of thermal decomposition products in addition to the oxidation of the original compounds.

  18. Thermal decomposition of silane to form hydrogenated amorphous Si film

    DOEpatents

    Strongin, Myron; Ghosh, Arup K.; Wiesmann, Harold J.; Rock, Edward B.; Lutz, III, Harry A.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silano (SiH.sub.4) or other gases comprising H and Si, at elevated temperatures of about 1700.degree.-2300.degree. C., and preferably in a vacuum of about 10.sup.-8 to 10.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseous mixture onto a substrate outside said source of thermal decomposition to form hydrogenated amorphous silicon.

  19. Solar mechanics thermal response capabilities.

    SciTech Connect

    Dobranich, Dean D.

    2009-07-01

    In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

  20. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph, taken at MSFC's Solar Thermal Propulsion Test Facility, shows a concentrator mirror, a combination of 144 mirrors forming this 18-ft diameter concentrator, and a vacuum chamber that houses the focal point. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-foot diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  1. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  2. The products of the thermal decomposition of CH3CHO

    NASA Astrophysics Data System (ADS)

    Vasiliou, AnGayle; Piech, Krzysztof M.; Zhang, Xu; Nimlos, Mark R.; Ahmed, Musahid; Golan, Amir; Kostko, Oleg; Osborn, David L.; Daily, John W.; Stanton, John F.; Barney Ellison, G.

    2011-07-01

    We have used a heated 2 cm × 1 mm SiC microtubular (μtubular) reactor to decompose acetaldehyde: CH3CHO + Δ → products. Thermal decomposition is followed at pressures of 75-150 Torr and at temperatures up to 1675 K, conditions that correspond to residence times of roughly 50-100 μs in the μtubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: vacuum ultraviolet photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH3CHO, we have studied three isotopologues, CH3CDO, CD3CHO, and CD3CDO. We have identified the thermal decomposition products CH3 (PIMS), CO (IR, PIMS), H (PIMS), H2 (PIMS), CH2CO (IR, PIMS), CH2=CHOH (IR, PIMS), H2O (IR, PIMS), and HC≡CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH3CHO; namely, radical decomposition: CH3CHO + Δ → CH3 + [HCO] → CH3 + H + CO; elimination: CH3CHO + Δ → H2 + CH2=C=O; isomerization/elimination: CH3CHO + Δ → [CH2=CH-OH] → HC≡CH + H2O. An interesting result is that both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH2=C:, as an intermediate in the decomposition of vinyl alcohol: CH2=CH-OH + Δ → [CH2=C:] + H2O → HC≡CH + H2O.

  3. Thermal Decomposition of Copper (II) Dicalcium (II) Formate

    NASA Astrophysics Data System (ADS)

    de Perazzo, P. K.; Leyva, A. G.; Polla, G.; Parisi, F.; de Benyacar, M. A. R.; Smichowski, P.; Lanza, H.

    1997-09-01

    The unit cell obtained through X-ray single crystal analysis of the synthetized CuCa 2(HCOO) 6crystals corresponds to a supercell of the basic structure described by M. Sanchis et al.( Inorg. Chem.31, 2915 (1992)). Thermal decomposition of this sample shows two stages up to 300°C; the first can be related to the superstructure, and the second corresponds to the breaking down of the remaining copper formate structural units and the simultaneous decomposition of the sample.

  4. Thermal Fronts in Solar Flares

    NASA Astrophysics Data System (ADS)

    Karlický, Marian

    2015-12-01

    We studied the formation of a thermal front during the expansion of hot plasma into colder plasma. We used a three-dimensional electromagnetic particle-in-cell model that includes inductive effects. In early phases, in the area of the expanding hot plasma, we found several thermal fronts, which are defined as a sudden decrease of the local electron kinetic energy. The fronts formed a cascade. Thermal fronts with higher temperature contrast were located near plasma density depressions, generated during the hot plasma expansion. The formation of the main thermal front was associated with the return-current process induced by hot electron expansion and electrons backscattered at the front. A part of the hot plasma was trapped by the thermal front while another part, mainly with the most energetic electrons, escaped and generated Langmuir and electromagnetic waves in front of the thermal front, as shown by the dispersion diagrams. Considering all of these processes and those described in the literature, we show that anomalous electric resistivity is produced at the location of the thermal front. Thus, the thermal front can contribute to energy dissipation in the current-carrying loops of solar flares. We estimated the values of such anomalous resistivity in the solar atmosphere together with collisional resistivity and electric fields. We propose that the slowly drifting reverse drift bursts, observed at the beginning of some solar flares, could be signatures of the thermal front.

  5. Resolving Some Paradoxes in the Thermal Decomposition Mechanism of Acetaldehyde.

    PubMed

    Sivaramakrishnan, Raghu; Michael, Joe V; Harding, Lawrence B; Klippenstein, Stephen J

    2015-07-16

    The mechanism for the thermal decomposition of acetaldehyde has been revisited with an analysis of literature kinetics experiments using theoretical kinetics. The present modeling study was motivated by recent observations, with very sensitive diagnostics, of some unexpected products in high temperature microtubular reactor experiments on the thermal decomposition of CH3CHO and its deuterated analogs, CH3CDO, CD3CHO, and CD3CDO. The observations of these products prompted the authors of these studies to suggest that the enol tautomer, CH2CHOH (vinyl alcohol), is a primary intermediate in the thermal decomposition of acetaldehyde. The present modeling efforts on acetaldehyde decomposition incorporate a master equation reanalysis of the CH3CHO potential energy surface (PES). The lowest-energy process on this PES is an isomerization of CH3CHO to CH2CHOH. However, the subsequent product channels for CH2CHOH are substantially higher in energy, and the only unimolecular process that can be thermally accessed is a reisomerization to CH3CHO. The incorporation of these new theoretical kinetics predictions into models for selected literature experiments on CH3CHO thermal decomposition confirms our earlier experiment and theory-based conclusions that the dominant decomposition process in CH3CHO at high temperatures is C-C bond fission with a minor contribution (∼10-20%) from the roaming mechanism to form CH4 and CO. The present modeling efforts also incorporate a master-equation analysis of the H + CH2CHOH potential energy surface. This bimolecular reaction is the primary mechanism for removal of CH2CHOH, which can accumulate to minor amounts at high temperatures, T > 1000 K, in most lab-scale experiments that use large initial concentrations of CH3CHO. Our modeling efforts indicate that the observation of ketene, water, and acetylene in the recent microtubular experiments are primarily due to bimolecular reactions of CH3CHO and CH2CHOH with H-atoms and have no bearing on

  6. Strain localization driven by thermal decomposition during seismic shear

    NASA Astrophysics Data System (ADS)

    Platt, John D.; Brantut, Nicolas; Rice, James R.

    2015-06-01

    Field and laboratory observations show that shear deformation is often extremely localized at seismic slip rates, with a typical deforming zone width on the order of a few tens of microns. This extreme localization can be understood in terms of thermally driven weakening mechanisms. A zone of initially high strain rate will experience more shear heating and thus weaken faster, making it more likely to accommodate subsequent deformation. Fault zones often contain thermally unstable minerals such as clays or carbonates, which devolatilize at the high temperatures attained during seismic slip. In this paper, we investigate how these thermal decomposition reactions drive strain localization when coupled to a model for thermal pressurization of in situ groundwater. Building on Rice et al. (2014), we use a linear stability analysis to predict a localized zone thickness that depends on a combination of hydraulic, frictional, and thermochemical properties of the deforming fault rock. Numerical simulations show that the onset of thermal decomposition drives additional strain localization when compared with thermal pressurization alone and predict localized zone thicknesses of ˜7 and ˜13 μm for lizardite and calcite, respectively. Finally we show how thermal diffusion and the endothermic reaction combine to limit the peak temperature of the fault and that the pore fluid released by the reaction provides additional weakening of ˜20-40% of the initial strength.

  7. Biomass pyrolysis: Thermal decomposition mechanisms of furfural and benzaldehyde

    NASA Astrophysics Data System (ADS)

    Vasiliou, AnGayle K.; Kim, Jong Hyun; Ormond, Thomas K.; Piech, Krzysztof M.; Urness, Kimberly N.; Scheer, Adam M.; Robichaud, David J.; Mukarakate, Calvin; Nimlos, Mark R.; Daily, John W.; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G. Barney

    2013-09-01

    The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.

  8. Solar-thermal engine testing

    NASA Astrophysics Data System (ADS)

    Tucker, Stephen; Salvail, Pat

    2002-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle, collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 °F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (Isp). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemically vapor deposited (CVD) rhenium. The engine ``module'' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine Isp. In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects

  9. Solar Thermal Reactor Materials Characterization

    SciTech Connect

    Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

    2008-03-01

    Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

  10. Thermal decomposition of carboxylate ionic liquids: trends and mechanisms.

    PubMed

    Clough, Matthew T; Geyer, Karolin; Hunt, Patricia A; Mertes, Jürgen; Welton, Tom

    2013-12-21

    The thermal stability of a series of dialkylimidazolium carboxylate ionic liquids has been investigated using a broad range of experimental and computational techniques. Ionic liquids incorporating fluoroalkyl carboxylate anions were found to have profoundly differing thermal stabilities and decomposition mechanisms compared with their non-fluorinated analogues. 1-Ethyl-3-methylimidazolium acetate was observed to largely decompose via an S(N)2 nucleophilic substitution reaction when under inert gas conditions, predominantly at the imidazolium methyl substituent. The Arrhenius equations for thermal decomposition of 1-ethyl-3-methylimidazolium acetate, and the C(2)-methylated analogue 1-ethyl-2,3-dimethylimidazolium acetate, were determined from isothermal Thermogravimetric Analysis experiments. The low thermal stability of 1-ethyl-3-methylimidazolium acetate has important implications for biomass experiments employing this ionic liquid. For these two ionic liquids, ion pair and transition state structures were optimised using Density Functional Theory. The activation barriers for the S(N)2 nucleophilic substitution mechanisms are in good agreement with the experimentally determined values. PMID:24173605

  11. Thermal decomposition of struvite and its phase transition.

    PubMed

    Bhuiyan, M Iqbal H; Mavinic, D S; Koch, F A

    2008-02-01

    Intentional crystallization of struvite, before it forms and accumulates on wastewater treatment equipment, solves an important and costly wastewater treatment problem and on the other hand, provides an environmentally sound and renewable nutrient source to the agricultural industry. Struvite was synthesized in the laboratory; it was also produced as pellets in a pilot-scale, fluidized bed reactor, using real centrate resulting from an anaerobic digester. The thermal decomposition of both synthetic struvite and struvite pellets was studied. The decomposition of struvite was found to be dependent on the rate of heating. Through gradual loss of ammonia and water molecules, ultimately struvite was found to be transformed into amorphous magnesium hydrogen phosphate. When struvite was heated in excess water, it was partially transformed into bobierrite, through the gradual loss of ammonia. It was transformed into monohydrate, dittmarite by losing its five water molecules of crystallization, when boiled in excess water. PMID:18022212

  12. Production and analysis of thermal decomposition products from polymeric materials

    NASA Technical Reports Server (NTRS)

    Chatfield, D. A.; Einhorn, I. N.; Hileman, F. D.; Futrell, J. H.; Voorhees, K. J.

    1978-01-01

    A description is presented of a strategy for analyzing the combustion process and the degradation products which are formed. One of three primary objectives in the study of polymer degradation is related to the characterization of the material to be studied and the investigation of the thermal behavior of the material. Another objective is concerned with the definition of the nature of the decomposition process by identification and quantitation of the degradation products. The third objective involves the determination of the mechanism and kinetics of the decomposition process. The methods of sample degradation include pyrolysis, oxidative degradation, flaming combustion, and the use of large-scale combustion chambers. Methods of chemical separation and identification are considered, taking into account low-boiling volatiles, high-boiling volatiles, and ancillary techniques.

  13. Sandia Laboratories in-house activities in support of solar thermal large power applications

    NASA Technical Reports Server (NTRS)

    Mar, R. W.

    1980-01-01

    The development of thermal energy storage subsystems for solar thermal large power applications is described. The emphasis is on characterizing the behavior of molten nitrate salts with regard to thermal decomposition, environmental interactions, and corrosion. Electrochemical techniques to determine the ionic species in the melt and for use in real time studies of corrosion are also briefly discussed.

  14. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    A major constraint to the evolution of solar thermal power systems is the need to provide continuous operation during periods of solar outage. A number of high temperature thermal energy storage technologies which have the potential to meet this need are currently under development. The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  15. Programming Enhancements for Low Temperature Thermal Decomposition Workstation

    SciTech Connect

    Igou, R.E.

    1998-10-01

    This report describes a new control-and-measurement system design for the Oak Ridge Y-12 Plant's Low Temperature Thermal Decomposition (LTTD) process. The new design addresses problems with system reliability stemming from equipment obsolescence and addresses specific functional improvements that plant production personnel have identified, as required. The new design will also support new measurement techniques, which the Y-12 Development Division has identified for future operations. The new techniques will function in concert with the original technique so that process data consistency is maintained.

  16. Effects of Metallo-Organic Decomposition Agents on Thermal Decomposition and Electrical Conductivity of Low-Temperature-Curing Silver Paste

    NASA Astrophysics Data System (ADS)

    Lu, Chun-An; Lin, Pang; Lin, Hong-Ching; Wang, Sea-Fue

    2006-09-01

    Six low-temperature-curing silver pastes were prepared from silver flake, α-terpineol and various metallo-organic decomposition (MOD) compounds. The thermal decomposition behaviors of the pastes were determined. The microstructures and resistivities of screen-printed films on alumina substrate after thermal treatment were characterized and discussed. Results indicated that 2-ethylhexanoate possesses the lowest decomposition temperature (190.3 °C) among the MOD agents studied, and it forms silver particles to promote the linking of silver flake powders and thus reduces the resistivity to <13 μΩ\\cdotcm at a temperature as low as 200 °C.

  17. Thermal Decomposition of Benzyl Radical via Multiple Active Pathways

    NASA Astrophysics Data System (ADS)

    Buckingham, Grant; Robichaud, David; Ormond, Thomas; Nimlos, Mark R.; Daily, John W.; Ellison, Barney

    2014-06-01

    The thermal decomposition of benzyl radical (C6H5CH2) has been investigated using a combination infrared absorption spectroscopy in a neon matrix and 118.2 (10.487 eV) photoionization mass spectrometry. Both techniques are coupled with a heated tubular reactor to allow temperature control over the decomposition to indicate relative barrier heights of fragmentation pathways. Three possible chemical mechanisms have been considered. 1) Ring expansion to cycloheptatrienyl radical (C7H7) with subsequent breakdown to HCCH and C5H5, 2) isomerization to the substituted five-membered ring fulvenallene (C5H4=C=CH2), which is of interest to kinetic theorists and finally 3) hydrogen shift to form methyl-substituted phenyl radical, which can then form ortho-benzyne, diacetylene and other fragments. Benzyl radical is generated from two precursors, C6H5CH2CH3 and C6H5CH2Br, and both lead to the appearance of HCCH and C5H5. At slightly hotter temperatures peaks are observed at m/z 90, presumed to be C5H4=C=CH2, and 89, potentially the substituted propargyl C5H4=C=CH. Additionally, decomposition of isotopically substituted parent molecules C6H5CD2CD3 and C6D5CH2CH3 indicates C7H7 as an intermediate due to H/D ratios in fragment molecules.

  18. Solar thermal technologies program summary

    SciTech Connect

    Not Available

    1985-05-01

    The primary applications being developed in solar thermal technology are the production of electricity and industrial process heat. Additional applications, such as the production of a transportable fuel, are also being studied to determine their feasibility. Two collector concepts are being examined: central receiver and distributed receiver. Some significant achievements are briefly described, as well as program goals and strategies. The research plan for the 1984 fiscal year is also briefly discussed, including a summary of the budget. (LEW)

  19. High temperature solar thermal receiver

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.

  20. More Efficient Solar Thermal-Energy Receiver

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  1. Mercer's spectral decomposition for the characterization of thermal parameters

    NASA Astrophysics Data System (ADS)

    Ahusborde, E.; Azaïez, M.; Belgacem, F. Ben; Palomo Del Barrio, E.

    2015-08-01

    We investigate a tractable Singular Value Decomposition (SVD) method used in thermography for the characterization of thermal parameters. The inverse problem to solve is based on the model of transient heat transfer. The most significant advantage is the transformation of the dynamic identification problem into a steady identification equation. The time dependence is accounted for by the SVD in a performing way. We lay down a mathematical foundation well fitted to this approach, which relies on the spectral expansion of Mercer kernels. This enables us to shed more light on most of its important features. Given its potentialities, the analysis we propose here might help users understanding the way the SVD algorithm, or the TSVD, its truncated version, operate in the thermal parameters estimation and why it is relevant and attractive. When useful, the study is complemented by some analytical and numerical illustrations realized within MATLAB's code.

  2. Solar-Thermal Engine Testing

    NASA Technical Reports Server (NTRS)

    Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)

    2001-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational

  3. Thermal stability and kinetic of decomposition of nitrated HTPB.

    PubMed

    Wang, Qingfa; Wang, Li; Zhang, Xiangwen; Mi, Zhentao

    2009-12-30

    Nitrated HTPB (NHTPB) is a potential energetic binder to replace the conventional inert binder, HTPB, for the composite solid propellants and plastic bonded explosives (PBXs). The thermal stability of the NHTPB sample with 10% double bonds converted to dinitrate ester group (10% NHTPB) was evaluated by high-pressure differential scanning calorimeter (PDSC) measurement. The influences of pressure (0.1, 2.5 and 5.0 MPa) and the heating rate (4, 6, 8 and 10 degrees C min(-1)) on the DSC behavior of the 10% NHTPB sample were investigated. The decomposition temperature of this compound decreased with the increase of pressure, meanwhile, increased as the heating rate increasing. The thermal decomposition at 150-250 degrees C followed a first-order law. The kinetic parameters and thermodynamic parameters for the 10% NHTPB sample at 150-250 degrees C under ambient pressure were obtained from the DSC data by non-isothermal methods proposed by ASTM E698 and Flynn-Wall-Ozawa. The critical temperature for this compound was estimated at about 154 degrees C. PMID:19740607

  4. Solar energy thermalization and storage device

    DOEpatents

    McClelland, John F.

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  5. Solar energy thermalization and storage device

    DOEpatents

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  6. Advanced solar thermal receiver technology

    NASA Technical Reports Server (NTRS)

    Kudirka, A. A.; Leibowitz, L. P.

    1980-01-01

    Development of advanced receiver technology for solar thermal receivers designed for electric power generation or for industrial applications, such as fuels and chemical production or industrial process heat, is described. The development of this technology is focused on receivers that operate from 1000 F to 3000 F and above. Development strategy is mapped in terms of application requirements, and the related system and technical requirements. Receiver performance requirements and current development efforts are covered for five classes of receiver applications: high temperature, advanced Brayton, Stirling, and Rankine cycle engines, and fuels and chemicals.

  7. Thermal Decomposition of 3-Bromopropene. A Theoretical Kinetic Investigation.

    PubMed

    Tucceri, María E; Badenes, María P; Bracco, Larisa L B; Cobos, Carlos J

    2016-04-21

    A detailed kinetic study of the gas-phase thermal decomposition of 3-bromopropene over wide temperature and pressure ranges was performed. Quantum chemical calculations employing the density functional theory methods B3LYP, BMK, and M06-2X and the CBS-QB3 and G4 ab initio composite models provide the relevant part of the potential energy surfaces and the molecular properties of the species involved in the CH2═CH-CH2Br → CH2═C═CH2 + HBr (1) and CH2═CH-CH2Br → CH2═CH-CH2 + Br (2) reaction channels. Transition-state theory and unimolecular reaction rate theory calculations show that the simple bond fission reaction ( 2 ) is the predominant decomposition channel and that all reported experimental studies are very close to the high-pressure limit of this process. Over the 500-1400 K range a rate constant for the primary dissociation of k2,∞ = 4.8 × 10(14) exp(-55.0 kcal mol(-1)/RT) s(-1) is predicted at the G4 level. The calculated k1,∞ values lie between 50 to 260 times smaller. A value of 10.6 ± 1.5 kcal mol(-1) for the standard enthalpy of formation of 3-bromopropene at 298 K was estimated from G4 thermochemical calculations. PMID:27023718

  8. Reaction pathways for the thermal decomposition of methyl butanoate.

    PubMed

    Akbar Ali, Mohamad; Violi, Angela

    2013-06-21

    In recent years, biodiesel fuels, consisting of long-chain alkyl (methyl, ethyl, propyl) esters, have emerged as viable alternatives to petroleum-based fuels. From a combustion chemistry standpoint, there is great interest in developing accurate reaction models for these new molecules that can be used to predict their behaviors in various regimes. In this paper, we report a detailed study of the unimolecular decomposition pathways of methyl butanoate (MB), a short-chain ester that contains the basic chemical structure of biodiesel fuels. Using ab initio/DFT methods, we identified five homolytic fissions of C-C and C-O bonds and five hydrogen transfer reactions. Rate constants were determined using the G3B3 theory coupled with both variational transition state theory and Rice-Ramsperger-Kassel-Marcus/master equation simulations with hindered rotation corrections. Branching ratios in the temperature range 1500-2200 K indicate that the main pathway for thermal decomposition of MB is the reaction CH3CH2CH2C(═O)OCH3 → C2H5 + CH2C(═O)OCH3. The results, in terms of reaction pathways and rate constants, can be used for future development of mechanisms for long alkyl-chain esters. PMID:23679139

  9. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  10. Decomposition model for phonon thermal conductivity of a monatomic lattice

    NASA Astrophysics Data System (ADS)

    Evteev, Alexander V.; Momenzadeh, Leila; Levchenko, Elena V.; Belova, Irina V.; Murch, Graeme E.

    2014-12-01

    An analytical treatment of decomposition of the phonon thermal conductivity of a crystal with a monatomic unit cell is developed on the basis of a two-stage decay of the heat current autocorrelation function observed in molecular dynamics simulations. It is demonstrated that the contributions from the acoustic short- and long-range phonon modes to the total phonon thermal conductivity can be presented in the form of simple kinetic formulas, consisting of products of the heat capacity and the average relaxation time of the considered phonon modes as well as the square of the average phonon velocity. On the basis of molecular dynamics calculations of the heat current autocorrelation function, this treatment allows for a self-consistent numerical evaluation of the aforementioned variables. In addition, the presented analysis allows, within the Debye approximation, for the identification of the temperature range where classical molecular dynamics simulations can be employed for the prediction of phonon thermal transport properties. As a case example, Cu is considered.

  11. Mechanism of thermal decomposition of 2-furyl radical

    NASA Astrophysics Data System (ADS)

    Poskrebyshev, Gregory A.

    2016-02-01

    Mechanism of thermal decomposition of 2-furyl radical is studied using UB3LYP, UBHandHLYP and UMP2/6-311++G(d, p) approaches. Thermodynamic properties of considered intermediates and products of 2-furyl radical decomposition are calculated. Two the most kinetically favorable channels of 2-furyl decomposition are found: cis-cis-5-radC(H)dbnd C(H)C(H)CO (P1) → C2H2 + radCHCO (1) and cis-trans-5-radC(H)dbnd C(H)(H)Cdbnd CO (P2) → CO + C3H3rad (2), where P1 and P2 are the intermediate products of 2-furyl radical decomposition C4H3Orad → P1 ↔ P2 ↔ trans-trans-5-radC(H)dbnd (H)CC(H)CO (P3). The values of equilibrium (Kp) and high pressure limits rate (k∞) constants of the reactions considered in the present work are calculated. The important values of k∞ = 2.85 ×1013(T/298.15) 1.05e -138.7/RT and = 2.7 ×1012(T/298.15) 1.05e -175.7/RTs-1 are estimated, respectively, for reactions P1 → C2H2 + radCHCO and P2 → H2C = radCC(H)CO (P4) → CO + C3H3rad. The values of Kp = 3.7 ×105(T/298.15) 4.14e -11.9/RT and 3.35(T/298.15) - 0.201e - 1.34/RT , respectively, for reactions C4H3Orad ↔ P1 and P1 ↔ P2 are determined. In addition, the importance of formation of most thermodynamically favorable intermediate P3 is reported and the value of Kp = 3.45 ×10-2(T/298.15) 0.317e 4.5/RT for reaction P2 ↔ P3 is calculated.

  12. Adsorption and thermal decomposition of phenol on Ni(110)

    NASA Astrophysics Data System (ADS)

    Russell, J. N.; Sarvis, S. S.; Morris, R. E.

    1995-09-01

    The thermal decomposition of phenol on Ni(110) between 150 and 800 K was investigated with temperature programmed desorption (TPD), low energy electron diffraction (LEED), and Auger electron spectroscopy (AES). After adsorption at 150 K, the phenol monolayer completely decomposed into H 2, CO, and adsorbed carbon upon heating to 800 K. Molecular phenol desorbed from an unreactive state at 225 K and from the multilayer at 200 K. The saturated reactive monolayer resulted in four H 2 desorption states, β1- β4. The β1-H 2 state observed between 250 and 350 K, resulted from OH bond scission and demonstrated the formation of a phenoxy species. A deuterium kinetic isotope effect (DKIE) for β1-hydrogen desorption indicated that OH bond scission occurs between 250 and 350 K. However, the absence of a DKIE in the reactive adsorption at 290 K of OH/OD and CH/CD labeled phenol showed that phenol chemisorbed on Ni(110) via the π bonds of the ring. The β2- β4-H 2 desorption states occurred in a continuum between 370 and 650 K and resulted from decomposition of the phenyl ring. The observation of a deuterium kinetic isotope effect for β2-H 2 desorption from 2,4,6- d3-phenol, compared to h6-phenol, and 3,5- d2-phenol indicated that scission of the CH bond in either the (2,6) or the 4 position on the ring was the rate limiting step. CO desorption began near 400 K, and continued to about 650 K, exhibiting the same general thermal desorption distribution as the β2- β4-H 2 desorption spectrum. In CO desorption, a DKIE indicated CH bond scission influenced the decomposition of the CC bonds in the ring which resulted in CO production. 13C labeling revealed that 60% of the CO bond units remained intact. At 650 K, the carbon residue had a graphitic Auger lineshape, and exhibited a LEED pattern that is consistent with graphite microcrystallites. The surface C dissolved into the bulk above 700 K.

  13. Investigation of the thermal decomposition of sulfuric acid containing inorganic impurities

    SciTech Connect

    Kogtev, S.E.; Nikandrov, I.S.; Borisenko, A.S.; Peretrutov, A.A.

    1986-09-20

    Oleum is recovered by thermal decomposition of sulfuric acid wastes to sulfur dioxide with conversion of the sulfur dioxide to oleum. The organic substances in sulfuric acid wastes can affect the thermal-decomposition indexes of sulfuric acid wastes. They studied the effect of toluene, nitrotoluene, benzoic acid, and carbon on the yield of sulfur dioxide and also the possibility of reduction of acid vapors by products of pyrolysis and incomplete combustion of hydrocarbons. It is shown that the yield of sulfur dioxide in thermal decomposition of hydrocarbon-containing sulfuric acid wastes can be increased if the process assumes the nature of reductive decomposition.

  14. Analysis of Siderite Thermal Decomposition by Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    Bell, M. S.; Lin, I.-C.; McKay, D. S.

    2000-01-01

    Characterization of carbonate devolitilization has important implications for atmospheric interactions and climatic effects related to large meteorite impacts in platform sediments. On a smaller scale, meteorites contain carbonates which have witnessed shock metamorphic events and may record pressure/temperature histories of impact(s). ALH84001 meteorite contains zoned Ca-Mg-Fe-carbonates which formed on Mars. Magnetite crystals are found in the rims and cores of these carbonates and some are associated with void spaces leading to the suggestion by Brearley et al. that the crystals were produced by thermal decomposition of the carbonate at high temperature, possibly by incipient shock melting or devolitilization. Golden et al. recently synthesized spherical Mg-Fe-Ca-carbonates from solution under mild hydrothermal conditions that have similar carbonate compositional zoning to those of ALH84001. They have shown experimental evidence that the carbonate-sulfide-magnetite assemblage in ALH84001 can result from a multistep inorganic process involving heating possibly due to shock events. Experimental shock studies on calcium carbonate prove its stability to approx. 60 GPa, well in excess of the approx. 45 GPa peak pressures indicated by other shock features in ALH84001. In addition, Raman spectroscopy of carbonate globules in ALH84001 indicates no presence of CaO and MgO. Such oxide phases should be found associated with the magnetites in voids if these magnetites are high temperature shock products, the voids resulting from devolitilization of CO2 from calcium or magnesium carbonate. However, if the starting material was siderite (FeCO3), thermal breakdown of the ALH84001 carbonate at 470 C would produce iron oxide + CO2. As no documentation of shock effects in siderite exists, we have begun shock experiments to determine whether or not magnetite is produced by the decomposition of siderite within the < 45GPa pressure window and by the resultant thermal pulse to approx

  15. PCB decomposition and formation in thermal treatment plant equipment.

    PubMed

    Ishikawa, Yukari; Noma, Yukio; Yamamoto, Takashi; Mori, Yoshihito; Sakai, Shin-ichi

    2007-04-01

    In this study we investigated both the decomposition and unintentional formation of polychlorinated biphenyl congeners during combustion experiments of refuse-derived fuel (RDF) and automobile shredder residue (ASR) at several stages in thermal treatment plant equipment composed of a primary combustion chamber, a secondary combustion chamber, and other equipments for flue gas treatment. In both experiments, the unintentional formation of PCB occurred in the primary combustion chamber at the same time as the decomposition of PCB in input samples. By combusting RDF, non-ortho-PCB predominantly formed, whereas ortho-PCB and symmetric chlorinated biphenyls (e.g., #52/69, #87/108, and #151) tended to be decomposed. ASR formed the higher chlorinated biphenyls more than RDF. These by-products from ASR had no structural relation with ortho-chlorine. Lower chlorinated biphenyls appeared as predominant homologues at the final exit site, while all congeners from lower to higher chlorinated PCB were unintentionally formed as by-products in the primary combustion chamber. This result showed that the flue gas treatment equipments effectively removed higher chlorinated PCB. Input marker congeners of RDF were #11, #39, and #68, while those for ASR were #11, #101, #110/120, and #118. Otherwise, combustion marker congeners of RDF were #13/12, #35, #77, and #126, while those for ASR were #170, #194, #206, and #209. While the concentration of PCB increased significantly in the primary combustion chamber, the value of toxicity equivalency quantity for dioxin-like PCB decreased in the secondary combustion chamber and the flue gas treatment equipments. PMID:17134732

  16. The response of the HMX-based material PBXN-9 to thermal insults: thermal decomposition kinetics and morphological changes

    SciTech Connect

    Glascoe, E A; Hsu, P C; Springer, H K; DeHaven, M R; Tan, N; Turner, H C

    2010-12-10

    PBXN-9, an HMX-formulation, is thermally damaged and thermally decomposed in order to determine the morphological changes and decomposition kinetics that occur in the material after mild to moderate heating. The material and its constituents were decomposed using standard thermal analysis techniques (DSC and TGA) and the decomposition kinetics are reported using different kinetic models. Pressed parts and prill were thermally damaged, i.e. heated to temperatures that resulted in material changes but did not result in significant decomposition or explosion, and analyzed. In general, the thermally damaged samples showed a significant increase in porosity and decrease in density and a small amount of weight loss. These PBXN-9 samples appear to sustain more thermal damage than similar HMX-Viton A formulations and the most likely reasons are the decomposition/evaporation of a volatile plasticizer and a polymorphic transition of the HMX from {beta} to {delta} phase.

  17. Pv-Thermal Solar Power Assembly

    DOEpatents

    Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

    2001-10-02

    A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

  18. Thermal decomposition of ammonium nitrate in supercritical water

    SciTech Connect

    Luan, Li; Proesmans, P.I.; Buelow, S.J.

    1996-10-01

    Thermal decomposition of neat NH{sub 4}NO{sub 3} has been the subject of many investigations over the past years. The reaction process is surprisingly complicated and depends largely on the reaction environment. For example, trace amounts of NH{sub 3}, HNO{sub 3} and H{sub 2}O are shown to affect the reaction significantly. In this research, NH{sub 4}NO{sub 3} decompostion was investigated in supercritical water. Reactions were evaluated in the presence of additional components such as organic compounds (CH{sub 3}OH, CH{sub 3}COOH, phenol), KN(NO{sub 2}){sub 2}, H{sub 2}O{sub 2}. Experiments were performed at varying temperatures, reaction times, NH{sub 4}NO{sub 3}, H{sub 2}O{sub 2} and organic compound concentrations. Gaseous, liquid and solid products were collected and analysed. The experimental results provided insight of the reaction chemistry which will be discussed in detail.

  19. Kinetics of the Thermal Decomposition of Solid PETN

    SciTech Connect

    Miller, G. D.; Haws, L. D.; Dinegar, R. H.

    1982-08-01

    The thermal decomposition of PETN below its melting point has been investigated. Separate monitoring of six product gases allowed individual initial rates of reaction and activation energies to be calculated. The activation energies for the production of both N2O and H2O area between 50 and 56 kcal*mol-1, pointing to a single process operant over the entire temperature range 363 - 408 K. The other four observed products have activation energies that are significantly higher. The activation energies for CO2 and N2 formation are 65-66 kcal*mol-1 while those for the production of CO and [NO+NO2] are 71-75 kcal*mol-1. Whether these values represent two or only one additional mechanism is not clear; however, for the 2s width uncertainty limits overlap. The processes or process involved in the formation of CO2, N2, CO, and [NO + NO2] appear(s) to change at 373K, as a dramatic drop in activation energies is observed at lower temperatures.

  20. Thermal decomposition of Ti getter films from the DITE tokamak

    SciTech Connect

    Malinowski, M.E.

    1981-04-01

    The potential application of Ti gettering in tritium-using tokamaks will result in unacceptably high in-torus tritium inventories if the tritium cannot be recovered from the Ti thin films. To help assess the feasibility of tritium recovery by outgassing such films, several samples of getter films evaporated in the DITE tokamak were thermally decomposed in vacuum. Film samples from four different azimuthal torus positions were heated at approx.1/sup 0/C s/sup -1/ and all exhibited decomposition rate peaks at 410/sup 0/ +- 10/sup 0/C; every film had been fully decomposed by the time 475/sup 0/C was reached. Separate experiments showed that isothermal desorption at temperatures as low as 350/sup 0/C was sufficient to outgas such films in 10 min. Together with previous work on clean films, the present results indicated that films which have not been as heavily contaminated as the DITE samples could be desorbed in vacuum at temperatures between 250--350/sup 0/C in acceptably short times, and demonstrate that in situ outgassing of tritided films would be feasible.

  1. Solar-thermal jet pumping for irrigation

    NASA Astrophysics Data System (ADS)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  2. Thermal Decomposition of New and Aged LX-04 and PBX 9501

    SciTech Connect

    Tran, T D; Tarver, C; Idar, D J; Rodin, W A

    2002-04-09

    One-Dimensional-Time-To-Explosion (ODTX) experiments were conducted to study the thermal decomposition of new and aged LX-04, PBX 9501, HMX class 1 and class 2, Estane and EstaneBDNPA-F (PBX 950 1 plasticized-binder) materials. New and aged LX-04 showed comparable decomposition kinetics. The data for aged PBX 9501 showed slightly longer explosion times at equivalent temperatures. Analysis of the error in time measurement is complicated by several experimental factors but the small time change appears to be experimentally significant. The results suggest that aged PBX 9501 is slightly more thermally stable. The thermal decomposition of these materials were modeled using a coupled thermal and heat transport code (chemical TOPAZ) using separate kinetics for HMX and binder decomposition. The current kinetic models describe the longer explosion times by the loss of plasticizer-binder constituent, which was more thermally reactive.

  3. Thermal decomposition and oxidation of CH3OH.

    PubMed

    Lee, Pei-Fang; Matsui, Hiroyuki; Xu, Ding-Wei; Wang, Niann-Shiah

    2013-01-24

    Thermal decomposition of CH(3)OH diluted in Ar has been studied by monitoring H atoms behind reflected shock waves of 100 ppm CH(3)OH + Ar. The total decomposition rate k(1) for CH(3)OH + M → products obtained in this study is expressed as, ln(k(1)/cm(3) molecule(-1) s(-1)) = -(14.81 ± 1.22) - (38.86 ± 1.82) × 10(3)/T, over 1359-1644 K. The present result on k(1) is indicated to be substantially smaller than the extrapolation of the most of the previous experimental data but consistent with the published theoretical results [Faraday Discuss. 2002, 119, 191-205 and J. Phys. Chem. A 2007, 111, 3932-3950]. Oxidation of CH(3)OH has been studied also by monitoring H atoms behind shock waves of (0.35-100) ppm CH(3)OH + (100-400) ppm O(2) + Ar. For the low concentration CH(3)OH (below 10 ppm) + O(2) mixtures, the initial concentration of CH(3)OH is evaluated by comparing evolutions of H atoms in the same concentration of CH(3)OH with addition of 300 ppm H(2) diluted in Ar. The branching fraction for CH(3)OH + Ar → (1)CH(2) + H(2)O + Ar has been quantitatively evaluated from this comparative measurements with using recent experimental result on the yield of H atoms in the reaction of (1,3)CH(2) + O(2) [J. Phys. Chem. A 2012, 116, 9245-9254]; i.e., the branching fraction for the above reaction is evaluated as, φ(1a) = 0.20 ± 0.04 at T = 1880-2050 K, in the 1.3 and 3.5 ppm CH(3)OH + 100 ppm O(2) samples. An extended reaction mechanism for the pyrolysis and oxidation of CH(3)OH is constructed based on the results of the present study combined with the oxidation mechanism of natural gas [GRI-Mech 3.0]; evolution of H atoms can be predicted very well with this new reaction scheme over a wide concentration range for the pyrolysis (0.36-100 ppm CH(3)OH), and oxidation (0.36-100 ppm CH(3)OH + 100/400 ppm O(2)) of methanol. PMID:23244587

  4. Thermal decomposition of potassium and sodium ethylxanthates and the influence of nitrobenzene on this process

    SciTech Connect

    Gorbatov, V.V.; Gerega, V.F.; Bordzilovskii, V.Ya.; Borovoi, A.A.; Dergunov, Yu.I.

    1988-02-10

    The thermal decomposition of the alkylxanthates was described by a first-order kinetic equation up to a degree of conversion of 50%. Thermal decomposition studies of potassium alkylxanthates indicated that the rate constants of the decomposition of ROCS/sub 2/K in isopentyl alcohol increased and the activation energies decreased as the group R changed along the series CH/sub 3/, C/sub 2/H/sub 5/, C/sub 3/H/sub 7/, C/sub 4/H/sub 9/, (CH/sub 3/)/sub 3/CCH/sub 2/, and iso-C/sub 3/H/sub 7/. In this study of the influence of additions of nitrobenzene on the decomposition of potassium and sodium alkylxanthates its additions had an accelerating action on the thermal decomposition of ROCS/sub 2/M in isopentyl alcohol.

  5. Preliminary requirements for thermal storage subsystems in solar thermal applications

    SciTech Connect

    Copeland, R.J.

    1980-04-01

    Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

  6. Vaporisation and thermal decomposition of dialkylimidazolium halide ion ionic liquids.

    PubMed

    Lovelock, Kevin R J; Armstrong, James P; Licence, Peter; Jones, Robert G

    2014-01-28

    Vaporisation and liquid phase thermal decomposition, TD, of two halide ion ionic liquids, 1-octyl-3-methylimidazolium chloride, [C8C1Im]Cl, and 1-octyl-3-methylimidazolium iodide, [C8C1Im]I, are investigated using temperature programmed desorption (TPD) line of sight mass spectrometry (LOSMS) at ultra-high vacuum (UHV). The ability to use MS to distinguish between vaporisation and TD allows the thermodynamics/kinetics of both vaporisation and TD to be investigated within the same experiments. Vaporisation of both halide ion ionic liquids is demonstrated. For both [C8C1Im]Cl and [C8C1Im]I the vapour is shown to be composed of neutral ion pairs (NIPs). The enthalpy of vaporisation at temperature T, ΔvapHT, was experimentally determined as ΔvapH455 = 151 ± 10 kJ mol(-1) for [C8C1Im]Cl and ΔvapH480 = 149 ± 8 kJ mol(-1) for [C8C1Im]I. Extrapolation of ΔvapHT to the reference temperature, 298 K, gave ΔvapH298 = 166 ± 10 kJ mol(-1) for [C8C1Im]Cl and ΔvapH298 = 167 ± 8 kJ mol(-1) for [C8C1Im]I, higher than most ΔvapH298 values measured to date for other [C8C1Im](+)-containing ionic liquids. In addition, predictions of ΔvapH298 for other halide ion ionic liquids are made. Liquid phase TD is shown to proceed via nucleophilic substitution to give two sets of products: 1-octylimidazole and methylhalide, and 1-methylimidazole and 1-octylhalide. The activation energy of TD at a temperature T, Ea,TD,T, is measured for the nucleophilic substitution of [C8C1Im]I to give methyliodide; Ea,TD,480 = 136 ± 15 kJ mol(-1). Ea,TD,T is measured for the nucleophilic substitution of [C8C1Im]Cl to give methylchloride; Ea,TD,455 = 132 ± 10 kJ mol(-1). The fact that ΔvapHT and Ea,TD,T are the same (within error) for both ionic liquids is commented upon, and conclusions are drawn as to the thermal stability of these ionic liquids. PMID:24105256

  7. Thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates of BTATz-CMDB propellant.

    PubMed

    Yi, Jian-Hua; Zhao, Feng-Qi; Wang, Bo-Zhou; Liu, Qian; Zhou, Cheng; Hu, Rong-Zu; Ren, Ying-Hui; Xu, Si-Yu; Xu, Kang-Zhen; Ren, Xiao-Ning

    2010-09-15

    The composite modified double base (CMDB) propellants (nos. RB0601 and RB0602) containing 3,6-bis (1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine (BTATz) without and with the ballistic modifier were prepared and their thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates were investigated. The results show that there are three mass-loss stages in TG curve and two exothermic peaks in DSC curve for the BTATz-CMDB propellant. The first two mass-loss stages occur in succession and the temperature ranges are near apart, and the decomposition peaks of the two stages overlap each other, inducing only one visible exothermic peak appear in DSC curve during 350-550 K. The reaction mechanisms of the main exothermal decomposition processes of RB0601 and RB0602 are all classified as chemical reaction, the mechanism functions are f(alpha)=(1-alpha)(2), and the kinetic equations are dalpha/dt = 10(19.24)(1-alpha)(2)e(-2.32x10(4)/T) and dalpha/dt = 10(20.32)(1-alpha)(2)e(-2.32x10(4)/T). The thermal safety evaluation on the BTATz-CMDB propellants was obtained. With the substitution of 26% RDX by BTATz and with the help of the ballistic modifier in the CMDB propellant formulation, the burning rate can be improved by 89.0% at 8 MPa and 47.1% at 22 MPa, the pressure exponent can be reduced to 0.353 at 14-20 MPa. PMID:20542638

  8. Low-temperature thermal decomposition of large single crystals of ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Majda, Dorota; Korobov, Alexander; Filek, Urszula; Sulikowski, Bogdan; Midgley, Paul; Vowles, David; Klinowski, Jacek

    2008-03-01

    Similarities and differences in the thermal behaviour of deuterated and nondeuterated ammonium perchlorate provide insights into the mechanism of its thermal decomposition. Thermal decomposition of NHClO and NDClO always begins in the bulk of the crystals. In both cases decomposition stops when the degree of conversion is about 30%, giving porous products which undergo the same phase transition as the parent single crystals. Thermal decomposition of the deuterated sample is slower, the volume fraction of pores appears to be lower and the sample has a small quantity of 'snow' on the surface. These effects are best rationalized as caused by proton transfer at the intersections of dislocations in the bulk of the crystals.

  9. Solar thermal power systems. Summary report

    SciTech Connect

    Not Available

    1980-06-01

    The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

  10. Decomposition

    USGS Publications Warehouse

    Middleton, Beth A.

    2014-01-01

    A cornerstone of ecosystem ecology, decomposition was recognized as a fundamental process driving the exchange of energy in ecosystems by early ecologists such as Lindeman 1942 and Odum 1960). In the history of ecology, studies of decomposition were incorporated into the International Biological Program in the 1960s to compare the nature of organic matter breakdown in various ecosystem types. Such studies still have an important role in ecological studies of today. More recent refinements have brought debates on the relative role microbes, invertebrates and environment in the breakdown and release of carbon into the atmosphere, as well as how nutrient cycling, production and other ecosystem processes regulated by decomposition may shift with climate change. Therefore, this bibliography examines the primary literature related to organic matter breakdown, but it also explores topics in which decomposition plays a key supporting role including vegetation composition, latitudinal gradients, altered ecosystems, anthropogenic impacts, carbon storage, and climate change models. Knowledge of these topics is relevant to both the study of ecosystem ecology as well projections of future conditions for human societies.

  11. PV/thermal solar power assembly

    DOEpatents

    Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

    2004-01-13

    A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar collector (4). The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof (20, 25) or side wall of a building or other structure, by use of adhesive and/or other types of fasteners (23).

  12. Thermal decomposition pathways for 1,1-diamino-2,2-dinitroethene (FOX-7)

    NASA Astrophysics Data System (ADS)

    Booth, Ryan S.; Butler, Laurie J.

    2014-10-01

    In this study, we computationally investigate the initial and subsequent steps in the chemical mechanism for the gas-phase thermal decomposition of 1,1-diamino-2,2-dinitroethene (FOX-7). We determine the key exothermic step in the gas-phase thermal decomposition of FOX-7 and explore the similarities and differences between FOX-7 and other geminal dinitro energetic materials. The calculations reveal a mechanism for NO loss involving a 3-member cyclic intermediate, rather than a nitro-nitrite isomerization, that occurs in the radical intermediates formed throughout the decomposition mechanism.

  13. Formation of meteorite hydrocarbons from thermal decomposition of siderite (FeCO 3)

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.

    2003-01-01

    Thermal decomposition of siderite has been proposed as a source of magnetite in martian meteorites. Laboratory experiments were conducted to evaluate the possibility that this process might also result in abiotic synthesis of organic compounds. Siderite decomposition in the presence of water vapor at 300°C generated a variety of organic products dominated by alkylated and hydroxylated aromatic compounds. The results suggest that formation of magnetite by thermal decomposition of siderite on the precursor rock of the martian meteorite ALH84001 would have been accompanied by formation of organic compounds and may represent a source of extraterrestrial organic matter in the meteorite and on Mars. The results also suggest that thermal decomposition of siderite during metamorphism could account for some of the reduced carbon observed in metasedimentary rocks from the early Earth.

  14. Refractive Secondary Concentrators for Solar Thermal Applications

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Macosko, Robert P.

    1999-01-01

    The NASA Glenn Research Center is developing technologies that utilize solar energy for various space applications including electrical power conversion, thermal propulsion, and furnaces. Common to all of these applications is the need for highly efficient, solar concentration systems. An effort is underway to develop the innovative single crystal refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. The refractive secondary offers very high throughput efficiencies (greater than 90%), and when used in combination with advanced primary concentrators, enables very high concentration ratios (10,0(X) to 1) and very high temperatures (greater than 2000 K). Presented is an overview of the refractive secondary concentrator development effort at the NASA Glenn Research Center, including optical design and analysis techniques, thermal modeling capabilities, crystal materials characterization testing, optical coatings evaluation, and component testing. Also presented is a discussion of potential future activity and technical issues yet to be resolved. Much of the work performed to date has been in support of the NASA Marshall Space Flight Center's Solar Thermal Propulsion Program. The many benefits of a refractive secondary concentrator that enable efficient, high temperature thermal propulsion system designs, apply equally well to other solar applications including furnaces and power generation systems such as solar dynamics, concentrated thermal photovoltaics, and thermionics.

  15. National Solar Thermal Test Facility

    SciTech Connect

    Cameron, C.P.

    1989-12-31

    This is a brief report about a Sandia National Laboratory facility which can provide high-thermal flux for simulation of nuclear thermal flash, measurements of the effects of aerodynamic heating on radar transmission, etc

  16. USAF solar thermal applications case studies

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The potential of solar energy technologies to meet mission related applications for process heat was investigated. The reduction of the dependence of military installations on fossil fuels by promoting the use of more abundant resources where liquid hydrocarbons and natural gas are now used is examined. The evaluation and utilization of renewable energy systems to provide process heat and space heating are emphasized. The application of thermal energy systems is divided into four steps: (1) investigation of the potential operational cost effectiveness of selected thermal technologies; (2) selection of a site and preliminary design of point focussing solar thermal plant; (3) construction and test of an engineering prototype; and (4) installation and operation of a solar thermal energy plant.

  17. Thermal Decomposition Behavior of Ammonium Perchlorate and of an Ammonium-Perchlorate-Based Composite Propellant

    NASA Technical Reports Server (NTRS)

    Behrens, R.; Minier, L.

    1998-01-01

    The thermal decomposition of ammonium perchlorate (AP) and ammonium-perchlorate-based composite propellants is studied using the simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) technique. The main objective of the present work is to evaluate whether the STMBMS can provide new data on these materials that will have sufficient detail on the reaction mechanisms and associated reaction kinetics to permit creation of a detailed model of the thermal decomposition process. Such a model is a necessary ingredient to engineering models of ignition and slow-cookoff for these AP-based composite propellants. Results show that the decomposition of pure AP is controlled by two processes. One occurs at lower temperatures (240 to 270 C), produces mainly H2O, O2, Cl2, N2O and HCl, and is shown to occur in the solid phase within the AP particles. 200(micro) diameter AP particles undergo 25% decomposition in the solid phase, whereas 20(micro) diameter AP particles undergo only 13% decomposition. The second process is dissociative sublimation of AP to NH3 + HClO4 followed by the decomposition of, and reaction between, these two products in the gas phase. The dissociative sublimation process occurs over the entire temperature range of AP decomposition, but only becomes dominant at temperatures above those for the solid-phase decomposition. AP-based composite propellants are used extensively in both small tactical rocket motors and large strategic rocket systems.

  18. The thermal decomposition behavior of ammonium perchlorate and of an ammonium-perchlorate-based composite propellant

    SciTech Connect

    Behrens, R.; Minier, L.

    1998-03-24

    The thermal decomposition of ammonium perchlorate (AP) and ammonium-perchlorate-based composite propellants is studied using the simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) technique. The main objective of the present work is to evaluate whether the STMBMS can provide new data on these materials that will have sufficient detail on the reaction mechanisms and associated reaction kinetics to permit creation of a detailed model of the thermal decomposition process. Such a model is a necessary ingredient to engineering models of ignition and slow-cookoff for these AP-based composite propellants. Results show that the decomposition of pure AP is controlled by two processes. One occurs at lower temperatures (240 to 270 C), produces mainly H{sub 2}O, O{sub 2}, Cl{sub 2}, N{sub 2}O and HCl, and is shown to occur in the solid phase within the AP particles. 200{micro} diameter AP particles undergo 25% decomposition in the solid phase, whereas 20{micro} diameter AP particles undergo only 13% decomposition. The second process is dissociative sublimation of AP to NH{sub 3} + HClO{sub 4} followed by the decomposition of, and reaction between, these two products in the gas phase. The dissociative sublimation process occurs over the entire temperature range of AP decomposition, but only becomes dominant at temperatures above those for the solid-phase decomposition. AP-based composite propellants are used extensively in both small tactical rocket motors and large strategic rocket systems.

  19. Financing Solar Thermal Power Plants

    SciTech Connect

    Price, H. W.; Kistner, R.

    1999-11-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised i n debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  20. Thermal Decomposition of New and Aged LX-04 and PBX 9501

    SciTech Connect

    Tran, T D; Tarver, C; Idar, D J

    2002-03-25

    One-Dimensional-Time-To-Explosion (ODTX) experiments were conducted to study the thermal decomposition of aged LX-04, aged PBX 9501, HMX class 1 and class 2, Estane and Estane/BDNPA-F (PBX 950 1 plasticized-binder) materials. The tests involved heating 12.7 mm diameter spherical samples in pre-heated aluminum anvils until explosion. The times to explosion at different heating temperatures were compared to historical data on new LX-04 and PBX 9501 compounds to study any changes to their thermal stability. New and aged LX-04 showed comparable decomposition kinetics. The data for aged PBX 9501 showed slightly longer explosion times at equivalent temperatures. Analysis of the error in time measurement is limited and complicated by several experimental factors but the small time change appears to be experimentally significant. The thermal decomposition of these PBXs were modeled using a coupled thermal and heat transport code (chemical TOPAZ) using separate kinetics for HMX and binder decomposition. Separate decomposition models were developed for HMX and the reactive PBX 9501 binder component (1:1 Estane:BDNPA/F) based on the measured explosion times. Thermal aging models can describe longer explosion times by the loss of plasticizer-binder constituent which was more thermally reactive.

  1. Solar Thermal Propulsion Test Facility at MSFC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photograph shows an overall view of the Solar Thermal Propulsion Test Facility at the Marshall Space Flight Center (MSFC). The 20-by 24-ft heliostat mirror, shown at the left, has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror (right). The concentrator mirror then focuses the sunlight to a 4-in focal point inside the vacuum chamber, shown at the front of concentrator mirror. Researchers at MSFC have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than chemical a combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propell nt. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  2. Relationship between impact ignition sensitivity and kinetics of the thermal decomposition of solid propellants

    SciTech Connect

    Ho, S.Y.; Fong, C.W.

    1989-02-01

    The impact ignition sensitivities of a series of composite propellants and a cast double base (nitrocellulose-nitroglycerine) propellant were measured and related to the fracture behavior and thermal properties (decomposition kinetics, thermal stability, and burning rate) of the propellants. The kinetics of the thermal degradation of the propellants were studied over a temperature range of 30-450/sup 0/C at various heating rates. The composite propellants showed a two-step decomposition mechanism, the initial decomposition being due mainly to reactions involving the oxidizer. The major decomposition, which takes place at higher temperatures, was due to several simultaneous reactions involving the oxidizer, the binder, and their decomposition products. At heating rates of 5-15/sup 0/C min/sup -1/, the second-step decomposition followed 0.5-1-order kinetics, but at heating rates above 20/sup 0/C min/sup -1/, the reaction became zero order (attributed to autocatalysis). The critical impact velocity showed a very strong dependence on the fracture toughness of the propellant, whereas the slope of the plot of ignition probability versus impact velocity showed good correlation with the decomposition kinetics and thermal stability and, to some extent, with the burning rate of the propellant. The authors results suggest that two distinct mechanisms are involved in impact ignition: (1) an initiation step where fracture, viscoelastic/plastic deformation and cracking occur, and are means by which hot spots are formed (mechanical properties of the propellant predominate in this initiation step); and (2) a flame propagation step, which involves burning and is governed by several interrelated factors, such as the decomposition kinetics, thermal stability, and burning rate of the propellant.

  3. Solar Thermionic Test in a Thermal Receiver

    NASA Astrophysics Data System (ADS)

    Clark, Paul N.; Desplat, Jean-Louis; Streckert, Holger H.; Adams, Steven F.; Smith, James W.

    2006-01-01

    A single cell cylindrical inverted thermionic converter (CIC) was tested at the Solar Thermal Propulsion Test Facility of the NASA Marshall Space Flight Center (MSFC). The inverted design is well suited to heating via solar power. For testing the CIC was installed in a thermal receiver into which the concentrated solar flux was focused, achieving temperatures of ~1700 K. A high temperature secondary concentrator was used at the entrance of the receiver to reduce re-radiation losses and to help disperse the solar illumination within the receiver. The molybdenum secondary concentrator is a Winston cone design and reached operating temperatures approaching 1700 K. Ray tracing and thermal modeling of the receiver was performed to evaluate component operating temperatures and to develop a relation between input power and operating temperatures. Inefficiencies in the optical train coupled with a marginal solar irradiance peaking at 830 W/m2 resulted in lower than desired test temperatures. The maximum emitter temperature achieved was 1670 K. Nevertheless electric power was produced by the thermionic converter driven solely by solar power. This test demonstrates the feasibility of using solar heating to produce electrical power by thermionic converters for future satellite power needs.

  4. Low-temperature thermal decomposition of crystalline partly and completely deuterated ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Majda, Dorota; Korobov, Alexander; Filek, Urszula; Sulikowski, Bogdan; Midgley, Paul; Nicol, David A.; Klinowski, Jacek

    2011-03-01

    Although ammonium perchlorate, widely used as a rocket propellant, has been extensively investigated for many years, the mechanism of its thermal decomposition at low temperatures remains controversial. Examination of the thermal behaviour of large crystals of partly and completely deuterated ammonium perchlorate by DSC, SEM, TG and QMS reveals that the rates of thermal decomposition depend on the degree of deuteration and decrease in the sequence N[H/D] 4ClO 4 > NH 4ClO 4 > ND 4ClO 4.

  5. Thermal decomposition of AP/HTPB propellants in presence of Zn nanoalloys

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Shalini; Dave, Pragnesh N.; Patel, Nikul N.

    2015-01-01

    Composite solid propellants were prepared with and without nanoalloys (Zn-Cu, Zn-Ni, Zn-Fe), where nanoalloys are used as catalyst. Catalytic properties of these nanomaterials measured on ammonium perchlorate/hydroxyl-terminated polybutadiene propellant by thermogravimetric analysis and differential thermal analysis. Both experimental results show enhancement in the thermal decomposition of propellants in presence of nanoalloys. In differential thermal analysis method, experiments had done at three heating rates, β1 = 5°, β2 = 10°, β3 = 15° per minute. Calculation of activation energy of high temperature decomposition step was done by using following Kissinger equation. Zn-Cu was found to be the best.

  6. Solar thermal electric power information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  7. Thermal Decomposition of Gaseous Ammonium Nitrate at Low Pressure: Kinetic Modeling of Product Formation and Heterogeneous Decomposition of Nitric Acid

    NASA Astrophysics Data System (ADS)

    Park, J.; Lin, M. C.

    2009-10-01

    The thermal decomposition of ammonium nitrate, NH4NO3 (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH4NO3 at 423 K was proposed to produce equal amounts of NH3 and HNO3, followed by the decomposition reaction of HNO3, HNO3 + M → OH + NO2 + M (where M = third-body and reactor surface). The absolute yields of N2, N2O, H2O, and NH3, which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH3-NO2 (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO3 itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO3 in our kinetic modeling. The heterogeneous decomposition rate of HNO3, HNO3 + (B2O3/SiO2) → OH + NO2 + (B2O3/SiO2), was determined by varying its rate to match the modeled result to the measured concentrations of NH3 and H2O; the rate could be represented by k2b = 7.91 × 107 exp(-12 600/T) s-1, which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO3 decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  8. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  9. Determination of the Thermal Decomposition Products of Terephthalic Acid by Using Curie-Point Pyrolyzer

    NASA Astrophysics Data System (ADS)

    Begüm Elmas Kimyonok, A.; Ulutürk, Mehmet

    2016-04-01

    The thermal decomposition behavior of terephthalic acid (TA) was investigated by thermogravimetry/differential thermal analysis (TG/DTA) and Curie-point pyrolysis. TG/DTA analysis showed that TA is sublimed at 276°C prior to decomposition. Pyrolysis studies were carried out at various temperatures ranging from 160 to 764°C. Decomposition products were analyzed and their structures were determined by gas chromatography-mass spectrometry (GC-MS). A total of 11 degradation products were identified at 764°C, whereas no peak was observed below 445°C. Benzene, benzoic acid, and 1,1‧-biphenyl were identified as the major decomposition products, and other degradation products such as toluene, benzophenone, diphenylmethane, styrene, benzaldehyde, phenol, 9H-fluorene, and 9-phenyl 9H-fluorene were also detected. A pyrolysis mechanism was proposed based on the findings.

  10. Thermal stability and decomposition mechanism of YBa 2Cu 4O 8

    NASA Astrophysics Data System (ADS)

    Isobe, M.; Suzuki, M.; Ami, T.; Tanaka, M.

    1991-12-01

    The thermal stability and decomposition mechanism of YBa 2Cu 4O 8 were studied by using TG, DTA and X-ray diffractometry. The results clearly show the correspondence between oxygen deficiency and phase stability. The decomposition activation energy at Po 2=1 atm was estimated as 2.18∗10 6J/mol by a kinetic analysis of the thermal gravity. This value indicates that the decomposition is very slow. The time dependence of mass loss could be also estimated at 900°C. We conclude that the Y 2Ba 4Cu 7O 15 phase appears only as an intermediate phase in the YBa 2Cu 4O 8 decomposition process, and that the Y 2Ba 4Cu 7O 15 phase is metastable at Po 2=1 atm.

  11. Studying the thermal/non-thermal crossover in solar flares

    NASA Astrophysics Data System (ADS)

    Schwartz, R. A.

    1994-12-01

    This report describes work performed under contract NAS5-32584 for Phase 3 of the Compton Gamma Ray Observatory (CGRO) from 1 November 1993 through 1 November 1994. We have made spectral observations of the hard x-ray and gamma-ray bremsstrahlung emissions from solar flares using the Burst and Transit Source Experiment (BASTE) on CGRO. These measurements of their spectrum and time profile provided valuable information on the fundamental flare processes of energy release, particle acceleration, and energy transport. Our scientific objective was to study both the thermal and non-thermal sources of solar flare hard x-ray and gamma-ray emission.

  12. Studying the thermal/non-thermal crossover in solar flares

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.

    1994-01-01

    This report describes work performed under contract NAS5-32584 for Phase 3 of the Compton Gamma Ray Observatory (CGRO) from 1 November 1993 through 1 November 1994. We have made spectral observations of the hard x-ray and gamma-ray bremsstrahlung emissions from solar flares using the Burst and Transit Source Experiment (BASTE) on CGRO. These measurements of their spectrum and time profile provided valuable information on the fundamental flare processes of energy release, particle acceleration, and energy transport. Our scientific objective was to study both the thermal and non-thermal sources of solar flare hard x-ray and gamma-ray emission.

  13. Solar thermal propulsion for planetary spacecraft

    SciTech Connect

    Sercel, J.C.

    1985-01-01

    Previous studies have shown that many desirable planetary exploration missions require large injection delta-V. Solar Thermal Rocket (STR) propulsion, under study for orbit-raising applications may enhance or enable such high-energy missions. The required technology of thermal control for liquid hydrogen propellant is available for the required storage duration. Self-deploying, inflatable solar concentrators are under study. The mass penalty for passive cryogenic thermal control, liquid hydrogen tanks and solar concentrators does not compromise the specific impulse advantage afforded by the STR as compared to chemical propulsion systems. An STR injection module is characterized and performance is evaluated by comparison to electric propulsion options for the Saturn Orbiter Titan Probe (SOTP) and Uranus Flyby Uranus Probe (UFUP) missions.

  14. Components of the Solar Thermal Propulsion Engine

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. This photograph shows components for the thermal propulsion engine being laid out prior to assembly. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  15. Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)

    2001-01-01

    Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.

  16. Thermal Decomposition Behaviors and Burning Characteristics of AN/Nitramine-Based Composite Propellant

    NASA Astrophysics Data System (ADS)

    Naya, Tomoki; Kohga, Makoto

    2015-04-01

    Ammonium nitrate (AN) has attracted much attention due to its clean burning nature as an oxidizer. However, an AN-based composite propellant has the disadvantages of low burning rate and poor ignitability. In this study, we added nitramine of cyclotrimethylene trinitramine (RDX) or cyclotetramethylene tetranitramine (HMX) as a high-energy material to AN propellants to overcome these disadvantages. The thermal decomposition and burning rate characteristics of the prepared propellants were examined as the ratio of AN and nitramine was varied. In the thermal decomposition process, AN/RDX propellants showed unique mass loss peaks in the lower temperature range that were not observed for AN or RDX propellants alone. AN and RDX decomposed continuously as an almost single oxidizer in the AN/RDX propellant. In contrast, AN/HMX propellants exhibited thermal decomposition characteristics similar to those of AN and HMX, which decomposed almost separately in the thermal decomposition of the AN/HMX propellant. The ignitability was improved and the burning rate increased by the addition of nitramine for both AN/RDX and AN/HMX propellants. The increased burning rates of AN/RDX propellants were greater than those of AN/HMX. The difference in the thermal decomposition and burning characteristics was caused by the interaction between AN and RDX.

  17. Solar thermal vacuum tests of Magellan spacecraft

    NASA Technical Reports Server (NTRS)

    Neuman, James C.

    1990-01-01

    The Magellen solar/thermal/vacuum test involved a number of unique requirements and approaches. Because of the need to operate in orbit around Venus, the solar intensity requirement ranged up to 2.3 suns or Earth equivalent solar constants. Extensive modification to the solar simulator portion of the test facility were required to achieve this solar intensity. Venus albedo and infrared emission were simulated using temperature controlled movable louver panels to allow the spacecraft to view either a selectable temperature black heat source with closed louvers, or the chamber coldwall behind open louvers. The test conditions included widely varying solar intensities, multiple sun angles, alternate hardware configurations, steady state and transient cases, and cruise and orbital power profiles. Margin testing was also performed, wherein supplemental heaters were mounted to internal thermal blankets to verify spacecraft performance at higher than expected temperatures. The test was successful, uncovering some spacecraft anomalies and verifying the thermal design. The test support equipment experienced some anomalous behavior and a significant failure during the test.

  18. Numerical study of the accumulation dynamics of oil shale thermal decomposition products in the vicinity of a heating element

    NASA Astrophysics Data System (ADS)

    Knyazeva, A. G.; Maslov, A. L.

    2015-10-01

    This study proposes the model of thermal decomposition of oil shale heated by electrodes. Differences in thermal physical properties of phases (solid core and gas, reagents and decomposition products), flow of generated gases in pores, and thermal effects of decomposition reactions are taken into account. The consideration of concentration expansion phenomenon is one of the features of the described model. The solution was carried out numerically. The concentration change of intermediate and final reaction products were studied for various heating conditions.

  19. Solar thermal materials research and development

    NASA Technical Reports Server (NTRS)

    Gupta, B. P.

    1981-01-01

    Objectives of the Materials Research and Development effort are examined. The behavior and interaction of different materials used in solar thermal technologies are studied so as to create a sound technical base for future system and component designs. Materials are developed to extend the application potential of systems by either making materials more reliable in difficult operating environments or by offering lower cost alternatives to presently used materials. Solar thermal systems designed for electric power, industrial process heat from low to high temperature, and fuels and chemicals applications are discussed.

  20. Solar thermal components. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Bozman, W. R. (Editor)

    1979-01-01

    This bibliographic series cites and abstracts literature and technical papers on components applied to solar thermal energy utilization. The quarterly volumes are divided into ten categories: material properties; flat plat collectors; concentrating collectors; thermal storage; heat pumps; coolers and heat exchangers; solar ponds and distillation; greenhouses; process pleat; and irrigation pumps. Each quarterly volume is compiled from a wide variety of data bases, report literature, technical briefs, journal articles and other traditional and non traditional sources. The Technology Application Center maintains a library containing many of the articles and publications referenced in the series.

  1. Proceedings of the Solar Thermal Technology Conference

    NASA Astrophysics Data System (ADS)

    Tyner, C. E.

    1987-08-01

    The Solar Thermal Technology Conference was held on August 26 to 28, 1987, at the Marriott Hotel, Albuquerque, New Mexico. The meeting was sponsored by the United States Department of Energy and Sandia National Laboratories. Topics covered during the conference included a status summary of the Sandia Solar Thermal Development Project, perspectives on central and distributed receiver technology including energy collection and conversion technologies, systems analyses and applications experiments. The proceedings contain summaries (abstracts and principal visual aids) of the presentations made at the conference.

  2. Proceedings of the Solar Thermal Technology Conference

    NASA Astrophysics Data System (ADS)

    Diver, R. B.

    1986-06-01

    The Solar Thermal Technology Conference was held on June 17 to 19, 1986 at the Marriott Hotel, Albuquerque, New Mexico. The meeting was sponsored by the United States Department of Energy and Sandia National Laboratories. Topics covered during the conference included a status summary of the Sandia Solar Thermal Development Project, perspectives on central and distributed receiver technology including energy collection and conversion technologies, systems analyses and applications experiments. The proceedings contain summaries (abstracts plus principal visual aids) of the presentations made at the conference.

  3. Thermal decomposition of energetic materials viewed via dynamic x-ray radiography

    SciTech Connect

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Oschwald, D.

    2014-01-13

    We describe the evolution of solid density, leading up to ignition in the slow thermal decomposition of the solid organic secondary explosive octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. This work describes an x-ray radiographic diagnostic, allowing the study of solid density in a fully encased explosive heated to thermal explosion. The result of this study is the ability to observe and manipulate the ignition volume in a thermal explosion.

  4. Thermal decomposition of high-nitrogen energetic compounds: TAGzT and GUzT

    NASA Astrophysics Data System (ADS)

    Hayden, Heather F.

    The U.S. Navy is exploring high-nitrogen compounds as burning-rate additives to meet the growing demands of future high-performance gun systems. Two high-nitrogen compounds investigated as potential burning-rate additives are bis(triaminoguanidinium) 5,5-azobitetrazolate (TAGzT) and bis(guanidinium) 5,5'-azobitetrazolate (GUzT). Small-scale tests showed that formulations containing TAGzT exhibit significant increases in the burning rates of RDX-based gun propellants. However, when GUzT, a similarly structured molecule was incorporated into the formulation, there was essentially no effect on the burning rate of the propellant. Through the use of simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and Fourier-Transform ion cyclotron resonance (FTICR) mass spectrometry methods, an investigation of the underlying chemical and physical processes that control the thermal decomposition behavior of TAGzT and GUzT alone and in the presence of RDX, was conducted. The objective was to determine why GUzT is not as good a burning-rate enhancer in RDX-based gun propellants as compared to TAGzT. The results show that TAGzT is an effective burning-rate modifier in the presence of RDX because the decomposition of TAGzT alters the initial stages of the decomposition of RDX. Hydrazine, formed in the decomposition of TAGzT, reacts faster with RDX than RDX can decompose itself. The reactions occur at temperatures below the melting point of RDX and thus the TAGzT decomposition products react with RDX in the gas phase. Although there is no hydrazine formed in the decomposition of GUzT, amines formed in the decomposition of GUzT react with aldehydes, formed in the decomposition of RDX, resulting in an increased reaction rate of RDX in the presence of GUzT. However, GUzT is not an effective burning-rate modifier because its decomposition does not alter the initial gas-phase decomposition of RDX. The decomposition of GUzT occurs at temperatures above the melting point

  5. Thermal decomposition and vibrational spectroscopic aspects of pyridinium hexafluorophosphate (C5H5NHPF6)

    NASA Astrophysics Data System (ADS)

    Lekgoathi, M. D. S.; Kock, L. D.

    2016-12-01

    Thermal decomposition and vibrational spectroscopic properties of pyridinium hexafluorophosphate (C5H5NHPF6) have been studied. The structure of the compound is better interpreted as having a cubic space group, based on Raman and infrared vibrational spectroscopy experiments and group theoretical correlation data between site symmetry species and the spectroscopic space group. The 13C NMR data shows three significant signals corresponding to the three chemical environments expected on the pyridinium ring i.e. γ, β and α carbons, suggesting that the position of the anion must be symmetrical with respect to the pyridinium ring's C2v symmetry. The process of thermal decomposition of the compound using TGA methods was found to follow a contracting volume model. The activation energy associated with the thermal decomposition reaction of the compound is 108.5 kJ mol-1, while the pre exponential factor is 1.51 × 109 sec-1.

  6. Using mass defect plots as a discovery tool to identify novel fluoropolymer thermal decomposition products.

    PubMed

    Myers, Anne L; Jobst, Karl J; Mabury, Scott A; Reiner, Eric J

    2014-04-01

    Fire events involving halogenated materials, such as plastics and electronics, produce complex mixtures that include unidentified toxic and environmentally persistent contaminants. Ultrahigh-resolution mass spectrometry and mass defect filtering can facilitate compound identification within these complex mixtures. In this study, thermal decomposition products of polychlorotrifluoroethylene (PCTFE, [-CClF-CF2 -]n), a common commercial polymer, were analyzed by Fourier transform ion cyclotron resonance mass spectrometry. Using the mass defect plot as a guide, novel PCTFE thermal decomposition products were identified, including 29 perhalogenated carboxylic acid (PXCA, X = Cl,F) congener classes and 21 chlorine/fluorine substituted polycyclic aromatic hydrocarbon (X-PAH, X = Cl,F) congener classes. This study showcases the complexity of fluoropolymer thermal decomposition and the potential of mass defect filtering to characterize complex environmental samples. PMID:24719344

  7. Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications.

    PubMed

    Sotiriou, Georgios A; Singh, Dilpreet; Zhang, Fang; Chalbot, Marie-Cecile G; Spielman-Sun, Eleanor; Hoering, Lutz; Kavouras, Ilias G; Lowry, Gregory V; Wohlleben, Wendel; Demokritou, Philip

    2016-03-15

    Nano-enabled products (NEPs) are currently part of our life prompting for detailed investigation of potential nano-release across their life-cycle. Particularly interesting is their end-of-life thermal decomposition scenario. Here, we examine the thermal decomposition of widely used NEPs, namely thermoplastic nanocomposites, and assess the properties of the byproducts (released aerosol and residual ash) and possible environmental health and safety implications. We focus on establishing a fundamental understanding on the effect of thermal decomposition parameters, such as polymer matrix, nanofiller properties, decomposition temperature, on the properties of byproducts using a recently-developed lab-based experimental integrated platform. Our results indicate that thermoplastic polymer matrix strongly influences size and morphology of released aerosol, while there was minimal but detectable nano-release, especially when inorganic nanofillers were used. The chemical composition of the released aerosol was found not to be strongly influenced by the presence of nanofiller at least for the low, industry-relevant loadings assessed here. Furthermore, the morphology and composition of residual ash was found to be strongly influenced by the presence of nanofiller. The findings presented here on thermal decomposition/incineration of NEPs raise important questions and concerns regarding the potential fate and transport of released engineered nanomaterials in environmental media and potential environmental health and safety implications. PMID:26642449

  8. Thermal effects testing at the National Solar Thermal Test Facility

    NASA Astrophysics Data System (ADS)

    Ralph, M. E.; Cameron, C. P.; Ghanbari, C. M.

    1992-11-01

    The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm(sup 2) that is uniform over a 15-cm diameter with a total beam power of over 5 MW(sub t). The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m (times) 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm(sup 2) over and delivers a 6-mm diameter and total power of 16 kW(sub t). A second furnace produces flux levels up to 1000 W/cm(sup 2) over a 4 cm diameter and total power of 60 kW(sub t). Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm(sup 2) over a 2.5 cm diameter and total power of 75 kW(sub t). High-speed shutters have been used to produce square pulses.

  9. Solar Thermal Power Systems parabolic dish project

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1981-01-01

    The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.

  10. The Autocatalytic Behavior of Trimethylindium During Thermal Decomposition

    SciTech Connect

    Anthony H. McDaniel; M. D. Allendorf

    2000-02-02

    Pyrolysis of trimethylindium (TMIn) in a hot-wall flow-tube reactor has been investigated at temperatures between 573 and 723 K using a modulated molecular-beam mass-sampling technique and detailed numerical modeling. The TMIn was exposed to various mixtures of carrier gases: He, H{sub 2}, D{sub 2}, and C{sub 2}H{sub 4}, in an effort to elucidate the behavior exhibited by this compound in different chemical environments. The decomposition of TMIn is a heterogeneous, autocatalytic process with an induction period that is carrier-gas dependent and lasts on the order of minutes. After activation of the tube wall, the thermolysis exhibits a steady-state behavior that is surface mediated. This result is contrary to prior literature reports, which state that decomposition occurs in the gas phase via successive loss of the CH{sub 3} ligands. This finding also suggests that the bond dissociation energy for the (CH{sub 3}){sub 2}In-CH{sub 3} bond derived from flow-tube investigations is erroneous and should be reevaluated.

  11. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret.

    PubMed

    Sun, Hongyan; Vaghjiani, Ghanshyam L

    2015-05-28

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice-Ramsperger-Kassel-Marcus/multi-well master equation simulations, the results of which reveal the formation

  12. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret

    NASA Astrophysics Data System (ADS)

    Sun, Hongyan; Vaghjiani, Ghanshyam L.

    2015-05-01

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice-Ramsperger-Kassel-Marcus/multi-well master equation simulations, the results of which reveal the formation

  13. Ab Initio Kinetics and Thermal Decomposition Mechanism of Mononitrobiuret and 1,5- Dinitrobiuret

    SciTech Connect

    Sun, Hongyan; Vaghjiani, Ghanshyam G.

    2015-05-26

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice–Ramsperger–Kassel–Marcus/multi-well master equation simulations, the results of which reveal the

  14. Solar thermal harvesting for enhanced photocatalytic reactions.

    PubMed

    Hashemi, Seyyed Mohammad Hosseini; Choi, Jae-Woo; Psaltis, Demetri

    2014-03-21

    The Shockley-Queisser limit predicts a maximum efficiency of 30% for single junction photovoltaic (PV) cells. The rest of the solar energy is lost as heat and due to phenomena such as reflection and transmission through the PV and charge carrier recombination. In the case of photocatalysis, this maximum value is smaller since the charge carriers should be transferred to acceptor molecules rather than conductive electrodes. With this perspective, we realize that at least 70% of the solar energy is available to be converted into heat. This is specifically useful for photocatalysis, since heat can provide more kinetic energy to the reactants and increase the number of energetic collisions leading to the breakage of chemical bonds. Even in natural photosynthesis, at the most 6% of the solar spectrum is used to produce sugar and the rest of the absorbed photons are converted into heat in a process called transpiration. The role of this heating component is often overlooked; in this paper, we demonstrate a coupled system of solar thermal and photocatalytic decontamination of water by titania, the most widely used photocatalyst for various photo reactions. The enhancement of this photothermal process over solely photocatalytic water decontamination is demonstrated to be 82% at 1× sun. Our findings suggest that the combination of solar thermal energy capture with photocatalysis is a suitable strategy to utilize more of the solar spectrum and improve the overall performance. PMID:24480846

  15. Effect of nanoparticle size on the thermal decomposition thermodynamics in theory and experiment

    NASA Astrophysics Data System (ADS)

    Li, Wenjiao; Cui, Zixiang; Duan, Huijuan; Xue, Yongqiang

    2016-02-01

    Thermal decomposition reactions of nanoparticles are often concerned in the processes of preparation and application of nanomaterials. However, it is the nanoparticle size that leads to great difference in thermal decomposition thermodynamics between nanoparticles and corresponding bulk substances. In this paper, the decomposition model of a nanoparticle was established to investigate the theoretical size-dependent thermodynamics in nanoscale decomposition system, and the theoretical relations of the thermodynamic properties with particle size were, respectively, derived. In experiment, the decomposition thermodynamics of nanosized zinc carbonate particles was studied, and the influence regularities of particle size on thermodynamic quantities were obtained. The experimental results are in accordance with the corresponding theoretical thermodynamic relations. These results show that there is a striking effect of particle size on the decomposition thermodynamics. The thermodynamic properties decrease with the decrease of particle size, whereas the equilibrium constant and the molar heat capacity of reaction at constant volume increase; logarithm of the equilibrium constant, the heat capacity of reaction and the thermodynamic properties are linearly related to reciprocal of the particle diameter, respectively. In addition, the temperature coefficient of the heat capacity of reaction also has strong size dependence; that is, the temperature coefficient becomes smaller with the particle size decreasing.

  16. Solar thermal plant impact analysis and requirements definition study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The technology and economics of solar thermal electric systems (STES) for electric power production is discussed. The impacts of and requirements for solar thermal electric power systems were evaluated.

  17. Thermal decomposition mechanisms of alkylimidazolium ionic liquids with cyano-functionalized anions.

    PubMed

    Chambreau, Steven D; Schenk, Adam C; Sheppard, Anna J; Yandek, Gregory R; Vaghjiani, Ghanshyam L; Maciejewski, John; Koh, Christine J; Golan, Amir; Leone, Stephen R

    2014-11-26

    Because of the unusually high heats of vaporization of room-temperature ionic liquids (RTILs), volatilization of RTILs through thermal decomposition and vaporization of the decomposition products can be significant. Upon heating of cyano-functionalized anionic RTILs in vacuum, their gaseous products were detected experimentally via tunable vacuum ultraviolet photoionization mass spectrometry performed at the Chemical Dynamics Beamline 9.0.2 at the Advanced Light Source. Experimental evidence for di- and trialkylimidazolium cations and cyano-functionalized anionic RTILs confirms thermal decomposition occurs primarily through two pathways: deprotonation of the cation by the anion and dealkylation of the imidazolium cation by the anion. Secondary reactions include possible cyclization of the cation and C2 substitution on the imidazolium, and their proposed reaction mechanisms are introduced here. Additional evidence supporting these mechanisms was obtained using thermal gravimetric analysis-mass spectrometry, gas chromatography-mass spectrometry, and temperature-jump infrared spectroscopy. In order to predict the overall thermal stability in these ionic liquids, the ability to accurately calculate both the basicity of the anions and their nucleophilicity in the ionic liquid is critical. Both gas phase and condensed phase (generic ionic liquid (GIL) model) density functional theory calculations support the decomposition mechanisms, and the GIL model could provide a highly accurate means to determine thermal stabilities for ionic liquids in general. PMID:25381899

  18. Polytypic transformations during the thermal decomposition of cobalt hydroxide and cobalt hydroxynitrate

    SciTech Connect

    Ramesh, Thimmasandra Narayan

    2010-06-15

    The isothermal decomposition of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature leads to the formation of Co{sub 3}O{sub 4}. The phase evolution during the decomposition process was monitored using powder X-ray diffraction. The transformation of cobalt hydroxide to cobalt oxide occurs via three phase mixture while cobalt hydroxynitrate to cobalt oxide occurs through a two phase mixture. The nature of the sample and its preparation method controls the decomposition mechanism. The comparison of topotactical relationship between the precursors to the decomposed product has been reported in relation to polytypism. - Graphical abstract: Isothermal thermal decomposition studies of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature show the metastable phase formed prior to Co{sub 3}O{sub 4} phase.

  19. Nitrated graphene oxide and its catalytic activity in thermal decomposition of ammonium perchlorate

    SciTech Connect

    Zhang, Wenwen; Luo, Qingping; Duan, Xiaohui; Zhou, Yong; Pei, Chonghua

    2014-02-01

    Highlights: • The NGO was synthesized by nitrifying homemade GO. • The N content of resulted NGO is up to 1.45 wt.%. • The NGO can facilitate the decomposition of AP and release much heat. - Abstract: Nitrated graphene oxide (NGO) was synthesized by nitrifying homemade GO with nitro-sulfuric acid. Fourier transform infrared spectroscopy (FTIR), laser Raman spectroscopy, CP/MAS {sup 13}C NMR spectra and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure of NGO. The thickness and the compositions of GO and NGO were analyzed by atomic force microscopy (AFM) and elemental analysis (EA), respectively. The catalytic effect of the NGO for the thermal decomposition of ammonium perchlorate (AP) was investigated by differential scanning calorimetry (DSC). Adding 10% of NGO to AP decreases the decomposition temperature by 106 °C and increases the apparent decomposition heat from 875 to 3236 J/g.

  20. Solar decomposition of cadmium oxide for hydrogen production. Final subcontract report

    SciTech Connect

    Schreiber, J. D.; Yudow, B. D.; Carty, R. H.; Whaley, T. P.; Pangborn, J. B.

    1981-11-01

    The reactor developed for this study performed satisfactorily in establishing the feasibility of cadmium oxide decomposition under the realistic conditions of the solar-furnace environment. The solar-furnace environment is very appropriate for the evaluation of design concepts. However, the solar furnace probably cannot give precise rate data. The flux is too nonuniform, so temperatures of reactant and corresponding reaction rates are also nonuniform. One of the most important results of this project was the recovery of samples from the quench heat exchanger that contained a surprisingly large amount of metallic cadmium. The fact that the sample taken from the quench heat exchanger was metallic in appearance and contained between 67% and 84% metallic cadmium would tend to indicate recombination of cadmium vapor and oxygen can be effectively prevented by the quenching operation. It would also tend to confirm recent studies that show cadmium oxide does not sublime appreciably. Determination of the decomposition rate of cadmium oxide was severely limited by fluctuating and nonuniform reactant temperatures and baseline drift in the oxygen sensor. However, the estimated rate based on a single run seemed to follow a typical solid decomposition rate pattern with an initial acceleratory period, followed by a longer deceleratory period. From a preliminary flowsheet analysis of the cadmium-cadmium oxide cycle, it was determined that at a cadmium oxide decomposition temperature of 1400/sup 0/C and a requirement of 0.2 V in the electrolyzer the efficiency was 41%, assuming total quenching of the cadmium oxide decomposition products. This efficiency could increase to a maximum of 59% if total recovery of the latent heats of vaporization and fusion of the decomposition products is possible.

  1. Flexible thermal cycle test equipment for concentrator solar cells

    DOEpatents

    Hebert, Peter H.; Brandt, Randolph J.

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  2. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Williams, B. J.; Zhang, Y.; Zuo, X.; Martinez, R. E.; Walker, M. J.; Kreisberg, N. M.; Goldstein, A. H.; Docherty, K. S.; Jimenez, J. L.

    2015-12-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality, and often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a GC column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer (MS). Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA) component. TAG

  3. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA

  4. Fabrication of Porous Copper with Directional Pores through Thermal Decomposition of Compounds

    NASA Astrophysics Data System (ADS)

    Nakajima, Hideo; Ide, Takuya

    2008-02-01

    Lotus-type porous copper with aligned long cylindrical pores was fabricated by unidirectional solidification in an argon atmosphere. The hydrogen dissolved in molten copper through thermal decomposition of titanium hydride contained in the mold, which then formed hydrogen gas that evolved into the gas pores in the solidified copper. On the other hand, titanium may form oxides in the melt that serve as nucleation sites for insoluble hydrogen. The porosity and pore size decreased with increasing atmospheric argon pressure during the solidification, which can be explained by the Boyle-Charles law and the possible suppression of the decomposition due to external pressure. The addition of titanium hydride was more effective when it was added just before the melt solidified than when it was added to the melt. Moreover, the thermal decomposition method (TDM) is superior to the conventional fabrication method, which requires high pressure hydrogen gas. Thus, TDM is a promising fabrication technique for various lotus metals.

  5. The effect of a detonation nanodiamond coating on the thermal decomposition properties of RDX explosives.

    PubMed

    Tong, Yi; Liu, Rui; Zhang, Tonglai

    2014-09-01

    A well-dispersed and uniformly shaped detonation nanodiamond (DND) was produced and coated over micron scale RDX in various amounts to form four kinds of DND coating composites (NDRs). In order to confirm the optimal coating amount and its effect on the thermal properties, the thermal decomposition and kinetics were studied by DSC, TG and DPTA techniques. The critical temperature of thermal explosion (Tb) and the self accelerating decomposition temperature (T(SADT)) both exhibit an interesting volcano-shaped changing trend and rank in an increasing order of NDR4 < NDR1 < RDX < NDR3 < NDR2. This indicates that the DND coating amount, ranging from 1/7 to 1/5, provides NDRs with better thermal safety than RDX. The thermolytic kinetic parameters (Ea and A) and activation thermodynamic parameters (ΔS(≠), ΔH(≠) and ΔG(≠)) are sorted in the following order: NDR1 < NDR4 < NDR2 < NDR3. The gas emission and reaction rate constant of the initial thermal decomposition have the same order. The results show that the DND coating could improve the reactivity of the NDRs and the effect is proportional to the coating amount. However, excessive coating that is more than 1/3 conversely hinders decomposition and gas diffusion, like a layer of protective shell. The isoconversional activation energy (Ea) varies with the conversion extent (α) at the initial stage of α = 0.1-0.5, which indicates that the thermal decomposition of the NDRs is a multi-step process including the secondary reaction or catalytic reaction. However, the Ea values are almost independent of α when α = 0.6-0.9, with the mean values in an increasing order of NDR1 < NDR4 < NDR2 < NDR3. PMID:25027243

  6. Cellophane and filter paper as cellulosic support for silver nanoparticles and its thermal decomposition catalysis.

    PubMed

    da Silva Pereira, Bruna; Silva, Marcela Fernandes; Bittencourt, Paulo Rodrigo Stival; de Oliveira, Daniela Martins Fernandes; Pineda, Edgardo Alfonso Gómez; Hechenleitner, Ana Adelina Winkler

    2015-11-20

    Silver nanoparticles (AgNPs) have attracted great attention due to its optical, electrical and thermal properties. Cellulosic supports for these nanoparticles are of particular interest because of its availability, flexibility and biocompatibility. In this work, AgNPs were synthesized using two cellulosic materials, cellophane (CP) and filter paper (FP), as matrix support. Cellulosic materials were immersed in an aqueous solution of silver nitrate containing polyvinylpyrrolidone (PVP) and then reduced with hydroxylamine. The obtained nanocomposites (CP-AgNPs and FP-AgNPs) were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (DRX) and scanning electron microscopy (SEM). AgNPs of near 15nm anchored onto cellulosic surfaces were detected. The thermal properties of these materials were investigated through thermogravimetry (TG). Their kinetic of thermal decomposition was studied by the Vyasovkin method of dynamic isoconvertion, which indicated a catalytic effect of AgNPs in the cellulose thermal decomposition reaction. PMID:26344282

  7. Effect of urea additive on the thermal decomposition kinetics of flame retardant greige cotton nonwoven fabric

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urea is well known to have a synergistic action with phosphorus-based flame retardants such as diammonium phosphate (DAP) in enhancing the flame retardant performance of cellulosic materials, but its effect on their thermal decomposition kinetics has not been thoroughly studied. In this study, the ...

  8. Effect of phosphorus and nitrogen on thermal decomposition kinetics of flame retardant cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four kinetic methods, Kissinger, Friedman, Flynn-Wall-Ozawa, and modified Coats-Redfern, were used to study the activation energy, Ea, of the thermal decomposition of greige cotton nonwoven fabric treated with diammonium phosphate (DAP) and urea. The results show that the Ea is significantly influen...

  9. Thermal decomposition reactions of cotton fabric treated with piperazine-phosphonates derivatives as a flame retardant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There has been a great scientific interest in exploring the great potential of the piperazine-phosphonates in flame retardant (FR) application on cotton fabric by investigating the thermal decomposition of cotton fabric treated with them. This research tries to understand the mode of action of the t...

  10. Method of forming semiconducting amorphous silicon films from the thermal decomposition of fluorohydridodisilanes

    DOEpatents

    Sharp, Kenneth G.; D'Errico, John J.

    1988-01-01

    The invention relates to a method of forming amorphous, photoconductive, and semiconductive silicon films on a substrate by the vapor phase thermal decomposition of a fluorohydridodisilane or a mixture of fluorohydridodisilanes. The invention is useful for the protection of surfaces including electronic devices.

  11. Thermal performance of a solar still

    NASA Astrophysics Data System (ADS)

    Sodha, M. S.; Nayak, J. K.; Tiwari, G. N.; Singh, U.

    1981-12-01

    A simple periodic analysis of a basin-type solar still (both single as well as double), mounted on a stand, has been presented. The effect of dye injected into the water of a single-basin still has been explained. Numerical calculations have been carried out using parameters corresponding to stills with which experiments have been carried out at the Indian Institute of Technology, Delhi. It is found that the present theory quite satisfactorily explains the thermal performance of basin-type solar stills.

  12. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  13. Thermal decomposition dynamics and severity of microalgae residues in torrefaction.

    PubMed

    Chen, Wei-Hsin; Huang, Ming-Yueh; Chang, Jo-Shu; Chen, Chun-Yen

    2014-10-01

    To figure out the torrefaction characteristics and weight loss dynamics of microalgae residues, the thermogravimetric analyses of two microalgae (Chlamydomonas sp. JSC4 and Chlorella sorokiniana CY1) residues are carried out. A parameter of torrefaction severity index (TSI) in the range of 0-1, in terms of weight loss ratio between a certain operation and a reference operation, is defined to indicate the degree of biomass thermal degradation due to torrefaction. The TSI profiles of the two residues are similar to each other; therefore, the parameter may be used to describe the torrefaction extents of various biomass materials. The curvature of TSI profile along light torrefaction is slight, elucidating its slight impact on biomass thermal degradation. The sharp curvature along severe torrefaction in the initial pretreatment period reveals that biomass upgraded with high temperature and short duration is more effective than using low temperature with long duration. PMID:25058302

  14. Thermal decomposition of silane to form hydrogenated amorphous Si

    DOEpatents

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  15. Operational Experience from Solar Thermal Energy Projects

    NASA Technical Reports Server (NTRS)

    Cameron, C. P.

    1984-01-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  16. Value of solar thermal industrial process heat

    SciTech Connect

    Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

    1986-03-01

    This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

  17. The products of the thermal decomposition of CH{sub 3}CHO

    SciTech Connect

    Vasiliou, AnGayle; Piech, Krzysztof M.; Barney Ellison, G.; Zhang Xu; Nimlos, Mark R.; Ahmed, Musahid; Golan, Amir; Kostko, Oleg; Osborn, David L.; Daily, John W.; Stanton, John F.

    2011-07-07

    We have used a heated 2 cm x 1 mm SiC microtubular ({mu}tubular) reactor to decompose acetaldehyde: CH{sub 3}CHO +{Delta}{yields} products. Thermal decomposition is followed at pressures of 75-150 Torr and at temperatures up to 1675 K, conditions that correspond to residence times of roughly 50-100 {mu}s in the {mu}tubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: vacuum ultraviolet photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH{sub 3}CHO, we have studied three isotopologues, CH{sub 3}CDO, CD{sub 3}CHO, and CD{sub 3}CDO. We have identified the thermal decomposition products CH{sub 3} (PIMS), CO (IR, PIMS), H (PIMS), H{sub 2} (PIMS), CH{sub 2}CO (IR, PIMS), CH{sub 2}=CHOH (IR, PIMS), H{sub 2}O (IR, PIMS), and HC{identical_to}CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH{sub 3}CHO; namely, radical decomposition: CH{sub 3}CHO +{Delta}{yields} CH{sub 3}+[HCO]{yields} CH{sub 3}+ H + CO; elimination: CH{sub 3}CHO +{Delta}{yields} H{sub 2}+ CH{sub 2}=C=O; isomerization/elimination: CH{sub 3}CHO +{Delta}{yields}[CH{sub 2}=CH-OH]{yields} HC{identical_to}CH + H{sub 2}O. An interesting result is that both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH{sub 2}=C:, as an intermediate in the decomposition of vinyl alcohol: CH{sub 2}=CH-OH +{Delta}{yields}[CH{sub 2}=C:]+ H{sub 2}O {yields} HC{identical_to}CH + H{sub 2}O.

  18. Results of Evaluation of Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Byers, Dave

    2003-01-01

    The solar thermal propulsion evaluation reported here relied on prior research for all information on solar thermal propulsion technology and performance. Sources included personal contacts with experts in the field in addition to published reports and papers. Mission performance models were created based on this information in order to estimate performance and mass characteristics of solar thermal propulsion systems. Mission analysis was performed for a set of reference missions to assess the capabilities and benefits of solar thermal propulsion in comparison with alternative in-space propulsion systems such as chemical and electric propulsion. Mission analysis included estimation of delta V requirements as well as payload capabilities for a range of missions. Launch requirements and costs, and integration into launch vehicles, were also considered. The mission set included representative robotic scientific missions, and potential future NASA human missions beyond low Earth orbit. Commercial communications satellite delivery missions were also included, because if STP technology were selected for that application, frequent use is implied and this would help amortize costs for technology advancement and systems development. A C3 Topper mission was defined, calling for a relatively small STP. The application is to augment the launch energy (C3) available from launch vehicles with their built-in upper stages. Payload masses were obtained from references where available. The communications satellite masses represent the range of payload capabilities for the Delta IV Medium and/or Atlas launch vehicle family. Results indicated that STP could improve payload capability over current systems, but that this advantage cannot be realized except in a few cases because of payload fairing volume limitations on current launch vehicles. It was also found that acquiring a more capable (existing) launch vehicle, rather than adding an STP stage, is the most economical in most cases.

  19. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species

    PubMed Central

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K.; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H.C.

    2015-01-01

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation. PMID:26282711

  20. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species.

    PubMed

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H C

    2015-01-01

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation. PMID:26282711

  1. Thermal Performance of an Annealed Pyrolytic Graphite Solar Collector

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Hornacek, Jennifer

    2002-01-01

    A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is needed for applications where solar energy is to be absorbed and transported for use in minisatellites. Such a solar collector may be used with a low temperature differential heat engine to provide power or with a thermal bus for thermal switching applications. One concept being considered for the solar collector is an Al2O3 cermet coating applied to a thermal conductivity enhanced polished aluminum substrate. The cermet coating provides high solar absorptance and the polished aluminum provides low infrared emittance. Annealed pyrolytic graphite embedded in the aluminum substrate provides enhanced thermal conductivity. The as-measured thermal performance of an annealed pyrolytic graphite thermal conductivity enhanced polished aluminum solar collector, coated with a cermet coating, will be presented.

  2. Thermal Decomposition of the Solid Phase of Nitromethane: Ab Initio Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Chang, Jing; Lian, Peng; Wei, Dong-Qing; Chen, Xiang-Rong; Zhang, Qing-Ming; Gong, Zi-Zheng

    2010-10-01

    The Car-Parrinello molecular dynamics simulations were employed to investigate thermal decomposition of the solid nitromethane. It is found that it undergoes chemical decomposition at about 2200 K under ambient pressure. The initiation of reactions involves both proton transfer and commonly known C-N bond cleavage. About 75 species and 100 elementary reactions were observed with the final products being H2O, CO2, N2, and CNCNC. It represents the first complete simulation of solid-phase explosive reactions reported to date, which is of far-reaching implication for design and development of new energetic materials.

  3. Thermal decomposition pathway and desorption study of isopropanol and tert-butanol on Si(100)

    NASA Astrophysics Data System (ADS)

    Kim, Jaehyun; Kim, Kwansoo; Yong, Kijung

    2002-09-01

    Thermal decomposition pathway and desorption of isopropanol (IPA) and tert-butanol on Si(100) were studied using temperature programed desorption. Adsorbed alcohols studied were decomposed into atomic hydrogen and alkoxy on the surface. During heating the sample up to 1000 K, acetone, propylene, and hydrogen were desorbed as decomposition products of IPA on Si(100). Desorption pathways of IPA on Si(100) were largely consistent with those on metal surfaces: beta-hydride elimination reaction to acetone and C-O scission to propylene. For tert-butanol, which has no beta-hydrogen, isobutene and hydrogen were observed as main desorption products. copyright 2002 American Vacuum Society.

  4. gamma-Irradiation effects on the thermal decomposition behaviour and IR absorption spectra of piperacillin

    NASA Astrophysics Data System (ADS)

    Mahfouz, R. M.; Gaffar, M. A.; Abu El-Fadl, A.; Hamad, Ar. G. K.

    2003-11-01

    The thermal decomposition behaviour of unirradiated and pre-gamma-irradiated piperacillin (pipril) as a semi-synthetic penicillin antibiotic has been studied in the temperature range of (273-1072 K). The decomposition was found to proceed through three major steps both for unirradiated and gamma-irradiated samples. Neither appearance nor disappearance of new bands in the IR spectrum of piperacillin was recorded as a result of gamma-irradiation but only a decrease in the intensity of most bands was observed. A degradation mechanism was suggested to explain the bond rupture and the decrease in the intensities of IR bands of gamma-irradiated piperacillin.

  5. Catalytically enhanced thermal decomposition of chemically grown silicon oxide layers on Si(001)

    NASA Astrophysics Data System (ADS)

    Leroy, F.; Passanante, T.; Cheynis, F.; Curiotto, S.; Bussmann, E. B.; Müller, P.

    2016-03-01

    The thermal decomposition of Si dioxide layers formed by wet chemical treatment on Si(001) has been studied by low-energy electron microscopy. Independent nucleations of voids occur into the Si oxide layers that open by reaction at the void periphery. Depending on the voids, the reaction rates exhibit large differences via the occurrence of a nonlinear growth of the void radius. This non-steady state regime is attributed to the accumulation of defects and silicon hydroxyl species at the SiO2/Si interface that enhances the silicon oxide decomposition at the void periphery.

  6. Study of thermal decomposition of methyl ethyl ketone peroxide using DSC and simulation.

    PubMed

    Tseng, Jo-Ming; Chang, Ying-Yu; Su, Teh-Sheng; Shu, Chi-Min

    2007-04-11

    Methyl ethyl ketone peroxide (MEKPO) is a typical organic peroxide with thermally unstable nature that has been broadly employed in the manufacturing process of acrylic resins, as a hardening agent for fiberglass-reinforced plastics, and as a curing agent for unsaturated polyester resins. The aim of this study was to identify the characteristics of MEKPO 31 wt.% while mixing with contaminants, such as H(2)SO(4), HCl, and NaCl under runaway conditions. To acquire the thermal runaway data, DSC and a simulation were used for thermal analysis. The results showed that the thermal decomposition of MEKPO and MEKPO+H(2)SO(4) follows two stages. The first one can be modeled by using an empirical nth order rate equation. The second stage can be modeled as autocatalytic. MEKPO+HCl and MEKPO+NaCl included two independent autocatalytic reactions. The decomposition of MEKPO in the presence of Cl- ions (added in MEKPO either in the form of HCl or NaCl) follows a significantly different path, an earlier decomposition "onset" temperature, higher amount of generated thermal power and smaller temperature of no return (T(NR)) and time to maximum rate (TMR) values. Simulations based on experimental data indicated that the effect of H(2)SO(4) was the most dangerous contaminant on MEKPO 31 wt.%. However, the impact of Cl ions was also important. It is therefore recommended that the means of fire fighting employed for this substance to be free of Cl-. PMID:16905247

  7. Numerical analysis of thermal decomposition for RDX, TNT, and Composition B.

    PubMed

    Kim, Shin Hyuk; Nyande, Baggie W; Kim, Hyoun Soo; Park, Jung Su; Lee, Woo Jin; Oh, Min

    2016-05-01

    Demilitarization of waste explosives on a commercial scale has become an important issue in many countries, and this has created a need for research in this area. TNT, RDX and Composition B have been used as military explosives, and they are very sensitive to thermal shock. For the safe waste treatment of these high-energy and highly sensitive explosives, the most plausible candidate suggested has been thermal decomposition in a rotary kiln. This research examines the safe treatment of waste TNT, RDX and Composition B in a rotary kiln type incinerator with regard to suitable operating conditions. Thermal decomposition in this study includes melting, 3 condensed phase reactions in the liquid phase and 263 gas phase reactions. Rigorous mathematical modeling and dynamic simulation for thermal decomposition were carried out for analysis of dynamic behavior in the reactor. The results showed time transient changes of the temperature, components and mass of the explosives and comparisons were made for the 3 explosives. It was concluded that waste explosives subject to heat supplied by hot air at 523.15K were incinerated safely without any thermal detonation. PMID:26808250

  8. Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives

    SciTech Connect

    McGuire, R.R.; Tarver, C.M.

    1981-03-26

    Chemical decomposition models have been deduced from the available chemical kinetic data on the thermal decomposition of HMX, TATB, RDX, and TNT. A thermal conduction model is used in which the thermal conductivity of the reacting explosive decreases linearly with the mass fraction reacted to that of the gaseous products. These reactive heat flow models are used to predict the time to explosion versus reciprocal temperature curves from several heavily confined explosive tests. Good agreement is obtained between experimental and calculated explosion times for the pure explosives HMX, TATB, RDX, and TNT, mixtures such as RX-26-AF (HMX/TATB), Octol (HMX/TNT), and Comp B (RDX/TNT), and for PBX 9404, an HMX-based explosive containing an energetic nitrocellulose binder.

  9. Preparation and thermal decomposition of yttrium hydroxide fluorides

    NASA Astrophysics Data System (ADS)

    Nishizawa, H.; Okumoto, K.; Mitsushio, T.

    1991-06-01

    The hydrothermal treatment of Y 2O 3 in KF solution at 400°C gave single phase of yttrium hydroxide fluorides, Y(OH) 3- xF x (0.65 < x < 1.43). Rietveld refinements of X-ray powder intensity data were performed for these solid solution phases. The hexagonal UCl 3 type system was retained over the whole range of x observed. All these solid solutions were thermally decomposed to oxide fluorides up to 500°C. Single phase of metastable cubic YOF and tetragonal YO 1- XF 1+2 x were obtained at 450°C for the solid solution with x = 0.98 and x = 1.43, respectively. The interatomic distances of anions (OH -,F -), IR data, and dehydration temperature of x < 1 phases supported the existence of hydrogen bonds.

  10. Decomposition of trifluoromethane in a dielectric barrier discharge non-thermal plasma reactor.

    PubMed

    Gandhi, M Sanjeeva; Mok, Y S

    2012-01-01

    The decomposition of trifluoromethane (CHF3) was carried out using non-thermal plasma generated in a dielectric barrier discharge (DBD) reactor. The effects of reactor temperature, electric power, initial concentration and oxygen content were examined. The DBD reactor was able to completely destroy CHF3 with alumina beads as a packing material. The decomposition efficiency increased with increasing electric power and reactor temperature. The destruction of CHF3 gradually increased with the addition of O2 up to 2%, but further increase in the oxygen content led to a decrease in the decomposition efficiency. The degradation pathways were explained with the identified by-products. The main by-products from CHF3 were found to be COF2, CF4, CO2 and CO although the COF2 and CF4 disappeared when the plasma were combined with alumina catalyst. PMID:23513444

  11. Mechanistic and kinetic studies of the thermal decomposition of TNAZ and NDNAZ

    SciTech Connect

    Anderson, K.; Homsy, J.; Behrens, R.; Bulusu, S.

    1998-12-31

    The authors have studied the mechanism and detailed reaction kinetics of the thermal decomposition of 1,3,3-trinitroazetidine (TNAZ), and separately, its key decomposition intermediate, 1-nitroso-3,3-dinitroacetidine (NDNAZ), using a simultaneous thermogravimetric modulated beam mass spectrometer (STMBMS). These decompositions were conducted in a sealed alumina cell with a 2.5 {micro}m orifice, at varying temperatures and at a range of isothermal temperatures (at 10 C intervals from 120--160 C for NDNAZ and 160--210 C for TNAZ). The gaseous products have been identified and their rates of formation have been measured as a function of time, temperature, and pressure. This system is complex, with TNAZ decomposing by four separate routes, one of which leads to NDNAZ, which itself decomposes by at least two distinct routes.

  12. Thermal Decomposition and Desorption of Diethylamido of Tetrakis (Diethylamido)Zirconium (TDEAZr) on Si(100)

    NASA Astrophysics Data System (ADS)

    Jeong, Joonhee; Lim, Sungwon; Yong, Kijung

    The thermal decomposition pathway and desorption of diethylamido of tetrakis (diethylamido)zirconium [TDEAZr, Zr(N(C2H5)2) 4] on Si(100) were studied using temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). During TPD experiments, ethylethyleneimine (C2H5N=CHCH3), diethylamine [NH(C2H5)2], acetonitrile (CH3CN), ethylene (C2H4) and hydrogen (H2) desorbed as the main decomposition products of diethylamido, which was chemisorbed on Si(100) through the scission of the zirconium-diethylamido bond in TDEAZr. After TPD runs, the formation of silicon carbide and silicon nitride was observed on the surface by XPS, indicating that a complete decomposition of diethylamido proceeded. This could be a reaction pathway of C, N incorporation in the thin film growth using TDEAZr as a Zr precursor.

  13. Structure-dependent activities of Cu2O cubes in thermal decomposition of ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Lin; Wang, Min-Juan; Yun, Le; Yang, Jie; Chen, Ya-Shao

    2016-03-01

    Catalytic activity of three kinds of Cu2O cubes with different structures for thermal decomposition of ammonium perchlorate (AP) has been investigated in this paper. Cu2O crystals in the form of cubic aggregate, mono-dispersed cube and {100} planes etched cube have been synthesized through a microwave-assisted solvothermal method by adjusting the composition of solvent. The decomposition of AP in the presence or absence of Cu2O cubes has been investigated non-isothermally through thermogravimetry and differential scanning calorimetry (DSC). The data obtained from DSC have been applied for the calculation and comparison of the kinetic parameters of AP decomposition process through a model-free approach. The obtained kinetic parameters have been used to predict the reaction rate and progress of AP with Cu2O cubes under isothermal conditions or at temperature mode corresponding to real climate changes.

  14. Solar photovoltaic/thermal (hybrid) energy project

    NASA Astrophysics Data System (ADS)

    Sheldon, D. B.

    1981-09-01

    Development of photovoltaic/thermal (PV/T) collectors and residential heat pump systems is reported. Candidate collector and residential heat pump systems were evaluated using the TRNSYS computer program. It is found that combined heat pump and PV array is a promising method for achieving economical solar cooling. Where the cooling load is dominant, exclusively PV collectors rather than PV/T collectors are preferred. Where the heating load is dominant, the thermal component of PV/T collectors makes a significant contribution to heating a residence. PV/T collectors were developed whose combined efficiency approaches the efficiency of a double glazed, exclusively thermal collector. The design and operational problems of air source heat pumps are reviewed. Possible effects of compressor startup transients on PV power system operation are discussed.

  15. Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite.

    PubMed

    Gunawan, Richard; Zhang, Dongke

    2009-06-15

    The interaction between ammonium nitrate based industrial explosives and pyrite-rich minerals in mining operations can lead to the occurrence of spontaneous explosion of the explosives. In an effort to provide a scientific basis for safe applications of industrial explosives in reactive mining grounds containing pyrite, ammonium nitrate decomposition, with and without the presence of pyrite, was studied using a simultaneous Differential Scanning Calorimetry and Thermogravimetric Analyser (DSC-TGA) and a gas-sealed isothermal reactor, respectively. The activation energy and the pre-exponential factor of ammonium nitrate decomposition were determined to be 102.6 kJ mol(-1) and 4.55 x 10(7)s(-1) without the presence of pyrite and 101.8 kJ mol(-1) and 2.57 x 10(9)s(-1) with the presence of pyrite. The kinetics of ammonium nitrate decomposition was then used to calculate the critical temperatures for ammonium nitrate decomposition with and without the presence of pyrite, based on the Frank-Kamenetskii model of thermal explosion. It was shown that the presence of pyrite reduces the temperature for, and accelerates the rate of, decomposition of ammonium nitrate. It was further shown that pyrite can significantly reduce the critical temperature of ammonium nitrate decomposition, causing undesired premature detonation of the explosives. The critical temperature also decreases with increasing diameter of the blast holes charged with the explosive. The concept of using the critical temperature as indication of the thermal stability of the explosives to evaluate the risk of spontaneous explosion was verified in the gas-sealed isothermal reactor experiments. PMID:19056177

  16. Development and testing of a fluidized bed solar thermal receiver

    SciTech Connect

    Bachovchin, D.M.; Archer, D.H.; Neale, D.H.; Brown, C.T.; Lefferdo, J.M.

    1981-01-01

    Requirements for effective solar thermal receivers are compared with the characteristics of fluidized beds to demonstrate the compatibility of the two technologies. The Westinghouse design and construction of a solar thermal fluidized bed air heater for industrial process heat is described. Tests of the unit with concentrated solar radiation at the Georgia Tech Advanced Components Test Facility are outlined and receiver performance is evaluated.

  17. Solar thermal technology report, FY 1981. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The activities of the Department of Energy's Solar Thermal Technology Program are discussed. Highlights of technical activities and brief descriptions of each technology are given. Solar thermal conversion concepts are discussed in detail, particularily concentrating collectors and salt-gradient solar ponds.

  18. Thermal effects testing at the National Solar Thermal Test Facility

    NASA Astrophysics Data System (ADS)

    Ralph, Mark E.; Cameron, Christopher P.; Ghanbari, Cheryl M.

    The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirtland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/sq cm that is uniform over a 15-cm diameter with a total beam power of over 5 MWt. One solar furnace produces flux levels of 270 W/sq cm over and delivers a 6-mm diameter and total power of 16 kWt. A second furnace produces flux levels up to 1000 W/sq cm over a 4 cm diameter and total power of 60 kWt. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11-m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/sq cm over a 2.5-cm diameter and total power of 75 kWt. High-speed shutters have been used to produce square pulses.

  19. Exothermic Behavior of Thermal Decomposition of Sodium Percarbonate: Kinetic Deconvolution of Successive Endothermic and Exothermic Processes.

    PubMed

    Nakano, Masayoshi; Wada, Takeshi; Koga, Nobuyoshi

    2015-09-24

    This study focused on the kinetic modeling of the thermal decomposition of sodium percarbonate (SPC, sodium carbonate-hydrogen peroxide (2/3)). The reaction is characterized by apparently different kinetic profiles of mass-loss and exothermic behavior as recorded by thermogravimetry and differential scanning calorimetry, respectively. This phenomenon results from a combination of different kinetic features of the reaction involving two overlapping mass-loss steps controlled by the physico-geometry of the reaction and successive endothermic and exothermic processes caused by the detachment and decomposition of H2O2(g). For kinetic modeling, the overall reaction was initially separated into endothermic and exothermic processes using kinetic deconvolution analysis. Then, both of the endothermic and exothermic processes were further separated into two reaction steps accounting for the physico-geometrically controlled reaction that occurs in two steps. Kinetic modeling through kinetic deconvolution analysis clearly illustrates the appearance of the net exothermic effect is the result of a slight delay of the exothermic process to the endothermic process in each physico-geometrically controlled reaction step. This demonstrates that kinetic modeling attempted in this study is useful for interpreting the exothermic behavior of solid-state reactions such as the oxidative decomposition of solids and thermal decomposition of oxidizing agent. PMID:26371394

  20. Thermal, solution and reductive decomposition of Cu-Al layered double hydroxides into oxide products

    SciTech Connect

    Britto, Sylvia; Vishnu Kamath, P.

    2009-05-15

    Cu-Al layered double hydroxides (LDHs) with [Cu]/[Al] ratio 2 adopt a structure with monoclinic symmetry while that with the ratio 0.25 adopt a structure with orthorhombic symmetry. The poor thermodynamic stability of the Cu-Al LDHs is due in part to the low enthalpies of formation of Cu(OH){sub 2} and CuCO{sub 3} and in part to the higher solubility of the LDH. Consequently, the Cu-Al LDH can be decomposed thermally (150 deg. C), hydrothermally (150 deg. C) and reductively (ascorbic acid, ambient temperature) to yield a variety of oxide products. Thermal decomposition at low (400 deg. C) temperature yields an X-ray amorphous residue, which reconstructs back to the LDH on soaking in water or standing in the ambient. Solution decomposition under hydrothermal conditions yields tenorite at 150 deg. C itself. Reductive decomposition yields a composite of Cu{sub 2}O and Al(OH){sub 3}, which on alkali-leaching of the latter, leads to the formation of fine particles of Cu{sub 2}O (<1 {mu}m). - Graphical abstract: SEM image of (a) the Cu{sub 2}O-Al(OH){sub 3} composite obtained on reductive decomposition of CuAl{sub 4}-LDH and (b) Cu{sub 2}O obtained on leaching of Al(OH){sub 3} from (a).

  1. Solar Thermal : Solar Electric Propulsion Hybrid Orbit Transfer Analysis

    NASA Astrophysics Data System (ADS)

    McFall, Keith A.

    2000-07-01

    This effort examined the payoffs associated with the joint application of solar thermal propulsion (STP) and electric propulsion (EP) for orbit raising. The combined use of STP (800 second specific impulse) and EP (1800 second specific impulse) for a single orbit transfer mission is motivated by the desire to leverage the higher thrust of STP with the higher specific impulse of EP to maximize mission capability. The primary objectives of this analysis were to quantify the payload, mission duration, and hydrogen propellant to payload mass ratio for a range of combined STP and EP orbit transfer missions to geosynchronous Earth orbit (GEO), and contrast them to results for STP only. For STP, the hydrogen propellant to payload mass ratio is of particular interest due to payload fairing size constraints and the relatively low density of liquid hydrogen, which limit the mass of the STP propellant, and therefore the amount of payload that can be delivered. The results of the analysis include an 18% payload improvement associated with STP-EP hybrid propulsion over STP alone. The trip time needed for the STP-EP transfer varied from 101 to 143 days, compared to 41 days for the Solar only case. In addition, the amount of hydrogen propellant needed to accomplish the orbit raising to GEO per unit mass of payload decreased by 29% when the Solar Thermal - Solar Electric hybrid was used. While comprehensive comparisons of STP-EP to chemical propulsion (CP) only and to CP with EP orbit topping were also of interest, they were beyond the scope of this effort. However, a comparison of reference missions was performed. In comparison to the reference CP (328 second specific impulse) and CP-EP missions the STP-EP system provided 67% and 39% payload increases. respectively. The trip time for the CP-EP cases varied from 55 to 106 days.

  2. Solar thermal heating and cooling. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Arenson, M.

    1979-01-01

    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.

  3. Synthesis and structure characterization of chromium oxide prepared by solid thermal decomposition reaction.

    PubMed

    Li, Li; Yan, Zi F; Lu, Gao Q; Zhu, Zhong H

    2006-01-12

    Mesoporous chromium oxide (Cr2O3) nanocrystals were first synthesized by the thermal decomposition reaction of Cr(NO3)3.9H2O using citric acid monohydrate (CA) as the mesoporous template agent. The texture and chemistry of chromium oxide nanocrystals were characterized by N2 adsorption-desorption isotherms, FTIR, X-ray diffraction (XRD), UV-vis, and thermoanalytical methods. It was shown that the hydrate water and CA are the crucial factors in influencing the formation of mesoporous Cr2O3 nanocrystals in the mixture system. The decomposition of CA results in the formation of a mesoporous structure with wormlike pores. The hydrate water of the mixture provides surface hydroxyls that act as binders, making the nanocrystals aggregate. The pore structures and phases of chromium oxide are affected by the ratio of precursor-to-CA, thermal temperature, and time. PMID:16471518

  4. The thermal decomposition of methanol and methanethiol on the clean and modified Fe(110) surface

    SciTech Connect

    Batteas, J.D.; Rufael, T.S.; Friend, C.M.

    1996-10-01

    The thermal decomposition of methanol and methanethiol on the clean and modified Fe(110) surface has been examined using X-ray photoelectron spectroscopy, low-energy electron diffraction and temperature programmed reaction spectroscopy. Both methanethiol and methanol adsorb on the Fe(110) surface at 100 K with immediate cleavage of the terminal hydrogen to produce methylthiolate (CH{sub 3}S) and methoxy (CH{sub 3}O) coadsorbed with atomic hydrogen on the Fe surface. Heating the sample to 800 K produces gas phase methane and hydrogen, leaving a chemisorbed S overlayer in the case of methylthiolate, while methoxy decomposes via desorbing hydrogen and CO to leave a clean Fe surface. The influence of oxygen and sulfur pre-adsorption on the thermal decomposition of these species will also be described.

  5. A Property Extracted by Composition / Thermal Decomposition Analyses of Various Biomass Resources and Its Correlation

    NASA Astrophysics Data System (ADS)

    Mizuno, Satoru; Morita, Akihiro; Ida, Tamio; Namba, Kunihiko; Fuchihata, Manabu; Sawai, Toru

    Effective utilization of biomass resource rapidly has been promoting since the government adopted the ‘Biomass Nippon’ strategy at a cabinet meeting in 2002. Especially, the energy conversion technology of applying biomass has been expected from a point of view of environment and resource conservation. However, the energy conversion technologies are developed only for woody and herby biomass, and not for all of biomass. A stable supply of large quantity of biomass will be pressed in the future because the conversion technology must expand to use a variety of biomass. This study is to consider ways by various quantitative correlation analyses between the atomic composition and thermal decomposition of various biomass samples. The results found that thermal decomposition analyses of various biomass resources have correlations between atomic composition properties and exothermic properties.

  6. First-Principles Thermochemistry for the Thermal Decomposition of Titanium Tetraisopropoxide.

    PubMed

    Buerger, Philipp; Nurkowski, Daniel; Akroyd, Jethro; Mosbach, Sebastian; Kraft, Markus

    2015-07-30

    The thermal decomposition of titanium tetraisopropoxide (TTIP) is investigated using quantum chemistry, statistical thermodynamics, and equilibrium composition analysis. A set of 981 Ti-containing candidate species are proposed systematically on the basis of the thermal breakage of bonds within a TTIP molecule. The ground state geometry, vibrational frequencies and hindrance potentials are calculated for each species at the B97-1/6-311+G(d,p) level of theory. Thermochemical data are computed by applying statistical thermodynamics and, if unknown, the standard enthalpy of formation is estimated using balanced reactions. Equilibrium composition calculations are performed under typical combustion conditions for premixed flames. The thermodynamically stable decomposition products for different fuel mixtures are identified. A strong positive correlation is found between the mole fractions of Ti species containing carbon and the TTIP precursor concentration. PMID:26114649

  7. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret

    SciTech Connect

    Sun, Hongyan E-mail: ghanshyam.vaghjiani@us.af.mil; Vaghjiani, Ghanshyam L. E-mail: ghanshyam.vaghjiani@us.af.mil

    2015-05-28

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH{sub 2} group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C{sub 2v} symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice–Ramsperger–Kassel–Marcus/multi-well master equation simulations, the results of which

  8. Determination of nitrate in atmospheric particulate matter by thermal decomposition and chemiluminescence

    SciTech Connect

    Spicer, C.W.; Joseph, D.W.; Schumacher, P.M.

    1985-10-01

    A thermal decomposition/chemiluminescence method is presented for determining nitrate in atmospheric particular matter. Nitrate in the sample is thermally decomposed to NO/sub x/, which is then determined with a commercial chemiluminescence NO/sub x/ monitor. The nitrate in a filter sample can be determined directly by heating a segment of the filter in a furnace or after extraction of the filter by flash heating the aqueous extract in a sample loop. In either case, the sample is decomposed in a nitrogen atmosphere to avoid interference from ammonium. The NO/sub x/ peak from nitrate decomposition can be quantified by integrating the chemiluminescence signal or by integrating the gas sample in a Tedlar bag prior to the chemiluminescence measurement. The technique is straightforward, fast, and sensitive, and interferences in atmospheric samples are negligible. A comparison of the thermal decomposition/chemiluminescence method with ion chromatography using filter samples collected in ambient air showed good agreement over a wide range of concentrations. 26 references.

  9. Evaluation of thermal decomposition rate of carbohydrazide and its reducing effect on carbon steel corrosion

    SciTech Connect

    Fujiwara, Kazutoshi; Kawamura, Hirotaka; Hirano, Hideo; Takahashi, Kanjo; Maeda, Toshihiko; Koike, Masami

    1997-12-01

    Hydrazine as an oxygen scavenger has been widely used for the feed water treatment of PWR secondary side and fossil power plants in the world. However, there is some concern over health and safety issues related to the use of hydrazine. Carbohydrazide is listed up as one of alternative oxygen scavengers. In this study, laboratory tests were performed to examine the thermal decomposition rate of carbohydrazide and its reducing effect on carbon steel corrosion in comparison with hydrazine. Test results revealed that carbohydrazide was stable below 373 K. The thermal decomposition ratios of carbohydrazide were less than 50% after 20 minutes exposure in the range of 373 K to 428 K. Its thermal decomposition rate constant was derived from experimental test data. The measurement of dissolved oxygen concentration also showed that carbohydrazide possessed a fairly good oxygen scavenger property. Judging from test results mentioned above, it was concluded that carbohydrazide is applicable as an alternative oxygen scavenger for feedwater treatment in PWR and fossil power plant.

  10. Ultrafast Preparation of Monodisperse Fe3 O4 Nanoparticles by Microwave-Assisted Thermal Decomposition.

    PubMed

    Liang, Yi-Jun; Zhang, Yu; Guo, Zhirui; Xie, Jun; Bai, Tingting; Zou, Jiemeng; Gu, Ning

    2016-08-01

    Thermal decomposition, as the main synthetic procedure for the synthesis of magnetic nanoparticles (NPs), is facing several problems, such as high reaction temperatures and time consumption. An improved a microwave-assisted thermal decomposition procedure has been developed by which monodisperse Fe3 O4 NPs could be rapidly produced at a low aging temperature with high yield (90.1 %). The as-synthesized NPs show excellent inductive heating and MRI properties in vitro. In contrast, Fe3 O4 NPs synthesized by classical thermal decomposition were obtained in very low yield (20.3 %) with an overall poor quality. It was found for the first time that, besides precursors and solvents, magnetic NPs themselves could be heated by microwave irradiation during the synthetic process. These findings were demonstrated by a series of microwave-heating experiments, Raman spectroscopy and vector-network analysis, indicating that the initially formed magnetic Fe3 O4 particles were able to transform microwave energy into heat directly and, thus, contribute to the nanoparticle growth. PMID:27381301

  11. Thermal model of solar absorption HVAC systems

    SciTech Connect

    Bergquam, J.B.; Brezner, J.M. |

    1995-11-01

    This paper presents a thermal model that describes the performance of solar absorption HVAC systems. The model considers the collector array, the building cooling and heating loads, the absorption chiller and the high temperature storage. Heat losses from the storage tank and piping are included in the model. All of the results presented in the paper are for an array of flat plate solar collectors with black chrome (selective surface) absorber plates. The collector efficiency equation is used to calculate the useful heat output from the array. The storage is modeled as a non-stratified tank with polyurethane foam insulation. The system is assumed to operate continuously providing air conditioning during the cooling season, space heating during the winter and hot water throughout the year. The amount of heat required to drive the chiller is determined from the coefficient of performance of the absorption cycle. Results are presented for a typical COP of 0.7. The cooling capacity of the chiller is a function of storage (generator) temperature. The nominal value is 190 F (88 C) and the range of values considered is 180 F (82 C) to 210 F (99 C). Typical building cooling and heating loads are determined as a function of ambient conditions. Performance results are presented for Sacramento, CA and Washington, D.C. The model described in the paper makes use of National Solar Radiation Data Base (NSRDB) data and results are presented for these two locations. The uncertainties in the NSRDB are estimated to be in a range of 6% to 9%. This is a significant improvement over previously available data. The model makes it possible to predict the performance of solar HVAC systems and calculate quantities such as solar fraction, storage temperature, heat losses and parasitic power for every hour of the period for which data are available.

  12. Heat transfer in a fluidized-bed solar thermal receiver

    SciTech Connect

    Bachovchin, D.M.; Archer, D.H.; Neale, D.H.

    1983-01-01

    The authors investigated the use of a fluidized bed as a solar thermal receiver. A 0.3 m diameter, quartz-walled bed was designed, built, and tested at a 325 kW, solar thermal test facility. Various large-particle bed materials were tested, and we found that strong temperature gradients existed in the fluidized bed exposed to concentrated solar radiation. A heat transfer analysis is presented and effective bed thermal conductivities are estimated.

  13. Thermal Characterization of a Direct Gain Solar Thermal Engine

    NASA Technical Reports Server (NTRS)

    Alexander, Reginald A.; Coleman, Hugh W.

    1998-01-01

    A thermal/fluids analysis of a direct gain solar thermal upper stage engine is presented and the results are discussed. The engine has been designed and constructed at the NASA Marshall Space Flight Center for ground testing in a facility that can provide about 10 kilowatts of concentrated solar energy to the engine. The engine transfers that energy to a coolant (hydrogen) that is heated and accelerated through a nozzle to produce thrust. For the nominal design values and a hydrogen flowrate of 2 lb/hr., the results of the analysis show that the hydrogen temperature in the chamber (nozzle entrance) reaches about 3800 F after 30 minutes of heating and about 3850 F at steady-state (slightly below the desired design temperature of about 4100 F). Sensitivity analyses showed these results to be relatively insensitive to the values used for the absorber surface infrared emissivity and the convection coefficient within the cooling ducts but very sensitive to the hydrogen flowrate. Decreasing the hydrogen flowrate to 1 lb/hr. increases the hydrogen steady-state chamber temperature to about 4700 F, but also causes an undesirable decrease in thrust.

  14. Thermal Characterization of a Direct Gain Solar Thermal Engine

    NASA Technical Reports Server (NTRS)

    Alexander, Reginald A.; Coleman, Hugh W.

    1999-01-01

    A thermal/fluids analysis of a direct gain solar thermal upper stage engine is presented and the results are discussed. The engine was designed and constructed at the NASA Marshall Space Flight Center for ground testing in a facility that can provide about 10 kilowatts of concentrated solar energy to the engine. The engine transfers energy to a coolant (hydrogen) that is heated and accelerated through a nozzle to produce thrust. For the nominal design values and a hydrogen flowrate of 2 lb./hr., the results of the analysis show that the hydrogen temperature in the chamber (nozzle entrance) reaches about 3800 F after 30 minutes of heating and about 3850 F at steady-state (slightly below the desired design temperature of about 4100 F. Sensitivity analyses showed these results to be relatively insensitive to the values used for the absorber surface infrared emissivity and the convection coefficient within the cooling ducts but very sensitive to the hydrogen flowrate. Decreasing the hydrogen flowrate to 1 lb./hr. increases the hydrogen steady-state chamber temperature to about 4700 F, but also of course causes a decrease in thrust.

  15. Convex Decompositions of Thermal Equilibrium for Non-interacting Non-relativistic Particles

    NASA Astrophysics Data System (ADS)

    Chenu, Aurelia; Branczyk, Agata; Sipe, John

    2016-05-01

    We provide convex decompositions of thermal equilibrium for non-interacting non-relativistic particles in terms of localized wave packets. These quantum representations offer a new tool and provide insights that can help relate to the classical picture. Considering that thermal states are ubiquitous in a wide diversity of fields, studying different convex decompositions of the canonical ensemble is an interesting problem by itself. The usual classical and quantum pictures of thermal equilibrium of N non-interacting, non-relativistic particles in a box of volume V are quite different. The picture in classical statistical mechanics is about (localized) particles with a range of positions and velocities; in quantum statistical mechanics, one considers the particles (bosons or fermions) associated with energy eigenstates that are delocalized through the whole box. Here we provide a representation of thermal equilibrium in quantum statistical mechanics involving wave packets with a localized coordinate representation and an expectation value of velocity. In addition to derive a formalism that may help simplify particular calculations, our results can be expected to provide insights into the transition from quantum to classical features of the fully quantum thermal state.

  16. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    DOE PAGESBeta

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-11

    Here, atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completionmore » of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z  53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS

  17. Solar radiation uncorks the lignin bottleneck on plant litter decomposition in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Austin, A.; Ballare, C. L.; Méndez, M. S.

    2015-12-01

    Plant litter decomposition is an essential process in the first stages of carbon and nutrient turnover in terrestrial ecosystems, and together with soil microbial biomass, provide the principal inputs of carbon for the formation of soil organic matter. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in low rainfall ecosystems; however, the generality of this process as a control on carbon cycling in terrestrial ecosystems is not known, and the indirect effects of photodegradation on biotic stimulation of carbon turnover have been debated in recent studies. We demonstrate that in a wide range of plant species, previous exposure to solar radiation, and visible light in particular, enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility for microbial enzymes to plant litter carbohydrates due to a reduction in lignin content. Photodegradation of plant litter reduces the structural and chemical bottleneck imposed by lignin in secondary cell walls. In litter from woody plant species, specific interactions with ultraviolet radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized positive effect of solar radiation exposure on subsequent microbial activity is mediated by increased accessibility to cell wall polysaccharides, which suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release and the carbon balance in a broad range of terrestrial ecosystems.

  18. Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels

    SciTech Connect

    2012-01-09

    HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

  19. Kinetic analysis of the thermal decomposition of pristine and gamma-irradiated zinc uranyl acetate

    NASA Astrophysics Data System (ADS)

    Al-Muhaimid, T. I. A.; Al-Qunaibit, M. H.; Al-Farhan, K. A.; Mahfouz, R. M.

    2004-11-01

    Thermal decomposition of pristine and gamma-irradiated zinc uranyl acetate was investigated in air using isothermal and dynamic thermogravimetric techniques. The decomposition proceeded via one major process with the formation of triuranates ZnU3O10 as solid residues. Kinetic analysis of isothermal data, when compared with various solid-state reaction models, showed that the decomposition reaction is best fitted by the phase-boundary model. Kinetic analysis of the cynamic TG curves was discussed with reference to integral methods of modified Coats and Redfern equations. Kinetic and thermodynamic parameters were calculated and evaluated. IR spectroscopy and X-ray powder diffraction techniques were employed to follow the chemical composition of solid residue at different calcination temperatures. The results display that the triuranate ZnU3O10 starts forming by calcination of zinc uranyl acetate at temperatures >300 degrees C and undergoes decomposition at higher temperatures (>600 degrees C) with the formation Of U3O8. The results were evaluated regarding the utilization of zinc uranyl acetate as an important source of diuranates and triuranates.

  20. Solar Thermal Propulsion Optical Figure Measuring and Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph

    1997-01-01

    Solar thermal propulsion has been an important area of study for four years at the Propulsion Research Center. Significant resources have been devoted to the development of the UAH Solar Thermal Laboratory that provides unique, high temperature, test capabilities. The facility is fully operational and has successfully conducted a series of solar thruster shell experiments. Although presently dedicated to solar thermal propulsion, the facility has application to a variety of material processing, power generation, environmental clean-up, and other fundamental research studies. Additionally, the UAH Physics Department has joined the Center in support of an in-depth experimental investigation on Solar Thermal Upper Stage (STUS) concentrators. Laboratory space has been dedicated to the concentrator evaluation in the UAH Optics Building which includes a vertical light tunnel. Two, on-going, research efforts are being sponsored through NASA MSFC (Shooting Star Flight Experiment) and the McDonnell Douglas Corporation (Solar Thermal Upper Stage Technology Ground Demonstrator).

  1. Synthesis and thermal decomposition of a novel zirconium acetato-propionate cluster: [Zr12

    NASA Astrophysics Data System (ADS)

    Petit, Sarah; Morlens, Stéphanie; Yu, Zeming; Luneau, Dominique; Pilet, Guillaume; Soubeyroux, Jean-Louis; Odier, Philippe

    2011-03-01

    This work reports a novel Zirconium acetato-propionate complex herein called [Zr12] obtained by reaction of zirconium acetylacetonate Zr(acac) 4 with propionic acid. The molecular structure has been determined by X-ray diffraction on single crystals and proposed to be [Zr 12(μ 3-O) 16(CH 3CH 2CO 2) 12(CH 3CO 2) 8(μ 2-CH 3CH 2CO 2) 4]. This cluster involves oxo/hydroxo bonds in the direct surrounding of the metallic center. The decomposition of [Zr12] has been studied by thermal analysis and compared to Zr(acac) 4. Its temperature of decomposition is much lower than for acetylacetonate derivative. In consequence, the formation of ZrO 2 is easier from [Zr12] than from Zr(acac) 4. This phenomenon highlights the influence of the molecular structure on the process of decomposition. The local surrounding of Zr in [Zr12] and in ZrO 2 are very close, while it is markedly different in Zr(acac) 4.This difference of environment of the metallic ions is at the origin of the huge difference of thermal behavior of both compounds.

  2. Kinetic model for thermal decomposition of energetic materials from ReaxFF molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sergeev, Oleg; Yanilkin, Alexey

    2015-06-01

    In the present work we perform molecular dynamics simulations of the thermal decomposition of isolated molecules and single crystals of PETN, RDX and HMX. For isolated molecules we use multi-replica approach with different preconditioned atomic velocities to obtain statistics of the decomposition. In this model we only consider the initial stage of the reactions, that shows first order kinetics. In the model of single crystal, we directly observe reaction pathways that result in product formation, as well as the dependences of concentrations of main chemical species on time after heating. Initial temperatures are in the range of 1000 to 2800 K. On the basis of the obtained dependences of concentrations we propose a kinetic model that describes thermal decomposition process. Reaction rate constants are well described by the Arrhenius law. Activation energies for the initial stage appear to be lowered by 30-60 kJ/mole in condensed phase compared to the isolated molecule. We compare these results between different ReaxFF parametrizations and DFT calculations. Please refer the correspondence to this author.

  3. THE THERMAL INSTABILITY OF SOLAR PROMINENCE THREADS

    SciTech Connect

    Soler, R.; Goossens, M.; Ballester, J. L.

    2011-04-10

    The fine structure of solar prominences and filaments appears as thin and long threads in high-resolution images. In H{alpha} observations of filaments, some threads can be observed for only 5-20 minutes before they seem to fade and eventually disappear, suggesting that these threads may have very short lifetimes. The presence of an instability might be the cause of this quick disappearance. Here, we study the thermal instability of prominence threads as an explanation of their sudden disappearance from H{alpha} observations. We model a prominence thread as a magnetic tube with prominence conditions embedded in a coronal environment. We assume a variation of the physical properties in the transverse direction so that the temperature and density continuously change from internal to external values in an inhomogeneous transitional layer representing the particular prominence-corona transition region (PCTR) of the thread. We use the nonadiabatic and resistive magnetohydrodynamic equations, which include terms due to thermal conduction parallel and perpendicular to the magnetic field, radiative losses, heating, and magnetic diffusion. We combine both analytical and numerical methods to study linear perturbations from the equilibrium state, focusing on unstable thermal solutions. We find that thermal modes are unstable in the PCTR for temperatures higher than 80,000 K, approximately. These modes are related to temperature disturbances that can lead to changes in the equilibrium due to rapid plasma heating or cooling. For typical prominence parameters, the instability timescale is of the order of a few minutes and is independent of the form of the temperature profile within the PCTR of the thread. This result indicates that thermal instability may play an important role for the short lifetimes of threads in the observations.

  4. Radiation-induced synthesis of ZrO2 nanoparticles by thermal decomposition of zirconium acetylacetonate

    NASA Astrophysics Data System (ADS)

    Mahfouz, R. M.; Ahmed, G. A.-W.; Al-Wassil, A. I.; Siddiqui, M. R. H.; Al-Otaibi, A. M.

    2013-12-01

    ZrO2 nanoparticles were obtained by the thermal decomposition of un-irradiated and γ-irradiated zirconium acetylacetonate (ZrAcAc) precursors. Several influencing factors, including absorbed dose, calcination times, calcination temperatures and addition of surfactants, were thoroughly investigated. The results showed that the best conditions for the preparation of ZrO2 nanoparticles were achieved by calcinations of ZrAcAc for 5 h at 600°C in the presence of 1 mL of benzyl alcohol as the surfactant. Different phases, morphologies and sizes for the as-prepared ZrO2 nanoparticles were obtained by varying the dose of γ-ray absorbed. ZrO2 nanoparticles obtained by thermal decomposition of un-irradiated ZrAcAc have mixture of monoclinic and tetragonal crystal systems, the particles are monodispersed with an irregular shape. In the case of γ-irradiated ZrAcAc with 10, 102 and 103 KGy, ZrO2 nanoparticles have only a tetragonal system with different morphologies depending on the γ-ray dose absorbed. Thermal stability of ZrO2 nanoparticles was studied using thermogravimetric/differential thermal analyzer techniques. Thermodynamic and kinetic parameters were evaluated and discussed.

  5. High deposition rate preparation of amorphous silicon solar cells by rf glow discharge decomposition of disilane

    SciTech Connect

    Kenne, J.; Ohashi, Y.; Matsushita, T.; Konagai, M.; Takahashi, K.

    1984-01-15

    The optical and electrical properties of hydrogenated amorphous silicon films produced by rf glow discharge decomposition of disilane diluted in helium (Si/sub 2/H/sub 6//He = 1/9) have been studied while systematically varying the film deposition rate. The properties and composition of the films were monitored by measuring the optical band gap, IR vibrational spectrum, dark conductivity, and the photoconductivity as a function of the deposition rate. The photoluminescence of the high deposition rate films gave a peak at 1.33 eV. These films, whose properties are rather similar to those of the conventional a-Si:H films prepared from monosilane, have been used to fabricate nip-type a-Si:H solar cells. At a deposition rate of 11 A/sec, a conversion efficiency of 6.86% was obtained. This high efficiency shows that disilane is applicable for mass production fabrication of a-Si:H solar cells.

  6. A quasimechanism of melt acceleration in the thermal decomposition of crystalline organic solids

    SciTech Connect

    Henson, Bryan F

    2009-01-01

    It has been know for half a century that many crystalline organic solids undergo an acceleration in the rate of thermal decomposition as the melting temperature is approached. This acceleration terminates at the melting point, exhibiting an Arrhenius-like temperature dependence in the faster decomposition rate from the liquid phase. This observation has been modeled previously using various premelting behaviors based on e.g. freezing point depression induced by decomposition products or solvent impurities. These models do not, however, indicate a mechanism for liquid formation and acceleration which is an inherent function of the bulk thermodynamics of the molecule. Here we show that such an inherent thermodynamic mechanism for liquid formation exists in the form of the so-called quasi-liquid layer at the solid surface. We explore a kinetic mechanism which describes the acceleration of rate and is a function of the free energies of sublimation and vaporization. We construct a differential rate law from these thermodynamic free energies and a normalized progress variable. We further construct a reduced variable formulation of the model which is a simple function of the metastable liquid activity below the melting point, and show that it is applicable to the observed melt acceleration in several common organic crystalline solids. A component of the differential rate law, zero order in the progress variable, is shown to be proportional to the thickness of the quasiliquid layer predicted by a recent thermodynamic theory for this phenomenon. This work therefore serves not only to provide new insight into thermal decomposition in a broad class or organic crystalline solids, but also further validates the underlying thermodynamic nature of the phenomenon of liquid formation on the molecular surface at temperatures below the melting point.

  7. CP: AN INVESTIGATION OF COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS, AND REACTION TO VARIOUS STIMULI

    SciTech Connect

    Weese, R K; Burnham, A K; Fontes, A T

    2005-03-23

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear heating rates, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Using differential scanning calorimetry, DSC, CP was decomposed at linear heating rates of 1, 3, and 7 C/min and the kinetic triplet calculated using the LLNL code Kinetics05. Values are also reported for spark, friction, and impact sensitivity.

  8. High temperature electrical conductivity and thermal decomposition of phenolic- and silicon-based dielectrics for fireset housings

    SciTech Connect

    Johnson, R.T. Jr.; Biefeld, R.M.

    1981-08-01

    The temperature dependence of the electrical conductivity and thermal decomposition characteristics of several phenolic- and silicone-based materials of interest for fireset case housings have been measured to 600 to 700/sup 0/C. The materials are phenolic or silicone resins reinforced with glass chopped fabric or cloth. The conductivity temperature dependence was measured during decomposition in a nitrogen atmosphere at a heating rate of approx. 10/sup 0/C/minute. Applied electric fields were from 4 x 10/sup 2/ to 4 x 10/sup 3/ volts/cm. Thermal decomposition characteristics were investigated by mass spectroscopy in vacuum and thermal gravimetric analysis in nitrogen and air. Nearly ohmic voltage-current characteristics were obtained, except where decomposition and/or outgassing was pronounced.

  9. Kinetic and microstructural studies of thermal decomposition in uranium mononitride compacts subjected to heating in high-purity helium

    NASA Astrophysics Data System (ADS)

    Lunev, A. V.; Mikhalchik, V. V.; Tenishev, A. V.; Baranov, V. G.

    2016-07-01

    Although uranium mononitride has a high melting point (≈3100 K), it often decomposes well below this temperature. The threshold and kinetics of thermal decomposition depend on samples' chemical content and on gas environment. However, most experiments with uranium nitride samples were done so far in vacuum conditions and did not allow thorough examination of reaction kinetics at high temperatures. This research focuses on studying the different stages of thermal decomposition in uranium nitride samples subjected to heating in helium. Mass loss and thermal effects are identified with simultaneous thermal analysis (STA), while scanning electron microscopy (SEM) and X-ray diffraction (XRD) are used to register phase and compositional changes. Thermal decomposition in uranium nitride samples is found to be a multi-stage process with the final stage characterized by uranium vaporization. The results are useful for estimating the high-temperature behaviour of uranium nitride fuel during its fabrication and performance in some of Gen IV reactors.

  10. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  11. Solar and thermal radiation in the Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Moroz, V. I.; Ekonomov, A. P.; Moshkin, B. E.; Revercomb, H. E.; Sromovsky, L. A.; Schofield, J. T.

    1985-01-01

    Attention is given to the solar and thermal radiation fields of Venus. Direct measurements and the results of numerical models based on direct measurements are presented. Radiation outside the atmosphere is considered with emphasis placed on global energy budget parameters, spectral and angular dependences, spatial distribution, and temporal variations of solar and thermal radiation. Radiation fluxes inside the atmosphere below 90 km are also considered with attention given to the solar flux at the surface, solar and thermal radiation fluxes from 100 km to the surface, and radiative heating and cooling below 100 km.

  12. General theme report: Working session 2, solar thermal systems

    NASA Astrophysics Data System (ADS)

    Alpert, D. J.; Kolb, G. J.

    1991-01-01

    Currently, over 90 percent of the world's large-scale solar electric energy is generated with concentrating solar thermal power plants. Such plants have the potential to meet many of the world's future energy needs. Research efforts are generally focused on generating electricity, though a variety of other applications are being pursued. Today, the technology for using solar thermal energy is well developed, cost competitive, and in many cases, ready for widespread application. The current state of each of the solar thermal technologies and their applications is reviewed, and recommendations for increasing their use are presented. The technologies reviewed in detail are: parabolic trough systems, central tower systems, and parabolic dish systems.

  13. Rankline-Brayton engine powered solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  14. Rankine-Brayton engine powered solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  15. Ceramic technology for solar thermal receivers

    NASA Technical Reports Server (NTRS)

    Kudirka, A. A.; Smoak, R. H.

    1981-01-01

    The high-temperature capability, resistance to corrosive environments and non-strategic nature of ceramics have prompted applications in the solar thermal field whose advantages over metallic devices of comparable performance may begin to be assessed. It is shown by a survey of point-focusing receiver designs employing a variety of ceramic compositions and fabrication methods that the state-of-the-art in structural ceramics is not sufficiently advanced to fully realize the promised benefits of higher temperature capabilities at lower cost than metallic alternatives. The ceramics considered include alumina, berylia, magnesia, stabilized zirconia, fused silica, silicon nitride, silicon carbide, mullite and cordierite, processed by such methods as isostatic pressing, dry pressing, slip casting, extrusion, calendaring and injection molding.

  16. Differential Scanning Calorimetry of Volatile-bearing Iron Minerals Under Mars-like Pressures: New Insights into Energetics and Mechanisms of Thermal Decomposition

    NASA Technical Reports Server (NTRS)

    Lin, I-C.; Lauer, H. V., Jr.; Golden, D. C.; Ming, D. W.

    2000-01-01

    Lepidocrocite and siderite both exhibit different enthalpic events during their decomposition at reduced pressures when compared to those at ambient pressure, allowing us looking into the mechanisms of thermal decomposition at Mars-like pressures.

  17. Mass spectrometry characterization of the thermal decomposition/digestion (TDD) at cysteine in peptides and proteins in the condensed phase.

    PubMed

    Basile, Franco; Zhang, Shaofeng; Kandar, Sujit Kumar; Lu, Liang

    2011-11-01

    We report on the characterization by mass spectrometry (MS) of a rapid, reagentless and site-specific cleavage at the N-terminus of the amino acid cysteine (C) in peptides and proteins induced by the thermal decomposition at 220-250 °C for 10 s in solid samples. This thermally induced cleavage at C occurs under the same conditions and simultaneously to our previously reported thermally induced site-specific cleavage at the C-terminus of aspartic acid (D) (Zhang, S.; Basile, F. J. Proteome Res. 2007, 6, (5), 1700-1704). The C cleavage proceeds through cleavage of the nitrogen and α-carbon bond (N-terminus) of cysteine and produces modifications at the cleavage site with an amidation (-1 Da) of the N-terminal thermal decomposition product and a -32 Da mass change of the C-terminal thermal decomposition product, the latter yielding either an alanine or β-alanine residue at the N-terminus site. These modifications were confirmed by off-line thermal decomposition electrospray ionization (ESI)-MS, tandem MS (MS/MS) analyses and accurate mass measurements of standard peptides. Molecular oxygen was found to be required for the thermal decomposition and cleavage at C as it induced an initial cysteine thiol side chain oxidation to sulfinic acid. Similar to the thermally induced D cleavage, missed cleavages at C were also observed. The combined thermally induced digestion process at D and C, termed thermal decomposition/digestion (TDD), was observed on several model proteins tested under ambient conditions and the site-specificity of the method confirmed by MS/MS. PMID:21952765

  18. PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS, AND REACTION TO SPARK, FRICTION AND IMPACT

    SciTech Connect

    Weese, R K; Burnham, A K

    2005-09-28

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear and isothermal heating, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Differential scanning calorimetry, DSC, was used to monitor CP decomposition at linear heating rates of 1-7 C min{sup -1} in perforated pans and of 0.1-1.0 C min{sup -1} in sealed pans. The kinetic triplet was calculated using the LLNL code Kinetics05, and predictions for 210 and 240 C are compared to isothermal thermogravimetric analysis (TGA) experiments. Values are also reported for spark, friction, and impact sensitivity.

  19. Kinetics of switch grass pellet thermal decomposition under inert and oxidizing atmospheres.

    PubMed

    Chandrasekaran, Sriraam R; Hopke, Philip K

    2012-12-01

    Grass pellets are a renewable resource that have energy content similar to that of wood. However, the higher ash and chlorine content affects combustion. Thermal degradation analysis of a fuel is useful in developing effective combustion. Thermogravimetric analysis (TGA) of the thermal degradation of grass pellets under inert (nitrogen) and oxidizing (air) atmospheres was conducted. Non-isothermal conditions were employed with 4 different heating rates. Kinetic parameters (activation energy and pre-exponential factors) were estimated using the iso-conversional method. Both pyrolysis and oxidative atmospheric thermal degradation exhibited two major loss process: volatilization of cellulose, hemicelluloses and lignin and burning or slow oxidation of the residual char. The activation energy and pre-exponential factors were high for the oxidizing environment. During pyrolysis, major decomposition occurred with 40% to 75% conversion of the mass to gas with an activation energy of 314 kJ/mol. In air the decomposition occurred with 30% to 55% conversion with an activation energy of 556 kJ/mol. There was a substantial effect of heating rate on mass loss and mass loss rate. The TG shifted to higher temperature ranges on increasing the heating rate. In both pyrolyzing and oxidizing conditions, average combustion and devolatilization rates increased. Enhanced combustion takes place with higher activation energy in oxidizing atmosphere compared to the inert atmosphere due to presence of air. PMID:23026316

  20. Study of thermal decomposition mechanisms and low-level detection of explosives using pulsed photoacoustic technique

    NASA Astrophysics Data System (ADS)

    Yehya, F.; Chaudhary, A. K.; Srinivas, D.; Muralidharan, K.

    2015-11-01

    We report a novel time-resolved photoacoustic-based technique for studying the thermal decomposition mechanisms of some secondary explosives such as RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), picric acid, 4,6-dinitro-5-(4-nitro-1 H-imidazol-1-yl)-1 H-benzo[ d] [1-3] triazole, and 5-chloro-1-(4-nitrophenyl)-1 H-tetrazole. A comparison of the thermal decomposition mechanisms of these secondary explosives was made by detecting NO2 molecules released under controlled pyrolysis between 25 and 350 °C. The results show excellent agreement with the thermogravimetric and differential thermal analysis (TGA-DTA) results. A specially designed PA cell made of stainless steel was filled with explosive vapor and pumped using second harmonic, i.e., λ = 532 nm, pulses of duration 7 ns at a 10 Hz repetition rate, obtained using a Q-switched Nd:YAG laser. The use of a combination of PA and TGA-DTA techniques enables the study of NO2 generation, and this method can be used to scale the performance of these explosives as rocket fuels. The minimum detection limits of the four explosives were 38 ppmv to 69 ppbv, depending on their respective vapor pressures.

  1. Thermal Decomposition of Trinitrotoluene (TNT) with a New One-Dimensional Time to Explosion (ODTX) Apparatus

    SciTech Connect

    Tran, T D; Simpson, R L; Maienschein, J; Tarver, C

    2001-03-23

    The thermal explosion of trinitrotoluene (TNT) is used as a basis for evaluating the performance of a new One-Dimensional-Time-to-Explosion (ODTX) apparatus. The ODTX experiment involves holding a 12.7 mm-diameter spherical explosive sample under confinement (150 MPa) at a constant elevated temperature until the confining pressure is exceeded by the evolution of gases during chemical decomposition. The resulting time to explosion as a function of temperature provides valuable decomposition kinetic information. A comparative analysis of the measurements obtained from the new unit and an older system is presented. Discussion on selected performance aspects of the new unit will also be presented. The thermal explosion of TNT is highly dependent on the material. Analysis of the time to explosion is complicated by historical and experimental factors such as material variability, sample preparation, temperature measurement and system errors. Many of these factors will be addressed. Finally, a kinetic model using a coupled thermal and heat transport code (chemical TOPAZ) was used to match the experimental data.

  2. Adsorption and thermal decomposition of 2-octylthieno[3,4-b]thiophene on Au(111).

    PubMed

    Park, Joon B; Zong, Kyukwan; Jeon, Il Chul; Hahn, Jae Ryang; Stacchiola, Dario; Starr, David; Müller, Kathrin; Noh, Jaegeun

    2012-10-15

    The adsorption and thermal stability of 2-octylthieno[3,4-b]thiophene (OTTP) on the Au(111) surfaces have been studied using scanning tunneling microscopy (STM), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). UHV-STM studies revealed that the vapor-deposited OTTP on Au(111) generated disordered adlayers with monolayer thickness even at saturation coverage. XPS and TPD studies indicated that OTTP molecules on Au(111) are stable up to 450 K and further heating of the sample resulted in thermal decomposition to produce H(2) and H(2)S via C-S bond scission in the thieno-thiophene rings. Dehydrogenation continues to occur above 600 K and the molecules were ultimately transformed to carbon clusters at 900 K. Highly resolved air-STM images showed that OTTP adlayers on Au(111) prepared from solution are composed of a well-ordered and low-coverage phase where the molecules lie flat on the surface, which can be assigned as a (9×2√33)R5° structure. Finally, based on analysis of STM, TPD, and XPS results, we propose a thermal decomposition mechanism of OTTP on Au(111) as a function of annealing temperature. PMID:22818203

  3. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae.

    PubMed

    Gai, Chao; Zhang, Yuanhui; Chen, Wan-Ting; Zhang, Peng; Dong, Yuping

    2013-12-01

    The thermal decomposition behavior of two microalgae, Chlorella pyrenoidosa (CP) and Spirulina platensis (SP), were investigated on a thermogravimetric analyzer under non-isothermal conditions. Iso-conversional Vyazovkin approach was used to calculate the kinetic parameters, and the universal integral method was applied to evaluate the most probable mechanisms for thermal degradation of the two feedstocks. The differential equations deduced from the models were compared with experimental data. For the range of conversion fraction investigated (20-80%), the thermal decomposition process of CP could be described by the reaction order model (F3), which can be calculated by the integral equation of G(α) = [(1 - α)(-2) - 1]/2. And the apparent activation energy was in the range of 58.85-114.5 kJ/mol. As for SP, it can be described by the reaction order model (F2), which can be calculated by the integral equation of G(α) = (1 - α)(-1) - 1, and the range of apparent activation energy was 74.35-140.1 kJ/mol. PMID:24161552

  4. Broadband metasurface absorber for solar thermal applications

    NASA Astrophysics Data System (ADS)

    Wan, C.; Chen, L.; Cryan, M. J.

    2015-12-01

    In this paper we propose a broadband polarization-independent selective absorber for solar thermal applications. It is based on a metal-dielectric-metal metasurface structure, but with an interlayer of absorbing amorphous carbon rather than a low loss dielectric. Optical absorbance results derived from finite difference time domain modelling are shown for ultra-thin carbon layers in air and on 200 nm of gold for a range of carbon thicknesses. A gold-amorphous carbon-gold trilayer with a top layer consisting of a 1D grating is then optimised in 2D to give a sharp transition from strong absorption up to 2 μm to strong reflection above 2 μm resulting in good solar selective performance. The gold was replaced by the high-melting-point metal tungsten, which is shown to have very similar performance to the gold case. 3D simulations then show that the gold-based structure performs well as a square periodic array of squares, however there is low absorption around 400 nm. A cross-based structure is found to increase this absorption without significantly reducing the performance at longer wavelengths.

  5. Thermal decomposition mechanisms of methylamine, ethylamine, and 1-propylamine on Si(100)-2 × 1 surface

    NASA Astrophysics Data System (ADS)

    Cho, Jieun; Choi, Cheol Ho

    2011-05-01

    The thermal decomposition reactions of methylamine, ethylamine, and 1-propylamine absorbed on Si(100)-2 × 1 surface were theoretically investigated. Eight decomposition channels were found leading to desorption products of imine, H2, alkyl cyanide, ammonia, aziridine, alkene, azetidine, and cyclopropane, which supports the experimental assignments. Our mechanistic studies strongly suggest that the alkyl cyanide (hydrogen cyanide in the case of methylamine) channel is coupled with the hydrogen desorption step. The β-hydrogen of ethylamine and 1-propylamine was found to undergo additional decomposition reactions producing aziridine and alkene, which were classified as γ- and β-eliminations, respectively. It was also found that the γ-hydrogen of 1-propylamine undergoes azetidine and cyclopropane producing decompositions, which were classified as δ- and γ-eliminations. In general, γ- and δ-hydrogen involved decomposition reactions are kinetically less favorable than β-hydrogen involved ones. Consequently, it is expected that the thermal decompositions of the primary alkyl amines with longer alkyl chains would not add additional favorable decomposition channels. Except alkyl cyanide and ammonia desorption channels, the decompositions occur in a concerted fashion.

  6. A metastable phase in thermal decomposition of Ca-deficient hydroxyapatite.

    PubMed

    Tamai, Masato; Nakamura, Mitsuhiro; Isshiki, Toshiyuki; Nishio, Koji; Endoh, Hisamitsu; Nakahira, Atsushi

    2003-07-01

    We investigated the microstructural changes on an atomic length scale during thermal decomposition process of Ca-deficient hydroxyapatite (Ca-def HAp) by high-resolution transmission electron microscopy (HRTEM). Ca-def HAp was prepared by hydrolysis of alpha-tricalcium phosphate. The Ca-def HAp had a whisker-like morphology 2-5 microm in length and 0.1 microm in diameter that was elongated along c-axis. Thicker planer defects parallel to the (100) plane of the HAp matrix were observed as precipitation in the sample annealed at 700 and 800 degrees C by HRTEM observation. Thickness of the precipitation was about 10 nm and the boundaries between the precipitation and HAp matrix was coincident. The periodicity in the precipitation was parallel to the (100) plane of the HAp matrix and measured to be 1.42 nm. Since the precipitation was observed only in the sample annealed at a narrow temperature range of 700-800 degrees C, it was regarded as a metastable phase formed on the thermal decomposition process. Absorption peaks in IR spectra of annealed Ca-def HAp containing the metastable phase appeared at 744 and 3538 cm(-1) due to non-stoichiometric HAp with high Ca/P molar ratio. Furthermore, the results of energy dispersive X-ray spectroscopy showed that the metastable phase had higher Ca/P molar ratio than that of the matrix and stoichiometric HAp. Therefore, the metastable phase could be identified as Ca-rich metastable phase. The presence of Ca-rich metastable phase was confirmed to be associated with the thermal decomposition process. PMID:15348424

  7. Solar-thermal fluid-wall reaction processing

    DOEpatents

    Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy

    2006-04-25

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  8. Solar-Thermal Fluid-Wall Reaction Processing

    DOEpatents

    Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.

    2006-04-25

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  9. Thermal degradation kinetics and decomposition mechanism of PBSu nanocomposites with silica-nanotubes and strontium hydroxyapatite nanorods.

    PubMed

    Papageorgiou, D G; Roumeli, E; Chrissafis, K; Lioutas, Ch; Triantafyllidis, K; Bikiaris, D; Boccaccini, A R

    2014-03-14

    Novel poly(butylene succinate) (PBSu) nanocomposites containing 5 and 20 wt% mesoporous strontium hydroxyapatite nanorods (SrHNRs) and silica nanotubes (SiNTs) were prepared by melt-mixing. A systematic investigation of the thermal stability and decomposition kinetics of PBSu was performed using pyrolysis-gas chromatography-mass spectroscopy (Py-GC-MS) and thermogravimetry (TG). Thorough studies of evolving decomposition compounds along with the isoconversional and model-fitting analysis of mass loss data led to the proposal of a decomposition mechanism for PBSu. Moreover, the effects of SrHNRs and SiNTs on the thermal stability and decomposition kinetics of PBSu were also examined in detail. The complementary use of these techniques revealed that the incorporation of SiNTs in PBSu does not induce significant effects neither on its thermal stability nor on its decomposition mechanism. In contrast, the addition of SrHNRs resulted in the catalysis of the initial decomposition steps of PBSu and also in modified decomposition mechanisms and activation energies. The evolving gaseous products of PBSu and their evolution pattern in the SiNT nanocomposites were the same as in neat PBSu, while they were slightly modified for the SrHNR nanocomposites, confirming the findings from thermogravimetric analysis. PMID:24469599

  10. Non-chemically Pure Magnetites Produced from Thermal Decomposition of Ankerites

    NASA Astrophysics Data System (ADS)

    Jiménez López, C.; Romanek, C.; Rodríguez-Navarro, A.; Pérez-González, T.; Rodríguez Navarro, C.

    2008-12-01

    It has been claimed that chemically pure magnetites (Fe3O4) can be obtained from thermal decomposition of (Fe, Mg, Ca)CO3 (Golden et al., 2004). Such an observation is critical, since it opens the possibility of an inorganic way of formation of the magnetites found on Martian meteorite ALH84001. Such a chemical purity is one of the parameters used, so far, to recognize bacterial origin of natural magnetites (Thomas-Keptra et al., 2001), since it has been demonstrated that biologically-controlled magnetites are chemically pure (Bazylinski and Frankel, 2004) . However, while Golden et al. (2004) obtained pure magnetite from an almost pure precursor, the ankerite cores in ALH84001 in which magnetites are embedded are far from being chemically pure, since they contain considerable amounts of Ca and Mg (Kopp and Humayun, 2003). In this study we have performed several experiments to analyze the chemical purity of magnetites produced by thermal decomposition of four ankerite samples sinthetized in the laboratory, and containing different amounts of Ca, Fe and Mg. Such a thermal decomposition was achieved by two procedures: (1) by heating the samples at 470°C under CO2 pressure and (2) by decomposing the ankerite "in situ" under the TEM (Transmission electron Microscopy) electron beam. Magnetite produced by the first procedure was analyzed by XRD to determine whether or not the resulting solid was a mixture of oxides or rather a solid solution of (Ca, Fe and Mg)oxide. Magnetites formed by the two methods were studied by High Resolution TEM. The chemical composition of about 20 crystals of each experiment was analyzed by EDAX. Under our experimental conditions, ankerites decomposed in magnetite crystals of about 5 nanometers in size. Magentite crystals arranged to keep the morphology of the precursor. Our results confirm that any of these magnetites is chemically pure, but rather, each one of them is a solid solution of Ca and Mg. Therefore, chemically pure magnetites

  11. Application of subgroup decomposition in diffusion theory to gas cooled thermal reactor problem

    SciTech Connect

    Yasseri, S.; Rahnema, F.

    2013-07-01

    In this paper, the accuracy and computational efficiency of the subgroup decomposition (SGD) method in diffusion theory is assessed in a ID benchmark problem characteristic of gas cooled thermal systems. This method can be viewed as a significant improvement in accuracy of standard coarse-group calculations used for VHTR whole core analysis in which core environmental effect and energy angle coupling are pronounced. It is shown that a 2-group SGD calculation reproduces fine-group (47) results with 1.5 to 6 times faster computational speed depending on the stabilizing schemes while it is as efficient as single standard 6-group diffusion calculation. (authors)

  12. Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres

    NASA Astrophysics Data System (ADS)

    Wang, Xiong; Song, Jimei; Gao, Lisheng; Jin, Jiayi; Zheng, Huagui; Zhang, Zude

    2005-01-01

    Nickel oxide nanoparticles with an average diameter of about 9 nm were synthesized via thermal decomposition of NiC2O4 precursor at 450 °C. The nanoparticles were investigated using XRD, TEM, TGA, and UV-vis spectrophotometry. The optical absorption spectrum indicates that the NiO nanoparticles have a direct band gap of 3.56 eV. The electrochemical tests show that the ultrafine NiO nanoparticles, as a promising electrode material, can deliver a large reversible discharge capacity of about 610 mA h g-1.

  13. The spectral properties of uranium hexafluoride and its thermal decomposition products

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1976-01-01

    This investigation was initiated to provide basic spectral data for gases of interest to the plasma core reactor concept. The attenuation of vacuum ultraviolet (VUV) radiation by helium at pressures up to 20 atm over path lengths of about 61 cm and in the approximate wavelength range between 80 and 300 nm was studied. Measurements were also conducted to provide basic VUV data with respect to UF6 and UF6/argon mixtures in the wavelength range between 80 and 120 nm. Finally, an investigation was initiated to provide basic spectral emission and absorption data for UF6 and possible thermal decomposition products of UF6 at elevated temperatures.

  14. Dynamic weakening and thermal decomposition during the Heart Mountain mega-landslide

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Smith, S. A.; Anders, M. H.; Di Toro, G.

    2012-12-01

    The 3400-km2 Heart Mountain landslide of northwestern Wyoming and southwestern Montana is the largest subaerial landslide known. This Eocene age slide slid ˜50 km on a carbonate rich basal layer ranging in thickness from a few tens of centimeters to several meters, along a shallow 2° slope, posing a long-standing question regarding its emplacement mechanism. It has recently been suggested that such large displacement was aided by strong dynamic weakening mechanism, thermal pressurization due to shear heating and thermal decomposition in the basal layer slip zone, with theoretical simulations suggesting slip velocities ranging between tens of meters per second to more than 100 ms-1. In this study, we present the results of a suite of high velocity friction experiments in a rotary shear configuration on initially intact carbonates collected from the Heart Mountain region, in attempt to reproduce conditions experienced in the slip zone of the basal section during emplacement of the landslide. Gouges were prepared from initially intact hostrocks of Madison limestone and Bighorn dolomite, and were sheared for a range of displacements up to 6 metres at normal stresses up to 25 MPa at slip rates up to 2 m/s. Mechanical results generally show strong dynamic weakening with peak friction dropping from 0.7 to a steady state friction as low as 0.1. Microstructural observations of the highly polished slip surfaces produced show localization of the principal slip surface to less than 100 microns thick. Thermal decomposition is evidenced by degassing bubbles in the rims of dolomite clasts, and the release of CO2 as measured by mass spectrometer during experiments, indicating that temperatures in the slip zone quickly reached the decomposition temperature of carbonates (at least 700 degrees) within just a few metres of slip. These results compare favorably with theoretical calculations and ample field evidence for carbonate decomposition during the emplacement. Independent

  15. Thermally-induced structural motions of satellite solar arrays

    NASA Astrophysics Data System (ADS)

    Johnston, John Dennis

    1999-11-01

    Satellites have experienced attitude disturbances resulting from thermally. induced structural motions of flexible appendages since the early days of the space program. Thermally-induced structural motions are typically initiated during orbital eclipse transitions when a satellite exits from or enters into the Earth's shadow. The accompanying rapid changes in thermal loading may lead to time-varying temperature differences through the cross-section of appendages resulting in differential thermal expansion and corresponding structural deformations. Since the total angular momentum of the system must be conserved, motions of flexible appendages such as booms and solar arrays result in rigid body rotations of the entire satellite. These potentially large attitude disturbances may violate satellite pointing and jitter requirements. This research investigates thermally-induced structural motions of rigid panel solar arrays (solar panels) through analytical and experimental studies. Orbital eclipse transition heating and thermal analyses were completed to study solar panel thermal behavior and provide results for input to dynamics analyses. A hybrid coordinate dynamical model was utilized to study the planar dynamics of a simple satellite consisting of a rigid hub with a cantilevered flexible solar panel undergoing thermally-induced structural motions. Laboratory experimental studies were carried out to gain new insight into thermal-structural behavior and to validate analytical models. The experimental studies investigated the thermal-structural performance of honeycomb sandwich panels and satellite solar panel hardware subject to simulated eclipse transition heating. Results from the analytical and experimental studies illustrate the importance of the through-the-thickness temperature difference and its time derivatives as well as the ratio of the characteristic thermal and structural response times in solar panel thermally-induced structural motions. The thermal

  16. Rapid solar-thermal decarbonization of methane

    NASA Astrophysics Data System (ADS)

    Dahl, Jaimee Kristen

    Due to the ever-increasing demand for energy and the concern over the environmental impact of continuing to produce energy using current methods, there is interest in developing a hydrogen economy. Hydrogen is a desirable energy source because it is abundant in nature and burns cleanly. One method for producing hydrogen is to utilize a renewable energy source to obtain high enough temperatures to decompose a fossil fuel into its elements. This thesis work is directed at developing a solar-thermal aerosol flow reactor to dissociate methane to carbon black and hydrogen. The technology is intended as a "bridge" between current hydrogen production methods, such as conventional steam-methane reformers, and future "zero emission" technology for producing hydrogen, such as dissociating water using a renewable heating source. A solar furnace is used to heat a reactor to temperatures in excess of 2000 K. The final reactor design studied consists of three concentric vertical tubes---an outer quartz protection tube, a middle solid graphite heating tube, and an inner porous graphite reaction tube. A "fluid-wall" is created on the inside wall of the porous reaction tube in order to prevent deposition of the carbon black co-product on the reactor tube wall. The amorphous carbon black produced aids in heating the gas stream by absorbing radiation from the reactor wall. Conversions of 90% are obtained at a reactor wall temperature of 2100 K and an average residence time of 0.01 s. Computer modeling is also performed to study the gas flow and temperature profiles in the reactor as well as the kinetics of the methane dissociation reaction. The simulations indicate that there is little flow of the fluid-wall gas through the porous wall in the hot zone region, but this can be remedied by increasing the inlet temperature of the fluid-wall gas and/or increasing the tube permeability only in the hot zone region of the wall. The following expression describes the kinetics of methane

  17. A Review of Study on Thermal Energy Transport System by Synthesis and Decomposition Reactions of Methanol

    NASA Astrophysics Data System (ADS)

    Liu, Qiusheng; Yabe, Akira; Kajiyama, Shiro; Fukuda, Katsuya

    The study on thermal energy transport system by synthesis and decomposition reactions of methanol was reviewed. To promote energy conservation and global environment protection, a two-step liquid-phase methanol synthesis process, which starts with carbonylation of methanol to methyl formate, then followed by the hydrogenolysis of the formate, was studied to recover wasted or unused discharged heat from industrial sources for the thermal energy demands of residential and commercial areas by chemical reactions. The research and development of the system were focused on the following three points. (1) Development of low-temperature decomposition and synthetic catalysts, (2) Development of liquid phase reactor (heat exchanger accompanying chemical reaction), (3) Simulation of the energy transport efficiency of entire system which contains heat recovery and supply sections. As the result of the development of catalyst, promising catalysts which agree with the development purposes for the methyl formate decomposition reaction and the synthetic reaction are being developed though some studies remain for the methanol decomposition and synthetic reactions. In the fundamental development of liquid phase reactor, the solubilities of CO and H2 gases in methanol and methyl formate were measured by the method of total pressure decrease due to absorption under pressures up to 1500kPa and temperatures up to 140°C. The diffusivity of CO gas in methanol was determined by measuring the diameter and solution time of single CO bubbles in methanol. The chemical reaction rate of methanol synthesis by hydrogenolysis of methyl formate was measured using a plate-type of Raney copper catalyst in a reactor with rectangular channel and in an autoclave reactor. The reaction characteristics were investigated by carrying out the experiments at various temperatures, flow rates and at various catalyst development conditions. We focused on the effect of Raney copper catalyst thickness on the liquid

  18. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    NASA Astrophysics Data System (ADS)

    Cavaignac, A. L. O.; Lima, R. J. C.; Façanha Filho, P. F.; Moreno, A. J. D.; Freire, P. T. C.

    2016-03-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  19. Study of the Thermal Decomposition of Some Components of Biomass by Desorption Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Palianytsia, Borys; Kulik, Tetiana; Dudik, Olesia; Cherniavska, Tetiana; Tonkha, Oksana

    The investigation of thermal transformations of lignin samples have been carried out using temperature programmed desorption mass spectrometry method (TPD-MS). Main stages and products of lignin pyrolysis have been identified. The first stages (Tmax = 230 °C and Tmax = 300 °C) are attributed to thermal transformations of lignin peripheral polysaccharide fragments such as hemicellulose and cellulose respectively. The second stage (Tmax = 335 °C) is associated with desorption of lignin structural elements in the molecular forms as a result of depolymerization processes of polymeric blocks of lignin. The third stage (Tmax = 370 °C) correspond to a deeper decomposition of lignin and characterized by desorption of smaller structural fragments in molecular forms (m/z = 110, pyrocatechol). Pressure-temperature curves of pyrolysis of lignin samples have been analyzed.

  20. The effect of cross-linking on the thermal decomposition of diphenylalkanes

    SciTech Connect

    Britt, P.F.; Buchanan, A.C. III

    1992-03-01

    In the early stages of the thermal depolymerization of coal, its cross-linked macromolecular structure may restrict the diffusion of reactive intermediates and alter the reaction pathways. In an effort to model the effects of restricted mass transport on the thermally induced free radical decomposition of polymethylene units bridging aromatic clusters in coal, a series of diphenylalkanes [Ph(CH{sub 2}){sub n}Ph] have been cross-linked to an inert silica surface by the condensation of the corresponding phenol, HOC{sub 6}H{sub 4}(CH{sub 2}){sub n}C{sub 6}H{sub 4}OH. Results from the thermolysis of the diattached substrates at 350--400 {degrees}C will be presented and compared to the thermolysis of fluid phase and mono-attached diphenylalkanes [{approx}Ph(CH{sub 2}){sub n}Ph] to highlight the impact that restricted diffusion has on the reaction mechanisms.

  1. The effect of cross-linking on the thermal decomposition of diphenylalkanes

    SciTech Connect

    Britt, P.F.; Buchanan, A.C. III.

    1992-01-01

    In the early stages of the thermal depolymerization of coal, its cross-linked macromolecular structure may restrict the diffusion of reactive intermediates and alter the reaction pathways. In an effort to model the effects of restricted mass transport on the thermally induced free radical decomposition of polymethylene units bridging aromatic clusters in coal, a series of diphenylalkanes (Ph(CH{sub 2}){sub n}Ph) have been cross-linked to an inert silica surface by the condensation of the corresponding phenol, HOC{sub 6}H{sub 4}(CH{sub 2}){sub n}C{sub 6}H{sub 4}OH. Results from the thermolysis of the diattached substrates at 350--400 {degrees}C will be presented and compared to the thermolysis of fluid phase and mono-attached diphenylalkanes ({approx}Ph(CH{sub 2}){sub n}Ph) to highlight the impact that restricted diffusion has on the reaction mechanisms.

  2. Pyrolytic and Kinetic Characteristics of the Thermal Decomposition of Perilla frutescens Polysaccharide

    PubMed Central

    Zhou, Quancheng; Sheng, Guihua

    2012-01-01

    The thermal decomposition of Perilla frutescens polysaccharide was examined by thermogravimetry, differential thermogravimetry, and differential thermal analysis. The results showed that the mass loss of the substance proceeded in three steps. The first stage can be attributed to the expulsion of the water from ambient temperature to 182°C. The second stage corresponded to devolatilization from 182°C to 439°C. The residue slowly degraded in the third stage. The weight loss in air is faster than that in nitrogen, because the oxygen in air accelerated the pyrolytic reaction speed reaction. The heating rate significantly affected the pyrolysis of the sample. Similar activation energies of the degradation process (210–211 kJ mol−1) were obtained by the FWO, KAS, and Popescu techniques. According to Popescu mechanism functions, the possible kinetic model was estimated to be Avrami–Erofeev 20 g(α) = [−ln(1–α)]4. PMID:23300715

  3. Thermal stability and decompositions kinetics under non-isothermal conditions of imatinib mesylate α form.

    PubMed

    Mucha, Igor; Baranowski, Przemysław; Owczarek, Artur; Gajda, Maciej; Pluta, Janusz; Górniak, Agata; Niklewicz, Paweł; Karolewicz, Bożena

    2016-09-10

    The thermal decomposition and kinetic parameters of synthetized imatinib mesylate α form α form were determined by thermogravimetry (TGA/DTG) under non-isothermal conditions. The experiments were performed at a 25-940°C temperature range at five different heating rates: 2.5Kmin(-1), 5Kmin(-1), 10Kmin(-1), 15Kmin(-1) and 20Kmin(-1) per minute in a nitrogen atmosphere. Imatinib mesylate α form presents one-step mass loss during the degradation process. The thermal stability of the examined material, the melting temperature (Tonset=220.6°C) and ΔH fusion=-95.74Jg(-1) at a heating rate of 10°Cmin(-1) was established. The values of activation energies have been estimated using Kissinger, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods. PMID:27392171

  4. Validation of Heat Transfer Thermal Decomposition and Container Pressurization of Polyurethane Foam.

    SciTech Connect

    Scott, Sarah Nicole; Dodd, Amanda B.; Larsen, Marvin E.; Suo-Anttila, Jill M.; Erickson, Kenneth L

    2014-09-01

    Polymer foam encapsulants provide mechanical, electrical, and thermal isolation in engineered systems. In fire environments, gas pressure from thermal decomposition of polymers can cause mechanical failure of sealed systems. In this work, a detailed uncertainty quantification study of PMDI-based polyurethane foam is presented to assess the validity of the computational model. Both experimental measurement uncertainty and model prediction uncertainty are examined and compared. Both the mean value method and Latin hypercube sampling approach are used to propagate the uncertainty through the model. In addition to comparing computational and experimental results, the importance of each input parameter on the simulation result is also investigated. These results show that further development in the physics model of the foam and appropriate associated material testing are necessary to improve model accuracy.

  5. Production of films of uranium and americium compounds by thermal decomposition of volatile β-diketonates

    NASA Astrophysics Data System (ADS)

    Danilin, I. D.; Kartushin, V. D.; Pilipenko, N. V.; Abramycheva, I. D.; Vesnovskii, S. P.

    2002-03-01

    The production of films containing uranium and americium through thermal decomposition of diketonates and their adducts is described. It is demonstrated that for substrate temperatures in the range 300-400°C and at a residual reactor pressure of 1.3 Pa, stable uranium-containing layers up to several milligrams per square centimetre can be produced, with yields of up to 90%. A variety of metal backings were investigated, including aluminium and its alloys, stainless steel and titanium. Similar results were obtained for americium, but with a strong influence of backing material on the yield. X-ray diffraction identified the chemical form of the uranium deposits as dioxide, with crystal lattice parameters varying from 5.4338 to 5.4871 Å, while the density determined by X-rays lies within the range from 10920 to 11255 kg/m 3. In the case of Am (Cm) hexafluoroacetyl acetonate decomposition, the deposit is most probably AmF 3 (CmF 3). The gases released from the pyrolytic uranium dioxide layers heated in vacuum to 470°C were studied. The volume of gas released varied between 10 and 40 cm 3 per gram of UO 2 depending on the initial β-diketonate preparation and reagent purity. The released gases were mainly hydrogen, carbon monoxide, carbon dioxide, water and a small amount of methane. The films of uranium and americium obtained by thermal decomposition show good adhesion to backings and are suitable for use in a number of fields, for example in nuclear physics research and instrument engineering.

  6. Synthesis and thermal decomposition properties of hydrogen-rich phosphorus salts.

    SciTech Connect

    Cordaro, Joseph Gabriel

    2010-12-01

    Complex metal hydrides continue to be investigated as solid-materials for hydrogen storage. Traditional interstitial metal hydrides offer favorable thermodynamics and kinetics for hydrogen release but do not meet energy density requires. Anionic metal hydrides, and complex metal hydrides like magnesium borohydride have higher energy densities compared to interstitial metal hydrides, but poor kinetics and/or thermodynamically unfavorable side products limit their deployment as hydrogen storage materials in transportation applications. Main-group anionic materials such as the bis(borane)hypophosphite salt [PH2(BH3)2] have been known for decades, but only recently have we begun to explore their ability to release hydrogen. We have developed a new procedure for synthesizing the lithium and sodium hypophosphite salts. Routes for accessing other metal bis(borane)hypophosphite salts will be discussed. A significant advantage of this class of material is the air and water stability of the anion. Compared to metal borohydrides, which reactive violently with water, these phosphorus-based salts can be dissolved in protic solvents, including water, with little to no decomposition over the course of multiple days. The ability of these salts to release hydrogen upon heating has been assessed. While preliminary results indicate phosphine and boron-containing species are released, hydrogen is also a major component of the volatile species observed during the thermal decomposition. Additives such as NaH or KH mixed with the sodium salt Na[PH2(BH3)2] significantly perturb the decomposition reaction and greatly increase the mass loss as determined by thermal gravimetric analysis (TGA). This symbiotic behavior has the potential to affect the hydrogen storage ability of bis(borane)hypophosphite salts.

  7. Thermal decomposition of sugarcane straw, kinetics and heat of reaction in synthetic air.

    PubMed

    Rueda-Ordóñez, Yesid Javier; Tannous, Katia

    2016-07-01

    The aim of this work was to analyze the thermal decomposition, kinetics and heat of reaction of sugarcane straw in synthetic air by thermogravimetry (TG) and differential scanning calorimetry (DSC). The TG and DSC experiments were carried out using heating rates of 2.5°C/min, 5°C/min, and 10°C/min, and particle diameter of 0.250mm. In the study of the smoldering reaction were identified three consecutive stages, drying, oxidative pyrolysis, and combustion. Thus, the kinetic pathway was composed by six independent parallel reactions, three for each stage after drying, in which the activation energies were 176, 313, 150, 80, 150, and 100kJ/mol. The heat of reaction in synthetic air was completely exothermic releasing 8MJ/kg. The modeled curves of thermal decomposition of sugarcane straw presented good agreement with experimental data. Then, the kinetic parameters obtained could be used to analyze different processes involving smoldering. PMID:27019126

  8. Mass-independent fractionation of oxygen isotopes during thermal decomposition of carbonates

    PubMed Central

    Miller, Martin F.; Franchi, Ian A.; Thiemens, Mark H.; Jackson, Teresa L.; Brack, André; Kurat, Gero; Pillinger, Colin T.

    2002-01-01

    Nearly all chemical processes fractionate 17O and 18O in a mass-dependent way relative to 16O, a major exception being the formation of ozone from diatomic oxygen in the presence of UV radiation or electrical discharge. Investigation of oxygen three-isotope behavior during thermal decomposition of naturally occurring carbonates of calcium and magnesium in vacuo has revealed that, surprisingly, anomalous isotopic compositions are also generated during this process. High-precision measurements of the attendant three-isotope fractionation line, and consequently the magnitude of the isotopic anomaly (Δ17O), demonstrate that the slope of the line is independent of the nature of the carbonate but is controlled by empirical factors relating to the decomposition procedure. For a slope identical to that describing terrestrial silicates and waters (0.5247 ± 0.0007 at the 95% confidence level), solid oxides formed during carbonate pyrolysis fit a parallel line offset by −0.241 ± 0.042‰. The corresponding CO2 is characterized by a positive offset of half this magnitude, confirming the mass-independent nature of the fractionation. Slow, protracted thermolysis produces a fractionation line of shallower slope (0.5198 ± 0.0007). These findings of a 17O anomaly being generated from a solid, and solely by thermal means, provide a further challenge to current understanding of the nature of mass-independent isotopic fractionation. PMID:12167677

  9. Recombination Reactions in the Thermal Decomposition of Anisole: An Investigation of Benzene and Naphthalene Formation

    NASA Astrophysics Data System (ADS)

    Scheer, Adam; Ellison, Barney; Mukarakate, Calvin; Robichaud, David; Nimlos, Mark

    2010-03-01

    Thermal decompositions of anisole (C6H5OCH3) and methyl-deuterated anisole (C6H5OCD3) are studied using a hyperthermal tubular reactor and photoionization reflectron time-of-flight mass spectrometer. Gas exiting the reactor is subject to a supersonic expansion after a residence time of 65 μs, allowing detection of highly chemically reactive radical species. Anisole decomposes through loss of a methyl group (CH3) to form phenoxy radical (C6H5O), followed by ejection of a CO to form cyclopentadienyl radical (c-C5H5; CPDR). Benzene is generated primarily by thermal decomposition of methylcyclopentadiene (C5H5CH3; MCPD). The MCPD results from methyl radical recombination with CPDR. The MCPD then undergoes two hydrogen atom losses and a ring expansion resulting in benzene. At Twall = 1200 C -- 1300 C a large amount of propargyl radical (CH2CCH) is observed. Propargyl radical recombination accounts for a small fraction of the observed benzene. Naphthalene and its precursor intermediates (C10H10, C10H9), resulting from CPDR recombination, are also observed. The presence of benzene and naphthalene is confirmed with resonance-enhanced multiphoton ionization (REMPI).

  10. Synthesis and Thermal Decomposition Mechanism of the Energetic Compound 3,5-Dinitro-4-nitroxypyrazole

    NASA Astrophysics Data System (ADS)

    Feng, Xiao-Qin; Cao, Duan-Lin; Cui, Jian-Lan

    2016-07-01

    A novel energetic material, 3,5-dinitro-4-nitroxypyrazole (DNNP), was synthesized via nitration and nucleophilic substitution reaction using 4-chloropyrazole as raw material. The structure of DNNP was characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), and elemental analysis. Its detonation properties were calculated and compared with those of other commonly used energetic compounds. The thermal decomposition mechanism of DNNP was studied by means of thermogravimetry and differential scanning calorimetry coupled with a mass spectrometry (DSC-MS). The results show that the detonation properties of DNNP were better than those of TNT and comparable to those of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). In addition, the thermal decomposition mechanism of DNNP was supposed. Initially, the O-NO2 bond was broken, thereby producing a nitropyrazole oxygen radical. Subsequently, the nitropyrazole oxygen radical was decomposed by free radical cleavage of nitro or isomerized to nitritepyrazole and subsequently decomposed by free radical cleavage of the nitroso group. Finally, pyrazole ring fission occurred and produced N2, NO, N2O, and CO2.

  11. Characterization and antimicrobial activity of silver nanoparticles prepared by a thermal decomposition technique

    NASA Astrophysics Data System (ADS)

    Tam, Le Thi; Phan, Vu Ngoc; Lan, Hoang; Thuy, Nguyen Thanh; Hien, Tran Minh; Huy, Tran Quang; Quy, Nguyen Van; Chinh, Huynh Dang; Tung, Le Minh; Tuan, Pham Anh; Lam, Vu Dinh; Le, Anh-Tuan

    2013-11-01

    Recently, there has been an increasing need of efficient synthetic protocols using eco-friendly conditions including low costs and green chemicals for production of metal nanoparticles. In this work, silver nanoparticles (silver NPs) with average particle size about 10 nm were synthesized by using a thermal decomposition technique. Unlike the colloidal chemistry method, the thermal decomposition method developed has advantages such as the high crystallinity, single-reaction synthesis, and easy dispersion ability of the synthesized NPs in organic solvents. In a modified synthesis process, we used sodium oleate as a capping agent to modify the surface of silver NPs because the oleate has a C18 tail with a double bond in the middle, therefore, forming a kink which is to be effective for aggregative stability. Importantly, the as-synthesized silver NPs have demonstrated strong antimicrobial effects against various bacteria and fungi strains. Electron microscopic studies reveal physical insights into the interaction and bactericidal mechanism between the prepared silver NPs and tested bacteria in question. The observed excellent antibacterial and antifungal activity of the silver NPs make them ideal for disinfection and biomedicine applications.

  12. Size dependence of the thermal decomposition kinetics of nano- CaC2O4: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Fu, Qingshan; Cui, Zixiang; Xue, Yongqiang

    2015-10-01

    In the processes of preparation and application of nanomaterials, the thermal decomposition of nanoparticles is often involved. An improved general theory of thermal decomposition kinetics of nanoparticles, developed over the past 10 years, was presented in this paper where the relations between reaction kinetic parameters and particle size were derived. Experimentally, the thermal decomposition kinetics of nano-sized calcium oxalate (nano- CaC2O4 with different sizes was studied by means of Thermogravimetry Analysis (TGA) at different heating rates. The values of the apparent activation energy and the logarithm of pre-exponential factor were calculated using the equation of Iterative Kissinger-Akahira-Sunose (IKAS) and its deformations. The influence regularities of particle size on the apparent activation energy and the pre-exponential factor were summarized, which are consistent with the thermal decomposition kinetics theory of nanoparticles. Based on the theory, the method of obtaining the surface thermodynamic properties by the determination of kinetic parameters was presented. Theoretical and experimental results show that the particle size, through the effect on the surface thermodynamic properties, has notable effect on the thermal decomposition kinetics. With the particle size decreasing, the partial molar surface enthalpy and the partial molar surface entropy increases, leading to the decrease of the apparent activation energy and the pre-exponential factor, respectively. Furthermore, the apparent activation energy, the pre-exponential factor, the partial molar surface enthalpy and the partial molar surface entropy are linearly related to the reciprocal of particle diameter, respectively.

  13. Comparison of CO2 and oxygen DC submerged thermal plasmas for decomposition of carboxylic acid in aqueous solution

    NASA Astrophysics Data System (ADS)

    Safa, S.; Hekmat-Ardakan, A.; Soucy, G.

    2014-11-01

    The feasibility of the carboxylic acid decomposition with two different direct current (DC) thermal plasma torches was investigated. An oxygen DC submerged thermal plasma torch and a newly designed submerged DC plasma torch operating with a mixture of carbon dioxide and methane (CO2/CH4) were used. Sebacic acid was selected as a representative of pollutants in the most wastewater produced by chemical process industries. The effect of different operational conditions including treatment time, the reactor pressure as well as the role of oxidizing agents such as (H2O2) were investigated on the decomposition rate of sebacic acid. Concentration of sebacic acid was quantified by Ion Chromatography/Mass Spectrometry (IC/MS). The oxygen plasma showed higher decomposition rate in basic medium. Adding H2O2 into aqueous solution enhanced the sebacic acid decomposition rate with the CO2/CH4 plasma up to the same decomposition rate of the oxygen plasma. Increasing the pressure also increased the decomposition rate for both plasmas with an increase twice higher for the CO2/CH4 plasma than that of the oxygen plasma. This work therefore presents the conditions in which these plasmas can provide the same decomposition rate for contaminants in aqueous solution.

  14. Applicability of advanced automotive heat engines to solar thermal power

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Evans, D. G.; Alger, D. L.

    1981-01-01

    The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.

  15. Residential solar-absorption chiller thermal dynamics

    SciTech Connect

    Guertin, J.M.; Wood, B.D.; McNeill, B.W.

    1981-03-01

    Research is reported on the transient performance of a commercial residential 3 ton lithium bromide-water absorption chiller designed for solar firing. Emphasis was placed on separating the chiller response from that of the entire test facility so that its transient response could solely be observed and quantified. It was found that the entire system time response and thermal capacitance has a major impact on performance degradation due to transient operation. Tests run to ascertain computer algorithms which simulate system isolated chiller performance, revealed processes hitherto undocumented. Transient operation is simulated by three distinct algorithms associated with the three phases of chiller operation. The first phase is start up time. It was revealed during testing that the time required to reach steady state performance values, when the chiller was turned on, was a linear function of steady state water supply temperatures. The second phase is quasi steady state performance. Test facility's performance compared favorably with the manufacturer's published data. The third phase is the extra capacity produced during spin down. Spin down occurs when the hot water supply pump is turned off while the other system pumps remain operating for a few minutes, thus allowing extra chiller capacity to be realized. The computer algorithms were used to generate plots which show the operational surface of an isolated absorption chiller subjected to off design and transient operation.

  16. A learning curve for solar thermal power

    NASA Astrophysics Data System (ADS)

    Platzer, Werner J.; Dinter, Frank

    2016-05-01

    Photovoltaics started its success story by predicting the cost degression depending on cumulated installed capacity. This so-called learning curve was published and used for predictions for PV modules first, then predictions of system cost decrease also were developed. This approach is less sensitive to political decisions and changing market situations than predictions on the time axis. Cost degression due to innovation, use of scaling effects, improved project management, standardised procedures including the search for better sites and optimization of project size are learning effects which can only be utilised when projects are developed. Therefore a presentation of CAPEX versus cumulated installed capacity is proposed in order to show the possible future advancement of the technology to politics and market. However from a wide range of publications on cost for CSP it is difficult to derive a learning curve. A logical cost structure for direct and indirect capital expenditure is needed as the basis for further analysis. Using derived reference cost for typical power plant configurations predictions of future cost have been derived. Only on the basis of that cost structure and the learning curve levelised cost of electricity for solar thermal power plants should be calculated for individual projects with different capacity factors in various locations.

  17. Proper orthogonal decomposition method for analysis of nonlinear panel flutter with thermal effects in supersonic flow

    NASA Astrophysics Data System (ADS)

    Xie, Dan; Xu, Min; Dai, Honghua; Dowell, Earl H.

    2015-02-01

    The proper orthogonal decomposition (POD) method for analysis of nonlinear panel flutter subjected to supersonic flow is presented. Optimal POD modes are extracted from a chaotic Galerkin mode responses. The aeroelastic equations of motion are constructed using von Karman plate theory, first-order piston theory and quasi-steady thermal stress theory. A simply-supported plate with thermal loads from a uniformly distributed temperature is considered. Many types of panel behaviors, including stable flat, dynamically stable buckled, limit cycle oscillation, nonharmonic periodic motion, quasi-periodic motion and chaotic motion are observed. Our primary focus is on chaos and the route to chaos. It is found that a sudden transition from the buckled state to chaos occurs. Time history, phase portrait, Poincaré map, bifurcation diagram and Lyapunov exponent are employed to study chaos. The POD chaotic results obtained are compared with the traditional Galerkin solutions. It is shown that the POD method can obtain accurate chaotic solutions, using fewer modes and less computational effort than the Galerkin mode approach; additionally, the POD method converges faster in the analysis of chaotic transients. Effects of length-to-width ratios and thermal loads are presented. It is found that a smaller width for fixed length will produce more stable flutter response, while the thermal loads degrade the flutter boundary and result in a more complex evolution of dynamic motions. The numerical simulations show that the robustness of the POD modes depends on the dynamic pressure but not on temperature.

  18. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries.

    PubMed

    Beyer, H; Meini, S; Tsiouvaras, N; Piana, M; Gasteiger, H A

    2013-07-14

    The decomposition of lithium peroxide during the charging process of lithium-air batteries is investigated. A novel preparation method for electrodes in the discharged state, i.e., prefilled with Li2O2 using polyethylene oxide as a binder, is presented. The composition and reactivity of Li2O2-prefilled electrodes are examined by thermal analysis coupled with on-line mass spectrometry. Voltage profiles and gas evolution during the charging process of Li2O2-prefilled electrodes in battery cells are correlated with the thermal decomposition process of Li2O2 and its impact on other electrode compounds. It is found that both thermal Li2O2 decomposition and the electrochemical decomposition of Li2O2 during charging enhance the oxidation of the electrolyte, the binder, and/or carbon, which is suggested to be due to the formation of "nascent" oxygen during Li2O2 decomposition into O2 and Li2O (thermally) or into O2 and lithium ions (electrochemically). PMID:23715054

  19. Solar-thermal conversion and thermal energy storage of graphene foam-based composites

    NASA Astrophysics Data System (ADS)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-07-01

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a

  20. Solar thermal technology evaluation, fiscal year 1982. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technology base of solar thermal energy is investigated. The materials, components, subsystems, and processes capable of meeting specific energy cost targets are emphasized, as are system efficiency and reliability.

  1. Solar thermal energy utilization: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Bibliographic series, which is periodically updated, cites documents published since 1957 relating to practical thermal utilization of solar energy. Bibliography is indexed by author, corporate source, title, and keywords.

  2. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage

    SciTech Connect

    Durgun, E; Grossman, JC

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  3. Solar thermal power generation. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Bibliographies and abstracts are cited under the following topics: (1) energy overviews; (2) solar overviews; (3) conservation; (4) economics, law; (5) thermal power; (6) thermionic, thermoelectric; (7) ocean; (8) wind power; (9) biomass and photochemical; and (10) large photovoltaics.

  4. Statement of work for solar thermal power systems and photovoltaic solar-energy systems technical support services

    SciTech Connect

    1982-01-01

    Work is broken down in the following areas: solar thermal central receiver systems analysis; advanced solar thermal systems analysis and engineering; thermal power systems support; total energy systems mission analysis; irrigation and small community mission analysis; photovoltaics mission analysis; Solar Thermal Test Facility and Central Receiver Pilot Plant systems engineering. (LEW)

  5. Supersonic jet/multiphoton ionization spectrometry of chemical species resulting from thermal decomposition and laser ablation of polymers

    NASA Astrophysics Data System (ADS)

    Hozumi, Masami; Murata, Yoshiaki; Cheng-Huang Lin, Imasaka, Totaro

    1995-04-01

    The chemical species resulting from thermal decomposition and laser ablation of polymers are measured by excitation/fluorescence and multiphoton ionization/mass spectrometries after supersonic jet expansion for rotational cooling to simply the optical spectrum. The signal of minor chemical species occurred is strongly enhanced by resonant excitation and multiphoton ionization, and even the isomer can be clearly differentiated. For example, p-cresol occurred by thermal decomposition of polycarbonate is detected selectively by mass-selected resonant multiphoton ionization spectrometry. Various chemical species occurred by laser ablation of even a polystyrene foam are also measured by this technique.

  6. Fabrication of low-density GaN/AlN quantum dots via GaN thermal decomposition in MOCVD

    PubMed Central

    2014-01-01

    With an appropriate high anneal temperature under H2 atmosphere, GaN quantum dots (QDs) have been fabricated via GaN thermal decomposition in metal organic chemical vapor deposition (MOCVD). Based on the characterization of atomic force microscopy (AFM), the obtained GaN QDs show good size distribution and have a low density of 2.4 × 108 cm-2. X-ray photoelectron spectroscopy (XPS) analysis demonstrates that the GaN QDs were formed without Ga droplets by thermal decomposition of GaN. PMID:25136276

  7. Unimolecular thermal decomposition of phenol and d5-phenol: Direct observation of cyclopentadiene formation via cyclohexadienone

    NASA Astrophysics Data System (ADS)

    Scheer, Adam M.; Mukarakate, Calvin; Robichaud, David J.; Nimlos, Mark R.; Carstensen, Hans-Heinrich; Barney Ellison, G.

    2012-01-01

    The pyrolyses of phenol and d5-phenol (C6H5OH and C6D5OH) have been studied using a high temperature, microtubular (μtubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the μtubular reactor of approximately 50-100 μs. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at the onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C6H5OH → c-C6H6 = O → c-C5H6 + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C5H6 → c-C5H5 + H → HC≡CH + HCCCH2. At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C6H5O-H → C6H5O + H → c-C5H5 + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C6H4-OH) and hydroquinone (p-HO-C6H4-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.

  8. Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis.

    PubMed

    Valverde, Jose Manuel; Perejon, Antonio; Medina, Santiago; Perez-Maqueda, Luis A

    2015-11-28

    Thermal decomposition of dolomite in the presence of CO2 in a calcination environment is investigated by means of in situ X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The in situ XRD results suggest that dolomite decomposes directly at a temperature around 700 °C into MgO and CaO. Immediate carbonation of nascent CaO crystals leads to the formation of calcite as an intermediate product of decomposition. Subsequently, decarbonation of this poorly crystalline calcite occurs when the reaction is thermodynamically favorable and sufficiently fast at a temperature depending on the CO2 partial pressure in the calcination atmosphere. Decarbonation of this dolomitic calcite occurs at a lower temperature than limestone decarbonation due to the relatively low crystallinity of the former. Full decomposition of dolomite leads also to a relatively low crystalline CaO, which exhibits a high reactivity as compared to limestone derived CaO. Under CO2 capture conditions in the Calcium-Looping (CaL) process, MgO grains remain inert yet favor the carbonation reactivity of dolomitic CaO especially in the solid-state diffusion controlled phase. The fundamental mechanism that drives the crystallographic transformation of dolomite in the presence of CO2 is thus responsible for its fast calcination kinetics and the high carbonation reactivity of dolomitic CaO, which makes natural dolomite a potentially advantageous alternative to limestone for CO2 capture in the CaL technology as well as SO2in situ removal in oxy-combustion fluidized bed reactors. PMID:26506285

  9. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    NASA Technical Reports Server (NTRS)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  10. Empirical mode decomposition analysis of random processes in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Kolotkov, D. Y.; Anfinogentov, S. A.; Nakariakov, V. M.

    2016-08-01

    Context. Coloured noisy components with a power law spectral energy distribution are often shown to appear in solar signals of various types. Such a frequency-dependent noise may indicate the operation of various randomly distributed dynamical processes in the solar atmosphere. Aims: We develop a recipe for the correct usage of the empirical mode decomposition (EMD) technique in the presence of coloured noise, allowing for clear distinguishing between quasi-periodic oscillatory phenomena in the solar atmosphere and superimposed random background processes. For illustration, we statistically investigate extreme ultraviolet (EUV) emission intensity variations observed with SDO/AIA in the coronal (171 Å), chromospheric (304 Å), and upper photospheric (1600 Å) layers of the solar atmosphere, from a quiet sun and a sunspot umbrae region. Methods: EMD has been used for analysis because of its adaptive nature and essential applicability to the processing non-stationary and amplitude-modulated time series. For the comparison of the results obtained with EMD, we use the Fourier transform technique as an etalon. Results: We empirically revealed statistical properties of synthetic coloured noises in EMD, and suggested a scheme that allows for the detection of noisy components among the intrinsic modes obtained with EMD in real signals. Application of the method to the solar EUV signals showed that they indeed behave randomly and could be represented as a combination of different coloured noises characterised by a specific value of the power law indices in their spectral energy distributions. On the other hand, 3-min oscillations in the analysed sunspot were detected to have energies significantly above the corresponding noise level. Conclusions: The correct accounting for the background frequency-dependent random processes is essential when using EMD for analysis of oscillations in the solar atmosphere. For the quiet sun region the power law index was found to increase

  11. The thermal decomposition of the benzyl radical in a heated micro-reactor. I. Experimental findings.

    PubMed

    Buckingham, Grant T; Ormond, Thomas K; Porterfield, Jessica P; Hemberger, Patrick; Kostko, Oleg; Ahmed, Musahid; Robichaud, David J; Nimlos, Mark R; Daily, John W; Ellison, G Barney

    2015-01-28

    The pyrolysis of the benzyl radical has been studied in a set of heated micro-reactors. A combination of photoionization mass spectrometry (PIMS) and matrix isolation infrared (IR) spectroscopy has been used to identify the decomposition products. Both benzyl bromide and ethyl benzene have been used as precursors of the parent species, C6H5CH2, as well as a set of isotopically labeled radicals: C6H5CD2, C6D5CH2, and C6H5 (13)CH2. The combination of PIMS and IR spectroscopy has been used to identify the earliest pyrolysis products from benzyl radical as: C5H4=C=CH2, H atom, C5H4-C ≡ CH, C5H5, HCCCH2, and HC ≡ CH. Pyrolysis of the C6H5CD2, C6D5CH2, and C6H5 (13)CH2 benzyl radicals produces a set of methyl radicals, cyclopentadienyl radicals, and benzynes that are not predicted by a fulvenallene pathway. Explicit PIMS searches for the cycloheptatrienyl radical were unsuccessful, there is no evidence for the isomerization of benzyl and cycloheptatrienyl radicals: C6H5CH2⇋C7H7. These labeling studies suggest that there must be other thermal decomposition routes for the C6H5CH2 radical that differ from the fulvenallene pathway. PMID:25637987

  12. Structural, optical and magnetic properties of gadolinium sesquioxide nanobars synthesized via thermal decomposition of gadolinium oxalate

    SciTech Connect

    Manigandan, R.; Giribabu, K.; Suresh, R.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

    2013-10-15

    Graphical abstract: - Highlights: • The cubic Gd{sub 2}O{sub 3} nanobars are synthesized by decomposition of C{sub 6}H{sub 20}Gd{sub 2}O{sub 22}. • The nanoparticles are rectangular bar shape with high porous surface. • The combination of magnetic and optical properties within a single particle. • The Gd{sub 2}O{sub 3} nanobars have tailorable nanostructure, wide bandgap and are paramagnetic. - Abstract: Gadolinium oxide nanobars were obtained by thermal decomposition of gadolinium oxalate, which was synthesized by the chemical precipitation method along with glycerol. The functional group analysis and formation of gadolinium oxide from gadolinium oxalate were characterized by the Fourier transform infrared spectroscopy and thermo gravimetric analyzer. The crystal structure, average crystallite size, and lattice parameter were analyzed by X-ray diffraction technique. Moreover, Raman shifts, elemental composition and morphology of the gadolinium oxide was widely investigated by the laser Raman microscope, X-ray photoelectron spectroscopy, FE-SEM-EDAX and HR-TEM, respectively. Furthermore, the optical properties like band gap, absorbance measurement of the gadolinium oxide were extensively examined. In addition, the paramagnetic property of gadolinium oxide nanobars was explored by the vibrating sample magnetometer.

  13. Dynamic analysis of elemental mercury released from thermal decomposition of coal

    SciTech Connect

    Shaoqing Guo; Jianli Yang; Zhenyu Liu

    2009-09-15

    Mercury (Hg) is a toxic and ubiquitous trace element in coal. Monitoring its release behavior during coal processing is a challenging problem. This paper presents a method that is capable of online measurement of the dynamic release behavior of elemental Hg (Hg{sup 0}) from thermal decomposition of coal. The method couples a temperature-programmed decomposition unit with an atomic fluorescence spectrometry detector (TPD-AFS). The AFS signal can be converted to Hg content for quantitative analysis through calibration. The main advantage of the TPD-AFS system is that it can provide either real-time or accumulated data. It was confirmed that the amount of Hg{sup 0} determined by this method agreed well with that by the Ontario-Hydro method, and the results are reproducible with a high accuracy. The method can be used to characterize the release behavior of Hg in coals upon heating and may be used to identify the forms of occurrence of Hg in coals. 16 refs., 4 figs., 3 tabs.

  14. Thermal Decomposition of C7H7 Radicals; Benzyl, Tropyl, and Norbornadienyl

    NASA Astrophysics Data System (ADS)

    Buckingham, Grant; Ellison, Barney; Daily, John W.; Ahmed, Musahid

    2015-06-01

    Benzyl radical (C6H5CH2) and two other C7H7 radicals are commonly encountered in the combustion of substituted aromatic compounds found in biofuels and gasoline. High temperature pyrolysis of benzyl radical requires isomerization to other C7H7 radicals that may include cycloheptatrienyl (tropyl) radical (cyc-C7H7) and norbornadienyl radical. The thermal decomposition of all three radicals has now been investigated using a micro-reactor that heats dilute gas-phase samples up to 1600 K and has a residence time of about 100 μ-sec. The pyrolysis products exit the reactor into a supersonic expansion and are detected using synchrotron-based photoionization mass spectrometry and matrix-isolation IR spectroscopy. The products of the pyrolysis of benzyl radical (C6H5CH2) along with three isotopomers (C6H513CH2, C6D5CH2, and C6H5CD2) were detected and identified. The distribution of 13C atoms and D atoms indicate that multiple different decomposition pathways are active. Buckingham, G. T., Ormond, T. K., Porterfield, J. P., Hemberger, P., Kostko, O., Ahmed, M., Robichaud, D. J., Nimlos, M. R., Daily, J. W., Ellison, G. B. 2015, Journal of Chemical Physics 142 044307

  15. The thermal decomposition of the benzyl radical in a heated micro-reactor. I. Experimental findings

    NASA Astrophysics Data System (ADS)

    Buckingham, Grant T.; Ormond, Thomas K.; Porterfield, Jessica P.; Hemberger, Patrick; Kostko, Oleg; Ahmed, Musahid; Robichaud, David J.; Nimlos, Mark R.; Daily, John W.; Ellison, G. Barney

    2015-01-01

    The pyrolysis of the benzyl radical has been studied in a set of heated micro-reactors. A combination of photoionization mass spectrometry (PIMS) and matrix isolation infrared (IR) spectroscopy has been used to identify the decomposition products. Both benzyl bromide and ethyl benzene have been used as precursors of the parent species, C6H5CH2, as well as a set of isotopically labeled radicals: C6H5CD2, C6D5CH2, and C6H513CH2. The combination of PIMS and IR spectroscopy has been used to identify the earliest pyrolysis products from benzyl radical as: C5H4=C=CH2, H atom, C5H4—C ≡ CH, C5H5, HCCCH2, and HC ≡ CH. Pyrolysis of the C6H5CD2, C6D5CH2, and C6H513CH2 benzyl radicals produces a set of methyl radicals, cyclopentadienyl radicals, and benzynes that are not predicted by a fulvenallene pathway. Explicit PIMS searches for the cycloheptatrienyl radical were unsuccessful, there is no evidence for the isomerization of benzyl and cycloheptatrienyl radicals: C6H5CH2⇋C7H7. These labeling studies suggest that there must be other thermal decomposition routes for the C6H5CH2 radical that differ from the fulvenallene pathway.

  16. Theoretical Study of the Thermal Decomposition of Carboxylic Acids at Pyrolysis Temperature

    SciTech Connect

    Clark, J. M.; Robichaud, D. J.; Nimlos, M. R.

    2013-01-01

    Carboxylic acids are important in the processing of biomass into renewable fuels and chemicals. They are formed from the pretreatment and pyrolysis of hemicellulose biopolymers and are released from the decomposition of sugars. They result from the deconstruction of polyhydroxyalkanoates (bacterial carbon storage polymers) from fatty acids derived from algae, bacteria, and oil crops. The thermal deoxygenation of carboxylic acids is an important step in the conversion of biomass into aliphatic hydrocarbons suitable for use in renewable biofuels and as petrochemical replacements. Decarboxylation, a primary decomposition pathway under pyrolysis conditions, represents an ideal conversion process, because it eliminates two atoms of oxygen for every carbon atom removed. Problematically, additional deoxygenation processes exist (e.g. dehydration) that are in direct competition with decarboxylation and result in the formation of reactive and more fragmented end products. To better understand the competition between decarboxylation and other deoxygenation processes and to gain insight into possible catalysts that would favor decarboxylation, we have investigated the mechanisms and thermochemistry of the various unimolecular and bimolecular deoxygenation pathways for a family of C1-C4 organic acids using electronic structure calculations at the M06-2X/6-311++G(2df,p) level of theory.

  17. Study of condition-dependent decomposition reactions; Part I. The thermal behaviour and decomposition of 2-nitrobenzoyl chloride.

    PubMed

    Lever, Sarah D; Papadaki, Maria

    2004-11-11

    The risks associated with batch processing in the manufacture of chemicals and pharmaceuticals via highly exothermic reactions are of special interest due to the possibility of runaway reactions. o-Nitrated benzoyl chlorides are intermediates in the production of agrochemicals and are produced via the reaction of o-nitrated carboxylic acids with thionyl chloride in a solvent mixture. ortho-Nitrated acyl chlorides have exploded violently on attempted distillation on numerous occasions. An inadequate investigation of the process prior to large-scale operation is the most likely cause. Here we present preliminary results of studies on the decomposition of 2-nitrobenzoyl chloride. This study has revealed that the decomposition reaction is strongly condition dependent. The heating rate of the sample plays a preponderant role in the course of the decomposition reaction. That renders the interpretation of differential scanning calorimetry (DSC) or adiabatic calorimetry measurements, which are routinely used to assess the thermochemistry and safety of the large-scale reactions, problematic. Following this on-going study, we report here key features of the system that have been identified. PMID:15518968

  18. SURVEY OF EPA FACILITIES FOR SOLAR THERMAL ENERGY APPLICATIONS

    EPA Science Inventory

    A study was done to assess the feasibility of applying solar thermal energy systems to EPA facilities. A survey was conducted to determine those EPA facilities where solar energy could best be used. These systems were optimized for each specific application and the system/facilit...

  19. Evaluation of thermal-storage concepts for solar cooling applications

    NASA Astrophysics Data System (ADS)

    Hughes, P. J.; Morehouse, J. H.; Choi, M. K.; White, N. M.; Scholten, W. B.

    1981-10-01

    Various configuration concepts for utilizing thermal energy storage to improve the thermal and economic performance of solar cooling systems for buildings were analyzed. The storge concepts evaluated provide short-term thermal storge via the bulk containment of water or salt hydrates. The evaluations were made for both residential-size cooling systems (3-ton) and small commercial-size cooling systems (25-ton). The residential analysis considers energy requirements for space heating, space cooling and water heating, while the commercial building analysis is based only on energy requirements for space cooling. The commercial building analysis considered a total of 10 different thermal storage/solar systems, 5 each for absorption and Rankine chiller concepts. The residential analysis considered 4 thermal storage/solar systems, all utilizing an absorption chiller. The trade-offs considered include: cold-side versus hot-side storage, single vs multiple stage storage, and phase-change vs sensible heat storage.

  20. Thermal decomposition study of Mn doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Malek, Tasmira J.; Chaki, S. H.; Tailor, J. P.; Deshpande, M. P.

    2016-05-01

    Fe3O4 is an excellent magnetic material among iron oxides. It has a cubic inverse spinel structure exhibiting distinguished electric and magnetic properties. In this paper the authors report the synthesis of Mn doped Fe3O4 nanoparticles by wet chemical reduction technique at ambient temperature and its thermal characterization. Ferric chloride hexa-hydrate (FeCl3•6H2O), manganese chloride tetra-hydrate (MnCl2•4H2O) and sodium boro-hydrate (NaBH4) were used for synthesis of Fe3O4 nanoparticles at ambient temperature. The elemental composition of the as-synthesized Mn doped Fe3O4 nanoparticles were determined by energy dispersive analysis of X-rays (EDAX) technique. Thermogravimetric (TG) and differential thermal analysis (DTA) were carried out on the Mn doped Fe3O4 nanoparticles in the temperature range of ambient to 1124 K. The thermo-curves revealed that the particles decompose by four steps. The kinetic parameters were evaluated using non-mechanistic equations for the thermal decomposition.

  1. Development of Boundary Condition Independent Reduced Order Thermal Models using Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Raghupathy, Arun; Ghia, Karman; Ghia, Urmila

    2008-11-01

    Compact Thermal Models (CTM) to represent IC packages has been traditionally developed using the DELPHI-based (DEvelopment of Libraries of PHysical models for an Integrated design) methodology. The drawbacks of this method are presented, and an alternative method is proposed. A reduced-order model that provides the complete thermal information accurately with less computational resources can be effectively used in system level simulations. Proper Orthogonal Decomposition (POD), a statistical method, can be used to reduce the order of the degree of freedom or variables of the computations for such a problem. POD along with the Galerkin projection allows us to create reduced-order models that reproduce the characteristics of the system with a considerable reduction in computational resources while maintaining a high level of accuracy. The goal of this work is to show that this method can be applied to obtain a boundary condition independent reduced-order thermal model for complex components. The methodology is applied to the 1D transient heat equation.

  2. Analysis of ZDDP Content and Thermal Decomposition in Motor Oils Using NAA and NMR

    NASA Astrophysics Data System (ADS)

    Ferguson, S.; Johnson, J.; Gonzales, D.; Hobbs, C.; Allen, C.; Williams, S.

    Zinc dialkyldithiophosphates (ZDDPs) are one of the most common anti-wear additives present in commercially-available motor oils. The ZDDP concentrations of motor oils are most commonly determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). As part of an undergraduate research project, we have determined the Zn concentrations of eight commercially-available motor oils and one oil additive using neutron activation analysis (NAA), which has potential for greater accuracy and less sensitivity to matrix effects as compared to ICP-AES. The 31P nuclear magnetic resonance (31P-NMR) spectra were also obtained for several oil additive samples which have been heated to various temperatures in order to study the thermal decomposition of ZDDPs.

  3. A DFT analysis of thermal decomposition reactions important to natural products.

    PubMed

    Setzer, William N

    2010-07-01

    The thermal decomposition reactions of several important natural flavor and fragrance chemicals have been investigated using density functional theory (DFT, B3LYP/6-31G*). Retro-aldol reactions of glucose, fructose, hernandulcin, epihernandulcin, [3]-gingerol, and [4]-isogingerol; retro-carbonyl-ene reactions of isopulegol, lavandulol, isolyratol, and indicumenone; and pyrolytic syn elimination reactions of linalyl acetate, alpha-terpinyl acetate, and bornyl acetate, have been carried out. The calculations indicate activation enthalpies of around 30 kcal/mol for the retro-aldol reactions and for retro-carbonyl-ene reactions, comparable to pericyclic reactions such as the Cope rearrangement and electrocyclic reactions, and therefore important reactions at elevated temperatures (e.g., boiling aqueous solutions, gas-chromatograph injection ports). Activation enthalpies for pyrolytic eliminations are around 40 kcal/mol and are unlikely to occur during extraction or GC analysis. PMID:20734926

  4. Fabrication of lotus-type porous copper through thermal decomposition of titanium hydride

    NASA Astrophysics Data System (ADS)

    Ide, T.; Nakajima, H.

    2009-05-01

    Lotus-type porous copper was fabricated by unidirectional solidification through thermal decomposition of titanium hydride. Effects of additive method and additive amount of titanium hydride on pore formation were investigated. The porosity of lotus copper depends on additive method and additive amount of titanium hydride. The pore formation effectively occurs in the method that titanium hydride decomposes in molten copper. For all the additive methods of titanium hydride, the porosity increases and pore diameter does not change with increasing additive amount of titanium hydride. While, for adding large amount of titanium hydride, the porosity became constant. This is because hydrogen solubility in liquid phase does not change owing to bubbling of hydrogen gas.

  5. Fabrication of Porous Copper with Directional Pores by Continuous Casting Technique Through Thermal Decomposition of Hydride

    NASA Astrophysics Data System (ADS)

    Ide, Takuya; Tsunemi, Akihiro; Nakajima, Hideo

    2014-08-01

    Lotus-type porous copper with aligned long cylindrical pores was fabricated by continuous casting technique through thermal decomposition method (TDM) in an argon atmosphere of 0.1 MPa. A pellet of titanium hydride was supplied into molten copper with adjusting the time interval to maintain the constant concentration of hydrogen to be dissolved in the melt, when the transfer velocity of the unidirectional solidification is changed. Long lotus-type porous copper slabs were fabricated with constant solidification velocity. The effect of the transfer velocity on the porosity and pore size was investigated. The average pore diameter was independent of the transfer velocity, but the porosity is slightly dependent on the velocity. It is apparent that the continuous casting technique can be applicable for production of lotus metals through TDM.

  6. A facile thermal decomposition route to synthesise CoFe2O4 nanostructures

    NASA Astrophysics Data System (ADS)

    Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.

    2014-01-01

    The synthesis of CoFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from an inorganic precursor, cobalt ferrous cinnamate hydrazinate (CoFe2(cin)3(N2H4)3) which was obtained by a novel precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. Under appropriate annealing, CoFe2(cin)3(N2H4)3 yielded CoFe2O4 nanoparticles, which were characterized for their size and structure using X-Ray diffraction (XRD), high resolution transmission electron microscopic (HRTEM), selected area electron diffraction (SAED) and scanning electron microscopic (SEM) techniques.

  7. Fabrication of Lotus-Type Porous Aluminum through Thermal Decomposition Method

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Park, J. S.; Nakajima, H.

    2009-04-01

    Lotus-type porous aluminum with cylindrical pores was fabricated by unidirectional solidification through thermal decomposition of calcium hydroxide, sodium bicarbonate, or titanium hydride. The pore-forming gas decomposed from calcium hydroxide, sodium bicarbonate, and titanium hydride is identified as hydrogen. The elongated pores are evolved due to the solubility gap between liquid and solid when the melt dissolving hydrogen is solidified unidirectionally. The porosity of lotus aluminum is as high as 20 pct despite the type of the compounds. The pore size decreases and the pore density increases with increasing amount of calcium hydroxide, which is explained by an increase in the number of pore nucleation sites. The porosity and pore size in lotus aluminum fabricated using calcium hydroxide decrease with increasing argon pressure, which is explained by Boyle’s law. It is suggested that this fabrication method is simple and safe, which makes it superior to the conventional technique using high-pressure hydrogen gas.

  8. Thermodynamic data for the modeling of the thermal decomposition of biodiesel. 1. Saturated and monounsaturated FAMEs.

    PubMed

    Osmont, Antoine; Catoire, Laurent; Dagaut, Philippe

    2010-03-25

    Thermochemical data were computed for numerous species needed for performing detailed chemical kinetic modeling of biodiesel thermal decomposition and combustion. Most of these data concerning large species had not been experimentally determined. A B3LYP/6-31G(d,p) method using the atomization approach derived earlier was used to provide these data. The presently computed thermochemical data are provided in the CHEMKIN-NASA format as Supporting Information. Species considered are fatty acid methyl esters (FAMEs), various oxygenated radicals formed from FAMEs by C-H, C-C, and C-O bond breakings and subsequent chemistries, 1-, 2-, 3-, and 5-saturated alkyl radicals, monounsaturated 1-alkyl radicals, among others. PMID:19694476

  9. Above and belowground controls on litter decomposition in semiarid ecosystems: effects of solar radiation, water availability and litter quality

    NASA Astrophysics Data System (ADS)

    Austin, A. T.; Araujo, P. I.; Leva, P. E.; Ballare, C. L.

    2008-12-01

    The integrated controls on soil organic matter formation in arid and semiarid ecosystems are not well understood and appear to stem from a number of interacting controls affecting above- and belowground carbon turnover. While solar radiation has recently been shown to have an important direct effect on carbon loss in semiarid ecosystems as a result of photochemical mineralization of aboveground plant material, the mechanistic basis for photodegradative losses is poorly understood. In addition, there are large potential differences in major controls on above- and belowground decomposition in low rainfall ecosystems. We report on a mesocosm and field study designed to examine the relative importance of different wavelengths of solar radiation, water availability, position of senescent material above- and belowground and the importance of carbon litter quality in determining rates of abiotic and biotic decomposition. In a factorial experiment of mesocosms, we incubated leaf and root litter simultaneously above- and belowground and manipulated water availability with large and small pulses. Significant interactions between position-litter type and position-pulse sizes demonstrated interactive controls on organic mass loss. Aboveground decomposition showed no response to pulse size or litter type, as roots and leaves decomposed equally rapidly under all circumstances. In contrast, belowground decomposition was significantly altered by litter type and water pulses, with roots decomposing significantly slower and small water pulses reducing belowground decomposition. In the field site, using plastic filters which attenuated different wavelengths of natural solar radiation, we found a highly significant effect of radiation exclusion on mass loss and demonstrated that both UV-A and short-wave visible light can have important impacts on photodegradative carbon losses. The combination of position and litter quality effects on litter decomposition appear to be critical for the

  10. Experimental and modeling study of the thermal decomposition of methyl decanoate

    PubMed Central

    Herbinet, Olivier; Glaude, Pierre-Alexandre; Warth, Valérie; Battin-Leclerc, Frédérique

    2013-01-01

    The experimental study of the thermal decomposition of methyl decanoate was performed in a jet-stirred reactor at temperatures ranging from 773 to 1123 K, at residence times between 1 and 4 s, at a pressure of 800 Torr (106.6 kPa) and at high dilution in helium (fuel inlet mole fraction of 0.0218). Species leaving the reactor were analyzed by gas chromatography. Main reaction products were hydrogen, carbon oxides, small hydrocarbons from C1 to C3, large 1-olefins from 1-butene to 1-nonene, and unsaturated esters with one double bond at the end of the alkyl chain from methyl-2-propenoate to methyl-8-nonenoate. At the highest temperatures, the formation of polyunsaturated species was observed: 1,3-butadiene, 1,3-cyclopentadiene, benzene, toluene, indene, and naphthalene. These results were compared with previous ones about the pyrolysis of n-dodecane, an n-alkane of similar size. The reactivity of both molecules was found to be very close. The alkane produces more olefins while the ester yields unsaturated oxygenated compounds. A detailed kinetic model for the thermal decomposition of methyl decanoate has been generated using the version of software EXGAS which was updated to take into account the specific chemistry involved in the oxidation of methyl esters. This model contains 324 species and 3231 reactions. It provided a very good prediction of the experimental data obtained in jet-stirred reactor. The formation of the major products was analyzed. The kinetic analysis showed that the retro-ene reactions of intermediate unsaturated methyl esters are of importance in low reactivity systems. PMID:23710078

  11. Parallel computation for reservoir thermal simulation: An overlapping domain decomposition approach

    NASA Astrophysics Data System (ADS)

    Wang, Zhongxiao

    2005-11-01

    In this dissertation, we are involved in parallel computing for the thermal simulation of multicomponent, multiphase fluid flow in petroleum reservoirs. We report the development and applications of such a simulator. Unlike many efforts made to parallelize locally the solver of a linear equations system which affects the performance the most, this research takes a global parallelization strategy by decomposing the computational domain into smaller subdomains. This dissertation addresses the domain decomposition techniques and, based on the comparison, adopts an overlapping domain decomposition method. This global parallelization method hands over each subdomain to a single processor of the parallel computer to process. Communication is required when handling overlapping regions between subdomains. For this purpose, MPI (message passing interface) is used for data communication and communication control. A physical and mathematical model is introduced for the reservoir thermal simulation. Numerical tests on two sets of industrial data of practical oilfields indicate that this model and the parallel implementation match the history data accurately. Therefore, we expect to use both the model and the parallel code to predict oil production and guide the design, implementation and real-time fine tuning of new well operating schemes. A new adaptive mechanism to synchronize processes on different processors has been introduced, which not only ensures the computational accuracy but also improves the time performance. To accelerate the convergence rate of iterative solution of the large linear equations systems derived from the discretization of governing equations of our physical and mathematical model in space and time, we adopt the ORTHOMIN method in conjunction with an incomplete LU factorization preconditioning technique. Important improvements have been made in both ORTHOMIN method and incomplete LU factorization in order to enhance time performance without affecting

  12. Increasing the efficiency of solar thermal panels

    NASA Astrophysics Data System (ADS)

    Dobrnjac, M.; Latinović, T.; Dobrnjac, S.; Živković, P.

    2016-08-01

    The popularity of solar heating systems is increasing for several reasons. These systems are reliable, adaptable and pollution-free, because the renewable solar energy is used. There are many variants of solar systems in the market mainly constructed with copper pipes and absorbers with different quality of absorption surface. Taking into account the advantages and disadvantages of existing solutions, in order to increase efficiency and improve the design of solar panel, the innovative solution has been done. This new solar panel presents connection of an attractive design and the use of constructive appropriate materials with special geometric shapes. Hydraulic and thermotechnical tests that have been performed on this panel showed high hydraulic and structural stability. Further development of the solar panel will be done in the future in order to improve some noticed disadvantages.

  13. Proceedings of the Fifth Parabolic Dish Solar Thermal Power Program

    NASA Technical Reports Server (NTRS)

    Lucas, J. W. (Editor)

    1984-01-01

    The proceedings of the Fifth Parabolic Dish Solar Thermal Power Program Annual Review are presented. The results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program were emphasized. Among the topics discussed were: overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development along with associated hardware and test results; distributed systems operating experience; international parabolic dish development activities; and non-DOE-sponsored domestic dish activities. Solar electric generation was also addressed.

  14. Thermal Heterogeneity in the Solar Nebula: Paradox?

    NASA Astrophysics Data System (ADS)

    Boss, A. P.

    1995-09-01

    remain suspended at all altitudes throughout a turbulent disk [10], spatial thermal heterogeneity would be a conceivable solution if samples from a range of nebular altitudes can be preserved in a planetesimal. The nebula's midplane temperature (T(sub)m) may have dropped from about 1200 K to 700 K over radial distances of 2 AU to 3 AU [8], and provided that mixing of products from throughout this region was possible, the paradox could again be explained [2]. The other alternative, temporal variations, is perhaps the more traditional choice. CAIs are interpreted as the first condensates from an early, hot nebula, with the bulk of the chondritic material condensing later at somewhat lower nebular temperatures. The flash heating that melted the chondrules occurred when the nebula had cooled even further. Radiative hydrodynamical models [11] of temperatures in a nebula undergoing mass accretion at astronomically-inferred rates [12,13] imply that inner nebula temperatures are a strong function of the nebula mass. At orbital radii of 2 AU to 3 AU, a 0.04 M nebula has T(sub)m similar to 1400 K, a 0.02 M nebula has T(sub)m similar to 1200 K to 700 K, and a 0.01 M nebula has T(sub)m similar to 800 K to 500 K. An initial nebula mass of at least 0.04 M may be necessary, considering the inefficiency of the planet formation process. If the thermal history of the solar nebula can be represented by this sequence of models with decreasing nebula mass, then the full range of ambient nebula temperatures implied by the meteoritical data could be explained. References: [1] Palme H. and Boynton W. V. (1993) in Protostars and Planets III (E. H. Levy and J. I. Lunine, eds.), 979. [2] Humayun M. and Clayton R. N. (1995) GCA, 59, 2131. [3] Wasson J. T. (1993) Meteoritics, 28, 14. [4] Grossman L. (1980) Annu. Rev. Earth. Planet. Sci., 8, 559. [5] Stolper E. and Paque J. M. (1986) GCA, 50, 1785. [6] Ott U. (1993) Nature, 364, 25. [7] Morfill G. E. (1988) Icarus, 75, 371. [8] Boss A. P. (1993

  15. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    PubMed

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy. PMID:27430282

  16. Improved thermal storage module for solar dynamic receivers

    SciTech Connect

    Beatty, R.L.; Lauf, R.J.

    1990-01-01

    This invention relates to a thermal storage apparatus and more particularly to an apparatus for use in conjunction with solar dynamic energy storage systems. The invention is comprised of a thermal energy storage system comprising a germanium phase change material and a graphite container.

  17. Focal Point Inside the Vacuum Chamber for Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This photograph is a close-up view of a 4-in focal point inside the vacuum chamber at the MSFC Solar Thermal Propulsion Test facility. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  18. Solar thermal organic rankine cycle for micro-generation

    NASA Astrophysics Data System (ADS)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  19. Transient Thermal Analysis of a Refractive Secondary Solar Concentrator

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Macosko, Robert P.

    1999-01-01

    A secondary concentrator is an optical device that accepts solar energy from a primary concentrator and further intensifies and directs the solar flux. The refractive secondary is one such device; fabricated from an optically clear solid material that can efficiently transmit the solar energy by way of refraction and total internal reflection. When combined with a large state-of-the-art rigid or inflatable primary concentrator, the refractive secondary enables solar concentration ratios of 10,000 to 1. In support of potential space solar thermal power and propulsion applications, the NASA Glenn Research Center is developing a single-crystal refractive secondary concentrator for use at temperatures exceeding 2000K. Candidate optically clear single-crystal materials like sapphire and zirconia are being evaluated for this application. To support this evaluation, a three-dimensional transient thermal model of a refractive secondary concentrator in a typical solar thermal propulsion application was developed. This paper describes the model and presents thermal predictions for both sapphire and zirconia prototypes. These predictions are then used to establish parameters for analyzing and testing the materials for their ability to survive thermal shock and stress.

  20. Solar thermal bowl concepts and economic comparisons for electricity generation

    SciTech Connect

    Williams, T.A.; Dirks, J.A.; Brown, D.R.; Antoniak, Z.I.; Allemann, R.T.; Coomes, E.P.; Craig, S.N.; Drost, M.K.; Humphreys, K.K.; Nomura, K.K.

    1988-04-01

    This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications for fixed mirror distributed focus (FMDF) solar thermal concepts which have been studied and developed in the DOE solar thermal program. Following the completion of earlier systems comparison studies in the late 1970's there have been a number of years of progress in solar thermal technology. This progress includes developing new solar components, improving component and system design details, constructing working systems, and collecting operating data on the systems. This study povides an update of the expected performance and cost of the major components, and an overall system energy cost for the FMDDF concepts evaluated. The projections in this study are for the late 1990's and are based on the potential capabilities that might be achieved with further technology development.

  1. Modeling The Potential For Thermal Concentrating Solar Power Technologies

    SciTech Connect

    Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

    2010-10-25

    In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

  2. Measurements of thermal parameters of solar modules

    NASA Astrophysics Data System (ADS)

    Górecki, K.; Krac, E.

    2016-04-01

    In the paper the methods of measuring thermal parameters of photovoltaic panels - transient thermal impedance and the absorption factor of light-radiation are presented. The manner of realising these methods is described and the results of measurements of the considered thermal parameters of selected photovoltaic panels are presented. The influence of such selected factors as a type of the investigated panel and its mounting manner on transient thermal impedance of the considered panels is also discussed.

  3. Magnetite Formation from Thermal Decomposition of Siderite: Implications for Inorganic Magnetite Formation in Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Morris, RIchard V.

    2002-01-01

    A biogenic mechanism for formation of a subpopulation magnetite in Martian meteorite ALH84001 has been suggested [McKay et al., 1996; Thomas-Keprta, et al., 2000]. We are developing experimental evidence for an alternating working hypothesis, that the subpopulation was produced inorganically by the thermal decomposition of siderite [Golden et al., 2000].

  4. Solar Thermal Power Plants with Parabolic-Trough Collectors

    NASA Astrophysics Data System (ADS)

    Zarza, E.; Valenzuela, L.; León, J.

    2004-12-01

    Parabolic-trough collectors (PTC) are solar concentrating devices suitable to work in the 150°C- 400°C temperature range. Power plants based on this type of solar collectors are a very efficient way to produce electricity with solar energy. At present, there are eight commercial solar plants (called SEGS-II, III,.. IX) producing electricity with parabolic-trough collectors and their total output power is 340 MW. Though all SEGS plants currently in operation use thermal oil as a heat transfer fluid between the solar field and the power block, direct steam generation (DSG) in the receiver tubes is a promising option to reduce the cost of electricity produced with parabolic- trough power plants. Most of technical uncertainties associated to the DSG technology were studied and solved in the DISS project and it is expected that this new technology will be commercially available in a short term. In Spain, the Royal Decree No. 436/204 (March 12th , 2004) has defined a premium of 0,18€/kWh for the electricity produced by solar thermal power plants, thus promoting the installation of solar thermal power plants up to a limit of 200 MW. Due to the current legal and financial framework defined in Spain, several projects to install commercial solar power plants with parabolic-trough collectors are currently underway.

  5. High temperature solar thermal technology: The North Africa Market

    SciTech Connect

    Not Available

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  6. Solar dynamic heat receiver thermal characteristics in low earth orbit

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Birur, G. C.

    1988-01-01

    A simplified system model is under development for evaluating the thermal characteristics and thermal performance of a solar dynamic spacecraft energy system's heat receiver. Results based on baseline orbit, power system configuration, and operational conditions, are generated for three basic receiver concepts and three concentrator surface slope errors. Receiver thermal characteristics and thermal behavior in LEO conditions are presented. The configuration in which heat is directly transferred to the working fluid is noted to generate the best system and thermal characteristics. as well as the lowest performance degradation with increasing slope error.

  7. Thermal evaluation of advanced solar dynamic heat receiver performance

    NASA Technical Reports Server (NTRS)

    Crane, Roger A.

    1989-01-01

    The thermal performance of a variety of concepts for thermal energy storage as applied to solar dynamic applications is discussed. It is recognized that designs providing large thermal gradients or large temperature swings during orbit are susceptible to early mechanical failure. Concepts incorporating heat pipe technology may encounter operational limitations over sufficiently large ranges. By reviewing the thermal performance of basic designs, the relative merits of the basic concepts are compared. In addition the effect of thermal enhancement and metal utilization as applied to each design provides a partial characterization of the performance improvements to be achieved by developing these technologies.

  8. Comparison of selective transmitters for solar thermal applications.

    PubMed

    Taylor, Robert A; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P

    2016-05-10

    Solar thermal collectors are radiative heat exchangers. Their efficacy is dictated predominantly by their absorption of short wavelength solar radiation and, importantly, by their emission of long wavelength thermal radiation. In conventional collector designs, the receiver is coated with a selectively absorbing surface (Black Chrome, TiNOx, etc.), which serves both of these aims. As the leading commercial absorber, TiNOx consists of several thin, vapor deposited layers (of metals and ceramics) on a metal substrate. In this technology, the solar absorption to thermal emission ratio can exceed 20. If a solar system requires an analogous transparent component-one which transmits the full AM1.5 solar spectrum, but reflects long wavelength thermal emission-the technology is much less developed. Bespoke "heat mirrors" are available from optics suppliers at high cost, but the closest mass-produced commercial technology is low-e glass. Low-e glasses are designed for visible light transmission and, as such, they reflect up to 50% of available solar energy. To address this technical gap, this study investigated selected combinations of thin films that could be deposited to serve as transparent, selective solar covers. A comparative numerical analysis of feasible materials and configurations was investigated using a nondimensional metric termed the efficiency factor for selectivity (EFS). This metric is dependent on the operation temperature and solar concentration ratio of the system, so our analysis covered the practical range for these parameters. It was found that thin films of indium tin oxide (ITO) and ZnS-Ag-ZnS provided the highest EFS. Of these, ITO represents the more commercially viable solution for large-scale development. Based on these optimized designs, proof-of-concept ITO depositions were fabricated and compared to commercial depositions. Overall, this study presents a systematic guide for creating a new class of selective, transparent

  9. Effect of thermal shock on the decomposition of rocks under controlled laboratory conditions

    NASA Astrophysics Data System (ADS)

    Kasanin-Grubin, Milica; Vezmar, Tijuana; Kuhn, Nikolaus J.

    2013-04-01

    The major factor determining the rate of weathering of a given rock are the climatic conditions of the surrounding environment, most notably type and amount of precipitation and temperature. For the latter, average annual temperature and where applicable, the frequency of freezing and thawing are often considered to be relevant for weathering. The rate of temperature change is mostly ignored. However, a rapid change in temperature, referred to as thermal shock could have more severe consequences of rock deterioration then gradual heating and cooling of rocks is gradual. Thermal shock induces a stress of such a magnitude that the material is unable to adjust fast enough and so it breaks down. The aim of this study is to examine the importance of mechanical decomposition of rocks when treated with thermal shock by freezing. The rate of decomposition of rocks of various sizes was measured based on their weight loss. In addition, they were immersed in water after freezing and the electrical conductivity and pH of the water were measured as an index for thermal-shock induced micro-fracturing. Samples of three rock types were chosen for the experiment: limestone, tuffaceous rock and basalt. Samples were examined in two separate cycles: (i) 24h immersion in ultra-clean water followed by 24h drying at 30o and (ii) 24h immersion, 24h temperature shock by freezing at -20˚C and 6h thawing. Each cycle was repeated approximately 20 times. In each cycle three different sizes of rock were examined: <16mm, 16-8mm and 8-5mm. Limestone mass decreased for both cycles, although more distinctly after repeated thermal shocks. Furthermore, the rate of decay decreased with increasing rock size. Tuffaceous rock exposed to cycle (i) also showed a significant weight loss. Somewhat surprisingly, the mass of the tuffaceous rock exposed to thermal shock increased by about 13% in all sample size groups. It is possible that pore volume increased during experiment and that the rocks became

  10. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method.

    PubMed

    Dümichen, Erik; Barthel, Anne-Kathrin; Braun, Ulrike; Bannick, Claus G; Brand, Kathrin; Jekel, Martin; Senz, Rainer

    2015-11-15

    Small polymer particles with a diameter of less than 5 mm called microplastics find their way into the environment from polymer debris and industrial production. Therefore a method is needed to identify and quantify microplastics in various environmental samples to generate reliable concentration values. Such concentration values, i.e. quantitative results, are necessary for an assessment of microplastic in environmental media. This was achieved by thermal extraction in thermogravimetric analysis (TGA), connected to a solid-phase adsorber. These adsorbers were subsequently analysed by thermal desorption gas chromatography mass spectrometry (TDS-GC-MS). In comparison to other chromatographic methods, like pyrolyse gas chromatography mass spectrometry (Py-GC-MS), the relatively high sample masses in TGA (about 200 times higher than used in Py-GC-MS) analysed here enable the measurement of complex matrices that are not homogenous on a small scale. Through the characteristic decomposition products known for every kind of polymer it is possible to identify and even to quantify polymer particles in various matrices. Polyethylene (PE), one of the most important representatives for microplastics, was chosen as an example for identification and quantification. PMID:26376022

  11. Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method

    PubMed Central

    2013-01-01

    By means of thermal decomposition, we prepared single-phase spherical Ni nanoparticles (23 to 114 nm in diameter) that are face-centered cubic in structure. The magnetic properties of the Ni nanoparticles were experimentally as well as theoretically investigated as a function of particle size. By means of thermogravimetric/differential thermal analysis, the Curie temperature TC of the 23-, 45-, 80-, and 114-nm Ni particles was found to be 335°C, 346°C, 351°C, and 354°C, respectively. Based on the size-and-shape dependence model of cohesive energy, a theoretical model is proposed to explain the size dependence of TC. The measurement of magnetic hysteresis loop reveals that the saturation magnetization MS and remanent magnetization increase and the coercivity decreases monotonously with increasing particle size, indicating a distinct size effect. By adopting a simplified theoretical model, we obtained MS values that are in good agreement with the experimental ones. Furthermore, with increase of surface-to-volume ratio of Ni nanoparticles due to decrease of particle size, there is increase of the percentage of magnetically inactive layer. PMID:24164907

  12. Perchlorate induced low temperature carbonate decomposition in the Mars Phoenix Thermal and Evolved Gas Analyzer (TEGA)

    NASA Astrophysics Data System (ADS)

    Cannon, K. M.; Sutter, B.; Ming, D. W.; Boynton, W. V.; Quinn, R.

    2012-07-01

    Simulated Thermal Evolved Gas Analyzer (TEGA) analyses have shown that a CO2 release detected between 400°C and 680°C by the Phoenix Lander's TEGA instrument may have been caused by a reaction between calcium carbonate and hydrated magnesium perchlorate. In our experiments a CO2 release beginning at 385 ± 12°C was attributed to calcite reacting with water vapor and HCl gas from the dehydration and thermal decomposition of Mg-perchlorate. The release of CO2 is consistent with the TEGA detection of CO2 released between 400 and 680°C, with the amount of CO2 increasing linearly with added perchlorate. X-ray diffraction (XRD) experiments confirmed CaCl2 formation from the reaction between calcite and HCl. These results have important implications for the Mars Science Laboratory (MSL) Curiosity rover. Heating soils may cause inorganic release of CO2; therefore, detection of organic fragments, not CO2 alone, should be used as definitive evidence for organics in Martian soils.

  13. Thermal decomposition of HMX: Low temperature reaction kinetics and their use for assessing response in abnormal thermal environments and implications for long-term aging

    SciTech Connect

    Behrens, R.; Bulusu, S.

    1995-12-01

    The thermal decomposition of HMX between 175 and 200{degree}C has been studied using the simultaneous thermogravimetric modulated beam mass spectrometer (STMBMS) apparatus with a focus on the initial stages of the decomposition. The identity of thermal decomposition products is the same as that measured in previous higher temperature experiments. The initial stages of the decomposition are characterized by an induction period followed by two acceleratory periods. The Arrhenius parameters for the induction and two acceleratory periods are (Log(A) = 18.2 {plus_minus} 0.8, Ea = 48.2 {plus_minus} 1.8 kcal/mole), (Log(A) = 17.15 {plus_minus} 1.5 and Ea = 48.9 {plus_minus} 3.2 kcal/mole), (Log A) = 19.1 {plus_minus} 3.0 and Ea = 52.1 {plus_minus} 6.3 kcal/mole), respectively. This data can be used to calculate the time and temperature required to decompose a desired fraction of a sample that is being prepared to test the effect of thermal degradation on its sensitivity or burn rates. It can also be used to estimate the extent of decomposition that may be expected under normal storage conditions for munitions containing HMX. This data, along with previous mechanistic studies conducted at higher temperatures, suggest that the process that controls the early stages of decomposition of HMX in the solid phase is scission of the N-NO{sub 2} bond, reaction of the N0{sub 2} within a ``lattice cage`` to form the mononitroso analogue of HMX and decomposition of the mononitroso HMX within the HMX lattice to form gaseous products that are retained in bubbles or diffuse into the surrounding lattice.

  14. Condensed-phase thermal decomposition of TATB investigated by atomic force microscopy (AFM) and simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS)

    SciTech Connect

    Land, T.A.; Siekhaus, W.J.; Foltz, M.F.; Behrens, R. Jr.

    1993-05-01

    A combination of techniques has been used to investigate the condensed-phase thermal decomposition of TATB. STMBMS has been used to identify the thermal decomposition products and their temporal correlation`s. These experiments have shown that the condensed-phase decomposition proceeds through several autocatalytic pathways. Both low and high molecular weight decomposition products have been identified. Mono-, di- and tri-furazans products have been identified and, their temporal behaviors are consistent with a stepwise loss of water. AFM has been used to correlate the decomposition chemistry with morphological changes occurring as a function of heating. Patches of small 25-140 nm round holes were observed throughout the lattice of TATB crystals that were heated briefly to 300C. It is likely that these holes show where decomposition reactions have started. Evidence of decomposition products have been seen in TATB that has been held at 250C for one hour.

  15. Tehachapi solar thermal system first annual report

    SciTech Connect

    Rosenthal, A.

    1993-05-01

    The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

  16. Effect of Copper Oxide, Titanium Dioxide, and Lithium Fluoride on the Thermal Behavior and Decomposition Kinetics of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Vargeese, Anuj A.; Mija, S. J.; Muralidharan, Krishnamurthi

    2014-07-01

    Ammonium nitrate (AN) is crystallized along with copper oxide, titanium dioxide, and lithium fluoride. Thermal kinetic constants for the decomposition reaction of the samples were calculated by model-free (Friedman's differential and Vyzovkins nonlinear integral) and model-fitting (Coats-Redfern) methods. To determine the decomposition mechanisms, 12 solid-state mechanisms were tested using the Coats-Redfern method. The results of the Coats-Redfern method show that the decomposition mechanism for all samples is the contracting cylinder mechanism. The phase behavior of the obtained samples was evaluated by differential scanning calorimetry (DSC), and structural properties were determined by X-ray powder diffraction (XRPD). The results indicate that copper oxide modifies the phase transition behavior and can catalyze AN decomposition, whereas LiF inhibits AN decomposition, and TiO2 shows no influence on the rate of decomposition. Possible explanations for these results are discussed. Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Energetic Materials to view the free supplemental file.

  17. Conversion system overview assessment. Volume III. Solar thermal/coal or biomass derived fuels

    SciTech Connect

    Copeland, R. J.

    1980-02-01

    The three volumes of this report cover three distinct areas of solar energy research: solar thermoelectrics, solar-wind hybrid systems, and synthetic fuels derived with solar thermal energy. Volume III deals with the conversion of synthetic fuels with solar thermal heat. The method is a hybrid combination of solar energy with either coal or biomass. A preliminary assessment of this technology is made by calculating the cost of fuel produced as a function of the cost of coal and biomass. It is shown that within the projected ranges of coal, biomass, and solar thermal costs, there are conditions when solar synthetic fuels with solar thermal heat will become cost-competitive.

  18. The thermal decomposition of the benzyl radical in a heated micro-reactor. I. Experimental findings

    SciTech Connect

    Buckingham, Grant T.; Ormond, Thomas K.; Porterfield, Jessica P.; Ellison, G. Barney; Hemberger, Patrick; Kostko, Oleg; Ahmed, Musahid; Robichaud, David J.; Nimlos, Mark R.; Daily, John W.

    2015-01-28

    The pyrolysis of the benzyl radical has been studied in a set of heated micro-reactors. A combination of photoionization mass spectrometry (PIMS) and matrix isolation infrared (IR) spectroscopy has been used to identify the decomposition products. Both benzyl bromide and ethyl benzene have been used as precursors of the parent species, C{sub 6}H{sub 5}CH{sub 2}, as well as a set of isotopically labeled radicals: C{sub 6}H{sub 5}CD{sub 2}, C{sub 6}D{sub 5}CH{sub 2}, and C{sub 6}H{sub 5}{sup 13}CH{sub 2}. The combination of PIMS and IR spectroscopy has been used to identify the earliest pyrolysis products from benzyl radical as: C{sub 5}H{sub 4}=C=CH{sub 2}, H atom, C{sub 5}H{sub 4}—C ≡ CH, C{sub 5}H{sub 5}, HCCCH{sub 2}, and HC ≡ CH. Pyrolysis of the C{sub 6}H{sub 5}CD{sub 2}, C{sub 6}D{sub 5}CH{sub 2}, and C{sub 6}H{sub 5}{sup 13}CH{sub 2} benzyl radicals produces a set of methyl radicals, cyclopentadienyl radicals, and benzynes that are not predicted by a fulvenallene pathway. Explicit PIMS searches for the cycloheptatrienyl radical were unsuccessful, there is no evidence for the isomerization of benzyl and cycloheptatrienyl radicals: C{sub 6}H{sub 5}CH{sub 2}⇋C{sub 7}H{sub 7}. These labeling studies suggest that there must be other thermal decomposition routes for the C{sub 6}H{sub 5}CH{sub 2} radical that differ from the fulvenallene pathway.

  19. Unimolecular Thermal Decomposition of Phenol and d5-Phenol: Direct Observation of Cyclopentadiene Formation via Cyclohexadienone

    SciTech Connect

    Scheer, A. M.; Mukarakate, C.; Robichaud, D. J.; Nimlos, M. R.; Carstensen, H. H.; Barney, E. G.

    2012-01-28

    The pyrolyses of phenol and d{sub 5}-phenol (C{sub 6}H{sub 5}OH and C{sub 6}D{sub 5}OH) have been studied using a high temperature, microtubular ({mu}tubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the {mu}tubular reactor of approximately 50-100 {micro}s. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at the onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C{sub 6}H{sub 5}OH {yields} c-C{sub 6}H{sub 6} = O {yields} c-C{sub 5}H{sub 6} + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C{sub 5}H{sub 6} {yields} c-C{sub 5}H{sub 5} + H {yields} HC {triple_bond} CH + HCCCH{sub 2}. At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C{sub 6}H{sub 5}O-H {yields} C{sub 6}H{sub 5}O + H {yields} c-C{sub 5}H{sub 5} + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C{sub 6}H{sub 4}-OH) and hydroquinone (p-HO-C{sub 6}H{sub 4}-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.

  20. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  1. Long-term goals for solar thermal technology

    NASA Astrophysics Data System (ADS)

    Williams, T. A.; Dirks, J. A.; Brown, D. R.

    1985-05-01

    Long-term performance and cost goals for three solar thermal technologies are discussed. Pacific Northwest Laboratory (PNL) developed these goals in support of the Draft Five Year Research and Development Plan for the National Solar Thermal Technology Program (DOE 1984b). These technology goals are intended to provide targets that, if met, will lead to the widespread use of solar thermal technologies in the marketplace. Goals were developed for three technologies and two applications: central receiver and dish technologies for utility-generated electricity applications, and central receiver, dish, and trough technologies for industrial process heat applications. These technologies and applications were chosen because they are the primary technologies and applications that have been researched by DOE in the past. System goals were developed through analysis of future price projections for energy sources competing with solar thermal in the middle-to-late 1990's time frame. The system goals selected were levelized energy costs of 0.05/kWh for electricity and $9/MBtu for industrial process heat (1984 $). Component goals established to meet system goals were developed based upon projections of solar thermal component performance and cost which could be achieved in the same time frame.

  2. Solar thermal power systems. Annual technical progress report, FY 1979

    SciTech Connect

    Braun, Gerald W.

    1980-06-01

    The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

  3. Long-term goals for solar thermal technology

    SciTech Connect

    Williams, T.A.; Dirks, J.A.; Brown, D.R.

    1985-05-01

    This document describes long-term performance and cost goals for three solar thermal technologies. Pacific Northwest Laboratory (PNL) developed these goals in support of the Draft Five Year Research and Development Plan for the National Solar Thermal Technology Program (DOE 1984b). These technology goals are intended to provide targets that, if met, will lead to the widespread use of solar thermal technologies in the marketplace. Goals were developed for three technologies and two applications: central receiver and dish technologies for utility-generated electricity applications, and central receiver, dish, and trough technologies for industrial process heat applications. These technologies and applications were chosen because they are the primary technologies and applications that have been researched by DOE in the past. System goals were developed through analysis of future price projections for energy sources competing with solar thermal in the middle-to-late 1990's time frame. The system goals selected were levelized energy costs of $0.05/kWh for electricity and $9/MBtu for industrial process heat (1984 $). Component goals established to meet system goals were developed based upon projections of solar thermal component performance and cost which could be achieved in the same time frame.

  4. A flexible and stable numerical method for simulating the thermal decomposition of wood particles.

    PubMed

    Peters, B; Bruch, C

    2001-01-01

    The objective of this paper is to present a flexible and stable simulation method to predict the thermal conversion of wood particles. A combination of several subprocesses such as heating-up, drying, pyrolysis, gasification and combustion of fuel particles of different properties and sizes represents the global process of thermal conversion. This approach allows for simultaneous processes e.g. reactions in time and covers the entire range between transport-limited (shrinking core) and kinetically limited (reacting core) reaction regimes. Thus, the model is applicable to simulate sufficiently accurate the thermal decomposition of each particle in a packed bed, of which the entire conversion is regarded as the sum of all particle processes. Effects such as fragmentation, swelling, homogeneous reactions e.g. ignition outside a particle are excluded as a tradeoff between complexity and calculation time. However, a description of the particle processes by one-dimensional and transient differential conservation equations for mass and energy is feasible to represent the above mentioned subprocesses. The particles are coupled to the gas phase by heat and mass transfer taking into account the Stefan correction due to the gas outflow during conversion. A general formulation of the conservation equations allows the geometry of a fuel particle to be treated as a plate, cylinder or sphere. In order to achieve a high degree of flexibility, the method distinguishes between data, such as kinetics or material properties and the conversion process, for which relevant data are stored in a data base for easy access and extension. The resulting modules of this subdivision are encapsulated into separate software units cast in a hierarchy of well-defined classes in Tools of Object-oriented Software for Continuum-Mechanics Applications (TOSCA) by object-oriented techniques. PMID:11219672

  5. Solar thermal electricity in 1998: An IEA/SolarPACES summary of status and future prospects

    SciTech Connect

    Tyner, C.E.; Kolb, G.J.; Meinecke, W.; Trieb, F.

    1998-07-01

    Research and development activities sponsored by countries within the International Energy Agency`s solar thermal working group. SolarPACES, have helped reduce the cost of solar thermal systems to one-fifth that of the early pilot plants. Continued technological improvements are currently being proven in next-generation demonstration plants. These advances, along with cost reductions made possible by scale-up to larger production and construction of a succession of power plants, have made solar thermal systems the lowest-cost solar energy in the world and promise cost-competitiveness with fossil-fuel plants in the future. Solar thermal technologies are appropriate for a wide range of applications, including dispatchable central-station power plants where they can meet peak-load to near-base-load needs of a utility, and distributed, modular power plants for both remote and grid-connected applications. In this paper, the authors present the collective position of the SolarPACES community on solar electricity-generating technology. They discuss the current status of the technology and likely near-term improvements; the needs of target markets; and important technical and financial issues that must be resolved for success in near-term global markets.

  6. Separating and Recycling Plastic, Glass, and Gallium from Waste Solar Cell Modules by Nitrogen Pyrolysis and Vacuum Decomposition.

    PubMed

    Zhang, Lingen; Xu, Zhenming

    2016-09-01

    Many countries have gained benefits through the solar cells industry due to its high efficiency and nonpolluting power generation associated with solar energy. Accordingly, the market of solar cell modules is expanding rapidly in recent decade. However, how to environmentally friendly and effectively recycle waste solar cell modules is seldom concerned. Based on nitrogen pyrolysis and vacuum decomposition, this work can successfully recycle useful organic components, glass, and gallium from solar cell modules. The results were summarized as follows: (i) nitrogen pyrolysis process can effectively decompose plastic. Organic conversion rate approached 100% in the condition of 773 K, 30 min, and 0.5 L/min N2 flow rate. But, it should be noted that pyrolysis temperature should not exceed 773 K, and harmful products would be increased with the increasing of temperature, such as benzene and its derivatives by GC-MS measurement; (ii) separation principle, products analysis, and optimization of vacuum decomposition were discussed. Gallium can be well recycled under temperature of 1123 K, system pressure of 1 Pa and reaction time of 40 min. This technology is quite significant in accordance with the "Reduce, Reuse, and Recycle Principle" for solid waste, and provides an opportunity for sustainable development of photovoltaic industry. PMID:27501125

  7. Effect of water vapor on the thermal decomposition process of zinc hydroxide chloride and crystal growth of zinc oxide

    SciTech Connect

    Kozawa, Takahiro; Onda, Ayumu; Yanagisawa, Kazumichi; Kishi, Akira; Masuda, Yasuaki

    2011-03-15

    Thermal decomposition process of zinc hydroxide chloride (ZHC), Zn{sub 5}(OH){sub 8}Cl{sub 2}.H{sub 2}O, prepared by a hydrothermal slow-cooling method has been investigated by simultaneous X-ray diffractometry and differential scanning calorimetry (XRD-DSC) and thermogravimetric-differential thermal analysis (TG-DTA) in a humidity-controlled atmosphere. ZHC was decomposed to ZnO through {beta}-Zn(OH)Cl as the intermediate phase, leaving amorphous hydrated ZnCl{sub 2}. In humid N{sub 2} with P{sub H{sub 2O}}=4.5 and 10 kPa, the hydrolysis of residual ZnCl{sub 2} was accelerated and the theoretical amount of ZnO was obtained at lower temperatures than in dry N{sub 2}, whereas significant weight loss was caused by vaporization of residual ZnCl{sub 2} in dry N{sub 2}. ZnO formed by calcinations in a stagnant air atmosphere had the same morphology of the original ZHC crystals and consisted of the c-axis oriented column-like particle arrays. On the other hand, preferred orientation of ZnO was inhibited in the case of calcinations in 100% water vapor. A detailed thermal decomposition process of ZHC and the effect of water vapor on the crystal growth of ZnO are discussed. -- Graphical abstract: Thermal decomposition process of zinc hydroxide chloride (ZHC), Zn{sub 5}(OH){sub 8}Cl{sub 2}.H{sub 2}O, has been investigated by novel thermal analyses with three different water vapor partial pressures. In the water vapor atmosphere, the formation of ZnO was completed at lower temperatures than in dry. Display Omitted highlights: > We examine the thermal decomposition of zinc hydroxide chloride in water vapor. > Water vapor had no effects on its thermal decomposition up to 230 {sup o}C. > Water vapor accelerated the decomposition of the residual ZnCl{sub 2} in ZnO. > Without water vapor, a large amount of ZnCl{sub 2} evaporated to form the c-axis oriented ZnO.

  8. Thermal decomposition of ammonium perchlorate in the presence of Al(OH)(3)·Cr(OH)(3) nanoparticles.

    PubMed

    Zhang, WenJing; Li, Ping; Xu, HongBin; Sun, Randi; Qing, Penghui; Zhang, Yi

    2014-03-15

    An Al(OH)(3)·Cr(OH)(3) nanoparticle preparation procedure and its catalytic effect and mechanism on thermal decomposition of ammonium perchlorate (AP) were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis and differential scanning calorimetry (TG-DSC), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis and mass spectroscopy (TG-MS). In the preparation procedure, TEM, SAED, and FT-IR showed that the Al(OH)(3)·Cr(OH)(3) particles were amorphous particles with dimensions in the nanometer size regime containing a large amount of surface hydroxyl under the controllable preparation conditions. When the Al(OH)(3)·Cr(OH)(3) nanoparticles were used as additives for the thermal decomposition of AP, the TG-DSC results showed that the addition of Al(OH)(3)·Cr(OH)(3) nanoparticles to AP remarkably decreased the onset temperature of AP decomposition from approximately 450°C to 245°C. The FT-IR, RS and XPS results confirmed that the surface hydroxyl content of the Al(OH)(3)·Cr(OH)(3) nanoparticles decreased from 67.94% to 63.65%, and Al(OH)3·Cr(OH)3 nanoparticles were limitedly transformed from amorphous to crystalline after used as additives for the thermal decomposition of AP. Such behavior of Al(OH)(3)·Cr(OH)(3) nanoparticles promoted the oxidation of NH3 of AP to decompose to N2O first, as indicated by the TG-MS results, accelerating the AP thermal decomposition. PMID:24530852

  9. Thermal Decomposition Mechanisms of Lignin Model Compounds: From Phenol to Vanillin

    NASA Astrophysics Data System (ADS)

    Scheer, Adam Michael

    Lignin is a complex, aromatic polymer abundant in cellulosic biomass (trees, switchgrass etc.). Thermochemical breakdown of lignin for liquid fuel production results in undesirable polycyclic aromatic hydrocarbons that lead to tar and soot byproducts. The fundamental chemistry governing these processes is not well understood. We have studied the unimolecular thermal decomposition mechanisms of aromatic lignin model compounds using a miniature SiC tubular reactor. Products are detected and characterized using time-of-flight mass spectrometry with both single photon (118.2 nm; 10.487 eV) and 1 + 1 resonance-enhanced multiphoton ionization (REMPI) as well as matrix isolation infrared spectroscopy. Gas exiting the heated reactor (300 K--1600 K) is subject to a free expansion after a residence time of approximately 100 micros. The expansion into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. By understanding the unimolecular fragmentation patterns of phenol (C6H5OH), anisole (C6H 5OCH3) and benzaldehyde (C6H5CHO), the more complicated thermocracking processes of the catechols (HO-C 6H4-OH), methoxyphenols (HO-C6H4-OCH 3) and hydroxybenzaldehydes (HO-C6H4-CHO) can be interpreted. These studies have resulted in a predictive model that allows the interpretation of vanillin, a complex phenolic ether containing methoxy, hydroxy and aldehyde functional groups. This model will serve as a guide for the pyrolyses of larger systems including lignin monomers such as coniferyl alcohol. The pyrolysis mechanisms of the dimethoxybenzenes (H3C-C 6H4-OCH3) and syringol, a hydroxydimethoxybenzene have also been studied. These results will aid in the understanding of the thermal fragmentation of sinapyl alcohol, the most complex lignin monomer. In addition to the model compound work, pyrolyisis of biomass has been studied via the pulsed laser ablation of poplar wood. With the REMPI scheme, aromatic lignin decomposition

  10. Value of Concentrating Solar Power and Thermal Energy Storage

    SciTech Connect

    Sioshansi, R.; Denholm, P.

    2010-02-01

    This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

  11. Results of accelerated thermal cycle tests of solar cells modules

    NASA Technical Reports Server (NTRS)

    Berman, P.; Mueller, R.; Salama, M.; Yasui, R.

    1976-01-01

    Various candidate solar panel designs were evaluated, both theoretically and experimentally, with respect to their thermal cycling survival capability, and in particular with respect to an accelerated simulation of thermal cycles representative of Viking '75 mission requirements. The experimental results were obtained on 'mini-panels' thermally cycled in a newly installed automated test facility herein described. The resulting damage was analyzed physically and theoretically, and on the basis of these analyses the panel design was suitably modified to significantly improve its ability to withstand the thermal environment. These successful modifications demonstrate the value of the complementary theoretical-experimental approach adopted, and discussed in detail in this paper.

  12. Solar Thermal Energy Storage in a Photochromic Macrocycle.

    PubMed

    Vlasceanu, Alexandru; Broman, Søren L; Hansen, Anne S; Skov, Anders B; Cacciarini, Martina; Kadziola, Anders; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2016-07-25

    The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release. PMID:27253462

  13. Thermal performance of evacuated tube heat pipe solar collector

    NASA Astrophysics Data System (ADS)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  14. Rapid thermal decomposition for YBa2Cu3O7-δ films derived by DEA-modified TFA-MOD

    NASA Astrophysics Data System (ADS)

    Zhang, Q. Q.; Zhao, S. C.; Liu, Z. Y.; Rui, R. S.; Qiu, W. B.; Guo, Y. Q.; Li, M. J.; Yang, W. T.; Cai, C. B.

    2014-05-01

    Thermal decomposition of YBa2Cu3O7-δ (YBCO) films derived by diethanolamine (DEA)-modified trifluoroacetic acid-metal organic deposition (TFA-MOD) was investigated with respect to the understanding of the correlation between the stress releasing and rapid decomposition. It is revealed that the evaporation of DEA and the decomposition of precursor films occur simultaneously. A pyrolysis time as 20 seconds is optimal to keep the proper amount of DEA which prevents the films from severe stress during the pyrolysis. Then smooth surface of resultant films appears. In case of a pyrolysis time longer than 40 s, cracks emerge in the films accompanied with complete evaporation of DEA and appearance of Cu-rich particles, while films with pyrolysis time shorter than 10s is excessively soft, with large amount of DEA and TFA remaining in the film, implying insufficient pyrolysis.

  15. Hubble Space Telescope solar cell module thermal cycle test

    NASA Technical Reports Server (NTRS)

    Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar

    1992-01-01

    The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.

  16. A thermal control surface for the Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Doherty, Kevin A. J.; Carton, James G.; Norman, Andrew; McCaul, Terry; Twomey, Barry; Stanton, Kenneth T.

    2015-12-01

    A high-absorptivity/high-emissivity (flat absorber) bone char-based thermal control surface known as SolarBlack has been developed for use on rigid and flexible metallic substrates, including titanium, aluminium, copper, stainless steel, Inconel and magnesium alloys. This work describes the thermo-optical properties, stability, and qualification of this surface for use on the European Space Agency's Solar Orbiter mission. SolarBlack is deposited using a proprietry coating technique known as CoBlast and currently stands as the baseline coating for the spacecraft's front surface heat-shield, which is composed of 50 μm titanium foils (1.3×0.3 m) that have been constructed to cover the 3.1×2.4 m2 shield. The heat shield makes use of the material's highly stable ratio of solar absorptance to near-normal thermal emissivity (αs/εN) as well as its low electrical resistivity to regulate both temperature and electrostatic dissipation in service. SolarBlack also currently stands as the baseline surface for the High-gain and Medium-gain antennae as well as a number of other components on the spacecraft. The thermo-optical stability of SolarBlack was determined using the STAR Facility space environment simulator in ESTEC., Material characterisation was carried out using: SEM, UV/Vis/NIR spectrometry, and IR emissometry. The coating performance was verified on the Structural Thermal Model using ESA's Large Space Simulator.

  17. Thermal performance of windows having high solar transmittance

    SciTech Connect

    Rubin, M.; Selkowitz, S.

    1981-07-01

    Antireflected polyester films and low-iron glass sheets have values of solar transmittance that are substantially higher than those of their untreated counterparts. The plastic films utilize coatings to reduce loses due to surface reflectance and the glass is made with low levels of impurities to reduce adsorption within the material itself. The optical and thermal properties of these materials are discussed and the solar and thermal characteristics of windows incorporating high-transmittance glazing layers are derived. Comparisons among these and other types of windows are made on the basis of net energy use for residential buildings in winter.

  18. Thermal effects on solar images recorded in space

    NASA Astrophysics Data System (ADS)

    Irbah, A.; Meftah, M.; Hauchecorne, A.; Damé, L.; Bocquier, M.; Cissé, M.

    2014-08-01

    The Earth's atmosphere introduces a spatial frequency filtering in the object images recorded with ground-based instruments. A solution is to observe with telescopes onboard satellites to avoid atmospheric effects and to obtain diffraction limited images. However, similar atmosphere problems encountered with ground-based instruments may subsist in space when we observe the Sun since thermal gradients at the front of the instrument affect the observations. We present in this paper some simulations showing how solar images recorded in a telescope focal plane are directly impacted by thermal gradients in its pupil plane. We then compare the results with real solar images recorded with the PICARD mission in space.

  19. Solar thermal energy contract list, fiscal year 1990

    SciTech Connect

    Not Available

    1991-09-01

    The federal government has conducted the national Solar Thermal Technology Program since 1975. Its purpose is to provide focus, direction, and funding for the development of solar thermal technology as an energy option for the United States. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory projects are listed alphabetically by project area and then by subcontractor name. Amount of funding milestones are listed.

  20. Sulfur speciation in hard coal by means of a thermal decomposition method.

    PubMed

    Spiewok, W; Ciba, J; Trojanowska, J

    2002-02-01

    A new method for the determination of organic and pyritic sulfur in hard coal is presented. The method is based on controlled thermal decomposition of coal sample in oxygen-free and oxygen atmospheres. The results for sulfur liberated in an argon atmosphere at temperatures up to 773 K were close to organic sulfur contents (Sorg), although owing to the definition of 'organic sulfur' the values were not directly comparable. Sorg contents are calculated from the difference between total sulfur content in coal and contents of this element in the form of sulfides, sulfates and pyrites. Sulfur contents, found in the second stage of analysis, were close to pyritic sulfur contents. The difference between total sulfur content and the sum of sulfur values obtained in stages I and II corresponded to sulfur contents in those samples which were neither decomposed nor oxidized at temperatures up to 1173 K. Although not comparable with such conventional concepts for industrial purposes these data are attractive due to the ease and rapidity of the new method for the control of sulfur streams in industrial processes. PMID:11939541

  1. Synthesis, Crystal Structure, and Thermal Decomposition of the Cobalt(II) Complex with 2-Picolinic Acid

    PubMed Central

    Li, Di

    2014-01-01

    The cobalt(II) complex of 2-picolinic acid (Hpic), namely, [Co(pic)2(H2O)2] · 2H2O, was synthesized with the reaction of cobalt acetate and 2-picolinic acid as the reactants by solid-solid reaction at room temperature. The composition and structure of the complex were characterized by elemental analysis, infrared spectroscopy, single crystal X-ray diffraction, and thermogravimetry-differential scanning calorimetry (TG-DSC). The crystal structure of the complex belongs to monoclinic system and space group P2(1)/n, with cell parameters of a = 9.8468(7) Å, b = 5.2013(4) Å, c = 14.6041(15) Å, β = 111.745(6)°, V = 747.96(11) Å3, Z = 2, Dc = 1.666 g cm−3, R1 = 0.0297, and wR2 = 0.0831. In the title complex, the Co(II) ion is six-coordinated by two pyridine N atoms and two carboxyl O atoms from two 2-picolinic acid anions, and two O atoms from two H2O molecules, and forming a slightly distorted octahedral geometry. The thermal decomposition processes of the complex under nitrogen include dehydration and pyrolysis of the ligand, and the final residue is cobalt oxalate at about 450°C. PMID:24578654

  2. Thermodynamics and thermal decomposition for shape memory effects with crystallization based on dissipation and logarithmic strain

    NASA Astrophysics Data System (ADS)

    Hall, R. B.; Rao, I. J.; Qi, H. J.

    2014-05-01

    The present effort provides a 3-D thermodynamic framework generalizing the 1-D modeling of 2-way shape memory materials described by Westbrook et al. (J. Eng. Mater. Technol. 312:041010, 2010) and Chung et al. (Macromolecules 41:184-192, 2008), while extending the strain-induced crystallization and shape memory approaches of Rao and Rajagopal (Interfaces Free Bound. 2:73-94, 2000; Int. J. Solids Struct. 38:1149-1167, 2001), Barot and Rao (Z. Angew. Math. Phys. 57:652-681, 2006), and Barot et al. (Int. J. Eng. Sci. 46:325-351, 2008) to include finite thermal expansion within a logarithmic strain basis. The free energy of newly-formed orthotropic crystallites is assumed additive, with no strains in their respective configurations of formation. A multiplicative decomposition is assumed for the assumed thermoelastic orthotropic expansional strains of the respective crystallites. The properties of the crystallites are allowed to depend both on current temperature and their respective temperatures of formation. The entropy production rate relation is written in the frame rotating with the logarithmic spin and produces stress and entropy relations incorporating the integrated configurational free energies, and a driving term for the crystallization analogous to that obtained by the previous studies of Rao et al. The salient attributes of the 1-D modeling of Westbrook et al. are recovered, and applications are discussed.

  3. Thermochemical cycles for energy storage: Thermal decomposition of ZnCO sub 4 systems

    SciTech Connect

    Wentworth, W.E. )

    1992-04-01

    The overall objective of our research has been to develop thermochemical cycles that can be used for energy storage. A specific cycle involving ammonium hydrogen sulfate (NH{sub 4}HSO{sub 4}) has been proposed. Each reaction in the proposed cycle has been examined experimentally. Emphasis has been placed on the basic chemistry of these reactions. In the concluding phase of this research, reported herein, we have shown that when NH{sub 4}HSO{sub 4} is mixed with ZnO and decomposed, the resulting products can be released stepwise (H{sub 2}A{sub (g)} at {approximately}163{degrees}C, NH{sub 3(g)} at 365--418{degrees}C, and a mixture of SO{sub 2(g)} and SO{sub 3(g)} at {approximately}900{degrees}C) and separated by controlling the reaction temperature. Side reactions do not appear to be significant and the respective yields are high as would be required for the successful use of this energy storage reaction in the proposed cycle. Thermodynamic, kinetic, and other reaction parameters have been measured for the various steps of the reaction. Finally we have completed a detailed investigation of one particular reaction: the thermal decomposition of zinc sulfate (ZnSO{sub 4}). We have demonstrated that this reaction can be accelerated and the temperature required reduced by the addition of excess ZnO, V{sub 2}A{sub 5} and possibly other metal oxides.

  4. Adsorption and thermal decomposition of n-azopropane on Pt(111)

    NASA Astrophysics Data System (ADS)

    Gleason, N. R.; Jenks, C. J.; French, C. R.; Bent, B. E.; Zaera, F.

    1998-05-01

    The adsorption and thermal decomposition of n-azopropane on Pt(111) were studied by using temperature-programmed desorption (TPD) and reflection-absorption infra-red spectroscopy (RAIRS). At low temperatures, n-azopropane chemisorbs molecularly on Pt(111), but it isomerizes into a cis configuration upon bonding to the surface and changes its adsorption orientation as a function coverage. Multilayer and monolayer molecular desorption occur about 130 and 170 K, respectively, and a new surface species - probably dipropyl hydrazine - forms upon annealing the remaining chemisorbed molecules above 175 K. Further heating of the sample leads to the desorption of small amounts of propylene and ethylene, at 240 and 275 K, respectively. Another surface transformation is identified by RAIRS around 275 K, possibly the conversion to an imine-type species, and propionitrile and small amounts of propyl and methyl amines are produced soon after that; they desorb at 320 and 330 K, respectively. Finally, a more extensive dehydrogenation of the remaining surface species takes place, and HCN desorbs in two stages around 525 and 600 K. The chemistry of propionitrile and propyl amine was also explored briefly by RAIRS and TPD for reference.

  5. Wavelet subspace decomposition of thermal infrared images for defect detection in artworks

    NASA Astrophysics Data System (ADS)

    Ahmad, M. Z.; Khan, A. A.; Mezghani, S.; Perrin, E.; Mouhoubi, K.; Bodnar, J. L.; Vrabie, V.

    2016-07-01

    Health of ancient artworks must be routinely monitored for their adequate preservation. Faults in these artworks may develop over time and must be identified as precisely as possible. The classical acoustic testing techniques, being invasive, risk causing permanent damage during periodic inspections. Infrared thermometry offers a promising solution to map faults in artworks. It involves heating the artwork and recording its thermal response using infrared camera. A novel strategy based on pseudo-random binary excitation principle is used in this work to suppress the risks associated with prolonged heating. The objective of this work is to develop an automatic scheme for detecting faults in the captured images. An efficient scheme based on wavelet based subspace decomposition is developed which favors identification of, the otherwise invisible, weaker faults. Two major problems addressed in this work are the selection of the optimal wavelet basis and the subspace level selection. A novel criterion based on regional mutual information is proposed for the latter. The approach is successfully tested on a laboratory based sample as well as real artworks. A new contrast enhancement metric is developed to demonstrate the quantitative efficiency of the algorithm. The algorithm is successfully deployed for both laboratory based and real artworks.

  6. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition

    SciTech Connect

    Hufschmid, Ryan D.; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric M.; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.

    2015-06-03

    We present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting properties. Monodisperse superparamagnetic iron oxide nanoparticles were synthesized by thermal decomposition of three different iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) in organic solvents under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution. In particular, large quantities of excess surfactant (up to 25:1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase is also critical for establishing magnetic properties. As an example, we show the importance of obtaining the required iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled.

  7. Growth of Single-Layer Graphene on Pt(111) by Thermal Decomposition of Propylene

    NASA Astrophysics Data System (ADS)

    Hodges, Gregory; Geisler, Heike; Ventrice, Carl

    2009-10-01

    Graphene, which is a one-atom-thick layer of sp^2-bonded carbon, has sparked keen interest within the scientific community because it is predicted to have a wide range of unique properties. In particular, it has one of the highest known mobilities of all the semiconducting materials. Since its discovery in 2004, there have been several studies of the growth of graphene by various techniques. We have performed studies on the growth of graphene on the catalytically active Pt(111) surface by thermal decomposition of propylene in an ultra-high vacuum (UHV) chamber. Two methods have been used: deposition of a monolayer of propylene followed by annealing in UHV and growth of graphene in an atmosphere of 10-6 Torr of propylene at 500 ^oC. The crystal structure of the graphene films was monitored using low energy electron diffraction (LEED). In addition, we are currently performing high resolution electron energy loss spectroscopy (HREELS) measurements of the electronic structure of the graphene films.

  8. Case study for model validation : assessing a model for thermal decomposition of polyurethane foam.

    SciTech Connect

    Dowding, Kevin J.; Leslie, Ian H.; Hobbs, Michael L.; Rutherford, Brian Milne; Hills, Richard Guy; Pilch, Martin M.

    2004-10-01

    A case study is reported to document the details of a validation process to assess the accuracy of a mathematical model to represent experiments involving thermal decomposition of polyurethane foam. The focus of the report is to work through a validation process. The process addresses the following activities. The intended application of mathematical model is discussed to better understand the pertinent parameter space. The parameter space of the validation experiments is mapped to the application parameter space. The mathematical models, computer code to solve the models and its (code) verification are presented. Experimental data from two activities are used to validate mathematical models. The first experiment assesses the chemistry model alone and the second experiment assesses the model of coupled chemistry, conduction, and enclosure radiation. The model results of both experimental activities are summarized and uncertainty of the model to represent each experimental activity is estimated. The comparison between the experiment data and model results is quantified with various metrics. After addressing these activities, an assessment of the process for the case study is given. Weaknesses in the process are discussed and lessons learned are summarized.

  9. Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed

    PubMed Central

    2013-01-01

    Background The process of thermal decomposition of dichloromethane (DCM) and chlorobenzene (MCB) during the combustion in an inert, bubbling fluidized bed, supported by LPG as auxiliary fuel, have been studied. The concentration profiles of C6H5CI, CH2Cl2, CO2, CO, NOx, COCl2, CHCl3, CH3Cl, C2H2, C6H6, CH4 in the flue gases were specified versus mean bed temperature. Results The role of preheating of gaseous mixture in fluidized bed prior to its ignition inside bubbles was identified as important factor for increase the degree of conversion of DCM and MCB in low bed temperature, in comparison to similar process in the tubular reactor. Conclusions Taking into account possible combustion mechanisms, it was identified that autoignition in bubbles rather than flame propagation between bubbles is needed to achieve complete destruction of DCM and MCB. These condition occurs above 900°C causing the degree of conversion of chlorine compounds of 92-100%. PMID:23289764

  10. Analysis of dynamic effects in solar thermal energy conversion systems

    NASA Technical Reports Server (NTRS)

    Hamilton, C. L.

    1978-01-01

    The paper examines a study the purpose of which is to assess the performance of solar thermal power systems insofar as it depends on the dynamic character of system components and the solar radiation which drives them. Using a dynamic model, the daily operation of two conceptual solar conversion systems was simulated under varying operating strategies and several different time-dependent radiation intensity functions. These curves ranged from smoothly varying input of several magnitudes to input of constant total energy whose intensity oscillated with periods from 1/4 hour to 6 hours.

  11. Heat engine development for solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Pham, H. Q.; Jaffe, L. D.

    1981-01-01

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  12. Competing channels in the thermal decomposition of azidoacetone studied by pyrolysis in combination with molecular beam mass spectrometric techniques.

    PubMed

    O'Keeffe, Patrick; Scotti, Giorgio; Stranges, Domenico; Rodrigues, Paula; Barros, M Teresa; Costa, Maria L

    2008-04-10

    The thermal decomposition of azidoacetone (CH3COCH2N3) was studied using a combined experimental and computational approach. Flash pyrolysis at a range of temperatures (296-1250 K) was used to induce thermal decomposition, and the resulting products were expanded into a molecular beam and subsequently analyzed using electron bombardment ionization coupled to a quadrupole mass spectrometer. The advantages of this technique are that the parent molecules spend a very short time in the pyrolysis zone (20-30 mus) and that the subsequent expansion permits the stabilization of thermal products that are not observable using conventional pyrolysis methods. A detailed analysis of the mass spectra as a function of pyrolysis temperature revealed the participation of five thermal decomposition channels. Ab initio calculations on the stable structures and transition states of the azidoacetone system in combination with an analysis of the dissociative ionization pattern of each channel allowed the identity and mechanism of each channel to be elucidated. At low temperatures (296-800 K) the azide decomposes principally by the loss of N2 to yield the imine (CH3COCHNH), which can further decompose to CH3CO and CHNH. At low and intermediate temperatures a process involving the loss of N2 to yield CH3CHO and HCN is also open. Finally, at high temperatures (800-1250 K) a channel in which the azide decomposes to a stable cyclic amine (CO(CH2)2NH) (after loss of N2) is active. The last channel involves subsequent thermal decomposition of this cyclic amine to ketene (H2CCO) and methanimine (H2CNH). PMID:18341306

  13. Semi-transparent solar energy thermal storage device

    DOEpatents

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  14. Semi-transparent solar energy thermal storage device

    DOEpatents

    McClelland, John F.

    1986-04-08

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  15. Thermal contact electronic packaging in solar pointing space environment

    SciTech Connect

    Colangelo, A.M. ); McKim, G.S. . Space Systems Div.)

    1991-02-01

    A thermal design for a solar pointing space shuttle mission is presented. The apparatus, which will measure solar flux intensity variations, contains sensors and data acquisition electronics which must be maintained within certain temperature constraints. The thermal design, which utilizes parallel heat flow paths and conduction fins to reject dissipated heat, is shown by finite difference thermal modeling to maintain component temperatures within these constraints. In the thermal modeling, arithmetic nodes are used to represent surface radiosity for radiation heat transfer. Also, the concept of mean fin conduction length and effective fin capacitance are introduced as means of simplifying the model representation of the conduction fins. An experiment was conducted to evaluate the chip/fin contact conductance.

  16. Monitoring the formation of carbide crystal phases during the thermal decomposition of 3d transition metal dicarboxylate complexes

    SciTech Connect

    Huba, ZJ; Carpenter, EE

    2014-06-06

    Single molecule precursors can help to simplify the synthesis of complex alloys by minimizing the amount of necessary starting reagents. However, single molecule precursors are time consuming to prepare with very few being commercially available. In this study, a simple precipitation method is used to prepare Fe, Co, and Ni fumarate and succinate complexes. These complexes were then thermally decomposed in an inert atmosphere to test their efficiency as single molecule precursors for the formation of metal carbide phases. Elevated temperature X-ray diffraction was used to identify the crystal phases produced upon decomposition of the metal dicarboxylate complexes. Thermogravimetric analysis coupled with an infrared detector was used to identify the developed gaseous decomposition products. All complexes tested showed a reduction from the starting M2+ oxidation state to the M oxidation state, upon decomposition. Also, each complex tested showed CO2 and H2O as gaseous decomposition products. Nickel succinate, iron succinate, and iron fumarate complexes were found to form carbide phases upon decomposition. This proves that transition metal dicarboxylate salts can be employed as efficient single molecule precursors for the formation of metal carbide crystal phases.

  17. Thermal analysis of the main mirror in space solar telescope

    NASA Astrophysics Data System (ADS)

    Li, Rong; Shi, Hu-li; Chen, Zhi-yuan

    2007-12-01

    For the design of a space solar telescope (SST), the large reflect mirror faces to the sun directly, which is in an abominable thermal condition with seriously thermal distortion. In this paper, it sets up the thermal mode and analyzes the temperature field and thermal distortion of the main mirror of SST. Further more, it uses the thermal design software SINDA/G (System Improved Numerical Differencing Analyzer/Gaski) and the finite element analysis software MSC.Patran to set up different models and various temperature distributions of the main mirror. Though comparing with these models, the paraboloid mirror model is confirmed, which becomes a reference to later thermal analysis of the whole SST.

  18. An experimental and modeling study of the thermal decomposition of siloxanes on alumina

    NASA Astrophysics Data System (ADS)

    Sonoc, Alexandru Catalin

    Siloxanes are contaminants in biogas produced at wastewater treatment plants and landfills. Siloxanes need to be removed to below 0.01 ppm (vol/vol) Si equivalent before biogas can be used as a fuel in solid oxide fuel cells without damaging them. In engines, the tolerance is no higher than 9.1 ppm (vol/vol) Si equivalent. Thermal decomposition in a packed bed of gamma alumina is a method that can remove siloxanes to the requisite tolerances. The kinetics of the decomposition reaction have not been previously studied and a kinetic model is necessary to design adsorption beds. Experiments with synthetic biogas and packed beds of activated gamma alumina were conducted to provide data to which kinetic models were fitted. The synthetic biogas used was a mixture of carbon dioxide and methane contaminated with octamethylcyclotetrasiloxane (D4) at concentrations between 32.3 and 72.7 ppm (vol/vol) Si equivalent. The alumina mass, contact times, and temperatures investigated were 0.0700 g, 5.0 to 8.0 ms, and 307 to 384 °C, respectively. The experiments consisted of exposing a heated bed of alumina, initially free of siloxanes, to a stream of synthetic biogas of constant D4 concentration and monitoring the bed exit D4 concentration. Eleven out of the twelve breakthrough curves obtained were adequately predicted by a model that assumed a first order surface reaction, shrinking core particle kinetics, and plug flow in the bed. There were no statistically significant correlations between quality of fit (sum of weighted squares residuals) and concentration, contact time, or temperature in these eleven experiments. The model was not adequate in predicting the breakthrough curve from the experiment at 307 °C and thus should only be used to predict breakthrough curves at temperatures between 333 and 384 °C. The estimated model parameters were 2.10 for intraparticle tortuosity, 406,000 m3˙m -2˙s-1 for Arrhenius pre-exponential factor, and 81.4 kJ˙mor-1 for activation energy.

  19. Differential Scanning Calorimetry of Volatile-Bearing Iron Minerals Under Mars-Like Pressures: New Insights Into Energetics and Mechanisms of Thermal Decomposition

    NASA Technical Reports Server (NTRS)

    Lin, I.-C.; Lauer, H. V., Jr.; Golden, D. C.; Ming, D. W.

    2000-01-01

    In this study, we have examined the thermal decomposition of two volatile-bearing iron minerals, in particular, lepidocrocite (gamma-FeOOH) and siderite (FeCO3), under Mars-like pressures. Both minerals exhibit different enthalpic events during their decomposition at reduced atmospheric pressures when compared to those at ambient pressure. These differences in energetics are related to the mechanisms of thermal decomposition at Mars-like pressures. Such knowledge regarding the thermal stability of volatile-bearing minerals on Mars will provide useful information for planetary surface processes.

  20. Development of a ReaxFF reactive force field for ammonium nitrate and application to shock compression and thermal decomposition.

    PubMed

    Shan, Tzu-Ray; van Duin, Adri C T; Thompson, Aidan P

    2014-02-27

    We have developed a new ReaxFF reactive force field parametrization for ammonium nitrate. Starting with an existing nitramine/TATB ReaxFF parametrization, we optimized it to reproduce electronic structure calculations for dissociation barriers, heats of formation, and crystal structure properties of ammonium nitrate phases. We have used it to predict the isothermal pressure-volume curve and the unreacted principal Hugoniot states. The predicted isothermal pressure-volume curve for phase IV solid ammonium nitrate agreed with electronic structure calculations and experimental data within 10% error for the considered range of compression. The predicted unreacted principal Hugoniot states were approximately 17% stiffer than experimental measurements. We then simulated thermal decomposition during heating to 2500 K. Thermal decomposition pathways agreed with experimental findings. PMID:24479769

  1. Effect of fast neutron, gamma-ray and combined radiations on the thermal decomposition of ammonium perchlorate single crystals

    NASA Technical Reports Server (NTRS)

    Herley, P. J.; Wang, C. S.; Varsi, G.; Levy, P. W.

    1974-01-01

    The thermal decomposition kinetics have been determined for ammonium perchlorate crystals subjected to a fast neutron irradiation or to a fast neutron irradiation followed by a gamma-ray irradiation. Qualitatively, the radiation induced changes are similar to those obtained in this and in previous studies, with samples exposed only to gamma rays. The induction period is shortened and the rate constants, obtained from an Avrami-Erofeyev kinetic analysis, are modified. The acceleratory period constant increases and the decay period constant decreases. When compared on an equal deposited energy basis, the fast neutron induced changes are appreciably larger than the gamma-ray induced changes. Some, or all, of the fast neutron induced effects might be attributable to the introduction of localized regions of concentrated radiation damage ('spikes') by lattice atom recoils which become thermal decomposition sites when the crystals are heated.

  2. An integrated methodology for the assessment of environmental health implications during thermal decomposition of nano-enabled products

    PubMed Central

    Sotiriou, Georgios A.; Singh, Dilpreet; Zhang, Fang; Wohlleben, Wendel; Chalbot, Marie-Cecile G.; Kavouras, Ilias G.; Demokritou, Philip

    2015-01-01

    The proliferation of nano-enabled products (NEPs) renders human exposure to engineered nanomaterials (ENMs) inevitable. Over the last decade, the risk assessment paradigm for nanomaterials focused primarily on potential adverse effect of pristine, as-prepared ENMs. However, the physicochemical properties of ENMs may be drastically altered across their life-cycle (LC), especially when they are embedded in various NEP matrices. Of a particular interest is the end-of-life scenario by thermal decomposition. The main objective of the current study is to develop a standardized, versatile and reproducible methodology that allows for the systematic physicochemical and toxicological characterization of the NEP thermal decomposition. The developed methodology was tested for an industry-relevant NEP in order to verify its versatility for such LC investigations. Results are indicative of potential environmental health risks associated with waste from specific NEP families and prompt for the development of safer-by-design approaches and exposure control strategies. PMID:26200119

  3. Mathematical modeling of frontal process in thermal decomposition of a substance with allowance for the finite velocity of heat propagation

    SciTech Connect

    Shlenskii, O.F.; Murashov, G.G.

    1982-05-01

    In describing frontal processes of thermal decomposition of high-energy condensed substances, for example detonation, it is common practice to write the equation for the conservation of energy without any limitations on the heat propagation velocity (HPV). At the same time, it is known that in calculating fast processes of heat conduction, the assumption of an infinitely high HPV is not always justified. In order to evaluate the influence of the HPV on the results from calculations of heat conduction process under conditions of a short-term exothermic decomposition of a condensed substance, the solution of the problem of heating a semiinfinite, thermally unstable solid body with boundary conditions of the third kind on the surface has been examined.

  4. An analytical comparison of the efficiency of solar thermal collector arrays with and without external manifolds

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An analytical comparison of the efficiency of solar thermal collector arrays with and without external manifolds is reported. A FORTRAN computer program was written for the computation of the thermal performance of solar thermal collector arrays with and without external manifolds. Arrays constructed from two example solar thermal collectors are computated. Typical external manifold sizes and thermal insulations are presented graphically and are compared with the thermal performance of the collector alone.

  5. Thermocline Thermal Storage Test for Large-Scale Solar Thermal Power Plants

    SciTech Connect

    ST.LAURENT,STEVEN J.

    2000-08-14

    Solar thermal-to-electric power plants have been tested and investigated at Sandia National Laboratories (SNL) since the late 1970s, and thermal storage has always been an area of key study because it affords an economical method of delivering solar-electricity during non-daylight hours. This paper describes the design considerations of a new, single-tank, thermal storage system and details the benefits of employing this technology in large-scale (10MW to 100MW) solar thermal power plants. Since December 1999, solar engineers at Sandia National Laboratories' National Solar Thermal Test Facility (NSTTF) have designed and are constructing a thermal storage test called the thermocline system. This technology, which employs a single thermocline tank, has the potential to replace the traditional and more expensive two-tank storage systems. The thermocline tank approach uses a mixture of silica sand and quartzite rock to displace a significant portion of the volume in the tank. Then it is filled with the heat transfer fluid, a molten nitrate salt. A thermal gradient separates the hot and cold salt. Loading the tank with the combination of sand, rock, and molten salt instead of just molten salt dramatically reduces the system cost. The typical cost of the molten nitrate salt is $800 per ton versus the cost of the sand and rock portion at $70 per ton. Construction of the thermocline system will be completed in August 2000, and testing will run for two to three months. The testing results will be used to determine the economic viability of the single-tank (thermocline) storage technology for large-scale solar thermal power plants. Also discussed in this paper are the safety issues involving molten nitrate salts and other heat transfer fluids, such as synthetic heat transfer oils, and the impact of these issues on the system design.

  6. The surface quasiliquid melt acceleration and the role of thermodynamic phase in the thermal decomposition of crystalline organic explosives

    SciTech Connect

    Henson, Bryan F

    2010-01-01

    We show that melt acceleration in the thermal decomposition of crystalline organic solids is a manifestation of the surface quasiliquid phase. We derive a single universal rate law for melt acceleration that is a simple function of the metastable liquid activity below the melting point, and has a zero order term proportional to the quasiliquid thickness. We argue that the underlying mechanisms of this model will provide a molecular definition for the stability of the class of secondary explosives.

  7. Study of the solid-phase thermal decomposition of NTO using Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS)

    NASA Technical Reports Server (NTRS)

    Minier, L.; Behrens, R.; Burkey, T. J.

    1997-01-01

    The solid phase thermal reaction chemistry of NTO between 190 and 250 C is presently being evaluated by utilizing STMBMS, a technique that enables the authors to measure the vapor pressure of NTO and to explore the reaction mechanisms and chemical kinetics associated with the NTO thermal decomposition process. The vapor pressure of NTO is expressed as Log(sub 10) p(torr) = 12.5137 + 6,296.553(1/t(k)) and the Delta-H(sub subl) = 28.71 +/- 0.07 kcal/mol (120.01 +/- 0.29 kJ/mol). The pyrolysis of NTO results in the formation of gaseous products and a condensed-phase residue. The identity of the major gaseous products and their origin from within the NTO molecules are determined based on the results from pyrolysis of NTO, NTO-3-C-13, NTO-1,2- (15)N2 and NTO-(2)H2. Identification of the products show the major gaseous products to be N2, CO2, NO, HNCO, H2O and some N2O, CO, HCN and NH3. The N2 is mostly derived from the N-1 and N-2 positions with some being from the N-4 and N-1 or N-2 positions. The CO2 is derived from both carbons in the NTO molecule in comparable amounts. The residue has an elemental formula of C(2.1)H(.26)N(2.9)O and FTIR analysis suggests that the residue is polyurea- and polycarbamate- like in nature. The temporal behaviors of the rates of formation of the gaseous products indicate that the overall thermal decomposition of NTO in the temperature range evaluated involves four major processes: (1) NTO sublimation; (2) an apparent solid-solid phase transition between 190 and 195 C; (3) a decomposition regime induced by the presence of exogenous H2O at the onset of decomposition; and (4) a decomposition regime that occurs at the onset of decomposition and continues until the depletion of NTO. Decomposition pathways that are consistent with the data are presented.

  8. A study of the solid-phase thermal decomposition of NTO using simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS)

    SciTech Connect

    Minier, L.; Behrens, R.; Burkey, T.J.

    1997-01-01

    The solid phase thermal reaction chemistry of NTO between 190 and 250 C is presently being evaluated by utilizing STMBMS, a technique that enables the authors to measure the vapor pressure of NTO and to explore the reaction mechanisms and chemical kinetics associated with the NTO thermal decomposition process. The vapor pressure of NTO is expressed as Log{sub 10} p(torr) = 12.5137 + 6,296.553(1/t{sub k}) and the {Delta}H{sub subl} = 28.71 {+-} 0.07 kcal/mol (120.01 {+-} 0.29 kJ/mol). The pyrolysis of NTO results in the formation of gaseous products and a condensed-phase residue. The identity of the major gaseous products and their origin from within the NTO molecules are determined based on the results from pyrolysis of NTO, NTO-3-{sup 13}C, NTO-1,2-{sup 15}N{sub 2} and NTO-{sup 2}H{sub 2}. Identification of the products show the major gaseous products to be N{sub 2}, CO{sub 2}, NO, HNCO, H{sub 2}O and some N{sub 2}O, CO, HCN and NH{sub 3}. The N{sub 2} is mostly derived from the N-1 and N-2 positions with some being from the N-4 and N-1 or N-2 positions. The CO{sub 2} is derived from both carbons in the NTO molecule in comparable amounts. The residue has an elemental formula of C{sub 2.1}H{sub .26}N{sub 2.9}O and FTIR analysis suggests that the residue is polyurea- and polycarbamate-like in nature. The temporal behaviors of the rates of formation of the gaseous products indicate that the overall thermal decomposition of NTO in the temperature range evaluated involves four major processes: (1) NTO sublimation; (2) an apparent solid-solid phase transition between 190 and 195 C; (3) a decomposition regime induced by the presence of exogenous H{sub 2}O at the onset of decomposition; and (4) a decomposition regime that occurs at the onset of decomposition and continues until the depletion of NTO. Decomposition pathways that are consistent with the data are presented.

  9. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  10. Solar cells based on GaAs: Thermal behavior study

    NASA Astrophysics Data System (ADS)

    Giudicelli, Emmanuel; Martaj, Nadia; Dollet, Alain; Perona, Arnaud; Pincemin, Sandrine; Cuminal, Yvan

    2015-09-01

    Current CPV electricity costs are still higher than those of conventional PV (thin films or silicon). This is due to additional components (tracker, Fresnel lens, optical guide…) required for CPV and to a lesser extent, to the very high price of III-V multi-junction solar cells. One way to lower CPV costs is to reduce the size of solar cells and operate at higher concentration [1]. One of the main potential limitations for the use of PV cells at very high solar concentration is cell overheating. The goal of this work is to study and better understand the thermal behavior of PV cells in high solar concentrations conditions (˜ 2000 suns). For that purpose, we have designed and prepared PV cells with platinum resistors included. Temperature measurements performed on these cells in real solar concentration conditions have allowed us to validate thermal simulations of our devices that could be used to optimize the thermal management of the cell under high concentration.

  11. Solar cells based on GaAs: Thermal behavior study

    NASA Astrophysics Data System (ADS)

    Giudicelli, Emmanuel; Martaj, Nadia; Bennacer, Rachid; Dollet, Alain; Perona, Arnaud; Pincemin, Sandrine; Cuminal, Yvan

    2016-03-01

    Current CPV electricity costs are still higher than those of conventional PV (thin films or silicon). This is due to additional components (tracker, Fresnel lens, optical guide…) required for CPV and to a lesser extent, to the very high price of III-V multi-junction solar cells. One way to lower CPV costs is to reduce the size of solar cells and operate at higher concentration [1]. One of the main potential limitations for the use of PV cells at very high solar concentration is cell overheating. The goal of this work is to study and better understand the thermal behavior of PV cells in high solar concentrations conditions (˜ 2000 suns). For that purpose, we have designed and prepared PV cells with platinum resistors included. Temperature measurements performed on these cells in real solar concentration conditions have allowed us to validate thermal simulations of our devices that could be used to optimize the thermal management of the cell under high concentration. At the request of the authors of the paper, an updated version of this article was published on 31 March 2016. In the original article supplied to AIP Publishing an author was omitted as well as a credit line on the last page. These errors have been corrected in the updated republished article.

  12. Thermalization of Heavy Ions in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Tracy, Patrick J.; Kasper, Justin C.; Zurbuchen, Thomas H.; Raines, Jim M.; Shearer, Paul; Gilbert, Jason

    2015-10-01

    Observations of velocity distribution functions from the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer heavy ion composition instrument are used to calculate ratios of kinetic temperature and Coulomb collisional interactions of an unprecedented 50 ion species in the solar wind. These ions cover a mass per charge range of 1-5.5 amu/e and were collected in the time range of 1998-2011. We report the first calculation of the Coulomb thermalization rate between each of the heavy ion (A > 4 amu) species present in the solar wind along with protons (H+) and alpha particles (He2+). From these rates, we find that protons are the dominant source of Coulomb collisional thermalization for heavy ions in the solar wind and use this fact to calculate a collisional age for those heavy ion populations. The heavy ion thermal properties are well organized by this collisional age, but we find that the temperature of all heavy ions does not simply approach that of protons as Coulomb collisions become more important. We show that He2+ and C6+ follow a monotonic decay toward equal temperatures with protons with increasing collisional age, but O6+ shows a noted deviation from this monotonic decay. Furthermore, we show that the deviation from monotonic decay for O6+ occurs in solar wind of all origins, as determined by its Fe/O ratio. The observed differences in heavy ion temperature behavior point toward a local heating mechanism that favors ions depending on their charge and mass.

  13. Chemical energy storage system for SEGS solar thermal power plant

    NASA Astrophysics Data System (ADS)

    Brown, D. R.; Lamarche, J. L.; Spanner, G. E.

    1991-09-01

    In October 1988, a symposium was held in Helendale, California, to discuss thermal energy storage (TES) concepts applicable to medium temperature (200 to 400 C) solar thermal electric power plants, in general, and the solar electric generating system (SEGS) plants developed by Luz International, in particular. Chemical reaction energy storage based on the reversible reaction between metal oxides and metal hydroxides was identified as a leading candidate for meeting Luz International's cost and performance requirements. The principal objectives of this study were to identify the design conditions, requirements, and potential feasibility for a chemical energy storage system applied to a SEGS solar thermal power plant. The remaining sections of this report begin by providing an overview of the chemical reaction energy storage concept and a SEGS solar thermal power plant. Subsequent sections describe the initial screening of alternative evaporation energy sources and the more detailed evaluation of design alternatives considered for the preferred evaporation energy source. The final sections summarize the results, conclusions, and recommendations.

  14. Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…

  15. Applied research in the solar thermal-energy-systems program

    SciTech Connect

    Brown, C. T.; Lefferdo, J. M.

    1981-03-01

    Within the Solar Thermal Research and Advanced Development (RAD) program a coordinated effort in materials research, fuels and chemical research and applied research is being carried out to meet the systems' needs. Each of these three program elements are described with particular attention given to the applied research activity.

  16. Parabolic Dish Solar Thermal Power Annual Program Review Proceedings

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.

    1982-01-01

    The results of activities of the parabolic dish technology and applications development element of DOE's Solar Thermal Energy System Program are presented. Topics include the development and testing of concentrators, receivers, and power conversion units; system design and development for engineering experiments; economic analysis and marketing assessment; and advanced development activities. A panel discussion concerning industrial support sector requirements is also documented.

  17. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  18. Fuels and chemicals from biomass using solar thermal energy

    NASA Astrophysics Data System (ADS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-05-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  19. Fuels and chemicals from biomass using solar thermal energy

    NASA Technical Reports Server (NTRS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  20. TECHNOLOGY ASSESSMENT OF SOLAR THERMAL ENERGY APPLICATIONS IN WASTEWATER TREATMENT

    EPA Science Inventory

    Three major areas were identified for which solar thermal energy usage has potential applicability in Publicly Owned Treatment Works. These areas include space and domestic water heating, anaerobic digester heating, and sludge drying. The report contains a detailed analysis of so...

  1. Thermal storage requirements for parabolic dish solar power plants

    NASA Technical Reports Server (NTRS)

    Wen, L.; Steele, H.

    1980-01-01

    The cost effectiveness of a high temperature thermal storage system is investigated for a representative parabolic dish solar power plant. The plant supplies electrical power in accordance with a specific, seasonally varying demand profile. The solar power received by the plant is supplemented by power from fuel combustion. The cost of electricity generated by the solar power plant is calculated, using the cost of mass-producible subsystems (specifically, parabolic dishes, receivers, and power conversion units) now being designed for this type of solar plant. The trade-off between fuel and thermal storage is derived in terms of storage effectiveness, the cost of storage devices, and the cost of fuel. Thermal storage requirements, such as storage capacity, storage effectiveness, and storage cost are established based on the cost of fuel and the overall objective of minimizing the cost of the electricity produced by the system. As the cost of fuel increases at a rate faster than general inflation, thermal storage systems in the $40 to $70/kWthr range could become cost effective in the near future.

  2. CVD Rhenium Engines for Solar-Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Fortini, Arthur J.; Tuffias, Robert H.; Duffy, Andrew J.; Tucker, Stephen P.

    1999-01-01

    Solar-thermal upper-stage propulsion systems have the potential to provide specific impulse approaching 900 seconds, with 760 seconds already demonstrated in ground testing. Such performance levels offer a 100% increase in payload capability compared to state-of-the-art chemical upper-stage systems, at lower cost. Although alternatives such as electric propulsion offer even greater performance, the 6- to 18- month orbital transfer time is a far greater deviation from the state of the art than the one to two months required for solar propulsion. Rhenium metal is the only material that is capable of withstanding the predicted thermal, mechanical, and chemical environment of a solar-thermal propulsion device. Chemical vapor deposition (CVD) is the most well-established and cost-effective process for the fabrication of complex rhenium structures. CVD rhenium engines have been successfully constructed for the Air Force ISUS program (bimodal thrust/electricity) and the NASA Shooting Star program (thrust only), as well as under an Air Force SBIR project (thrust only). The bimodal engine represents a more long-term and versatile approach to solar-thermal propulsion, while the thrust-only engines provide a potentially lower weight/lower cost and more near-term replacement for current upper-stage propulsion systems.

  3. Better Thermal Insulation in Solar-Array Laminators

    NASA Technical Reports Server (NTRS)

    Burger, D. R.; Knox, J. F.

    1984-01-01

    Glass marbles improve temperature control. Modified vacuum laminator for photovoltaic solar arrays includes thermal insulation made of conventional glass marbles. Marbles serve as insulation for temperature control of lamination process at cure temperatures as high as 350 degrees F. Used to replace original insulation made of asbestos cement.

  4. Potential Applications of Concentrated Solar Thermal Technologies in the Australian Minerals Processing and Extractive Metallurgical Industry

    NASA Astrophysics Data System (ADS)

    Eglinton, Thomas; Hinkley, Jim; Beath, Andrew; Dell'Amico, Mark

    2013-12-01

    The Australian minerals processing and extractive metallurgy industries are responsible for about 20% of Australia's total greenhouse gas (GHG) emissions. This article reviews the potential applications of concentrated solar thermal (CST) energy in the Australian minerals processing industry to reduce this impact. Integrating CST energy into these industries would reduce their reliance upon conventional fossil fuels and reduce GHG emissions. As CST technologies become more widely deployed and cheaper, and as fuel prices rise, CST energy will progressively become more competitive with conventional energy sources. Some of the applications identified in this article are expected to become commercially competitive provided the costs for pollution abatement and GHG mitigation are internalized. The areas of potential for CST integration identified in this study can be classed as either medium/low-temperature or high-temperature applications. The most promising medium/low-grade applications are electricity generation and low grade heating of liquids. Electricity generation with CST energy—also known as concentrated solar power—has the greatest potential to reduce GHG emissions out of all the potential applications identified because of the 24/7 dispatchability when integrated with thermal storage. High-temperature applications identified include the thermal decomposition of alumina and the calcination of limestone to lime in solar kilns, as well as the production of syngas from natural gas and carbonaceous materials for various metallurgical processes including nickel and direct reduced iron production. Hybridization and integration with thermal storage could enable CST to sustain these energy-intensive metallurgical processes continuously. High-temperature applications are the focus of this paper.

  5. The thermal structure of the magnetized solar transition region

    NASA Technical Reports Server (NTRS)

    Mok, Y.; Van Hoven, G.

    1993-01-01

    The detailed thermal structure of the magnetized solar transition region, as measured by its differential emission measure DEM(T), is unknown. Proposals have been made that envision a significant lower-temperature contribution to the energy balance from cross-field (ion) heat flux. In this paper, we describe a self-consistent 2D MHD simulation (including the full effects of anisotropic thermal conduction) of a conceptual model due to Athay (1990). We display the detailed irregular thermal and magnetic structure of the transition region and demonstrate that the predicted DEM agrees with observations, particularly in the T less than 10 exp 5 K regime where previous theories had difficulty.

  6. Thermal effects in the Solar Disk Sextant telescope

    NASA Astrophysics Data System (ADS)

    Spagnesi, Chiara; Vannoni, Maurizio; Molesini, Giuseppe; Righini, Alberto

    2004-02-01

    The Solar Disk Sextant (SDS) is an instrument conceived to monitor the diameter of the Sun and its oscillations. A key component of the SDS is the Beam Splitting Wedge (BSW), whose function is to provide calibration to the geometry of the focal plane. The thermal behavior of the BSW is critical, as it affects the overall performance of the instrument. Modeling the elements of the BSW and the basic thermal processes is shown to account for experimental evidences of defocusing observed in early measurements with a balloon borne prototype. Basic requirements for accurate thermal stabilization on board of the final instrument are derived.

  7. Buffer thermal energy storage for a solar Brayton engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    A study has been completed on the application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine. To aid in the study, a computer program was written for complete transient/stead-state Brayton cycle performance. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. However, the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns.

  8. Multistep Kinetic Behavior of the Thermal Decomposition of Granular Sodium Percarbonate: Hindrance Effect of the Outer Surface Layer.

    PubMed

    Wada, Takeshi; Nakano, Masayoshi; Koga, Nobuyoshi

    2015-09-24

    The kinetics and mechanism of the thermal decomposition of granular sodium percarbonate (SPC), which is used as a household oxygen bleach, were studied by thermoanalytical measurements under systematically changing conditions and morphological observation of the reactant solids at different reaction stages. A physico-geometrical kinetic behavior of the reaction that occurs in a core-shell structure composed of an outer surface layer and internal aggregates of SPC crystalline particles was illustrated through detailed kinetic analyses using the kinetic deconvolution method. Simultaneously, the hazardous nature of SPC as a combustion improver was evaluated on the basis of the kinetic behavior of the thermal decomposition. It was found that the outer surface layers of the SPC granules hinder the diffusional removal of product gases generated by the thermal decomposition of the internal SPC crystalline particles. The reaction rate decelerates because of an increase in the internal gaseous pressure as the reaction advances. However, the reaction rate accelerates once crack formation occurs in the outer surface layer at the midpoint of the reaction. Therefore, the overall reaction was empirically demonstrated to consist of two overlapping reaction steps owing to the changes in the self-generated reaction conditions in the interior of the SPC granules. PMID:26372469

  9. The role of petrography on the thermal decomposition and burnability of limestones used in industrial cement clinker

    NASA Astrophysics Data System (ADS)

    Marinoni, Nicoletta; Bernasconi, Andrea; Della Porta, Giovanna; Marchi, Maurizio; Pavese, Alessandro

    2015-12-01

    The present research examines the influence of the petrographic features on the thermal decomposition and burnability of three limestones, the main raw materials for Portland cement-making. A detailed characterisation of the limestones has been performed by means of optical microscopy and X-Ray Powder Diffraction. The carbonate thermal decomposition was conducted under isothermal conditions by means of in situ High Temperature X-Ray Powder Diffraction and the heated samples were further investigated by Scanning Electron Microscopy. Three kiln feeds were then prepared and submitted to burning trials and the temperature of occurrence of the main clinker phases was investigated as well as the content of the uncombined CaO in the heated samples was determined by using the Franke method. The results attest that the microfabric, a combination of depositional and diagenetic features, drives the kinetics of the thermal decomposition of the selected limestones as well as it appears to influence the temperature of crystallisation of the main clinker phases and the uncombined CaO content in the final clinker. In particular, the limestone with the lowest micrite to sparite ratio (1) exhibits the lowest Apparent Activation Energy ( E a ) value and the highest rate of calcination and (2) requires a lower temperature for observing the clinker phases crystallisation and has the lowest content of uncombined CaO in the final clinker, thus reflecting a high burnability of the limestone.

  10. Terrestrial Solar Thermal Power Plants: On the Verge of Commercialization

    NASA Astrophysics Data System (ADS)

    Romero, M.; Martinez, D.; Zarza, E.

    2004-12-01

    Solar Thermal Power Plants (STPP) with optical concentration technologies are important candidates for providing the bulk solar electricity needed within the next few decades, even though they still suffer from lack of dissemination and confidence among citizens, scientists and decision makers. Concentrating solar power is represented nowadays at pilot-scale and demonstration-scale by four technologies, parabolic troughs, linear Fresnel reflector systems, power towers or central receiver systems, and dish/engine systems, which are ready to start up in early commercial/demonstration plants. Even though, at present those technologies are still three times more expensive than intermediate-load fossil thermal power plants, in ten years from now, STPP may already have reduced production costs to ranges competitive. An important portion of this reduction (up to 42%) will be obtained by R&D and technology advances in materials and components, efficient integration schemes with thermodynamic cycles, highly automated control and low-cost heat storage systems.

  11. Small solar thermal electric power plants with early commercial potential

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  12. Thermal distortion analysis of the space station solar dynamic concentrator

    NASA Technical Reports Server (NTRS)

    Trudell, Jeffrey J.; Dalsania, Vithal; Baumeister, Joseph F.; Jefferies, Kent S.

    1988-01-01

    A method was developed to evaluate the thermal distortion of the Space Station Solar Dynamic Concentrator and the effects of thermal distortion on concentrator optical performance. The analytical method includes generating temperature distributions with TRASYS and SINDA models, interfacing the SINDA results with the SINDA-NASTRAN Interface Program (SNIP), calculating thermal distortion with a NASTRAN/PATRAN finite element model, and providing flux distribution maps within the receiver with the ray tracing OFFSET program. Temperature distributions, thermally induced slope errors, and flux distribution maps within the receiver are discussed. Results during a typical orbit indicate that temperatures of the hexagonal panels and triangular facets range between -18 and 99 C (-1 to 210 F), facet rotations are less than 0.2 mrad, and a change in facet radius due to thermal flattening is less than 5 percent. The predicted power loss with thermal distortion effects was less than 0.3 percent. The thermal distortion of the Solar Dynamic concentrator has negligible effect on the flux distribution within the receiver cavity.

  13. Thermal distortion analysis of the Space Station solar dynamic concentrator

    NASA Technical Reports Server (NTRS)

    Trudell, Jeffery J.; Jefferies, Kent S.; Baumeister, Joseph F.; Dalsania, Vithal

    1988-01-01

    A method was developed to evaluate the thermal distortion of the Space Station Solar Dynamic Concentrator and the effects of thermal distortion on concentrator optical performance. The analytical method includes generating temperature distributions with TRASYS and SINDA models, interfacing the SINDA results with the SINDA-NASTRAN Interface Program (SNIP), calculating thermal distortion with a NASTRAN/PATRAN finite element model, and providing flux distribution maps within the receiver with the ray tracing OFFSET program. Temperature distributions, thermally induced slope errors, and flux distribution maps within the receiver are discussed. Results during a typical orbit indicate that temperatures of the hexagonal panels and triangular facets range between -18 and 99 C (-1 to 210 F), facet rotations are less than 0.2 mrad, and a change in facet radius due to thermal flattening is less than 5 percent. The predicted power loss with thermal distortion effects was less than 0.3 percent. The thermal distortion of the Solar Dynamic concentrator has negligible effect on the flux distribution within the receiver cavity.

  14. A thermal/nonthermal approach to solar flares

    NASA Technical Reports Server (NTRS)

    Benka, Stephen G.

    1991-01-01

    An approach for modeling solar flare high-energy emissions is developed in which both thermal and nonthermal particles coexist and contribute to the radiation. The thermal/nonthermal distribution function is interpreted physically by postulating the existence of DC sheets in the flare region. The currents then provide both primary plasma heating through Joule dissipation, and runaway electron acceleration. The physics of runaway acceleration is discussed. Several methods are presented for obtaining approximations to the thermal/nonthermal distribution function, both within the current sheets and outside of them. Theoretical hard x ray spectra are calculated, allowing for thermal bremsstrahlung from the heated plasma electrons impinging on the chromosphere. A simple model for hard x ray images of two-ribbon flares is presented. Theoretical microwave gyrosynchrotron spectra are calculated and analyzed, uncovering important new effects caused by the interplay of thermal and nonthermal particles. The theoretical spectra are compared with observed high resolution spectra of solar flares, and excellent agreement is found, in both hard x rays and microwaves. The future detailed application of this approach to solar flares is discussed, as are possible refinements to this theory.

  15. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  16. AEETES: A solar reflux receiver thermal performance numerical model

    NASA Astrophysics Data System (ADS)

    Hogan, R. E., Jr.

    1991-12-01

    Reflux solar receivers for dish-Stirling electric power generation systems are currently being investigated by several companies and laboratories. In support of these efforts, the AEETES thermal performance numerical model has been developed to predict thermal performance of pool-boiler and heat-pipe reflux receivers. The formulation of the AEETES numerical model, which is applicable to axisymmetric geometries with asymmetric incident fluxes, is presented in detail. Thermal efficiency predictions agree to within 4.1 percent with test data from on-sun tests of a pool-boiler reflux receiver. Predicted absorber and sidewall temperatures agree with thermocouple data to within 3.3. percent and 7.3 percent, respectively. The importance of accounting for the asymmetric incident fluxes is demonstrated in comparisons with predictions using azimuthally averaged variables. The predicted receiver heat losses are characterized in terms of convective, solar and infrared radiative, and conductive heat transfer mechanisms.

  17. Thermal decomposition of CH{sub 2}Cl{sub 2}

    SciTech Connect

    Lim, K.P.; Michael, J.V.

    1994-06-01

    The thermal decomposition of CH{sub 2}Cl{sub 2} has been investigated in reflected shock waves experiments at temperatures between 1400--2300 K and at three different loading pressures with various initial CH{sub 2}Cl{sub 2} concentrations. The resulting product Cl-atoms are monitored by the atomic resonance absorption spectrometer (ARAS) technique. A reaction mechanism is used to numerically simulate the measured Cl-atom profiles in order to obtain rate constants for the two primary dissociation reactions: (1) CH{sub 2}Cl{sub 2} {yields} CHCl + HCl and (2) CH{sub 2}Cl{sub 2} {yields} CH{sub 2}Cl + Cl. The experimental second-order Arrhenius expressions for the two reactions are k{sub 1}/[Kr] = 2.26 {times} 10{sup {minus}8} exp(-29007 K/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1} and k{sub 2}/[Kr] = 6.64 {times} 10{sup {minus}9} exp(-28404 K/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}, with standard deviations of {plus_minus}43% and 40%, respectively. Results are compared to theoretical calculations using the semi-empirical Tore formalism. The best fits to the experimental data obtained with threshold energy and collisional energy transfer parameters of E{sub 10}{sup o} = 73.0 kcal mole{sup {minus}1} and {Delta}E{sub 1down} = 630 cm{sup {minus}1}. Similar values for reaction (2) are E{sub 20}{sup o} = {Delta}H{sub 20}{sup o} = 78.25 kcal mole{sup {minus}1} and {delta}E{sub 2down} = 394 cm{sup {minus}1}.

  18. Direct observation of roaming radicals in the thermal decomposition of acetaldehyde.

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J. V.; Klippenstein, S. J.; Chemical Sciences and Engineering Division

    2010-01-21

    The thermal dissociation of acetaldehyde has been studied with the reflected shock tube technique using H(D)-atom atomic resonance absorption spectrometry detection. The use of an unreversed light source yields extraordinarily sensitive H atom detection. As a result, we are able to measure both the total decomposition rate and the branching to radical versus molecular channels. This branching provides a direct measure of the contribution from the roaming radical mechanism since the contributions from the usual tight transition states are predicted by theory to be negligible. The experimental observations also provide a measure of the rate coefficient for H + CH{sub 3}CHO. Another set of experiments employing C{sub 2}H{sub 5}I as an H-atom source provides additional data for this rate coefficient that extends to lower temperature. An evaluation of the available experimental results for H + CH{sub 3}CHO can be expressed by a three-parameter Arrhenius expression as k = 7.66 x 10{sup -20}T{sup 2.75} exp((-486 K)/T) cm{sup 3} molecule{sup -1} s{sup -1} (298-1415 K). Analogous experiments employing C{sub 2}D{sub 5}I as a D-atom source allow for the study of the isotopically substituted reaction. The present experiments are the only direct measure for this reaction rate constant, and the results can be expressed by an Arrhenius expression as k = 5.20 x 10{sup -10} exp((-4430 K)/T) cm{sup 3} molecule{sup -1} s{sup -1} (1151-1354 K). The H/D + CH{sub 3}CHO reactions are also studied with ab initio transition-state theory, and the results are in remarkably good agreement with the current experimental data.

  19. The thermal decomposition of C{sub 2}H{sub 5}I

    SciTech Connect

    Kumaran, S.S.; Su, M.C.; Lim, K.P.; Michael, J.V.

    1996-06-01

    The high temperature thermal dissociation of C{sub 2}H{sub 5}I has been characterized in this study. Kinetics and overall yield experiments were performed over the temperature range, 946--2,046 K, using the atomic resonance absorption spectrometric technique (ARAS) for the temporal detection of both product H- and I-atoms behind reflected shock waves. The C{sub 2}H{sub 5}I decomposition proceeds by both C-I fission and HI elimination. Rate constants for the C-I fission process, measured over the temperature and density ranges, 946--1,303 K and 0.82--4.4 {times} 10{sup 18} cm{sup {minus}3}, respectively, can be well represented to within {+-}37% by the first-order expression: k = 6.34 {times} 10{sup 9} exp({minus}15,894 K/T) s{sup {minus}1}. Overall yield data for atomic product gave a branching ratio for C-I fission of (0.87 {+-} 0.11) suggesting that 13% of the reaction proceeds through molecular HI elimination. This conclusion is consistent with earlier studies that showed C-I fission to be the dominant dissociation channel. The temperature and pressure dependences of the dissociation rate constants and the yield data have been theoretically described using three formulations of unimolecular rate theory. The best description was obtained with a full Master`s equation analysis. However, all three calculations confirm that the HI elimination pathway is lower lying than the C-I fission process by {approximately} 3 kcal/mole.

  20. Thermal Decomposition of NCN: Shock-Tube Study, Quantum Chemical Calculations, and Master-Equation Modeling.

    PubMed

    Busch, Anna; González-García, Núria; Lendvay, György; Olzmann, Matthias

    2015-07-16

    The thermal decomposition of cyanonitrene, NCN, was studied behind reflected shock waves in the temperature range 1790-2960 K at pressures near 1 and 4 bar. Highly diluted mixtures of NCN3 in argon were shock-heated to produce NCN, and concentration-time profiles of C atoms as reaction product were monitored with atomic resonance absorption spectroscopy at 156.1 nm. Calibration was performed with methane pyrolysis experiments. Rate coefficients for the reaction (3)NCN + M → (3)C + N2 + M (R1) were determined from the initial slopes of the C atom concentration-time profiles. Reaction R1 was found to be in the low-pressure regime at the conditions of the experiments. The temperature dependence of the bimolecular rate coefficient can be expressed with the following Arrhenius equation: k1(bim) = (4.2 ± 2.1) × 10(14) exp[-242.3 kJ mol(-1)/(RT)] cm(3) mol(-1) s(-1). The rate coefficients were analyzed by using a master equation with specific rate coefficients from RRKM theory. The necessary molecular data and energies were calculated with quantum chemical methods up to the CCSD(T)/CBS//CCSD/cc-pVTZ level of theory. From the topography of the potential energy surface, it follows that reaction R1 proceeds via isomerization of NCN to CNN and subsequent C-N bond fission along a collinear reaction coordinate without a tight transition state. The calculations reproduce the magnitude and temperature dependence of the rate coefficient and confirm that reaction R1 is in the low-pressure regime under our experimental conditions. PMID:25853321

  1. Performance contracting for parabolic trough solar thermal systems

    SciTech Connect

    Brown, H.; Hewett, R.; Walker, A.; Gee, R.; May, K.

    1997-12-31

    Several applications of solar energy have proven viable in the energy marketplace, due to competitive technology and economic performance. One example is the parabolic trough solar collectors, which use focused solar energy to maximize efficiency and reduce material use in construction. Technical improvements are complemented by new business practices to make parabolic trough solar thermal systems technically and economically viable in an ever widening range of applications. Technical developments in materials and fabrication techniques reduce production cost and expand applications from swimming pool heating and service hot water, to higher-temperature applications such as absorption cooling and process steam. Simultaneously, new financing mechanisms such as a recently awarded US Department of Energy (DOE) Federal Energy Management Program (FEMP) indefinite quantity Energy Savings Performance Contract (Super ESPC) facilitate and streamline implementation of the technology in federal facilities such as prisons and military bases.

  2. Buffer thermal energy storage for an air Brayton solar engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  3. Fabrication of Powder Metallurgy Pure Ti Material by Using Thermal Decomposition of TiH2

    NASA Astrophysics Data System (ADS)

    Mimoto, Takanori; Nakanishi, Nozomi; Umeda, Junko; Kondoh, Katsuyoshi

    Titanium (Ti) and titanium alloys have been interested as an engineering material because they are widely used across various industrial applications, for example, motorcycle, automotive and aerospace industries, due to their light weight, high specific strength and superior corrosion resistance. Ti materials are particularly significant for the aircraft using carbon/carbon (C/C) composites, for example, carbon fiber reinforced plastics (CFRP), because Ti materials are free from the problem of contact corrosion between C/C composites. However, the applications of Ti materials are limited because of their high cost. From a viewpoint of cost reduction, cost effective process to fabricate Ti materials is strongly required. In the present study, the direct consolidation of titanium hydride (TiH2) raw powders in solid-state was employed to fabricate pure Ti bulk materials by using thermal decomposition of TiH2. In general, the production cost of Ti components is expensive due to using commercially pure (CP) Ti powders after dehydrogenation. On the other hand, the novel process using TiH2 powders as starting materials is a promising low cost approach for powder metallurgy (P/M) Ti products. Furthermore, this new process is also attractive from a viewpoint of energy saving because the dehydrogenation is integrated into the sintering process. In this study, TiH2 raw powders were directly consolidated by conventional press technique at 600 MPa to prepare TiH2 powder compacted billets. To thermally decompose TiH2 and obtain sintered pure Ti billets, the TiH2 powder billets were heated in the integrated sintering process including dehydrogenation. The hot-extruded pure Ti material, which was heat treated at 1273 K for 180 min in argon gas atmosphere, showed tensile strength of 701.8 MPa and elongation of 27.1%. These tensile properties satisfied the requirements for JIS Ti Grade 4. The relationship between microstructures, mechanical properties response and heat treatment

  4. Thermal decomposition of UO{sub 3}-2H{sub 2}0

    SciTech Connect

    Flament, T.A.

    1998-02-26

    The first part of the report summarizes the literature data regarding the uranium trioxide water system. In the second part, the experimental aspects are presented. An experimental program has been set up to determine the steps and species involved in decomposition of uranium oxide di-hydrate. Particular attention has been paid to determine both loss of free water (moisture in the fuel) and loss of chemically bound water (decomposition of hydrates). The influence of water pressure on decomposition has been taken into account.

  5. Moessbauer spectroscopy evidence of a spinodal mechanism for the thermal decomposition of fcc FeCu

    SciTech Connect

    Crespo, P. |; Barro, M.J.; Hernando, A.; Escorial, A.G.; Menendez, N.; Tornero, J.D.; Barandiaran, J.M.

    1998-07-24

    Moessbauer spectroscopy shows the existence of compositional fluctuations, where different Fe environments coexist, during decomposition upon heat treatment of metastable f.c.c. FeCu solid solution. The presence of isolated Fe atoms in the Cu matrix, f.c.c. Fe{sub rich}Cu, f.c.c. FeCu{sub rich} and b.c.c. Fe has been detected in early decomposition stages. At later decomposition stages, low temperature Moessbauer spectroscopy indicates the presence of a broad distribution of Curie temperatures, coexisting with isolated Fe atoms in the Cu matrix, f.c.c. Fe and b.c.c. Fe.

  6. Kinetic analysis of the thermal decomposition of gamma-irradiated nickel oxalate

    NASA Astrophysics Data System (ADS)

    Mahfouz, R. M.; Abd-El-Wahab, M. M. M.

    1994-03-01

    The isothermal decomposition of un-irradiated and pre-γ-irradiated dehydrated nickel oxalate has been studied in the temperature range 250-365°C. Irradiation appears to increase the number of potential nuclei-forming sites without modification of the mechanism both for un-irradiated and has been shown to proceed by a nucleation and growth mechanism both for un-irradiated and pre-γ-irradiated samples of nickel oxalate. Application of Vand-Primak method for analysis of the decomposition data and calculation of activation energies of the decomposition process gives a good fit with that calculated using Arrhenious equation.

  7. Thermal Decomposition of an Impure (Roxbury) Siderite: Relevance to the Presence of Chemically Pure Magnetite Crystals in ALH84001 Carbonate Disks

    NASA Astrophysics Data System (ADS)

    Thomas-Keprta, K. L.; Clemett, S. J.; McKay, D. S.; Gibson, E. K.; Wentworth, S. J.

    2009-03-01

    Thermal decomposition of Roxbury siderite resulted in the formation of impure (Mg,Mn)-ferrites. These findings, which are supported by kinetic and thermodynamic equilibrium modeling studies, are in stark contrast to the chemically pure ALH 84001 magnetite.

  8. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    NASA Technical Reports Server (NTRS)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  9. Mathematical modeling and investigations of the processes of heat conduction of ammonium perchlorate with phase transitions in thermal decomposition and gasification

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. V.; Lagun, I. M.; Polyakov, E. P.

    2013-01-01

    Transient heat-conduction processes occurring in the period of thermal decomposition and gasification of a crystalline oxidant — ammonium perchlorate — have been investigated and analyzed on the basis of the developed mathematical model.

  10. Solar Power Satellite Thermal Control Approach

    NASA Astrophysics Data System (ADS)

    Sacchi, E.; Cassisa, G.; Gottero, M.

    2004-12-01

    The concept of generating solar power in space and transmitting it to earth or any other desired destination such as a planet, moon, or to charge a space vehicle via microwaves, stems from a wide variety of human needs and necessities. It is now a well-known fact that world population increases at a very rapid rate, nearly 80 millions or more per year, and the world-wide energy demand seems to double in the course of the present century. If technology has to advance at the present rate, in phase with high living standards, energy growth must not lag behind. These estimates are based on the population growth rate in the developing countries and the simultaneous increase in per capita energy consumption in these countries, coupled with economical boost. In most of the underdeveloped countries energy needs are of small scales, faraway from the power distribution line and can be very easily satisfied by harnessing solar energy. Furthermore, the Earth temperature has increased by 0.5° to 1° F during the past century. This rise in temperature is believed to have been caused by the use of oil, coal, and natural gas (fossil fuels) for transportation and energy production. Actually, fossil fuel combustion-based power plants are the dominant sources for energy demands. Therefore, increased power production will accelerate the production of greenhouse gases (predominantly CO2). To cope with their energy needs, countries could be engaged in the use of nuclear energy, which could accelerate the diffusion of nuclear arms as a bye- product.

  11. Thermal design of spacecraft solar arrays using a polyimide foam

    NASA Astrophysics Data System (ADS)

    Bianco, N.; Iasiello, M.; Naso, V.

    2015-11-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics®. Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared.

  12. Determination of Thermal State of Charge in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Glakpe, E. K.; Cannon, J. N.; Hall, C. A., III; Grimmett, I. W.

    1996-01-01

    The research project at Howard University seeks to develop analytical and numerical capabilities to study heat transfer and fluid flow characteristics, and the prediction of the performance of solar heat receivers for space applications. Specifically, the study seeks to elucidate the effects of internal and external thermal radiation, geometrical and applicable dimensionless parameters on the overall heat transfer in space solar heat receivers. Over the last year, a procedure for the characterization of the state-of-charge (SOC) in solar heat receivers for space applications has been developed. By identifying the various factors that affect the SOC, a dimensional analysis is performed resulting in a number of dimensionless groups of parameters. Although not accomplished during the first phase of the research, data generated from a thermal simulation program can be used to determine values of the dimensionless parameters and the state-of-charge and thereby obtain a correlation for the SOC. The simulation program selected for the purpose is HOTTube, a thermal numerical computer code based on a transient time-explicit, axisymmetric model of the total solar heat receiver. Simulation results obtained with the computer program are presented the minimum and maximum insolation orbits. In the absence of any validation of the code with experimental data, results from HOTTube appear reasonable qualitatively in representing the physical situations modeled.

  13. Analysis of thermal comfort in a passive solar heated residence

    NASA Astrophysics Data System (ADS)

    Liu, S. T.

    1981-11-01

    The thermal comfort conditions in a passive solar heated residence of the popular Trombe Wall configuration were investigated. The indoor thermal environment of an actual passive solar residence, using the typical meteorological year (TMY) weather data tape as input as three locations of different climatic conditions was simulated. The relevant thermal comfort parameters such as the space air temperature, mean radiant temperatures, operative temperatures, radiant temperature asymmetry, and temperature drifts of the occupied zone, were computed for a prime heating month, a transition month and a prime cooling month of a typical weather year at the three locations. It is found that for the specific passive solar residence analyzed, the upper boundary of the comfort envelope can be exceeded (overheating) during a typical clear day in the transition month of April unless a change of clothing to summer wear is made during the daytime high solar radiation house. The upper boundary will be exceeded during a typical clear day in the prime cooling month of August for a person in typical summer clothing at all three locations unless the average air movement in the occupied zone is increased above the level of natural circulation, or the thermostat setting is reduced to a lower level, or both.

  14. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    SciTech Connect

    Kumar, Pankaj; Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.; Feron, Krishna

    2014-05-12

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.

  15. Design Considerations for Space Transfer Vehicles Using Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Emrich, William J.

    1995-01-01

    The economical deployment of satellites to high energy earth orbits is crucial to the ultimate success of this nations commerical space ventures and is highly desirable for deep space planetary missions requiring earth escape trajectories. Upper stage space transfer vehicles needed to accomplish this task should ideally be simple, robust, and highly efficient. In this regard, solar thermal propulsion is particularly well suited to those missions where high thrust is not a requirement. The Marshall Space Flight Center is , therefore, currently engaged in defining a transfer vehicle employing solar thermal propulsion capable of transferring a 1000 lb. payload from low Earth orbit (LEO) to a geostationary Earth orbit (GEO) using a Lockheed launch vehicle (LLV3) with three Castors and a large shroud. The current design uses liquid hydrogen as the propellant and employs two inflatable 16 x 24 feet eliptical off-axis parabolic solar collectors to focus sunlight onto a tungsten/rhenium windowless black body type absorber. The concentration factor on this design is projected to be approximately 1800:1 for the primary collector and 2.42:1 for the secondary collector for an overall concentration factor of nearly 4400:1. The engine, which is about twice as efficient as the best currently available chemical engines, produces two pounds of thrust with a specific impulse (Isp) of 860 sec. Transfer times to GEO are projected to be on the order of one month. The launch and deployed configurations of the solar thermal upper stage (STUS) are depicted.

  16. Effect of nanoclay loading on the thermal decomposition of nanoclay polyurethane elastomers obtained by bulk polymerization

    NASA Astrophysics Data System (ADS)

    Quagliano, Javier; Bocchio, Javier

    2014-08-01

    Thermoplastic urethane (TPU) nanocomposite was prepared successfully by dispersion at high shear stress of the nanoclay in polyol and further bulk polymerization. Our results from DSC studies showed an increase in decomposition temperature when nanoclay was loaded at 3,5% on elastomeric PU made from TDI, PTMEG and BDO, while not when nanoclay content was lower (1,5%). The exotherms at 370-375°C could be adscribed to the decomposition of the hard segments according to previous work.

  17. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    NASA Technical Reports Server (NTRS)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  18. Thermal Cycling of Mir Cooperative Solar Array (MCSA) Test Panels

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint US/Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA is currently being used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station (ISS), which will use arrays based on the same solar cells used in the MCSA. The US supplied the photovoltaic power modules (PPMs) and provided technical and programmatic oversight while Russia provided the array support structures and deployment mechanism and built and tested the array. In order to ensure that there would be no problems with the interface between US and Russian hardware, an accelerated thermal life cycle test was performed at NASA Lewis Research Center on two representative samples of the MCSA. Over an eight-month period (August 1994 - March 1995), two 15-cell MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles (+80 C to -100 C), equivalent to four years on-orbit. The test objectives, facility, procedure and results are described in this paper. Post-test inspection and evaluation revealed no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early as an artifact of the test and removed from consideration. The interesting nature of the performance degradation caused by this one cell, which only occurred at elevated temperatures, is discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the US solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit).

  19. Performance penalties caused by thermal coupling in solar piping loops

    SciTech Connect

    Brunger, A.P.; Hollands, K.G.T.; Anthony, M.A.; Zielonko, D.; Liang, C.

    1996-10-01

    Solar heating systems often employ conduits to carry cool fluid to the collector array and to carry the heated fluid back to the storage tank. In systems in which these two conduits are bundled together in one cover (in what has come to be known as the `life-line`) there is a thermal performance penalty caused by heat transfer from the hot conduit to the cold conduit. This cross heat transfer results in a penalty in system performance, and this paper is about evaluating this penalty. We show that the standard Hottel-Whillier-Bliss (HWB) equation can be modified to simultaneously take into account both the pipe heat losses to the ambient environment and the cross heat transfer between the hot and cold streams. Parameters in these equations are the thermal resistances between the fluids and between each fluid and the ambient. Methods are presented for both calculating and measuring these thermal resistances. We carry out sample calculations of the parameters in the modified HWB equation for a representative solar DHW system equipped with either of two different life-lines of commercial design. System simulations using these parameters reveal that the thermal effects of these life-lines are to reduce the net delivered solar energy by 6-14%, and that heat loss to ambient is more detrimental to the system performance than heat transfer from the hot to the cold conduit. 8 refs., 4 figs., 2 tabs.

  20. A fluorescence detection scheme for capillary electrophoresis of N-methylcarbamates with on-column thermal decomposition and derivatization

    PubMed

    Wu; Lee; Li

    2000-04-01

    This paper describes a fluorescence detection method for N-methylcarbamate (NMC) pesticides in micellar electrokinetic chromatography (MEKC) separation. Fulfillment of the fluorescence detection hinged on the discovery that quaternary ammonium surfactants (particularly cetyltrimethylammonium bromide, CTAB), besides serving as hydrophobic pseudophases in MEKC, are also capable of catalyzing the thermal decomposition of NMCs to liberate methylamine. Thus, a multifunctional MEKC medium consisting of borate buffer, CTAB, and derivatizing components (o-phthaldialdehyde/2-mercaptoethanol) was formulated, which allowed first normal MEKC separation, subsequent thermal decomposition, and finally in situ derivatization of NMCs. With careful optimization of the operation conditions, fluorescence detection of 10 NMC compounds was achieved, with column efficiencies typically higher than 50,000 and detection limits better than 0.5 ppm. The present work represents an unprecedented effort in capillary electrophoresis (CE), in which an intact capillary was consecutively utilized as chambers for separation, decomposition, derivatization, and detection, without involving any interfacing features. The success in the implementation of such a detection system resulted in strikingly simple instrumentation as compared with the traditional postcolumn fluorescence determination of NMCs by reversed-phase HPLC. Similar protocols should be workable in the determination of a wide range of pesticides and pharmaceuticals in CE formats. PMID:10763238

  1. Photovoltaics and solar thermal conversion to electricity - Status and prospects

    NASA Technical Reports Server (NTRS)

    Alper, M. E.

    1979-01-01

    Photovoltaic power system technology development includes flat-plate silicon solar arrays and concentrating solar cell systems, which use silicon and other cell materials such as gallium arsenide. System designs and applications include small remote power systems ranging in size from tens of watts to tens of kilowatts, intermediate load-center applications ranging in size from tens to hundreds of kilowatts, and large central plant installations, as well as grid-connected rooftop applications. The thermal conversion program is concerned with large central power systems and small power applications.

  2. Site selection for concentrated solar thermal systems in Hawaii

    SciTech Connect

    Seki, A.

    1987-01-01

    This report identifies ares on the five major islands (Oahu, Maui, Molakai, Hawaii, and Kauai) that have the potential for concentrating solar thermal applications. The locations are based on existing solar insolation (mostly global and some direct normal) data, other meteorological information, land use, potential end-use, and existing facilities. These areas are: - Western coast of Oahu, especially near Kahe Point - Maui plains area - South-Central Molokai - Kona coast of the Big Island, especially Natural Energy Laboratory of Hawaii - Western and southern areas of Kauai. Monitoring stations are recommended at some of these sites to obtain direct normal insolation data for future evaluation.

  3. Dynamic Characterization of an Inflatable Concentrator for Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Leigh, Larry M.; Tinker, Michael L.; McConnaughey, Paul (Technical Monitor)

    2002-01-01

    Solar-thermal propulsion is a concept for producing thrust sufficient for orbital transfers and requires innovative, lightweight structures. This note presents a description of an inflatable concentrator that consists of a torus, lens simulator, and three tapered struts. Modal testing was discussed for characterization and verification of the solar concentrator assembly. Finite element shell models of the concentrator were developed using a two-step nonlinear approach, and results were compared to test data. Reasonable model-to-test agreement was achieved for the torus, and results for the concentrator assembly were comparable to the test for several modes.

  4. Thermal performance of honeywell double covered liquid solar collector

    NASA Technical Reports Server (NTRS)

    Losey, R.

    1977-01-01

    The test procedures and results obtained during an evaluation test program to determine the outdoor performance characteristics of the Honeywell liquid solar collector are presented. The program was based on the thermal evaluation of a Honeywell double covered liquid solar collection. Initial plans included the simultaneous testing of a single covered Honeywell collector. During the initial testing, the single covered collector failed due to leakage; thus, testing continued on the double covered collector only. To better define the operating characteristics of the collector, several additional data points were obtained beyond those requested.

  5. Thermal control of a solar sail. [for Halley's Comet rendezvous

    NASA Technical Reports Server (NTRS)

    Stimpson, L. D.; Greenfield, M. L.; Jaworski, W.; Wolf, F.

    1978-01-01

    Thermal control concepts for the square and the heliogyro solar sail designs under consideration for a Halley's Comet rendezvous mission are presented. The mission, involving a 1982 launch, navigation to a 0.25-AU cranking orbit about the sun in order to develop a retrograde orbit, and rendezvous with the comet in 1986, would subject surfaces of the sail vehicle to solar constant values ranging from 16 to 0.1. A highly reflective coating to produce propulsive force is needed for one surface of the sail, while the other surface requires a highly emittive coating. The problem of maintaining the sail wrinkle-free is discussed.

  6. Structural investigation of oxovanadium(IV) Schiff base complexes: X-ray crystallography, electrochemistry and kinetic of thermal decomposition

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Savaripoor, Nooshin; Dusek, Michal; Eigner, Vaclav; Shorkaei, Mohammad Ranjkesh; Sedaghat, Moslem

    2015-02-01

    A series of new VO(IV) complexes of tetradentate N2O2 Schiff base ligands (L1-L4), were synthesized and characterized by FT-IR, UV-vis and elemental analysis. The structure of the complex VOL1ṡDMF was also investigated by X-ray crystallography which revealed a vanadyl center with distorted octahedral coordination where the 2-aza and 2-oxo coordinating sites of the ligand were perpendicular to the "-yl" oxygen. The electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good correlation was observed between the oxidation potentials and the electron withdrawing character of the substituents on the Schiff base ligands, showing the following trend: MeO < H < Br < Cl. We also studied the thermodynamics of formation of the complexes and kinetic aspects of their thermal decomposition. The formation constants with various substituents on the aldehyde ring follow the trend 5-OMe > 5-H > 5-Br > 5-Cl. Furthermore, the kinetic parameters of thermal decomposition were calculated by using the Coats-Redfern equation. According to the Coats-Redfern plots the kinetics of thermal decomposition of studied complexes is of the first-order in all stages, the free energy of activation for each following stage is larger than the previous one and the complexes have good thermal stability. The preparation of VOL1ṡDMF yielded also another compound, one kind of vanadium oxide [VO]X, with different habitus of crystals, (platelet instead of prisma) and without L1 ligand, consisting of a V10O28 cage, diaminium moiety and dimethylamonium as a counter ions. Because its crystal structure was also new, we reported it along with the targeted complex.

  7. Metal hydrides for concentrating solar thermal power energy storage

    NASA Astrophysics Data System (ADS)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  8. In situ formation of a MoS2 -based inorganic-organic nanocomposite by directed thermal decomposition.

    PubMed

    Djamil, John; Segler, Stefan A W; Bensch, Wolfgang; Schürmann, Ulrich; Deng, Mao; Kienle, Lorenz; Hansen, Sven; Beweries, Torsten; von Wüllen, Leo; Rosenfeldt, Sabine; Förster, Stephan; Reinsch, Helge

    2015-06-01

    Nanocomposites based on molybdenum disulfide (MoS2 ) and different carbon modifications are intensively investigated in several areas of applications due to their intriguing optical and electrical properties. Addition of a third element may enhance the functionality and application areas of such nanocomposites. Herein, we present a facile synthetic approach based on directed thermal decomposition of (Ph4 P)2 MoS4 generating MoS2 nanocomposites containing carbon and phosphorous. Decomposition at 250 °C yields a composite material with significantly enlarged MoS2 interlayer distances caused by in situ formation of Ph3 PS bonded to the MoS2 slabs through MoS bonds and (Ph4 P)2 S molecules in the van der Waals gap, as was evidenced by (31) P solid-state NMR spectroscopy. Visible-light-driven hydrogen generation demonstrates a high catalytic performance of the materials. PMID:25925691

  9. Low-cost distributed solar-thermal-electric power generation

    NASA Astrophysics Data System (ADS)

    Der Minassians, Artin; Aschenbach, Konrad H.; Sanders, Seth R.

    2004-01-01

    Due to their high relative cost, solar electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaic (PV), but offered at about $1/W would lead to widespread deployment at residential and commercial sites. This paper addresses the investigation and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed deployment. Specifically, we discuss a system based on nonimaging solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation. We target concentrator-collector operation at moderate temperatures, in the range of 125°C to 150°C. This temperature is consistent with use of optical concentrators with concentration ratios on the order of 1-2. These low ratio concentrators admit wide angles of radiation acceptance and are thus compatible with no diurnal tracking, and no or only a few seasonal adjustments. Thus, costs and reliability hazards associated with tracking hardware systems are avoided. Further, we note that in the intended application, there is no shortage of incident solar energy, but rather it is the capital cost of the solar-electric system that is most precious. Thus, we outline a strategy for exploiting solar resources in a cost constrained manner. The paper outlines design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only standard low-cost materials and manufacturing methods are required to realize such a machine.

  10. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  11. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Francis, Robert W.

    1987-01-01

    Thermal stress cycling was performed on gallium arsenide solar cells to investigate their electrical, mechanical, and structural integrity. Cells were cycled under low Earth orbit (LEO) simulated temperature conditions in vacuum. Cell evaluations consisted of power output values, spectral response, optical microscopy and ion microprobe mass analysis, and depth profiles on both front surface inter-grid areas and metallization contact grid lines. Cells were examined for degradation after 500, 5,000, 10,000 and 15,245 thermal cycles. No indication of performance degradation was found for any vendor's cell lot.

  12. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  13. Phase change thermal storage for a solar total energy system

    NASA Technical Reports Server (NTRS)

    Rice, R. E.; Cohen, B. M.

    1978-01-01

    An analytical and experimental program is being conducted on a one-tenth scale model of a high-temperature (584 K) phase-change thermal energy storage system for installation in a solar total energy test facility at Albuquerque, New Mexico, U.S.A. The thermal storage medium is anhydrous sodium hydroxide with 8% sodium nitrate. The program will produce data on the dynamic response of the system to repeated cycles of charging and discharging simulating those of the test facility. Data will be correlated with a mathematical model which will then be used in the design of the full-scale system.

  14. A STUDY OF THE PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS AND REACTION TO SPARK, FRICTION AND IMPACT

    SciTech Connect

    Weese, R K; Burnham, A K; Fontes, A T

    2005-03-30

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear heating rates, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Using differential scanning calorimetry, DSC, CP was decomposed at linear heating rates of 1, 3, and 7 C/min and the kinetic triplet calculated using the LLNL code Kinetics05. Values are also reported for spark, friction, and impact sensitivity.

  15. Irrigation market for solar thermal parabolic dish systems

    NASA Technical Reports Server (NTRS)

    Habib-Agahi, H.; Jones, S. C.

    1981-01-01

    The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. The model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14 percent real discount rate is assumed to 220,000 modules when the real discount rate drops to 8 percent. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98 percent of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71 percent) of the total market.

  16. Thermal properties of carbon black aqueous nanofluids for solar absorption

    NASA Astrophysics Data System (ADS)

    Han, Dongxiao; Meng, Zhaoguo; Wu, Daxiong; Zhang, Canying; Zhu, Haitao

    2011-07-01

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  17. Proceedings of the DOE solar thermal technology program planning workshop

    SciTech Connect

    Radosevich, L.G.

    1982-03-01

    The workshop reviewed several strategies for solar thermal technology program planning. After the strategy options were presented to the workshop participants, each committee (user/supplier, system test and evaluation, technology development, and research) was asked to address the following issues: which strategy shows the best potential for meeting the objectives of the solar thermal program; is there an obvious imbalance in the program in terms of emphasis in various areas; are there any activities which should be added or deleted; and, if a funding cut occurs, how should the cut be made. The strategy options are briefly discussed. Summary reports from each committee follow, and a compilation of the committee findings highlights major similarities and differences. (LEW)

  18. A survey of manufacturers of solar thermal energy systems

    NASA Technical Reports Server (NTRS)

    Levine, N.; Slonski, M. L.

    1982-01-01

    Sixty-seven firms that had received funding for development of solar thermal energy systems (STES) were surveyed. The effect of the solar thermal technology systems program in accelerating (STES) were assessed. The 54 firms still developing STES were grouped into a production typology comparing the three major technologies with three basic functions. It was discovered that large and small firms were developing primarily central receiver systems, but also typically worked on more than one technology. Most medium-sized firms worked only on distributed systems. Federal support of STES was perceived as necessary to allow producers to take otherwise unacceptable risks. Approximately half of the respondents would drop out of STES if support were terminated, including a disproportionate number of medium-sized firms. A differentiated view of the technology, taking into account differing firm sizes and the various stages of technology development, was suggested for policy and planning purposes.

  19. Indoor thermal performance evaluation of Daystar solar collector

    NASA Technical Reports Server (NTRS)

    Shih, K., Sr.

    1977-01-01

    The test procedures used and results obtained from a test program to obtain thermal performance data on a Daystar Model 21B, S/N 02210, Unit 2, liquid solar collector under simulated conditions are described. The test article is a flat plate solar collector using liquid as a heat transfer medium. The absorber plate is copper and coated with black paint. Between the tempered low iron glass and absorber plate is a polycarbonate trap used to suppress convective heat loss. The collector incorporates a convector heat dump panel to limit temperature excursions during stagnation. The following tests were conducted: (1) collector thermal efficiency; (2) collector time constant; (3) collector incident angle modifier; (4) collector heat loss coefficient; and (5) collector stagnation.

  20. Azobenzene-based Polymers for Solar Thermal Batteries

    NASA Astrophysics Data System (ADS)

    Venkataraman, Dhandapani

    Azobenzene exists as two isomers, a higher energy cis-isomer and a lower energy trans-isomer. The isomers interconvert under light or heat. Recently, there is a renewed interest in capturing the difference in the energies of the isomers and using azobenzene-based molecules as active layers for solar thermal batteries. My research group has been exploring azobenzene-based polymers as candidates for solar thermal batteries. In this talk, I will show that the azo-benzene moieties can be converted to the cis-form using light and converted back to the trans form using mechanical force. I will provide some of our recent results that indicate that high energy densities can be achieved in these polymers.

  1. Thermal Decomposition Characteristics of Orthorhombic Ammonium Perchlorate (o-AP) and an 0-AP/HTPB-Based Propellant

    SciTech Connect

    BEHRENS JR.,RICHARD; MINIER,LEANNA M.G.

    1999-10-25

    A study to characterize the low-temperature reactive processes for o-AP and an AP/HTPB-based propellant (class 1.3) is being conducted in the laboratory using the techniques of simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and scanning electron microscopy (SEM). The results presented in this paper are a follow up of the previous work that showed the overall decomposition to be complex and controlled by both physical and chemical processes. The decomposition is characterized by the occurrence of one major event that consumes up to {approx}35% of the AP, depending upon particle size, and leaves behind a porous agglomerate of AP. The major gaseous products released during this event include H{sub 2}O, O{sub 2}, Cl{sub 2}, N{sub 2}O and HCl. The recent efforts provide further insight into the decomposition processes for o-AP. The temporal behaviors of the gas formation rates (GFRs) for the products indicate that the major decomposition event consists of three chemical channels. The first and third channels are affected by the pressure in the reaction cell and occur at the surface or in the gas phase above the surface of the AP particles. The second channel is not affected by pressure and accounts for the solid-phase reactions characteristic of o-AP. The third channel involves the interactions of the decomposition products with the surface of the AP. SEM images of partially decomposed o-AP provide insight to how the morphology changes as the decomposition progresses. A conceptual model has been developed, based upon the STMBMS and SEM results, that provides a basic description of the processes. The thermal decomposition characteristics of the propellant are evaluated from the identities of the products and the temporal behaviors of their GFRs. First, the volatile components in the propellant evolve from the propellant as it is heated. Second, the hot AP (and HClO{sub 4}) at the AP-binder interface oxidize the binder through reactions that

  2. Evaluating thermal performance of a single slope solar still

    NASA Astrophysics Data System (ADS)

    Badran, Omar O.; Abu-Khader, Mazen M.

    2007-08-01

    The distillation is one of the important methods of getting clean water from brackish and sea water using the free energy supply from the sun. An experimental work is conducted on a single slope solar still. The thermal performance of the single slope solar still is examined and evaluated through implementing the following effective parameters: (a) different insulation thicknesses of 1, 2.5 and 5 cm; (b) water depth of 2 and 3.5 cm; (c) solar intensity; (d) Overall heat loss coefficient (e) effective absorbtivity and transmissivity; and (f) ambient, water and vapor temperatures. Different effective parameters should be taken into account to increase the still productivity. A mathematical model is presented and compared with experimental results. The model gives a good match with experimental values.

  3. Solar thermal plant impact analysis and requirements definition

    NASA Technical Reports Server (NTRS)

    Gupta, Y. P.

    1980-01-01

    Progress on a continuing study comprising of ten tasks directed at defining impact and requirements for solar thermal power systems (SPS), 1 to 10 MWe each in capacity, installed during 1985 through year 2000 in a utility or a nonutility load in the United States is summarized. The point focus distributed receiver (PFDR) solar power systems are emphasized. Tasks 1 through 4, completed to date, include the development of a comprehensive data base on SPS configurations, their performance, cost, availability, and potential applications; user loads, regional characteristics, and an analytic methodology that incorporates the generally accepted utility financial planning methods and several unique modifications to treat the significant and specific characteristics of solar power systems deployed in either central or distributed power generation modes, are discussed.

  4. A solar air collector with integrated latent heat thermal storage

    NASA Astrophysics Data System (ADS)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  5. Dish concentrators for solar thermal energy: Status and technology development

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1982-01-01

    Point-focusing concentrators under consideration for solar thermal energy use are reviewed. These concentrators differ in such characteristics as optical configuration, optical materials, structure for support of the optical elements and of the receiver, mount, foundation, drive, controls and enclosure. Concentrator performance and cost are considered. Technology development is outlined, including wind loads and aerodynamics; precipitation, sand, and seismic considerations; and maintenance and cleaning.

  6. Proceedings: Fourth Parabolic Dish Solar Thermal Power Program Review

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of activities within the parabolic dish technology and applications development program are presented. Stirling, organic Rankine and Brayton module technologies, associated hardware and test results to date; concentrator development and progress; economic analyses; and international dish development activities are covered. Two panel discussions, concerning industry issues affecting solar thermal dish development and dish technology from a utility/user perspective, are also included.

  7. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    SciTech Connect

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  8. Exergetic analysis of parabolic trough solar thermal power plants

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Ruperez, B.; San Miguel, G.

    2014-12-01

    A very important component to achieve sustainable development in the energy sector is the improvement of energy efficiency of widely applied thermodynamic processes. Evaluation and optimization methods of energy processes play a crucial role in fulfilling this goal. A suitable method for the evaluation and optimization of energy conversion systems has been proven to be the exergetic analysis. In this work, two parabolic trough solar thermal power plants are simulated in detail using commercial software, and they are further analysed and compared using an exergetic analysis. The first plant uses a thermal fluid to produce the steam required in a steam generator, while the second one produces the steam directly in the solar field. The analysis involves the evaluation of the individual components of the power plants, as well as the performance evaluation of the overall structures. The main goal is to detect thermodynamic inefficiencies of the two different configurations and propose measures to minimize those. We find that the two examined plants have similar main sources of exergy destruction: the solar field (parabolic trough solar collectors), followed by the steam generator. This reveals the importance of an optimal design of these particular components, which could reduce inefficiencies present in the system. The differences in the exergy destruction and exergetic efficiencies of individual components of the two plants are analyzed in detail based on comparable operational conditions.

  9. Thermal Decomposition of Methyl Esters in Biodiesel Fuel: Kinetics, Mechanisms and Products

    NASA Astrophysics Data System (ADS)

    Chai, Ming

    Biodiesel continues to enjoy increasing popularity. However, recent studies on carbonyl compounds emissions from biodiesel fuel are inconclusive. Emissions of carbonyl compounds from petroleum diesel fuels were compared to emissions from pure biodiesel fuels and petroleum-biodiesel blends used in a non-road diesel generator. The concentration of total carbonyl compounds was the highest when the engine was idling. The carbonyl emissions, as well as ozone formation potential, from biodiesel fuel blends were higher than those emitted from petroleum diesel fuel. The sulfur content of diesel fuel and the source of biodiesel fuel were not found to have a significant impact on emissions of carbonyl compounds. Mechanism parameters of the thermal decomposition of biodiesel-range methyl esters were obtained from the results of thermal gravimetric analysis (TGA). The overall reaction orders are between 0.49 and 0.71 and the energies of activation are between 59.9 and 101.3 kJ/mole. Methyl esters in air have lower activation energies than those in nitrogen. Methyl linoleate has the lowest activation energy, followed by methyl oleate, and methyl stearate. The pyrolysis and oxidation of the three methyl esters were investigated using a semi-isothermal tubular flow reactor. The profiles of major products versus reaction temperature are presented. In the pyrolysis of methyl stearate, the primary reaction pathway is the decarboxylic reaction at the methyl ester functional group. Methyl oleate's products indicate more reactions on its carbon-carbon double bond. Methyl linoleate shows highest reactivity among the three methyl esters, and 87 products were detected. The oxidation of three methyl esters resulted in more products in all compound classes, and 55, 114, and 127 products were detected, respectively. The oxidation of methyl esters includes decarboxylation on ester group. The methyl ester's carbon chain could be oxidized as a hydrocarbon compound and form oxidized esters and

  10. Thermal decomposition of 1,1-dimethylhydrazine on Si(100)-2 × 1

    NASA Astrophysics Data System (ADS)

    Armstrong, J. L.; Sun, Y.-M.; White, J. M.

    1997-12-01

    The surface reaction of 1,1-dimethylhydrazine (DMH) with Si(100) has been studied with temperature programmed desorption spectroscopy (TPD), temperature programmed static secondary ion mass spectrometry (TPSSIMS), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Adsorption of DMH on Si(100) at 170 K followed by annealing to 1100 K results in significant decomposition to form surface carbide and nitride. TPD results show that the only gas phase desoprtion products are hydrogen and dimethylamine. Furthermore, decomposition occurs over a broad temperature range; XPS and TPSIMS results indicate C sbnd N bond cleavage beginning at 400 K and by 600 K, all the C sbnd N bonds have dissociated. We propose a molecular level mechanism that involves partial decomposition upon adsorption followed by extensive bond cleavage to form surface carbide and nitride.

  11. Syntheses and characterizations of two new energetic copper-amine-DNANT complexes and their effects on thermal decomposition of RDX

    NASA Astrophysics Data System (ADS)

    Qiu, Qianqian; Xu, Kangzhen; Yang, Shihe; Gao, Zhe; Zhang, Hang; Song, Jirong; Zhao, Fengqi

    2013-09-01

    Two novel copper complexes of dinitroacetonitrile (DNANT), Cu(NH3)4(DNANT)2 (1) and Cu(en)2(DNATN)2 (2), have been synthesized for the first time through an unique reaction, and structurally characterized. The single-crystal X-ray structural analysis shows that the Cu2+ cations in the two complexes share a similar four-coordinated structure, which however does not directly involve the main energetic DNANT- anion. The differential scanning calorimetry (DSC) study reveals that the two complexes have higher thermal stability and lower sensitivity than the analogous FOX-7 complexes, and exhibit good catalytic action to the decomposition of RDX.

  12. Thermal Shock Behavior of Single Crystal Oxide Refractive Concentrators for High Temperatures Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium-aluminum-garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) have been considered as refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermal mechanical reliability of the oxide components in severe thermal environments during space mission sun/shade transitions is of great concern. In this paper, critical mechanical properties of these oxide crystals are determined by the indentation technique. Thermal shock resistance of the oxides is evaluated using a high power CO, laser under high temperature-high thermal gradients. Thermal stress fracture behavior and failure mechanisms of these oxide materials are investigated under various temperature and heating conditions.

  13. Thermal decomposition of sodium bicarbonate and its effect on the reaction of sodium bicarbonate and sulfur dioxide in a simulated flue gas

    SciTech Connect

    Keener, T.C.

    1982-01-01

    The effect of thermally decomposing sodium bicarbonate while simultaneously reacting with SO/sub 2/, was studied. The study was performed by quantitatively determining the rate of thermal decomposition as a function of particle size in an SO/sub 2/ free gas stream. The rate of reaction of sodium carbonate (product of the thermal decomposition) with SO/sub 2/ was then studied, and the data applied to a pore-plugging model which accounts for the loss in reactivity with increased reaction time. The reaction of sodium bicarbonate with SO/sub 2/ was then studied and the results compared to that for sodium carbonate. From the analysis of the data, the activation energy for the thermal decomposition reaction, the SO/sub 2/ sodium carbonate and SO/sub 2/ sodium bicarbonate reaction were derived. The thermal decomposition reaction of sodium biocarbonate was found to be similar to that of calcium carbonate below the point where heat transfer is rate limiting. The degree of conversion of sodium bicarbonate was found to be 12-17 times greater (depending on particle size) than that of sodium carbonate in the temperature range 250/sup 0/-350/sup 0/F (120/sup 0/-177/sup 0/C). This greater conversion was qualitatively explained by hypothesizing the formation of an activated species during thermal decomposition which would be more chemically reactive.

  14. Remote Thermal IR Spectroscopy of our Solar System

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Hewagama, Tilak; Goldstein, Jeffrey; Livengood, Timothy; Fast, Kelly

    1999-01-01

    Indirect methods to detect extrasolar planets have been successful in identifying a number of stars with companion planets. No direct detection of an extrasolar planet has yet been reported. Spectroscopy in the thermal infrared region provides a potentially powerful approach to detection and characterization of planets and planetary systems. We can use knowledge of our own solar system, its planets and their atmospheres to model spectral characteristics of planets around other stars. Spectra derived from modeling our own solar system seen from an extrasolar perspective can be used to constrain detection strategies, identification of planetary class (terrestrial vs. gaseous) and retrieval of chemical, thermal and dynamical information. Emission from planets in our solar system peaks in the thermal infrared region, approximately 10 - 30 microns, substantially displaced from the maximum of the much brighter solar emission in the visible near 0.5 microns. This fact provides a relatively good contrast ratio to discriminate between stellar (solar) and planetary emission and optimize the delectability of planetary spectra. Important molecular constituents in planetary atmospheres have rotational-vibrational spectra in the thermal infrared region. Spectra from these molecules have been well characterized in the laboratory and studied in the atmospheres of solar system planets from ground-based and space platforms. The best example of such measurements are the studies with Fourier transform spectrometers, the Infrared Interferometer Spectrometers (IRIS), from spacecraft: Earth observed from NIMBUS 8, Mars observed from Mariner 9, and the outer planets observed from Voyager spacecraft. An Earth-like planet is characterized by atmospheric spectra of ozone, carbon dioxide, and water. Terrestrial planets have oxidizing atmospheres which are easily distinguished from reducing atmospheres of gaseous giant planets which lack oxygen-bearing species and are characterized by spectra

  15. Infrared spectroscopic study on the thermal decomposition of external and internal gelation products of simulated mixed oxide nuclear fuel.

    PubMed

    Kumar, K Suresh; Bhat, N P

    2004-02-01

    The thermal decomposition of urania-ceria gel corresponding to the composition U(0.7)Ce(0.3)O(2+x) obtained through external and internal gelation routes were studied using infrared spectroscopy (IR). In the case of externally gelated compound, the gel decomposes with the release of H2O and NH3 below 500 degrees C. A part of the NH3 released is entrapped in the solid and above 500 degrees C self reduction occurs in which U(VI) in the gel is reduced to U3O8. The decomposition products were identified to be U3O8 and CeO2. In the case of internally gelated compound, decomposition similar to the one for externally gelated compound occurred below 500 degrees C. Above 500 degrees C the carbon present in the gel reduced U(VI) to UO2 which formed solid solution with CeO2 around 650 degrees C. PMID:14747073

  16. ESR studies on the thermal decomposition of trimethylamine oxide to formaldehyde and dimethylamine in jumbo squid (Dosidicus gigas) extract.

    PubMed

    Zhu, Junli; Jia, Jia; Li, Xuepeng; Dong, Liangliang; Li, Jianrong

    2013-12-15

    The effects of ferrous iron, heating temperature and different additives on the decomposition of trimethylamine oxide (TMAO) to formaldehyde (FA) and dimethylamine (DMA) and generation of free radicals in jumbo squid (Dosidicus gigas) extract during heating were evaluated by electron spin resonance (ESR). The thermal decomposition of TMAO to TMA, DMA and FA and free radical signals was observed in squid extract, whereas no DMA, FA and free radical signals were detected in cod extract or in aqueous TMAO solution in vitro at high temperatures. Significant increase in levels of DMA, FA and radicals intensity were observed in squid extract and TMAO solution in the presence of ferrous iron with increasing temperature. Hydrogen peroxide stimulated the production of DMA, FA and ESR signals in squid extract, while citric acid, trisodium citrate, calcium chloride, tea polyphenols and resveratrol had the opposite effect. Similar ESR spectra of six peaks regarded as amminium radical were detected in the squid extract and TMAO-iron(II) solution, suggesting that the amminium radical was involved in the decomposition of TMAO. PMID:23993561

  17. Shock wave and modeling study of the thermal decomposition reactions of pentafluoroethane and 2-H-heptafluoropropane.

    PubMed

    Cobos, C J; Sölter, L; Tellbach, E; Troe, J

    2014-06-01

    The thermal decomposition reactions of CF3CF2H and CF3CFHCF3 have been studied in shock waves by monitoring the appearance of CF2 radicals. Temperatures in the range 1400-2000 K and Ar bath gas concentrations in the range (2-10) × 10(-5) mol cm(-3) were employed. It is shown that the reactions are initiated by C-C bond fission and not by HF elimination. Differing conclusions in the literature about the primary decomposition products, such as deduced from experiments at very low pressures, are attributed to unimolecular falloff effects. By increasing the initial reactant concentrations in Ar from 60 to 1000 ppm, a retardation of CF2 formation was observed while the final CF2 yields remained close to two CF2 per C2F5H or three CF2 per C3F7H decomposed. This is explained by secondary bimolecular reactions which lead to comparably stable transient species like CF3H, releasing CF2 at a slower rate. Quantum-chemical calculations and kinetic modeling help to identify the reaction pathways and provide estimates of rate constants for a series of primary and secondary reactions in the decomposition mechanism. PMID:24352693

  18. Kinetics and Mechanism of the CIO + CIO Reaction: Pressure and Temperature Dependences of the Bimolecular and Termolecular Channels andThermal Decomposition of Chlorine Peroxide, CIOOCI

    NASA Technical Reports Server (NTRS)

    Nickolaisen, Scott L.; Friedl, Randall R.; Sander, Stanley P.

    1993-01-01

    The kinetics and mechanism of the CIO + CIO reaction and the thermal decomposition of CIOOCI were studied using the flash photolysis/long path ultraviolet absorption technique. Pressure and temperature dependences were determined for the rate coefficients for the bimolecular and termolecular reaction channels, and for the thermal decompositon of CIOOCI.

  19. Combined solar thermal and photovoltaic power plants - An approach to 24h solar electricity?

    NASA Astrophysics Data System (ADS)

    Platzer, Werner J.

    2016-05-01

    Solar thermal power plants have the advantage of being able to provide dispatchable renewable electricity even when the sun is not shining. Using thermal energy strorage (TES) they may increase the capacity factor (CF) considerably. However in order to increase the operating hours one has to increase both, thermal storage capacity and solar field size, because the additional solar field is needed to charge the storage. This increases investment cost, although levelised electricity cost (LEC) may decrease due to the higher generation. Photovoltaics as a fluctuating source on the other side has arrived at very low generation costs well below 10 ct/kWh even for Central Europe. Aiming at a capacity factor above 70% and at producing dispatchable power it is shown that by a suitable combination of CSP and PV we can arrive at lower costs than by increasing storage and solar field size in CSP plants alone. Although a complete baseload power plant with more than 90% full load hours may not be the most economic choice, power plants approaching a full 24h service in most days of the year seem to be possible at reasonably low tariffs.

  20. Y2O3-MgO Nano-Composite Synthesized by Plasma Spraying and Thermal Decomposition of Solution Precursors

    NASA Astrophysics Data System (ADS)

    Muoto, Chigozie Kenechukwu

    This research aims to identify the key feedstock characteristics and processing conditions to produce Y2O3-MgO composite coatings with high density and hardness using solution precursor plasma spray (SPPS) and suspension plasma spray (SPS) processes, and also, to explore the phenomena involved in the production of homogenized nano-composite powders of this material system by thermal decomposition of solution precursor mixtures. The material system would find potential application in the fabrication of components for optical applications such as transparent windows. It was shown that a lack of major endothermic events during precursor decomposition and the resultant formation of highly dense particles upon pyrolysis are critical precursor characteristics for the deposition of dense and hard Y2O3-MgO coatings by SPPS. Using these principles, a new Y2O3-MgO precursor solution was developed, which yielded a coating with Vickers hardness of 560 Hv. This was a considerable improvement over the hardness of the coatings obtained using conventional solution precursors, which was as low as 110 Hv. In the thermal decomposition synthesis process, binary solution precursor mixtures of: yttrium nitrate (Y[n]) or yttrium acetate (Y[a]), with magnesium nitrate (Mg[n]) or magnesium acetate (Mg[a]) were used in order to study the effects of precursor chemistry on the structural characteristics of the resultant Y2O3-MgO powders. The phase domains were coarse and distributed rather inhomogeneously in the materials obtained from the Y[n]Mg[n] and Y[a]Mg[a] mixtures; finer and more homogeneously-distributed phase domains were obtained for ceramics produced from the Y[a]Mg[n] and Y[n]Mg[a] mixtures. It was established that these phenomena were related to the thermal characteristics for the decomposition of the precursors and their effect on phase separation during oxide crystallization. Addition of ammonium acetate to the Y[n[Mg[n] mixture changed the endothermic process to exothermic

  1. Effect of aluminum chloride on formation of a polyconjugated bond system in the initial stage of polyvinyl alcohol thermal decomposition

    NASA Astrophysics Data System (ADS)

    Kulak, A. I.; Bondareva, G. V.; Shchurevich, O. A.

    2013-03-01

    Fine-structure bands have been located in electronic absorption spectra of polyvinyl alcohol (PVA) films decomposed thermally in air at 80-150°C. Doping of the PVA film with aluminum chloride (thermolysis catalyst) was found both to enhance the degree of thermal decomposition and to reduce the starting temperature for formation of poly-π-conjugated chains although it had no effect on the spectral positions of the polyene-unit absorption bands. Values of the band gap of heat-treated PVA films were determined to be in the range 1.65-1.78 eV based on an analysis of the electronic spectra long-wavelength edge.

  2. Artificial Neural Network Prediction for Thermal Decomposition of Potassium Nitrate (KNO3) and Benzoic Acid (C6H5COOH)

    NASA Astrophysics Data System (ADS)

    Beken, Murat

    The aim of this work is to correlate the results of experimental data by using the differential thermal analysis (DTA) method and predictions of artificial neural networks (ANNs). Thermal decomposition of potassium nitrate (KNO3) and benzoic acid (C6H5COOH) have been analyzed by the simultaneous DTA method. Kinetic parameters (critical points, the change of enthalpy) have been investigated. A computer model, based on multilayer feed-forwarding back-propagation is used for the prediction of critical points, phase transitions of potassium nitrate (KNO3) and benzoic acid (C6H5COOH). As a result of our study, we conclude that the ANN model shows a considerably good result about the prediction of experimental data.

  3. Low-Frequency Electromagnetic Thermal Fluctuations in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Gaelzer, R.; Yoon, P. H.; Ziebell, L. F.; Pavan, J.

    2012-12-01

    It is well known that the solar wind proton temperature anisotropy is constrained in the temperature ratio vs. beta parameter space by the mirror/proton-cyclotron and parallel/oblique firehose instability threshold conditions (Hellinger et al., 2006). However, the actual solar wind is found in the parameter regime stable to these instabilities (Bale et al., 2009). Since no waves can be generated in the purely collisionless and stable plasma, the source of the low-frequency electromagnetic fluctuations in the solar wind must be owing to spontaneous thermal effects. The problem of the spontaneously emitted electromagnetic waves from magnetized plasmas is generally poorly understood (Araneda et al., 2011). In the present paper, we formulate the theory of spontaneous thermal emission of electromagnetic radiation in the vicinity of the low-frequency modes of Alfvén, ion-cyclotron, and whistler modes. We carry out a statistical analysis by varying the temperature anisotropy and parallel beta and compare the theoretical fluctuation intensity against the observation such as that reported by Bale et al. (2009). Hellinger et al., GRL, 33, L09101 (2006). Bale et al., PRL, 103, 211101 (2009). Araneda et al., Space Sci. Rev., DOI:10.1007/s11214-011-9773-0 (2011).

  4. Heat engine development for solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Pham, H. Q.; Jaffe, L. D.

    1981-01-01

    The technical status of three heat engines (Stirling, high-temperature Brayton, and Combined cycle) for use in solar thermal power systems is presented. Performance goals necessary to develop a system competitive with conventional power requirements include an external heated engine output less than 40 kW, and efficiency power conversion subsystem at least 40% at rated output, and a half-power efficiency of at least 37%. Results show that the Stirling engine can offer a 39% efficiency with 100 hours of life, and a 20% efficiency with 10,000 hours of life, but problems with seals and heater heads exist. With a demonstrated efficiency near 31% at 1500 F and a minimum lifetime of 100,000 hours, the Brayton engine does not offer sufficient engine lifetime, efficiency, and maintenance for solar thermal power systems. Examination of the Rankine bottoming cycle of the Combined cycle engine reveals a 30 year lifetime, but a low efficiency. Additional development of engines for solar use is primarily in the areas of components to provide a long lifetime, high reliability, and low maintenance (no more than $0.001/kW-hr).

  5. Thermochemical seasonal energy storage for solar thermal power

    SciTech Connect

    Barnhart, J.S.

    1984-01-01

    During the many years that thermochemical energy storage has been under investigation, the concept has been plagued with two persistent problems: high capital cost and poor efficiency. Literally hundreds of chemical reactions have also been carried out. For short-term storage, thermochemical systems suffer in comparison with highly efficient sensible storage media such as molten salts. Long-term storage, on the other hand, is not cost-competitive with systems employing fossil backup power. Thermochemical storage will play a significant role in solar thermal electric conversion only under highly select circumstances. The portion of electric demand served by solar plants must be sufficiently high that the balance of the grid cannot fully supplant seasonal storage. High fossil fuel costs must preclude the use of gas turbines for backup power. Significant breakthroughs in the development of one or more chemical reaction systems must occur. Ingeniously integrated systems must be employed to enhance the efficiency and cost-effectiveness of thermochemical storage. A promising integration scheme discussed herein consists of using sensible storage for diurnal cycling in parallel with thermochemical seasonal storage. Under the most favorable circumstances, thermochemical storage can be expected to play a small but perhaps vital role in supplying baseload energy from solar thermal electric conversion plants.

  6. Hydrogen production by photoelectrolytic decomposition of H2O using solar energy

    NASA Technical Reports Server (NTRS)

    Rauh, R. D.; Alkaitis, S. A.; Buzby, J. M.; Schiff, R.

    1980-01-01

    Photoelectrochemical systems for the efficient decomposition of water are discussed. Semiconducting d band oxides which would yield the combination of stability, low electron affinity, and moderate band gap essential for an efficient photoanode are sought. The materials PdO and Fe-xRhxO3 appear most likely. Oxygen evolution yields may also be improved by mediation of high energy oxidizing agents, such as CO3(-). Examination of several p type semiconductors as photocathodes revealed remarkable stability for p-GaAs, and also indicated p-CdTe as a stable H2 photoelectrode. Several potentially economical schemes for photoelectrochemical decomposition of water were examined, including photoelectrochemical diodes and two stage, four photon processes.

  7. Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO3, U2O7, and UO4

    DOE PAGESBeta

    Guo, Xiaofeng; Wu, Di; Xu, Hongwu; Burns, Peter C.; Navrotsky, Alexandra

    2016-06-08

    The thermal decomposition of studtite (UO2)O2(H2O)2·2H2O results in a series of intermediate X-ray amorphous materials with general composition UO3+x (x = 0, 0.5, 1). As an extension of a structural study on U2O7, this work provides detailed calorimetric data on these amorphous oxygen-rich materials since their energetics and thermal stability are unknown. These were characterized in situ by thermogravimetry, and mass spectrometry. Ex situ X-ray diffraction and infrared spectroscopy characterized their chemical bonding and local structures. This detailed characterization formed the basis for obtaining formation enthalpies by high temperature oxide melt solution calorimetry. The thermodynamic data demonstrate the metastability ofmore » the amorphous UO3+x materials, and explain their irreversible and spontaneous reactions to generate oxygen and form metaschoepite. Thus, formation of studtite in the nuclear fuel cycle, followed by heat treatment, can produce metastable amorphous UO3+x materials that pose the risk of significant O2 gas. Quantitative knowledge of the energy landscape of amorphous UO3+x was provided for stability analysis and assessment of conditions for decomposition.« less

  8. Thermal Decomposition of Bulk K-CoMoSx Mixed Alcohol Catalyst Precursors and Effects on Catalyst Morphology and Performance

    SciTech Connect

    Menart, M. J.; Hensley, J. E.; Costelow, K. E.

    2012-09-26

    Cobalt molybdenum sulfide-type mixed alcohol catalysts were synthesized via calcination of precipitated bulk sulfides and studied with temperature programmed decomposition analysis. Precursors containing aqueous potassium were also considered. Precipitates thermally decomposed in unique events which released ammonia, carbon dioxide, and sulfur. Higher temperature treatments led to more crystalline and less active catalysts in general with ethanol productivity falling from 203 to 97 g (kg cat){sup -1} h{sup -1} when the calcination temperature was increased from 375 to 500 C. The addition of potassium to the precursor led to materials with crystalline potassium sulfides and good catalytic performance. In general, less potassium was required to promote alcohol selectivity when added before calcination. At calcination temperatures above 350 C, segregated cobalt sulfides were observed, suggesting that thermally decomposed sulfide precursors may contain a mixture of molybdenum and cobalt sulfides instead of a dispersed CoMoS type of material. When dimethyl disulfide was fed to the precursor during calcination, crystalline cobalt sulfides were not detected, suggesting an important role of free sulfur during decomposition.

  9. Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO3, U2O7, and UO4

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Wu, Di; Xu, Hongwu; Burns, Peter C.; Navrotsky, Alexandra

    2016-09-01

    The thermal decomposition of studtite (UO2)O2(H2O)2·2H2O results in a series of intermediate X-ray amorphous materials with general composition UO3+x (x = 0, 0.5, 1). As an extension of a structural study on U2O7, this work provides detailed calorimetric data on these amorphous oxygen-rich materials since their energetics and thermal stability are unknown. These were characterized in situ by thermogravimetry, and mass spectrometry. Ex situ X-ray diffraction and infrared spectroscopy characterized their chemical bonding and local structures. This detailed characterization formed the basis for obtaining formation enthalpies by high temperature oxide melt solution calorimetry. The thermodynamic data demonstrate the metastability of the amorphous UO3+x materials, and explain their irreversible and spontaneous reactions to generate oxygen and form metaschoepite. Thus, formation of studtite in the nuclear fuel cycle, followed by heat treatment, can produce metastable amorphous UO3+x materials that pose the risk of significant O2 gas. Quantitative knowledge of the energy landscape of amorphous UO3+x was provided for stability analysis and assessment of conditions for decomposition.

  10. Thermal decomposition behaviors and kinetic properties of 1,8-naphthalic anhydride loaded dense nano-silica hybrids

    NASA Astrophysics Data System (ADS)

    Wang, Jinpeng; Sun, Jihong; Wang, Feng; Ren, Bo

    2013-06-01

    A certain amount of (3-aminopropyl)triethoxysilane (APTES) and various capacity of 1,8-naphthalic anhydride (NA) were employed to modify and then graft onto the surface of the dense nano-silica spheres (DNSS) via a post-grafting method, and thereby, a novel luminescent density nano-silica hybrid materials have been successfully synthesized. Meanwhile, the structures and properties of obtained hybrid DNSS were characterized by XRD, TEM, N2 sorption, FT-IR, and TG analysis. Furthermore, the thermal stability of before and after modification were demonstrated by using both Kissinger methods and Ozawa-Flynn-Wall methods. Particularly, the thermal decomposition behaviors of amino-modified groups and NA-grafted organic molecules were emphasized based on the TG and DTG analysis and then the related mechanism was put forward according to Coats and Redfern methods. Finally, as a comparison, the obtained results and the proposed decomposition mechanism of hybrid DNSS with non-pores were discussed with that of mesopores silicas in details.

  11. Multiscale computational modeling of a radiantly driven solar thermal collector

    NASA Astrophysics Data System (ADS)

    Ponnuru, Koushik

    The objectives of the master's thesis are to present, discuss and apply sequential multiscale modeling that combines analytical, numerical (finite element-based) and computational fluid dynamic (CFD) analysis to assist in the development of a radiantly driven macroscale solar thermal collector for energy harvesting. The solar thermal collector is a novel green energy system that converts solar energy to heat and utilizes dry air as a working heat transfer fluid (HTF). This energy system has important advantages over competitive technologies: it is self-contained (no energy sources are needed), there are no moving parts, no oil or supplementary fluids are needed and it is environmentally friendly since it is powered by solar radiation. This work focuses on the development of multi-physics and multiscale models for predicting the performance of the solar thermal collector. Model construction and validation is organized around three distinct and complementary levels. The first level involves an analytical analysis of the thermal transpiration phenomenon and models for predicting the associated mass flow pumping that occurs in an aerogel membrane in the presence of a large thermal gradient. Within the aerogel, a combination of convection, conduction and radiation occurs simultaneously in a domain where the pore size is comparable to the mean free path of the gas molecules. CFD modeling of thermal transpiration is not possible because all the available commercial CFD codes solve the Navier Stokes equations only for continuum flow, which is based on the assumption that the net molecular mass diffusion is zero. However, thermal transpiration occurs in a flow regime where a non-zero net molecular mass diffusion exists. Thus these effects are modeled by using Sharipov's [2] analytical expression for gas flow characterized by high Knudsen number. The second level uses a detailed CFD model solving Navier Stokes equations for momentum, heat and mass transfer in the various

  12. Thermal decomposition of HfCl{sub 4} as a function of its hydration state

    SciTech Connect

    Barraud, E.; Begin-Colin, S. . E-mail: begin@ipcms.u-strasbg.fr; Le Caer, G.; Villieras, F.; Barres, O.

    2006-06-15

    The thermogravimetric behavior of HfCl{sub 4} powders with different hydration states has been compared. Strongly hydrated powders consist of HfOCl{sub 2}.nH{sub 2}O with n>4. Partially hydrated powders consist of particles with a HfCl{sub 4} core and a hydrated outerlayer of HfOCl{sub 2}.nH{sub 2}O with n in the range of 0-8. Hydrated powders decomposed at temperature lower than 200 deg. C whereas the decomposition of partially hydrated powders was completed at a temperature of around 450 deg. C. The observed differences in decomposition temperature is related to the structure of HfOCl{sub 2}.nH{sub 2}O, which is different if n is higher or smaller than 4 and leads to intermediate compounds, which decompose at different temperatures.

  13. Thermal State-of-Charge in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Hall, Carsie, A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1998-01-01

    A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.

  14. A dish-Stirling solar-thermal power system

    NASA Technical Reports Server (NTRS)

    Pons, R. L.; Clark, T. B.

    1980-01-01

    This paper presents results of a preliminary design/economic study of a first-generation point focusing distributed receiver solar-thermal electric system optimized for application to industrial and small community power plants at power levels up to 10 MWe. Power conversion is provided by small Stirling cycle engines mounted at the focus of paraboloidal solar concentrators. The output of multiple power modules (concentrator, receiver, engine, and electric generator) is collected by means of a conventional electrical system and interfaced with a utility grid. Based on the United Stirling P-75 engine, a 1 MWe system employing mass-produced components (100,000 modules/year) could produce electricity at costs competitive with those projected for electricity generated by more conventional means, e.g. with fossil fuels.

  15. Thermal performance evaluation of the Calmac (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    Usher, H.

    1978-01-01

    The procedures used and the results obtained during the evaluation test program on the S. N. 1, (liquid) solar collector are presented. The flat plate collector uses water as the working fluid. The absorber plate is aluminum with plastic tubes coated with urethane black. The glazing consists of .040 in fiberglass reinforced polyester. The collector weight is 78.5 pounds with overall external dimensions of approximately 50.3in. x 98.3in. x 3.8in. The following information is given: thermal performance data under simulated conditions, structural behavior under static loading, and the effects of long term exposure to natural weathering. These tests were conducted using the MSFC Solar Simulator.

  16. Thermal energy storage for a space solar dynamic power system

    NASA Technical Reports Server (NTRS)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  17. Thermal and cost goal analysis for passive solar heating designs

    SciTech Connect

    Noll, S.A.; Kirschner, C.

    1980-01-01

    Economic methodologies developed over the past several years for the design of residential solar systems have been based on life cycle cost (LCC) minimization. Because of uncertainties involving future economic conditions and the varied decision making processes of home designers, builders, and owners, LCC design approaches are not always appropriate. To deal with some of the constraints that enter the design process, and to narrow the number of variables to those that do not depend on future economic conditions, a simplified thermal and cost goal approach for passive designs is presented. Arithmetic and graphical approaches are presented with examples given for each. Goals discussed include simple payback, solar savings fraction, collection area, maximum allowable construction budget, variable cost goals, and Btu savings.

  18. Advanced component research in the solar thermal program

    NASA Astrophysics Data System (ADS)

    Brown, C. T.

    The capabilities, equipment, and programs of the DoE advanced components test facility (ACTF) for developing solar thermal technologies are reviewed. The ACTF has a heliostat field, a rigid structural steel test tower at the geometric center of the heliostat field, an experiment platform on the tower, a heat rejection system, and computerized instrumentation. Tests have been performed on a directly-heated fluidized-bed solar receiver, a high pressure single-pass-to-superheat steam generator, a liquid Na heat pipe receiver, a flash pyrolysis biomass gasifier, and a grid-connected Stirling engine powered electrical generator. Helium served as the 720 C working fluid in the Stirling engine, and 18.8 kWe continuous was produced for the grid. Verified components qualified for further development are subjected to larger scale testing at a 5 MW facility in Albuquerque, NM.

  19. Turbine sizing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1979-01-01

    Since the insolation is intermittent, thermal energy storage is necessary to extend the time of power generation with solar heat past sunset. There are two approaches to specifying the size of turbine-generator units depending on the system operation. In the first approach, the turbine operates at its full capacity when operating on direct solar heat, and at reduced capacity when operating on collected heat out of energy storage. In the second approach, the turbine will always operate at a uniform level either on derated energy from the receiver or from energy storage. Both of these approaches have certain advantages and disadvantages. In this paper, a simple analysis is outlined and exercised to compare the performance and economics of these two approaches.

  20. Fifth parabolic dish solar thermal power program annual review: proceedings

    SciTech Connect

    1984-03-01

    The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.